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ISSN 1238-8645
ISBN 978-952-10-5714-4 (paperback)
ISBN 978-952-10-5715-1 (PDF)
Computing Reviews (1998) Classification: I.5.1, I.2.10
Helsinki 2009
Helsinki University Print



A Probabilistic Approach to the Primary Visual Cortex

Urs Köster
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Abstract

What can the statistical structure of natural images teach us about the
human brain? Even though the visual cortex is one of the most studied
parts of the brain, surprisingly little is known about how exactly images
are processed to leave us with a coherent percept of the world around us, so
we can recognize a friend or drive on a crowded street without any effort.

By constructing probabilistic models of natural images, the goal of this
thesis is to understand the structure of the stimulus that is the raison
d’être for the visual system. Following the hypothesis that the optimal
processing has to be matched to the structure of that stimulus, we attempt
to derive computational principles, features that the visual system should
compute, and properties that cells in the visual system should have.

Starting from machine learning techniques such as principal component
analysis and independent component analysis we construct a variety of sta-
tistical models to discover structure in natural images that can be linked
to receptive field properties of neurons in primary visual cortex such as
simple and complex cells. We show that by representing images with phase
invariant, complex cell-like units, a better statistical description of the vi-
sual environment is obtained than with linear simple cell units, and that
complex cell pooling can be learned by estimating both layers of a two-layer
model of natural images.
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We investigate how a simplified model of the processing in the retina, where
adaptation and contrast normalization take place, is connected to the nat-
ural stimulus statistics. Analyzing the effect that retinal gain control has
on later cortical processing, we propose a novel method to perform gain
control in a data-driven way. Finally we show how models like those pre-
sented here can be extended to capture whole visual scenes rather than
just small image patches. By using a Markov random field approach we
can model images of arbitrary size, while still being able to estimate the
model parameters from the data.

Computing Reviews (1998) Categories and Subject
Descriptors:
I.5.1 Models: Statistical
I.2.10 Vision and Scene Understanding: Representations, Data Structures

and transforms

General Terms:
Vision, Computational Neuroscience, Unsupervised Machine Learning

Additional Key Words and Phrases:
Natural Image Statistics, Score Matching, Independent Component
Analysis



Acknowledgements

First and foremost I wish to thank Aapo Hyvärinen, who was always there
for discussions, and gave me just the right amount of supervision for my
PhD. Helping me out with ideas when I asked for it, but just as happy to
leave me to work on a problem on my own, he taught me the perseverance
and state of mind required for academic research.

I would like to acknowledge the Alfried Krupp von Bohlen und Halbach-
Stiftung and especially Prof. Dr. mult. h.c. Berthold Beitz, who provided
me with funding throughout my PhD. I am deeply grateful for the way
the Stiftung decided to support me even though none of their programs
included funding for a PhD abroad and in computer science. Additionaly I
thank the HeCSE graduate school and the Academy of Finland for funding.

Especially heartfelt thanks go to my friends and colleagues Jussi Lind-
gren and Michael Gutmann, without whom many of the ideas this work is
based on would not have reached maturity. Helpful discussions with Patrik
Hoyer, especially during the early stages of my PhD, were instrumental in
introducing me to the world of independent component analysis and natural
image statistics. A special contribution to my thesis was made by Malte
Spindler who designed the cover artwork. My friend David C.J. Senne
deserves thanks for comments on the manuscript and much disport.

In particular, I wish to thank my family: my brother Malte, my father
Ulrich and especially my mother Barbara, who did everything in her power
to pave the way for an academic career for me. Last, but most certainly
not least, I thank the crew at home for being around and keeping me in
touch with the world outside academia.

v





Contents

1 Introduction 1
1.1 The Challenge of Vision . . . . . . . . . . . . . . . . . . . . 2
1.2 Scope of this Work . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Problem Statement and Research Questions . . . . . . . . . 7
1.4 Overview of the Publications . . . . . . . . . . . . . . . . . 8

2 Vision 11
2.1 Biological Vision . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 The Retina . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 The Lateral Geniculate Nucleus . . . . . . . . . . . . 15
2.1.3 The Cortex . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.4 Simple and Complex Cells . . . . . . . . . . . . . . . 16
2.1.5 Higher Visual Areas . . . . . . . . . . . . . . . . . . 17
2.1.6 Hierarchical Processing in the Cortex . . . . . . . . 18

2.2 Modeling of Vision . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Spatial Receptive Fields . . . . . . . . . . . . . . . . 19
2.2.2 Gain Control and Divisive Normalization . . . . . . 21
2.2.3 Models for Complex Cells . . . . . . . . . . . . . . . 22
2.2.4 Theories for Higher Level Processing . . . . . . . . . 23

3 Linking Vision to Natural Image Statistics 25
3.1 Natural Image Statistics . . . . . . . . . . . . . . . . . . . . 26
3.2 Gaussian Structure and Whitening . . . . . . . . . . . . . . 29
3.3 Sparse Coding and Simple Cells . . . . . . . . . . . . . . . . 31
3.4 Independent Component Analysis . . . . . . . . . . . . . . . 34
3.5 Score Matching . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.1 A Simple Example . . . . . . . . . . . . . . . . . . . 39
3.5.2 Overcomplete ICA Example . . . . . . . . . . . . . . 41

vii



viii Contents

4 Novel Models in this Work 43
4.1 Limitations of Linear Models . . . . . . . . . . . . . . . . . 44
4.2 Independent Subspace Analysis . . . . . . . . . . . . . . . . 44

4.2.1 Gain Control for ISA . . . . . . . . . . . . . . . . . . 46
4.2.2 Alternatives to ISA . . . . . . . . . . . . . . . . . . . 48
4.2.3 ISA and Complex Cells . . . . . . . . . . . . . . . . 49

4.3 Multi-Layer Models . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.1 Generative and Energy-Based Models . . . . . . . . 50
4.3.2 Hierarchical Model with Score Matching Estimation 50
4.3.3 Hierarchical Product of Experts . . . . . . . . . . . . 52
4.3.4 Hierarchical Bayesian Model . . . . . . . . . . . . . 53

4.4 Horizontal Model for Gain Control . . . . . . . . . . . . . . 54
4.5 Markov Random Fields . . . . . . . . . . . . . . . . . . . . 56

5 Conclusion 61
5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Future Outlook . . . . . . . . . . . . . . . . . . . . . . . . . 64

References 67



1
Introduction

Can ye make a model of it?
If ye can, ye understands it,
and if ye canna, ye dinna!

- Lord Kelvin -



2 1 Introduction

1.1 The Challenge of Vision

From our personal experience, vision seems like an automatic process which
does not require any conscious effort. In cluttered environments with many
competing stimuli, objects can easily be distinguished from backgrounds
and identified reliably, even if we have never seen the object at this partic-
ular angle, under these particular lighting conditions, or in this particular
context before. All in all, vision seems like child’s play.

Decades of research into human and machine vision tell a different story.

While vision seems so effortless to us, it is one of the hardest problems
that the human brain has to solve. The visual cortex is organized into a
highly interconnected hierarchy of dozens of separate areas [23], analyzing
visual scenes and combining the information from the stimulus with prior
knowledge so a coherent percept of the visual world emerges.

Even though the visual apparatus is the most-studied part of the brain,
having drawn the attention of investigators as early as Descartes [19] (see
Fig. 1.1), we are far from understanding the neural basis of human vision.
After countless studies using methods such as psychophysics, electrophys-
iology and fMRI (functional magnetic resonance imaging), we have just
started scratching the surface and are only beginning to understand what
mechanisms the human visual system is employing to pick out an object

Figure 1.1: In his work Traité de l’homme (1664) Descartes gives one of the
earliest accounts of visual perception. He postulated the pineal gland to be
the interface between body and soul, and believed that visual information
was relayed to this gland so we can consciously perceive it.
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Figure 1.2: A natural image presented in a slightly different way than
usually: shades of gray are mapped to elevation in a 3D surface plot. While
the information is almost the same as in the original image, it is nearly
impossible to tell what the content of the image is. For the curious, the
same image is displayed in its ordinary form in Fig. 1.3.

from a cluttered environment or to recognize a familiar face [29].

To get an intuitive feeling for how hard the seemingly trivial process of
vision is, consider Fig. 1.2: it shows an image represented in such a way
that, while most of the raw information is preserved, many of the cues we
take for granted have been distorted or disappeared altogether. This makes
it virtually impossible to tell what the image contains. Another way to get
a feeling for the sheer complexity of visual perception is to look at the
metabolic resources that humans devote to vision. About one quarter of
the cortical surface in the brain is dedicated to visual processing [29]. While
the brain makes up only 2% of the mass of the human body, it consumes
20% of the energy [14], so an enormous fraction of our total energy intake
is consumed just for visual processing.

Understanding the workings of the visual system is not only of interest
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Figure 1.3: The image from the previous page in its ordinary form. It
depicts a great spotted woodpecker.

to neuroscientists, but also to a variety of fields in engineering and computer
science. It is notoriously difficult to design computer vision systems that
perform well under real world conditions [108]. Many systems for object
recognition [78] have a set of build-in invariances and perform well under
the conditions they are designed for, but fail when faced with the great
complexity of natural scenes. Inspiration from how the human brain is
solving the problem seems to be needed.

In a similar way, image processing is intertwined with biological vision
in several ways: reconstruction of missing regions in an image such as
filling-in or inpainting [11] is a problem faced also by the visual system,
e.g. when parts of an object are occluded. Denoising based on image priors
becomes necessary in low light conditions when the visual signal is limited
by photon shot noise, and superresolution [125] is conceivably important in
the periphery of the retina where sampling is very sparse. A different kind of
example is lossy image compression, where detailed knowledge about visual
processing might be used to discard information that the visual system does
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not pay attention to.

Obviously, these engineering problems and neuroscientific questions are
connected by the properties of the stimulus.

Based on the properties of the visual signal, it is possible to infer much
of the required processing of the visual system, without ever having to
specify goals such as object detection or classification.

In the 1980’s David Marr [82] proposed a theory of visual processing
that is highly regarded for its contribution to computer vision. He iden-
tified the main goal of the visual system to be the reconstruction of a 3D
world from a 2D stimulus, an ill-posed problem that requires prior infor-
mation about the signal. A key idea in his work is that the algorithms
and representations required for vision are distinct from the implementa-
tion in the brain, and can be analyzed as a purely computational problem.
Similarly, the psychologist James Gibson [30] studied perception under the
premise that the properties of the environment dictate many of the prop-
erties of the visual system. Another proponent of this ecological approach
to vision and perception in general was Horace Barlow [7]. In his seminal
paper he concluded that in encoding sensory messages, the nervous system
should remove redundancy from the stimulus to arrive at an efficient code.
This of course requires knowledge about the environment and the statistical
structure of sensory signals.

From this early work, combined with advanced statistical techniques like
independent component analysis (ICA) [16, 116] a whole field has emerged
trying to use the statistical structure of ecologically valid stimuli to infer
the optimal processing and understand - or even predict - what kind of
processing the visual system is performing. This is the line of work we are
following in this thesis.

1.2 Scope of this Work

Over the last two decades, the study of natural image statistics has grown
into an important research field. Key properties of the early visual system
have been explained as being optimal in a statistical sense. Visual pro-
cessing seems to be matched to the statistical structure of the environment
to better be able to infer the state of the environment from incomplete or
noisy stimuli. Some of the receptive field properties of cells in the retina
and primary visual cortex can be reproduced by optimizing statistical cri-
teria such as reducing redundancy and maximizing independence between
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cells.

Possibly the greatest limitation of the previous work has been that
mostly linear models were considered, and only a single linear transforma-
tion was estimated from the data. It is clear that to obtain the kind of
invariant representations that are required for vision in a natural environ-
ment, and that have been found in visual neurons, highly nonlinear trans-
formations of the stimulus are required. Only in recent years it has become
possible to build hierarchical, multi-layer models which capture more of
the structure of the signal by forming nonlinear, invariant representations.

In this work we present advances on several multi-layer models, some
of which have only been made possible through new statistical methods
developed during recent years. We consider models of complex cells, and
show that pooling of linear filters provides a better statistical description
of the stimulus than a simple linear model. We continue to show a method
for learning the optimal pooling from the data, rather than using a fixed
pooling. In addition, we consider the effect of incorporating non-linear
gain control in our models, to obtain a better statistical description of the
stimulus. Finally, we consider the problem of extending models for small,
localized patches of natural images to models for larger natural scenes. We
show how this can be done using only local interactions, which makes it
computationally tractable to work with high-dimensional stimuli.

The structure of the first part of this thesis is as follows: we give a
short introduction to the human visual system in Chapter 2, starting with
the processing at the retina and describing some of the visual areas of the
cortex. In the first part of that chapter, we focus on what kind of features
the visual system is computing, i.e. what kind of receptive fields visual
neurons have, and look at some of the representations that are formed at
various stages of the visual hierarchy. In the second part of Chapter 2
we consider some of the classical models for early visual processing and
investigate how the visual system can compute certain features. Some of
the mechanism we consider have been proposed to be implemented in the
neural hardware, whereas others are on a very abstract level and we make
no attempt to hypothesize possible neural implementations.

Investigating what kind of features the visual system is computing, and
how this is achieved is begging the question as to why it is necessary or
at least advantageous to perform these computations. This question is
addressed in Chapter 3, where we use the statistical structure of natural
images to derive the optimal features with which natural images should
be processed. In this chapter much of the earlier work that this thesis
is building upon is introduced, and the mathematical and computational
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framework in which this thesis is rooted is described in detail.
In Chapter 4 we introduce the publications in the second part of this

thesis. We give an introduction to independent subspace analysis and de-
scribe some of the results in Publications 1 and 2, as well as motivating
Publications 3 and 4. We discuss the importance of gain control for simple
and complex cell in the context of Publication 5 and finish with a short
introduction to Markov random fields in the context of Publication 6.

In the final chapter we discuss how the various contributions in this
thesis and previous work relate, and where this leaves us in terms of un-
derstanding the visual processing in the brain.

1.3 Problem Statement and Research Questions

To investigate what the goal of processing in the primary visual cortex is,
we are going to exploit the connection between this processing and the
statistical structure of natural images. This naturally breaks down into a
number of subproblems. The statistics of natural images are not yet well
understood, so the first step is a better characterization of this structure.
The second step then is to link the statistical properties to the constraints
and goals of the visual system. We will focus on the first part of the
problem, building models of image patches that capture as much as possible
of their structure. In particular we focus on multi-layer models with more
than one layer of features estimated from the data. Thus our primary
research question can be cast as:

RQ1: What are suitable statistical models for patches of natural images?

A model is only as good as the estimation methods that are available
to fit its parameters. In the past, many promising approaches have found
their demise because the estimation was prohibitively expensive in terms
of computational resources or could not be scaled up to high-dimensional
data. An equally important question to the first is then:

RQ2: How can multi-layer models of natural images be estimated?

After considering the rather general aspects of models and estimation
methods, we turn our attention to connecting these models to the properties
of the visual system. In particular, we analyze the statistical utility of
orientation-selective, phase-invariant complex cell responses. This question
can be phrased as:

RQ3: Can we show that complex cell-like units provide a better statistical
description of images than linear filters?



8 1 Introduction

Finally we consider how these models relate to another ubiquitous as-
pect of visual processing, which is gain control. The statistical structure
of the visual stimulus is non-stationary, and we analyze how the optimal
processing is affected by this. In particular we try to answer the question
whether gain control on the pixel level has an effect on the optimal process-
ing in later stages such as simple and complex cells. The general question
we are trying to answer is thus:

RQ4: Is gain control in the visual system matched to the optimal process-
ing of the stimulus, and how does gain control affect the later processing?

These four questions will guide us through the rest of this thesis. After
exploring to which extend previous work can answer these questions and
what aspects have not been addressed, we will present our contribution
to these points, and analyze the results in an attempt to obtain a better
understanding of the processing in the visual system.

1.4 Overview of the Publications

Publication 1: Aapo Hyvärinen and Urs Köster, “FastISA: a fast fixed-
point algorithm for Independent Subspace Analysis” ESANN2006: 14th
European Symposium on Artificial Neural Networks, 371-376, 2006

In Publication 1 we describe a new algorithm for Independent Subspace
Analysis, FastISA, which is a generalization of the FastICA algorithm for
Independent Component Analysis. The FastISA algorithm is simple to use
and converges quickly, so it is particularly useful for researches and engi-
neers who require a turn-key algorithm that doe not require fine-tuning.

The algorithm was conceived and originally implemented by A.H., the
Author contributed the convergence proof, performed simulations and wrote
the article.

Publication 2: Aapo Hyvärinen and Urs Köster, “Complex Cell Pooling
and the Statistics of Natural Images” Network: Computation in Neural
Systems, 18:81-100, 2007.

In Publication 2 we compare the likelihood of ISA models with different
subspace sizes. This is made possible by formulating the likelihood of the
ISA model including the subspace size as a parameter, and optimizing
this parameter. In addition, we generalize from L2-spherical subspaces
to Lp-spherical, and attempt to find the optimal norm. Furthermore we
investigate the effect that contrast gain control has on the optimal subspace
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size. We conclude that ISA is a better model for natural images, in the
sense of a statistical criterion, than ICA. The optimal subspace size strongly
depends on the patch size and on preprocessing, but is always larger than
one, the ICA case.

The idea for this work and the derivation of the probability density
function we used were A.H.’s, the Author contributed the implementation
of the algorithm, the methods for gain control, performed all experiments
and wrote the article.

Publication 3: Urs Köster and Aapo Hyvärinen, “A two-layer ICA-like
model estimated by Score Matching” Proc. Int. Conf. on Artificial Neural
Networks (ICANN2007), 798-807, 2007

Publication 3 provides a generalization of the previous work on ISA to
a full two-layer network. Using the theory of score matching, we consider
a two-layer model that contains ISA and topographic ICA as special cases.
We show that estimating of both layers from natural image patches leads
to a pooling in the second layer like in ISA, where a few units with similar
tuning properties are squared and summed together.

Using the score matching framework developed by A.H., the Author
derived the model and implemented the model for gradient estimation.
The author performed all experiments and wrote the article.

Publication 4: Urs Köster and Aapo Hyvärinen, “A Two-Layer Model of
Natural Stimuli Estimated with Score Matching” Submitted Manuscript

Publication 4 generalizes Publication 3 in several ways. We show that
by learning both layers in the hierarchical model simultaneously rather
than one after the other, the tuning of the units changes and becomes more
complex cell-like. In previous work it had been suggested that sequential
estimation of the layers does not lead to a change in receptive fields [62, 91].
Furthermore we apply the model to natural sounds, which gives similar
results to those for natural images.

Based on A.H.’s score matching framework, the Author derived and
implemented the model, designed and performed the experiments and wrote
the article.

Publication 5: Urs Köster, Jussi T. Lindgren and Aapo Hyvärinen, “Es-
timating Markov Random Field Potentials for Natural Images” Proc. Int.
Conf. on Independent Component Analysis and Blind Source Separation
(ICA2009), 515-522, 2009

Publication 5 describes another generalization of ICA made possible by
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score matching. We consider a Markov random field (MRF) over an image,
which allows us to lift the constraint of working on small image patches
and generalize ICA to whole images of arbitrary size. The model needs to
be trained on patches approximately twice the size of the linear filters to
capture spatial dependencies extending beyond the size of the filter, and
can be applied to images of arbitrary size. This approach combines the
benefits of MRF models which previously used very small filters such as
3 × 3 pixels, and ICA which was constrained to very small images up to
about 32× 32 pixels.

The MRF model was conceived by the Author together with J.T.L.,
implementation and writing the article are the Author’s work. The idea
to estimate an ICA-like model for whole images in this way was originally
proposed by A.H.

Publication 6: Urs Köster, Jussi T. Lindgren, Michael Gutmann and
Aapo Hyvärinen, “Learning Natural Image Structure with a Horizontal
Product Model” Proc. Int. Conf. on Independent Component Analysis
and Blind Source Separation (ICA2009), 507-514, 2009

Publication 6 shows an alternative two-layer model to the hierarchical
models considered previously. We consider a generative model that inde-
pendently samples from two linear models representing two different aspects
of the data. The outputs are then combined in a nonlinear way to generate
data vectors, i.e. natural image patches. By structuring the model in a hor-
izontal, rather than hierarchical way, we can model complex dependency
structures that are more naturally represented at the pixel level, such as
lighting influences, rather than having to take into account their influence
on the filter outputs.

The idea was developed by the Author together with J. T. L., with
small contributions from A.H. and M.G., the model, implementation and
writing the article are the Author’s work.



2
Vision

Das Auge hat sein Dasein dem Licht zu danken.
Aus gleichgültigen tierischen Hilfsorganen

ruft sich das Licht ein Organ hervor,
das seinesgleichen werde, und so bildet

sich das Auge am Lichte fürs Licht,
damit das innere Licht

dem äusseren entgegentrete.
- J. W. von Goethe -
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2.1 Biological Vision

Of all human senses, vision is arguably the most important: for our an-
cestors and closest relatives, e.g. primates such as chimpanzees, vision is
of prime importance for gathering food, spotting predators and finding
mates. Therefore it is not surprising that the primate visual system is
highly evolved and makes up a significant fraction of the cortex. But even
very primitive organisms have surprisingly complex visual systems. The
barnacle, which hardly has a nervous system at all, does not have eyes but
a primitive form of vision and can respond to visual stimuli - shadows of
predators passing by - by quickly retracting into its shell [33]. Scallops,
still very primitive organisms, already posses image forming eyes (some 60
of them), which can detect motion, allowing them to flee from predators.
The photosensitive pigment that allows the detection of light, rhodopsin,
is ubiquitous across the animal kingdom, which suggest that vision has
evolved very early. At the same time, differences in the architecture and
protein makeup in the eyes of different animals suggest that eyes have in-
dependently emerged many times throughout evolution [33].

2.1.1 The Retina

When light enters the eye, it is focused by the cornea and the lens to form
an image on the retina, which contains a number of different cells shown
in Fig. 2.1. The retina has two types of light-sensitive cells, rod and cone
photoreceptors. If light strikes one of the photoreceptor cells, this will in-
hibit the release of glutamate, a neurotransmitter. The photoreceptors are
connected to two types of bipolar cells (so called because they have two
extensions, the axon and the dendrite), the ON and OFF bipolar cells.
Bipolar cells are sensitive to contrast, so rather than directly encoding the
light intensity signaled by the photoreceptors, they compare the intensity
in the center of their receptive field (RF) to the intensity in the surround-
ings of this central spot. ON bipolar cells react to a bright center with
a comparatively dark surround, whereas OFF cells fire in response to rel-
ative darkness in the center [29]. These receptive fields are illustrated in
Fig. 2.3 a). There are more than 10 different kinds of bipolar cells spe-
cialized for processing of color, temporal information and other properties
of the stimulus. Horizontal cells provide lateral connections between the
photoreceptors and play an important role in shaping the center-surround
receptive fields of the bipolar cells by inhibiting the signals of photorecep-
tors depending on the activity of neighboring photoreceptors. Amacrine
cells, of which there is a great diversity of more than 30 types, perform a
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Rod Cone

Bipolar Cell

Ganglion Cell

Light entering the retina

Amacrine Cell

Horizontal Cell

(a) Retina

1

2

3

4

5

6

(b) Sketch of Cortex

Figure 2.1: a) Sketch of a piece of retina. Shown are the light sensitive
rod and cone cells at the back of the retina, and the main feed-forward
pathway of bipolar cells and ganglion cells. Horizontal cells provide lateral
connections between photoreceptors and amacrines between bipolar cells.
b) Sketch of cortex based on a drawing by Santiago Ramon y Cajal Textura
del Sistema Nervioso del Hombre y de los Vertebrados, 1904. The cortex
consists of six layers, marked 1-6. The cell bodies visible are pyramidal and
granular cells. Inputs from the thalamus (LGN) go into layer 4 and layer
6 sends feedback connections back to thalamus.
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Primary visual cortex

Optic nerve

Chiasm

Lateral 

geniculate 

nucleus (LGN)

Figure 2.2: Sketch of a horizontal section of the human brain. Highlighted
are the eye, optic nerve, LGN and the primary visual cortex.

similar function. They provide lateral connections between the outputs of
bipolar cells, i.e. the inputs of retinal ganglion cells (RGC). Their function
is not well understood, but is believed to be related to gain control and
redundancy reduction [83, 87]. Finally, ganglion cells relay the information
from the bipolar cells and amacrine cells to the brain. The axons of these
cells form the optic nerve and project to the thalamus, hypothalamus and
midbrain [83, 120]. However, of the nearly 20 kinds of ganglion cells, less
than 15 actually send axons to the brain, so it is important to keep in
mind that our description is strongly simplified, and much of the retinal
processing is not well understood at this time.

Since there are about 100 million photo receptors in the retina of each
eye, but only about 1 million ganglion cells, information cannot be relayed
from the photoreceptors to the brain without further processing [29]. On
average, the information from 100 receptors needs to be send down one
axon in the optic nerve. The visual system must preserve as much of the
information from the photoreceptors as possible, so the signal needs to be
encoded in such a way that little information is lost in this compression. To
a large extent, this redundancy reduction is implemented by the ON and
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OFF center receptive fields, which are sensitive to local contrast and per-
form spatial decorrelation. Additionally, the dynamic range of the signal is
compressed by divisive gain control [31]. This processing step is important
not only in the retina, but throughout all the later processing stages. In
the retina, gain control is mediated mainly by amacrine cells. This way the
high dynamic range stimulus is compressed to fit the limited bandwidth of
neurons. Gain control needs to be dynamic and adaptive on several tem-
poral and spatial scales, so it makes up a large fraction of the processing
done on the retinal level.

2.1.2 The Lateral Geniculate Nucleus

About 90% of the axons in the optic nerve project to the lateral geniculate
nucleus (LGN) which is a structure in the thalamus in the midbrain. As
sketched in Fig. 2.2, the LGN relays information to the primary visual
cortex, as well as receiving feedback connections from the cortex. The
neurons in LGN have center-surround receptive fields similar to those of
bipolar cells in the retina.

There are two main types of cells in LGN, with are arranged in two
parvocellular and four magnocellular layers. Out of the six layers, three
each receive inputs from the ipsi- and contralateral eye. The LGN in each
hemisphere of the brain “sees” only the contralateral half of the visual field,
which is organized in a retinotopic way, i.e. the layers in LGN preserve the
topographic structure from the retina. The parvo- and magnocellular lay-
ers operate on different timescales, with the former operating on a slow
timescale but processing details like color information from cone photore-
ceptors. The latter operates much quicker, but does not process as much
detail [29]. Finally, konicellular cells between the layers provide a third
pathway which is not well understood at this time.

Not much is known about the functional role of the LGN in visual pro-
cessing, but there is evidence of processing linked to temporal decorrelation
[20] and attentional modulation [85].

2.1.3 The Cortex

Projections from the LGN, called the optic radiations, finally carry the
visual signals to layer 4 of the primary visual cortex (area V1), the largest
and best studied of the visual areas in the brain. Fig 2.1 b) shows the
structure of the cortex and its organization into layers. The vast size of
the primary visual cortex, as much as 15% of the total cortical area [115],
suggests that it is the site of some very complex processing. The number of
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Figure 2.3: a) Receptive fields of retinal ganglion and LGN cells. An ON-
center and an OFF-center cell is shown. Shaded in white are facilitatory
regions that respond to increased brightness, in gray inhibitory regions that
respond to a decrease in brightness.
b) Simple cells in primary visual cortex. Two cells with different orientation
selectivity are shown. The preferred stimulus of the top cell is a bright bar
on a dark background, the bottom cell prefers a dark to bright edge.

cells in the visual cortex is orders of magnitude larger than in LGN, so most
of the synapses in V1 are recurrent connections or feedback connections
from higher areas. Similar to LGN, the organization of the cells in V1
takes the form of a retinotopic map, where the visual space is mapped from
the retina to the surface of the cortex.

V1 is responsible for processing much of the local structure in the visual
input and has cells tuned to location, orientation, color, motion, disparity
and various other properties of the input. For the sake of simplicity, we will
focus mainly on the spatial receptive field properties, especially orientation
selectivity, and ignore most other tuning properties. For a discussion of
tuning for binocular disparity and color, as well as spatiotemporal receptive
fields which are tuned to motion with a particular speed and direction, the
reader is referred to the literature, e.g. [43].

2.1.4 Simple and Complex Cells

In their seminal study in the 1950s, David Hubel and Thorsten Wiesel
[44, 45] systematically analyzed the receptive field properties in cat primary
visual cortex, work for which they were awarded the Nobel Prize in 1981.
In their experiments, they presented stimuli in the form of dark and bright
bars to the animals and recorded the activity of cells in V1. They discovered
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that many of the cells had a preferred stimulus orientation. In contrast to
the center-surround units in the retina and LGN, they fired strongly in
response to bars oriented at a particular angle. The cells could be divided
into two main classes, which they termed simple cells and complex cells.
The difference between the two classes is that simple cells only react to
stimuli of a particular polarity, e.g. to a bright to dark edge, but not
the reversed dark to bright edge. Complex cells on the other hand fire
irrespective of stimulus polarity. In later studies, the exact shape of the
receptive fields was mapped using the technique reverse correlation [98]. By
presenting a white noise stimulus, and averaging over all the stimuli that
preceded a spike by a certain interval (e.g. 100ms), the linear “prototype”
stimulus could be obtained that maximally stimulates the cell. Using this
technique, the Gabor-like shape of simple cell receptive fields, illustrated
in Fig 2.3. b) was found. A Gabor function is the product of a sinusoidal
grating with a Gaussian envelope.

While a large fraction of the cells in V1 is relatively well described as
one of these types of cells, it is important to note that this is a very basic
description and ignores much of the subtlety in the neural responses. The
most glaring omission is the ubiquitous gain control that we already men-
tioned in the context of retinal cells. The responses of individual cells are
modulated by the level of activity of neighboring cells at different temporal
and spatial scales. Other, more complicated nonlinear properties are under
active research, such as the effects of contextual modulation [46]. By pre-
senting specific additional stimuli outside of the classical receptive field as it
was defined by Hubel and Wiesel, the response can be strongly modulated,
even though the cell would not fire in response to the extra stimulus alone.
Another important property of V1 that is not well understood at this time
is attentional modulation. Attention is a non-local phenomenon that is no-
toriously hard to study with electrophysiology, which is how most of the
research discussed above has been carried out. More recent studies using
functional Magnetic Resonance Imaging (fMRI) are beginning to shed more
light on this [38].

2.1.5 Higher Visual Areas

Beyond V1 there is a large number of cortical areas involved in higher or-
der visual processing, but for the most part very little is known about the
processing that takes place in these areas. We will therefore discuss only a
small subset of these areas, where experimental evidence exists that eluci-
dates some of the function. V2, which is almost as large and immediately
next to V1 shares most of the receptive field properties, and also forms
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a retinotopic map. It has slightly larger receptive fields and responds to
some more abstract properties of the visual stimulus such as distinguishing
between figure and ground by coding for border ownership [96]. It has been
suggested that the visual processing splits into two streams after this ini-
tial processing, with the dorsal stream performing processing related to the
position of objects, and the ventral stream being responsible for object rep-
resentation and recognition[114]. This is controversial however, and more
recent studies show that this clear distinction cannot be made [32].

An important area in the dorsal stream that has been subject to much
study is V5 or mediotemporal cortex (MT), which plays an important role in
motion perception [84]. Similarly in the ventral stream, the inferotemporal
cortex (IT) has received much attention. It contains cells that are highly
invariant to location and orientation of an object, so it has been suggested
that IT plays an important role in object recognition [112].

2.1.6 Hierarchical Processing in the Cortex

At the end of the cortical hierarchy, which consists of as many as 40 dif-
ferent areas which have been identified, are very specific areas such as the
fusiform face area which have highly tuned properties such as responding
specifically to human faces [105]. Little is known about what computations
are performed in the brain to obtain these receptive fields, which are both
extremely specific (neurons have been identified that are selective to a par-
ticular person) and at the same time highly invariant to distractors like
lighting conditions and viewing angle. There is strong evidence that these
invariances are gradually build up over a hierarchy of many layers. Con-
ceivably, each of these layers performs only a relatively simple transform
on its inputs (such as building the orientation-selective V1 responses by
pooling circular-symmetric LGN inputs), and the complexity of the whole
system emerges as all these simple transformations add together. Hierar-
chical processing is a powerful approach that we will further investigate in
the rest of this thesis.

2.2 Modeling of Vision

We have now seen some of the properties of neurons in different parts of
the visual system. But even if every single neuron in the visual system
was characterized under every possible stimulus condition, this would leave
us far from understanding the visual system. Being able to look up the
correct response for a particular stimulus does not mean that we understand
how this response is generated. Furthermore, since the number of possible
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stimuli is infinite for all practical purposes, such an approach would not
only be highly unsatisfactory, but also impossible.

Rather, we would like to understand what kind of features the visual
system is extracting, and how it is processing its inputs to arrive at an
invariant high-level representation. This requires us to identify the pro-
cessing steps and put them into the language of mathematics. Models of
the visual system can be made at different levels of abstraction, ranging
from a detailed physical model of individual synapses, over models of net-
works of spiking neurons to high-level models that use firing-rate codes or
do away with the neuron as a unit of computation altogether. We will here
be concerned with the latter kind of models, which are focusing on the
underlying computations without paying attention to how these computa-
tions may be implemented in the hardware, or rather “wetware”, of the
brain. This does not only have the advantage of conceptual simplicity, but
is also a necessity to make the estimation of the model parameters possi-
ble. In a biologically realistic model, the number of parameters would be
so great, that given today’s computational resources, estimating all the pa-
rameters would be utterly impossible, necessitating the selection of model
parameters by hand.

2.2.1 Spatial Receptive Fields

Retinal and LGN cells are only a few synapses away from the photorecep-
tors, so it is comparatively easy to model their function. In fact, within
limits, these cells can be modeled as having a linear response, i.e. the firing
rate can be computed as a linear function of the stimulus. A linear function
that maps a small region of an image to a scalar response is also known as
a linear filter. Rather than having to specify the filter at many different
locations, taking the convolution of the filter with the image immediately
gives the response at all locations, and the matrix of filter responses can be
displayed as another image. Performing this operation with a set of linear
filters is a common first processing stage in many computer vision applica-
tions. A similar operation can be thought to be taking place in the brain,
where we can imagine the convolution being replaced by a dense tiling of
cells with overlapping receptive fields. Fig. 2.4 a) and b) shows an image
and the response to a center-surround filter, which is modeled after a bipo-
lar cell in the retina. The filter is designed as a difference of Gaussians,
giving it a circular symmetric shape. A functional interpretation of this
filter would be contrast detection, removing local gray-value information
and giving a non-zero response only to sudden changes in gray-value. This
is not only useful in object recognition, were we are interested in detecting



20 2 Vision

a) Original image b) Center-surround �lter

c) Oriented Simple Cell �lter d) Phase-invariant Complex Cell �lter

Figure 2.4: a) A natural image, and the response of different filters: b) A
center-surround filter, which has a response like a bipolar cell, performs
contrast coding. If the image is uniform within the receptive field, the
response of the filter is zero. c) A Gabor filter, modeled after a simple cell,
detects edges with a particular orientation. d) The response of a phase-
invariant complex cell changes more slowly, and the polarity of an edge
does not affect the response.
The insert in the upper left shows the filter the image was convolved with,
the smaller black insert shows the actual size of the filter.
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Figure 2.5: a) In the linear-nonlinear model, the scalar outputs are passed
through a nonlinear function like the sigmoid shown here. It performs half-
wave rectification on the inputs, and saturates at very high input levels.
b) The normalization model for gain control in cortical neurons. The output
of the linear filter is modulated by dividing with a weighted sum of the
activities in the neighborhood of the unit.

the contours of an object, but is also related to spatial decorrelation and
efficient coding [2].

The simple cells in primary visual cortex can also have a reasonably
linear response to visual stimuli, so they can be modeled in the same fash-
ion. The spatial properties of the receptive fields, which are localized both
in space and frequency, can be modeled as Gabor functions or filters [94].
A Gabor filter consists of a Gaussian envelope which is multiplied with a
sinusoidal grating. In Fig. 2.4 c) the response of such as filter is shown, as
well as the filter itself in the upper left corner. Due to the edge-like shape
of the filter, it responds at locations where the structure in the image is
oriented the same way as the filter. If an edge in the image is in phase
with the filter, a strong positive response is obtained, as can be seen e.g. at
the upper edge of the mirror in the upper right hand corner of the image.
Likewise, if the stimulus is out of phase with the filter, such as the lower
edge of the mirror, the response is negative.

2.2.2 Gain Control and Divisive Normalization

Now we begin to see the limitations of the linear model: it produces negative
as well as positive responses, whereas firing rates of neurons can only be
positive. While an inhibitory stimulus can in fact depress the activity of
a neuron below the spontaneous baseline firing rate, it is usually assumed
that information is carried by an increase in firing rate, which is a non-
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negative signal. Another limitation of the linear model is that it predicts
an arbitrarily large firing rate in response to an arbitrarily large stimulus.
In fact the visual system has to deal with an enormous range of signal
intensities in the environment, which needs to be encoded with the limited
dynamic range of neurons. To a certain extent, both of these problems
can be alleviated in a simple way by applying a scalar nonlinearity to the
outputs of the linear transformation [47, 12, 36, 103]. This is called the
linear-nonlinear (LN) model. A suitable nonlinearity is sketched in Fig. 2.5
a). It is nearly zero for all negative inputs, so it performs rectification, and
it levels off at very high input values. Between the two extremes is a region
where the response is linear.

Another ubiquitous nonlinear effect that is not captured by this model,
but can be found throughout the visual system is gain control. It is possible
to model this using divisive normalization, which normalizes the activity of
a unit by the average activity of the units around it [37, 104]. This model
is illustrated in Fig. 2.5 b). Intuitively, if there is a very high contrast stim-
ulus, many units will be active, driving down the sensitivity of individual
units. Conversely, in low contrast conditions, the normalization term will
be small and the sensitivity of the units will be boosted. This response can
be written as

rout =
rin√∑

i r
2
i

(2.1)

where the output rate rout is computed by dividing by the rectified activity
of the i neighboring cells. There are some nonlinear effects other than gain
control that can be modeled in this way. For example, the response to
a weak Gabor stimulus can be increased by surrounding it with flankers
of the same orientation [93], so the nonlinear lateral interactions need not
always be suppressive.

2.2.3 Models for Complex Cells

Even with the “trick” of using a nonlinearity after the linear filtering, the
models we have considered so far are constrained to situations where the
system behaves linearly over a certain range. But as we have seen in the
previous chapter, even in primary visual cortex there exist cells that have
a highly nonlinear response. Complex cells share the orientation selectivity
of simple cells, but are completely invariant to the spatial phase of a stim-
ulus. This kind of response can be modeled by taking the sum of squared
simple cell outputs, which has come to be referred to as the energy model of
complex cells [1, 111] and is illustrated in Fig. 2.6. While there is some evi-
dence from physiology that this model may not reflect the actual processing
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Figure 2.6: The energy model for complex cells. The outputs of two simple
cells in quadrature are rectified by squaring, where negative responses of
the simple cells can be taken as the response from additional cells with
opposite polarity receptive fields. The complex cell output is obtained by
summing up the squared responses.

in the visual cortex, it provides a very good description of the response of
complex cells. In the energy model, the output of the cells is given by

rout =
√

(w+Tx)2 + (w−Tx)2 (2.2)

where T denotes transpose, w+ and w− are two Gabor filters that are
90 degrees out of phase, and x is the visual stimulus. This mechanism
is illustrated in In Fig. 2.6, and the result of this processing is shown in
Fig. 2.4 d). It can be seen that the response does not depend on the polarity
of the edge, and is slightly more “fuzzy” than that of the simple cell.

Notably, this model is not without criticism, since there exists a contin-
uum of cells ranging from prototypical simple to complex cells rather than
two disjoint classes. It has been suggested that the observed bimodality in
the distribution of outputs is an artifact of cortical amplification, and does
not reflect the properties of the underlying population [86, 102].

2.2.4 Theories for Higher Level Processing

Since our focus here is on early vision, we will only briefly mention two mod-
els for higher level processing here. Taking an interesting direction from the
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simple and complex cells models we have considered so far, the Neocogni-
tron by Kunihiko Fukushima consists of a hierarchy with alternating layers
of simple and complex cells [27]. While this is a very speculative theory of
the architecture of the visual cortex, the model has shown some impressive
results in computer vision applications, e.g. in handwritten digit recogni-
tion [28]. By using layers with increasing receptive field size, the invariance
properties of the complex cell units build up more and more invariance to-
wards shifts in scale, orientation and position. This demonstrates that even
relatively simple principles such as those described in this chapter can lead
to powerful computations if they are performed in a hierarchical fashion.
These ideas have been refined in various ways and successfully used in a
variety of object recognition tasks in complex environments [106, 97].

A related approach to object recognition is the use of convolutional
neural networks, which build up invariant representations through a hier-
archy of feature maps, where the feature maps of the previous layers are
convolved with a kernel. Again this method is only loosely related to the
processing in biological visual systems, so it is hard to say how much, if
anything, can be learned from models like this. They are certainly useful in
their own right, though, and have been used successfully for handwritten
digit recognition [71], object recognition [72] and navigation of autonomous
vehicles in natural environments [34].
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Love looks not with the eyes, but with the mind
William Shakespeare
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3.1 Natural Image Statistics

In this chapter we will discuss how the processing in the visual system is
related to the structure in natural images, and how this structure can be
exploited to build visual systems. We follow the assumption that knowledge
about the regularities in natural images can help us to determine what
the optimal way of processing in a visual system is. By matching the
processing to the statistical structure of the stimulus, we can optimize the
system to make inferences about the stimulus in the presence of noise or
with otherwise incomplete information.

This is by no means a novel idea and dates back to the end of the 19th

century with ideas from Ernst Mach [81] and Hermann von Helmholtz [119],
who proposed that vision was the process of unconscious inference, comple-
menting the incomplete information from the eyes with assumptions based
on prior experience, to make conclusions about the environment. After the
introduction of information theory by Claude Shannon in the 1950’s [107],
the importance of redundancy reduction in neural coding was proposed as
another reason why sensory systems should be adapted to the statistics of
their environment. The implications of efficient coding on neural process-
ing were investigated in the context of neural coding by Horace Barlow [7]
and in relation to perceptual psychology by Fred Attneave [4].

Thus the systematic study of the statistical structure of natural images
started more than 50 years ago, but only with the proliferation of powerful
and inexpensive computers in the 1980’s the implications for the visual
system could be explored in more detail [70, 101, 3]. Initially, efficient
coding provided one of the driving forces for understanding the processing,
but even when it became clear that most computations are easier to perform
in highly overcomplete and redundant representations [6], the study of the
visual system in relation to its environment has produced a multitude of
fascinating results. In the rest of this chapter we will provide an account of
the most important results in the study of natural image statistics, and how
neural processing is adapted to the statistical properties of ecologically valid
stimuli. For completeness it should be mentioned that processing based on
the statistical structure is useful not only for biological vision, but equally
for machine vision and image processing applications. Although we will
not consider it in more detail in this work, models based on natural image
statistics have been successfully used for denoising [109, 95] and in other
machine vision applications.

In order to formalize these ideas, let us start by defining what a natural
image means in the context of this work. We consider photographic im-
ages that have been digitized in some form so we have a matrix containing
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Figure 3.1: Example of a 16 × 32 pixel image. By squinting or otherwise
blurring the image, it becomes possible to recognize that it depicts a human
face, and those familiar with him may recognize Aapo Hyvärinen. Note that
the two pixels at the bottom right contain the whole image displayed at
ordinary scale.

luminance values as a function of spatial location I(x, y). An immediate
problem is that typical images are extremely high-dimensional. If we con-
sider the space of 256×256 pixel images quantized to 256 gray levels, there
is a space of 28×256×256 ≈ 10150,000 possible images. Each of these images
would be represented by a 256×256 = 65, 536-dimensional vector, and even
if enough images could be obtained to give a fair sample of typical natu-
ral images, the task of storing them alone would pose a serious memory
problem for a typical workstation computer.

Therefore we need to restrict ourselves to small images patches, typically
around 12 × 12 to 32 × 32 pixels. This reduces the computational load
sufficiently for a statistical analysis, but still retains enough information
for human observers to extract useful features, as illustrated in Fig. 3.1. As
a further simplification we consider only gray scale images. Writing these
matrices of gray-values as a long vector, we obtain the data vector x, which
we consider to be a realization of a random process. To infer the properties
of the probability density function p(x) that these data vectors are samples
of, we need to consider large samples of image patches, which we will write
as the columns of the matrix X.
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(a) A natural image
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(c) Principal Components of image patches (d) Whitened image and whitening filter

Figure 3.2: Gaussian structure in natural images: a) A typical natural im-
age. b) The correlations between pairs of pixels at a range of distances.
c) Sampling 16×16 pixel patches from the image and performing an eigen-
value decomposition on the covariance matrix gives the principal compo-
nents of the image patches. Only the first 100 eigenvectors are shown.
d) Using the whitening filter (insert) obtained by PCA and convolving it
with the image, the pixels can be approximately decorrelated.
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3.2 Gaussian Structure and Whitening

As any statistician would agree, the first analysis to attempt on some data
with unknown structure would be to fit a Gaussian model. A Gaussian
distribution can be described solely in terms of its mean and covariance
matrix, so this amounts to analyzing the covariance structure (the mean
is not very informative, so it is usually removed in preprocessing). Since
neighboring pixels often have very similar values, it does not come as a
surprise that natural images contain strong correlations, which we will now
look at in some detail.

To do this, let us consider a typical photographic image of a natural
scene such as the one shown in Fig. 3.2 a). The simplest way to quantify
the redundancy in this image is to compute pairwise correlations between
pixels, as shown in b): for a large sample of randomly chosen pixels in the
image we compute the correlation coefficient with surrounding pixels up
to 100 pixels distance in the x and y-directions. It can be seen that there
is a high correlation even at relatively large distances. The correlation is
not uniform, since the image itself is not isotropic. The strong correlations
introduce considerable redundancy in the image. This is intuitively clear;
given the gray-value of one pixel we would be able to do a good job guessing
what the neighboring pixels would be.

This short exposition has shown that the pixels in natural images are
highly correlated, so we may try to model the correlations and ultimately
remove them. This is straightforward by performing principal component
analysis (PCA) on a sample of image patches. The principal component
vectors can then be used to transform the image pixels to a set of uncor-
related variables. The principal components are displayed in 3.2 c) and
take an appearance similar to a discrete cosine transform basis. The com-
ponents are ordered by their contributed variance, so it can be seen that
the lowest spatial frequencies carry most of the signal energy. Since the
eigenvectors and corresponding eigenvalues exactly describe the covariance
structure of the image patches, we can use this knowledge to decorrelate
or whiten the image patches. In mathematical terms this means that we
are looking for a transform V that we can apply to image patches x so
that the transformed patches z = V x have uncorrelated variables. The
covariance matrix of the transformed patches should therefore be identity,
i.e. cov(z) = I, where I denotes the identity matrix. Considering centered
data (without loss of generality) we have

cov(V x) = E{V xxTV T} = V E{xxT}V T = V cov(x)V T = I (3.1)

so we are looking for a matrix V that fulfills V cov(x)V T = I. Here we make
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use of the eigenvalue decomposition on the covariance and write cov(x) =
UΛUT, where U is the matrix of eigenvectors and Λ the diagonal matrix of
eigenvalues, so we have V UΛUTV T = I, which can be satisfied by setting

V = Λ−
1
2UT (3.2)

as can be seen by substituting this expression back in. In geometrical
terms, this whitening operation amounts to projecting the image patches
on the principal components and then rescaling them with the variance
along the direction of that component. It is important to note that the
highest frequencies, which are strongly boosted by this processing, have
a low signal-to-noise ratio and contain little information relevant to the
image. Furthermore, due to the rectangular sampling grid, retaining these
frequencies may give rise to filters with aliasing artifacts such as checker-
board patters. It is therefore common practice to reduce the dimensionality
of the data at the same time as whitening to attenuate or remove these
high frequency components. This can simply be done by projecting only
on the first few principal components, discarding as much as 50% of the
components which carry very little variance [55].

Since an orthogonal rotation Q does not change the now spherical co-
variance structure, any V = QΛ−

1
2UT is also a whitening matrix. By

choosing Q = U , we can perform zero phase whitening, which means that
after rescaling the variables we rotate back to the original coordinates.
This is called “zero phase” because the Fourier phase of the signal is not
changed, and the whitened image is closest to the original image in terms of
squared distance to the original pixels. Unlike the principal components in
3.2 c), the whitening matrix obtained in this way contains identical copies
of a center-surround filter at each pixel location. One such whitening filter
is shown in the insert in 3.2 d). Since the effect of multiplying with this
whitening matrix is a convolution with the single whitening filter, we can
illustrate the effect of whitening on a whole image by “abusing” one of the
vectors of the whitening matrix as a whitening filter, and convolving it with
the image as is shown in 3.2 d).

The alert reader will have noticed that the whitening filter which we
optimized to remove correlations between image pixels is similar in shape to
the receptive fields of ON and OFF-bipolar cells in the retina we have seen
in Fig. 2.3 a) and that the effect of whitening is very much like that of the
center-surround filter in Fig. 2.4 b). This similarity gives strong support to
the hypothesis that the coding employed by the visual neurons is utilizing
spatial decorrelation to reduce redundancy in the input signal. However,
this interpretation is not without criticism, and other mechanisms have
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Figure 3.3: Comparison of 100 samples of a Gaussian and a sparse ran-
dom variable, both with unit variance. The sparsely distributed variable
occasionally takes on very large vaules, but stays close to zero most of the
time.

been proposed by which the center-surround receptive fields of of bipolar
cells can be explained. One alternative hypothesis is that the receptive
fields are optimized to satisfy wiring length constraints [118].

By whitening we have transformed the image data to a set of variables
that are uncorrelated and of unit variance, which means that we have re-
moved all the second-order structure. Even though this makes the image
look rather strange with greatly exaggerated edges, it is still possible to
discern most of the content of the image. In fact, from the standpoint of a
human observer, not much has been lost from the image at all, and all of
the features that are relevant for the perception of objects are still there.
Clearly, there is still a lot of rich statistical structure that we can attempt
to model. This means that we now need to turn to the non-Gaussian struc-
ture of the image, which requires more advanced statistical methods. In
the rest of this chapter we will look at the non-Gaussian structure in more
detail, and analyze how it relates to processing in the visual cortex.

3.3 Sparse Coding and Simple Cells

While the Gaussian distribution, perhaps due to its simplicity or by ref-
erence to the central limit theorem [17], is often seen as the most natural
probability distribution, it turns out that most ecological signals deviate
from a Gaussian in a specific way. These signals have supergaussian dis-
tributions with heavy tails and a strong peak at zero. A random variable
that follows a supergaussian distribution, such as in the right hand panel of
Fig. 3.3, is only rarely activated, and close to zero most of the time. There-
fore this class of distributions is termed sparse. We have already seen a
natural signal that follows this kind of distribution: a whitened image like
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that in 3.2 has many pixels that are nearly zero, but occasionally pixels
have very high or low values. Sparseness is an important concept in neural
coding and has been extensively studied [7, 24, 25, 26]. In comparison to
dense distributed codes, where many units are active simultaneously to rep-
resent a pattern, a sparse code can represent any input pattern with just a
few active units. In addition to their robustness properties in the presence
of noise, sparse codes are advantageous if there is an energy cost associ-
ated with a unit being active [122]. This is especially true in the brain,
where signals are transmitted by spikes. When a neuron fires a spike, its
membrane potential becomes reversed, and restoring the membrane to the
resting potential has a substantial metabolic cost. In fact the cost of a sin-
gle spike is so high, that the fraction of neurons that can be substantially
active concurrently is limited to an estimated 1% [74].

Due to the statistical properties of the stimulus, the response of a
whitening filter, or retinal bipolar cell, is already quite sparse, without
any particular optimization. In fact, by limiting the analysis to the covari-
ance, we have deliberately excluded any measure of sparseness from our
previous analysis. But motivated by the useful properties of sparse codes,
we can explicitly maximize the sparseness of the representation, following
the work of Bruno Olshausen and David Field [88, 89]. Their sparse cod-
ing algorithm models image patches x as a linear superposition of basis
functions ai, weighted by coefficient si that follow a sparse distribution.
Thus we have x = As+n where we use matrix notation for convenience, so
A contains the vectors ai and n is a small, additive Gaussian noise term.
We are trying to find a combination of basis functions and coefficient that
gives a good reconstruction x̂ = As while at the same time maximizing
a measure of spareness of the activation coefficients si. We can formalize
this as an optimization problem where we trade off reconstruction error for
sparseness as

min
ai

E{||x−As||2 + λ
∑

i

|si|}. (3.3)

Here the expectation E{} is taken over a large number of image patches.
The constant λ determines the trade-off between sparseness and reconstruc-
tion error and therefore sets the noise level. We have used the Euclidean
norm for the reconstruction error and use the L1-norm as a measure of
sparseness. This corresponds to a probabilistic model where we are maxi-
mizing the posterior of a Gaussian likelihood with a Laplacian sparseness
prior. The exact estimation of this model would require integrating over the
coefficients, which is intractable. Therefore it is estimated using a maximum
a posteriori (MAP) approximation, leading to the following optimization:
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Figure 3.4: Subset of a basis for natural images obtained by sparse coding.
Image patches of size 16 × 16 pixels were pre-processed by approximate
whitening, rolling off the highest frequencies. The sparse coding algorithm
was then used to estimate a two times overcomplete basis set. Note that
basis functions obtained by sparse coding are localized, oriented “edge-
detectors”, very much like the simple cells of primary visual cortex.

starting from an initial set of units ai we compute the coefficients si that
give the lowest combined reconstruction and sparseness penalty. Keeping
these si fixed, we then compute the set of basis functions ai that improve
the reconstruction the most. Alternating between these two steps, we can
find the dictionary of basis functions ai that can describe the set of natural
images in a maximally sparse way.

In Fig. 3.4 we show a subset of the linear filters estimated by applying
the sparse coding algorithm to a collection of 10.000 image patches of size
16×16 pixels, randomly sampled from natural images such as that shown in
Fig. 3.2 (a). The image patches were pre-processed by performing whitening
with a center-surround filter similar to the one we derived in the previous
section, but rolling off the highest frequencies to avoid aliasing artifacts.

Rather than a complete basis set, with as many basis functions as pixels,
we estimated an overcomplete set with twice as many basis vectors. Having
more basis functions has the advantage that the basis functions can be
more specialized and therefore become active less frequently. This makes
for a sparser code, and also provides some robustness, so if individual units
become “damaged” or their activations become switched off, the underlying
visual stimulus is still represented fairly accurately.

The individual basis functions that provide a dictionary to represent the
possible natural image patches, have some very familiar structure: they are



34 3 Linking Vision to Natural Image Statistics

localized within the image patch, are selective for a particular direction,
and also cover the different scales of spatial frequencies. In fact, they
look very similar to the Gabor functions we introduced in section 2.2.1 as a
model for the spacial receptive fields of simple cells in primary visual cortex.
The key properties of these receptive fields are all reflected in the basis
functions learned by sparse coding. This provides some evidence that the
first processing steps in the primary visual cortex, which give rise to simple
cell receptive fields, are constrained by efficient coding principles and may
be optimized to satisfy wiring and metabolic constraints by maximizing the
sparseness of the representation. On the other hand, many of the nonlinear
properties of simple cells cannot be explained in this simple framework
based on a highly simplified stimulus, so caution is required in interpreting
these encouraging results.

3.4 Independent Component Analysis

Sparseness is somewhat related to the concept of statistical independence,
which states that two variables are independent if and only if p(x, y) =
p(x)p(y) i.e. the joint probability of the variables can be factorized and is
equal to the product of the marginal densities. The relation may not be
immediately obvious, so let us consider a simple example. In Fig. 3.5 we
show a scatter plot of the joint density of two random variables. In the
left hand plot the two variables are independent, whereas in the right hand
plot they have been rotated (mixed), so the probability density function
(pdf) can no longer be written as the product of the marginals. In accor-
dance with the Central Limit Theorem, this has an interesting implication
for the marginals: under certain regularity conditions, mixtures of non-
Gaussian variables are always more Gaussian than the original variables.
Therefore, if the original variables have a sparse, or supergaussian distribu-
tion, maximizing independence is equivalent to maximizing sparseness. In
both cases we are looking for directions, or basis functions, that maximize
nongaussianity.

Independent Component Analysis (ICA) is a method that attempts to
recover these directions by maximizing some measure of nongaussianity.
After ICA was first described [15, 60], it took only a few years until it was
applied to natural images [9, 116, 55]. While ICA is very similar to sparse
coding in some respects, there are a few important differences. In ICA we
usually consider a complete model, which has as many basis functions as
pixels, so the matrix of basis functions is invertible. Furthermore we restrict
the analysis to the noiseless case, i.e. there is no gaussian reconstruction
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a) sources aligned with the axes b) mixtures of the supergaussian sources

Figure 3.5: Illustration of the connection between sparseness and indepen-
dence. On the left hand side, two independent variables are shown with
the histograms of the marginal distributions. On the right hand side, the
two variables have been mixed together, so they now have dependencies.
In this simple case, the dependency can directly be read off the scatterplot:
if one variable takes on a high value, the other has a high chance of also
having a strong negative or positive activation. The key point here is that
the marginal distributions have changed and have become less sparse, or
more Gaussian.

error and the first term in Eq. 3.3 vanishes [75].
Before we discuss the application of ICA to natural images, let us

quickly review the basic ICA model and one possible way to estimate it. We
will focus on the likelihood-based approach for estimating the ICA model,
since it forms the basis for much of the work described later in this thesis.
To define ICA as a probabilistic model, we write the data as a mixture
of sources x = As and define the distribution of the data in terms of the
densities of the independent sources

px(x) = | detW |ps(Wx) = | detW |
∏

i

pi(wT
i x) (3.4)

where we assume that the mixing is invertible and W = A−1 is the inverse
of the mixing matrix, so the wT

i are the rows of the inverse mixing, or filter
matrix W . We denote the pdf of the mixtures by px and that of the sources
by ps. The pi denote the marginal distributions of the individual sources.
For the first equality, we have used a well-known result for the density of a
linear transform, and for the second equality the independence of the the
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sources. Given T samples of the data vector, denoted by x(t), we can now
write the log-likelihood of the wi as

log px(x|W ) =
T∑

t=1

∑
i

log pi(wT
i x(t)) + T log |detW |. (3.5)

In principle, estimating the model would require estimating not only the
matrix W but also the densities of the sources, pi. This is a nonparametric
estimation problem, and estimating the true densities, which tend to be
strongly peaked at zero, can lead to problems with gradient optimization
methods. Thus it is preferable to use smooth proxy distributions for the
estimation of the filters. It turns out that if we know that all of the sources
are supergaussian, we can plug in any supergaussian pdf for the sources
and still get a consistent estimate of the filters wi [56]. In cases where we
are interested in the densities of the sources in addition to the filters, or
in nonlinear models where the above does not hold, we can use a simple
family of densities, such as the generalized normal distribution, to infer the
shape of the marginals.

A supergaussian pdf for the estimation that naturally comes to mind
for its simplicity is the Laplacian distribution, which we have already seen
as the sparseness prior in the sparse coding model. Normalized for zero
mean and unit variance, it is given by

log pi(si) = −
√

2|si| −
1
2

log 2. (3.6)

However, the derivative of this density has a discontinuity at zero, so it is
convenient to replace it by a smooth version, the logistic distribution given
by

log pi(si) = −2 log cosh
(

π√
12
si

)
− log 4. (3.7)

For convenience the various normalization factors are usually omitted, and
the density that is used is just log pi(si) = −2 log cosh si.

The ICA model is estimated by taking the gradient of the log-likelihood
w.r.t. the filters w. Substituting the derivative of the marginal distribu-
tions, ∂

∂u log cosh(u) = tanh(u) we obtain the gradient as

∂

∂W
log px(x|W ) = −

T∑
t=1

tanh(Wx(t))x(t)T + TW−T (3.8)

where we have used the identity ∂
∂W log | detW | = W−T . Now the maxi-

mum likelihood estimation proceeds by taking gradient steps like

W ←W + µ
∂

∂W
log px(x|W ) (3.9)
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a) ICA basis functions b) ICA filters

Figure 3.6: Basis functions and filters estimated using the FastICA algo-
rithm on 16 × 16 pixel natural image patches. The dimensionality of the
data has been reduced to 120 dimensions by PCA. For white data the filters
are equal to the basis functions, i.e. A = WT, but projecting back to the
original, non-white space, the whitening matrix is absorbed in the filters,
so the high frequencies are emphasized, whereas the basis functions have
the same power spectrum as the image patches. Note that the appearance
of the sparse coding basis is in between ICA filters and basis functions since
there the whitening is not part of the model.

where the step size is given by µ, a small constant. This has come to be
known as the Bell-Sejnowski algorithm [8]. There are various ways to make
the estimation of this model computationally more efficient, for example
using a modified gradient update rule [13] or with a fixed-point algorithm
like FastICA [48]. We will not go into the details here, since most of the
work of this thesis is based on the gradient algorithm in the simple form
presented above.

Applied to natural image data, ICA produces basis functions (i.e. the
columns of the matrix A) that are very similar to the sparse coding basis
functions or simple cells of primarily visual cortex. The similarity should
not be surprising however, because ICA is a special case of sparse coding
[89]. The advantage of ICA here is that estimating the model is much easier
and faster, since the sources or independent components can be computed
in closed form and do not have to be estimated by gradient descent. The
filters that give the independent components can be plotted in the same
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way as basis functions as shown in Fig. 3.6.
While it is not possible to draw a clear distinction between indepen-

dence and sparseness in the linear models we have considered so far, this
is not the case in general. In the neural processing hierarchy, there is no
reason why higher levels of abstraction should have increasingly sparse en-
codings, and in fact there is no evidence that this is the case [5]. On the
other hand, it is conceivable that a continued maximization of indepen-
dence to encode for different objects, persons, etc. may be useful even in
very high-level representation, so it is important not to confuse sparseness
with independence [80, 110].

3.5 Score Matching

In this chapter, we will describe a novel estimation principle that provides
an alternative way to learn the filters in ICA and related models. Score
matching has been proposed in 2005 and provides a mechanism for learning
in energy based models, where the pdf can be computed only up to a
multiplicative normalization constant [49, 50, 51]. It has been used in the
two-layer model in Publications 3 and 4 [66, 67] and in the Markov Random
Field, Publication 5 [69] of this thesis.

We will start by describing how the score matching optimization pro-
ceeds, and then give some intuition for the method by providing a simple
example. Consider a distribution defined up to proportionality by the ex-
ponential of a non-negative energy function

p(x|θ) ∝ exp(−E(x, θ)) (3.10)

so the normalized distribution is given by

p(x|θ) =
exp(−E(x, θ))∫
exp(−E(x, θ))dx

=
1
Z

exp(−E(x, θ)) (3.11)

where the integral is taken over all space. The score function, which we
here take to be the derivative w.r.t. the elements of x is given by

ψi(x, θ) = − ∂

∂xi
E(x, θ). (3.12)

We can now define a new objective function that measures the squared
distance of the score functions of the model, denoted by ψ(x, θ) and of the
data ψx(x) as

J =
1
2

∫
px(x)||ψ(x, θ)− ψx(x)||2dx (3.13)
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and we seek the parameter vector θ that minimizes this distance. This stills
seems like a difficult problem, since there is no easy way of estimating the
data score function ψx(x). However, it can be shown whence expansion
of the terms and partial integration that minimizing the score matching
objective function reduces to

J(x, θ) =
1
T

∑
i,t

1
2
ψi(x(t), θ)2 +

∂

∂xi
ψi(x(t), θ) + C (3.14)

where we have additionally replaced the expectation by a sample average
over T observations, and the constant C does not depend on the param-
eters. Now supposing that the data follows the model, i.e. there exists a
θ∗ such that px(x) = p(x, θ∗), then under some weak regularity conditions
minimizing J gives a consistent estimate of the parameter vector. To show
this, consider the case J(θ) = 0 for some θ. Now the non-negativity of the
energy implies that px(x) > 0 for all x from which it follows that the score
functions ψ(x, θ) and ψx(x) are equal. This implies that the probabilities
are related as px(x) = cp(x, θ) but the constant c is necessarily unity since
both pdfs have to integrate to zero. From this it follows that θ = θ∗, show-
ing that the global minimum of the score matching objective corresponds
to the true solution.

3.5.1 A Simple Example

Consider the simple problem of fitting the mean and variance of a univariate
gaussian to observed data samples x(t). We have the log-likelihood

log p(x(t)|µ, σ2) = − 1
2σ2

(x(t)− µ)2 − logZ (3.15)

where the partition function Z is treated as unknown. The score function
of the model is

ψ =
∂

∂x
log p = − 1

σ2
(x(t)− µ) (3.16)

and the derivative of the score function

ψ′ =
∂2

∂x2
log p = − 1

σ2
(3.17)

so the sample version of the score matching objective for T observations is

J =
1
T

T∑
t=1

1
2
(
σ−2(x(t)− µ)

)2−σ−2 =
1
T

T∑
t=1

1
2
σ−4(x(t)−µ)2−σ−2. (3.18)
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Figure 3.7: Illustration of score matching, applied to infer the variance of
a univariate normal distribution. Both the score matching objective and
the log-likelihood (solid curves) have the optimum at the correct position,
but the functions differ significantly in shape. Comparing the two terms
of the score matching objective with the energy and normalization term of
the log-likelihood reveals the similarity between the second derivative term
in the score matching objective and the normalization term: both penalize
unspecific models with unnecessarily high variance.

To obtain the score matching estimate of the mean µ we take the derivative
and set it to zero to obtain

∂J

∂µ
=

1
T

T∑
t=1

σ−4(x(t)− µ) = 0 (3.19)

µ̂ =
1
T

T∑
t=1

x(t) (3.20)

which is the sample mean, in agreement with the maximum likelihood es-
timate. Similarly, to fit the variance σ2 we take the derivative

∂J

∂σ
=

1
T

T∑
t=1

(
−2σ−5(x(t)− µ)2

)
+ 2σ−3 = 0 (3.21)

σ̂ =

√√√√ T∑
t=1

(x(t)− µ)2 (3.22)

which is the sample variance, again in accordance with maximum likelihood.
In general, there is no closed form solution for the optimal parameters, so
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Figure 3.8: Overcomplete ICA model estimated with score matching. Only
a subset of the 2304 filters from the 16 times overcomplete model are shown.
Note that in contrast to the sparse coding model, we estimate an overcom-
plete set of filters rather than basis functions. This leads to some very
different properties of the model.

gradient methods have to be used for optimization.
The relation between score matching and maximum likelihood are fur-

ther illustrated in Fig. 3.7. Comparing the terms in the score matching
objective with the log-likelihood allows an intuitive interpretation of score
matching. The square term in the score matching objective acts similar to
the energy (i.e. the non-normalized log-likelihood) and tries to make the
model general enough to cover all of the data points. The second derivative
has a similar effect to a normalization term, penalizing the unspecific model
and forcing it to focus probability mass to where the observed data lies.

3.5.2 Overcomplete ICA Example

Score matching can easily be applied to estimate ICA models, and because
the normalization constant is not required to be known, it is an obvious
choice for overcomplete ICA. In this case the model is

− log p(x) ∝ E(x) =
M∑
i=1

g(wT
i x) (3.23)

where the number of filters M is larger than the dimensionality of the
data. Models of this kind, also known as Products of Experts (PoE) have
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been studied extensively [39], where they were estimated with Contrastive
Divergence (CD) [40], a method that shares some similarities with score
matching and is based on Monte Carlo methods.

Estimating this model for natural image patches again leads to familiar
Gabor-like filters, which is shown in Fig. 3.8 for a 16 times overcomplete
model. Here we show the filters w rather than basis functions, because in
the overcomplete model the filter matrix cannot be inverted, and thus no
basis functions are defined.

The complete ICA model which we considered in the previous section
can be seen as a bridge between overcomplete sparse coding models on one
hand, and overcomplete PoE or ICA models on the other hand, which have
some very important differences. In an energy-based model, the internal
representation can be computed by a fast, simple feed-forward computa-
tion, whereas in the generative sparse coding model, the optimal pattern
of activities s is the solution to an optimization problem. This implicitly
nonlinear mapping between the data x and the components s has some at-
tractive properties for neuroscience: since the basis functions inhibit each
other, behavior such as end-stopping and nonclassical surround effects has
been observed in overcomplete sparse coding models [73]. On the other
hand, a recent study [22] has shown some advantages in energy based mod-
els over generative models in denoising applications, and it is not clear at
the time how the two approaches are related and which provides a better
model for natural images, and therefore ultimately for visual processing.



4
Novel Models in this Work

Wer kann was Dummes, wer was Kluges denken,
Das nicht die Vorwelt schon gedacht?

- J. W. von Goethe -
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4.1 Limitations of Linear Models

Natural images are not generated as a linear superposition of sources, so
the “most independent” components still have strong dependencies between
them. In fact the distribution of filter outputs is approximately spherically
symmetric for nearby filters, which is in stark contrast to the factorial dis-
tribution we assume in the linear model [79]. Thus, while the components
are guaranteed to be uncorrelated due to whitening, there are strong vari-
ance dependencies, i.e. correlations between squares of components, which
are also termed energy dependencies. If two components have energy de-
pendencies, they will tend to be active together, but one may be highly
positive and the other negative, leading to no net correlation.

Since the energy dependencies form such an important part of the sta-
tistical structure of natural images, it is worth looking in some more detail
how this dependency structure is generated. Natural images are quite non-
stationary, so different parts of an image can have very different statistics.
One reason for this is the way images are generated from occlusions of dif-
ferent objects, another cause are non-uniform lighting conditions. This is
illustrated in Fig. 4.1, where the response of two filters to a natural image is
analyzed. Although the two filters are orthogonal in orientation, they tend
to be active simultaneously in high contrast, heavily textured regions of
the image. Similarly, in uniform regions of the image, both filters have low
activity. This problem can be alleviated to a certain extent by performing
contrast gain control on the images before the linear filtering. Similar to the
neural processing we have seen in Sec. 2.2.2, this can be done by computing
the local variance in the neighborhood of an image pixel and dividing the
pixel value by it. By this operation, the image is made more uniform, so
there will be less difference in the variance of filter responses to different
regions of the image. As we have shown in Publication 2 [58], this leads to
a reduction in energy dependencies.

4.2 Independent Subspace Analysis

In the previous chapters, we have attempted to explain the properties of
center-surround cells in the retina and LGN which perform spatial decorre-
lation, and we have given a statistical justification to the orientation-tuning
of simple cells which maximize sparseness or independence. Let us now see
if the properties of complex cells, which are invariant to the polarity of the
stimulus, can be explained using similar statistical properties of natural
images. Clearly, the linear models we have considered so far are not power-
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Figure 4.1: a) Natural image filtered along a line with the two Gabor filters
shown in the upper left corner.
b) Responses of the two filters: even though the responses are uncorrelated,
it can be seen that both filters tend to be active in the same parts of the
image.
c) Conditional histogram of two ICA filters, following [104]. The horizontal
axis represents the activity of the first filter which is shown in the upper
left corner. Each vertical line represents the histogram of activities of the
second filter, conditional on the first filter having the activity specified by
the horizontal position. Each of the columns is normalized by dividing by
the value of the largest bin. It can be see that if the first filter is inactive,
so is the second filter. However, if the first filter has a strong positive or
negative activity, the second one is also highly active. Note that the two
responses are still uncorrelated.

ful enough to capture the highly nonlinear receptive fields of complex cells.
Changing the sign of the stimulus does not change the output of a complex
cell, whereas in the linear models we have considered so far, the sign of
the output would also be flipped. But we have already seen in Sec. 2.2.3
that a simple element-wise squaring nonlinearity combined with pooling of
units can reproduce the receptive field properties of complex cells. The
remaining question then is, if it is possible to learn this kind of processing
from the data. Using the idea of feature subspaces [64], this is the goal of
independent subspace analysis (ISA) [53]. Here, the components are pro-
jected onto a number of small subspaces, and independence is optimized
only between, but not within individual subspaces. The distribution of the
components inside one subspace is assumed to be a function of the L2-norm
of that subspace only, which is computed by summing the squares of com-
ponents in the subspace. This is exactly the processing that is required to
obtain complex cell responses, so if the linear filters learned with ISA take
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a similar form of the quadrature pairs we saw in Sec. 2.2.3, the receptive
fields would indeed be those of complex cells. The ISA model is estimated
by taking the norms of projections onto subspaces

uj =
∑
i∈Sj

s2i =
∑
i∈Sj

(wT
i x)2 (4.1)

where Sj indicates the set of components in the jth subspace. The distri-
bution of these features is analogous to the likelihood based ICA model

p(x|W ) = |detW |
∏
j

exp
(
−√uj

)
, (4.2)

where the index j runs over all subspaces. The model can be interpreted
as a hierarchical two-layer neural network, where a (learned) first layer of
weights wi is followed by a static nonlinearity and a second layer of linear
weights, which is fixed to perform a pooling on groups of inputs. The model
can be estimated by ascending the gradient of the log-likelihood, but similar
to basic ICA, a computationally more efficient estimation is possible using
the FastISA algorithm [57] from Publication 1. By performing the ISA
estimation with groups of more than two filters per subspace, slightly more
position invariance can be gained in addition to the phase invariance, while
mostly retaining the selectivity to spatial frequency and orientation. In
Fig. 4.2 we show an ISA basis with a subspace size of four. We plot the
nonlinear receptive fields in the same way as we have previously visualized
complex cell receptive fields, by showing just the linear filters, the outputs
of which are squared and pooled to obtain the invariant response. The first
four basis functions (from left to right) belong to the first subspace, the
next four bases to the second subspace, and so on.

4.2.1 Gain Control for ISA

The squaring nonlinearity which is at the core of ISA can be justified in a
statistical sense as a way to model energy dependencies between the “inde-
pendent components” of natural images, which have been identified [126]
as an important problem for the independence assumption inherent in the
linear models of Chapter 3. With ISA, we identify the pairs or groups of
linear filters that have the strongest dependencies and model them with
a spherically symmetric distribution, where they have a high probability
of being activated together. In this framework, it is possible to interpret
complex cells as being optimized to model these energy dependencies.

It turns out however that this view is overly simplistic if we compare
the likelihood of ISA models with different subspace sizes [58], as we did in
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Figure 4.2: Basis estimated with ISA using four components per subspace.
The linear filters in one subspace share location and direction selectivity,
but differ in the local spatial phase. Thus, the pooled outputs show the
typical invariance properties of complex cells.

Publication 2. Without any gain control in the preprocessing, the energy
correlations between all pairs of components are so strong that surprisingly
large subspaces are found to be optimal, in some cases pooling all the
components into a single subspace, which amounts to fitting a spherically
symmetric distribution. This suggests that the dependencies are so strong
that orientation selective filters do not provide any advantage in encoding
the stimulus. This implies that a spherically symmetric distribution gives
the best fit to the data, a surprising effect that has been studied in more
detail in [110]. Only by performing gain control, the global dependencies
are reduced sufficiently for small subspaces to be optimal. This can be done
in a very simple way by dividing each of the whitened image patches by its
variance, or in a slightly more physiologically plausible way by computing
the variance in small gaussian neighborhoods of each pixels and dividing
by that variance1. Later in this chapter we will see that rather than using
this ad-hoc preprocessing, it is also possible to estimate optimized filters
for gain control from the data.

1This kind of processing was proposed by Bruno Olshausen
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4.2.2 Alternatives to ISA

ISA has been criticized for the use of a fixed, rather than learned, pool-
ing [35] and it has been argued that it is not possible to learn complex
cell responses from static images in a principled way [65]. As a possible
alternative, methods have been proposed that use short sequences of nat-
ural movies to learn complex cell properties. Körding et al. did this using
movie sequences from a head-mounted camera from a cat [21] to learn pairs
of linear filters which were subsequently summed and squared, and opti-
mized for temporal stability of the outputs. This lead to similar results as
those obtained with ISA, but while it addressed the point of using more
naturalistic stimuli, it still used a hard-coded energy pooling.

Another approach, slow feature analysis (SFA) [123, 10], has been used
to learn phase invariant receptive fields without using a fixed pooling, also
by optimizing outputs to change as little as possible over time. Intuitively,
this slowness criterion favors complex cell-like responses because they have
a slight position invariance, so by translating the input image, which is the
most common transformation in natural movies, the cell smoothly changes
its activity. SFA creates a nonlinear mapping by projecting the normalized
inputs into a high-dimensional features space, similar to the kernel spaces
used e.g. in support vector machines [117]. In this feature space, a temporal
derivative is computed and a set of linear filters is estimated that optimizes
the desired slowness property. This is achieved by performing PCA in
the temporal derivative feature space and selecting the directions with the
smallest eigenvalues. While this method makes less assumptions on the
form of the model (the nonlinear mapping is chosen in a very general way as
the monomials of degree one and two, including quadratic terms and terms
such as x1x2, see also [77]), it was only demonstrated on an artificially
generated data set, so it is not clear at the time how the model would
perform with natural movie data.

Another possibility is to abandon the concept of learned linear filters
altogether and to model only the radial component of the density of natural
image patches. This has been the main focus in the work of Matthias
Bethge [110] and Siwei Lyu [79]. Both authors have shown that for small,
whitened image patches, the distribution is much closer to spherical than
to factorial, and that a closer fit to the true distribution can be obtained
by modeling the radial component of the pdf then to optimize a set of
linear filters. The drawback of this approach is that very little structure
can be encoded in what is essentially a single parametric or non-parametric
fit to a filter output histogram. While the fit of the model to the data, as
measured e.g. by the Kullback-Leibler divergence [17], provides an obvious
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way of judging model quality, ultimately we are interested in inferring as
much as possible about the structure of the data, for which learning linear
transforms provides a much more general framework than working with the
radial component of the density only.

4.2.3 ISA and Complex Cells

With ISA we can reproduce the receptive field properties of complex cells
which can be seen by comparing the basis functions in Fig. 4.2 with the
energy model in the second chapter. This suggests that the phase-invariant
responses distinguishing complex from simple cells can be understood in
terms of statistical optimality. We have shown that computing complex cell
responses allows us to obtain a better match of the model distribution to the
statistics of natural images than the simple cell model does, explaining why
it is advantageous to pool over simple cells for a phase-invariant response.
Together with Topographic ICA [54], which is an alternative way to model
energy dependencies within groups of linear filter responses, ISA provides
a nonlinear extension to ICA which captures more abstract properties of
the stimulus, but still follows the objective of maximizing independence
between the outputs of different units.

A crucial point about this hierarchical, nonlinear processing is that it
gives rise to invariances. The phase invariance we see in complex cells allows
for the reliable detection of stimuli with a particular orientation without
being sensitive to small shifts in the position of the stimulus. While this is
still a long way from full translation and scale invariance, as many object
detection tasks require, it shows that even a relatively simple model of
natural image statistics can lead to important coding principles beyond
simple linear filtering.

Another important point to note about the basis functions in Fig. 4.2 is
that the individual linear basis functions are not quite the same as the ICA
basis functions we have seen previously. The addition of the second layer
leads to subtle changes in the individual units, which are not as Gabor-
like as in the simple ICA case, but are adapted to the processing in the
next higher layer in the hierarchy. This illustrates an important point;
the features at any one layer are not only tuned to the input signal, but
also adapted to later processing steps. This should be kept in mind when
estimating multi-layer models, where it may be tempting to fix the lowest
level e.g. to an ICA basis, but this may seriously impair the performance
and validity of the model.
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4.3 Multi-Layer Models

In order to further investigate the hypothesis that complex cell responses
can be derived from static natural images by efficient coding algorithms,
several hierarchical models were developed [61, 62, 91], including Publica-
tions 3 and 4 [66, 67] of this thesis. By learning two layers of linear filters,
with a scalar nonlinearity in between, the arbitrary choice of pooling e.g.
two or four units into a subspace is replaced by a principled estimation of
the correct pooling from the statistical structure of the data. This is impor-
tant since virtually all pairs of linear filters in an ICA model exhibit energy
dependencies, so the correct pooling to account for these dependencies is
not at all obvious.

4.3.1 Generative and Energy-Based Models

The existing two layer models can be grouped into two classes, generative
models and energy-based models. As an example of a generative model we
have seen sparse coding, where the model specifies how the data is generated
(in this example as a linear superposition of sources, x = As), so it is easy
to draw samples from the model, but it is hard to assign a probability
to observed data (in the sparse coding example, this required a gradient
optimization). On the contrary, in energy based models, it is easy to assign
an energy (or log-probability) to an observed data vector, but it is hard
to generate, or draw samples from the model. Energy-based models are so
called because they work with non-normalized log-probabilities rather than
with probabilities, as the normalization factor often cannot be expressed in
closed form.

4.3.2 Hierarchical Model with Score Matching Estimation

Let us consider an extension to ISA where the fixed pooling has been re-
placed by a linear transform estimated from the data. The model, which
is described in more detail in Publications 3 and 4 is of the form

E(x) =
∑

i

f
(
vT

i g(Wx)
)

(4.3)

where g and f are fixed scalar nonlinearities, W is the first layer weight
matrix and V , containing row vectors vT, is the non-negative second layer.
The first nonlinearity g is a rectifying nonlinearity, following the energy
model of complex cells, and the second nonlinearity f serves to produce
a supergaussian distribution of the outputs. The pdf of the model is de-
fined as the exponential of the negative energy, normalized to integrate to
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a) Estimated pairs of !lters b) Equivalent  multiplicative pair

Figure 4.3: Estimating the two layer score matching model with real-valued
weights V leads to the emergence of pairs of filters like that in a). Subtract-
ing the squares of these filters is equivalent to multiplying the two filters
shown in b). The emergence of these multiplicative pairs possibly indicates
that the nonlinearity of the model needs to be matched to the sparseness
of the data.

unity. In contrast to the fixed pooling of ISA, the matrix V makes the nor-
malization of the model in closed form impossible. Previously, learning in
models like this required model-specific approximations or computationally
expensive sampling methods such as Markov chain Monte Carlo (MCMC).
With the score matching framework that we introduced in Sec. 3.5 how-
ever, estimation is straightforward and does not require approximations or
sampling.

Estimating the model for natural image data leads to familiar Gabor-
like features in the first layer (not shown), and a pooling of these linear
filters in the second layer. This is illustrated in Fig. 4.4 b) for a random
selection of second layer units, where all the Gabors from the first layer
that contribute strongly to the particular unit are represented as ellipses.
It can be seen that each of the second layer units pools over a small number
of linear filters which mostly share the same position and orientation, but
have different spatial phase (not indicated in the plot). Thus the outputs
are very similar to the phase-invariant features in ISA, but without the
need for any assumptions on the pooling other than non-negativity. Again
the model was estimated on image data pre-processed with contrast gain
control, and it is likely that pooling would be much less specific without
this pre-processing.

The non-negativity constraint is required for two technical reasons:
firstly, the overall pdf obtained by combining the two nonlinearities needs
to be supergaussian. To offset the squaring-like effect of the rectifying first
nonlinearity, the second nonlinearity needs to be shaped like a square-root,
which has a discontinuity at zero. It would seem that this first issue could
be alleviated e.g. by compounding two log-cosh nonlinearities, but this leads
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to the second problem: the model then learns to pair two Gabors each into
two linear receptive field, as shown in Fig. 4.3 a), and pools these pairs
with one negative and one positive weight, effectively subtracting one off
the other. By using the identity a2−b2 = (a−b)(a+b), we can see that this
corresponds to multiplying the responses of two linear filters that contain
only one of the Gabors in each receptive field. While it would be tempting
to interpret this as some kind of non-linear end-stopping behavior like cor-
ner detection, it seems more likely that it points out a flaw in the choice
of the nonlinearities. Multiplying pairs of outputs allows a better match of
the model pdf to the high sparseness of the data distribution, which is not
well captured by the very smooth log-cosh function. It would be a very in-
teresting direction for future work to investigate what nonlinearities would
be best suited to the data and would still allow the model to be estimated
in the score matching framework. Extremely peaked distributions are gen-
erally problematic here because the gradients of the objective include terms
up to the third derivative, making the the estimation very cumbersome if
the functions are strongly peaked. Once this problem is solved, it would be
feasible to extend the model with a third or more layers.

4.3.3 Hierarchical Product of Experts

Similar to the work presented in the previous section, the hierarchical prod-
uct of experts by Simon Osindero is an energy-based model, and due to the
intractable normalization factor, straightforward maximum likelihood es-
timation is not possible. Instead, the authors resort to using contrastive
divergence (CD) [40], a Markov chain Monte Carlo method that works by
comparing the data distribution to the model distribution after taking only
a single Monte Carlo step. The model is defined as a product of modified
Student-t distributions [41] with the pdf

p(x) ∝
∏

i

1
1 + vT

i (Wx)2
. (4.4)

If the second layer weight matrix V , which consists of vectors vi, is iden-
tity, the model reduces to a classical ICA / product of experts model. The
weights V are constrained to be non-negative, and estimated at the same
time as the first layer W . The authors report that when trained on natu-
ral image patches, the rows of V pool over first layer outputs to produce
receptive fields resembling those of complex cells.
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a)  Pooling patterns from 

 Karklin & Lewicki Model

b)  Pooling patterns from 

 Score Matching model

Figure 4.4: Comparison of the pooling patterns obtained by the hierarchical
Bayesian model by Karklin and Lewicki (reproduced from [62]), and the
two layer model estimated by score matching. For the Bayesian model,
individual first order units are represented by dots localized at the center
of the linear filter and shaded according to activation strength. For the
score matching model, units are represented by ellipses with the major axis
indicating the orientation of the underlying linear filter. The latter model
shows highly specific pooling of co-localized, iso-oriented filters, whereas the
pooling in the Bayesian model is much broader, often covering the whole
image patch.

4.3.4 Hierarchical Bayesian Model

The hierarchical Bayesian model [62] that was developed by Yan Karklin
and Mike Lewicki is a generative model and can be viewed as an extension of
topographic ICA (TICA). To understand how this model relates to our own
hierarchical model, let us quickly review TICA. In contrast to the classic
generative ICA model, the components are not generated independently,
but in groups with a common variance variable [52]. This leads to a positive
correlation of squares between components within groups, but in contrast
to ISA the groups are overlapping and therefore define a topography on the
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filters. The components can be written as

si = φ(bT
i u)zi (4.5)

where u are higher order components giving rise to the variance dependen-
cies and the matrix B, consisting of row vectors bT

i , generates the topog-
raphy. The zi are independent, supergaussian variables, and the data is
created by a linear mixing of the si. Estimating this model necessitates
the use of an approximation, which amounts to estimating an energy-based
model similar to ISA.

If we consider the two-layer score matching model as an extension of
energy-based ISA, we can view the hierarchical Bayesian model as an ex-
tension of the generative TICA model, where the second layer weights are
estimated in addition to the first layer. Like in TICA, higher order vari-
ables u are drawn from their distribution and mixed with a mixing matrix
B. The higher order mixtures then provide the variances for the indepen-
dent components s in the model. In a first instantiation [62] the authors
used a fixed ICA basis in the first layer and only estimated the second layer
with a maximum a posteriori (MAP) approximation. In a later publication
[63] the authors used a full, simultaneous estimation of both the first layer
features W and the higher order features B and reported that this leads to
a significant change in the first layer features, which is in agreement with
our own results. This should not come as a surprise though, since we have
already seen in ISA how a particular (fixed) second layer can influence the
exact shape of first layer linear filters. In all the experiments the authors
used a MAP approximation of the latent variables u to optimize the linear
filters. Because of this generative approach, which includes the estimation
of latent variables, rather than the feedforward computation of the energy-
based models, quite different results are obtained. The model does not
give rise to the classical complex cell pooling, but a variety of higher order
features pooling over a large fraction of the inputs distributed over various
positions and orientations. This can be seen in Fig. 4.4, where the pooling
patterns are compared with those from the score matching model.

4.4 Horizontal Model for Gain Control

Even though we have highlighted the importance of gain control in visual
processing throughout this thesis, many of the models we discussed so far
included only very rudimentary gain control, if any. Linear models such
as ICA have traditionally been employed without any gain control, and
for the comparison of subspace sizes with ISA we used an ad-hoc method



4.4 Horizontal Model for Gain Control 55

for divisive normalization as described previously. In accordance with the
underlying principle of this work, it would be preferable to estimate the
processing from the data. In Publication 5 [68] we attempted to estimate
an ICA model on natural image patches, and at the same time estimate
the optimal gain control. This was done using a generative model in some
ways similar to the hierarchical model by Karklin and Lewicki. The im-
age patches are generated by a combination of two linear transforms of
independent sources; one corresponding to the classical ICA model, and a
second one that encodes the local contrast of the image patch. Thus, the
generative model is of the form

x = As�Bt (4.6)

where s and t are the independent sources of image structure and contrast
respectively, and A and B are linear transforms to be estimated from the
data. The element-wise product, denoted by �, is used to modulate each
pixel with a scalar gain factor. Due to the multiplication of the two types
of sources, the model is highly nonlinear, even though there are no scalar
nonlinearities like in the previous models we saw. In comparison to those
models, where the goal was to model the residual dependencies in the “in-
dependent components” by a nonlinear pooling, the goal here is to perform
a nonlinear rescaling on the data before estimating the ICA model. This
can be seen by rewriting Eq. 4.6 as

x = diag(Bt)As (4.7)

s = Wdiag(Bt)−1x (4.8)

where we have used the ICA convention of writing W = A−1 and replaced
the element-wise product of the vectors by multiplication with a diagonal
matrix containing the elements of the vector. In this type of model we
constrain the gain components t and the rows of B to be non-negative,
since the gain of a pixel should not influence the sign. Typically we restrict
the dimensionality of t to be quite small compared to the dimensionality
of the data x, since most of the information about the image patch should
be encoded in A, and we are trying to find only a few basis vectors that
can describe most of the variance patterns in the data.

Estimating this model on natural image patches leads to the two results
illustrated in Fig. 4.5: the basis functions estimated for the contrast part of
the model take the shape of localized, Gaussian “blobs” that tile the image
patch. This is not entirely unexpected, since the variance changes slowly
from one image region to the next. In fact, the normalization estimated in



56 4 Novel Models in this Work

a)  ICA !lters for comparisonb) Selection of !lters in W c) Basis functions in B

Figure 4.5: The product model for gain control on the pixel level. a) A
subset of filter vectors from W , b) the 16 basis function from B and c)
ordinary ICA filters for comparison. The filters in the product model are
less localized than for the classical ICA model. The extra network layer
converges to approximately spherical “blobs” tiling the image patch.

this way is very similar to the ad-hoc gain control we described previously,
where we divided by the variance in Gaussian neighborhoods.

The second result from the estimation of the model is that the opti-
mal ICA filters in this framework are very different from those in classical
ICA. While the basis functions are still Gabor-like, with orientation and
frequency tuning, they lose much of the original location selectivity and
cover a significant fraction of the image patch. It could in fact be said that
the model learns to separate the Gabor into the sinusoidal part and the
Gaussian envelope. While it is hard to interpret this result in the context
of physiology and biological visual processing, it shows that gain control
has a very significant effect on the optimal processing in the next stage of
the hierarchy and should not be ignored.

4.5 Markov Random Fields

In all of the models we discussed previously, we focused on very small image
patches and made no attempts to generalize to larger images or whole
natural scenes. This was necessary because high dimensional data would
make computations excruciatingly slow. It can also be justified by the fact
that most cells in the early visual system have very localized receptive fields.
Let us now consider a model that attempts to overcome these limitations
and which is the subject of Publication 6 [69].

While there are long-range correlations in natural images, as we have
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Figure 4.6: Illustration of a Markov random field. The clique size is 2× 2,
one clique x is highlighted in the lower left corner. The energy terms of
the field are computed by applying the potential function φ to the outputs
of linear filters w as indicated for one clique. By convolving the potential
functions, or filters, with the image I and summing all terms, the total
energy is obtained. The unnormalized probability of the image is then
given by the exponential of the negative energy.

seen in Fig. 3.2, and two far-away pixels may have high level dependencies
as in e.g. belonging to the same object, it is reasonable to assume that
most low-level structure can be modeled in terms of local interactions.
This can be formalized as the Markov property: given the values of a
clique of neighboring pixels, the one pixel we are considering is conditionally
independent of the rest of the image. From this starting point we can build
Markov random fields (MRF) [76], graphs with dense local connectivity, but
no long range connections. The maximal cliques have associated potential
functions, that assign an energy to the data under that clique. These
potential functions are repeated for each maximal clique, tiling the image
in a convolutional way. This is illustrated in Fig. 4.6.

MRFs have traditionally been used with very small potential functions,
which have been selected by hand (e.g. [127]) rather than learned. These
models have been used for applications such as novel view synthesis [124]
and texture modeling [127]. Typically the filters that define the poten-
tials are of only 3 × 3 pixel size, and are modeled after spatial derivative
filters. Only recently Roth and Black have shown that MRF filters can
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be estimated from natural image data [100] by generalizing the product of
experts framework to the fields of experts (FoE). However, with the estima-
tion using contrastive divergence, learning is very slow and the approach is
still limited to small potentials of 5× 5 pixel size.

By estimating a similar model with score matching, we have shown
how MRF potentials can easily be estimated for potentials of 12×12 pixels
using “images” of 36×36 pixels size. While the model is virtually identical
to the FoE, the estimated filters are quite different: in our MRF, we find
filters similar to the Gabor functions obtained by classical ICA, whereas
the filters for the FoE are discontinuous, as depicted in Fig. 4.7 b). It is
not clear at this time what causes these differences, and in particular why
the FoE filters break up into discontinuous regions.

The high frequencies of the FoE filters are easily explained since the
model operates on non-witened data. In an energy-based model, the filters
preferably take directions in data space that result in low, rather than
strong responses, which correspond to the highest frequencies of natural
images [121]. This partially explains the good denoising performance of
the high frequency FoE filters, which model the high frequencies with the
lowest signal-to-noise ratio particularly well. Indeed it has been shown
in [59] that the FoE tends to over-smooth, indicating that it is strongly
penalizing the high spatial frequency components. However, both our MRF
and the FoE model differ strongly even when whitening is accounted for,
so there is no clear reason for the filters to be vastly different from the
results we obtained. This raises the possibility that the CD algorithm used
by the authors did not converge correctly, which would also agree with the
observation that the FoE algorithm converges to qualitatively different local
minima depending on details of the estimation, sometimes converging to
filters which perform worse than random filters in the benchmarks used by
the authors [99]. Still we cannot exclude the possibility that the differences
are due to treatment of image borders. In particular, we did not proof
rigorously that our approach of computing the score matching objective
only w.r.t. the central image pixels indeed corresponds to working with
infinitely large images, and an empirical verification would require training
on significantly larger images than what is practical.

The similarity between the MRF model and ICA should not be surpris-
ing though, because the MRF can be considered as a special case of a highly
overcomplete ICA model. This works by imposing two constraints on the
ICA model, which is estimated for the “images” (of e.g. 36× 36 pixel size)
rather than for the cliques (which are e.g. 12× 12 pixels). The ICA filters
are constrained to cover only a region of 12×12 of the image and overcom-
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a) 12 x 12 !lters estimated
    with score matching

b) 5 x 5 !lters estimated with
  the !eld  of experts approach

Figure 4.7: A random selection of filters learned with our MRF compared
with filters from the fields of experts model (reproduced from [121]). With
score matching the model can be estimated for larger maximal cliques, in
this example of 12 × 12 pixels. For the comparison we have absorbed the
whitening into the filters. Since no dimensionality reduction was performed,
they are dominated by the highest spatial frequencies. Still they are well
described as Gabor functions, whereas the PoE model estimation leads to
discontinuous filters very different from the Gabors of ICA models.

pleteness is achieved by placing identical copies of the 12× 12 region that
contains the filter in all possible positions within the 36 × 36 image. This
overcomplete ICA model is identical to the MRF. Due to the fact that the
12 × 12 filters are implicitly applied to larger images, it is not surprising
that they are on average slightly larger than ICA filters estimated on 12×12
image patches. In addition, the extremely high implicit overcompleteness
gives an intuitive justification to the fact that the filters, which are shown
in Fig. 4.7 a), seem more diverse in appearance than ordinary ICA filters.

In comparison to the previous models discussed here, the assumptions
that define the MRF give the model two major advantages. Firstly, the
MRF is not limited to small patches but can be applied to images of ar-
bitrary size. While this seems important mainly for image processing ap-
plications, it is more than just a technical advancement: by making the
explicit model assumption that interactions should be of limited range, the
estimation of a model for large images is greatly simplified because there
is no longer any need to train on images significantly larger than the patch
size. This model constraint is justified from the observation that even when
estimated on large image patches, ICA always produces localized basis func-
tions that span only a fraction of the whole image patch.

The second advantage of the MRF is the explicit translation invariance,
which is more of technical rather than neuroscientific interest. In an ICA
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model, the translation invariance that is inherent in natural images has to
be reflected by a spatial tiling of identical filters. This is expensive since
it requires the estimation of many more filters in an overcomplete model
than the estimation of a model with build-in translation invariance does.
The high overcompleteness that is implicit in any MRF model compared to
ICA thus allows a much more detailed statistical description of the stimulus,
while requiring the estimation of fewer parameters.

While the MRF most certainly does not provide us with a better de-
scription of neural processing per se, these two advantages make it a signif-
icantly more powerful model of natural images, and may therefore lead to
new insights about visual processing. We can apply the model to real-world
tasks such as filling-in of large missing image regions, which are out of the
realm of patch based methods, since the required large patch sizes would
lead to an explosion of dimensionality and make learning impractical. With
the MRF, we can compare the performance of the model with that of the
human visual apparatus and judge how much of the structure of natural
images has actually been captured in an immediately useful way.



5
Conclusion

Essentially,
all models are wrong,
but some are useful.

G. E. P. Box



62 5 Conclusion

5.1 Discussion

In the first chapter of this thesis, we posed a number of research questions
as a guide through this work. Chapters 2 and 3 served mainly to put these
questions into perspective by describing the problem at hand in more detail
and discussing previous attempts at solving these problems. In Chapter
4 the contribution of our work was presented and the relation to other
approaches was established. Here we will revisit the questions and try to
answer them using the insights and results we have gained from the models
discussed in the previous chapter, and in more detail in the publications in
the second part of this thesis.

RQ1: What are suitable statistical models for patches of natural images?

From the beginning, we have focused on hierarchical models, which
is clearly not the only and quite possibly not the best choice to capture
the structure of natural images. For example, a perceptron with only a
single hidden layer can represent any function with arbitrary accuracy given
enough units [42]. As we have seen in Chapter 2 though, the brain is
very successful using hierarchies of many areas to perform vision, so by
constraining our search to methods that fit this framework, we can reduce
our search space to something more manageable. Though relatively little
is known about processing in biological visual systems, we can attempt
to approach a viable solution to the problem, by comparing with - and
ultimately trying to predict - the processing of those biological systems.
With the added benefits of the conceptual simplicity and computational
tractability, hierarchical, energy based models are a very strong candidate
for modeling natural images in such a way that both advances in vision as
an engineering problem and as a neuroscientific problem can be made.

With the hierarchical model in Publications 3 and 4 we have proposed a
framework that can potentially be extended to more than two layers. There
are no fundamental obstacles to this, except that it becomes very tedious to
implement the estimation for three or more layers. The hierarchical model
gives a quantitatively better statistical description of natural images than
previous models such as ISA and TICA, which it includes as special cases.

RQ2: How can multi-layer models of natural images be estimated?

We have repeatedly used score matching and we have shown that it
provides a powerful estimation principle for energy-based models. It allows
for consistent parameter estimation with much reduced computational load
compared to alternative methods, and it is generally quite easy to derive
and optimize the objective function. An alternative to the energy-based
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approach is to use generative models, which generally require the estimation
of latent variables. We have followed this route in Publication 6, where we
used a MAP-approximation for the latent variables.

Energy based models have the advantage that the probability of a data
vector is given by a simple feed-forward computation, and with score match-
ing there is a straightforward way for model estimation. However, it is
difficult to draw samples from the model distribution. Generative models
can possibly be considered to be more principled, because they provide a
mechanistic description of the process that generates the data. They have
their own share of problems we alluded to, mainly the difficult estimation
which usually needs to be tuned for the particular model at hand and often
requires approximations. In conclusion, both of these classes of models can
be used to estimate the statistical structure of natural images, but the jury
is still out on which model class better reflects the processing in the brain.

RQ3: Can we show that complex cells provide a better statistical descrip-
tion of images than linear filters?

Some previous complex cell models that attempted to explain the re-
ceptive fields as being matched to the statistics of natural images, were
weakened by rigid model assumptions. In ISA a fixed pooling nonlinearity
was used, as was the case in the related method using movie sequences [65].
By directly comparing the likelihood of the ISA model with classical ICA,
we have shown in Publication 2 that the subspace model has a higher like-
lihood for image data, so we can conclude that phase-invariant, complex
cell-like units are in fact better adapted to the statistics of natural images.
We explored this further in Publications 3 and 4, where the fixed pooling
was replaced by a second layer of arbitrary connectivity, estimated from
the data. Again the emergence of complex-cell receptive fields provides ev-
idence that pooling in spherical subspaces gives a good description of the
statistical structure of the data.

A clear weakness of the latter model is that it uses a fixed nonlinearity,
and also the ISA model was only estimated for the relatively constrained
family of generalized Gaussian distributions. Estimating the correct form
of the nonlinearity has in general been neglected since it is a nonparametric
problem. Furthermore, it is not easy to visualize and interpret the influence
of the nonlinearity on the distribution. Another drawback of the two-layer
model was the restriction to non-negative connections in the second layer
for technical reasons, so the model was still restricted to perform some
kind of pooling in the second layer. It is an interesting direction for future
research to lift this constraint and test whether complex cell responses are
still obtained.
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RQ4: Is gain control in the visual system matched to the optimal process-
ing of the stimulus, and how does gain control affect the later processing?

In our attempt to answer the last of our research questions, we have
taken a rather different approach from previous work. While models of gain
control have received much attention, they have almost exclusively been
applied on the level of simple and complex cells. Our question, however,
was aimed at the effect of mostly retinal gain control mechanisms and how
this affects later processing stages.

We already saw that this type of gain control has an important effect in
Publication 2. The pooling into small subspaces that is typically associated
with complex cells was shown to be optimal only after normalizing the
variance of the image patches; without this preprocessing it is advantageous
to pool a very large number of linear filters, giving an effectively spherical
output distribution.

However, this result alone is a rather weak justification to apply gain
control as preprocessing. After all it is the spirit of this work to estimate
all processing from the data, rather than fixing it by hand. Our results in
Publication 6 show that this is indeed possible, and leads to the emergence
of gain control over small Gaussian neighborhoods. This makes it possible
to interpret much of the divisive normalization that occurs in the retina and
LGN as processing optimized to the statistical structure of the stimulus.
Furthermore, the changes we observed in the linear filters compared to
the ICA model serve to emphasize that conclusions about any one layer
of the model cannot be made in isolation, but it is important to consider
several layers of the hierarchy simultaneously. Interactions between the
layers greatly affect the resulting outputs, necessitating the estimation of
more than one network layer as we have done here.

5.2 Future Outlook

What we have seen in this thesis about natural image statistics and visual
processing is that it is a rocky road from the simple and elegant idea of
utilizing stimulus statistics for inferring the optimal processing, to making
testable predictions about the visual system. Even the idea of interpreting
simple cell responses by analogy to ICA on natural images [116], which has
been around for more than a decade, is continuing to be challenged. Our
understanding of the processing that occurs in the primary visual cortex
is incomplete at best [90, 12], and as little as 20-40% of the variance of
individual neural responses can be explained [18]. As new methods provide



5.2 Future Outlook 65

a better explanation of the underlying neural processing and the classical
ideas of single neuron receptive fields make way to more abstract models
of population responses [92], simple models such as linear ICA become
increasingly hard-pressed to provide a satisfactory explanation of neural
properties.

On the other hand, even where statistical models can provide a satis-
factory explanation, we can never rule out the possibility that the receptive
fields appear to be optimized for statistical criteria purely by coincidence.
It is possible that the tuning properties of simple and complex cells have
developed for very different reasons than to provide a sparse, independent
code.

Beyond this, the stated goal of the study of natural image statistics,
namely to provide testable hypotheses about processing in higher cortical
areas which are not yet well understood, is facing more serious problems.
While the idea of unsupervised learning is to put as few constraints as
possible in the model, it turns out that these “few constraints” still greatly
influence what the model can and cannot do. The linear transform model in
sparse coding and ICA was chosen because simple cells could successfully be
modeled with a linear transform. Likewise, the pooling of squared responses
in ISA and other complex cell models followed the energy model that was
created as a way to describe results from physiology. While learning the
correct linear filters within such a model framework is by no means a small
achievement, what is really needed is a framework to estimate the correct
model architecture [113] rather than a set of linear transformations, given
the hand-crafted model structure. Since this is a non-parametric problem,
where an effectively infinite number of parameters has to be estimated,
progress in this direction has been very slow.

From the previous paragraphs we can conclude that this aspect of com-
putational neuroscience is still in its infancy and holds many interesting
challenges. It is therefore important to keep in mind the quote at the be-
ginning of this chapter, and to avoid trying to find too close a link between
the models of natural image statistics described here on one hand, and the
processing in the brain on the other hand. That said, there certainly is
much more to be learned about visual processing from models of the kind
described here. The field is changing rapidly with new models and estima-
tion methods constantly being developed, and there is much unchartered
ground to be explored. Multilayer models such as the hierarchical model
we considered here have only been around for a very short time, and we
already saw several ways on how they can be extended by adding more
layers or lifting connectivity constraints. Additionally, we have so far only
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considered particular, non-overlapping aspects of the statistical structure,
so they can be combined to form more powerful representations. Over the
last 20 years we have seen a rapid development from simple linear mod-
els to approaches of ever-increasing sophistication. The current generation
of models is using nonlinearities to model relatively simple invariances on
the level of complex cells or for contrast gain control, but continuing this
line of work and generalizing it to other, less straightforward nonlinear ef-
fects, holds the promise to give testable predictions about biological visual
processing.
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A-2004-7 M. Kääriäinen: Learning Small Trees and Graphs that Generalize. 45+49 pp. (Ph.D.
Thesis)

A-2004-8 T. Kivioja: Computational Tools for a Novel Transcriptional Profiling Method. 98 pp.
(Ph.D. Thesis)



A-2004-9 H. Tamm: On Minimality and Size Reduction of One-Tape and Multitape Finite Au-
tomata. 80 pp. (Ph.D. Thesis)
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