
Department of Computer Science

Series of Publications A

Report A-2009-9

Computational Techniques for Haplotype

Inference and for Local Alignment Significance

Pasi Rastas

To be presented, with the permission of the Faculty of Science
of the University of Helsinki, for public criticism in Festival
Hall, University Language Centre (Fabianinkatu 26), on Novem-
ber 20th, 2009, at 12 o’clock noon.

University of Helsinki

Finland

Contact information

Postal address:
Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)
FI-00014 University of Helsinki
Finland

Email address: postmaster@cs.helsinki.fi (Internet)

URL: http://www.cs.Helsinki.FI/

Telephone: +358 9 1911

Telefax: +358 9 191 51120

Copyright c© 2009 Pasi Rastas
ISSN 1238-8645
ISBN 978-952-10-5879-0 (paperback)
ISBN 978-952-10-5880-6 (PDF)
Computing Reviews (1998) Classification: G.3, J.3, G.2.1, F.2.2
Helsinki 2009
Helsinki University Print

Computational Techniques for Haplotype Inference and for

Local Alignment Significance

Pasi Rastas

Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
Pasi.Rastas@cs.Helsinki.FI
http://www.cs.Helsinki.FI/u/prastas/

PhD Thesis, Series of Publications A, Report A-2009-9
Helsinki, November 2009, xii+64+50 pages
ISSN 1238-8645
ISBN 978-952-10-5879-0 (paperback)
ISBN 978-952-10-5880-6 (PDF)

Abstract

This thesis which consists of an introduction and four peer–reviewed origi-
nal publications studies the problems of haplotype inference (haplotyping)
and local alignment significance. The problems studied here belong to the
broad area of bioinformatics and computational biology. The presented so-
lutions are computationally fast and accurate, which makes them practical
in high–throughput sequence data analysis.

Haplotype inference is a computational problem where the goal is to es-
timate haplotypes from a sample of genotypes as accurately as possible.
This problem is important as the direct measurement of haplotypes is dif-
ficult, whereas the genotypes are easier to quantify. Haplotypes are the
key–players when studying for example the genetic causes of diseases. In
this thesis, three methods are presented for the haplotype inference problem
referred to as HaploParser, HIT, and BACH.

HaploParser is based on a combinatorial mosaic model and hierarchical
parsing that together mimic recombinations and point–mutations in a bi-
ologically plausible way. In this mosaic model, the current population is
assumed to be evolved from a small founder population. Thus, the haplo-
types of the current population are recombinations of the (implicit) founder
haplotypes with some point–mutations.

iii

iv

HIT (Haplotype Inference Technique) uses a hidden Markov model for hap-
lotypes and efficient algorithms are presented to learn this model from geno-
type data. The model structure of HIT is analogous to the mosaic model
of HaploParser with founder haplotypes. Therefore, it can be seen as a
probabilistic model of recombinations and point–mutations.

BACH (Bayesian Context–based Haplotyping) utilizes a context tree weight-
ing algorithm to efficiently sum over all variable–length Markov chains to
evaluate the posterior probability of a haplotype configuration. Algorithms
are presented that find haplotype configurations with high posterior prob-
ability. BACH is the most accurate method presented in this thesis and
has comparable performance to the best available software for haplotype
inference.

Local alignment significance is a computational problem where one is inter-
ested in whether the local similarities in two sequences are due to the fact
that the sequences are related or just by chance. Similarity of sequences
is measured by their best local alignment score and from that, a p-value is
computed. This p-value is the probability of picking two sequences from
the null model that have as good or better best local alignment score. Local
alignment significance is used routinely for example in homology searches.

In this thesis, a general framework is sketched that allows one to compute
a tight upper bound for the p–value of a local pairwise alignment score.
Unlike the previous methods, the presented framework is not affeced by so–
called edge–effects and can handle gaps (deletions and insertions) without
troublesome sampling and curve fitting.

Computing Reviews (1998) Categories and Subject
Descriptors:
G.3 [Probability and Statistics]: Markov Processes, Probabilistic

Algorithms, Statistical Computing
J.3 [Life and Medical Sciences]: Biology and Genetics
G.2.1 [Discrete Mathematics]: Combinatorics – Combinatorial

Algorithms
F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical

Algorithms and Problems – Pattern matching

General Terms:
Thesis, Algorithms, Bioinformatics, Computational Biology

v

Additional Key Words and Phrases:
Haplotype inference, Haplotyping, Genotypes, Phasing, Markov models,
Local alignment significance, Significance testing, DNA, SNPs, Hidden
Markov models, Markov chains, Variable order Markov chains, Context
tree weighting, EM algorithm, Dynamic programming

vi

Acknowledgements

First of all, I am most thankful to my supervisor Esko Ukkonen who has
guided me through all these years in the University. His broad scientific
experience, patience, and encouragement made this thesis possible.

I am also grateful to Mikko Koivisto, Heikki Mannila, and Jussi Kollin
for scientific collaboration included in this thesis. I thank Tapio Salakoski,
Tero Aittokallio, and Leena Salmela for their valuable comments and sug-
gestions regarding this thesis.

I would like to thank Heikki Lokki for organizing me a summer job in
2002. I have worked for Esko Ukkonen ever since. I also thank Teemu
Kivioja for the quidance and shared knowledge especially during the first
years at the Computer Science Department.

Special thanks go to the Computer Science Department and the Helsinki
Institute for Information Technology (HIIT). Their computing facilities
staff has also been helpful, especially Pekka Niklander and Pekka Ton-
teri. For the funding I would like to thank the graduate school ComBi, the
Finnish Center of Exellence for Algorithmic Data Analysis Research (Al-
godan), and the European Union. I also thank Marina Kurtén for cheking
my English.

The friends at work deserve my sincere thanks. Lunch, coffee, (Bio)beer,
and talks with the following people have been valuable: Ari Rantanen,
Esa Pitkänen, François Nicolas, Janne Korhonen, Janne Ravantti, Jussi
Lindgren, Kimmo Palin (especially for the rope), Markus Heinonen, Matti
Kääriäinen, Taneli Mielikäinen, Veli Mäkinen, and the ones I already men-
tioned or forgot to mention.

I would also like to thank my parents Anitta and Martti, and parents–
in–law Aira and Juhani.

Finally, I would like to thank my wife Päivi who has given me uncon-
ditional support when it has been difficult.

Helsinki 2.11.2009
Pasi Rastas

vii

viii

Original Publications of the Thesis

This thesis is based on the following peer–reviewed publications, which are
referred to as Paper I–IV in the text.

I. Pasi Rastas and Esko Ukkonen:
Haplotype Inference via Hierarchical Genotype Parsing.
In Proc. Algorithms in Bioinformatics, 7th International Workshop,
WABI 2007 (Philadelphia, PA, USA), LNBI 4645, pages 85–97.

II. Pasi Rastas, Mikko Koivisto, Heikki Mannila, and Esko Ukkonen:
A Hidden Markov Technique for Haplotype Reconstruction.
In Proc. Algorithms in Bioinformatics, 5th International Workshop,
WABI 2005 (Mallorca, Spain), LNBI 3692, pages 140–151.

III. Pasi Rastas, Jussi Kollin, and Mikko Koivisto:
Fast Bayesian Haplotype Inference via Context Tree Weight-
ing.
In Proc. Algorithms in Bioinformatics, 8th International Workshop,
WABI 2008 (Karlsruhe, Germany), LNBI 5251, pages 259–270.

IV. Pasi Rastas:
A General Framework for Local Pairwise Alignment Statis-
tics with Gaps.
In Proc. Algorithms in Bioinformatics, 9th International Workshop,
WABI 2009 (Philadelphia, PA, USA), LNBI 5724, pages 233–245.

ix

x

Contents

1 Introduction 1

1.1 Genetics and Genetic Sequences 1

1.1.1 Haplotypes and Genotypes 3

1.2 Background . 3

1.3 Haplotype Inference . 5

1.3.1 Notation and Haplotype Inference Problem 5

1.3.2 Accuracy of Haplotype Inference and Switch Distance 6

1.3.3 Methods for Haplotype Inference 6

1.3.4 Why Is It Possible to Infer Haplotypes? 11

1.4 Local Alignment Significance 12

1.4.1 Alignment Scoring Model 12

1.4.2 Statistical Significance of a Local Alignment Score . 14

1.4.3 Methods for Computing the p-value 15

1.5 Main Contributions with Short Summaries 17

2 A Combinatorial Mosaic Model for Haplotype Inference 21

2.1 Mosaic Model of HaploParser 21

2.2 Parsing . 22

2.2.1 Flat Parsing . 22

2.2.2 Hierarchical Parsing 23

2.3 Finding a Founder Set for Flat Parsing 24

2.4 Finding a Founder Set for Hierarchical Parsing 25

2.5 HaploParser in a Nutshell 25

2.6 Experimental Results . 25

3 A Hidden Markov Model for Haplotype Inference 31

3.1 Model Structure of HIT . 31

3.2 Forward Algorithm for Genotypes 32

3.3 Model Training with an EM Algorithm 33

3.4 Initial Solution . 34

xi

xii Contents

3.5 Reading the Haplotypes from an HMM 35
3.6 HIT in a Nutshell . 35
3.7 Experimental Results . 36

3.7.1 Finding optimal K 36

4 A Bayesian Haplotype Inference using Context Tree Weight-
ing 39
4.1 Variable Order Markov Chains 39
4.2 Model of BACH . 40
4.3 Context Tree Weighting Algorithm 42
4.4 Simulated Annealing . 43
4.5 Minimization of the Expected Switch Distance 44
4.6 Sampling Initial Haplotypes 45
4.7 BACH in a Nutshell . 45
4.8 Experimental Results . 46

5 A General Framework for Local Pairwise Alignment Signif-
icance with Gaps 49
5.1 A Novel Dynamic Programming Framework 49
5.2 Experimental Results . 50

6 Conclusions 55

References 59

Chapter 1

Introduction

We begin with the basics of genetics and the background of this work.
Then the problems of haplotype inference and local alignment significance
are introduced in more detail, followed by a listing of the main contributions
included in this thesis.

1.1 Genetics and Genetic Sequences

The hereditary genetic information of an organism is stored in the genome
[52]. The genome is typically encoded in DNA (deoxyribonucleic acid), a
nucleic acid that can be described as a string of nucleotide bases, adenine
(A), cytosine (C), guanine (G), and thymine (T). The actual DNA molecule
consists of complementary strands where A is always paired with T and C
is always paired with G and vice–versa. In a few viruses, the genome is
encoded as a nucleic acid RNA (ribonucleic acid). RNA differs from DNA
by containing uracil (U) instead of thymine (T).

The genome of an organism is structured into chromosomes containing
genes; parts that affect the function of a cell. Most genes encode pro-
teins that act as enzymes, receptors, storage proteins, transport proteins,
transcription factors, signaling molecules, hormones, etc.

A position within a chromosome is called a locus or a site. A locus
that contains variation among individuals is called a marker. A common
type of marker is a single nucleotide polymorphism (SNP). An SNP is a
single locus in which there exist at least two possible nucleotides or alleles
among the population. Other types of markers are for example the number
of repeats at microsatellite markers.

In the cells of a diploid organism, e.g. a human being, chromosomes are
structured into similar chromosome pairs, autosomes. The pairs or copies

1

2 1 Introduction

Figure 1.1: Four possibilities for the child’s chromosomes (haplotypes) on
right when the parents’ chromosomes (left) undergo two recombination
events in meiosis.

of the autosome are inherited from the individual’s parents. One copy is
inherited from the mother and the other copy is inherited from the father.
Chromosomes of a chromosome pair are, except for the sex chromosomes,
very similar among pairs and individuals.

Haploid germline cells, e.g. sperm and egg cells, have only one copy
of each chromosome. These cells are formed in meiosis, where the genetic
material will be selected (to be inherited by a child) from the parents’ two
copies of each chromosome pair. In a meiosis, a major factor combining
the chromosomal information is the crossing over, a mechanism to create
(genetic) recombination. The recombination combines parents’ chromosome
pairs so that a child may inherit parts of both copies of each chromosome.
The rate of recombination in humans is on average about one recombination
per generation (meiosis) per 80 million (8 · 107) base pairs [64, 26] (1.26
cM/Mb, cM=centimorgan). Recombination is illustrated in Figure 1.1.

The genetic material may be altered also in mutations. Different types
of mutations include point mutations (one nucleotide changes), deletion and
insertion of a single or many nucleotides. The typical rate of mutation in
humans is 10−9 to 10−11 per nucleotide per cell division [64].

1.2 Background 3

Markers: 1 2 3
DNA: . . . atatgtccCtat. . . ctgtCaag. . . ctggActacgcgt. . . (maternal)

. . . atatgtccGtat. . . ctgtCaag. . . ctggTctacgcgt. . . (paternal)
Haplotypes: G C A = 1 0 0

C C T = 0 0 1
Genotype: C,G C,C A,T = 2 0 2

Figure 1.2: An example of SNP haplotypes and an SNP genotype of a single
individual over three markers. On the right hand side, the haplotypes are
described as binary strings and the genotype is described as a ternary string
of 0,1, and 2. The idea for this figure is from [37].

1.1.1 Haplotypes and Genotypes

A haplotype consists of an individual’s alleles inherited from one parent,
thus each individual has two haplotypes. A genotype contains information
of both haplotypes without the information of which alleles are inherited
together from the same parent. The genotypes are easy to measure, whereas
haplotypes are laborious, sometimes impossible to measure. An individual
(or his/her genotype) is homozygous at a certain site if (s)he has inherited
identical alleles at that site. Otherwise the individual is heterozygous at
that site. The concepts of haplotypes and genotypes are illustrated in
Figure 1.2.

Haplotypes can be determined directly from trios. A trio consists of
genotypes acquired from the individual and her (his) parents. However,
trios require three times more genotyping and leave some sites without
haplotype information. Even worse, sometimes it is not possible to measure
genotypes of the individual’s parents.

1.2 Background

The two problems studied in this thesis are the problem of haplotype in-
ference and the problem of local alignment significance. Our results are
presented in the four original articles included in this thesis. The solu-
tions presented here use extensively dynamic programming and Markovian
models.

In the haplotype inference problem (haplotyping) one tries to estimate
the true haplotypes from genotypes by computational means. A genotype
consists of combined information on a chromosome pair of an individual,

4 1 Introduction

whereas the haplotypes have separate information on both chromosomes
of the chromosome pair. The data consists of a sample of genotypes (tri-
nary strings) from some population of individuals. For each genotype, an
explaining haplotype pair (two binary strings) should be reported as accu-
rately as possible.

In local alignment significance one computes the significance of the best
pairwise local alignment score, a common measure of sequence similarity of
two sequences x and y. Local alignment is a transformation of a substring
of x into a substring of y. The best scoring local alignment finds the
most similar substrings. If the score is high enough, it is possible that
the substrings share some common biological function, e.g. a conserved
gene. Significance is measured using the classical statistical framework, i.e.
computing p-value. This p-value is the probability of picking two sequences
from the null model that have as good or better best local alignment score
than the sequences of interest. Thus, the problem is to compute a p-value
from (n, m, q., t), where n and m are the lengths of the sequences x and y,
q. specifies the null model, and t is the local alignment score of interest.

Haplotypes contain information on which alleles of an individual are in-
herited together and therefore are important, e.g. when the genetic causes
of a disease are studied. However, with current laboratory methods haplo-
types are difficult to measure. On the other hand, genotypes are easier to
measure. For this reason the problem of haplotype inference by computa-
tional means is also an important problem. Among our proposed solutions
for haplotyping, the one in Paper III named BACH (Bayesian Context–
based Haplotyping) is recommended as it is fast and gives good accuracy
across different datasets.

The significance problem is very fundamental in bioinformatics. It is
solved for example in BLAST (Basic Local Alignment Search Tool) [3], a
well known and commonly used software for local alignment search. For
example, the significance problem has an important role in homology search
[52]. There, evolutionary related (homologous) genes are searched by look-
ing for locally similar DNA or protein sequences (of genes). Local similarity
is commonly measured by the best local alignment score and the p-value
of this score helps to rule out sequences whose similarity is likely due to
chance.

In Paper IV, a general framework is presented for the local alignment
significance problem. This framework allows one to compute tight upper
bounds for p-values in the presence of insertions and deletions (gaps). Un-
like previous solutions for this significance problem, the method of Paper IV
can handle gaps without troublesome sampling and curve fitting and does

1.3 Haplotype Inference 5

not suffer from so–called edge effects. The framework computes its bound
directly and exactly, whereas sampling produces a mean with some (stan-
dard) deviation.

1.3 Haplotype Inference

This section describes the haplotype inference problem solved in papers
I–III.

1.3.1 Notation and Haplotype Inference Problem

Throughout this thesis, we will focus on SNP markers and assume that
there are only two different values present at each SNP. We will denote the
number of markers by m and the number of individuals (genotypes) by n.
In Paper I, m and n have been used with opposite meanings.

The two alleles at each marker are denoted arbitrary as 0 and 1. Thus,
a haplotype is a binary string listing the haplotype’s alleles in the physical
order in which they occur in the chromosome. A genotype is a ternary
string of 0, 1 and 2, where these three values are 0 = {0, 0}, 1 = {1, 1}
and 2 = {0, 1}. Thus, at each marker an unordered pair of alleles is listed
in the physical order. This notation of haplotypes and genotypes is also
illustrated in Figure 1.2.

Haplotypes h = h1 · h2 · · ·hm and h′ = h′
1 · h

′
2 · · ·h

′
m explain a genotype

g = g1 · g2 · · · gm, denoted as g = γ(h, h′), if either hi = h′
i = gi or gi = 2

and hi 6= h′
i, for all 1 ≤ i ≤ m.

The problem of haplotype inference, or phasing, is a problem of inferring
haplotypes directly from genotypes. For a single genotype alone, one cannot
differentiate between the max{1, 2k−1} possible explaining haplotype pairs,
where k is the number of heterozygous sites. For example, consider a geno-
type 222. The explaining haplotype pairs for this genotype are (000,111),
(001,110), (010,101), and (011,100).

However, we can do better when we have a sample of related genotypes
spanning the same sites. The common approach is to choose a model
that explains the relations between haplotypes and then learn the model
parameters from the genotype data. This approach has been used in Papers
I, II, and III. Section 1.3.4 contains further discussion on why haplotype
inference is generally possible.

Haplotypes are important true entities containing much of the genetic
variation. They contain information on which alleles are inherited together
and therefore they are the key–players when studying for example the ge-
netic causes of a disease. However, with current laboratory methods they

6 1 Introduction

are difficult to measure. For this reason the haplotype inference by com-
putational means is also an important problem.

1.3.2 Accuracy of Haplotype Inference and Switch Distance

For some datasets the real haplotypes are known. These known haplotypes
can be converted into genotypes from which haplotypes can be inferred.
Based on these real haplotypes the accuracy of inferred haplotypes can be
attained.

A common measure of accuracy is the switch accuracy [40]. It is based
on the minimum number of switches needed to transform one haplotype pair
into another (correct) one. A single switch exchanges equal length prefixes
of the corresponding haplotypes. As an example, one switch transforms
haplotype pair (0000, 1111) into (0011, 1100) and three switches are needed
to get (0101, 1010) from the same pair (0000, 1111). Thus, the number of
switches between (0000, 1111) and (0011, 1100) is 1 and the number of
switches between (0101, 1010) and (0000, 1111) is 3. Note that the number
of switches makes sense only if the genotypes explained by the haplotype
pairs are the same.

The switch accuracy between two haplotype pairs is defined as (k−1−s)
/(k−1), where s is the minimum number of switches and k is the number of
heterozygous positions (maximum number of switches is k−1). The switch
accuracy is the proportion of equal (correct) switches in the haplotype pairs.

The number of switches s is a distance function (a metric) between
two haplotype pairs, both explaining the same genotype. If the number of
switches is normalized by k−1, we get the proportion of unequal (incorrect)
switches in the haplotype pairs. Thus, this normalized distance equals 1 -
switch accuracy. The experiments in Papers I, II, and III use either this
normalized distance or the plain number of switches, both referred to as
the switch distance (= switch error).

1.3.3 Methods for Haplotype Inference

The first attempt to solve the haplotype inference problem was Clark’s al-
gorithm [7] based on a single rule; from the already constructed haplotypes
H, pick one h with g = γ(h, h′) for some genotype g not yet resolved. Then
add h′ to H, and mark as resolved all genotypes having an explaining pair
of haplotypes in H. To begin, all genotypes that are heterozygous at most
at one position, are marked as resolved and the corresponding haplotypes
(these haplotypes are unambiguous) are added to the set of known haplo-
types H. Then the rule is applied until all genotypes are resolved or the

1.3 Haplotype Inference 7

process cannot be continued.

A heuristic strategy of using Clark’s rule is to choose a solution that
resolves most genotypes [7]. The problem of deciding whether all genotypes
can be resolved with Clark’s rule was later shown to be NP-hard [18].

Later, the problem of finding the smallest set of haplotypes explaining
the genotypes was introduced in [20]. This pure parsimony problem has
been shown to be NP-hard [37], but was often found to be easy to solve by
integer linear programming [20].

A problem related to haplotype inference is to estimate the haplotype
frequencies from genotypes. Two proposals [14] and [41] have been pub-
lished relying on Expectation–Maximization (EM) algorithm to find a max-
imum likelihood solution to the haplotype frequencies. In this model, in-
dependent probabilities p(h) are assigned to all possible haplotypes h ∈
{0, 1}m. Then the complete likelihood of the genotype data G ⊂ {0, 1, 2}m

is defined as
∏

g∈G

∑

h,h′:γ(h,h′)=g

p(h)p(h′) . (1.1)

From a maximum likelihood (or any) solution of Equation 1.1, the haplo-
type inference problem can be solved by picking haplotypes h and h′ for
each genotype g such that γ(h, h′) = g and h and h′ maximize p(h)p(h′).
Also the Gibbs sampling has been used to find these haplotype frequencies
[63].

It is assumed in the model given by Equation 1.1 that the haplotypes
of each genotype are independent of each other (random mating) and that
the genotypes are independent of each other (individuals are not related).

The concept of perfect phylogeny was introduced to haplotype inference
in [19]. In this approach, a tree describing the evolutionary history of
the haplotypes is constructed. From a single haplotype (the root of the
tree) the other haplotypes are formed by point mutations alone without
recombination. It is assumed that there has not been recombination and
that mutation occurs at most once at each position in the history (infinite
sites assumption).

The haplotypes H are said to be in perfect phylogeny, if they can be
built from a single haplotype by the process just described. The tree in
Figure 1.3 illustrates perfect phylogeny. It can be decided in linear O(mn)
time, whether a set of genotypes can be explained by a set of haplotypes in
perfect phylogeny [11]. However, when the genotypes (or even haplotypes)
may have missing values, deciding whether there is a perfect phylogeny
becomes NP-hard [61].

The concept of imperfect phylogeny was used for haplotype inference

8 1 Introduction

00000

00100 10000

00110 01100 10001 10000

3 1

4 2
5

Figure 1.3: A perfect phylogeny for four haplotypes 00110, 01100, 10001,
and 10000, shown as the leaves of the tree. Each node of this tree corre-
sponds to a haplotype. The numbers on the edges denote the position that
has been mutated, i.e. the nodes that are connected by an edge differ only
at this position. It is assumed that each mutation occurs only once in the
history (infinite sites assumption), so each number cannot occur more than
once on the edges.

in software HAP [22], when the underlying haplotypes of genotypes do
not strictly obey the perfect phylogeny. Imperfect phylogeny allows some
mutations to occur multiple times in the tree–like history.

In the methods presented above, the physical locations of haplotype
markers are not taken into account. Each marker is considered indepen-
dently, thus the results obtained do not change if the order of the markers
is shuffled. These methods are called not aware of the physical locations
(NAPL), as opposite to methods aware of the physical locations (APL).

However, alleles at nearby markers are often correlated. This genetic
linkage is due to the fact that when recombination is not present the alleles
at the same chromosome copies are inherited together. The further away
from each other two loci are the more likely recombination has occurred
between them and less linked the alleles are at those loci. These correla-
tions should be taken into account when larger chromosomal regions are
considered.

The first solution to extend some (maybe NAPL) method X for larger
chromosomal regions was the partition ligation technique [47]. First, the
haplotype frequencies for the genotypes are inferred on short disjoint blocks
of consecutive markers with method X. Some B haplotypes with highest
frequencies are chosen and the solutions of adjacent blocks are merged to
form B2 haplotypes for the double–size blocks. Method X is used to get
haplotype frequencies for the B2 haplotypes and greedily B best of them
are chosen. Continuing in this fashion, finally there will be only a single
block containing a solution for the entire region.

1.3 Haplotype Inference 9

Another way to extend NAPL methods for larger regions is based on
the concept of haplotype blocks [10]. Haplotype blocks are regions of the
genome, where the haplotype diversity is low compared to the length of the
region. The relatively short regions between the blocks with high haplotype
diversity are called recombination hot spots. For example the methods of
[16, 34, 22] are based on haplotype blocks, i.e. they model nearby correla-
tions by dividing the genotypes into blocks of consecutive markers. Then
some method (maybe NAPL) is used to get haplotypes for the blocks and
the transitions between the different haplotypes between adjacent blocks
are modelled separately. As an example, the method of [34] uses Clark’s [7]
algorithm to get these haplotypes for a single block. Then the transitions
between the blocks are modelled as a Markov model, i.e. the haplotype
to be used in the next block depends only on the haplotype used in the
current block (for each genotype).

The block–free methods, i.e. methods without block–structure assump-
tion, have been found to infer haplotypes more accurately than the methods
based on blocks (see experiments in [55, 58, 13]). The method HaploParser
in Paper I is a novel generalization of the pure parsimony for longer chro-
mosomal regions. It provides an unified solution to model long regions
and genetic linkage with parsimony. This model can partition the haplo-
types into blocks if the data suggests so. However, it is more flexible as it
can partition the data into mosaic–like structure which can be different for
each haplotype. This method is given a parameter K, the number of an-
cient founder haplotypes. When a sufficently large K is given, the optimal
model is a pure parsimony solution. However, when K is smaller, it models
haplotypes (and genotypes) with recombinations (linkage) and mutations
in a block–free fashion. Moreover, the hierarchical parsing in HaploParser
is a new and computationally feasible way to imitate ancient recombination
graph model [25, 17] (see also the last paragraph of this subsection).

The method HIT in Paper II, based on hidden Markov models (HMM),
is one alternative to model long haplotypes in a block–free way. A param-
eter K is given to these methods, acting as the number of founder haplo-
types in HaploParser by affecting the model structure (topology). With a
sufficently large K the optimal HMM is the maximum likelihood solution
of Equation 1.1. With smaller K the HMM structure mimics recombi-
nations (linkage) and also mutations. Novel and efficient algorithms are
presented that compute the probability of a genotype given the HMM and
learn these models from genotype data in EM–fashion. Thus, the method
HIT is a novel generalization of the haplotype frequency estimation for
longer chromosomal regions.

10 1 Introduction

Method fastPHASE [58] is also based on the same topology as HIT. The
main difference in fastPHASE compared to HIT is the transition probabili-
ties; in fastPHASE there is only one transition parameter between adjacent
markers (models the physical distance of markers) as in HIT there are in-
dependent transition probabilities between each state at adjacent markers.
The model of HIT is biologically more plausible, as the recombination rate
can vary between individuals, a fact caused by inversions [52]. A somewhat
different method based on constrained hidden Markov models is given in
[38].

In another direction, fast and accurate solutions using variable order
Markov chains have been proposed for the haplotype inference problem in
BACH (Paper III) and in HaploRec [13] and in Beagle [4]. The variable
order Markov chains are well suited for modelling haplotype correlations
over long regions, as they can capture high–order dependencies.

The HaploRec [13] is based on frequently occurring haplotype frag-
ments. The parameters of its model are the frequencies of these haplotype
fragments and they are learned by an EM–type algorithm. More recent
Beagle [4] is based on efficient estimation of a related probabilistic automa-
ton. This learned automaton specifies a single variable order Markov chain.

The method BACH of Paper III uses the Context Tree Weighting (CTW)
algorithm to efficiently average over all variable order Markov chains (con-
text trees) to obtain a Bayesian inference method for haplotyping. It uses
maximum a posteriori (MAP) criterion for haplotype goodness. This cri-
terion can be evaluated efficiently and exactly for any haplotype config-
uration. Method BACH achieves a robust behaviour as it does not need
to learn model parameters or do model selection. The theory behind its
model is very clean, heuristics are needed only in the algorithms exploring
the posterior distribution (haplotypes). The accuracy obtained with BACH
is very good over different datasets and it scales even to larger datasets.

The well–known program PHASE [63, 62, 39] is probably the most
accurate haplotyping method (see experiments in Paper III and in [13,
55, 4]). It uses Bayesian Markov chain Monte Carlo methods to sample
haplotypes from a distribution defined by a mosaic model. In this model,
the haplotypes are constructed from fragments of the other haplotypes. A
drawback of PHASE is that it is impractically slow on larger datasets.

The ultimate haplotyping method would take into account the true
coalescent (history) of the haplotypes. A biologically faithful model to
achieve this is the ancestral recombination graph [25, 17]. However, it
turns out to be computationally infeasible. All the proposed methods are
trade–offs between the accuracy and the computational feasibility.

1.3 Haplotype Inference 11

1.3.4 Why Is It Possible to Infer Haplotypes?

Haplotype inference would be impossible, if the underlying haplotypes of
genotypes were random strings distributed uniformly over all binary strings.
However, this is not the case. Haplotypes are biological entities of individ-
uals in a population.

Haplotyping is easier if the number of different haplotypes in the pop-
ulation is small. In the extreme case, only a single haplotype is present in
the population. Then all individuals are homozygous at all markers and
genotypes map to haplotypes uniquely. Typically there are more than one
haplotype present, but there are factors limiting the variation in haplotypes.

The kinship of each individual limits the possible haplotypes (s)he can
have, as each individual has her/his parents and parents’ parents and so on.
Thus, the haplotypes of an individual are conditional on her/his parents.
Moreover, factors like like migration, genetic drift, and natural selection
affect the population genetics [52] and reduce the number of different hap-
lotypes.

As the haplotype diversity in the studied population is probably quite
small, the natural criterion to use is parsimony, used for example in com-
putational phylogenetics [52]. The pure parsimony haplotyping [20] is a
direct application of parsimony, as its goal is to find the fewest haplotypes
explaining the given genotypes. Parsimony is an application of the prin-
ciple of Occam’s razor. Occam’s razor is “a scientific and philosophic rule
that entities should not be multiplied unnecessarily which is interpreted
as requiring that the simplest of competing theories be preferred to the
more complex or that explanations of unknown phenomena be sought first
in terms of known quantities” [44]. The last part of this definition can be
seen in Clark’s early haplotyping method [7].

The maximum likelihood (ML) haplotype frequency estimation [14, 41]
can be seen as a probabilistic version of the pure parsimony criterion. The
ML criterion is not as strict as the pure parsimony, but it still has the
restriction that it cannot distribute the probability mass over too many
haplotypes as then the likelihood would decrease.

If the genotypes span a large number of markers, it is likely that each
genotype would require two unique haplotypes and then the pure parsimony
and ML haplotype frequencies would lead to trivial solutions. However, this
is the case that is solved in methods of HaploParser, HIT and BACH in
Papers I, II, and III. All these methods take into account genetic linkage,
i.e. the correlation of alleles at nearby markers. This linkage can be seen
as (only) locally parsimonious haplotypes. Thus, the solutions of Papers
I, II, and III use local parsimonia to infer plausible haplotypes. Moreover,

12 1 Introduction

given a large enough parameter K, the optimal solutions of HaploParser
and HIT converge to pure parsimony and ML haplotypes, respectively.

The method BACH uses Bayesian inference in haplotyping. The princi-
ple of simplicity or parsimonia can be found from the prior used to define its
posterior probability. The prior probability for each context tree (variable
order Markov chain) is the higher the simpler the model is. Moreover, these
context trees can model genetic linkage very accurately. As BACH has the
best overall accuracy in the experiments, it can be stated that haplotyping
is possible by modelling linkage by simple models.

1.4 Local Alignment Significance

This section describes the problem solved in paper IV – deciding whether
local similarities in two sequences occur because the sequences are related
or just by chance. A local alignment score is used as the similarity measure
of sequences and the classical statistical hypothesis testing, i.e. p-values
are used to access the significance of the best local alignment score.

1.4.1 Alignment Scoring Model

The basic processes that alter biological sequences are mutation and selec-
tion. In this chapter, the basic mutation events are substitutions, deletions,
and insertions. A substitution event changes a single residue from the se-
quence, whereas one or more residues are deleted and inserted in deletion
and insertion events. The insertions and deletions are referred to simply as
gaps or indels.

Let x = x1, x2 . . . , xn and y = y1, y2, . . . , ym be the two sequences from
a finite set of residues Σ. The alignment scoring model uses basic mutation
events to transform sequence x to sequence y. Each mutation event has an
associated score. The model is additive, i.e. the score of transforming x to
y is the sum of single event scores. Each substitution that changes residue
a to residue b has a score s(a, b). The linear gap model is assumed, where
the score of a single residue deletion and a single residue insertion has an
additive score of −d or a cost of d.

Any transformation of x to y is a global alignment. A local alignment
corresponds to a similar transformation, where only substrings of x and y
are transformed. From now on, only local alignments are considered.

A local (and global) alignment can be described as a path in the align-
ment grid (i, j), where i = 0, . . . , n and j = 0, . . . , m. This path consists
of three kinds of steps (edges), vertical, diagonal, and horizontal steps. A
diagonal step from (i, j) to (i + 1, j + 1) corresponds to aligning residues

1.4 Local Alignment Significance 13

xi+1 and yj+1 and has a score of s(xi+1, yj+1), a horizontal step from (i, j)
to (i+1, j) deletes character xi+1 and has a score of −d, and a vertical step
from (i, j) to (i, j + 1) inserts character yj+1 and has a score of −d. The
total score of an alignment is the sum of the scores of individual steps.

As an example, consider the alignment of ATCGCT and GACGGT:

A-TCG

ACG-G

This alignment has two gaps (one insertion and one deletion) and a score of
s(A, A)−d+s(T, G)−d+s(G, G). The alignment is shown in the alignment
grid in Figure 1.4.

A T C G C T

+ + + + + + +

G + + + + + + +

A + + + + + + +

C + + + + + + +

G + + + + + + +

G + + + + + + +

T + + + + + + +

Figure 1.4: The alignment grid and an example alignment of ATCGCT and
GACGGT.

Typically one is interested in the best scoring alignment of the given
sequences. In the next subsection, the well–known Smith–Waterman algo-

14 1 Introduction

rithm [59, 15] is described to efficiently compute the best local alignment
score of a sequence pair (x, y).

Smith–Waterman Algorithm

The Smith–Waterman Algorithm [59, 15] computes the best local alignment
score of sequences of length n and m in time O(mn).

The algorithm uses dynamic programming to compute table H, where
each element H(i, j) states the best local alignment score (of x and y)
ending at (i, j) in the alignment grid, or equivalently the best alignment
score of suffixes of x1 · · ·xi and y1 · · · yj .

By setting H(0, 0) = H(0, j) = H(i, 0) = 0 the dynamic programming
of H becomes

H(i, j) = max















0,
H(i − 1, j − 1) + s(ai, bj),
H(i − 1, j) − d,
H(i, j − 1) − d ,

(1.2)

where i = 1, . . . , n and j = 1, . . . , m. The best local alignment score S
is now the maximum H(i, j) over all i, j, i.e. S = max{H(i, j) | i =
0, . . . , n, j = 0, . . . , m}. The substrings of x and y corresponding to the
local alignment with score H(i, j) can be found by a standard trace–back
on table H starting from H(i, j). This trace–back finds the path in the
alignment grid describing the corresponding alignment.

1.4.2 Statistical Significance of a Local Alignment Score

Having computed the best local alignment scores t for some sequences x
and y, a natural question is how significant this alignment is. To answer
this question, the classical statistical framework is used to compute the
p-value, referred to as pt. The value of pt is the probability of getting a
sequence pair (x′, y′) from the null model with best local alignment score
≥ t.

The null model used here is a simple random Bernoulli model [12]. In
this model, the probability of sequence x is given as P (x) =

∏n
i=1 qxi

,
where qa is the probability of residue a. A similar probability is assigned
to sequence y. The Bernoulli model does not model the length distribution
of the sequences as it computes a proper probability distribution only for
fixed–length sequences. Thus, the sequences x′ and y′ from the null model
are of fixed lengths n and m, respectively.

1.4 Local Alignment Significance 15

1.4.3 Methods for Computing the p-value

An estimation p̂t of the p-value pt can be obtained by a simple Monte Carlo
method [23]. By sampling N sequence pairs from the null model, the value
of p̂t is the fraction of sampled sequence pairs that have the best local
alignment score ≥ t. This sampling procedure has a standard deviation of
√

pt(1 − pt)/N [23, 48, 46].
This simple Monte Carlo method is not very practical if small p-values

are needed. The sample size N must be larger than 1/pt in hope to get
at least a single positive case to the sample (a sequence pair with local
alignment score ≥ t). Importance sampling [23] has been used to sample
small p-values with fewer samples [46, 24]. There the sequence pairs are
sampled from a distribution that gives higher probability for those rare
sequence pairs with a high best local alignment score. By weighting these
samples properly, an estimate of pt is obtained.

The most widely used method to approximate the significance of the
alignment score is to use the Karlin–Altschul statistics [29, 30]. There the
significance of alignments without gaps is approximated as a one–dimensional
problem. A single string of length mn is created from the alignment prob-
lem (two–dimensional problem in the alignment grid). Strings x′ and y′

from the null model are aligned (globally) in all m+n−1 different ways and
the resulting string pairs are put together to form a string Y = Y1, . . . , Ymn

of mn letter pairs (Yi ∈ Σ×Σ). Then a probability qaqb is assigned for each
letter pair (a, b). This dimensional reduction can be seen as the concatena-
tion of the diagonals of the alignment grid (but skipping the first row and
column) to get a single linear chain of nodes.

The best one–dimensional local alignment score of Y is the maximal
segment score M(Y):

M(Y) = max
1≤i≤j≤mn

j
∑

k=i

s(Yk) , (1.3)

where s(Yk = {a, b}) is s(a, b).
This dimension reduction does not give an exact solution for the orig-

inal two–dimensional problem because of the so–called edge effects; some
alignments can overlap the concatenation points, i.e. these alignments do
not correspond to any real alignments. Moreover, the mn letter pairs of Y
are not independent, as they depend on the two underlying strings x′ and
y′. In fact, if a string of mn letter pairs is positionally independent, there
are |Σ|2mn different strings of independent mn pairs of letters, while there
are only |Σ|m+n different Y s as this number equals the number of different
string pairs (x′, y′).

16 1 Introduction

In Karlin–Altschul statistics the probability that the maximum align-
ment score M(Y) is greater than t is approximated as an extreme value
distribution (Gumbel) given by

P (M(Y) > t) ≈ 1 − exp(−Kmne−λt) , (1.4)

for some parameters K and λ. Equation 1.4 is based on assumptions that
there are no gaps, the expected score

∑

a,b qaqbs(a, b) is negative, and that
for some letter pair (a, b) (qaqb > 0) s(a, b) > 0. With these assumptions
the parameters K and λ can be solved analytically [29, 28]. There are also
ways to reduce the edge effects [2].

There is empirical evidence that the distribution of the best alignment
scores with gaps follow the same distribution quite accurately, e.g. [51].
However, no general analytical solution to find K and λ is known with
gaps. Some efficient solutions [5, 6, 53] are presented to fit the parameters
λ and K to gapped alignment scores.

The distribution of M(Y) can also be computed exactly by the method
of Mercier et al. [43], and by assuming that all scores are integers. This
solution is based on the Markov chain illustrated in Figure 1.5.

There is a state in this chain for each alignment score 0, 1, . . . , t and the
transition probability from state i = 1, . . . , t− 1 to state j = 1, . . . , t− 1 is
P (s(a, b) = j − i) =

∑

a,b∈Σ:s(a,b)=j−i qaqb . The transition probability from
state i = 0, . . . , t− 1 to state 0 is given as P (s(a, b) ≤ i), and the transition
probability from state i = 0, . . . , t−1 to state t is given as P (s(a, b) ≥ t−i).
The only transition from state t is to state t with probability 1.

The probability of P (M(Y) ≥ t) is the probability of this Markov chain
to be in state t after mn steps started from state 0. This probability is Pmn

0t ,
where P is the transition matrix of this chain, i.e. Pij is the transition
probability from state i to j and Pmn is the mnth power of P . This
method has a pseudo–polynomial time complexity (on the score values)
and with similar assumptions as made in Paper IV the time complexity is
O(min{mnt, t2.376 log(mn)}).

In Paper IV, a general framework is presented for the local alignment
significance problem. This framework allows one to compute tight upper
bounds for p-values in the presence of insertions and deletions (gaps). Hav-
ing an upper bound is an advantage compared to the previous methods
that compute an approximate p-value, which can be larger or smaller than
the correct one. Typical solutions based on sampling, produce only a mean
and a standard deviation of the p-value. Unlike most previous solutions for
this significance problem, the method of Paper IV does not use any sam-
pling and curve fitting and does not suffer from so–called edge effects. The

1.5 Main Contributions with Short Summaries 17

0 1 i j t

P (s ≤ 0)

P (s = 1)

P (s ≤ −1)

P (s ≤ i)

1

P (s = j − i)

P (s = i − j)

P (s ≥ t − j)

P (s = 1 − j)

.

Figure 1.5: A Markov chain used in [43] to compute P (M(Y) ≥ t). The
states are numbered according to the alignment scores. For clarity, all tran-
sitions have not been drawn. Term P (s = c) is used to denote probability
P (s(a, b) = c) (and similarly for P (s ≤ c) and P (s ≥ c)). This figure is
from Paper IV.

algorithm of Paper IV computes this upper bound directly and exactly, in
a similar fashion as the method of [43] does without gaps. The algorithm
have a pseudo–polynomial time complexity and for typical instances it is
fast (polynomial).

1.5 Main Contributions with Short Summaries

Papers I–IV constitute the core of this thesis. The main research contribu-
tions in these papers are:

Paper I: A method called HaploParser is presented for the haplotype
inference problem. HaploParser uses a combinatorial mosaic
model of recombinations and point mutations. Algorithms based
on dynamic programming and on greedy heuristics are intro-
duced to parse unphased genotypes in terms of (implicit) founder
haplotypes in a flat and in a hierarchical fashion. As a by–
product of the parse, the haplotypes are inferred for the given
genotypes.

Paper II: A method called HIT – Haplotype Inference Technique – is pre-
sented for the haplotype inference problem. HIT models hap-
lotypes using a hidden Markov model (HMM) with a special
topology that mimics recombinations and point mutations. A
closed form EM algorithm, among other algorithms, is presented
for the learning of these HMMs from unphased genotype data.
From this learned model the haplotypes can be inferred. An
extended version of Paper II has been published in [55].

Paper III: A method called BACH – Bayesian Context-based Haplotyping
– is presented for the haplotype inference problem. In BACH,

18 1 Introduction

the Markov model is of variable order while in paper II it was of
fixed order 1. The context tree weighting algorithm is utilized to
efficiently compute the weighted average over all variable order
Markov chains to evaluate the posterior probability (goodness)
of a haplotype configuration. Algorithms are presented that use
Bayesian maximum a posteriori (MAP) criterion to find haplo-
types for a given set of genotypes.

Paper IV: A general framework is presented to compute a tight upper
bound for the p-value (significance) of a pairwise local align-
ment score. Unlike the previous solutions for this significance
computation, the new framework handles alignments with gaps
without troublesome sampling and curve fitting and does not
suffer from so–called edge–effects. The algorithms in this frame-
work have pseudo–polynomial time complexities, and for typical
instances they are fast.

The author has made a major contribution to all of the included papers.
The work with the haplotype inference problem started from the author’s
MSc thesis that generalized the model of [66] for genotypes and used it for
haplotyping. The thesis included the flat parsing of genotypes described in
Paper I.

After this preliminary work, the author added transition probabilities
between adjacent markers of the founder sequences to this combinatorial
model. This model was a hidden Markov model with each state emitting
only the allele corresponding to the founder allele. The founders were first
found by minimizing the flat parsing score and then an EM–type algorithm
was used to find maximum likelihood transition parameters. The switch ac-
curacy with this model was very good as being comparable to the accuracy
of PHASE [63].

When the news of good results and the pictures of this model found their
way to Mikko Koivisto and Esko Ukkonen, Mikko urged the author to add
emission parameters to the HMM to get rid of the combinatorial model in
the beginning. The idea was to use the EM algorithm to learn the emission
parameters, as well. With some thinking, the author implemented the
closed form EM algorithm explained in Paper II. Later, it was noticed that
in [32] an EM–type algorithm was used for a special case of this problem
and this algorithm was not in closed form as it resorted to a numerical
solver. Because of this, we gave our EM algorithm a closer look and finally
Mikko proved that this algorithm converges and it can be derived by adding
genotype phase information to the hidden data of the EM algorithm. By
fixing some additional details the method HIT was introduced in paper II

1.5 Main Contributions with Short Summaries 19

in 2005. Later the same year, the method called fastPHASE [58] based on
a similar hidden Markov model was introduced (citing Paper II).

Paper I was written later, including the new idea of hierarchical pars-
ing. This hierarchical parsing is interesting because it is very close to con-
structing a minimal Ancestral Recombination Graph (ARG) for the input
genotypes.

Mikko Koivisto and Jussi Kollin introduced the context tree weighting
to the author who fixed the details on how to use it in haplotype inference
with help from Mikko and Jussi.

Paper IV is a by–product of the author’s random walk in the pattern
matching algorithms. The idea was to add sequences as distributions to
the algorithm counting the number of suboptimal alignments [45]. Then
it was just the matter of figuring out what the framework did and how to
use it for something useful. Fortunately, Kimmo Palin had introduced the
problem of computing the p-value of a local alignment score to the author
[48].

The rest of this thesis is organized as follows. First the methods of Hap-
loParser (Paper I), HIT (Paper II), and BACH (Paper III) are explained in
Chapters 2, 3, and 4, respectively. Chapter 5 sketches the novel approach of
Paper IV for local alignment significance. And finally, Chapter 6 concludes
this thesis.

20 1 Introduction

Chapter 2

A Combinatorial Mosaic Model

for Haplotype Inference

In this chapter, a haplotype inference method called HaploParser from Pa-
per I is presented. It models haplotypes and genotypes with recombinations
and point mutations using a combinatorial mosaic model. The model of
HaploParser is a generalization of [66], as of modelling genotype data and
point mutations. From this model the haplotypes inference research ven-
ture started, leading to this thesis. Later, this model was extended to a
hidden Markov model based solution HIT in Paper II, which will be pre-
sented in the next chapter. The algorithms of HaploParser share many
elements with the ones used in HIT.

2.1 Mosaic Model of HaploParser

The underlying model of HaploParser assumes that the current population
is evolved from a small number of ‘founder’ individuals by recombinations
and by some mutations. Hence, the haplotypes of the current population
are recombinations of the founder haplotypes, i.e. the haplotypes of the
founder individuals.

A parse of haplotypes describes which haplotype alleles are inherited
from which founder haplotype. Thus, the parse describes the evolutionary
history of the haplotypes. If each founder haplotype is given a distinct
color, then a parse defines a coloring for the current haplotypes. This
coloring reveals a mosaic–like structure of haplotypes. As the coloring is
defined for the haplotypes, genotypes can be colored by having a coloring
on explaining haplotypes of each genotype.

Modelled recombinations can be spotted from this mosaic structure as

21

22 2 A Combinatorial Mosaic Model for Haplotype Inference

a position where the color changes along a haplotype. In Figure 2.1, three
founder haplotypes define the coloring of the haplotypes. The number of
color changes in this figure is 13, thus 13 recombination events are mod-
elled. To model point mutations, there could be some mismatches between
haplotype alleles with color k and the corresponding alleles of the founder
haplotype with the same color k.

2.2 Parsing

The term parsing means getting a coloring for the genotypes (or haplotypes)
with respect to some founder haplotypes. In Paper I, flat and hierarchical
parsing were used. In both of them a parse is chosen that minimizes a
particular score. This score is the number of recombination events plus c
times the number of point mutations, where c is a given parameter. The
parse of a genotype fixes its two haplotypes, thus parsing can be used for
haplotype inference.

For the time being, we assume that appropriate founder set F containing
K haplotypes is known. Moreover, all the genotypes of G and the haplo-
types of F are of length m. Next we present the flat and the hierarchical
parsing of genotypes G with respect to F .

2.2.1 Flat Parsing

In flat parsing one uses segments of the sequences F to construct a pair of
haplotypes for each genotype. As haplotypes F are defined on the same
markers as the data G, each segment can only be used at the same position
as it occurs in F . Thus, a new haplotype from F is constructed by choosing
alleles at each marker from some f ∈ F at the corresponding marker.
However, to make the problem interesting, we want to minimize the number
of positions where corresponding founder haplotypes f are changed. This
minimization is done independently for (both haplotypes of) each genotype.

The point mutations have been incorporated into the model as follows.
A parameter c > 0 is chosen as a cost of changing a single allele in the
parse, and then a cost of 1 is charged for each color change. Then the score
to minimize is the sum individual costs, i.e. the number of color changes
plus c times the number of allele mismatches. The minimum of such a score
is denoted as scorec

F (G) for a set of genotypes G.
The mutation part of the model is not used in the experiments of Paper

I, as the parameter c was set to the high value of 100. However, allowing
mutations in the parse simplifies the computations, as then any haplotype
can be parsed with any non–empty set of founders.

2.2 Parsing 23

Each genotype g (∈ G) can be parsed independently, given the set
of founders F . The minimum score, scorec

F (g), can be computed using
dynamic programming.

Let S(i, a, b) be the minimum score of partial genotype g1, · · · , gi when
gi is parsed from founder sequences a and b (alleles Fai and Fbi explain gi).
The value of S(i, a, b) can be computed as follows.

S(0, a, b) = 0

S(i, a, b) = pc(gi, Fai, Fbi) + min
a′,b′

(

S(i − 1, a′, b′) + Ia′ 6=a + Ib′ 6=b

)

,
(2.1)

for a, b = 1, . . . , K, and i = 1, . . . , m. Here K is the size of F (= |F |), IA

is the indicator of a predicate A, i.e.

IA =

{

1 , if A is true
0 , othewise ,

and pc(t, s, s
′) is the cost of mutating genotype t (of length 1) to γ(s, s′),

i.e.

pc(t, s, s
′) =







0 , if t = γ(s, s′)
2c , if t 6= γ(s, s′′) and t 6= γ(s′′, s′) for all s′′ ∈ {0, 1}
c , otherwise.

Moreover, term gi is the allele of g at ith marker and Fai is the allele of
founder sequence a at marker i.

The minimum score, scorec
F (g) is mina,b S(m, a, b) and the parse can be

found by a standard trace–back. The trace–back gives for each i = 1, . . . , m
one S(i, ai, bi) and the parse uses at marker i founders ai and bi (two paths,
one corresponding to a:s and the other to b:s). Thus, the two haplotypes
with a score of scorec

F (g) together can be constructed by concatenating
founder alleles Faii and Fbii separately for each i = 1, . . . , n.

The time complexity of directly evaluating Equation 2.1 is O(mK4),
but by clever evaluation it can be done in O(mK2) time as shown in Paper
I. Note that the parse found by a trace–back suggests a haplotype pair for
the genotype g. Thus, it is straightforward to use it for haplotype inference.

2.2.2 Hierarchical Parsing

The flat parsing does not take into account the coalescent of the sequences,
as each genotype is parsed independently. For example, if some specific
color change is used for parsing almost all m input sequences, the score is

24 2 A Combinatorial Mosaic Model for Haplotype Inference

increased by almost m. It is more plausible that there has been a single
recombination early in the history and individuals of the current population
are descendants of the individual with this recombination. So the score
should increase only by one!

To get a biologically more plausible combinatorial model, hierarchical
score hscorec

F (G) is defined. This score is best explained via a procedure in
which one picks two founder sequences f1 and f2 at a time, and then adds
a combination of length n of a prefix of f1 and a suffix of f2 to the founder
set F . The idea is to explain the genotypes with a minimum number of
prefix–suffix combinations, i.e. recombination events. Thus, hscorec

F (G) is
the minimum number of these recombination events needed to explain all
genotypes G when the procedure is started from founders F .

An efficient algorithm is not known for the problem of minimizing
hscorec

F (G). Our heuristic algorithm uses scorec
F (G) in a greedy fashion,

i.e. it picks a combination that decreases scorec
F (G) the most at every iter-

ation. This process is iterated until all genotypes can be explained from the
founder set or when a predefined number of iterations have been reached.

The hierarchical parsing can be seen as constructing a graph similar
to an ancestral recombination graph (ARG) [25]. If we would add point–
mutations in the same iterative manner as recombinations, we could start
the hierarchical parsing from a single sequence (common ancestor). Then
added mutations would correspond to mutation edges and added recombi-
nations to cycles in the graph, thus a typical recombination graph would
be constructed. An infinite sites assumption could be enforced by allowing
only a single mutation to be used at each position i. Then the minimiza-
tion of recombinations would lead to the minimal ancestral recombination
graph [25, 17, 60]. Figure 2.2 gives an example of the hierarchical parsing.

2.3 Finding a Founder Set for Flat Parsing

The inverse problem of finding a set F that minimizes scorec
F (G) for a

set of genotypes G is NP-hard as shown in Paper I, but can be solved in
polynomial time in some special cases with a founder set of size 2 [Paper I]
and [66, 69]. In case of haplotype data, there have been some attempts to
solve this problem exactly [66, 69].

The algorithm in Paper I constructs each column of F from left to right
in a greedy fashion. When column i is decided, each of columns 1, . . . i− 1
are kept fixed and the alleles at column i minimizing scorec

F (G) up to
column i are chosen. After the first greedy construction round, another
round from left to right is made but now both sides of the current column

2.4 Finding a Founder Set for Hierarchical Parsing 25

are taken into account to the score.
The time complexity of this algorithm is O(mnK22K) for a dataset of

n genotypes over m SNPs. The algorithm finds the optimal solution when
K = 2 and c = ∞.

2.4 Finding a Founder Set for Hierarchical Pars-

ing

To start the hierarchical parsing, we need at least two founder sequences.
In Paper I, we did not try to find the best of such founders. Instead, the
heuristic algorithm to construct a founder set for flat parsing was used. As
the problem of minimizing scorec

F (G) can be found efficiently in the case
of two founders (K = 2), this would be an ideal solution to start from.
However, the experiments in Paper I show that the hierarchical parsing
gives more accurate results if K > 2.

2.5 HaploParser in a Nutshell

The haplotype inference method HaploParser is the following for the given
genotypes G and the parameters K and k.

• Find founder haplotypes F0 minimizing scorec
F0

(G).

• Find founder haplotypes F1, F2, . . . Fk by the greedy hierarchical pars-
ing algorithm.

• Parse genotypes using Fk and output haplotypes inferred by the parse.

In the experiments of Paper I, the parameter k was either 0 (no hi-
erarchical parsing) or it was the smallest value for which the hierarchical
parsing decreased the score by at most 1, i.e. k := min{k′|scorec

Fk′
(G) −

scorec
Fk′+1

(G) ≤ 1}. The latter criterion was argued by the fact that if

the score decreases by one, there is no difference between the flat and the
hierarchical parsing.

2.6 Experimental Results

In Paper I, 220 datasets were obtained from the HapMap database [65].
Each of these datasets consists of 120 haplotypes over 100 SNPs. These
haplotypes were converted into 60 genotypes, and the switch distance was
used to measure the error in the inferred haplotypes.

26 2 A Combinatorial Mosaic Model for Haplotype Inference

The results with HaploParser were on average best with K = 10 founders
(not always as shown in Figure 2.3) and when hierarchical parsing was used.
However, the results were about 30% worse than with the HMM–based
methods HIT (of Paper II) and fastPHASE [58]. The most interesting
result was the effect of hierarchical parsing. It improved the result con-
sistently for almost all datasets. This effect is shown for a single dataset
in Figure 2.3. The x–axis in this figure is the number of greedy iterations
with the hierarchical parsing algorithm and the y–axis is the (unnormal-
ized) switch distance. On average, this hierarchical parsing improved the
results by 30%. The runtime of HaploParser’s Java implementation was a
couple of minutes on a single HapMap dataset (100 SNPs) on a standard
desktop PC. However, the runtime on larger datasets might be too high as
the runtime of hierarchical parsing is superlinear on the data size mn.

HaploParser is not included in the experiments of the following chapters,
as its average haplotyping accuracy does reach the accuracy of HIT (which
is included).

2.6 Experimental Results 27

Figure 2.1: An example of flat parse for four genotypes (middle). For each
genotype there is an explaining pair of haplotypes (down) parsed from
founder haplotypes (top). The score of this parse is 13 (assuming there are
no mutations).

28 2 A Combinatorial Mosaic Model for Haplotype Inference

Figure 2.2: An example of hierarchical parsing. The founder haplotypes
(three topmost) are the same as in Figure 2.1. At each iteration i, a new
founder haplotype f is added to the founder set which is denoted by Fi =
Fi−1 ∪ {f}. This new haplotype f is a recombinant of two haplotypes in
Fi−1. The hierarchical score in this case is 4, as F4 contains the data (all
color patterns in the Figure 2.1). Note that the flat score is 13 (Figure 2.1).

2.6 Experimental Results 29

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

CEU chr4 (1001−1100)

iterations

sw
itc

h
di

st
an

ce

K=3
K=7
K=10
fastPHASE
HIT

Figure 2.3: The effect of hierarchical parsing, when the greedy algorithm is
started from K = 3, 7, 10 initial founder haplotypes. This plot is obtained
by plotting the switch distance after each greedy iteration of the hierarchi-
cal parsing algorithm. Surprisingly, the increase from K = 7 to K = 10
decreases the accuracy. The horizontal lines show the switch distance ob-
tained with HIT [55] and with fastPHASE [58].

30 2 A Combinatorial Mosaic Model for Haplotype Inference

Chapter 3

A Hidden Markov Model for

Haplotype Inference

In this chapter, a hidden Markov model (HMM) based method called HIT
(Haplotype Inference Technique) for haplotype inference is presented. The
HMM used in HIT has a special structure that resembles the combinatorial
founder model of HaploParser. The standard algorithms to learn HMMs do
not apply here, because the learning should be done from data consisting
of genotypes. We assume that that a reader is familiar with hidden Markov
models and their typical use in biological sequence analysis (See e.g. [12,
54]).

3.1 Model Structure of HIT

The hidden Markov model structure used in HIT is best described using
an example shown in Figure 3.1. At each marker there are K states, each
state having an emission distribution for alleles 0 and 1. Then there is a
single begin state at imaginary marker 0 which do not emit any alleles.
Moreover, there are transitions between states at adjacent markers. The
model structure is fully determined by the parameter K and the length of
genotypes m. In total, there are mK +1 states and K +(m−1)K2 possible
transitions.

The parameters of this model are the transition probabilities τ(a, b)
between states a and b and the emission probabilities of emitting an allele
x from state a, ǫ(x, a). Moreover, each path from the begin state to one of
the rightmost states emits a haplotype of length m.

This model structure has been (independently) proposed and used for
disease association [33], as well as for genotype error detection [31], and for

31

32 3 A Hidden Markov Model for Haplotype Inference

1 2 3 4 5 6 7 8 9 10 11

0

0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1

1

Figure 3.1: An example of HMM structure of HIT for SNP sequences of
length 11 with K = 4 founders. The color intensities and the arrow widths
reveal the emission and transition probabilities. This figure is from [55].

local ancestry inference [49].

Using the basic forward algorithm [12], one could compute the proba-
bility P (h|M) of a haplotype h given the HMM M = (τ, ǫ). Next we show
how to compute the probability P (g|M) =

∑

h,h′:γ(h,h′)=g p(h, h′|M) of a

genotype g (term p(h, h′|M) = p(h′|M)p(h|M)).

3.2 Forward Algorithm for Genotypes

The probability P (g|M) of a genotype g given the HMM M can be com-
puted by dynamic programming similar to Equation 2.1. Let aj and bj be
two states of the HMM at marker j and denote by L(aj , bj) the probability
of partial genotype g1, . . . , gj when the allele gj is emitted from states aj

and bj . The dynamic programming of L(aj , bj) is as follows.

L(a0, b0) = 1

L(aj+1, bj+1) = P (gj+1|aj+1, bj+1)
∑

aj ,bj

L(aj , bj)τ(aj , aj+1)τ(bj , bj+1) ,

(3.1)

3.3 Model Training with an EM Algorithm 33

where τ(aj , aj+1) is the transition probability (parameter) from state aj to
state aj+1 and P (gj |aj , bj) is the probability of emitting an allele gj from
states aj and bj , i.e.

P (gi|aj , bj) =







ǫ(0, aj)ǫ(0, bj) , if gi = 0
ǫ(1, aj)ǫ(1, bj) , if gi = 1
ǫ(0, aj)ǫ(1, bj) + ǫ(1, aj)ǫ(0, bj) , if gi = 2 ,

where ǫ(x, aj) is the emission probability of x from state aj .
The probability P (g|M) is

∑

am,bm
L(am, bm). Direct evaluation of

Equation 3.1 takes O(mK4) time, but a faster O(mK3) time complex-
ity can be achieved as shown in Paper II. Using the fastest known matrix
multiplication algorithm [8], the time complexity can be further improved
to O(mK2.376).

3.3 Model Training with an EM Algorithm

The maximum likelihood (ML) principle was used to find the parame-
ter values for the hidden Markov model M of HIT. Thus, the parame-
ters should be set to maximize the likelihood of the data according to
Equation 1.1, i.e. maximize P (G|M)=

∏

g∈G P (g|M), where each term
P (g|M) =

∑

h,h′:γ(h,h′)=g p(h, h′|M) is computed as shown in Section 3.2.
In Paper II, the commonly used EM algorithm was used to find these

parameters. This is because the exact solution is hard to compute and even
if it would be computable, typically the ML solution is not the biologically
most plausible one. Paper II found that the correlation between likelihood
and haplotype prediction accuracy is not very high. In the experiments of
Paper II, Paper III, and [55, 57], it has been observed that it is better to
combine several solutions with high likelihood, than to pick the solution
with the highest (found) likelihood.

The EM algorithm starts from some initial set of parameters θ(0) and
iteratively improves the current parameters θ(r) by equation

θ(r+1) := arg max
θ

∑

Z

P (Z | G, θ(r)) lnP (G, Z | θ) (3.2)

where Z runs through a chosen additional hidden data and G is the set
of genotypes (data). In the Baum–Welch algorithm [12, 54] used to learn
HMMs from single (haploid) sequences, the hidden data Z consists of a
path through the model. However, with genotype data two paths for every
genotype is not sufficient hidden data Z. The hidden data Z used in HIT
consists of T containing two paths for each genotype through the model

34 3 A Hidden Markov Model for Haplotype Inference

and the genotype phase information U . The hidden data U describes the
two haplotypes for each genotype.

With Z = (T, U), the term P (G, Z | θ) of Equation 3.2 simplifies into
simple products. Moreover, taking ln of the term P (G, Z | θ) separates the
emission and transition parameters, so they can be estimated separately.
Using standard techniques from constrained optimization, one gets intuitive
updating formulas for the emission and transition parameters. That is, the
transition parameter from state a to state b in θ(r+1) is proportional to the
expected number of transitions from state a to state b (with parameters
θr). Similarly, the parameter corresponding to an emission of allele y from
state b is proportional to the expected number of emissions of y from b
(over both ways to resolve the corresponding allele of the genotype).

One iteration of this EM algorithm can be done in time O(nmK3)
using the genotype forward algorithm of Equation 3.1 and its backward
modification. Even if the derivation of this EM algorithm is a bit tricky,
the resulting algorithm is very similar to the basic Baum–Welch algorithm
[12, 54].

3.4 Initial Solution

The EM algorithm is only guaranteed to find a locally maximal likelihood
solution. Therefore, the initial solution from which the EM is started plays
a critical role in the quality of an obtained solution.

In HIT, the transition probabilities in the initial solution are set without
looking at the data. First, the transitions from the begin state to the K
states at marker 1 are set to 1

K . Assuming the states at adjacent markers
j and j + 1 are s1, . . . , sK and t1, . . . , tK , the transition between states sl

and tl′ is set to τ(sl, tl′) =

{

1 − ρ , if l = l′
ρ

K−1 , otherwise
.

This transition setting reflects the idea of founders [66], which was used
in Paper I. The model of HIT has K founder chains consisting of lth states
at every marker (all transition probabilities between adjacent states of this
chain are 1 − ρ). These chains model the founder sequences with errors
and point–mutations, and the number of transitions between founders are
minimized when parameter ρ < 1 − 1

K , as then the transition probability
between the states of a same founder chain is higher than between states
of different chains. The value of ρ was 0.1 in the experiments of Paper II
and [55].

The algorithm to find the emission parameters is very similar to the
one used in the combinatorial method of Paper I. First, the emissions are

3.5 Reading the Haplotypes from an HMM 35

discretized by setting them to 1 − ν for the major allele (∈ {0, 1}) and to
ν for the other allele. Then these major alleles are assigned greedily from
left to right. When column i is decided, each of columns 1, . . . i−1 are kept
fixed and the alleles at column i maximizing the likelihood of the data up
to column i are chosen. After the first greedy round, another round from
left to right is made but now both sides of the decided column are taken
into account to the likelihood. The time complexity of this algorithm is
O(mnK22K) [55]. The value of ν was 0.01 in the experiments of Paper II
and [55].

3.5 Reading the Haplotypes from an HMM

The problem of finding the most probable haplotypes out of the HMM
used in HIT is an NP-hard problem [31]. This is not a surprise, as finding
the most probable emission sequence (consensus sequence) of an HMM is
also NP-hard [42]. In HIT, the haplotypes are read from the model by
using a modification of the Viterbi algorithm [12, 54]. In this algorithm,
two paths through the model are found for each genotype g that together
maximize the probability of producing g. Then the order of alleles at each
heterozygous position of g can be determined by choosing the order with the
highest probability on the Viterbi paths. In [55] this variant of the Viterbi
algorithm is improved by sampling paths p and p′ for each genotype g from
the distribution of P (p, p′|g, M).

3.6 HIT in a Nutshell

The haplotype inference method HIT [55] is the following for given geno-
types G and the parameters K and k.

• Find the initial solution with K founders (chains).

• Run the EM algorithm for k iterations.

• Read the haplotypes from the learned HMM and output them.

The parameter k can also be given implicitly as the minimum amount the
likelihood must increase in order to continue EM iterations. The total time
complexity of HIT is O(mn), if k and K are assumed to be fixed constants.
Thus, HIT scales well even to larger data. In Paper II, several restarts were
made by making small perturbations to the initial solution (see Figure 2
of Paper II). However, due to the robust behaviour, the current version

36 3 A Hidden Markov Model for Haplotype Inference

of HIT makes only a single start from the initial solution without any
perturbations.

3.7 Experimental Results

In the extended version of Paper II [55], the effect of parameter K on the
accuracy of the inferred haplotypes was studied. Table 3.1 shows the switch
distances obtained with K = 5, . . . , 11 on different datasets.

The datasets CEU-200, YRI-200, CEU-1000, and YRI-1000 were from
HapMap database [65] with 120 haplotypes spanning 200 and 1000 SNPs
from populations CEU (Utah) and YRI (Yoruba). Pop1 (32 haplotypes),
Pop2 (108 haplotypes), and Pop3 (108 haplotypes) were samples from three
populations from Finland over 68 SNPs [50, 36]. Also the famous dataset of
Daly et al. [9] was included containing 103 SNPs and 258 haplotypes. The
known haplotypes of these datasets were converted into genotypes to assess
the error (switch distance) in haplotype inference of HIT. Each HapMap
dataset (like CEU-200) was actually a set of 22 different datasets and the
presented results are averages over these 22 datasets.

It seems that a larger K yields more accurate results at least up to
some point. The method HIT* in Table 3.1 selects K by an automatic
procedure independently for each genotype. This procedure is explained in
more detail in the next subsection.

More experiments with HIT are reported in the next chapter. There the
parameter value K = 10 was used, as it seems to be a reasonable trade–off
between the time spent and the accuracy obtained.

3.7.1 Finding optimal K

Choosing a good number of founders K is a puzzling problem. The common
criteria for model selection like AIC, MDL, and BIC favor consistently too
small K [55, 58]. Moreover, it seems that overfitting is not a serious problem
in haplotype inference [55]. Our solution for automatically selecting K in
[55] is partly based on ideas in [58].

This solution uses cross–validation to select the best parameter K in-
dependently for each genotype. First, it creates 20 incomplete datasets
by marking 10% of heterozygous alleles of the input genotypes as missing.
Then HIT is run for each of these 20 datasets and for each K = 5, . . . , 11.
For every genotype g a single K is chosen denoted as Kg for which the ar-
tificial missing values of incomplete g:s were reconstructed most accurately
(compared to the complete g). Finally, the original data is run for each K

3.7 Experimental Results 37

HIT5 HIT6 HIT7 HIT8 HIT9 HIT10 HIT11 HIT*
CEU-200 0.078 0.076 0.073 0.072 0.072 0.071 0.071 0.72
YRI-200 0.13 0.12 0.12 0.11 0.11 0.11 0.11 0.11

CEU-1000 0.042 0.038 0.037 0.036 0.035 0.035 0.035 0.035

YRI-1000 0.076 0.069 0.063 0.060 0.057 0.055 0.055 0.057
Pop1 0.21 0.23 0.24 0.19 0.22 0.21 0.23 0.21
Pop2 0.17 0.17 0.17 0.17 0.17 0.16 0.16 0.18
Pop3 0.20 0.21 0.17 0.20 0.21 0.20 0.17 0.19
Daly et al. 0.029 0.028 0.034 0.030 0.031 0.034 0.034 0.030

Table 3.1: Switch distances of HIT with K = 5, . . . , 11 founders on various
datasets. In HIT*, parameter K is chosen separately for each genotype
using cross–validation. The best results are boldfaced. This table is from
[55].

and the haplotypes are chosen for genotype g from the solution with Kg

founders.
As shown in Table 3.1, the above procedure does not improve the results

significantly. Moreover, the algorithm becomes quite slow as it requires 140
runs. Thus, the problem of finding the best K is not fully solved and is
left as an open problem. Similar problem is to find the optimal K in the
model of HaploParser (previous chapter).

38 3 A Hidden Markov Model for Haplotype Inference

Chapter 4

A Bayesian Haplotype Inference

using Context Tree Weighting

In this chapter, a haplotyping method from Paper III called BACH (Bayesian
Context–based Haplotyping) is presented. In BACH, the concept of Con-
text Tree Weighting (CTW), originally used for compressing a single binary
string [68], is utilized to efficiently compute the weighted sum over all vari-
able order Markov chains to evaluate the posterior probability (goodness)
of a haplotype configuration. The maximum a posteriori (MAP) principle
is used, i.e. the posterior probability of haplotypes is maximized, in order
to find accurate haplotypes for a given set of genotypes. First, some basics
of variable order Markov chains are covered.

4.1 Variable Order Markov Chains

In a Markov chain of order D, there are more than ND+1 parameters, where
N is the alphabet size (number of states). If such a chain is used to model
dependencies over long regions, a large D is needed and then the number
of parameters becomes very large. Typically there is not enough data to
learn all these parameters, as the size of data should be proportional to the
number of parameters to be learnt.

A variable order Markov chain can be used to allow long contexts, i.e.
regions taken into account in the distribution of the next symbol, with
less parameters. The order of such a chain depends on the context. New
parameters are introduced when new contexts are found in the data in
sufficient amounts, not automatically to have an equal order on each state.
Thus, the complexity (number of variables) of a variable order Markov chain
depends on the complexity of the data. In this thesis, context trees are used

39

40
4 A Bayesian Haplotype Inference using Context Tree

Weighting

as the context model. Figure 4.1 gives an example of variable order Markov
chain for the DNA alphabet. In this example, the next symbol depends on
one or two previous symbols.

Each edge of a context tree corresponds to an alphabet symbol in such
a way that each leaf of this tree is a context with variable length (the length
is one or two in the example of Figure 4.1). Each leaf of this tree has a
distribution of the next symbol, conditional on the corresponding context.
Each node is either a leaf, or it has a child for each of the alphabet symbols.
In this way, if enough previous symbols are known, the context to be used
is uniquely determined.

λ

A C

AC CC GC TC

G T

AT CT GT TT

P (·|G)

P (·|TC) P (·|GT)

Figure 4.1: A variable order Markov chain as a context tree for the DNA
alphabet. Each leaf (circle) has a probability distribution conditional on
the context, denoted as P (·|context) (three of which are shown). There are
10 distributions in this model, while in the full second order Markov chain
there would be 16 distributions.

4.2 Model of BACH

The Bayesian approach has been used in BACH to model haplotypes and
genotypes with variable order Markov chains. The posterior distribution of
the haplotypes is composed as

P (H|G) ∝ P (H, G) = P (G|H)P (H) ,

4.2 Model of BACH 41

where the term P (G|H) = 1 if the haplotypes H explain genotypes G and
P (G|H) = 0 otherwise. Thus, the interesting term is P (H) as only haplo-
types H explaining genotype G are considered in the haplotype inference
problem.

The haplotype model used in BACH is derived from the chain rule that
holds for any distribution

P (H) =
m
∏

j=1

P (Hj | H1, . . . , Hj−1) , (4.1)

where Hj is the column (marker) j of the haplotypes H.

Then it is assumed that each Hj depends only on some relatively short
context described as a context tree specified by a function cj (there is a
bijection between context trees and functions). The function cj maps each
partial haplotype of H1, . . . , Hj−1 to a particular leaf of the context tree
that cj specifies, i.e. haplotype h1, . . . , hj−1 ∈ H1, . . . , Hj−1 is mapped to
a haplotype hj−d, . . . , hj−1 for some context length d.

Now the right–hand side of the Equation 4.1 can be written as

P (Hj | H1, . . . , Hj−1) =
∑

cj

P (cj)P (Hj | cj(H1, . . . , Hj−1)) , (4.2)

where P (cj) is the prior of each function cj (or equivalently the prior of
each context tree). We used the prior P (cj) = (1/2)N(cj), where N(cj) is
the number of nodes of depth less than the maximum allowed depth D in
the tree cj .

This prior is the same as in the original CTW method [68]. It is the
probability of constructing the binary context tree, by either splitting or
stopping at each node independently with probability 1/2. It would be
possible to have a more realistic prior, for example, by taking into account
the physical distance between the markers in the context.

To complete the model, the term P (Hj | cj(H1, . . . , Hj−1)) needs to
be specified. To achieve this, let Sj(cj) be the set of leafs of the context
tree cj . Attach a parameter θs to each leaf s ∈ Sj(cj), where s can also
be interpreted as a binary string that corresponds to the context. This
parameter θs gives the probability of allele 1 at marker j with suffix (or
context) s. In the original CTW method [68] parameters θs are assumed to
be independent and having Beta(1/2, 1/2) prior, leading to a closed form

P (Hj | cj(H1 · · ·Hj−1)) =
∏

s∈Sj(cj)

ρ(as, bs) , (4.3)

42
4 A Bayesian Haplotype Inference using Context Tree

Weighting

0 1

0 01 1

1

1

1 1 1 1

1 1 1 1 10 0 0 0

000

1 0 0 0 0 0 1 1 0 0 00

j

j

j

0

j

0

0

0

0 0

0

00

0 0 1 0 0

SNP Haplotypes

−2

−3

−1

2,0 2,0

4,0

6,0

9,3

3,3

2,0 0,0

2,0

1,2 1,1

2,3

0,0

1,0

1,0

Figure 4.2: The full context tree with maximum depth D = 3 for the jth
SNP of 12 haplotypes partly shown on the left. The numbers on each node
s are the counts as and bs, i.e. the number zeros and ones following the
corresponding context. A smaller context tree is shown with gray color.
This figure is from Paper III.

where as and bs are the counts of haplotypes up to marker j with suffixes
s0 and s1, respectively. The counts as and bs can be counted from the
haplotype data H, as the number of substrings s0 and s1 ending at the
corresponding marker j.

The leaf score ρ(as, bs) can be written [67] as

ρ(as, bs) =
Γ
(

1
2 + as

)

Γ
(

1
2 + bs

)

Γ
(

1
2

)

Γ
(

1
2

)

Γ
(

1 + as + bs

)

=
1
2 · 3

2 · 5
2 · · · (as −

1
2) · 1

2 · 3
2 · · · (bs −

1
2)

(as + bs)!
,

(4.4)

where Γ(z) =
∫ ∞

0 tz−1e−tdt is the Gamma function. Thus, ρ(as, bs) ∝
∫ 1
0 (1 − θs)

as−1/2 (θs)
bs−1/2 dθs.

However, the experiments of Paper III showed that a simpler prior,
namely ρ̃(as, bs) worked much better in haplotype inference. This prior is
defined as

ρ̃(as, bs) =

(

as + 1
2

as + bs + 1

)as
(

bs + 1
2

as + bs + 1

)bs

, (4.5)

where as and bs are defined as before. Prior ρ̃ can be seen as setting pa-

rameter θs to the value of
bs+

1

2

as+bs+1 (maximum likelihood value with pseudo
counts 1/2) instead of integrating it out as is done in Equation 4.4.

4.3 Context Tree Weighting Algorithm

The context trees in BACH are full binary trees. In a full binary tree, each
node excluding leaves has two children. The number of full binary trees with

4.4 Simulated Annealing 43

maximum depth ≤ D, denoted by a(D), can be computed from recursion

a(0) = 1 and a(D) = a(D − 1)2 + 1 [1]. Thus, a(D) is of magnitude 22D−1

and makes the direct enumeration of Equation 4.2 infeasible for D > 6
(a(7) ≈ 4 · 1022). However, using the context tree weighting algorithm, this
sum can be evaluated efficiently for arbitrary large D.

Next, the context tree weighting algorithm is utilized to efficiently com-
pute the sum of Equation 4.2, which is a weighted sum over all context
trees. The idea is to compute value ρs for each possible haplotype suffix
s, as the weighted sum of the leaf score products over all possible subtrees
rooted at s. If the length of s is the maximum context depth D, then s must
be a leaf and ρs is set to ρ(as, bs). Otherwise, ρs is obtained by averaging
over the case that s is a leaf of a context tree and the case that it has two
children, 0s and 1s, i.e.

ρs :=
1

2
ρ(as, bs) +

1

2
ρ0sρ1s . (4.6)

It can be shown [68] that the dynamic programming recurrence of Equa-
tion 4.6 yields

ρλ =
∑

cj

2−N(cj)
∏

s∈Sj(cj)

ρ(as, bs) = P (Hj |H1, . . . , Hj−1) , (4.7)

where λ is the empty sequence, i.e. the root of each context tree cj , and
N(cj) is the number of nodes at depth less than D in cj .

The Equation 4.6 can be evaluated in the (full) tree from which an
example is shown in Figure 4.2. It is not necessary to evaluate ρs for nodes
s that have counts as = bs = 0 as ρ(0, 0) = 1 (and ρ̃(0, 0) = 1). Thus, the
Equation 4.6 can be evaluated in time O(nD) for a single j, and therefore
P (H) can be computed in time O(mnD).

4.4 Simulated Annealing

BACH is based on Bayesian maximum a posteriori (MAP) estimation of
haplotypes. Thus, an algorithm is needed to maximize the probability
P (H|G), i.e. the probability P (H) of the haplotype configuration H ex-
plaining the genotypes G.

A variant of Simulated Annealing (SA), a general heuristic method for
global optimization stemming from statistical mechanics [35], has been used
to maximize P (H|G).

This method is started from some haplotype configuration H explaining
the given genotypes G and then it proceeds iteratively making local changes

44
4 A Bayesian Haplotype Inference using Context Tree

Weighting

(or moves) to the haplotypes of a randomly selected genotype g ∈ G. A
single move changes equal–length prefixes of the haplotypes as in the switch
distance in Section 1.3.2.

Each proposed move is accepted with probability min{1, A1/T }, where
A is the ratio of probabilities between the haplotype configuration proposed
and the current configuration and T is a temperature parameter. This SA
variant is run first from some initial solution with temperature T = 1.
Then, three more batches with temperatures T = 1/2, 1/4, 0 are run and
each batch is started from the best solution encountered so far.

The number of iterations made in each batch is mn and each move can
be implemented in time O(D2), thus the total time complexity is (mnD2).

4.5 Minimization of the Expected Switch Distance

The accuracy of BACH have been improved by combining several haplotype
predictions. The switch distance (Section 1.3.2) is used as a loss function
to measure the cost of errors in the haplotype predictions. Thus, the final
haplotypes are determined by minimizing the expected switch distance to
a sample of haplotype configurations, each of which has a locally maximal
posterior probability.

The haplotypes minimizing the expected switch distance to a sample of
haplotypes are called the centroid haplotypes. They can be attained inde-
pendently for each genotype by a simple voting. To see this, first note that
any haplotype pair (h, h′) explaining a fixed genotype g can be bijectively
mapped to a switch sequence ξ = ξ1, ξ2, . . . , ξk−1, where k is the number
of heterozygous sites in g and the value of ξi ∈ {0, 1} is zero if and only
if equal alleles occur in the same haplotype at ith adjacent heterozygous
positions. As an example, a genotype 2022 with switch sequences 00, 01,
10, and 11 have the haplotype pairs (0000,1011), (0001,1010), (0011,1000),
and (0010,1001), respectively.

If a genotype g has two haplotype configurations with switch sequences ξ
and ξ′, then the switch distance between the corresponding haplotype pairs
is

∑k−1
i=1 |ξi − ξ′i| = ||ξ − ξ′||1 (1-norm). Thus, the centroid haplotype pair

for g can be found as the 1-norm centroid of the binary switch sequences
of g in the sample. Such a centroid can be computed by coordinate–wise
voting, i.e. the switch sequence of the centroid haplotypes of g has at each
position the more common corresponding value in the sample. The sample
could be weighted as well (see Paper III).

The centroid haplotype configuration can be found in time linear to
the sample size. This problem of finding centroid haplotypes has also been

4.6 Sampling Initial Haplotypes 45

studied in [58] and in [27].

4.6 Sampling Initial Haplotypes

Simulated annealing is quite sensitive for the initial solution from which it
is started. A method called forward sampling has been used in Paper III
to find a good initial solution from which the SA is started. For a given
set of genotypes G and the maximum context length D, it consists of the
following steps:

1. Assign haplotypes H0 randomly to explain genotypes G.

2. Sample haplotype configurations H1, . . . , H10 by drawing a new hap-
lotype pair (h, h′) in H i+1 for each genotype g ∈ G from the distri-
bution P (h, h′|g, H i − g), where H i − g is the set H i without the two
haplotypes of genotype g.

3. Return the centroid (Section 4.5) of haplotype configurations H5, . . . , H10.

The sampling of Step 2 can be implemented with an algorithm similar
to forward algorithm of HMMs. This algorithm has a time complexity of
O(mD2D) for a single genotype. As the time complexity depends exponen-
tially on D, it cannot be used for a large D. Parameter D was 8 during
the forward sampling in the experiments of Paper III.

4.7 BACH in a Nutshell

The haplotype inference method BACH of Paper III is based on the fol-
lowing iteration for given genotypes G and a parameter D defining the
maximum context length.

• Find an initial haplotype configuration with forward sampling (max-
imum context length = 8).

• Run simulated annealing.

• Output the best haplotype configuration found in the simulated an-
nealing phase.

The above steps are repeated 20 times, with the genotypes being re-
versed half of the times. Then the final output is a centroid of these 20
runs. The method scales well as the total time complexity depends only
linearly on the term mn (with a constant D).

46
4 A Bayesian Haplotype Inference using Context Tree

Weighting

It was noticed during the experiments of Paper III that a higher max-
imum context length D improved the results. The value of D = 40 (in
forward sampling D = 8) was used as it gave a good accuracy with a
reasonable time consumption.

4.8 Experimental Results

In Paper III, 132 real datasets obtained from the HapMap database [65]
were used. These datasets contained 120 haplotypes inferred from samples
of 30 trios from human populations CEU (Utah) and YRI (Yoruba). From
the long haplotypes of each chromosome, 100 SNPs were chosen with an
average spacing between adjacent SNPs being 1,3, and 9 kb. Thus, names
like CEU-3kb and YRI-9kb refer to datasets from population CEU and YRI
with spacing of 3kb and 9kb, respectively.

The number of individuals and haplotypes in the above real datasets
were quite modest. We generated 200 datasets with 2000 haplotypes from
a 1Mb chromosomal area using COSI software [56]. By filtering, 100 sparse
and 100 dense datasets, referred to as Dense and Sparse, were created from
the 200 generated datasets. The median SNP counts for Dense and Sparse
sets were 367 and 101, respectively.

The known haplotypes of each dataset were converted into genotypes
to assess the error in the different haplotype–inference methods including
BACH and HIT (Chapter 3). For comparison, PHASE [63, 62, 39], fast-
PHASE [58], HaploRec [13], and Beagle [4] were also included.

The switch distances with each method are shown in Table 4.1. Datasets
Dense and Sparse were too large for PHASE to run in a reasonable time.
For the real datasets, PHASE was the most accurate method but also the
slowest.

Methods based on HMM (HIT and fastPHASE) do not seem to get
the full benefit from the large number of genotypes in datasets Dense and
Sparse. However, they work reasonably for smaller HapMap datasets. On
the other hand, Beagle based on a single variable order Markov chain does
not work well on HapMap datasets but is among the best methods on Dense
and Sparse datasets.

BACH seems to work equally well on all datasets. PHASE is a clear
winner on real datasets when it comes to accuracy. However, among faster
methods BACH is among the most accurate methods on all tested datasets.
The runtime of PHASE was several hours on small HapMap datasets. All
other methods spent at most few minutes on these datasets. On the biggest
simulated datasets the runtime was a few hours.

4.8 Experimental Results 47

PHASE fastPHASE BACH Beagle HaploRec HIT

CEU-1k 0.0299 0.0343 0.0348 0.0405 0.0364 0.0375
CEU-3k 0.0652 0.0692 0.0665 0.0764 0.0692 0.0745
CEU-9k 0.144 0.146 0.147 0.164 0.147 0.159
YRI-1k 0.0407 0.0579 0.0597 0.0645 0.0540 0.0642
YRI-3k 0.0931 0.117 0.113 0.125 0.111 0.126
YRI-9k 0.189 0.204 0.198 0.223 0.193 0.220
Sparse - 0.0398 0.0305 0.0317 0.0288 0.0442
Dense - 0.0169 0.0125 0.0116 0.0133 0.0190

Avg. C+Y 0.0937 0.104 0.103 0.116 0.102 0.114
Avg. all - 0.0856 0.0828 0.0920 0.0816 0.0931

Table 4.1: Switch distances (errors) of the tested methods on various
datasets. Average distances over all datasets (Avg. all) and over real
datasets (Avg. C+Y = Average over CEU and YRI) are also included.
These values are from the experiments of Paper III. The numbers in bold-
face and in cursive indicate the best and the second best result, respectively.
This table is from Paper III.

48
4 A Bayesian Haplotype Inference using Context Tree

Weighting

Chapter 5

A General Framework for Local

Pairwise Alignment Significance

with Gaps

In this chapter Paper IV is presented. This paper considers the very ba-
sic and fundamental problem of deciding whether local similarities in two
sequences occur because the sequences are related or just by chance. The
classical statistical hypothesis testing is used, i.e. p-value is used to assess
the significance of the best local alignment score. Instead of computing
the p-value exactly, a tight upper bound is computed for the p-value. Un-
like the previous methods for computing p-values, the presented framework
models gaps in the alignments without troublesome sampling and curve
fitting, and does not suffer from so–called edge effects (Chapter 1).

5.1 A Novel Dynamic Programming Framework

Here the novel dynamic programming framework from Paper IV is pre-
sented. This framework can be used to compute the expected number of
alignments of x′ and y′ distributed according to the (Bernoulli) null model
in pseudo–polynomial time. This expectation acts as an upper bound of
the p-value.

Let Xt be a random variable counting the number of alignments with
score at least t of strings x′ and y′ distributed according to the null model.
The p-value pt is the probability of picking sequences x′ and y′ from the null
model that have at least one alignment with score ≥ t, i.e. pt = P (Xt ≥ 1).
The expectation E(Xt) can be computed by summing over all alignment
paths z and adding up the probability that the score of x′ and y′ aligned
along z is ≥ t. To justify this, consider a set Az

t of string pairs (x′, y′) with

49

50
5 A General Framework for Local Pairwise Alignment

Significance with Gaps

score ≥ t aligned along a path z. Now Xt can be written as the sum of
indicator functions of Az

t , i.e. Xt =
∑

z 1Az
t
. As the expectation is linear,

E(Xt) = E(
∑

z 1Az
t
) =

∑

z E(1Az
t
) =

∑

z P (Az
t).

The sum of E(Xt) can be computed efficiently as follows. Let L(i, j, r)
be the expected number of alignments with score r ending at (i, j) in the
alignment grid. Now L(i, j, r) can be computed by dynamic programming
by first setting values L(0, 0, r), L(0, j, r), and L(i, 0, r) to one if r = 0 and
to zero otherwise. The remaining values of L(·, ·, ·) can be computed from

L(i, j, 0) = 1

L(i, j, r) = L(i − 1, j, r + d) + L(i, j − 1, r + d)

+
∑

a,b∈Σ

qaqbL(i − 1, j − 1, r − s(a, b)) ,
(5.1)

where i = 1, . . . , n, j = 1, . . . , m, and r = 1, . . . , (min{m, n}maxa,b s(a, b)).
Then the expectation E(Xt) can be computed as E(Xt) =

∑

i,j

∑

r≥t L(i, j, r).
We have obtained an upper bound for the p-value, as by Markov inequality
pt = P (Xt ≥ 1) ≤ E(Xt).

It is assumed that the values of L(·, ·, ·) can be presented with sufficient
accuracy using a constant–size floating point presentation, and the values
of d and s(·, ·) are integers with absolute values ≤ B. Then, evaluating
Equation 5.1 needs time O(nm min{m, n}B) and space O(min{m, n}2B).
Here the term O(nm min{m, n}B) is the number of floating point oper-
ations executed, so the assumption of the values being presented with a
constant size leads to an algorithm with the same time complexity.

In the bioinformatics domain, it is a feasible assumption that B is a
small constant. Moreover, we assume that m and n are of about equal
size. Then, the time and space requirements are simply O(n3) and O(n2),
respectively.

For linear gaps, an algorithm with O(n2) time and linear space require-
ment is presented in Paper IV. Equation 5.1 can be generalized to the
common affine gap model, where each gap has a cost of d for opening the
gap and a cost of e for extending it by one symbol. In this case, the time
and space requirements are also O(n3) and O(n2).

5.2 Experimental Results

In Paper IV, 107 random DNA sequence pairs of equal lengths 125, 250,
500, 1000, and 2000 were sampled from the uniform distribution for A, C,
G, and T. For each of these sequence pairs, the maximum local alignment

5.2 Experimental Results 51

score was computed. The scoring schema was the same that is used in the
BLAST, i.e. the score of a match was +1, the score of a mismatch −3 [3].
The affine gap model was used, where the gap opening and extension costs
were 5 and 2, respectively. The empirical p-values p̂t were computed from
these random sequence pair scores as the fraction of scores that are ≥ t.

In Figure 5.1 the values of p̂t and E(Xt) are plotted for sequence lengths
125, 500, and 2000 and for t = 6, . . . , 22. As only 107 sequence pairs were
sampled, values smaller than 10−5 are not accurate. Moreover, the smallest
possible p̂t is 10−7. The ratio of p̂t and E(Xt) seems to be a constant of
about 1/2, excluding small values of t. In Paper IV, this ratio was suggested
to be (3/4)2 = c2, where c =

∑

a,b:s(a,b)<0 qaqb. Thus, the experimental
ratio seems to obey what was expected quite well. Reasoning in Paper
IV (Section 4.4 of Paper IV) about this ratio could be incorporated into
Formula 5.1 leading to an algorithm that computes even a tighter upper
bound than E(Xt). This tighter bound will be studied further in the future
work.

In Figure 5.2 the values of E(X25) are compared to the corresponding
p-value computed by the Karlin-Altschul statistics (KA-N). Each result of
KA-N is obtained by sampling N random sequence pair scores and then fit-
ting the parameters K and λ to this sample. In this way, the learned K and
λ should reduce the edge–effects as well. It seems that the Karlin-Altschul
statistics is more accurate for longer sequences and with larger sample size
N . The empirical p-values p̂25 were computed using the importance sam-
pling method of [46], as the direct sampling of p̂25 is not feasible (requires
about 1013 samples). The available web server implementation allowed only
a limited computing time for each user and therefore could not estimate
the p-value for sequence lengths of 2000. The error bars in the empirical
p-values indicate the standard deviation given by the method. The value of
c2E(Xt) was included as a close estimate of the real p-value suggested by
Figure 5.1. Also this estimate is within the error bars of the empirical p-
values. Clearly, E(Xt) behaves more consistently than the Karlin-Altschul
statistics.

52
5 A General Framework for Local Pairwise Alignment

Significance with Gaps

6 8 10 12 14 16 18 20 22

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

t

empirical p

t
 (n=m=125)

E(X
t
) (n=m=125)

empirical p
t
 (n=m=500)

E(X
t
) (n=m=500)

empirical p
t
 (n=m=2000)

E(X
t
) (n=m=2000)

Figure 5.1: The empirical p-value p̂t and E(Xt) for t = 6, . . . , 22 for se-
quences with lengths 125, 500, and 2000. The ratio of p̂t and E(Xt) is very
close to 1/2 expect for the smallest values of t. This figure is based on the
experiments of Paper IV.

5.2 Experimental Results 53

10
2

10
3

10
4

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

m=n

KA−100
KA−1000
KA−10000
E(X

t
)

E(X
t
)c2

empirical p
t

Figure 5.2: Comparison of p-values computed by Karlin-Altschul statistics
(KA-N), and the expectation E(Xt) for a score ≥ t = 25 with varying
sequence lengths. The result of KA-N is obtained by fitting the parame-
ters K and λ to a sample of N random sequence pair scores. The value
c2E(Xt) = 9

16E(Xt) a good estimate (extrapolated from Figure 5.1) of the
real p-value is shown as a dashed line. The empirical p-values (error bars
give the standard deviation) are computed by the importance sampling web
server of [46] for sequence lengths up to 1000. For sequence lengths of 2000
this was not possible due to the limitations of the server. This figure is
partly based on the experiments of Paper IV.

54
5 A General Framework for Local Pairwise Alignment

Significance with Gaps

Chapter 6

Conclusions

To choose a method for solving the problem of haplotype inference is not
an easy task, as each method has pros and cons. The matters one should
consider include, e.g. accuracy, speed, scalability, and the nature of the
genotype data.

Typically the speed and accuracy are opposite goals. Most methods
could be implemented to trade speed for accuracy, i.e. to run faster but
at the expense of the solution quality. Some methods like PHASE are
fast for small datasets but do not scale (linearly) to larger datasets. Ta-
ble 6.1 presents the author’s opinion about which methods should be used
with respect to the number of SNPs and the number of individuals in the
data. Some real datasets might contain large amounts of genotyping errors
and missing values, which can affect the performance of the solutions [13].
Moreover, for some datasets the haplotypes are simply easier to infer than
for others.

The method of choice presented in this thesis is BACH (Paper III,
Chapter 4). It has a good accuracy over different dataset and it scales
to large datasets. It has a practical way to cope with missing values (not
covered here), and it can model long dependencies even with a small amount
of data. However, the speed (and space requirement) of BACH could be
improved as the implementation at its current form is not especially fast.

The problem of haplotype inference has been studied a lot both theoret-
ically and in practice. The solutions in Papers I–III use different Markovian
models which are very interesting as such. The method of Paper I is not
very accurate, but the model itself has its own appeal. In general, proba-
bilistic algorithms seems to yield more accurate results in haplotyping than
the combinatorial algorithms. When it comes to speed and accuracy, the
implementations of methods used in the results of Papers I–III are not fully
optimized. It is probable that these implementations could be improved

55

56 6 Conclusions

with some tedious tweaking. For example, the current version of BACH
found from its web page is on average more accurate than the version used
in the included experiments.

m small m large

PHASE VOMC
n small VOMC HMM

HMM

n large VOMC VOMC
Beagle Beagle

Table 6.1: A table showing which software should be used for haplotype
inference for m SNPs and n individuals. The VOMC includes the meth-
ods BACH and HaploRec that are based on variable order Markov chains,
and HMM includes fastPHASE and HIT that are based on hidden Markov
models. The vertical order of the listed methods gives the preference order
of using them (upmost method is the most preferable).

The results with the new alignment score significance framework of Pa-
per IV are promising. The framework is very simple, and still computes
tight upper bounds for the p-values. Having an upper bound is an ad-
vantage compared to the previous methods that compute an approximate
p-value, which can be larger or smaller than the correct one.

The framework is best suited for the linear gap model as then the algo-
rithm is as fast as the Smith–Waterman algorithm having quadratic time
with only linear space. Some improvements might be possible to achieve
faster algorithms with the commonly used affine gap model.

The query–specific p-values are an interesting problem to study with
this approach. In this problem, only one string is randomly distributed
according to the null model while the other string is kept fixed.

The Bernoulli null model is a Markov chain of order 0. Thus, a natural
direction of future research would be to generalize this framework for higher
order null models.

Also the global alignment statistics should be further studied with re-
spect to this framework.

As the high–throughput sequencing has become a reality, the amount
of sequence data increases fast [21]. This raises a need for new methods
to study these vast amounts of data. The haplotype inference method
BACH presented in this thesis is fast and handles large dataset while taking
full benefit from large datasets. Thus, it is suitable for high–throughput
sequence (genotype) data.

57

In the local alignment significance computation the increase of sequence
data, e.g. number of organisms with the genome sequence in databases,
leads to a need of having smaller p-values. The presented novel algorithms
for this significance problem are suitable to get accurate estimates and
bounds for these small p-values. The speed of these algorithms is sufficient,
if the best local alignments scores of interest are computed by a Smith–
Waterman type algorithm [59]. Thus, these new algorithms could have
applications even in their current (preliminary) form for the analysis of
high–throughput sequence data.

All the presented methods are available with their source code, Hap-
loParser via http://www.cs.helsinki.fi/u/prastas/haploparser, HIT
via http://www.cs.helsinki.fi/u/prastas/hit, BACH via http://www.
cs.helsinki.fi/u/prastas/bach, and the program for alignment score
significance via http://www.cs.helsinki.fi/u/prastas/laswg.

58 6 Conclusions

References

[1] A. Aho and N. Sloane. Some doubly exponential sequences. Fibonacci
Quarterly, 11:429–437, 1970.

[2] S. Altschul, R. Bundschuh, R. Olsen, and T. Hwa. The estimation of
statistical parameters for local alignment score distributions. Nucleic
Acids Research, 29(2):351–361, January 2001.

[3] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic local
alignment search tool. Journal of Molecular Biology, 215(3):403–410,
October 1990.

[4] S. Browning and B. Browning. Rapid and accurate haplotype phasing
and missing-data inference for whole-genome association studies by
use of localized haplotype clustering. American Journal of Human
Genetics, 81(5):1084–97, 2007.

[5] R. Bundschuh. Rapid significance estimation in local sequence align-
ment with gaps. Journal of Computational Biology, 9(2):243–260,
2002.

[6] N. Chia and R. Bundschuh. A practical approach to significance as-
sessment in alignment with gaps. Journal of Computational Biology,
13(2):429–441, 2006.

[7] A. Clark. Inference of haplotypes from PCR-amplified samples of
diploid populations. Molecular Biology and Evolution, 7:111–122, 1990.

[8] D. Coppersmith and S. Winograd. Matrix multiplication via arith-
metic progressions. In STOC ’87: Proceedings of the nineteenth an-
nual ACM symposium on Theory of computing, pages 1–6, New York,
NY, USA, 1987. ACM.

[9] M. Daly, J. Rioux, S. Schaffner, T. Hudson, and E. Lander. High-
resolution haplotype structure in the human genome. Nature Genetics,
29:229–232, 2001.

59

60 References

[10] M. J. Daly, J. D. Rioux, S. F. Schaffner, T. J. Hudson, and E. S.
Lander. High-resolution haplotype structure in the human genome.
Nature Genetics, 29:229–232, 2001.

[11] Z. Ding, V. Filkov, and D. Gusfield. A linear-time algorithm for the
perfect phylogeny haplotyping (pph) problem. In Research in Compu-
tational Molecular Biology (RECOMB), pages 585–600, 2005.

[12] R. Durbin, S.R. Eddy, A. Krogh, and G. Mitchison. Biological Se-
quence Analysis: Probabilistic Models of Proteins and Nucleic Acids.
Cambridge University Press, Cambridge, first edition, 1998.

[13] L. Eronen, F. Geerts, and H. Toivonen. Haplorec: efficient and ac-
curate large-scale reconstruction of haplotypes. BMC Bioinformatics,
7:542, 2006.

[14] L. Excoffier and M. Slatkin. Maximum-likelihood estimation of molec-
ular haplotype frequencies in a diploid population. Molecular Biology
and Evolution, 12(5):921–927, 1995.

[15] O. Gotoh. An improved algorithm for matching biological sequences.
Journal of Molecular Biology, 162(3):705 – 708, 1982.

[16] G. Greenspan and D. Geiger. Model-based inference of haplotype
block variation. In Research in Computational Molecular Biology (RE-
COMB), pages 131–137. ACM Press, 2003.

[17] R. Griffiths and P. Marjoram. Ancestral inference from samples of
dna sequences with recombination. Journal of Computational Biology,
3(4):479–502, 1996.

[18] D. Gusfield. Inference of haplotypes in samples of diploid popula-
tions: Complexity and algorithms. Journal of Computational Biology,
8(3):305–323, 2001.

[19] D. Gusfield. Haplotyping as perfect phylogeny: conceptual framework
and efficient solutions. In Research in Computational Molecular Biol-
ogy (RECOMB), pages 166–175. ACM Press, 2002.

[20] D. Gusfield. Haplotype inference by pure parsimony. In Combinatorial
Pattern Matching (CPM), pages 144–155, 2003.

[21] N. Hall. Advanced sequencing technologies and their wider impact in
microbiology. Journal of Experimental Biology, 210:1518–1525, 2007.

References 61

[22] E. Halperin and E. Eskin. Haplotype reconstruction from genotype
data using imperfect phylogeny. Bioinformatics, 20(12):104–113, 2004.

[23] J. Hammersley and D. Handscomb. Monte Carlo Methods. Fletcher
& Son Ltd, Norwich, 1964.

[24] A. Hartmann. Sampling rare events: Statistics of local sequence align-
ments. Physical Review E, 65(5):056102, 2002.

[25] R. Hudson and N. Kaplan. Statistical properties of the number of
recombination events in the history of a sample of dna sequences. Ge-
netics, 1(111):147–64, 1985.

[26] M. Jensen-Seaman, T. Furey, B. Payseur, Y. Lu, K. Roskin, C.-F.
Chen, M. Thomas, D. Haussler, and H. Jacob. Comparative Recom-
bination Rates in the Rat, Mouse, and Human Genomes. Genome
Research, 14(4):528–538, 2004.

[27] M. Kääriäinen, N. Landwehr, S. Lappalainen, and T. Mielikäinen.
Combining haplotypers. Technical Report C-2007-57, Department of
Computer Science, University of Helsinki, 2007.

[28] S. Karlin. Statistical signals in bioinformatics. Proceedings of the
National Academy of Sciences of the USA (PNAS), 102(38):13355–
13362, September 2005.

[29] S. Karlin and S. Altschul. Methods for assessing the statistical signifi-
cance of molecular sequence features by using general scoring schemes.
Proceedings of the National Academy of Sciences of the USA (PNAS),
87(6):2264–2268, 1990.

[30] S. Karlin, A. Dembo, and T. Kawabata. Statistical composition of
high–scoring segments from molecular sequences. The Annals of Statis-
tics, 18(2):571–581, 1990.

[31] J. Kennedy, I. Mandoiu, and B. Pasaniuc. Genotype error detection
using hidden markov models of haplotype diversity. In Algorithms in
Bioinformatics (WABI), pages 73–84, 2007.

[32] G. Kimmel and R. Shamir. Maximum likelihood resolution of multi-
block genotypes. In Research in Computational Molecular Biology
(RECOMB), pages 2–9. ACM Press, 2004.

[33] G. Kimmel and R. Shamir. A block-free hidden markov model for
genotypes and its application to disease association. Journal of Com-
putational Biology, 12(10):1243–1260, 2005.

62 References

[34] G. Kimmel and R. Shamir. Gerbil: Genotype resolution and block
identification using likelihood. Proceedings of the National Academy
of Sciences of the USA (PNAS), 102(1):158–162, 2005.

[35] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by sim-
ulated annealing. Science, 220(4598):671–680, 1983.

[36] M. Koivisto, M. Perola, T. Varilo, W. Hennah, J. Ekelund, M. Lukk,
L. Peltonen, E. Ukkonen, and H. Mannila. An mdl method for finding
haplotype blocks and for estimating the strength of haplotype block
boundaries. In Pacific Symposium on Biocomputing, pages 502–513,
2003.

[37] G. Lancia, C. Pinotti, and R. Rizzi. Haplotyping populations: Com-
plexity and approximations. Technical Report DIT-02-0080, Depart-
ment of Information and Communication Technology, University of
Trento, 2002.

[38] N. Landwehr, T. Mielikäinen, L. Eronen, H. Toivonen, and H. Mannila.
Constrained hidden markov models for population-based haplotyping.
BMC Bioinformatics, 8(S-2), 2007.

[39] N. Li and M. Stephens. Modeling linkage disequilibrium and iden-
tifying recombination hotspots using single-nucleotide polymorphism
data. Genetics, 165:2213–2233, 2003.

[40] S. Lin, D. Cutler, M. Zwick, and A. Chakravarti. Haplotype inference
in random population samples. American Journal of Human Genetics,
71(4):1129–37, 2002.

[41] J. Long, R. Williams, and M. Urbanek. An E-M algorithm and testing
strategy for multiple-locus haplotypes. Americal Journal of Human
Genetics, 56:799–810, 1995.

[42] R. Lyngsø and C. Pedersen. The consensus string problem and the
complexity of comparing hidden Markov models. Journal of Computer
and System Sciences, 65:545–569, 2002.

[43] S. Mercier, D. Cellier, F. Charlot, and J.-J. Daudin. Exact and asymp-
totic distribution of the local score of one i.i.d. random sequence. In
Proceedings of JOBIM, pages 74–83, 2000.

[44] Occam’s razor n. Merriam-webster’s collegiate dictionary (http://
www.merriam-webster.com/dictionary/Occam’s_razor; accessed
22.09.2009), 2003.

References 63

[45] D. Naor and D. Brutlag. On suboptimal alignments of biological se-
quences. In Proceedings of CPM, pages 179–196. Springer-Verlag, 1993.

[46] L. Newberg. Significance of gapped sequence alignments. Journal of
Computational Biology, 15(9):1187–1194, 2009.

[47] T. Niu, Z. Qin, X. Xu, and J. Liu. Bayesian haplotype inference for
multiple linked single-nucleotide polymorphisms. American Journal of
Human Genetics, 70(1):157–169, 2002.

[48] K. Palin. Computational Methods for Locating and Analyzing Con-
served Gene Regulatory DNA Elements. PhD thesis, Department of
Computer Science, University of Helsinki, 2007.

[49] B. Pasaniuc, J. Kennedy, and I. Mandoiu. Imputation based local an-
cestry inference in admixed populations. In International Symposium
on Bioinformatics Research and Applications (ISBRA), pages 73–84,
2009.

[50] T. Paunio, J. Ekelund, and T. Varilo et al. Genome-wide scan in a
nationwide study sample of schizophrenia families in finland reveals
susceptibility loci on chromosomes 2q and 5q. Human Molecular Ge-
netics, 10:3037–3048, 2001.

[51] W. R. Pearson. Empirical statistical estimates for sequence similarity
searches. Journal of Molecular Biology, 276(1):71 – 84, 1998.

[52] B. Pierce. Genetics: A Conceptual Approach. W. H. Freeman and
Company, New York, second edition, 2005.

[53] A. Poleksic, J. Danzer, K. Hambly, and D. Debe. Convergent Island
Statistics: a fast method for determining local alignment score signif-
icance. Bioinformatics, 21(12):2827–2831, 2005.

[54] L. R. Rabiner. A tutorial on hidden Markov models and selected
applications in speech recognition. Proceedings of the IEEE, 77(2):257–
285, 1989.

[55] P. Rastas, M. Koivisto, H. Mannila, and E. Ukkonen. Phasing geno-
types using a hidden markov model. In Bioinformatics Algorithms:
Techniques and Applications, pages 373–391. Wiley, 2008.

[56] S. Schaffner, C. Foo, S. Gabriel, D. Reich, M. Daly, and D. Altshuler.
Calibrating a coalescent simulation of human genome sequence varia-
tion. Genome Research, 15:1576–1583, 2005.

64 References

[57] P. Scheet and M. Stephens. A fast and flexible statistical model for
large-scale population genotype data: Applications to inferring miss-
ing genotypes and haplotypic phase. American Journal of Human
Genetics, 78(4):629–644, 2005.

[58] P. Scheet and M. Stephens. A fast and flexible statistical model for
large-scale population genotype data: Applications to inferring miss-
ing genotypes and haplotypic phase. American Journal of Human
Genetics, 78(4):629–44, 2006.

[59] T. Smith and M. Waterman. Identification of common molecular sub-
sequences. Journal of Molecular Biology, 147(1):195 – 197, 1981.

[60] Y. Song and J. Hein. Constructing minimal ancestral recombination
graphs. Journal of Computational Biology, 12(2):147–169, 2005.

[61] M. Steel. The complexity of reconstructing trees from qualitative char-
acters and subtrees. Journal of Classification, 9(1):91–116, 1992.

[62] M. Stephens and P. Donnelly. A comparison of bayesian methods for
haplotype reconstruction from population genotype data. American
Journal of Human Genetics, 73(6):1162–1169, 2003.

[63] M. Stephens, N. J. Smith, and P. Donnelly. A new statistical method
for haplotype reconstruction from population data. American Journal
of Human Genetics, 68:978–989, 2001.

[64] T. Strachan and A. Read. Human Molecular Genetics. BIOS Scientific
Publishers Ltd, Oxford, second edition, 1999.

[65] The International HapMap Consortium. A haplotype map of the hu-
man genome. Nature, 437:1299–1320, 2005.

[66] E. Ukkonen. Finding founder sequences from a set of recombinants. In
Algorithms in Bioinformatics (WABI), pages 277–286. Springer, 2002.

[67] F. Willems. The context-tree weighting method : Extensions. IEEE
Transactions on Information Theory, 44(2):792–798, 1998.

[68] F. Willems, Y. Shtarkov, and T. Tjalkens. The context-tree weighting
method: Basic properties. IEEE Transactions on Information Theory,
41(3):653–664, 1995.

[69] Y. Wu and D. Gusfield. Improved algorithms for inferring the mini-
mum mosaic of a set of recombinants. In Combinatorial Pattern Match-
ing (CPM), pages 150–161, 2007.

