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Abstract

This doctoral dissertation introduces an algorithm for constructing the
most probable Bayesian network from data for small domains. The al-
gorithm is used to show that a popular goodness criterion for the Bayesian
networks has a severe sensitivity problem. The dissertation then proposes
an information theoretic criterion that avoids the problem.
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Preface

I have never been too eager to write this dissertation. Proving myself
academically has not motivated me enough, and luckily, there has not been
a large amount of pressure to write a doctoral dissertation. If anything,
avoiding the status of a PhD has offered me a shield against administrative
duties for which a mere PhD student is not qualified. But the times may
be changing, and now when I set myself to compose a dissertation, I do it
with some reluctance fearing that it may well be just a rationalization of
my inability to do so.

This doctoral dissertation consists of five original research papers on
Bayesian networks. Together they form a short story about a line of re-
search I have conducted during the last 10 years. As such it is an excerpt of
a much larger body of research I have been working on in the Complex Sys-
tems Computation research group (CoSCo) at the University of Helsinki.
The topic is selected because this particular series of papers carries a con-
venient storyline or at least a start of a story that post hoc can be made
sound coherent.

I have prepended the dissertation with a short introduction to the
Bayesian networks. Nowadays, Bayesian networks are so popular that it
appears superfluous to write yet another introductory exposition of them.
There are plenty of excellent tutorials and undergraduate textbooks around,
and the topic is common enough to have a Wikipedia entry of its own. A
web-search with words “Bayesian networks introduction” gives a long list
of tutorials many written by leading scientists in the field.

An introduction to Bayesian networks must also be a part of thousands
of PhD dissertations all over the world, and I will not make an attempt
to find a new angle or twist to them. My task is simply to tread the
beaten path, and at the same time, introduce the notation used in the
papers. I could have chosen a more formal approach for my introduction,
but I intuitively chose not to. Early on, my work on Bayesian networks
contained an element of teaching this and other Bayesian techniques to
educational researchers, so the tone has prevailed.

v
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At the same time, a doctoral dissertation should be a showcase of so-
phistication of my knowledge on the topic. May that be judged more by the
actual research papers since they have been written to the colleagues in the
scientific community. In the introductory part, I have concentrated more in
providing motivation and insight to (learning of) Bayesian networks, ped-
agogically cutting corners and avoiding interesting detours when possible.
I still hope that even an expert on Bayesian networks may find the intro-
duction enjoyable to read as an example of how someone else in the field
thinks about the subject. Some of that has to be read between the lines by
noticing what has been included and what has been bluntly omitted.
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I also want to thank Petri Myllymäki, Teemu Roos, and my wife, Tei
Laine, for allocating time to proof read versions of this dissertation. This
said, for shortcomings in presentation, there is no one to blame but me.

vii



viii



Contents

Preface v

I Overview of the theory of Bayesian networks 1

1 Introduction 3

2 Bayesian networks 7

2.1 Bayesian networks as knowledge representation . . . . . . . 7

2.2 Bayesian networks as joint probability distributions . . . . . 9

2.3 Bayesian networks as generative models . . . . . . . . . . . 12

3 Learning Bayesian networks 15

3.1 Learning parameters for Bayesian networks . . . . . . . . . 16

3.1.1 The maximum likelihood parameters . . . . . . . . . 16

3.1.2 Bayesian learning of the parameters . . . . . . . . . 16

3.1.3 Parameters for prediction . . . . . . . . . . . . . . . 18

3.2 Learning the structure of Bayesian networks . . . . . . . . . 20

3.2.1 A problem with using maximum likelihood . . . . . 21

3.2.2 On the nature of network structure . . . . . . . . . . 21

3.2.3 Bayesian structure learning . . . . . . . . . . . . . . 23

3.2.4 Search and decomposability . . . . . . . . . . . . . . 26

4 Minimum description length 29

4.1 MDL and rhetorics . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Normalized maximum likelihood . . . . . . . . . . . . . . . 30

4.3 Factorized NML . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Sequential NML . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Summary and the background of research papers 35

5.1 Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

ix



x Contents

5.2 Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 Paper IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5 Paper V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.6 Storyline and a summary of contributions . . . . . . . . . . 41

References 43

II Research papers included in the dissertation 51
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Chapter 1

Introduction

“It would be entirely superfluous to enumerate how many and
how great the advantages of this instrument are on land and at
sea. But having dismissed earthly things, I applied myself to
explorations of the heavens.”

Galileo Galilei, Sidereus Nuncius, 1610.

Bayesian networks [58] have a history of over 20 years now. Their
appearance is that of network diagrams that are ubiquitous in many fields
of science and humanities (Figure 1.1). In particular, the causal flavour
of Bayesian networks [74, 59], in which nodes represent states and arrows
represent causal influence, is probably too simple to be assigned a single
inventor. In statistics the predecessors of these kind of models are usually
stated to be path diagrams [82, 83] and structural equation models [82, 28,
72]. The term “Bayesian belief network” was coined by Judea Pearl [57]
and made popular by his 1988 “black book”, Probabilistic Reasoning in
Intelligent Systems: Networks of Plausible Inference, which is also author’s
first contact to the Bayesian networks.

Bayesian networks are both intuitive theories about the domain of in-
terest and, at the same time, mathematically specified objects that allow
prediction, generalization, and planning. These characteristics make them
widely applicable. For example, the web-site of the commercial Bayesian
network tool HUGIN1 [2] lists over twenty different projects in finance,
medicine, industry, robotics, food safety, etc. in which Bayesian networks
have been used. The methods for automatically constructing Bayesian
networks from the data further widens their prospects. Academically, the

1http://www.hugin.com/
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4 1 Introduction

Figure 1.1: A causal Bayesian network pictured in Wikipedia (Dec 4, 2008).
The network encodes the idea that rain has effect on whether the sprinkler
is on or off, and the rain and the sprinkler both affect the wetness of the
grass. The picture also contains probability tables that further specify
these effects. For example, there is 20% chance of rain (RAIN = T(rue) :
0.2), and if the sprinkler is on, but it does not rain, the grass is wet with
probability 0.9.

intuitive nature of Bayesian networks makes them an interesting case study
in developing principled ways of using data to construct complex models.

The series of research papers in the second part of this dissertation
reflects this continuum from practicalities to more scholarly issues. The first
two papers describe tools and algorithms for learning Bayesian networks
from data. The rest of the papers use these tools to study the principles
for constructing good Bayesian networks. The results of these studies may
then be used to improve our network construction capabilities.

Maybe a word about the word “Bayesian” in “Bayesian networks” since
it often raises questions, concerns, and confusion. The word “Bayesian”
in “Bayesian networks” can be considered a misnomer. Bayesianism is a
certain way (in reality, a family of slightly different ways) to give semantic
interpretation to the concept of probability. It tries to define what it means
to state that the probability of something is, say 0.72. For a Bayesian, the
probability of a statement describes how strongly he/she believes in that
statement. This interpretation has consequences on how the probability
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theory can or should be applied for modelling the real world. Naturally, as a
branch of mathematics, the probability theory itself does not dictate how it
should be correctly applied, but the issue lies outside of mathematics. There
is nothing Bayesian in Bayesian networks as such; dependence networks
would be a better term. Being statistical models, Bayesian networks can
(and will in this work) be used following statistical conventions that are
Bayesian, but that is totally another matter, and the coincidence of these
words is a source of great confusion for those not initiated in the philosophy
of statistics.

When the term Bayesian network was coined, statistics and data analy-
sis were still considered to be very separate from artificial intelligence (AI),
and Bayesian networks were mainly a knowledge representation formalism
in AI. The word “Bayesian” was introduced to emphasize the subjective
nature of this knowledge, conditioning as a method to update probabili-
ties, and the distinction (made by Thomas Bayes) of causal and evidential
models of reasoning. Only later did part of AI move very close to statistics,
and the choice of words became confusing.

Nowadays, Bayesian networks are seen as one member in a much larger
family of graphical models [80, 46]. The following overview of the the-
ory of Bayesian networks is by no means a comprehensive treatise of the
topic. It concentrates on the issues that appear in the research papers in
the second part of this work. Therefore, there are several topics that have
been omitted. Notable omissions of this kind are the algorithms for efficient
inference in Bayesian networks [47, 21, 18] and the exact theory of indepen-
dence relations [19, 60, 46]. For an interested reader there are tutorials [32],
books [58, 51, 68, 9, 16, 39], and the web abound of introductions and even
video lectures2.

The rest of this introduction to Bayesian networks is structured as fol-
lows. In Chapter 2 we will first introduce Bayesian networks, their motiva-
tion, and the notation needed to treat them as mathematical objects. In
Chapter 3 we will concentrate on the topic of learning Bayesian networks
automatically from the data, which is the main concern of the dissertation.
In Chapter 4 we will then briefly discuss some aspects of the theory of min-
imum description length (MDL), since the solutions we offer in research
papers IV and V to the problems mentioned in Chapter 3 and in research
paper III, are based on the MDL principle. Finally, in Chapter 5, we offer
a glimpse to the background and the main results of the research papers
appearing in Part II of this dissertation.

2http://videolectures.net/kdd07_neapolitan_lbn/
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Chapter 2

Bayesian networks

2.1 Bayesian networks as knowledge representa-

tion

For a long time, logic was the primary knowledge representation language
in artificial intelligence [48, 49, 78]. While well suited for simulated closed
world scenarios, its application in real world situations proved challenging.
The fall of rule-based expert systems and the apparent failure of Japan’s
Fifth Generation Computer Systems, largely built on parallel logic pro-
gramming, called for a new paradigm [24].

Logic Probability

Dropping the plate breaks it except
when the plate is made of steel or
such, or the floor is very soft, or
somebody catches the plate before it
hits the ground, or we are not in the
gravity field, or ...

Dropping the plate breaks it 95% of
the time.

Figure 2.1: The qualification problem circumvented by using probability.

In its rigidity, logic can only derive truth from truths, and the lack of
notion of mere plausibility makes it hard to express facts that, while not nec-
essarily true by logic, are still true in normal circumstances. The freedom
of not specifying every possible exception to a rule, but only quantifying
the uncertainty by a single real number, a probability, yields a more real-
istic modelling language, (for an example, see Figure 2.1). At its extreme,

7



8 2 Bayesian networks

when using only probabilities 0 and 1, this language coincides with logic.
Therefore, probability can be seen as an extended logic [38] that, governed
by the laws of probability theory, allows inferences that yield consequences
together with estimates of their plausibility.

Rule 1: Adding strawberries to food makes it taste better. (5%)
Rule 2: Adding mustard to food makes it taste better. (10%)
So how
about

Adding both strawberries and mustard to food makes it
taste better.

(??%)

Figure 2.2: Problem of combining evidence based only in certainty factors.

Use of probabilities for knowledge representation has problems of its
own. While probability theory has a principled answer to combining corre-
lated evidence [30] (something that plagued the attempts to couple logical
rules with so called certainty factors, see Figure 2.2), it does so with an
additional cost of requiring specification of joint probabilities of events, i.e,
one has to be able provide the probability to all the possible combinations
of events that may happen in the domain to be modelled. This requirement
makes the naive application of probability theory for knowledge represen-
tation infeasible; see Figure 2.4 for an example.

Bayesian networks try to remedy the situation by structuring the joint
distribution of the domain into smaller interconnected parts (Figure 2.3).
The more compact representation also allows more efficient inference, i.e.,
calculation of conditional probabilities that measure the plausibility of un-
known things in the light of current observations.

In its most robust realization, this structuring conforms to causal mech-
anisms of the domain yielding a graph of things connected by causal links,
so that the probabilities required to measure the causal connections are eas-
ier for humans to assess. Causal Bayesian networks do not define the joint
probability distribution only on a static domain, but they also specify how
the world would react if some of its processes were altered by an external
force [74]. This makes it possible to use Bayesian networks for planning
and explanation.

While this study does not directly deal with causal Bayesian networks,
much of the motivation for the work, and Bayesian networks in general,
stems from the realms of causality [59].
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Visit Asia Smoking

Tuberculosis Lung Cancer

Bronchitis

Either Tub. or Cancer

X-ray Dyspnea

yes no
0.01 0.99

yes no
0.5 0.5

Visit Asia pres. abs.
yes 0.05 0.95
no 0.01 0.99

Smoking pres. abs.
yes 0.1 0.9
no 0.01 0.99

Tub,Lang yes no
yes,yes 1 0
yes,no 1 0
no,yes 1 0
no,no 0 1

Smoking pres. abs.
yes 0.6 0.4
no 0.3 0.7

T or C positive negative
yes 0.98 0.02
no 0.05 0.95

T or C, Bronch pres. abs
yes, pres. 0.9 0.1
yes, abs. 0.7 0.3
no, pres 0.8 0.2
no, abs 0.1 0.9

Figure 2.3: A famous example of a causal Bayesian network presenting rea-
sons for shortness-of-breath (dyspnoea) [47]. This presentation is a huge
improvement of the naive way of providing the same joint probability dis-
tribution (see Figure 2.4).

2.2 Bayesian networks as joint probability distri-

butions

We will now introduce the mathematical notation for defining Bayesian
networks as joint probability distributions. The reader is advised to refer
to Figure 2.5 to place the notation into the context of a graphical structure.

A Bayesian network defines a joint probability distribution for a vector
valued (or multivariate) random variable. In this dissertation we will only
consider finite domains in which each coordinate Xi of an n-dimensional
random vector X = (X1, . . . , Xn) has a finite number of values that, with-
out loss of generality, can be assumed to be 1, . . . , ri.

A Bayesian network consists of two parts: a qualitative part (or struc-
ture) that can presented as a directed acyclic graph (DAG), and a quan-
titative part (or parameters) that further specify the dependence relations



10 2 Bayesian networks

Asia Smoke Tuberc. L. Cancer Bronchitis X-ray Dyspnoea probability

yes yes present present present pos present 0.00013230
yes yes present present present pos absent 0.00001470
yes yes present present present neg present 0.00000270
yes yes present present present neg absent 0.00000030
yes yes present present absent pos present 0.00006860
yes yes present present absent pos absent 0.00002940
yes yes present present absent neg present 0.00000140
yes yes present present absent neg absent 0.00000060
yes yes present absent present pos present 0.00119070
yes yes present absent present pos absent 0.00013230
yes yes present absent present neg present 0.00002430
yes yes present absent present neg absent 0.00000270
yes yes present absent absent pos present 0.00061740
yes yes present absent absent pos absent 0.00026460
yes yes present absent absent neg present 0.00001260
yes yes present absent absent neg absent 0.00000540
yes yes absent present present pos present 0.00000661
yes yes absent present present pos absent 0.00000073
yes yes absent present present neg present 0.00000013
... and there are still 109 variable configurations to go ... ...
... and there are still 108 variable configurations to go ... ...

Figure 2.4: First 19 out 128 probabilities needed for a naive specification
of the joint probability distribution of the Asia-domain (Figure 2.3). Each
added variable at least doubles the size of table.

defined by the structure. We will often denote the structure with a capital
letter G (for graph) and the parameters with a Greek letter theta θ1.

The structure G for an n-dimensional random vector X has exactly
one node per each coordinate (also called attribute or variable) of X, and
therefore, we often use words “node”, “variable” and “attribute” inter-
changeably. In particular, we often say “node Xi” when we refer to a node
that corresponds to the variable Xi.

We code the structure of a Bayesian network as a vector G = (G1, . . . , Gn)
in which each coordinate Gi denotes a set of those nodes from which there
are arcs to node Xi. The set Gi is often called the parents of node Xi and
the set Gi ∪ {Xi} the family of Xi. Due to the acyclicity requirement, not
all vectors of node subsets are valid Bayesian network structures. Gi is an
empty set if Xi does not have any parents.

1It would be more appropriate to write θG since the parameters needed to quantify a
structure depend on the structure, but this is usually omitted, i.e., understood from the
context.
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X1

X2

X3

X4

X5

G1 = ∅ θ1 1 2 3 r1 = 3

∅ θ11 θ111 θ112 θ113 q1 = 1

G2 = {X1} θ2 1 2 r2 = 2

X1 = 1 θ21 θ211 θ212

q2 = 3X1 = 2 θ22 θ221 θ222

X1 = 3 θ23 θ231 θ232

G3 = {X1} θ3 1 2 r3 = 2

X1 = 1 θ31 θ311 θ312

q3 = 3X1 = 2 θ32 θ321 θ322

X1 = 3 θ33 θ331 θ332

G4 = {X2, X3} θ4 1 2 r4 = 2

X2, X3 = 1, 1 θ41 θ411 θ412

q4 = 4
X2, X3 = 1, 2 θ42 θ421 θ422

X2, X3 = 2, 1 θ43 θ431 θ432

X2, X3 = 2, 2 θ44 θ441 θ442

G5 = {X4} θ5 1 2 3 r5 = 3

X4 = 1 θ51 θ511 θ512 θ513
q5 = 2

X4 = 2 θ52 θ521 θ522 θ523

Figure 2.5: A Bayesian network for variables X = (X1, X2, X3, X4, X5):
n = 5, G = ({}, {X1}, {X1}, {X2, X3}, {X4}).

Parameters θ follow the structure of the network G. Associated with
each set of parents Gi is a table θi of parameters that define conditional
probability distributions P (Xi | Gi, θ). To this end, the possible values
of Gi (often called parent configurations) are enumerated from 1 to qi

(qi =
∏

Xi∈Gi
ri), and for each j ∈ {1, . . . , qi}, there is an ri-dimensional

parameter vector θij = (θij1, . . . , θijri
) defining the conditional probability

P (Xi = k | Gi = j, θi) = θijk. If Gi is an empty set, we define qi = 1. In
order to define a proper conditional probability distribution, the parame-
ters θijk must belong to the closed unit interval [0, 1], and for each i and j,
the sum

∑ri

k=1 θijk must add up to 1.

With this motherload of notation, we can now define the probability
of an n-dimensional random vector. Given a Bayesian network B = (G, θ)
the probability of a vector X = (X1, . . . , Xn) can be defined as

P (X | B) =
n

∏

i=1

P (Xi | Gi = XGi
, θi) =

n
∏

i=1

θijiki
, (2.1)
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X1 = 3

X2 = 2

X3 = 1

X4 = 2

X5 = 1

G1 = ∅ θ1 1 2 3

∅ θ11 θ111 θ112 θ113

G2 = {X1} θ2 1 2

X1 = 1 θ21 θ211 θ212

X1 = 2 θ22 θ221 θ222

X1 = 3 θ23 θ231 θ232

G3 = {X1} θ3 1 2

X1 = 1 θ31 θ311 θ312

X1 = 2 θ32 θ321 θ322

X1 = 3 θ33 θ331 θ332

G4 = {X2, X3} θ4 1 2

X2, X3 = 1, 1 θ41 θ411 θ412

X2, X3 = 1, 2 θ42 θ421 θ422

X2, X3 = 2, 1 θ43 θ431 θ432

X2, X3 = 2, 2 θ44 θ441 θ442

G5 = {X4} θ5 1 2 3

X4 = 1 θ51 θ511 θ512 θ513

X4 = 2 θ52 θ521 θ522 θ523

Figure 2.6: P (X = (3, 2, 1, 2, 1) | G, θ) = θ113θ232θ331θ432θ521.

where ji denotes the index of the configuration of variables Gi found in X

and the ki denotes the value of Xi; (see Figure 2.6 for an example). That
this formula really defines a probability distribution for X is relatively
easy to see. The defined probabilities clearly lie in a unit interval [0, 1].
An easy way to see that the probabilities do indeed sum to one is to use
mathematical induction for the number of variables n. For a single variable
the summation clearly holds. For larger n, both the summation over all
the variables and the product (2.1) within the sum can be carried out in
the order in which the last variable has no children. The summation over
the last variable can now be moved over the other variables in the product,
and since the last sum equals 1.0, we end up with the sum of probabilities
for a Bayesian network with n− 1 variables.

2.3 Bayesian networks as generative models

Since a Bayesian network defines the probability of a data vector, it can
be used as a data generating machine. To sample a data vector from a
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Algorithm 1: Gendata(B,topolorder):

input : Bayesian network B = (G, θ),
topological ordering topolorder of indices {1 ... n} by G

output: data vector X

n ← length(G)
X ← vector of n numbers all -1
for i in topolorder do

j ← XGi

Xi ← random sample by(θij)

end
return X

Bayesian network, one may proceed by generating its coordinates in topo-
logical order, i.e., in any order that confirms with the partial ordering of the
variables induced by the network structure. The ordering guarantees that
the parents are sampled before children, so that it is always easy to gener-
ate the variable Xi by the probability distribution P (Xi | Gi = XGi

, θi)
that is readily available in a network. The Algorithm 1 features pseudo-
code for generating a random vector from a Bayesian network using this
ancestral sampling scheme [7]. The algorithm assumes a function “ran-
dom sample by” that generates a single value from a discrete distribution.

By generating N n-dimensional data vectors independently from a Bayes-
ian network B, we can generate an N × n data matrix D in which each
row dt is a data vector generated from the B. It turns out to be useful
to introduce a notation for certain parts of such a data matrix. We often
want to select rows of the data matrix by certain criteria. We then write
the selection criterion as a superscript of the data matrix D. For example,
DGi=j denotes those rows of D where the variables of Gi have the jth value
configuration. We reserve the particular notation of superscripting the D

by an integer t (like Dt) for denoting the first t rows of the data matrix D.
If we further want to select certain columns of these rows, we denote the
columns by subscripting D with the corresponding variable set. As a short-
hand, we write D{Xi} = Di. For example, D

Gi=j
i selects the ith column of

the rows DGi=j .

Assuming that the data vectors are independent, a Bayesian network
defines the probability of a data matrix D simply by the product

P (D | B) =

N
∏

t=1

P (dt | B), (2.2)



14 2 Bayesian networks

where dt denotes the tth row of matrix D.
If we insert the Equation (2.1) into Equation (2.2), and then regroup

the terms, we can express the probability of the data D using the counts
Nijk that tally how many times the value k of the variable Xi appears
together with the parent configuration j in a data matrix D:

P (D | B) =
n

∏

i=1

qi
∏

j=1

ri
∏

k=1

θ
Nijk

ijk . (2.3)

The counts Nijk (i.e., the number of rows in DXi=k,Gi=j) will play a
central role in the theoretical development in the next chapter. In a way,
these counts contain all the information a Bayesian network structure can
extract from a data sample. In particular, if there are two data matrices
D and D′ that have the same “sufficient statistics” Nijk, the probabilities
of these data matrices are equal.



Chapter 3

Learning Bayesian networks

Although it is easy to generate data from a Bayesian network, the inverse
problem is involved. If we have an N × n data matrix D, and we as-
sume that it was generated by a Bayesian network with n nodes, what
was that Bayesian network like? This innocent looking question resembles
the scientific inquiry, since it equals inducing a model of the world from
observations [33].

The assumption that data was indeed generated by a Bayesian network
of n variables is a problematic one. Often the data is a product of constantly
changing world that is not naturally described by a single Bayesian network.
It is also common that, even if the data vector contains n variables, the
actual process of generating the data contains additional factors that are
not recorded in our data.

Under the assumption that the data was generated by a Bayesian net-
work, the problem of learning the network is usually divided into two sub-
problems: learning the structure of a Bayesian network and learning the
parameters for it. The latter problem is usually considered easier [52].

The amount of data we have at hand is also a significant factor. In
multidimensional discrete domains, the number of possible data vectors
is usually huge since it grows exponentially with the number of variables.
Therefore, in most practical cases, our data set contains only a tiny fraction
of all possible data vectors we “could” have observed. The situation is very
different from simple univariate situations, say tossing a single coin, where
we usually observe every possible value several times. For this reason, many
classical statistical procedures cannot be sensibly applied.

15
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3.1 Learning parameters for Bayesian networks

When learning the parameters for a Bayesian network, we assume that
we have a complete data matrix D and that we know the structure G of
the network that generated the data. Even then, the problem of learning
parameters for a Bayesian network is not precisely defined, but one of the
basic questions is “what were the parameter values in the network that
generated this data?” We will address this problem first. There is another,
related problem of finding the parameters with a good predictive capability,
which we will address subsequently.

3.1.1 The maximum likelihood parameters

The classical statistical approach to finding the data generating parameters
is the method of maximum likelihood (ML) which calls for finding the
parameter values that give the data D at least as large a probability as any
other parameter values do.

In the case of Bayesian networks, this is a rather simple task. Due
to the very modular structure of the likelihood function (2.3), the maxi-
mization task reduces to the maximization of the likelihood function of a
single multinomial variable. For those parameters θij for which there is at
least one data vector with the configuration j in variables Gi, the max-
imizing parameters are simply the relative frequencies θ̂ijk =

Nijk
Pri

k′=1
Nijk′

;

(see Figure 3.1 for an example). The parameters corresponding to the par-
ent configurations that do not appear in the data, do not contribute to
the probability of the data, so they can be set to any valid values. To fix
the maximum likelihood parameters, we adopt the convention of setting
those parameters according to the uniform distribution θ̂ijk = 1

ri
. This

choice is somewhat arbitrary, and other conventions like θ̂ijk = Nik

N
, where

Nik =
∑qi

j=1 Nijk, could be justified as well. In the future we will not have
any use for these unsupported maximum likelihood parameters, so for this
work, the choice does not really matter.

3.1.2 Bayesian learning of the parameters

Bayesian statistics spares us from some of the problems of the maximum
likelihood parameters1. Unlike classical statisticians (i.e, so called frequen-
tists), Bayesians handle the uncertainty about parameters by treating them

1These problems will be discussed later in section 3.1.3.
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as random variables. This leads to a conditional distribution for the pa-
rameters, which can be calculated by the Bayes’ theorem

P (Θ | G, D) =
P (D | Θ, G)P (Θ | G)

P (D | G)
.

In order to calculate this posterior distribution, a Bayesian is required to
specify a prior distribution P (Θ | G). To make the task of specifying the
prior manageable, it is common to deploy a set of (dubious) tricks that
yield the task more bearable or even trivial. First, the parameter vectors
Θij are assumed to be independent of each other, so we may assign them a
probability distribution one by one. Second, the form of the prior distribu-
tion is also selected to be conjugate to the likelihood P (D | Θ, G), i.e, the
form of the prior is carefully selected to be such that the posterior distribu-
tion obeys the form of the prior distribution. For Bayesian networks, the
solution is to make the prior distribution to be a product of distributions

P (Θ | G, ~α) =
n

∏

i=1

P (Θi | Gi, ~αGi
) =

n
∏

i=1

qi
∏

j=1

P (Θij | ~αij), (3.1)

where the ~α (actually ~αG) has the same structure as Θ, parametrizing the
P (Θij | ~αij) as a Dirichlet distribution Dir(~αij):

P (Θij | ~αij) =
1

B(~αij)

ri
∏

k=1

Θ
αijk−1
ijk . (3.2)

The multinomial beta function B is a constant that does not depend on
the parameters Θij . It simply acts as a normalizer guaranteeing that the
P (Θij | ~αij) is a proper density function that integrates to unity, i.e.,

B(~αij) =
∫

∏ri

k=1 θ
αijk−1
ijk dθij . Due to its form, this prior distribution is

easy to combine with the likelihood (Equation 2.3). The resulting pos-
terior probability distribution P (Θ | G, D) is also a product of Dirichlet
distributions since P (Θij | D, ~αij) ∼ Dir(~αij + ~Nij).

We still face the problem of specifying the hyperparameter vectors ~αij

that define the distribution of Θij . Bayesians are quick to argue that this
problem is indeed a virtue that allows us to input background knowledge
into the learning system. However, to automate the learning of the param-
eters from the data, the usual choice is to initially give each instantiation
of the Θij vector equal probability. This can be accomplished by setting
all αijk = 1.0. While the uniform distribution is a convenient choice, the
topic of selecting the correct non-informative prior is a favourite pastime
of practitioners of different schools of Bayesian theory [3, 6, 5].
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For a Bayesian, the posterior distribution is the end result of statisti-
cal enquiry about the parameters. From this distribution one can extract
the most probable parameter values, expected parameter values, credible
intervals, the variance of parameters, etc. Instead of picking certain param-
eters, the Bayesian answer to the question of data generating parameters
is to assign a probability (density) to each choice of parameters.

3.1.3 Parameters for prediction

Much of the appeal of Bayesian networks stems from the ability to infer
aspects of the cases which we have not encountered before. Therefore,
the parameter learning may aim to restore this ability using the observed
data sample. However, picking the maximum likelihood parameters based
on small data sample often leads to a poor generalization ability. As an
extreme example, if the data matrix D has just one row, and in it the value
for variable X1 is k and the value of XG1 is j, augmenting the network with
maximum likelihood parameters yields a Bayesian network that gives zero
probability to all the data vectors in which values for X1 and XG1 do not
equal k and j, respectively. Giving zero probabilities to some data vectors
after seeing just one data vector is clearly not desirable. This gullible,
overfitting behaviour of maximum likelihood estimates makes the approach
suboptimal for predictive purposes.

In Bayesian setting, using the posterior distribution to select the most
probable parameters alleviates the overfitting problem, but the truly Bayes-
ian approach to prediction would be, instead of selecting particular param-
eters, to weight predictions given by different parameters by their proba-
bility:

P (X | D, ~α, G) =

∫

P (X, θ | D, ~α, G)dθ (3.3)

=

∫

P (X | θ, G)P (θ | D, ~α, G)dθ

=

∫

[

n
∏

i=1

P (Xi | XGi
, θiji

, Gi)

]

P (θ | D, ~α, G)dθ,

where ji = XGi
. This model averaging calls for integrating over a compli-

cated sets of parameters. Using the parameter independence, the posterior
P (θ | D, ~α, G) can be expressed as a product, and we can move the integral
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in Equation (3.3) inside the product:

P (X | D, ~α, G) =
n

∏

i=1

∫

P (Xi | XGi
, θiji

, Gi)P (θiji
| D, ~αiji

, Gi)dθiji

=
n

∏

i=1

∫

θijiki
P (θiji

| D, ~αiji
, Gi)dθiji

=
n

∏

i=1

θ̃ijiki
, (3.4)

where θ̃ijiki
is the (a posteriori) expected value of the variable Θijiki

. Since,
a posteriori, each Θij is Dirichlet distributed with a hyperparameter vector

~αij + ~Nij , the expected values can be obtained2 by setting

θ̃ijk =
αijk + Nijk

∑ri

k′=1 αijk′ + Nijk′

. (3.5)

Joining the Equations (3.4) and (3.5) leads to a simple method to im-
plement the Bayesian predictive distribution by setting the parameters to
their expected values, i.e,

P (X | D, ~α, G) = P (X | θ̃(D, ~α, G)) =
n

∏

i=1

αijiki
+ Nijiki

∑ri

k′=1 αijik′ + Nijik′

. (3.6)

Figure 3.1 features an example of this Bayesian method of learning the
parameters.

A predictive parameterization based on sNML

In the research paper V, we propose a non-Bayesian alternative to learning
Bayesian network parameters that are good for prediction. The idea is
to use the so called sequential normalized maximum likelihood (sNML)
parameters that lead to the equation

θijk =
e(Nijk)(Nijk + 1)

∑ri

k′=1 e(Nijk′)(Nijk′ + 1)
, (3.7)

where e(N) = (N+1
N

)N ; (e(0) = 1). An example of this method of learning
the parameters is shown in Figure 3.1. We will discuss the theory behind
the sequential NML later in Chapter 4.

2This is a well known property of Dirichlet distributions [25].
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Nij1 Nij2 Nij3

~Nij : 3 7 0

Θij1 Θij2 Θij3 Θij1 Θij2 Θij3

ML 3
10

7
10

0
10 0.300 0.700 0.000

Bayes 4
13

8
13

1
13 = 0.308 0.615 0.077

sNML 210827008
686047501

452984832
686047501

22235661
686047501 0.307 0.660 0.032

Figure 3.1: Learning the parameters in three different ways for the counts
~Nij = (3, 7, 0). In the Bayesian case, the hyperparameters were set by
αijk = 1.0.

3.2 Learning the structure of Bayesian networks

When learning the parameters for a Bayesian network, we assume that the
data has been generated from a Bayesian network and that we know the
structure of that network. In case we do not know the structure, that too
should be learned from the data. However, this task is rather complicated
in practice.

First of all, it might be the case (and usually is) that the data has
not been generated from any Bayesian network. On the other hand, by
suitably setting the parameters of a complete Bayesian network (i.e., any

Bayesian network with the maximum number (n(n−1)
2 ) of arcs), it is possible

to present any distribution3, so there is never a way to tell for certain that
the data did not come from a complete Bayesian network. However, a
complete network structure gives little insight to the domain of interest,
and from the probabilistic inference point of view, it amounts to listing the
probabilities for all the possible combinations of variables (see Figure 2.4).

If we assume that the data was generated from an unknown Bayesian
network, we can pose the question about the structure of the Bayesian
network that generated the data sample. We might also ask a more spe-
cific question about both the structure and the parameters of the Bayesian
network that generated the data [32, 31, 40].

3The factorization of the likelihood function given by a complete network corresponds
to the chain rule of the probability theory which always holds.
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3.2.1 A problem with using maximum likelihood

The classical maximum likelihood principle cannot be used for structure
learning. In order to use it, we should be able to find the Bayesian network
structure that gives the highest probability to our data sample. However,
the quest is nonsensical since the structure alone does not determine any
probability for the data, but for that we need both the structure and the
parameters.

The question about the structure and the parameters which together
give the data sample the highest probability also yields disappointing results
since the complete network can always be parametrized so that no simpler
structure with any parameters can beat it. The principle of Occam’s Razor
calls for selecting the simplest model among (otherwise) equally good mod-
els. In practice, the maximal likelihood for the data can often be achieved
with a slightly sparser structure than the complete network. However, the
simplest of these structures is still usually far too complex to give good in-
sight about the structure of the domain. The quest for parsimony is often
realized by explicitly penalizing the the model for its “complexity”. These
penalized maximum likelihood models are discussed further in section 3.2.4.

3.2.2 On the nature of network structure

If the network structure alone cannot determine the probability distribu-
tion, what is the meaning of the structure? From a purely formal point of
view, the network structure constraints the kind of joint probability distri-
butions that can be presented with any parametrization of it. This gives
raise to an equivalence relation among the structures: the network struc-
tures are considered (distribution) equivalent if the sets of distributions
obtainable by their parametrizations are the same. This equivalence can
also be be characterized by the properties of the network structure: net-
work structures are equal, if they have the same skeleton and the same set
of V-structures [79]. We say that skeletons of networks are the same if af-
ter replacing the directed arcs with undirected ones, the networks have the
same undirected edges. By V-structure in network structure G we mean
triplets of variables (A, B, C) such that there are arcs from A to C, and B

to C, but there are no arcs between A and B (neither from A to B, nor
from B to A). Each network structure has a set of these triplets, and if
for two different networks the sets are the same, we say that they have the
same V-structures.

The distributional constraints induced by a network structure can be
shown to control the conditional independence relations among the vari-
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ables in all the distributions that can be obtained by parametrizing the
structure [46]. Therefore, a network structure is often seen as presenting
a certain set of independence statements. The reason for the character-
ization being phrased in terms of independence rather than dependence
is that a carefully tailored parametrization can produce a distribution in
which variables are independent of each other even if there is an arc between
them. Therefore, the existence of the arc does not necessarily guarantee
the dependence4.

On the other hand, the missing arc between two variables A and B in
network structure G comes with the guarantee that the variables can be
made conditionally independent by some conditioning set in all distribu-
tions obtainable by parametrizing the structure G. This guarantee may be
expressed by saying that the important thing in a Bayesian network struc-
ture is the missing arcs, not the arcs that are present [58]. The statement
emphasizes the role of independence in producing compact knowledge rep-
resentation and efficient reasoning. However, it is cognitively hard to focus
on things missing from the picture rather than those things present.

From a causal knowledge representation point of view, the structure
specifies the variables that force the values of other variables, barring un-
specified exceptions that may occur. Unlike statistical dependence, causal-
ity is a non-symmetric relation, so the equivalence of network structures
described above does not apply to causal Bayesian networks.

The “independence interpretation” of the Bayesian network structure
has yielded many algorithms that utilize conditional independence tests for
learning the structure [74, 11]. While conceptually well aligned with the
“independence interpretation”, these algorithms are subject to intricacies
of hypothesis testing, such as selecting significance levels and correcting for
multiple hypotheses testing. Furthermore, these methods do not offer a
framework to conduct both parameter and structure learning.

Following the focus in research papers I-V, we will concentrate on the so
called score-based learning, where the problem can be divided into defining
a measure of goodness (often called the score) for the networks, and then
using some search algorithm for finding a network structure with an optimal
score.

The score based approach is not totally separate from the independence
test approach [17], and it is possible to construct hybrid algorithms [20].

4However, the existence of the arc from A to B in any network structure G implies that
A and B are conditionally dependent with all conditioning sets in almost all distributions
obtained by parametrizations of G no matter what the conditioning variable set is.
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3.2.3 Bayesian structure learning

The standard Bayesian answer to the structure learning task is to calculate
the posterior probability distribution P (G | D) of the candidate networks.
In practice, obtaining the whole distribution is not feasible due to the huge
number of possible network structures even in a case of relatively few vari-
ables. The number b(n) of Bayesian networks with n variables can be
calculated by recursive formula [64]

b(n) =

{

1 if n = 0,
∑n

k=1(−1)k+1
(

n
k

)

2k(n−k)b(n− k) if n > 0.

Since any undirected graph can be directed to at least one acyclic graph,

we notice that the number of Bayesian networks is larger than 2
n(n−1)

2 ,
which shows that the number grows faster than exponentially. The super
exponentiality can be observed in lengths of the figures in Table 3.1 where
the number of different Bayesian network structures have been listed for
up to 20 variables. Pruning away the equivalent network structures does
not help much since the number of equivalence classes is about 20% of the
number of all the network structures [26].

Table 3.1: Number of Bayesian network structures as a function of n.

n number of Bayesian network structures with n nodes
0 1
1 1
2 3
3 25
4 543
5 29281
6 3781503
7 1138779265
8 783702329343
9 1213442454842881

10 4175098976430598143
11 31603459396418917607425
12 521939651343829405020504063
13 18676600744432035186664816926721
14 1439428141044398334941790719839535103
15 237725265553410354992180218286376719253505
16 83756670773733320287699303047996412235223138303
17 62707921196923889899446452602494921906963551482675201
18 99421195322159515895228914592354524516555026878588305014783
19 332771901227107591736177573311261125883583076258421902583546773505
20 2344880451051088988152559855229099188899081192234291298795803236068491263

The pursuit of calculating the probability of a Bayesian network struc-
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ture would usually proceed by using the Bayes’ theorem

P (G | D) =
P (D | G)P (G)

P (D)
(3.8)

=
P (D | G)P (G)

∑

G′ P (D | G′)P (G′)
.

The normalizing denominator P (D) does not depend on the structure
G, so provided that the numerator can be calculated, it is possible to com-
pare the relative probabilities of Bayesian network structures without cal-
culating the denominator. This makes it possible to search for the most
probable network structure. However, even if we can find the most proba-
ble structure, the inability to calculate the normalizing constant leaves us
no direct way to assess its actual probability. In the case of many vari-
ables, the probability of the most probable network may be very small. In
Bayesian parlance this translates to saying that we are almost sure the net-
work structure with highest probability is not the structure of the Bayesian
network that generated the data.

A Bayesian may be quick to point out that the whole task of select-
ing a network structure is ill-defined and that the objective should be the
probability distribution that correctly quantifies the uncertainty about dif-
ferent network structures. Another way out would be to concentrate on
some higher level properties of Bayesian networks, for example, whether
the data generating Bayesian network had a particular arc or not. Proba-
bilities of such binary features are within meaningful range [42]5.

The numerator of the Equation (3.8) contains the prior probability
P (G) of the network and the so called marginal likelihood P (D | G). For
learning Bayesian networks from the data, the prior P (G) is often assumed
to be uniform, i.e., same for all the different network structures, so when
comparing probabilities of different networks, the priors cancel out.6

Having conveniently dealt with structure priors, the only thing left to
compute is the marginal likelihood P (D | G), the very entity that rendered
maximum likelihood approach impotent since the structure alone does not
define probability for the data. However, a Bayesian can stumble over this

5However, due to the limited autonomy of single arcs in Bayesian networks, these
probabilities may be problematic to interpret. Furthermore, in general cases these prob-
abilities cannot be easily computed.

6There is, however, another school of researchers that tend to set the prior according
to the complexity of the network giving higher prior probability to the network structures
with less arcs. The exact rationale of this procedure is unknown to the author and in
research papers we have always used uniform priors.
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block by “integrating parameters out”:

P (D | G) =

∫

P (D | θ, G)P (θ | G)dθ.

This equation contains the prior probability of the parameters P (θ | G),
which is a taboo for frequentists, who consider the parameters to be non-
random properties of the world, thus talking about the probability of pa-
rameters is not meaningful. Many Bayesians share the same ontological
commitments, but since they use the probabilities for describing uncer-
tainty about the world, they feel comfortable with probabilities of param-
eters, values of which they do not know. (The same argument goes for the
probability of the structure, too.)

Using the simplifying assumptions of parameter independence and the
conjugacy, which were already made for the Bayesian parameter learning
(Equation 3.1), the marginal likelihood P (D | G, ~α) can be expressed in
closed form [8, 32]:

P (D | G, ~α) =
n

∏

i=1

qi
∏

j=1

Γ(
∑ri

k=1 αijk)

Γ(
∑ri

k=1 αijk + Nijk)

ri
∏

k=1

Γ(αijk + Nijk)

Γ(αijk)
, (3.9)

where the gamma function Γ(z) =
∫ ∞
0 xz−1e−xdx is a continuous gener-

alization of the factorial with a property
∏T−1

t=0 (α + t) = Γ(α+T )
Γ(α) . Despite

its intricate look, the Equation (3.9) can be simply derived by using the
chain rule to express the probability of the data as a chain of predictive
distributions (Equation 3.6). This leads to the equation

P (D | G, ~α) =
N
∏

t=1

P (dt | Dt−1, ~α) =
N
∏

t=1

n
∏

i=1

αijt
ikt

i
+ N t−1

ijt
ik

t
i

∑ri

k′=1 αijt
ik

′ + N t−1
ijt

ik
′

, (3.10)

where the Dt−1 denotes the first t− 1 rows of the data matrix D, and the
turbulent, if not unruly, N t−1

ijt
ik

t
i

may be deciphered with information that

the superscript t − 1 marks the fact that the counts are calculated from
Dt−1, and that kt

i and jt
i denote the value and the parent configuration of

the ith variable in tth data row dt. The result follows by regrouping the
terms of the Equation (3.10) to form products that can be expressed as
ratios of gamma-functions.

The interpretation of a Bayesian network structure as a set of indepen-
dence assumptions leads “naturally” to the requirement that data should
not help discriminate between equal network structures. This requirement
has severe implications to the form of prior distributions for the Bayesian
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network parameters [32]. If we further require that all the possible data
vectors are equally likely a priori, it can be shown that the prior distribu-
tion for the parameters has to be such that all the Dirichlet parameters
αijk of the Equation (3.2) are of the form

αijk =
α

qiri

,

where the α is a single positive real number called the equivalent sample
size. With this selection of priors, the P (D | G, α) is called Bayesian
Dirichlet equivalence uniform score (BDeu) [8, 32].

The question of specifying the prior has now been reduced to specifying
a single positive real number α. Heckerman et al. [32] suggest a method
based on the survey method of Winkler [81] for assessing the value of α, but
the procedure requires user to answer a complicated hypothetical question
which is probably hard to answer very accurately. Furthermore, giving an
accurate answer to the question would probably require information about
the domain in which case the idea of pursuing a non-informative prior is
not tenable, which authors themselves point out too.

Unfortunately, as shown in the research paper III of this dissertation,
the posterior probability distribution of the network structures is very sen-
sitive to the choice of the α parameter. This observation is one of the
key motivations for the research papers IV and V. Priors in BDeu also
sometimes suggest spurious dependencies even if the data does not support
them [75].

Historically, the early Bayesian scores did not assume likelihood equiv-
alence. One of the popular choices for parameter priors was to set all αijk

to 1.0, which yields a uniform distribution for the Θij [15]. Unfortunately,
setting all parameters αijk to a constant value does not save us from the
sensitivity problem – the most probable network structure is still very sen-
sitive to the selection of this constant 7.

3.2.4 Search and decomposability

Since learning the optimal Bayesian network structure is NP-hard for all
popular goodness criteria [12], in practice we have to resort to heuristic
search strategies. One of the simplest and most often used search strate-
gies is the stochastic greedy search [13]. The search starts with an initial
network and finds its goodness (often called score). The search then pro-
ceeds by trying out small modifications to the initial network. If the best of
these modified networks is better than the initial network, it is selected as a

7This is an unpublished result of ours.
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new “initial” network to be enhanced again by similar small modifications.
If the small modifications do not seem to produce any better networks, the
system selects a new initial network and starts the procedure all over again.
The initial networks can be specific networks like the empty network, the
full network, or one of the best networks with at most one parent, which
can be found in reasonable time (O(n2)) [14]. One may also use a modified
version of some previously found good network as a new initial network.

Common small modifications include adding, deleting and reversing
arcs. These modifications can be implemented efficiently if the scoring
criterion has a property of decomposability, i.e., the score of the network
can be presented as a sum of local scores that measure the goodnesses of in-
dividual variables and their parents. More specifically, the score S(G, D) is
called decomposable if it can be expressed as a sum of terms, one term per
variable, where the term for ith variable depends only on the data columns
Di and DGi

:

S(G, D) =
n

∑

i=1

s(Di, DGi
).

If the score is decomposable, after a modification to the network struc-
ture, we need to recalculate terms for only those variables whose parents
have changed. In practice, this speeds up the search significantly.

By taking the logarithm of the marginal likelihood P (D | G) (Equa-
tion 3.9), we see that the Bayesian score is decomposable. The research
paper I presents an online tool B-course8 that uses BDeu-score for learning
Bayesian network structures.

Some decomposable scores can be found among the so called penalized
maximum likelihood scores, where

S(G, D) = log P (D | θ̂(D, G))− penalty.

In the popular Akaike Information Criterion (AIC) [1], the penalty equals
the dimension ∆ =

∏n
i=1

∏qi

j=1(ri − 1), i.e., the number of free parameters
in the model. In another popular scoring criterion, Bayesian Information
Criterion (BIC) [69], the penalty term is ∆

2 log N . Both AIC and BIC
have been derived by asymptotics, so that the selected network structure
should have desirable properties when the number N of rows in the data
matrix D grows large (goes to infinity). Unlike Bayesian framework, these
structure learning criteria do not suggest any particular way of learning the
parameters for the selected structure.

8http://b-course.cs.helsinki.fi/
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Not all the scoring criteria are decomposable. For example, the normal-
ized maximum likelihood (NML) score defines the penalty as “flexibility”
of the network structure, penalty = log

∑

D′ P (D′ | θ̂(D′, G)), which yields
a non-decomposable score. In the research paper IV, we present a decom-
posable scoring criterion that is based on the NML score. We will discuss
this score more in Chapter 4.

Decomposability of the score also makes it possible to find the optimal
network structure for up to about 30 variables. The research paper II
details an algorithm for this “exact” structure learning. A demonstration
and implementation of the algorithm is also freely available.9

9http://b-course.cs.helsinki.fi/bene/



Chapter 4

Minimum description length

In the previous chapter, we briefly mentioned a sensitivity problem when
using the BDeu score for learning Bayesian networks. This problem is
studied in research paper III. A solution to the problem is presented in
the research paper IV. The solution is based on the method of normalized
maximum likelihood (NML) [71, 62] that is one of the central constructs in
the minimum description length (MDL) approach to statistical inquiry [61,
27]. The NML philosophy is also used in the research paper V for learning
parameters for a Bayesian network.

While it is not possible to give a comprehensive introduction to a broad
and fundamental subject like MDL in just one chapter, the deployment of
NML in research papers calls for some exposition of the topic. For a more
rigorous, yet convenient introduction, the reader is advised to study the
book The Minimum Description Length [27] by Peter Grünwald.

In the following we will shed light to the philosophical background of
MDL and NML. We will also highlight differences and similarities between
the Bayesian approach and the NML approach for learning Bayesian net-
works. The key results of the research papers IV and V will be briefly
described, but for a more thorough discussion of the results, the reader is
advised to consult the papers themselves.

4.1 MDL and rhetorics

In its naive form, Bayesianism assumes models to represent the underlying,
unknown reality that produces observations. Based on these observations,
we can then infer what the reality is like. The classical statistics also shares
this commitment to the idea of reality producing data. The MDL principle
is different: it does not assume a reality but uses models as means to
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describe regularities in data. Different models can describe different kinds
of regularities, which raises the question about the criterion for evaluating
the models.

The MDL principle gains its objectivity by fixing a criterion for a good
description of a data: the model M gives a good description of the data D,
if the description is short compared to descriptions (given by M or other
models) of other data sets of the same size. It is generally entertained that
in order to give a short description of D (i.e., to compress D), the model
M has to be able to separate the regularities (information) in D from the
features not describable by M (noise). This idea is in harmony with the
original motivation of probabilistic modelling of being able to state rules
with unspecified exceptions.

The optimality requirement of MDL is not asymptotic. This makes it
different from classical frequentism and Bayesian statistics. In frequentism,
the whole concept of probability is based on the asymptotic behaviour of
the relative frequency. While the Bayesian machinery is capable of dealing
with arbitrarily small data sets, a central part of its justification lies in the
update rule guaranteeing that the believes of rational agents converge in
the limit.

4.2 Normalized maximum likelihood

The method of normalized maximum likelihood is a concrete way to im-
plement the model selection in the spirit of the MDL principle. To set it
in context of the previous chapter, the NML principle is described here
as a criterion for selecting Bayesian network structures. However, there
are currently no known algorithms for computing this criterion efficiently
for general Bayesian networks, the fact that has motivated the concept of
factorized NML in the research paper IV.

The MDL principle aims at concise description of the data, and the
notion of short description can be translated to the notion of high proba-
bility. Giving frequently occurring items (i.e, items with high probability)
short descriptions produces short total descriptions. It is no accident that
frequent words in natural language tend to be short [85], or that in Morse
code, common letters are coded with short sequences of dots and dashes.

The question is what do we mean by the structure G giving a relatively
high probability to the data D. As we noticed when discussing maximum
likelihood, the structure itself does not define the probability of the data,
but a set of probability distributions that can be obtained by different
parametrizations of the structure. Bayesian interpretation allows us to use



4.2 Normalized maximum likelihood 31

probability theory for defining a marginal likelihood of data D, which is
the average probability assigned to D by distributions expressible by the
structure G. Thus, assuming equal priors for the structures, the Bayesian
answer is to select the network structure whose distributions on average
give data D the highest probability.

In NML, the structure G is not characterized by how its distributions
behave on average on data D, but how much higher probability can any of
the distributions of G give to D compared to what distributions of G can
give to other data sets D′. This formulation avoids the need of prior, and
it gives rise to a so called NML distribution

PNML(D | G) =
P (D | θ̂(D, G))

∑

D′ P (D′ | θ̂(D′, G))
, (4.1)

where θ̂(D, G) denotes the maximum likelihood parameters, i.e., the pa-
rametrization of G that gives the data D the maximal probability.

The Bayesian marginal likelihood P (D | G) is a distribution that “mim-
ics” the behaviour of the whole set of distributions hosted by G by being a
weighted average of those distributions. The PNML has an analogous char-
acterization with respect to the distributions hosted by G. It can be shown
that for all data sets D of size N , the PNML distribution always assigns D

a constant C(N) times lower probability than the maximum likelihood dis-
tribution in G does. This constant relationship to the maximum likelihoods
obtainable within the distributions of G makes it a unique distribution with
a minimax regret property

PNML(G) = argmin
Q

max
D′

log
P (D′ | θ̂(D′, G))

Q(D′)
,

where Q may be any distribution. PNML(G) itself is not usually among the
distributions expressible by G.

The MDL principle calls for selecting the structure G, the NML dis-
tribution of which gives the highest probability to the data D. While the
numerator of the Equation (4.1) defines G’s ability to fit the data D, the
denominator defines the complexity of the G as its ability to fit any given
data D′ of the same size. This definition of complexity also provides insight
into why strong parameter priors may (or even should) influence Bayesian
model selection. Priors tame the fitting ability of the model, which lowers
the complexity of the model.

Unlike the Bayesian model selection that depends on no other data than
the observed one, the NML-denominator explicitly depends on the other
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data we might have seen, thus it does not adhere to the so called likelihood
principle [4].

It may provide some insight to forge the Bayesian criterion into the
format of the penalized maximum likelihood

log P (D | G) = log P (D | θ̂(D, G))− log
P (D | θ̂(D, G))

P (D | G)
.

The Bayesian “penalty” term depends on the data D, and it is large for
those network structures in which the maximum likelihood parameters in
G assign the data D a much larger probability than distributions in G do
on average. It may not be obvious how to interpret this Bayesian penalty
as the complexity of the model. It does, however, signal how “peaked” the
distribution is at its maximum likelihood point. This peakedness gets it
rigorous handling in the concept of Fisher Information [41].

4.3 Factorized NML

While NML is an appealing alternative criterion for learning Bayesian net-
work structures, there is no known algorithm for its efficient exact calcu-
lation, and approximate methods using sampling are computationally too
demanding to be used in search [66].

Taking the logarithm of the PNML (Equation 4.1) transforms it to the
penalized maximum likelihood, but the form of the denominator does not
allow an easy factorization that would make the PNML decomposable. This
has motivated us to seek more indirect ways to use NML for learning Bayes-
ian network structures.

Insisting on decomposability, the research paper IV proposes a factor-
ized version of NML in which the maximum likelihood of each column of
the data matrix is normalized separately

PfNML(D | G) =

n
∏

i=1

PNML(Di | θ̂(Di, DGi
, G)) (4.2)

=
n

∏

i=1

P (Di | θ̂i(Di, DGi
, G))

∑

D′

i
P (D′

i | θ̂i(D′
i, DGi

, G))

=
n

∏

i=1

qi
∏

j=1

P (DGi=j
i | θ̂ij(D

Gi=j
i , DGi

, G))
∑

D′

i
P (D′

i | θ̂ij(D
′Gi=j
i , DGi

, G))

=
n

∏

i=1

qi
∏

j=1

PNML(DGi=j
i | θ̂ij(D

Gi=j
i , G)).
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The factorized NML criterion is clearly decomposable. Furthermore,
it reduces the calculation of the criterion to a product of one dimensional
multinomial NML distributions which can be computed efficiently [44].

4.4 Sequential NML

Going for a small regret has also driven the development of NML-based
predictive schemes. The sequential NML (sNML) distribution [63, 67] is
derived by requiring the predictive distribution to always have a small regret

PsNML(· | D, G) = min
Q

max
d′

log
P (d′ | θ̂(d′, D, G))

Q(d′)
.

In general, the distribution PsNML is not among the distributions rep-
resentable by the structure G. Furthermore, restricting Q to those distri-
butions that can be presented with G, i.e., a solution to the problem

min
Q∈G

max
d′

log
P (d′ | θ̂(d′, D, G))

Q(d′)
,

does not necessarily define a unique distribution.
The general idea of sequential NML is used in the research paper V to

come up with an sNML based parametrization. The proposed parametriza-
tion, factorized sequential NML (fsNML), is derived by applying sequential
NML to each variable separately

PfsNML(X | D, G) =

n
∏

i=1

PsNML(Xi | D
Gi=ji

i , G). (4.3)

The proposed solution is analogous to fNML (Equation 4.2), and it is also
very easy to compute (see equation 3.7).
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Chapter 5

Summary and the background of

research papers

In previous chapters we have reviewed the theory of Bayesian networks to
the extent needed for understanding the research papers in part II of this
dissertation. After a short motivation and the tedious notation for Bayes-
ian networks, the treatise concentrated on learning networks automatically
from the data. The main focus was in Bayesian approach since, in addition
to being currently the most popular approach, it also provides a framework
for both parameter and structure learning.

During the theory overview, we have also provided pointers to the re-
search papers. These pointers usually marked some problematic aspects
of the Bayesian approach thus motivating the development detailed in the
papers. The proposed solutions to some of these problems were briefly
sketched in Chapter 4 where the fNML criterion and the fsNML parametri-
zation was proposed as efficient and objective methods for learning Bayesian
networks.

In what follows, I will provide some personal insight to the actual pro-
cess that lead to each of these papers; something that is usually carefully
hidden from the published work. I hope this will make reading the papers
more enjoyable.

5.1 Paper I

P. Myllymäki, T. Silander, H. Tirri, and P. Uronen. B-course: A
web-based tool for Bayesian and causal data analysis. International
Journal on Artificial Intelligence Tools, 11(3):369–387, 2002.

Paper I describes B-course, a web-site that hosts an interactive tutorial
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about learning Bayesian networks from the data. The paper exists only
because many people who used B-course asked for a reference to it, and
for a long time there was none. The real contribution is the web-site,
http://b-course.cs.helsinki.fi/, the paper is just academic clutter.
Much of the paper is actually written by Myllymäki and Tirri, while the
algorithms behind the tool are written by me, and the user interface by
Pekka Uronen who revised and improved my original user interface.

Early on (1997 – ) CoSCo research group was interested in data analy-
sis for social sciences. This interest was mostly tunneled via group leader,
professor Henry Tirri whose wife, professor Kirsi Tirri, was conducting
educational research. Educational researchers needed tools, not only theo-
rems, and there were not many tools for Bayesian data analysis available at
that time. One of our first tools was a Naive Bayes classifier BAYDA [45]
which, even if not supported for many years now, is still being downloaded
regularly. With more than 3000 identified downloaders this tool was a
stand-alone Java application that featured a wizard-like interface which at
the time was a sharp contrast to the usual data analysis software.

The downside of the BAYDA was that the Java behaved differently on
different platforms. The idea of B-course was to provide a server side im-
plementation of the data analysis tool which would be easier to maintain.
The B-course, a tool for constructing Bayesian networks from the data, was
first introduced at the American Educational Research Association confer-
ence, AERA 2000 where it was used in tutorials on Bayesian data analysis
by Henry Tirri and me. I cannot help mentioning that, at the depart-
ment, Henry was severely bashed by tenured professors for letting me to
implement the B-course since it had no “academic value”. Admittedly, the
theory for learning Bayesian network structures had been around for some
years, but there were no good implementations for practitioners around.
CoSCo had a strong tradition in heuristic search methods and Bayesian
data analysis, and a tradition of implementing data analysis methods.

Since year 2000, B-course has been used in many courses and tutorials.
The first tutorials were held in American Educational Research Association
Conferences (AERA 2000, AERA 2002). After that, Petri Nokelainen has
held at least six courses (two in Tampere, two in Helsinki, and two in
Tallinn) with B-course. The tool has also frequently been a part of our own
courses at the computer science department of the University of Helsinki.
B-course has also found its way into several doctoral dissertations [29, 35,
53, 22]. Domestically, in his own doctoral dissertation [54], Petri Nokelainen
refers to six other Finnish dissertations on educational research in which
B-course has been utilized. The B-course was meant to be a tutorial, but
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many people have found it convenient and convincing enough to be used
as a tool for research. Therefore, B-course appears in several research
papers both with us [77, 23, 34, 55] but also by others working in domains
we know very little about [37, 36, 65, 10, 84]. The work by others we
have just accidentally found since B-course can be used freely without any
registration or login.

5.2 Paper II

T. Silander and P. Myllymäki. A simple approach for finding the
globally optimal Bayesian network structure. In R. Dechter and T.
Richardson, editors, Proceedings of the 22nd Conference on Uncer-
tainty in Artificial Intelligence (UAI-06), pages 445–452. AUAI Press,
2006.

Learning the most probable Bayesian network structure is an NP-hard
problem, and that is why heuristic search is usually used to find a good
network. A brute force method of evaluating all the possible network struc-
tures is feasible only for less than ten variables. It must have been professor
Henry Tirri who told me that professor Heikki Mannila had said that using
methods developed by academy research fellow Mikko Koivisto, it is possi-
ble to find the most probable network structure for up to 25 variables [43].
That was an interesting result, but when I tried to read Mikko’s paper
about the subject, I failed to understand much of it. Furthermore, it was
concentrating on summing over the network structures and not finding the
most probable structure. It may well be that it was an easy corollary of
sum-product-wizardry to convert that algorithm to the max-product case,
but at that time it was too much for me.

However, while struggling to understand Mikko’s paper, I came across
a very simple dynamic programming idea of finding the most probable
network. I implemented the prototype of the program in Python, and
even with this simple implementation, it was possible to find the most
probable networks for 18 variables or so. The idea was so simple that
someone else probably had invented it before, but I was not familiar with
the algorithm, so it could not be very well known one. With a more careful
implementation, I was able to learn networks for 30 variables.

Petri Myllymäki then persuaded me to write a paper about the algo-
rithm for the UAI 2006 conference, which was a good idea since, to my
understanding, it was not well known in that community that it is indeed
possible to find the “globally optimal” Bayesian network structure up to
30 variables using common decomposable scoring criteria.
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While still writing the paper, Petri found a technical report of Singh and
Moore [73] describing the very same algorithm. Their implementation was
probably not that optimized so the empirical work was not so impressive,
but the algorithm was definitely the same. I wonder if they had found the
trivial idea to be too simple to be published in some other way. Later, when
reviewing an article for JAIR, I came across another result that contains
the very same idea [56], but because of its publication forum, we had been
ignorant about it. Anyway, at UAI 2007 professor Kevin Murphy thanked
me for publishing this simple algorithm since his group at the University of
British Columbia had made an implementation of it in their own research
software.

5.3 Paper III

T. Silander, P. Kontkanen, and P. Myllymäki. On sensitivity of the
MAP Bayesian network structure to the equivalent sample size pa-
rameter. In R. Parr and L. van der Gaag, editors, Proceedings of the
23rd Conference on Uncertainty in Artificial Intelligence (UAI-07),
pages 360–367. AUAI Press, 2007.

Already in the UAI 2006 paper, we found that it was important to
give extra motivation for presenting a non-scalable, exponential time and
space algorithm for learning small Bayesian networks. The truth was that
while for us the sheer possibility of learning a little bit bigger networks was
motivating enough, for rest of the community the case was probably not
equally intriguing. We then ended up arguing that the new algorithm was
valuable in studying the properties of the “optimal networks”. Previously,
due to the heuristic search, we could not know if the network found was
actually optimal, so this kind of study was not easy to conduct.

A natural candidate for such a study was the role of the commonly used
hyperparameter in the BDeu score. The common practice was to select this
parameter value to be 1.0. Steck and Jaakkola had earlier shown analyt-
ically that if the parameter approaches zero or infinity, some unwanted
phenomena happen [76]. However, most of the people probably neglected
these findings since the results were asymptotic.

We then conducted a rather extensive series of experiments and demon-
strated that there was a severe sensitivity problem in the BDeu score. A
very small change in the hyperparameter α often changed the structure of
the most probable model, and this happened in all of the 20 data sets we
used.

We decided to publish this result at the UAI 2007 conference since it
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was probably a new significant result for the community. Even before the
UAI 2007, Harald Steck had heard about our result (from Petri Myllymäki
I guess) and he wanted to read the paper beforehand. After that he asked
for the data sets we had used to conduct his own studies on the subject.
His results were published in the UAI 2008 [75]. After Steck’s talk Pedro
Domingos made a statement “This means that the BDeu score is broken!”,
a statement that Harald Steck tried to soften by saying that “one has
to be careful when using it.” Anyway, we had naturally drawn similar
conclusions, and we were working on the solution.

5.4 Paper IV

T. Silander, T. Roos, P. Kontkanen, and P. Myllymäki. Factorized
normalized maximum likelihood criterion for learning Bayesian net-
work structures. Proceedings of the 4th European Workshop on Prob-
abilistic Graphical Models (PGM-08), pages 257–264, Hirtshals, Den-
mark, 2008.

The background of the Paper IV presents another line of research prac-
ticed in CoSCo group, namely the minimum description length (MDL).
With a long time collaboration with professors Jorma Rissanen and Peter
Grünwald, the group has developed a special expertise in implementing in-
formation theoretic model selection criteria. The idea for this paper was
conceived by my CoSCo colleague, Petri Kontkanen and professor Petri
Myllymäki at the bar. Petri Kontkanen, who had developed an algorithm
for efficient calculation of normalized maximum likelihood (NML) for a sin-
gle multinomial variable, had noticed that this criterion can be calculated
for a single conditional distribution as well. Petri Myllymäki made an obvi-
ous comment that a Bayesian network is nothing more than a collection of
these conditional distributions. In a traditional CoSCo Friday session the
new finding was discussed, and we realized that this new, factorized NML
(fNML) was a decomposable score that can be efficiently calculated by our
dynamic programming algorithm.

I then implemented the score in our software, and Teemu Roos, our
group’s expert on everything MDL, set the score to the context of recently
discovered sequential NML models. We then wrote a paper on the subject
for Jorma Rissanen’s Festschrift [50], but since that work is unlikely to
reach many people in graphical models community, we decided to rewrite
it for the PGM conference for which we also ran more experiments.

After many iterations and rewriting, the story now goes that we “pro-
pose a decomposable form of normalized maximum likelihood criterion since
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it allows us to use our exact learning algorithm and heuristic search”. The
truth is that we would like to calculate the actual NML criterion, but we
cannot, and that this rationalization of “proposing” fNML came only after
we had noticed that this is something we are able to compute.

Anyway, the results for structure learning are very promising. The
conference paper got a good reception, and we were asked to submit a
journal version of it to the International Journal of Approximate Reasoning,
which we gladly did.1

5.5 Paper V

T. Silander, T. Roos, and P. Myllymäki. Locally minimax optimal
predictive modeling with Bayesian networks. In D. van Dyk and
M. Welling, editors, Proceedings of the 12th International Conference
on Artificial Intelligence and Statistics (AISTATS-09), Volume 5 of
JMLR: W&CP 5, pages 504–511, Clearwater Beach, Florida, USA,
2009.

But the story is not finished yet. We had found a way out of the param-
eter sensitivity problem in the Bayesian structure learning, but we knew
no better way to assign the parameters to the networks but the Bayesian
way. Intellectually this was very dissatisfying. After bashing Bayesian so-
lution to make our fNML solution look good, how could we justify using
Bayesian solution to the parameter learning. The Bayesian way of setting
parameters is practically a consequence of the Bayesian structure learning
criterion. Having refuted the latter, it would be very hard to defend the
former.

The answer came to me when I discussed fNML with Teemu Roos. Since
he had worked with Jorma Rissanen on the sequential NML (sNML), he
saw the similarity between sequential and factorized versions of the NML,
probably aiming at the more general theory about normalizing maximum
likelihood in parts. I had earlier entertained ideas about different local
regularizations in the Bayesian network structure learning (some of that
work is yet to be published), and sNML as a new predictive scheme just
found a correct slot in my mind.

We decided to submit a paper on this topic to AISTATS 2009. Process
of writing the paper produced nice negative results about some obvious
alternatives to the proposed factorized sequential NML (fsNML) param-
etrization, which further justified our proposal. Empirical results turned
out to be encouraging, and we were even able to prove some performance

1The paper is currently under review.
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bounds. The paper was accepted for the conference at which we also learnt
that our work on NML based methods had sparked a reading group on
NML at the University of British Columbia.

5.6 Storyline and a summary of contributions

To conclude the Part I of this dissertation, here is the summary of the
papers in a format that tries to reveal a storyline and highlight the main
contributions of the papers:

Paper I We introduce B-course, an online tool for learning Bayesian net-
works from the data. B-course is consequently used in several courses,
research papers, and doctoral dissertations. The tool uses the BDeu
score and a heuristic stochastic search algorithm, so there are no guar-
antees that it actually finds the most probable network structure.

I implemented the website and the algorithms. Most of the paper is
written by professors Tirri and Myllymäki. The current version of
the interface is strongly revised by Pekka Uronen.

Paper II We develop a dynamic programming algorithm that is guaran-
teed to find the optimal network for less than 30 variables. This
makes it possible to compare different scoring criteria and to study
properties of the optimal networks.

The work for this paper is mostly done by me.

Paper III We use our new exact structure learning algorithm introduced
in paper II to find out that the BDeu model selection criterion we
(among others) have been using has a severe sensitivity problem.

The work for this paper is mostly done by me.

Paper IV We propose an efficient objective scoring criterion, the factor-
ized NML, that is free of the sensitivity problem discussed in paper
III. The new criterion is based on the MDL principle. It is consistent,
and the empirical tests demonstrate its good behaviour.

The idea came from Petri Kontkanen and Petri Myllymäki. I imple-
mented the exact structure learning for it and did the experiments.
The paper is mostly written by me. Teemu Roos had a significant
role in reformulating the NML part (he is an expert on that).
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Paper V Paper IV calls for developing a new objective parametrization
rule for the networks. Again, we tap into the MDL theory and de-
velop a factorized sequential NML parametrization scheme. The new
scheme is easy to implement, and it features good predictive perfor-
mance.

The paper is mostly written by me. Teemu Roos had a significant
role in formulating the sNML part (he is an expert on that too).
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