
Department of Computer Science

Series of Publications A

Report A-2005-2

Advanced Document Description,

a Sequential Approach

Antoine Doucet

Academic Dissertation

To be presented, with the permission of the Faculty of

Science of the University of Helsinki, for public criti-

cism in the Small Hall, University Main Building, on

November 19, 2005, at 10 o’clock.

University of Helsinki

Finland

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14916909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© 2005 Antoine Doucet

ISSN 1238-8645

ISBN 952-10-2801-7 (paperback)

ISBN 952-10-2802-5 (PDF)

http://ethesis.helsinki.fi/

Computing Reviews (1998) Classification: I.2.7, H.3.1, H.3.3,

H.2.8, G.3

Helsinki University Printing House

Helsinki, November 2005 (161 pages)

Advanced Document Description, a Sequential

Approach

Antoine Doucet

Department of Computer Science

P.O. Box 68, FI-00014 University of Helsinki, Finland

Antoine.Doucet@cs.helsinki.fi

http://www.cs.helsinki.fi/Antoine.Doucet/

Abstract

To be able to perform efficient document processing, information

systems need to use simple models of documents that can be treated

in a smaller number of operations. This problem of document rep-

resentation is not trivial. For decades, researchers have tried to

combine relevant document representations with efficient process-

ing. Documents are commonly represented by vectors in which each

dimension corresponds to a word of the document. This approach

is termed “bag of words”, as it entirely ignores the relative positions

of words. One natural improvement over this representation is the

extraction and use of cohesive word sequences.

In this dissertation, we consider the problem of the extraction,

selection and exploitation of word sequences, with a particular focus

on the applicability of our work to domain-independent document

collections written in any language.

After a look at the state of the art of advanced document rep-

resentations, we present a novel technique to efficiently extract fre-

quent word sequences from document collections of any size.

The second contribution of this dissertation is the definition of a

formula and an efficient algorithm to address the problem of com-

puting the probability of occurrence of a discontinued sequence of

items. An application of this result is that it permits a direct eval-

uation of a word sequence through the comparison of its expected

and observed frequency.

We finally present a new measure of the phrasal similarity of

two documents. We apply this new metric to the task of document

retrieval and illustrate the multilingual- and domain-independence

of our work by conducting experiments with scientific and general

iii

iv

document collections written in English, Japanese, Korean and Chi-

nese.

Computing Reviews (1998) Categories and Subject Descriptors:

I.2.7 [Artificial Intelligence]: Natural Language

Processing - Text analysis

H.3.1 [Information Storage and Retrieval]: Content

Analysis and Indexing - Indexing Methods

H.3.3 [Information Storage and Retrieval]: Information

Search and Retrieval

H.2.8 [Database Applications]: Data mining

G.3 [Probability and Statistics]: Markov processes

General Terms: Algorithms, Experimentation, Theory

Additional Key Words and Phrases: Lexical Cohesion, Text Data

Mining, Information Retrieval, Term Dependence, Phrases,

Collocations, N-grams, Multi-Word Units, Sequential

Patterns, Maximal Frequent Sequences, Document

Retrieval, Automatic Indexing, Information Systems

Acknowledgements

I am most grateful to my supervisor Helena Ahonen-Myka for sup-

porting me whenever I needed it and for leaving me with the free-

dom to learn from my numerous mistakes the rest of the time.

Despite the distance, Bruno Crémilleux has always been present

and eager to give advice. His numerous stays in Helsinki, and mine

in Caen, have always been the key to major progress for this dis-

sertation.

The conditions of my work could hardly be better than they

have been until now in the Department of Computer Science of the

University of Helsinki, currently headed by Jukka Paakki, within

the From Data to Knowledge (FDK) research unit headed by Esko

Ukkonen. My French dialect of English has been improved, all

administrative issues have been eased, the IT people have provided

me with tens of desktops to pollute whenever needed and I do not

regret any of the coffee breaks or Doremi cultural events that I have

attended.

The expertise and friendliness of the members of the Document

Management, Information Retrieval and Text Mining (Doremi) re-

search group have made an unknown environment easy right away.

Our common passion for coffee has probably a lot to do with it as

well.

I am grateful for the financial support of the Academy of Finland,

the From Data to Knowledge (FDK) research unit and the French-

Finnish Association for Scientific and Technical Research.

Proceeding backwards chronologically, I have to thank my friend

Nico for inviting me to spend Christmas 2000 in Finland. Without

you, who knows if I would ever have gotten to know this country,

or even stepped into it? Thank you for that.

v

vi

I should also get back to my exchange year at the University of

Tennessee, where Professors Langston and Thomason gave me the

first hint that doing research may be something I would enjoy.

Finally, on the emotional side, I naturally want to thank my

family and friends. You know who you are, don’t you? Just in

case, here comes a list of names in alphabetical order: Arthur D.,

Cécile D., Chloë D., Fernande W., Gérard D., Guy-Roger L., Hélène

D., Henriette D., Jérôme D., Lothaire C., Lucie, C., Ludovic C.,

Marika H., Monique D., Nathalie B., Nicolas C., Pia K., Renaud

P., René W., Romane C., Stéphane S., Susanna K., Tamlin B., and

the unavoidable number of important people I forgot to mention

here!

Once more, please note that the sequential information in each

name list should be ignored and they should rather be processed

as a single bag of words (hence challenging the usefulness of the

following 161 pages).

Contents

1 Introduction 1

1.1 Main Contributions 2

1.2 Organization of this Monograph 4

2 Basic Document Descriptors 7

2.1 Why Model Documents? 7

2.2 The Vector Space Model 9

2.2.1 Principle . 10

2.2.2 Term Weighting 12

2.2.3 Document Length Normalization 13

2.2.4 Similarity Measures 14

2.2.5 Is Text just a Bag of Words? 15

2.3 Advanced Descriptors 16

2.3.1 Advanced Uses of the Vector Space Model . . 16

2.3.2 Extraction of Sequential Information 27

2.4 Weaknesses of the Current Utilization of Word Order 37

2.4.1 Multilingualism 37

2.4.2 Contiguous and Non-Contiguous Rigidity . . 39

2.4.3 Limitation in the Size of Phrases 40

2.4.4 Weak Results 40

2.4.5 Conclusion 43

3 Advanced Document Descriptors - A proposal 45

3.1 Maximal Frequent Sequences (MFS) 46

3.1.1 Definitions 46

3.1.2 Levelwise Extraction 48

3.1.3 Sequential Pattern Mining Techniques 49

vii

viii Contents

3.1.4 Sequential Patterns and Text 50

3.1.5 An Answer: MineMFS 52

3.2 MFS MineSweep, Partitioning the Collection to Ap-

proximate the MFS set 54

3.2.1 Description and Claims 55

3.2.2 Measuring an MFS-Based Phrasal Description 58

3.2.3 Experiments and Results 60

3.3 Conclusion . 75

4 Direct Evaluation of Non-Contiguous Sequences 77

4.1 Introduction . 78

4.2 The Probability of Discontinued Occurrence of an

n-Words Sequence 80

4.2.1 Problem Definition 80

4.2.2 A Decent Over-Estimation in the General Case 81

4.2.3 Exact Probability of a Discontiguous Word

Sequence . 83

4.2.4 Efficient Computation through a Markov Chain

Formalization 87

4.2.5 Algorithmic Complexity 97

4.3 The Expected Frequency of an n-Words Sequence . . 102

4.3.1 Naive Computational Complexity 103

4.3.2 Better Computational Complexity 103

4.4 Direct Evaluation of Lexical Cohesive Relations . . . 104

4.4.1 Hypothesis Testing 104

4.4.2 Experiments 105

4.5 Conclusion . 109

5 Exploratory Application to Document Retrieval 111

5.1 Basic Concepts of Document Retrieval 111

5.1.1 The Document Retrieval Task 111

5.1.2 Evaluation of Document Retrieval Systems . 112

5.1.3 Document Retrieval and Multiple Languages 115

5.2 Previous Attempts to Use Phrases in Document Re-

trieval . 116

5.3 An Advanced Phrase-Matching Technique 119

5.3.1 Problem Definition and Goals 119

5.3.2 Document Score Calculation 121

5.4 Experimental Framework 127

Contents ix

5.4.1 Open Questions and Protocol of the Experi-

ments . 127

5.4.2 Tuning our Matching Technique 129

5.4.3 Presentation of the Document Collections . . 131

5.5 Results . 134

5.5.1 Generalities 134

5.5.2 Results and Discussion 137

5.5.3 Impact of our Matching Technique (Q1) . . . 140

5.5.4 Quality of MFSs as Indexing Terms for Doc-

ument Retrieval (Q2) 141

5.5.5 Results in the Context of Related Work . . . 142

5.5.6 Conclusion 144

6 Conclusions 147

References 149

x Contents

CHAPTER 1

Introduction

Languages, as we speak and write them, are complex. Computers,

on the other hand, relying entirely on binary representations, are

simple. It is hence natural that, to use computers for document

processing, we must develop document models (or representations)

to simplify the complexity of human language down to the level of

comprehension of a simple computer.

This (voluntarily) exaggerated simplification of the motivation

of our work is actually quite accurate. A more advanced explana-

tion is that document processing techniques require a large number

of document comparisons. For example, if we enter a query in a

search engine, our query is compared to the documents in the search

engine’s database, and the ranked list of documents that we obtain

is a list of the documents that are considered most similar to our

query, presented in decreasing order of similarity.

Because we generally wish for efficient document processing, this

large number of comparisons requires that each of them is computed

efficiently. And the best way to compare documents efficiently is to

compare simplifications of documents instead. And it is well known

that what computers are best at dealing with is numbers. Hence, a

common way to simplify a document is to represent it with a vector

of values, where each value corresponds to the importance of a word

of the document set. The comparison of two documents can then

be completed with a set of multiplications and additions.

The major weakness of such a document representation is that it

ignores the position of occurrence of the words of a document. This

is the reason why this technique is often termed “bag of words”.

1

2 1 Introduction

Evidently, two words are more likely to be related if they occur next

to each other than if they are separated by three book chapters of

20 pages each.

Previous studies did get around this weakness by adding new

dimensions to the document vector. To supplement the values rep-

resenting single words, these extra dimensions contain values to

represent the importance of multiple words occurring together in a

document. The difficulty is then that the number of ways to com-

bine words can be enormous and the representation of each of those

associations by a dimension of the vector space can cause efficiency

problems. Even if word associations are formed from adjacent pairs

only, their number is often too high. At the same time, one may

observe that using only adjacent word pairs already means leaving

a considerable amount of information out. If the word “and” occurs

between two other words, they are certainly related but this is not

taken into account by using only adjacent pairs.

The example of the use of adjacent word pairs is very represen-

tative of the problem of finding a good phrasal description. We

easily end up with too many descriptors that are paradoxically in-

sufficient. This motivates research in the area of multi-word unit

extraction, where the goal is to extract from text cohesive units of

several words, and ignore the majority of joint word occurrences

that do not form cohesive units.

A further problem stems from the fact that when a document

vector contains both a value for a word and a value for a phrase

that contains the same word, its importance in the document is

artificially augmented. The question of how to account for this fact

is an open problem.

This dissertation is focused on those very problems of extrac-

tion, selection, and exploitation of multi-word units. An important

particularity of this work is the development of techniques that are

entirely language-independent.

1.1 Main Contributions

This thesis presents three main results. They respectively con-

tribute to the extraction, evaluation, and exploitation of the se-

quential nature of text. Those results are listed below.

1.1 Main Contributions 3

1. Maximal frequent sequences (MFSs) are word sequences that

are more frequent than a frequency threshold, and they are

maximal in the sense that no longer sequence that contains

an MFS is frequent. The interest in MFS is due to the fact

that they permit a compact document representation. Their

extraction is, however, difficult, as it requires counting and

comparing numerous word sequences with each other and even

MineMFS [AMD05, AM05], the current best-performing tech-

nique to extract the set of MFSs from a text collection some-

times fails to produce results in a reasonable amount of time,

especially when the collection is large.

In Chapter 3 we introduce MFS MineSweep, a partition-

rejoin technique that uses MineMFS as a black-box, and

permits obtaining an approximation of the set of MFSs of

a document collection. This method permits extracting de-

scriptors even from collections with which MineMFS fails.

It effectively increases the scope of use of MFSs as docu-

ment descriptors to document collections of virtually any size.

Even for smaller collections, our experiments indicate that

MFS MineSweep can extract a more exhaustive phrasal de-

scription of the document collection and that it does it faster

than the standard technique MineMFS.

2. The main contribution of our work is the definition of a for-

mula and an efficient algorithm to address the problem of

computing the probability of occurrence of a discontinued

sequence of items. We formalized the problem to a simple

Markov process, and exploited the specificities of the corre-

sponding transition matrix through techniques of linear alge-

bra. This technique goes well beyond the scope of this thesis

as it can be applied to any type of sequential data. In text, it

is common to estimate the probability of occurrence of word

sequences, but the sequences are often defined with fixed rel-

ative positions of their word constituents, or sometimes by

a maximal distance between the first and last word. To pro-

pose probabilities without constraints on the distance between

words is new.

A neat application of this work to textual data is the follow-

ing. We have extended our technique of computation of the

4 1 Introduction

probability of occurrence of a discontinued sequence towards

an efficient algorithm for the calculation of the expected doc-

ument frequency of such a sequence in a given document col-

lection. The expected document frequency of a word sequence

can then be compared to its actual frequency using statisti-

cal significance techniques. This provides a general-purpose

technique to directly evaluate and rank a set of word phrases.

The evaluation of word sequences has always been indirect,

heavily relying on the intended application and on the sub-

jective judgment of human assessors. Our technique provides

an alternative to evaluate the quality of word phrases from a

general point of view, regardless of their intended use.

3. Our third contribution permits us to exploit a phrasal docu-

ment description in information retrieval. As a result of an

exploratory attempt to use MFS-based document descriptors

in a document retrieval framework, we developed a novel tech-

nique to measure the phrasal similarity of documents. The de-

scriptors can be matched more loosely, and a set of parameters

is proposed to loosen or tighten constraints, such as the dis-

tance between words, their possible use in inverse order, and

so on. A number of retrieval experiments were attempted, us-

ing MFS-based descriptors with radically different document

collections, news-feed articles written in four languages (En-

glish, Japanese, Chinese, and Korean), and computer science

journal articles in English.

This exploratory research could not demonstrate the intrin-

sic quality of MFSs as descriptors that would be particularly

suited for document retrieval applications, but the phrasal

similarity measure we developed showed a significant improve-

ment on all three Asian language collections.

1.2 Organization of this Monograph

In the following chapter, we will motivate the need to extract de-

scriptors so as to model documents. We will then describe the vec-

tor space model, the most common model to represent a document,

and expose a few of its limitations. Notably, it does not take word

1.2 Organization of this Monograph 5

order into account, and it ignores the inherent logical structure of

documents. We will present the state of the art in the extraction

of descriptors that take the sequential nature of text into account,

and criticize their shortcomings.

Chapter 3 will present techniques of sequence extraction that

have been successfully used in data mining. We will discuss the

problem of adapting such techniques to textual data, before intro-

ducing MineMFS [AMD05, AM05], an algorithm developed by He-

lena Ahonen-Myka to combine the approaches of data mining and

collocation discovery. This method still fails to obtain descriptors in

a reasonable amount of time for large collections. We hence intro-

duce our first contribution, MFS MineSweep, a partitioning ap-

proach that permits us to extend the scope of MineMFS to docu-

ment collections of virtually of any size. In general, MFS MineSweep

further enables the extraction of a more exhaustive document de-

scription than MineMFS alone. These two observations are veri-

fied by a set of experiments followed by a discussion that concludes

the chapter. Measures of the quantity, size and density of informa-

tion of an MFS-based phrasal description are defined and the var-

ious descriptions obtained with MFS MineSweep are extensively

compared to each other and to those provided by MineMFS alone.

Chapter 4 proposes a novel algorithm to fill up a major lack

of research in multi-word units extraction: the absence of a di-

rect evaluation technique for non-contiguous word sequences that

is domain- and language-independent. We present an algorithm to

calculate the probability of occurrence of a given non-contiguous

sequence. We then extend this algorithm to permit the calculation

of the expected document frequency of such a sequence in a given

collection. Standard statistical techniques permit us to compare

observed and expected frequency, which gives a general measure of

interestingness for non-contiguous sequences. It can be used, for

example, to sort a set of word sequences by their value of interest-

ingness, possibly to select the best ranked, as an absolute number,

or through a comparison with an interestingness threshold.

After having developed techniques to extract more advanced

document descriptors from larger document collections and hav-

ing proposed an automatic way to evaluate the interestingness of

sequential non-contiguous descriptors, we explore into a potential

application of this work in Chapter 5. We notably introduce a

6 1 Introduction

new measure to calculate a phrase-based similarity between doc-

uments. Finally, we experiment with variations of that measure

applied to MFS-based descriptors and document collections in four

different languages (English, Korean, Chinese, Japanese) and from

two different domains (computer science articles and news-feeds).

The first observation is that MFS-based phrasal descriptors did not

seem to benefit document retrieval, at least not with the techniques

we proposed. A promising result for our newly defined similarity

measure is that it benefited significantly the retrieval performance

on the Chinese, Japanese and Korean document collections.

The conclusions of this monograph are drawn in Chapter 6.

CHAPTER 2

Basic Document Descriptors

The need to model documents has a long history, originating long

before computers even existed. We will below motivate the need for

automatic document modeling and present the vector space model,

the technique most commonly used to describe and compare text

documents. After going through its limitations, we will present

more advanced attempts to account for the specifics of text, notably

its sequential nature (word order matters in most languages) and

the structural organization inherent to documents. We will finally

criticize the weaknesses of the current state of the art.

2.1 Why Model Documents?

“A model is a simplified framework to organize how

we think about a problem.” 1

The problem of organizing documents originates from library

science, i.e., from the need for librarians to organize books and

documents in such a way that readers can easily find items of their

interest. The system of attaching a category to a document and

storing it in the corresponding shelf has a clear limitation: to de-

termine the right category for a given document can be difficult,

and some documents can duly belong to several categories, which

is impossible to transpose on the library’s shelves. One book cannot

1From David Begg (et al.): Economics, 7th edition.

7

8 2 Basic Document Descriptors

stand on more than one shelf at a time, and this physical obstacle

led library science to the idea of constructing sets of terms pointing

towards documents they describe.

The technique of defining a set of index terms to point at and

represent documents is called indexing. A book can then be as-

signed to as many categories as it duly belongs to. Consequently,

regardless of the organization of library shelves, users could check

a list of keywords and find directions to a number of corresponding

books, as assigned by human indexers. Although the indexing task

may seem straightforward and repetitive, it is in fact very difficult

as it truly consists in anticipating the future uses of the document.

The indexer should indeed notably be aware that users may well

look up the same indexing term for different reasons. The fact that

different people have different needs and different ways to express

the same needs is encompassed by the observation that consistency

between indexers and between different indexing sessions of the

same indexer is difficult to achieve [Kar00].

The constantly growing amount of large document collections

available in electronic format has created the need and given the

possibility to automate their organization, or at least to assist in

the manual task. The improvement in processing speed gave way

to the exploitation of automatic techniques for indexing documents.

Initially, automatic approaches of indexing were aiming at emulat-

ing human indexation. But soon, they were not only based on the

document title or on a fixed set of categories anymore, but on the

analysis of the content of the document itself.

This permits representing documents automatically and organiz-

ing them in a way that serves the information needs of users. The

first and foremost application of such a document organization is

to search and retrieve the documents relevant to a user need. Infor-

mation retrieval research permitted to improve the efficiency of this

basic application, but also to open the door to more sophisticated

uses. It is, for example, possible to classify documents within a set

of predefined categories, or simply to group (to cluster) similar ones

together. Documents can even be summarized or translated.

The information era has introduced computers as standard tools

into homes and libraries, drastically increasing the number of end-

users of automatic searching facilities. The Internet gave access

to many online document collections, including the web itself, and

2.2 The Vector Space Model 9

caused users to start searching through library collections, or reserv-

ing items from home. Paradoxically, the average computer literacy

grew, but searching systems started to be used more and more by

regular users, not only by professional librarians any further. This

fact has for consequence a need for simplicity and efficiency.

All the applications we just mentioned require a crucial ingre-

dient. To be able to group similar documents together, we must

compare them. To retrieve the documents that correspond to a

user’s information needs, we must compare them to these infor-

mation needs. Formally, the comparison of documents consists in

giving a numerical evaluation of their similarity. But this evalua-

tion is not an obvious process. Textual data is complex. There is no

straight way to obtain a similarity value of two different instances

of natural language, the language we speak and write.

This is why we need to define document models, simplifications

of the reality. As there is no way for machines to comprehend the

subtleties of human language, they should instead deal with simpli-

fied representations of textual documents, which they can process

efficiently, so as to support the constraints of simplicity and efficacy

associated with end-user applications. Document comparisons will

then be replaced by comparisons of document representations.

The two most important features that a good document model

should be able to combine are the ability to integrate the most

important elements of the original document and the capacity to

calculate numerous document similarities efficiently. The vector

space model follows those principles and, to date, remains the most

common choice.

2.2 The Vector Space Model

Widely used for its simplicity, the vector space model was developed

in the late 1960’s by Salton and his students [SWY75]. This model

relies on the idea to represent semantic proximity with spatial prox-

imity. Any piece of text can be transformed into a high-dimensional

vector. Subsequently, the similarity between documents can be

computed using basic techniques of linear algebra.

10 2 Basic Document Descriptors

2.2.1 Principle

Assuming we have a set of V distinct terms to represent a document

d, the vector space model representation of d is the vector
−→
d of

dimension V :
−→
d = (wd1

, wd2
, . . . , wdV

),

where V is the dimensionality of the vector space, each wdi
repre-

sents the weight of the term i in the document d.

The model is better understood with a simple example. Assume

a two-word world, say those words are “blue” and “cheese”. Any

text could then be represented by a 2-dimensional vector. Using the

number of word occurrences as their coordinates, Figure 2.1 shows

the vectors representing the documents “blue cheese blue”, “cheese

cheese cheese blue”, and “blue”. For the last document, “blue”,

the coordinate for “cheese” is nil. Sparse vectors, i.e., vectors with

a large majority of nil coordinates, are the norm in the real world,

where the number of words is tremendously high. For agglutinative

languages, such as Finnish, the number of words is theoretically

infinite. Taking the example of English, the Oxford English Dictio-

nary defines 600,000 word forms [Sim89]2, not including all possible

inflections, proper nouns, and abbreviations. In the Cambridge En-

cyclopedia of the English Language [Cry03], Crystal suggests that

there must be at least a million words in the English language.

According to the same author, including all the scientific nomen-

clature would make an easy reach for two million. One must note

here that there is some controversy on this number, or even on the

existence of a number, given the various possible understandings of

the terms “word” and “vocabulary”.

In practice, the number of distinct terms used for the indexation

(i.e., the index term vocabulary) of a document collection is much

more reasonable. A document collection is usually represented by

the set, or a subset, of the words that compose it. That subset

is the result of a selection of the most “significant” index terms of

the document collection, a process often referred to as feature (or

term) selection. A common way to do so is to use a stop list, a

list of function words that are very frequent and very unlikely to

tell much about the topic of a document. According to Zipf’s law

2see also: http://oed.com/about/facts.html

2.2 The Vector Space Model 11

1 32 4

4

3

2

1

blue

cheese

(cheese cheese cheese blue)

(blue)

(blue cheese blue)

Figure 2.1: A two dimensional vector space. The two dimensions

correspond to the words “blue” and “cheese”.

(of which principle was actually first suggested by Estoup [Est16]),

to discard only a few frequent words permits reducing the size of a

document collection drastically. Morphological conflation is another

common way to reduce the number of word terms. Word forms such

as “models”, “modeling” and “modeled” certainly relate to a very

similar topic. Morphological analysis permits conflating such word

forms and raise their combined weight. For English, the well-known

Porter algorithm [Por80] uses a list of suffixes as its basis to trun-

cate words (i.e., to stem them). Such stemming algorithms are

efficient but sometimes faulty, in the sense that word forms with

different meanings can be truncated to the same conflation. For in-

stance, the Porter algorithm would stem both the words “generous”

and “generally” to “gener”. Furthermore, stemming techniques are

much harder to conceive for morphology-rich languages.

It is important to underline that even though the use of term

selection has been widespread, it is more and more criticized. The

use of term selection is in fact strongly dependent on the applica-

tion. In the field of text classification, a small number of features

is often sufficient, whereas for document retrieval, the more terms

12 2 Basic Document Descriptors

are used for document indexation, the more documents can be po-

tentially retrieved. Feature selection was long used to deal with

lower-dimensional vector spaces and thus improve efficiency, but

this motivation is losing ground with the improvement of computa-

tional infrastructures. The gain in computational time that can be

obtained by reducing the number of dimensions is getting smaller

and hence it is less and less worth the associated loss in perfor-

mance.

Whether term selection is used or not, we eventually obtain a

set of index terms to represent the dimensions of document vectors

in the vector space. This issue will be developed later, but it is

interesting to note already that words are not the only features

that can be included in the set of index terms.

A document is represented by a vector of dimension V , the size

of the index term vocabulary. The values of this document vector

are weights representing the importance of the corresponding terms.

We will now discuss a few of the ways to calculate such weights.

2.2.2 Term Weighting

The effectiveness of IR applications can be significantly affected

by the assignment of appropriate term weights [SB88]. Ideal term

weights in a document vector should reflect the significance of those

terms within the document. The very basic way to weight terms

is to simply account for their presence or absence in a document.

The binary weight of an index term for a given document is 1 if it

occurs therein, 0 if not.

A more advanced indication of the significance of a term within

a document is its frequency of occurrence therein. Termed tf for

term frequency, this measure was proposed originally as early as

the 1950s by Luhn [Luh57]. This is the measure that we used in

Figure 2.1. However, even though it is meaningful, this measure

is not totally satisfying. Its weakness is that it does not take the

specificity of the terms into account.

A term which is common to many documents is less useful than

a term common to only a few documents. This is the motive for

introducing a measure of the specificity of a term in a document

collection. The document frequency (df) of a term in a document

collection of size N is the number of documents that term appears

2.2 The Vector Space Model 13

in. First presented by Spärck Jones [SJ72], the inverted document

frequency (idf) factor is, as the name tells, based on the inversion

of the document frequency. To avoid the dramatic effect of low

values, the usual formula is based on logarithms rather than straight

measures, for each word w ∈ d:

idfw = log

(
N

dfw

)
,

where N is the total number of documents in the collection, dfw

is the document frequency of the word w, and idfw is its inverted

document frequency.

In short, term frequency is a measure of the importance of a term

in a document and inverted document frequency is a measure of its

specificity within the collection. Best practice has been achieved

through the combination of the tf and idf factors, although the

optimal way to combine the factors was shown to vary from collec-

tion to collection [SY73]. Generally, tf and idf factors are simply

multiplied:

tfidfw = tfw × idfw.

2.2.3 Document Length Normalization

However, tfidf weights are not yet quite sufficient. They ignore one

important fact: documents vary in size, and this variation favors

the similarity of longer documents for the two main reasons pointed

out by Singhal et al. [Sin97, SBM96]:

• Higher term frequencies: Longer documents deal with a

similar topic all along and thus tend to use the same terms

repeatedly. Therefore, the term frequency factor may be large

for long documents.

• More terms: Longer documents also have more different

terms. Typically, two random long documents will have more

terms in common than two random short documents. It is

nonetheless intuitively impossible to admit that, on average,

longer documents are more similar to each other than short

documents.

14 2 Basic Document Descriptors

This is why we need to account for the size of documents when

weighting their terms. Document length normalization is thus used

to penalize the term weights of long documents. This normalization

is one more thing that is eased by the vector space model represen-

tation, since to normalize a vector is a very straightforward process,

done by dividing the vector by its norm,

Normalized
−→
d =

(
wd1

‖
−→
d ‖

,
wd2

‖
−→
d ‖

, . . . ,
wdV

‖
−→
d ‖

)
,

where a possible way to calculate the norm of
−→
d is:

‖
−→
d ‖ =

√
w2

d1
+ w2

d2
+ · · · + w2

dV
.

2.2.4 Similarity Measures

To compare documents, various similarity measures have been pro-

posed. Following the vector space model, Euclidean distance is the

most intuitive. An even more frequent measure is the cosine simi-

larity, which measures the cosine of the angle between two vectors,

rather than an actual distance. The cosine of the two vectors −→x

and −→y of size V is defined as:

cosine(−→x ,−→y) =
−→x · −→y

‖−→x ‖ · ‖−→y ‖

The main strength of the cosine similarity measure is that it

permits very efficient computation for normalized vectors, since in

that case the denominator disappears, and the cosine computation

simplifies to the inner product:

cosine(−→x ,−→y) = −→x · −→y

=
V∑

i=1

wxi
· wyi

If the cosine measure is zero, the two document vectors are or-

thogonal, meaning the two documents have no single term in com-

mon. Note that, contradicting a common fallacy found in the lit-

erature, a cosine equal to one does not necessarily mean that the

2.2 The Vector Space Model 15

corresponding documents are identical, since they may only contain

the same words in different orders. Neither does it mean that the

document vectors are identical, it solely indicates that they have

equal weights after normalization. An example is two documents,

where one of the documents consists of a number of consecutive

copies of the other. Even when redistributing the words in any or-

der, the cosine of the normalized document vectors will equal unity

in most common weighting schemes. We will discuss later why word

order deserves more attention.

The length of vectors has obviously no influence on the co-

sine of the angle they form. The cosine measure is thus length-

independent. Unit-length normalization is performed anyway as

part of the weighting scheme because this permits more efficient

computations (as we just discussed, pre-normalizing vectors permits

us to simplify the cosine computation to that of inner product).

Because the results of cosine similarity and Euclidean distances

are very similar in nature (see for example [ZK01]), the efficient

processing of cosine causes it to be by far the most popular simi-

larity measure. Other measures are e.g., Jaccard and Dice coeffi-

cients [MS99].

2.2.5 Is Text just a Bag of Words?

This simple model where the index term vocabulary entirely con-

sists of single words, is often referred to as the “bag of words”

model, for it simply ignores the sequential evidence of text and

treats documents as sets of words. As we already pointed out, two

documents containing the same words in a different order would

get the highest mark in terms of similarity, even though they may

express different things. The following quotation of “Alice’s Ad-

ventures in Wonderland” by Lewis Carroll illustrates how we can

express different things by placing the same set (bag) of words in a

different order.

‘Do you mean that you think you can find out the

answer to it?’ said the March Hare.

‘Exactly so,’ said Alice.

‘Then you should say what you mean,’ the March

Hare went on.

16 2 Basic Document Descriptors

‘I do,’ Alice hastily replied; ‘at least–at least I mean

what I say–that’s the same thing, you know.’

‘Not the same thing a bit!’ said the Hatter. ‘You

might just as well say that ”I see what I eat” is the

same thing as ”I eat what I see”!’

‘You might just as well say,’ added the March Hare,

‘that ”I like what I get” is the same thing as ”I get what

I like”!’

In the vector space model, unfortunately, “I see what I eat” is the

same thing as “I eat what I see”. This is a problem we can solve

by taking word order into account.

2.3 Advanced Descriptors

The vector space model can be improved in numerous ways. In this

thesis, we focus our attention on sequential information in text and

the different approaches to exploit it. The order in which words are

used is an important piece of information, and a vector space model

based on single words simply ignores this evidence. Before giving

more details on the current trends in techniques for the extraction

of word sequences, we will summarize a number of other approaches

to ameliorate document description within the vector space model.

2.3.1 Advanced Uses of the Vector Space Model

Documents can nearly always be split into coherent parts and sub-

parts of different depth, with some of these elements possibly being

interleaved. This hierarchical structure can be implicit, but thanks

to the development and widespread use of markup languages, it is

often explicit, simplifying the development and usage of modeling

techniques that take document structure into account.

We will later expand on ways to improve the bag-of-words model

by exploiting the relative positions of words to extract semantic

value. But the semantic meaning of individual words is very valu-

able already. Techniques have been developed to better exploit the

meaning of words, and based upon that, their relations. A special

case is geographical and temporal entities, which can be identified

and related.

2.3 Advanced Descriptors 17

Advanced description based on structural information

Textual data is structured. A straightforward example of this is

the delimitation of a book into chapters, sections, and paragraphs.

The exponential growth of the amount of textual information in

electronic format required explicit ways to express the structure of

documents. This is usually done through a markup language that

follows strict rules. The use of explicit structures that follow strict

grammars facilitates the exploitation of this new data by automatic

approaches. We will now present a few of them.

WWW and HTML documents. The World Wide Web (WWW)

is an enormous source of structured information. The particular-

ities of its formatting language, the HyperText Markup Language

(HTML) [RLHJ99], have been an early and soon major center

of interest for the web retrieval community. Thanks to HTML,

web pages are highly structured. Different levels of headers can be

marked-up, and numerous tags permit to identify important pieces

of information. Another important strength of HTML is the pos-

sibility to include pointers between web pages, the so-called hyper-

links.

The markup of a text fragment offers a clear delimitation and

extra knowledge about the meaning and importance of the text that

it contains. Further, the markup elements in HTML are predefined

and their number is fairly low. It is therefore simple to create rules

for text encapsulated in any one of those tags. For document repre-

sentation, the general technique of exploitation of the text markup

of HTML webpages is to increase or decrease the weights of occur-

rences of words, depending on the tags they are encapsulated in.

Cutler et al. [CSW97] proposed to use the structure of HTML doc-

uments to improve web retrieval. They studied the set of distinct

HTML elements and assigned them into one of 6 disjoint classes.

Each set of elements was associated to an importance factor that

was reflected in the document model by modifying the weight of

words, depending on the element class in which they occurred. In

other words, term weights were linearly combined depending on

the tags within which they occurred. Ever since, a number of tech-

niques have been based on the same principle (see the latest TREC

Web track [CH04] for a recent overview).

In addition to the markup encapsulating text, there is another

18 2 Basic Document Descriptors

important kind of information that can be taken into account in

modeling a set of HTML-structured documents, that is, their hy-

perlink structure. Undeniably, if the author of a document X has

decided to place a pointer towards the document Y , the content of

X gives us information about the content of Y , and reciprocally.

Further, in very large sets of documents, we are more inclined to

trust documents that have many pointers towards them. The ratio-

nale behind this is that the authors of the pointers must have found

these documents worthwhile, and hence they must be more impor-

tant than others. This idea permitted major breakthroughs in web

retrieval. The techniques implementing this idea relied on the same

principle: representing the documents by a standard vector space

model, and attaching an importance score to each document, based

on hyperlinks (the more incoming hyperlinks, the more important

the document), see e.g. [CH03, CH04]. A well-known variation of

this principle is the PageRank algorithm [PBMW98], whose main

particularity is to account for the importance of a document to cal-

culate the importance of the others. In other words, it does not

only base the importance of a document on the number of incom-

ing hyperlinks, but also takes the importance of the documents of

origin into account. A more recent trend has been to cross the

boundary between document representation and hyperlink-based

measure of importance. Therefore, researchers have tried to exploit

the relations between content and link structures. The first way to

do this is to use the document content to improve link analysis, as

in [Hav03, Kle99], while another approach is to propagate content

information through the link structure to increase the number of

document descriptors [QLZ+05, SZ03].

Content-oriented XML documents. The eXtensible Markup

Language (XML) [BPSM+04] is a generalized markup language

that allows for a more varied structure than HTML. From a tech-

nical point of view, an important difference between HTML and

XML is that the set of elements in HTML is fixed and predefined,

whereas there exists no general set of predefined elements for a given

XML document. In fact, the elements and the way they should be

used need to be specified in a separate declaration, the Document

Type Declaration (DTD), that describes what hierarchies of ele-

ments are allowed in corresponding documents. XML is called a

meta-language, because each DTD can actually define a different

2.3 Advanced Descriptors 19

language. HTML, on the other hand, is just one language. An-

other particularity of XML is that it is also used in the database

community. As opposed to database-oriented XML documents, the

main focus of interest of the information retrieval community is

content-oriented XML documents, i.e., documents that consist es-

sentially of textual data. An example of such a document, from the

INEX3 collection, is shown in Figure 2.2. This document gives ex-

plicit information about the publication details of a journal article

and its content is structured with labels to mark the beginning and

the end of paragraphs (<ip1>), sections (<sec>), and their titles

(<st>). This document can be represented by the tree shown in

Figure 2.3. The absolute XML Standard Path (XPath) expression

towards an XML element is an incremental string indicating the

path to be followed to reach the element, starting from the root of

the tree. Hence, the XPath expression of the element containing

the word “Abstract” is “/article/fm/abs/p/b”.

We will now give some insight in a few of the ways the structure

of content-oriented XML documents has been used to improve the

quality of their description.

Yi and Sundaresan [YS00] have used the structure of XML doc-

uments in a straightforward way. They concatenated to every word

term its XPath of occurrence, and thus augmented the vector space

model of another dimension for every distinct path of occurrence

of a word term. They applied this document representation to the

task of document classification and reported successful results. It

must be pointed out that they experimented with a well-structured

document set, where each element has a clear signification and high

discriminative power. This is unfortunately not a typical situation.

Even though XML documents should ideally be provided with

a DTD, real-life data often contains XML documents without one.

Given a collection of XML documents without their DTDs, Nierman

and Jagadish [NJ02] proposed a technique to evaluate the struc-

tural similarity between XML documents, with the aim to cluster

together documents that originally derive from the same DTD. The

measure of the pairwise similarity between two XML documents is

3available at http://inex.is.informatik.uni-duisburg.de/2005/

20 2 Basic Document Descriptors

<article>

<fm>

<hdr>

<ti>

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

</ti>

<volno>Vol. 15</volno> , <issno>No. 4</issno>

<mo>JULY/AUGUST</mo> <yr>2003</yr>

</hdr>

<atl>

Topic-Sensitive PageRank: A Context-Sensitive...

</atl>

<au> <fnm>Taher H.</fnm> <snm>Haveliwala</snm> </au>

<abs>

<p>Abstract

The original PageRank algorithm for improving the...

</p>

</abs>

</fm>

<bdy>

<sec><st>Introduction</st>

<ip1>Various link-based ranking strategies have...</ip1>

<p>The PageRank algorithm, introduced by Page et...</p>

</sec>

<sec><st>Topic-Sensitive Page Rank</st>

<ss1>

<st>3.1 ODP-Biasing</st>

<ip1>The first step in our approach is to...</ip1>

</ss1>

</sec>

...

</bdy>

</article>

Figure 2.2: A sample content-oriented XML document.

2.3 Advanced Descriptors 21

snmfnmti issnovolno mo yr ss1stip1 pstp

hdr auatl abs sec sec

fm bdy

article

b st ip1

Figure 2.3: An example XML tree corresponding to the document

of Figure 2.2.

based on their tree representations, and computed via a tree-edit

distance mechanism. This technique performs well with respect to

its goal. However, this approach focuses exclusively on the struc-

ture. From a content-oriented point of view, we naturally wish to

integrate and combine content and structural information.

It is important to observe that XML, as opposed to HTML,

was not designed as a language for formatting web pages. It has

a much wider use, opening the door to applications beyond this

scope. XML is, for example, used in editing, where a document

can be very long, for example being an entire book, or a collection

of journal articles. This creates new challenges, as it is not always

satisfying to treat full documents as independent entities. The clear

delimitation inherent to the XML structure form a good background

to deal with accurate subparts of the document rather than with

entire documents only.

The aim of the INitiative for the Evaluation of XML retrieval

(INEX) [FGKL02, FLM03, FLMS05], started in 2002, is to address

22 2 Basic Document Descriptors

the problem of XML retrieval. Its initial case document collection

is a set of 12, 000 journal articles of the IEEE. The sample XML

document given in Figure 2.2 is an article from the INEX collection.

This dataset is very relevant to the problem of XML retrieval. Sup-

pose a user wants to find information about “datamining” in IEEE

journals. A block of journal volumes certainly contains much rele-

vant information, but is a too large answer to be satisfying. With

this type of data, an information retrieval system needs the ca-

pacity to return only portions of documents. A simple way to be

able to return XML document elements rather than full documents

is to use the document structure, and represent each element by

an independent vector. In that case, however, it is problematic to

use standard weighting procedures, such as tfidf . The shortest ele-

ments will obtain the highest similarities with the user query, but to

return a list of short italicized text fragments containing the word

“datamining” will not satisfy the user’s information needs either.

This clearly poses the problem of granularity. We should con-

sider document fragments that are not too long but that are large

enough to be able to stand alone as meaningful independent units.

An address of this problem has been the definition of Minimal Re-

trieval Units (MRU) by Doucet et al. [DALP03], where the authors

tailor the XML document to a sub-tree, in which the leaves repre-

sent the smallest elements that can be returned. The representation

of ancestors of the leaf elements is generated on-the-fly, by prop-

agating dimension weights from children to parent elements. A

weighting scheme is used to penalize the longest elements, so as to

seek for a trade-off between relevance and exhaustivity. Kamps et

al. [KRS05] studied the length of the document elements judged as

relevant by human readers. They accordingly integrated a length

bias into their document model, thus defining specific length nor-

malization techniques for XML elements that permit significant per-

formance improvement.

Another new issue posed by XML retrieval is that of content

overlap [KLdV04]. As we can observe in Figure 2.2, a paragraph

may occur inside a section that may itself occur inside an article.

The risk of directly representing XML elements as vectors is then to

present the same highly relevant document portion several times, as

it belongs to several overlapping elements. Clarke [Cla05] presented

a technique to control the overlap. It consists in adjusting the

2.3 Advanced Descriptors 23

score of lower-ranked elements, if they contain, or are contained, in

higher-ranked elements. The rationale is to penalize elements that

contain information that was already seen by the user, assuming

she goes through answers in increasing-rank order, as is generally

the case.

A full overview of the latest trends in XML retrieval is pro-

vided by the INEX workshop proceeding series [FGKL02, FLM03,

FLMS05].

Conclusion. There are many alternatives for taking advantage

of the hierarchical structure of documents, weighing words depend-

ing on their place of occurrence, accounting for context, spreading a

document’s descriptions through pointers towards other documents,

and so on.

We can also improve the basic vector space model, based solely

on single words, by looking closer at those single words. A word is

a complex and meaningful unit, and we can benefit from acknowl-

edging this fact.

Semantic approaches to advanced document description

Individual words contain already a lot of information by themselves.

Each of them carries a specific meaning that can often be deter-

mined only through the observation of its context. Many studies

have aimed at determining the exact meaning of word occurrences.

This supplementary piece of information can be used as such, or to

relate, connect or separate words among each other.

Exploiting the meaning of words. In the basic vector space

model, every distinct term of the document collection corresponds

to a dimension of the vector space. This way, one can apparently

not deal with problems of synonymy (when different words have

the same meaning, e.g., strong and powerful) and polysemy (when

the same word has different meanings, e.g, a mouse can be either a

small rodent or a computer device). We can deal with the problem

of polysemy by capturing the meaning of words, that is, by trying

to figure out whether a given usage of the word mouse is referring

to a rodent or to a computer device. A subsequent representation

is a vector space with more dimensions, corresponding to distinct

word meanings instead of distinct word terms. In the new vector

space, there should be one dimension for the word “mouse” mean-

24 2 Basic Document Descriptors

ing a rodent, and another dimension for the word “mouse” meaning

a computer device.

A generalization of the problem of finding the meaning of words

is Word Sense Disambiguation (WSD) (a good review of the state of

the art, although slightly outdated, can be found in [IV98]). Given

a word, its context of occurrence, and a set of possible meanings,

WSD is the task of determining which is the correct meaning of

the word in that context. There exists a number of techniques

for this task. The first family of techniques is supervised disam-

biguation, where a learning algorithm is fed with a training set of

documents in which words are manually annotated with a semantic

label. Other techniques use dictionaries and the text content of the

different definitions of the word as typical indicators of the corre-

sponding meaning. Finally, unsupervised disambiguation consists

of using the different contexts of a word to cluster its cases of usage

into different categories, without knowledge of the corresponding

meanings or associated definitions.

In general, to avoid excessive (or insufficient) dissociation of word

senses, it is crucial to have, at least, a practical number of word

meanings, arbitrarily given by manual annotations or a dictionary.

All the techniques we just covered permit solving the problem of

polysemy, but there exist many more semantic relationships be-

tween words, which we may wish to take advantage of.

Exploiting the semantic relationships between words. The

ability to account for the relationships between words would be a

clear improvement over the basic vector space model. The term in-

dependence assumption consists in considering that the probability

of occurrence of a word in a given position is the same regardless of

which words occur in other positions. This assumption is common

as a matter of mathematical convenience rather than a reality. The

vector space model also makes the faulty simplification to ignore

correlations between words. The word “telephone” is more related

to the word “communication” than to the word “butter”, but this

is hard to take into account in the vector space model [YBLS83]. A

number of techniques have been proposed to account for the seman-

tic relationships between words. They either rely upon handcrafted

dictionaries or are automatic.

2.3 Advanced Descriptors 25

Started in 1983, WordNet [Fel98] is a continued effort that re-

sulted in a thesaurus of English4 that integrates a vast hierarchy of

relationships between words. Each word entry of WordNet is asso-

ciated with a set of synonyms. Depending on its part of speech, a

word entry may also be associated, for example, to a set of antonyms

(words of opposite meaning), hypernyms and hyponyms. The word

Y is a hypernym of the word X if every X is a “kind of” Y . Hy-

ponymy is the opposite relation. Hence, “red” and “blue” are hy-

ponyms of color, and thus color is a hypernym of “red” and “blue”.

A trivial sample application of such metrics is numerical evidence

to determine sets of words that have similar senses, and that subse-

quently could be represented by the same dimension of the vector

space. Sussna [Sus93] and Resnik [Res95] have used the WordNet

word relations to compute advanced semantic word metrics.

Latent Semantic Indexing (LSI) [DDL+90] is a mathematical

approach of the problems of synonymy and polysemy that derives

from a well-known technique of linear algebra, i.e., Singular Value

Decomposition (SVD). LSI is surprisingly effective, given that it

is entirely automated, as opposed to WordNet and the enormous

human effort its construction required. LSI is a technique of dimen-

sionality reduction. Its key idea is to model the documents of the

vector space into a smaller space with “latent” dimensions. The

high-dimensional document vectors are projected to some lower-

dimensional space spanned by significant singular vectors. The ex-

pectation is that the dimensions of the smaller space represent the

concepts of the documents, whereas the initial vector space repre-

sents their terms, eventually separating synonyms and uniting pol-

ysemes. A number of variations have been proposed, augmenting

the basic LSI method by normalization and rescaling [BM05].

Exploiting the spatio-temporal relationships between words.

Spatial and temporal pieces of information are apart from other

terms. There is a relationship between “Helsinki” and “Finland”,

but it cannot be described as synonymy, meronymy or hyponymy.

Some time indicators can, however, be described by such relations.

4There exist related projects for a number of other languages, such as

EuroWordNet [Vos98] for European languages.

26 2 Basic Document Descriptors

For example, “April” and “May” are two hyponyms of “month”.

But an important piece of knowledge is still ignored: “April” is

intuitively closer to “May” than to “November”. We can certainly

benefit from detecting temporal markers and relating them to a

time axis.

Work on spatial and temporal evidence is further motivated by

strong information needs. When we look for a restaurant, we usu-

ally do not look for a restaurant anywhere on Earth, but rather

in a specific place or in its vicinity. To assign one dimension per

word term is totally inappropriate in this case. If we search for

a restaurant in Helsinki, we also want to get results from Kallio

(a Helsinki district), but restaurants from Melbourne will be irrel-

evant. In a simple vector space model, however, Kallio and Mel-

bourne are equally distinct of Helsinki. There is a similar difficulty

in distinguishing Saint-Petersburg, Russia, and Saint-Petersburg,

Florida, USA. Woodruff and Plaunt [WP94] summarized a list of

this kind of problems, termed as deficiencies of text-based geo-

referencing : lack of uniqueness, spatial boundary change, name

changing, naming variation, spelling variation, neologisms. The

importance of geographical information is underlined by the ap-

pearance of geographically-specialized features in the major search

engines. There is even recent work to elicit geographical evidence

from user queries, when this bit of information is not explicitly

specified [WWX+05].

Geographic information systems are based on two steps. First,

geographic references must be detected in text and associated with

the appropriate locations. This can be effectively achieved with the

help of a dataset associating place names and latitude/longitude

coordinate points. An example of such a dataset is the Geographic

Names Information System [otI95]. The second step is naturally to

make use of the data extracted. Once locations have been georefer-

enced and associated to their latitude and longitude, it is simple to

compute distance metrics among the geographic references found

in text. For example, the GeoV SM system [Cai02] supports two

distinct document descriptions, a word-based vector space model

and a spatial description, resulting in spatial and vector space sim-

ilarities that are gathered to a single similarity measure through a

combination function.

2.3 Advanced Descriptors 27

Conclusion There are numerous ways to improve the basic vec-

tor space model. In the rest of this dissertation, we will, however,

focus on the use of the sequential nature of text, giving a particular

importance to portability across language borders.

2.3.2 Extraction of Sequential Information

Most document models do not account for word order in a doc-

ument. However, we can assume that there must exist a way to

account for word order, which permits us to improve document de-

scription. The sole use of single word terms in the vector space

causes some trouble [ZTMFE97]. Some word associations have a

totally different meaning of the “sum” of the meanings of the words

that compose them (e.g., “hot dog” is most often not used to refer

to a dog that is warm). Other lexical units pose similar problems

(e.g., “to kick the bucket” is an expression that means “to die”).

Given that “to kick” means “to strike out with the foot”, and that

a “bucket” is a “cylindrical vessel used for holding or carrying liq-

uids or solids”, it appears clearly representing the expression “to

kick the bucket” by a dimension per word is truly misleading. This

problem can be solved by detecting the word sequence “kick the

bucket” and treating it as a single entity.

There are two approaches to extracting phrases: (1) using statis-

tical information, i.e., trying to exploit the simple fact that phrases

are words that occur together and (2) using linguistic information,

i.e., exploiting part-of-speech patterns or syntactical relations be-

tween words. Many of today’s approaches combine both statistical

and linguistic evidence.

Statistical Extraction

Mitra et al. [MBSC97] form a statistical phrase for each pair of two

stemmed adjacent words that occur in at least 25 documents of

the TREC-15 collection. The selected pairs are then sorted in lex-

icographical order. In this technique, we see two problems. First,

5The Text REtrieval Conference (TREC) is a forum that provides data sets

and judgments for the evaluation of text retrieval systems. Further information

is available at http://trec.nist.gov/

28 2 Basic Document Descriptors

lexicographical sorting means ignoring crucial information about

word pairs, that is, their order of occurrence. Furthermore, no gap

is allowed, although it is frequent to represent the same concept by

adding at least one word between two others. For example, this def-

inition of a phrase does not permit to note any similarity between

the two text fragments “XML document retrieval” and “XML re-

trieval”. This model is thus quite far from natural language.

Syntactical Extraction

The technique presented by Mitra et al. [MBSC97] for extracting

syntactical phrases is based on a part-of-speech analysis (POS) of

the document collection. A set of tag sequence patterns are prede-

fined to be recognized as useful phrases. All maximal sequences of

words accepted by this grammar form the set of syntactical phrases.

For example, a sequence of words tagged as “verb, cardinal num-

ber, adjective, adjective, noun” will constitute a syntactical phrase

of size 5. Every sub-phrase occurring in this same order is also

generated, with an unlimited gap (e.g., the pair “verb, noun” is

also generated). This technique offers a sensible representation of

natural language. Unfortunately, to obtain the POS of a whole

document collection is very costly. The index size is another is-

sue, given that all phrases are stored, regardless of their frequency.

In the experiments, the authors indeed admit to creating no index

a priori, but instead that the phrases were generated according to

each query. This makes the process tractable, but implies very slow

answers from the retrieval system, and hence a long wait for the end

user.

On top of computational problems, we see a few further issues.

The first one is the lack of a minimal frequency threshold to reduce

the number of phrases in the index. This means that infrequent

phrases are taking up most of the space and having a big influence

on the results, whereas their low frequency may simply illustrate an

inadequate use or a typographical error. To allow an unlimited gap

so as to generate subpairs is dangerous as well: the phrase “I like

to eat hot dogs” will generate the subpair “hot dogs”, but it will

also generate the subpair “like dogs”, whose semantical meaning is

very far from that of the original sentence.

2.3 Advanced Descriptors 29

Collocations

Numerous phrase extraction techniques are combinations of statis-

tical and syntactical methods. A collocation is defined by Smadja

as “a recurrent combination of words that co-occur more often than

chance and that correspond to arbitrary word usages” [Sma93]. The

notion of arbitrariness underlines the fact that if one word of a col-

location is substituted by a synonym, the resulting phrase may

become peculiar or even incorrect. “To give an elevator” is notably

not understood the same way as “to give a lift”.

Choueka et al. The initial work on extracting collocations is

that of Choueka, Klein and Neuwitz [CKN83]. Comparing to that

of Smadja, they had a slightly different definition of a collocation,

rather related to that of a statistical phrase: “a collocation is a

sequence of adjacent words that frequently appear together”. The

sequences were theoretically of any length, but were limited to size

6 in practice, due to computational problems. They experimented

on an 11 million word corpus from the New York Times archive

and found thousands of common expressions such as “home run”,

“fried chicken”, and “Magic Johnson”. After pointing the limited

size of the sequences, one can also regret the impossibility to ex-

tract any discontinuous sequence such as “knock . . . door”, due to

the adjacency principle of the definition. Finally, the criteria used

to qualify or reject a sequence as a collocation is based on an ab-

solute frequency threshold, which makes the results dependent on

the size of the corpus.

Church and Hanks. Church and Hanks described a colloca-

tion as a pair of correlated words [CH90]. That is, as a pair of

words that occur together more often than chance. The technique

is based on the notion of pointwise mutual information, as defined

in Information Theory [Sha48, Fan61]:

I(x, y) = log2
P (x, y)

P (x)P (y)
,

where P (x) and P (y) are the probabilities of occurrence of the

words x and y, and P (x, y) is the probability that both occur si-

multaneously. There is a degree of freedom in the definition of the

30 2 Basic Document Descriptors

“simultaneous occurrence” of two words. One can consider that two

words occur together when they occur in the same document, and

thus ignore word order, or consider that two words occur together

when they are adjacent. More generally, a window of simultaneity

needs to be defined to determine whether or not two words co-occur.

This set of techniques permits to retrieve interrupted sequences of

words as well as continuous ones. Unfortunately, a consequence

of the definition of pointwise mutual information is that the set of

candidate sequences is restricted to word pairs. This means that we

can only acquire collocations of size 2, when Choueka’s technique

permitted to reach size 6, even though the drawback was then to

require adjacency. Another limitation in the scope of their appli-

cation of collocations to lexicography is that in addition to true

lexical collocations, the technique finds pairs of words that occur

simultaneously because their semantic-relatedness causes them to

occur in the same contexts, and not because they form collocations.

Typical such pairs found by Church and Hanks are ”doctor-nurse”

or ”doctors-hospitals”.

Smadja’s Xtract. Built on the work of Choueka et al., Smadja

proposed a more complex technique. Xtract [Sma93] is a tool that

uses a frequency-based metric to find candidate phrases, and a syn-

tactical analysis to extract the collocations.

The first phase of Xtract is a statistical one. For each word, it

consists in computing the average-frequency of the other words oc-

curring within a 5-word radius thereof (either forward or backward).

Each word pair is then associated to its z-score, i.e., its number

of standard deviations above the average frequency. Pairs with a

z-score below a relative threshold parameter are pruned away. Lin-

guistic filters are then applied to get rid of those pairs, which are

not true lexical collocates. For example, for a pair ”noun-verb”, the

technique differentiates the case where the noun is the subject or

the object of the verb. Semantically related pairs (such as doctors-

hospitals) are also removed, by filtering the syntactic pairs of type

”noun-noun”.

Following the identification of word pairs, the collocation set is

recursively extended to longer phrases, by searching for the words

that co-occur significantly often together with a collocated pair

identified earlier. The final step relies on the part-of-speech analysis

2.3 Advanced Descriptors 31

of the co-occurrences, which permits to filter out more candidates.

To evaluate the quality of the final set of collocations, a lexicog-

rapher was asked to judge which answers were good collocations.

After the full processing, including both the statistical stages and

linguistic filtering, 80% of the phrases were evaluated as good col-

locations. The score was only 40% before the last step of syntactic

filtering, illustrating the primary importance of combining both lin-

guistic and syntactic information, in order to find accurate lexical

collocates.

It is worth underlining that the total amount of good collocations

was the same before and after the last step of syntactic filtering.

The precision improves from 40% to 80%, but the recall remains

identical at 94%. The syntactic analysis is therefore a means to

reduce the number of false positives, although a very efficient one

indeed. This proves useful in the context of Xtract where the main

targeted application is to assist lexicographers identifying new or

interesting expressions. In this task, manual filtering through a

set of candidate collocations is admittedly much faster than man-

ual scanning through a document collection.However, as discussed

earlier in section 2.1, the extraction of document descriptors often

needs to be efficient. In this respect, syntactic analysis is a very

serious threat.

Further, multilingualism is another major problem to address

because of the fact that every single language requires a different

syntactic parser. We will get back to this in more detail in sec-

tion 2.4 when discussing the main weaknesses of existing extraction

techniques of advanced document descriptors.

C-value and NC-value. The problem of nested collocations is

addressed by Frantzi et al. [FA96]. They introduce the C-value, a

measure to account for the fact that subsequences of a longer word

sequence may actually be more interesting. The first step consists

in extracting candidate adjacent word sequences with the further

restrictions of a user-selected minimal frequency threshold and a

maximal length (5 in the experiments). Part-of-speech analysis

is then used to select only the candidates that match linguistic

patterns such as “NounNoun+” or “Adj∗Noun+”. The C-value

is a variation of pure frequency. For each candidate sequence, the

C-value is calculated by subtracting from its frequency the average

32 2 Basic Document Descriptors

frequency of all the frequent sequences that contain it 6:

C-value(a) = log2 |a|


freq(a) −

∑

b∈superseq(a)

freq(b)

|superseq(a)|


 ,

where a is the candidate sequence, |a| is the length of a, freq(a) is

its frequency, and superseq(a) is the set of all longer sequences that

contain a.

In later work, the same authors extend their work to take into

account the context of candidate sequences [FAT98]. This is done

in two steps. First, the nouns, adjectives and verbs that occur

frequently next to interesting candidate sequences are identified.

The candidate sequences that are occurring next to these frequent

context words are then promoted, through a context factor. The

assumption made is that context words, i.e., words occurring right

before or right after the most interesting sequences are typical of

them, and their presence in the context of a sequence indicates that

it is more likely to be significant. The evidence of those context

words is thus used as a pseudo-relevance feedback technique, to

re-rank the candidate sequences using a context factor:

Ctxt factor(a) =
∑

b∈Ca

Ctxt freqa(b)weight(b),

where a is the candidate sequence, Ca is the set of all the context

words of a, Ctxt freqa(b) is how often the word b is adjacent to

the sequence a, and weight(b) is the proportion of all candidate se-

quences of which b is a context word, i.e., given a random candidate

sequence, the probability that b is a context word thereof.

Finally, the NC-value is a linear combination of C-value and

context factor:

NC-value(a) = 0.8 C-value(a) + 0.2 Ctxt factor(a),

where the weights of the linear combination are justified by exper-

imental evidence: “Regarding the weights 0.8 and 0.2 (...), these

were chosen among others after a series of experiments. The com-

bination 0.8 − 0.2 gave the best distribution in the precision of

extracted terms” (from [FAT98], p.601).

6The original formula (from [FAT98]) is reformulated here.

2.3 Advanced Descriptors 33

The data used in the experiments is a small collection (810, 719

words) of eye-pathology medical records in English. Unfortunately,

no other experiments have been reported. The use of linguistic

information combined to the lack of a mathematical justification

for the C and NC measures cause some concern with respect to the

chances of success of an application of this work to other domains

and languages. The C and NC values indeed rely on a number

of arbitrary parameter values that have been tuned for Automatic

Term Recognition (ATR) in a collection of eye-pathology records

in English. ATR is a special case of collocation discovery that

aims at technical, domain-specific collections (sometimes also called

sublanguages).

Defining specific measures and tuning their parameters for a

small monolingual and domain-specific collection of well-structured

documents, the performance improvement reported is moderate

versus the baseline, ranking terms in descending frequency of oc-

currence. It is not granted that this technique can be applied to

general-purpose document collections.

Dias et al. introduce a sound generalization of conditional

probabilities to n-gram extraction [DGBPL00a, DGBPL00b]. In

this work, an n-gram is defined as a vector:

[w1p12w2p13 . . . p1iwi . . . p1nwn],

where the wi’s are words, and the p1j ’s denote the distance between

w1 and wj. It is important to observe the rigidity of this definition

of an n-gram. No similarity is taken into account between two se-

quences containing the same n words in the same order, if only one

more (or one less) word occurs within one of the sequences. For

example, the two text sequences “former United States President

John Kennedy” and “former United States President John Fitzger-

ald Kennedy” permit to form two 6-grams:

[former +1 United +2 States +3 President +4 John +5 Kennedy]

and [former +1 United +2 States +3 President +4 John +6

Kennedy]. The obvious similarity between the two 6-grams is en-

tirely ignored, they are only seen as different.

The normalized expectation of occurrence of n words in fixed

relative positions is defined based on the average expectations to

see each of the words occur in a position, given the occurrence and

34 2 Basic Document Descriptors

position of occurrence of all the others. The cohesion of a lexical

multi-word unit is thus calculated as an average of the cohesion of

all its subparts.

NE([w1 . . . p1iwi . . . p1nwn]) =

p([w1p12w2p13 . . . p1iwi . . . p1nwn])
1
n

(p([w2 . . . p1iwi . . . p1nwn]) +
∑n

i=2 p([w1 . . . p̂1iŵi . . . p1nwn]))
,

where the hat sign ”ˆ” is written on top of the omitted term of a

succession indexed from 1 to n. The actual main metric introduced

by Dias et al., by which the list of n-grams is sorted, is a variation

of normalized expectation that rewards n-grams occurring more

frequently, the mutual expectation:

ME([w1 . . . p1iwi . . . p1nwn]) =

f([w1 . . . p1iwi . . . p1nwn]) × NE([w1 . . . p1iwi . . . p1nwn]),

where f([w1 . . . p1iwi . . . p1nwn]) is the absolute frequency of the n-

gram.

The calculation of mutual expectation and the corresponding

selection and ranking of n-grams is produced as follows. The first

step of the extraction technique introduced by Dias is to rank ev-

ery n-gram (n ≥ 2) according to its mutual expectation. To avoid

the extraction of an n-gram together with all its subparts (in the-

ory, an n-gram has (2n − n − 2) subparts of size 2 or more), the

LocalMaxs algorithm [SDGPL99] is applied to select the most co-

hesive subparts of an n-gram candidate. An n-gram N is selected

as a multi-word lexical unit if and only if its mutual expectation

is higher or equal to that of all the (n − 1)-grams that it contains

(unless n < 2), and if it is higher than that of all the (n +1)-grams

that contain N . This technique efficiently exploits the fact that

measures for n-grams of different sizes can be directly compared

to each other. The LocalMaxs algorithm further permits to avoid

the definition of a global ad hoc association measure threshold that

places the borderline between cohesive and non-cohesive multi-word

units, as is the case in related work (among others [CH90, Sma93]).

The approach is fully multilingual and domain-independent. It

permits to obtain multi-word units of any size directly, without re-

quiring a prior extraction of all bigrams. It does not require word

adjacency either, permitting to find a wider range of multi-word

2.3 Advanced Descriptors 35

units. However, the fixed distance required between words appears

as excessively rigid. This causes an explosion in the number of

distinct candidates and corresponding low frequencies associated

to them. The expectation measures are still computed for every

candidate, through the transformation of the raw text into a con-

siderable number of n-gram tables. The number of candidates to

be considered is certainly a threat regarding the space-complexity

of the process.

Finally, a small example can show a weakness of the LocalMaxs

algorithm. Assume we have a 2-, a 3- and a 4-gram such that the 2-

gram is a subgram of the 3-gram and the 3-gram is a subgram of the

4-gram. The LocalMaxs technique will in no situation qualify the

three n-grams as multi-word lexical units. However, there are cases

when it should. For example, the following 2-, 3- and 4-grams are

true multi-word lexical units, but they cannot all be recognized as

such with the LocalMaxs algorithm: “President Kennedy”, “Presi-

dent John Kennedy” and “President John Fitzgerald Kennedy”.

N -grams. It is worthwhile observing that the general defini-

tion of an n-gram is more comprehensive than that of Dias. An

n-gram is notably defined by Banerjee and Pedersen [BP03] as a

sequence of n tokens in online text, where a token can be defined

according to different granularities, e.g., typically as a word or a

character. They provided the Ngram Statistics Package (NSP), a

flexible software for the extraction of n-grams following this def-

inition. Given a maximal length for n and a window size k (the

maximal distance allowed between the first and last words of an

n-gram), the software outputs a list of all the n-grams together

with their frequencies and those of their subgrams. Hence, given a

maximal value for n, the output contains all the k-grams and their

frequency, for 1 ≤ k ≤ n. The generality of those definitions poses

a number of computational threats. First, the impossibility to set

a minimal frequency threshold means that a very large number of

terms need to be stored in the main memory, so as to have their fre-

quency counted. Following this, the practical window size needs to

be set very low, hence forcing adjacency between most components

of the n-gram.

NSP uses a midway approach on the use of stopwords. In the

work we presented earlier, either no stopword list was used, or a

36 2 Basic Document Descriptors

list was used and all stopwords were consequently removed. Baner-

jee and Pedersen proceed slightly differently, as they use a list of

stopwords, but instead of removing all the stopwords, they only re-

move the n-grams consisting exclusively of stopwords. Hence, if an

n-gram contains at least one word that is not a stopword, it will be

kept.

To remove every n-gram containing a stopword, or, equivalently,

to remove all stopwords before extracting the n-grams is a radi-

cal option of which limitation has notably been shown in the field

of document retrieval through query log analysis. Williams et

al. [WZB04] found that 8.4% of the explicit phrase queries of the

Excite log contained at least one of the 3 most common words of

the dataset, and that 14.4% contained one of the 20 most common

words. They further exposed that in many queries, stopwords play

an important role. For example, “flights to London” are not “flights

from London”.

The other extreme is to make no stopword pruning at all, and

thus allow for phrases containing only stopwords. A common prac-

tice has been to remove the phrases entirely made of stopwords,

because of the subsequent considerable increase in the total num-

ber of descriptors, with phrases that generally do not carry highly

discriminative content. However, still in the domain of document

retrieval, Paynter et al. [PWCB00] pointed out the consequence

that in this case, a small number of phrase queries cannot be eval-

uated at all (those consisting of stopwords only), while many more

are evaluated incorrectly. Typical examples in favor of keeping stop-

words in phrases are, for example, “to be or not to be” or the band

name “the who”.

The current trend is nowadays to allow for stopwords in phrases,

including stopwords-only phrases. This approach is further sup-

ported by industrial evidence, as the current leading search engine

Google has been dealing with stopwords in phrase queries since

2002.

2.4 Weaknesses of the Current Utilization of Word Order 37

2.4 Weaknesses of the Current Utilization of

Word Order

We exposed why word order matters, and we presented a number

of techniques to exploit this fact. In this section, we will enlighten

the weaknesses of the existing techniques, and what should better

be taken into account, in an ideal world.

In short, the current state of the art presents multi-word unit

extraction techniques that are too specific (domain- or language-

dependent), or that extract units that are either too short or too

rigid (no variance allowed in the number of words occurring between

two words of a unit). The result is that, despite the obvious supple-

mentary information brought by lexical cohesive units, their use in

information retrieval applications brings very weak improvement.

Sometimes, the results are even worsened.

2.4.1 Multilingualism

A number of techniques rely on language-dependent steps, such as

using a stopword list, word stemming, or performing syntactical

analysis. Syntactical analysis represents a threat to the need to

extract document descriptors efficiently. Further, it is the most

critical step, as it cannot be substituted by a language-independent

approach. In the contrary, stopword lists can for example be gen-

erated automatically using frequencies of occurrence (the least and

most frequent words being usually incorporated to the list). Obvi-

ously there exists no similar twist for part-of-speech analysis, and

any system using parts of speech will require a distinct analyzer for

every language it will encounter. We will discuss below why this is

not realistic,and argue that a multilingual technique cannot make

use of syntactical information.

Various estimates of the number of world languages have been

proposed, but David Crystal proposes a plausible approximate fig-

ure of 6,000 [Cry00]. One country alone may possibly have hundreds

of them (namely, Nigeria is known to have over 400 languages). Cer-

tainly in this domain, any precise number is highly controversial,

given at least the variable definitions of language and dialect, and

the fact that no world languages survey is complete. One cannot se-

riously consider building a multilingual method that would include

38 2 Basic Document Descriptors

language recognition techniques for 6,000 distinct languages and as

many syntactic analyzers and stoplists.

It can be argued to this last point that for a large majority of

languages, the available quantity of documents in electronic form

is small or null. According to the website of UNESCO’s7 Initiative

B@bel, 90% of Internet content is available in approximately 12

languages. The reason is simply that “the creation of content de-

velopment and information exchange tools and systems has largely

been driven by commercial interest”, thus excluding languages spo-

ken by small communities. However, the initiative B@bel, among

other projects, aims at creating such tools to permit the develop-

ment of content in smaller languages.

It is further estimated that about 50% of the world languages will

get extinct in the coming 100 years, that is on average, the death

of one language every two weeks. Responding to the situation,

UNESCO adopted the “Endangered Languages Project” in 1993,

with the aim to promote and sponsor programs for the description

of hitherto unstudied or inadequately documented endangered and

dying languages. For the numerous already condemned, the last

resort is to archive as many language samples as possible. Such

languages draw and will keep drawing attention from scholars who

will hardly find any tools for assisting them in their work. It seems,

for example, a safe bet to assume that there will not be much re-

search aimed at the development of automatic syntactic analyzers

for those languages.

The utilized approaches for dead and endangered languages are

therefore bound to be multilingual ones, general in nature, based

on data mining or statistical techniques.

Should we anyway decide to focus on the most spoken languages,

there are still 347 languages with at least one million speakers.

Together they account for 94% of the world’s population [GJ05]. In

any case, 347 is an unrealistic number of part-of-speech analyzers.

At a time when multilingual information retrieval is an increas-

ingly important research domain, we think it is of crucial impor-

tance to propose language-independent techniques for the extrac-

tion of multi-word units. The difficulty of this task is illustrated by

7United Nations Educational, Scientific and Cultural Organization

http://www.unesco.org

2.4 Weaknesses of the Current Utilization of Word Order 39

rare research in this direction, as was suggested by a recent work-

shop on multi-word expressions [TVBK04] where most of the 11

accepted papers presented monolingual techniques for a total of 6

distinct languages.

2.4.2 Contiguous and Non-Contiguous Rigidity

Due to computational complexity constraints, most extraction tech-

niques require adjacency between words as a prerequisite for them

to be able to form candidate multi-word units. This limitation is

sometimes artificially lifted by the use of stoplists to priorly re-

move function words. Even so, requiring word adjacency remains

a limitation. For example, the lexical unit “XML retrieval” will be

missed in the text fragment “XML information and its retrieval”.

And only by using a stoplist that removes the function words “and”

and “its”, can we duly find the pair “information retrieval” (but still

miss the pair “XML retrieval”).

As we mentioned above, Dias et al. [DGBPL00a, DGBPL00b]

introduced a technique that allows for other words to occur be-

tween two words of a multi-word unit. This number of other words

is unfortunately fixed, meaning, e.g., that the obvious similarity

between the two text fragments “XML information retrieval” and

“XML retrieval” is ignored.

The main reason for the rigidity of those models, be it due to

adjacency constraints (what we define as contiguous rigidity) or

to fixed distances (non-contiguous rigidity), is computational com-

plexity. Such constraints do evidently not provide realistic repre-

sentations of the complexity of human languages.

This weakness is attenuated by work in the domain of lexicog-

raphy, where it was shown that most lexical word associations

in English involve words that are separated by 5 other words at

most[JS74]. It is thus reasonable to think that the damage caused

by such rigid models is not as bad in English as it could be in other

languages.

While this maximal 5 words distance is agreed upon for English,

it is certainly arguable for many other world languages. Clearly, one

can imagine that this maximal distance is greater for (1) isolating

languages (also known as synthetic, languages where all the words

are invariable, and grammatical relationships are shown through

40 2 Basic Document Descriptors

the use of word order), such as Chinese, Vietnamese or Samoan

and for (2) languages where word order is more flexible (think, e.g.,

of German, where the verb sometimes must occur at the very end

of the sentence).

We believe that the rigidity constraints in use in most extraction

techniques are harmful. This fact is admitted, but the damage is

probably much worse for isolating languages and for those in which

word order is more fluctuating. There is need for a technique that

accounts for discontiguous association and allows for variation in

the relative positions of the words of a lexical unit.

2.4.3 Limitation in the Size of Phrases

Another consequence of computational complexity is that tech-

niques that are defined for sequences of any length often require

a maximal size in practice. The issue is a problematic one as very

long frequent sequences may occur in text. If a maximal length is

set to, say 8, and there exists a frequent multi-word association of

size 20, the discovery process has to output all the 8-sequences that

are subsequences of the longer one. If we disregard word positions,

their number is equal to the number of ways to choose 8 objects

from a set with 20 elements, that is
(20

8

)
= 20!

8!12! = 125 970. Given

that this one sequence of size 20 and the 125, 970 sequences of size

8 represent the same quantity of information, it is obvious that a

technique that only outputs the longer sequence is preferable.

This fact is striking for English, but in isolating languages, once

more, where each word corresponds to one morpheme, the size lim-

itation is even more critical as such languages naturally produce

longer frequent sequences.

The ability to extract sequences of any length is very desirable,

as it permits to provide accurate text descriptors in a very compact

form.

2.4.4 Weak Results

As a matter of fact, using multi-word units in information retrieval

has so far produced weak improvement. In some cases, the results

have even been worsened. We will next cover results and comments

from the domains of text classification and document retrieval.

2.4 Weaknesses of the Current Utilization of Word Order 41

In his Ph.D. dissertation, David Lewis [Lew92] extracted syn-

tactic phrases using a simple linguistic pattern: in a sentence, any

pair of non-function words that are heads of syntactic structures

connected by a grammatical relation. To compensate for the weak

frequency of phrases, he proposed to add phrase clustering in the

loop (to gather together phrases with a similar behavior). He eval-

uated his phrase clusters indirectly through text retrieval and text

classification experiments. The initial experiments in text retrieval

produced very weak improvement. The author pointed out the

fact that text retrieval collections had a relatively small number of

queries available, and that only a portion of the phrasal terms is

actually used. Therefore, any variation in effectiveness is hardly

statistically significant. Lewis further finds it difficult to extract

phrases from user queries, whereas this task in the document col-

lection is eased by the possibility to rely on statistics and part-of-

speech analysis. Consequently, he decided to use text classification

to pursue his goal to evaluate phrasal text representation. The re-

sults were even worse. A purely phrasal representation was found to

produce much lower effectiveness than a word-based representation.

And the use of phrase clusters only worsened the results.

Work on the use of phrases in information retrieval has con-

sistently exposed marginal improvements. Promising early results

in 1975 [SYY75] were likely due to a combination of the lack of

statistical significance of a too small document collection, and to

the fact that the quality of “basic” information retrieval systems

gradually improved, which made it harder and harder with time

to perform major efficiency improvement by the use of phrases.

Reiterations of these early experiments have all produced weaker

amelioration [Fag89, MBSC97, TM99]. In 1999, Karen Spärck-

Jones [SJ99] discouraged linguistics-based efforts, reaching the con-

clusion that “linguistically-motivated indexing is not needed for ef-

fective retrieval”. About multi-word units, she adds “where com-

pound terms are concerned, the statistical facts about term occur-

rences help as much to make joined terms linguistically legitimate

as natural language processing can”. Latest experiments still did

not show more than marginal improvement [Vec05].

A few reasons have been suggested for these disappointing re-

sults. Mitra et al. [MBSC97] suggests that the use of phrases tends

to favor documents that deal with only one aspect of multi-faceted

42 2 Basic Document Descriptors

queries. Such an example from TREC-4 is a query that deals with

“problems associated with pension plans, such as fraud, skimming,

tapping or raiding”. Reportedly, most promoted documents were

dealing with pension plans, but not with associated problems. This

problem is termed as one of inadequate query coverage. Another

issue is the fact that the result of mixing phrases and words into

similar weighting schemes has unclear consequences. Obviously, in a

naive scheme, the words occurring in phrases will have their weight

indirectly augmented. Precautions must be taken with respect to

this fact and the way we should deal with it [SSW+98, Lew92].

Despite discouraging experimental evidence, there is still a strong

consensus towards the assumption that the use of phrases must

permit to improve the performance of information retrieval appli-

cations. The principal ground for this widespread agreement is

the fact that phrases have higher information content and speci-

ficity than words. Despite more than 30 years of research, this

self-evident fact remains surprisingly difficult to exploit.

Experiments have been attempted to put aside the problem of

the automatic extraction of multi-word units, by involving humans

in the extraction process. Lewis ([Lew92] page 68) improved text

retrieval results by manually selecting the phrases to be used. More

recent work in the domain of interactive information retrieval by

Vechtomova [Vec05] used standard techniques of phrase extraction

(e.g., C-value) to propose ranked lists of candidate phrases to be

manually judged by the end-user. Only the user-selected phrases

were used in the document representations, resulting in slightly

better performance.

We can see these attempts of involving experts in the extraction

process as an illustration of the difficulty of automatically extract-

ing good phrasal descriptors. The modest improvements resulting

from the use of manually selected phrases is further support for

the idea that the exploitation of phrasal descriptors is not a solved

problem either.

Hence, not only is there room for more research towards the

extraction of better phrases, but there remains a lot of work to

be done towards finding better techniques to exploit them in real

information retrieval applications.

2.4 Weaknesses of the Current Utilization of Word Order 43

2.4.5 Conclusion

Now that we have developed on the current techniques and their

limitations, we shall look at the results following a radically different

approach of the discovery of interesting word sequences. The data

mining field has proposed a number of algorithms for sequential

pattern mining, an approach that, as its name indicates, is general

enough to treat words as any other type of sequential data. An

obvious consequence is the absence of linguistic information in the

basic definitions. Linguistic information can in fact often be taken

into account, but it is never necessary.

In the next chapter, we will take a glance at the data mining

approach to the discovery of interesting word sequences. We will

then present MineMFS, a promising technique to extract Maximal

Frequent Sequences (MFS) developed at the University of Helsinki

by Helena Ahonen-Myka. For relatively large document collections,

where MineMFS fails to provide good content descriptors, we will

present MFS MineSweep, a contribution of this dissertation that

permits to extract interesting word sequences from document col-

lection of virtually any size. It relies on the idea of partitioning

a large collection into cohesive subcollections, before joining the

interesting word sequences of each subcollection.

44 2 Basic Document Descriptors

CHAPTER 3

Advanced Document Descriptors
- A proposal

After covering the state of the art in collocation discovery, we came

to the conclusion that the current multi-word extraction techniques

are lacking a number of desirable characteristics. First of all, the

multi-word units extraction techniques are often too specific, relying

on linguistics or domain-dependent steps. Second, they are nearly

always limited in size, which may imply a drastic increase in the

amount of space required to store the corresponding set of content

descriptors. Finally, rigid descriptors, i.e., descriptors that account

for no variance in the number of words between two words of a unit,

are too strict a model of the variety of natural language.

In the next section, we will define the concept of a Maximal Fre-

quent Sequence (MFS) [AMD05, AM05]. In short, a sequence is

said to be frequent if it occurs more than a given frequency thresh-

old. It is said to be maximal, if it is not a subsequence of an-

other frequent sequence. The property of maximality guarantees

to obtain the longest frequent sequences possible, and none of their

subsequences individually. This ensures that the set of MFSs of a

document collection is a very compact representation. We believe

maximal frequent sequences can be an efficient way to account for

the sequential aspect of textual data. Aiming at the extraction

of all the MFSs of a document collection, we will present various

methods of sequential pattern mining. All of them avoid the prob-

lem of sequence rigidity, by allowing for an unlimited gap between

any two items (words) of a sequence. None of them uses linguistics

45

46 3 Advanced Document Descriptors - A proposal

or domain-dependent techniques. Most of them are actually not

meant for textual data, but rather for any type of sequential data.

We will finally present MineMFS, an algorithm for the extrac-

tion of MFSs in text. We will also present its limitations and finally

introduce our contribution, MFS MineSweep, a technique that re-

lies upon MineMFS to extract relevant document descriptors from

document collections of virtually any size (Section 3.2).

3.1 Maximal Frequent Sequences (MFS)

Let us now introduce the concept of a Maximal Frequent Sequence

in further detail. We will then overview the data mining techniques

that aim at the extraction of sequential patterns, and notably those

that permit to extract Maximal Frequent Sequences.

3.1.1 Definitions

Definition 1 A sequence p = a1 · · · ak is a subsequence of a se-

quence q if all the items ai, 1 ≤ i ≤ k, occur in q and they occur

in the same order as in p. If a sequence p is a subsequence of a

sequence q, we also say that p occurs in q and that q is a superse-

quence of p.

For instance, the sequence “unfair practices” can be found in all

of the three sentences in Figure 3.1.

The interestingness of a subsequence is usually defined with re-

spect to a set of constraints, which are assumed to represent some

natural restrictions in the domain. In practice, the constraints are

also used to reduce computational costs. The most common con-

straint is the minimum frequency. The frequency of a (sub)sequence

can be, e.g., the number of text fragments that contain it.

Definition 2 A sequence p is frequent in a set of fragments S if

p is a subsequence of at least σ fragments of S, where σ is a given

frequency threshold.

If we assume that the frequency threshold is 2, we can find two

frequent sequences in our sample set of sentences: “congress retali-

ation against foreign unfair trade practices” and “unfair practices”

(Fig. 3.1).

3.1 Maximal Frequent Sequences (MFS) 47

1. The Congress subcommittee backed away from mandating

specific retaliation against foreign countries for unfair for-

eign trade practices.

2. He urged Congress to reject provisions that would mandate

U.S. retaliation against foreign unfair trade practices.

3. Washington charged France, West Germany, the U.K., Spain

and the EC Commission with unfair practices on behalf of

Airbus.

Figure 3.1: A set of sentences from the Reuters-21578 collec-

tion [Reu87].

As we will see shortly, the special characteristics of text data

usually prohibits discovering all frequent subsequences. Instead,

the patterns of interest can be restricted to be maximal frequent

subsequences.

Definition 3 A sequence p is a maximal frequent (sub)sequence

in a set of fragments S if there does not exist any sequence p′ in S

such that p is a subsequence of p′ and p′ is frequent in S.

In our example, the sequence “unfair practices” is not maxi-

mal, since it is a subsequence of the sequence “congress retaliation

against foreign unfair trade practices”, which is also frequent. The

latter sequence is maximal.

In addition to a minimum frequency threshold, we can also set a

maximum frequency threshold. If we prune away the very frequent

words, we can reduce the search space significantly. The disadvan-

tage is naturally that we cannot discover any sequences that contain

common words, like verb–preposition pairs.

The internal density of subsequences can be influenced by con-

straining the occurrences of events into a predefined window. The

size of a window can be a fixed constant, or some natural structure

can be taken into account. For instance, the words in a sequence

have to occur within a sentence or a paragraph. This latter con-

straint can be easily implemented by choosing the representation

of a text to be a set of sentences or a set of paragraphs, respec-

tively. We can also define a maximum gap, which gives the number

48 3 Advanced Document Descriptors - A proposal

of other words that are allowed in text between the words of a se-

quence. If the maximum gap is zero, we find n-grams in the most

common sense, i.e., sequences of words, where the words occur con-

secutively. It is also possible to define a minimum gap, although it

is harder to find any reasons for that in a general case.

A minimum and maximum length of sequences can also be de-

fined, although both are problematic in practice. Usually the min-

imum length of interesting sequences is 2. As the number of se-

quences decreases radically when the length of sequences increases,

we would probably lose a significant part of interesting sequences,

if we set the threshold even to 3. The set of frequent pairs natu-

rally also contains a load of uninteresting information, and hence,

ignoring them is tempting. It seems, however, to be more reason-

able to use some other ways to measure the interestingness than

the plain length. Setting a maximum length for a sequence may

also be problematic, as very long frequent sequences may occur in

a text. As we already discussed in section 2.4.3, a maximum length,

even high, may easily cause a thousands-fold increase in the num-

ber of document descriptors. Whereas if the length is not restricted,

the maximal frequent sequences get a chance to be a very compact

representation of the regularities in text.

Now that we have defined Maximal Frequent Sequences, and

motivated the reasons why they are an efficient text representation,

we will focus the rest of this section on how to efficiently extract

the set of MFSs of a document collection.

3.1.2 Levelwise Extraction

Given a document collection and a minimal frequency threshold, a

natural first idea is to go through the document collection, collect

each frequent word, and use the set of all frequent words to produce

candidate word pairs (bigrams) and retain only the frequent ones.

The process of forming and counting the frequency of (n+1)-gram

candidates from the set of all frequent n-grams can be repeated

iteratively as long as frequent (n+1)-grams are found. To obtain the

set of all MFSs, the last step is to remove every frequent sequence

that is a subsequence of another frequent sequence. This naive

approach is very inefficient as such and needs further improvement.

In 1995, Agrawal and Srikant [AS95] introduced the problem of

3.1 Maximal Frequent Sequences (MFS) 49

mining sequential patterns as an advanced subtask of data mining.

Its principal aim is thus to support the decision-making of large

retail organizations, where typical data consists of customer trans-

actions, that is, database entries keyed on a transaction id and each

consisting of a customer id associated to the list of items that she

bought in this very transaction. The problem of mining sequen-

tial patterns is a more advanced version of a general problem of

data mining, the extraction of interesting item sets. Zaki [Zak01]

describes the “sequence search space (as) much more complex and

challenging than the item set space”. An obvious and intuitive ex-

planation is that there is more to deal with. In sequential pattern

mining, we aim to exploit the fact that the transaction entries of

the databases include a time field that permits to sort the transac-

tions in chronological order and even know the time interval (or dis-

tance) that separates them. Association rules describe intra-event

patterns, while sequential pattern mining must also discover inter-

event patterns. A motivating example of an interesting sequential

pattern (imagined in [AS95]) would be that customers typically

rent the movie “Star Wars”, then “The Empire Strikes Back”, and

finally “The Return of the Jedi”.

In the same paper, Agrawal and Srikant [AS95] present the

AprioriAll algorithm that only differs from the naive approach pre-

sented above because of an intermediary pruning step to remove all

(n + 1)-gram candidates that contain at least one non-frequent n-

gram. This permits to avoid a number of useless frequency counts.

The remaining necessary counts are executed faster by storing the

sequences in hash-tree structures. A very close approach by the

same authors (in reversed order) is the GSP algorithm [SA96],

which performs better than AprioriAll mostly thanks to slightly

more advanced candidate pruning.

In the same spirit, Mannila et al. [MTV95] proposed a technique

for discovering frequent episodes that consists in sliding a time win-

dow over the input sequence, and finding all the patterns that occur

in a user-specified percentage of the windows.

3.1.3 Sequential Pattern Mining Techniques

SPADE. Zaki [Zak01] presented SPADE, an advanced tech-

nique for the discovery of sequential patterns, which introduced a

50 3 Advanced Document Descriptors - A proposal

number of key improvements. First, it uses a vertical database for-

mat, where each sequence is associated with a list of the positions

where it occurs. This improves the process of frequency counting.

Second, the candidate (n+1)-sequences are generated by intersect-

ing each two n-sequences that have a common (n−1)-length prefix.

A third main improvement is a lattice-theoretic approach that per-

mits to reduce the search space into smaller equivalence classes that

can be processed independently in main memory. Unfortunately, al-

though SPADE accelerates frequency counting, it still enumerates

all frequent sequences.

DFS Mine. Using a comparable lattice-theoretic approach,

Tsoukatos and Gunopulos [TG01] presented DFS Mine, a tech-

nique that tries to discover (n + 1)-sequences without enumerating

all the frequent sequences of length n. The technique relies on a

new way to exploit the fact that every subsequence of a frequent

sequence is frequent. It uses the consequent fact that, if a short

sequence is not frequent, then every longer sequence that contains

it can be discarded. The main idea of DFS Mine is that, if a

n-sequence is found before its (n− 1)-subsequences have been enu-

merated, they will not need to be enumerated at all, since they will

be known to be frequent. In practice, the generation of candidate

(n + 1)-sequences is done by intersecting a n-sequence with all the

frequent items. The algorithm stores two global structures: first,

a list of minimal non-frequent sequences that is used to prune out

all the candidate sequences that contain one of them. Second, the

output of the algorithm, a list of maximal frequent sequences, which

is also used to prune the candidate sequences that are subsequences

of a maximal frequent sequence.

DFS Mine has been developed for spatiotemporal data, where

the number of different items is low. Thinking of text, to intersect

n-word sequences with all (or many) of the frequent words of the

collection is not realistic.

3.1.4 Sequential Patterns and Text

If applied to textual data, all the breadth-first, bottom-up ap-

proaches would fail quickly (or actually never end). To extract

all the maximal frequent sequences of a document collection, they

permit pruning but require to keep in memory all the subsequences

3.1 Maximal Frequent Sequences (MFS) 51

of two distinct lengths. They further require an unreasonable num-

ber of passes over the data. Depth-first search takes less memory

and permits to calculate all maximal frequent sequences. However,

when using data with a large vocabulary (e.g., textual data), the

number of items (e.g., words) to be intersected with a given se-

quence is equally large. So is the number of intersections to be

processed.

The specific characteristics of textual data make the applicabil-

ity of such algorithms rather restricted. As a matter of fact, the

domains of application presented in sequential pattern mining have

limited-sized vocabulary (the number of distinct items), e.g., cus-

tomer transaction analysis or telecommunication network monitor-

ing [MTV95]. Another main research trend is to mine biosequences,

where the size of the vocabulary is even smaller, e.g., there are only

20 amino acids, and there are only 4 molecules containing nitro-

gen present in the nucleic acids DNA and RNA (designated by the

letters A, C, G, and T).

Hence, a major difference between the common data of sequence

mining and textual data is the size of the vocabulary. As we have

seen in section 2.2, a comprehensive estimate of the number of words

in English is two million. We should also observe that this figure

does not include numbers and codes, which are often present in real-

life documents. Furthermore, one same collection may well contain

text fragments in different languages, suggesting that the potential

size of the index term vocabulary is far greater than two million.

Of course, such numbers are never reached in practice, but even a

moderate-sized text collection has a considerably large vocabulary.

For example, the vocabulary size of the widely known Brown corpus

is 50, 406 distinct words [KF67]. Even so, this corpus is very small

by today’s standards, as it contains a total of about one million

words for a total size of 7 megabytes, while the collections used in

the experiments of this dissertation thesis are much bigger, some of

them larger than a gigabyte.

Further, the distribution of words is skewed. There is a small

number of words that are very frequent, whereas the majority of

words are infrequent. The words with moderate frequency are

usually considered the most interesting and most informative. If

the very frequent words are removed, the resulting search space is

very sparse. The length of the interesting sequences is also skewed.

52 3 Advanced Document Descriptors - A proposal

There is a large number of short sequences, but also very long se-

quences are possible. An extreme case is, for instance, if the data

set contains several copies of the same document.

These special characteristics of textual data have a strong influ-

ence on the discovery of interesting sequences in text. Breadth-first,

bottom-up approaches such as [MTV95, AS95, SA96] are failing

quickly with textual data for a number of reasons. First, they gen-

erate a lot of candidates and counting the frequency of occurrence

of each of these candidates is slow. Further, in order to answer

the question if a candidate occurs in an input sequence, all the

n-sequences of the input sequence are conceptually generated and

compared to the set of candidates. As frequent sequences can be

very long, this is prohibitive.

3.1.5 An Answer: MineMFS

Helena Ahonen-Myka developed a method that combines breadth-

first and depth-first search, MineMFS [AMD05, AM05]. It extracts

maximal frequent sequences of any length, i.e., also very long se-

quences, and it allows an unrestricted gap between words of the se-

quence. In practice, however, text is usually divided into sentences

or paragraphs, which indirectly restricts the length of sequences,

as well as the maximal distance between two words of a sequence.

The constraints used in the method are minimum and maximum

frequency. Hence, words that are less (respectively, more) frequent

than a minimum (respectively, maximum) frequency threshold are

removed.

Because the number of distinct words can be relatively high, as

can the number of 2- and 3-grams, the sets of frequent pairs and the

set of frequent trigrams are computed separately. All the frequent

ordered pairs are initially collected. An ordered pair is a 2-gram

(A,B) such that the words A and B occur in the same sequence

in this order and the pair is frequent in the document collection.

Next, all the frequent words that do not belong to a frequent pair

are removed. This extra step eases the computation of the frequent

ordered 3-grams. As detailed in Algorithm 1, the frequent trigrams

are used as seeds for the discovery of longer frequent sequences,

while the set of maximal frequent sequences initially contains the

maximal frequent pairs, that is, the set of all frequent bigrams that

3.1 Maximal Frequent Sequences (MFS) 53

are not a subsequence of a frequent trigram.

Algorithm 1 MineMFS.

Input: G3: the frequent 3-grams

Output: Max: the set of maximal frequent sequences

1. n := 3

2. Max := the maximal frequent pairs

3. While Gn is not empty

4. For all grams g ∈ Gn

5. If a gram g is not a subsequence of some m ∈ Max

6. If a gram g is frequent

7. max := Expand(g)

8. Max := Max ∪ {max}

9. If max = g

10. Remove g from Gn

11. Else

12. Remove g from Gn

13. Prune away grams that are not needed any more

14. Join the grams of Gn to form Gn+1

15. n := n + 1

16. Return Max

As for DFS Mine, an important principle of MineMFS is that

it computes frequent (n+1)-sequences without enumerating all fre-

quent n-sequences. The input of the discovery process (i.e., Algo-

rithm 1) is the set of all frequent 3-grams. Its principle is to take a

3-gram and try to combine it with other items in a greedy manner,

i.e., as soon as the 3-gram is successfully expanded to a longer fre-

quent sequence, other expansion alternatives are not checked, but

only that longer frequent sequence is tentatively expanded again.

This expansion procedure is repeated until the longer frequent se-

quence at hand can only be expanded to infrequent sequences. This

last frequent sequence is a maximal one. This step is known as the

expansion step (line 7 of Algorithm 1).

When all the frequent 3-grams have been processed in this way,

those that cannot be used to form a new maximal frequent sequence

of size more than 3 are pruned (line 13 of Algorithm 1). The re-

maining ones are used to produce candidate 4-grams (line 14) that

54 3 Advanced Document Descriptors - A proposal

will be used in a new iteration of the process that relies on 4-gram

seeds (line 15). Iterations are repeated until no new maximal fre-

quent sequence can be discovered.

A main strength of MineMFS versus DFS Mine is the fact

that in the expansion step, the choice of items that may be inserted

to tentatively expand a n-gram is restricted to the other non-pruned

frequent n-grams. Whereas in DFS Mine, a n-gram is expanded

by trying to insert every (or most) frequent items, which is not

realistic when the items are as numerous as the distinct words of a

document collection.

Finally, by using sophisticated pruning techniques, the MineMFS

algorithm restricts the depth-first search, which permits to check

only a few alternatives for expanding a sequence, even though the

size of the vocabulary is large. This permits to extract all the

maximal frequent sequences of a document collection in an efficient

manner.

The use of minimal and maximal frequency thresholds also per-

mits to reduce the burstiness of word distribution. On the other

hand, it causes the miss of a number of truly relevant word associa-

tions. For large enough collections, the MineMFS process fails to

produce results, unless excessive minimal and maximal frequencies

are decided upon, in which case the set of MFSs produced is small

and contains mostly non-interesting descriptors.

One reason may be the pruning step, which relies on the heavy

process of going through the set of n-grams, and comparing each

one of them to every other n-gram with which they can form an

(n + 1)-gram. Numerous checks have to be computed in this step.

Another difficulty stems from the expansion step, where it must

be checked if a new item can be added between every two adjacent

words of a possibly long sequence. The number of possible positions

of insertion shall be problematic.

3.2 MFS MineSweep, Partitioning the

Collection to Approximate the MFS set

When we try to extract the maximal frequent sequences of a large

document collection, their number and the total number of word

3.2 MFS MineSweep, Partitioning the Collection to
Approximate the MFS set 55

features in the collection pose a clear computational problem and

does not actually permit to obtain any result.

To bypass this complexity problem, we present MFS MineSweep,

to decompose a collection of documents into several disjointed sub-

collections, small enough so that the set of maximal frequent se-

quences of each subcollection can be extracted efficiently. Joining

all the sets of MFSs, we obtain an approximate of the maximal fre-

quent sequence set for the full collection. We conjecture that more

consistent subcollections permit to obtain a better approximation.

This is due to the fact that maximal frequent sequences are formed

from similar text fragments. Accordingly, we formed the subcollec-

tions by clustering similar documents together using a well-known

clustering algorithm.

We will now present and evaluate this new technique that com-

plements the MineMFS algorithm to permit the extraction of more

and sharper descriptors from document collections of virtually any

size. Its main drawback is the loss of the maximality property,

producing a less compact set of content descriptors.

3.2.1 Description and Claims

Our approach relies on the idea to partition the document collection

into a set of homogeneous subcollections. The first reason to do this

is that MineMFS does not produce any result at all for sufficiently

large document collections.

Figure 3.2 describes the steps of MFS MineSweep. In the first

phase, we apply MineMFS on a number of disjoint subcollections,

so as to obtain an MFS set corresponding to each subcollection.

The second step is to gather the MFS sets of each subcollection

to form a set of content descriptors for the whole collection. This

gathering operation mainly consists in appending the sets of MFSs,

as there is no clear way to join a sequence (maximal frequent in

a subcollection) to its subsequence (maximal frequent in another).

Only identical sequences can be merged. Thus, the maximality

property is lost, and therefore, the content description of our pre-

partitioning technique is always less or equally compact to that of

the MFSs of the whole collection.

56 3 Advanced Document Descriptors - A proposal

Documents

INPUT:

clustering
algorithm

JOIN

the cluster-wise
MFS subsets into one set

of phrasal descriptors Set of phrasal
descriptors of the

document collectionOUTPUT:

k document
 clusters :

k MFS sets:

Form MFSs
separately
for each
cluster

Figure 3.2: The different phases of MFS MineSweep.

3.2 MFS MineSweep, Partitioning the Collection to
Approximate the MFS set 57

• d1: Mary had a little lamb whose fleece was white as snow.

• d2: A radio station called Sputnik broadcasts Russian pro-

grams in Saint-Petersburg and Helsinki. It was named after

the first satellite ever launched.

• d3: History changed on October 4, 1957, when the Soviet

Union successfully launched Sputnik I. The world’s first ar-

tificial satellite was about the size of a basketball, weighed

only 183 pounds, and revolved around the Earth in about 98

minutes.

• d4: Everywhere that Mary went, her lamb was sure to go.

Figure 3.3: A collection of four documents.

Hypotheses.

With this technique, we make three main claims that we will try

to confirm or disprove in the evaluation. The main motivation for

developing MFS MineSweep is to obtain results more efficiently,

and even to obtain results when using MineMFS directly would

fail (Hypothesis 1: H1).

Our second claim is that our technique can efficiently obtain a

more detailed description of the document collection (Hypothesis

2: H2), as we can use looser frequency thresholds. This is easily

understood by thinking of an extreme case; if a collection of |D|

documents is split into |D| subcollections of size 1 and the mini-

mal frequency is 1, we can obtain the corresponding sets of MFS

instantly: each MFS set contains only one sequence of frequency 1,

the unique document in the corresponding subcollection. No infor-

mation is lost, but the content description is probably too large. For

example, let us look at the collection of four documents presented

in Figure 3.3. By splitting the collection into four subcollections of

size 1 and applying MineMFS with unit minimal frequency, each

subcollection would be represented by the document it contains,

i.e., the document d1 would be represented by only one 11-gram

of frequency 1: “Mary had a little lamb whose fleece was white as

snow”.

Our third main claim is about the optimal way to form the dis-

58 3 Advanced Document Descriptors - A proposal

jointed subcollections. We conjecture that more consistent subcol-

lections permit to obtain better descriptors (Hypothesis 3: H3).

The main reason of this train of thought relies on the fact that a

collection made of similar documents will contain more interesting

maximal frequent sequences than a collection made of dissimilar

documents. Again, thinking of extreme cases makes this point eas-

ier to see, as a collection where no two documents have a word

in common will not contain any frequent sequences, except for the

documents themselves (if the frequency threshold is 1).

For example, let us assume that we want to partition the collec-

tion of four documents presented in Figure 3.3 into 2 subcollections

of 2 documents each, and use a minimal frequency of 2 for extract-

ing MFSs from the subcollections. Only by clustering together the

similar documents (d1, d4) and (d2, d3), will we obtain sequences of

words, that is, phrasal descriptors. Those descriptors are: “Mary

lamb was” for the documents d1 and d4, and “Sputnik first satellite

launched” for the documents d2 and d3. Any other way to partition

the collection produces an empty phrasal description.

3.2.2 Measuring an MFS-Based Phrasal Description

To confirm or disprove the three hypotheses we just made, we need

measures to compare different sets of phrasal descriptors. The qual-

ity metrics upon which we want to compare sets of descriptors

should be able to evaluate two things:

1. The size of a phrasal text representation.

2. The amount (and density) of information in a phrasal text

representation.

In general, the problem of comparing two sets is not an easy

one. A large quantity of work in the domains of document clus-

tering and textual classification has proposed measures to compare

different ways to partition document sets [SKK00, Seb02]. Unfor-

tunately, we cannot exploit this work to solve our problem, because

such techniques rely on the comparison of a given clustering (or

classification) to a gold standard. In the general case of textual

representation, without aiming at a specific application, there is no

obvious way to define a gold standard of the phrasal description of

a document collection.

3.2 MFS MineSweep, Partitioning the Collection to
Approximate the MFS set 59

Fortunately, the problem we are facing here is a sub-problem

of the above. The sets we need to compare are indeed similar in

nature, because they result from various runs of the same extraction

technique. For example, a major difficulty in comparing general

sequences would be the comparison of long grams to their subgrams.

However, in the specific case where all the descriptors are MFS

(either of the whole collection or of one of its subcollections), we can

simplify the problem by normalizing each descriptor to a set of all its

subpairs. This is because the unlimited distance allowed between

any two words of an MFS permits to ensure that the assertion

“ABCD is an MFS” is equivalent to the assertion: “AB, AC, AD,

BC, BD, and CD are frequent bigrams”.

Without loss of information, we can thus transform each set of

phrasal descriptors into a set of comparable items, the frequent bi-

grams it contains. Let RD be the phrasal description of a document

collection D, and Rd be the corresponding set of phrases describing

a document d ∈ D. We can write the corresponding set of word

pairs as bigrams(Rd). For b ∈ bigrams(Rd), we also define dfb as

the document frequency of the bigram b. Finally, we define the

random variable X over the set bigrams(Rd):

for all b ∈ bigrams(Rd) : p(X = b) =
dfb∑

y∈{
S

d∈D
bigrams(Rd)} dfy

,

where
∑

y∈{
S

d∈D bigrams(Rd)} dfy is the total number of bigram oc-

currences resulting from the phrasal description RD. It can be

thought of as the sample size.

Size of the representation of a document collection. The

phrasal representation of a document collection can be seen as a

set of associations between descriptive n-grams and documents. We

define |RD| as the size of the phrasal representation RD in a very

intuitive way:

|RD| =
∑

d∈D

|Rd|.

Hence, |RD| is the summation of the size of the phrasal represen-

tation of each document d ∈ D, where the size of the phrasal rep-

resentation of a document is the number of phrasal descriptors it

is associated to. In other words, |RD| is the number of document-

phrase associations in the collection representation RD.

60 3 Advanced Document Descriptors - A proposal

Equivalent quantity of frequent bigrams in the representation.

After we have noticed that every MFS can be normalized to a set

of frequent bigrams, it appears natural to measure the quantity of

information in the description with the number of bigram-document

associations that correspond to the description RD. This value is

bigram size(RD), defined as follows:

bigram size(RD) =
∑

d∈D

|bigrams(Rd)|.

Hence, the equivalent quantity of frequent bigrams in RD| is the

summation of the size of the equivalent bigram representation of

each document in d ∈ D, where the size of the equivalent bigram

representation of a document is the number of distinct frequent

bigrams it is associated to. In other words, bigram size(RD) is

the number of document-bigram associations stemming from the

collection representation RD. Observe that many descriptors may

contain identical bigrams and represent the same document. To

count the number of bigram-document associations is a way to avoid

counting redundant information stemming from the long descrip-

tors.

Density of the description. To measure whether the descrip-

tion is loose or dense, we can use the two preceding measures in a

very simple way. By computing the ratio between the number of

document-bigram associations corresponding to a document repre-

sentation and the size of that document representation, we obtain a

relative measure of the excess number of document-bigram associ-

ations that are avoided when they are replaced by longer n-grams:

Density(RD) =
bigram size(RD)

|RD|
.

For example, a density value of 1.1 means that the bigram represen-

tation of RD contains 10% more associations than the equivalent

representation RD. The higher Density(RD), the more storage

space we save by using RD instead of frequent pairs only.

3.2.3 Experiments and Results

In this section, we will detail and implement a set of experiments

that permit to verify our initial hypotheses, based on the metrics

we previously defined.

3.2 MFS MineSweep, Partitioning the Collection to
Approximate the MFS set 61

Table 3.1: INEX. Serial extraction within circa 17 minutes, and

corresponding frequency thresholds using MineMFS directly and

MFS MineSweep on random partitions of size 2, 3 and 5.
Number of partitions (min,max) Extraction Time Bigrams

1 [MineMFS] (800,950) 18min14s 1,655

2 (725, 900) 16min27s 2,248

3 (550, 700) 16min54s 3,116

5 (500, 600) 16min07s 2,084

MFS MineSweep permits extracting descriptors in situations where

MineMFS alone fails (Hypothesis H1).

To verify H1, the claim that our technique permits to obtain in-

teresting descriptors when a direct use of MineMFS would fail

to do so, we apply both approaches to the INEX document col-

lection (Initiative for the Evaluation of XML retrieval1), a 494Mb

document collection that contains 12, 107 English-written scientific

articles from IEEE journals. We ignored the XML structure of the

documents, to retain only plain text content. We have used a prac-

tical time limit of 17 minutes to extract phrasal descriptors, and

used identical desktops for all the experiments, with a 2.80 Ghz

processor and 1024Mb of RAM. Results are presented in Table 3.1.

Applying MineMFS directly, we tried numerous frequency thresh-

olds and failed to compute a non-empty description in less than 17

minutes. The fastest non-null description came short in 18 minutes

and 14 seconds, with minimal and maximal thresholds of 800 and

950, resulting in a quantity of information of 1, 655 bigrams.

Note, as a general comment on every experiment involving ran-

dom partitioning in this chapter, that every value resulting from

a random partition into n subcollections is actually the average

outcome of 10 distinct iterations of the random partitioning and

evaluation process. Using our technique, and splitting the collec-

tion randomly into disjoint subcollections, we obtained results in

less than 17-minute for partition in 2, 3 and 5 subcollections. The

amounts of information should be compared carefully, as the num-

1available at http://inex.is.informatik.uni-duisburg.de/2005/

62 3 Advanced Document Descriptors - A proposal

Table 3.2: INEX. Extraction times if the MFS extraction is run in

parallel for each subcollection.
Partitions (min,max) Parallel (Average) Extraction Time

1 [MineMFS] (800,950) 18min14s (18min14s)

2 (725, 900) 8min21s (8min14s)

3 (550, 700) 5min44s (5min38s)

5 (500, 600) 3min19s (3min13s)

bers of descriptors are small. We will present an extensive com-

parison of varying amounts, sizes, and densities of information in

the next subsection, where we will confront our second hypothesis

using a smaller document collection.

It is important to observe that the extraction of the set of MFSs

is an independent process for each distinct subcollection. A prof-

itable alternative, and an easy one to implement, is to run the

extraction of the MFS sets in parallel, on distinct computers. If we

use a distinct machine for the extraction of each MFS set, the total

running time is the running time of the slowest MFS set extraction,

plus the time to split the document collection. Based on a set of

desktops with a 2.80 Ghz processor and 1024Mb of RAM, the cor-

responding running times are shown in Table 3.2. Those results are

to be compared to the 17-minute time limit under which no direct

use of MineMFS could output a non-null description, and to the

earlier amounts of information shown in Table 3.1. Thus, we can

observe that with 5 desktops, we can obtain results in only 3 min-

utes and 19 seconds with MFS MineSweep, whereas no results

could be obtained in less than 18 minutes with MineMFS. Hence,

Hypothesis H1 is verified: with MFS MineSweep, we can obtain

a phrasal description in situations where MineMFS fails to do so.

To truly place the different values on equal grounds, time-wise,

we ran another experiment in which the frequency thresholds were

changed so that they approached the 17 minutes time limit for the

parallel computation of the MFS sets. The results are presented in

Table 3.3. It appeared surprisingly difficult to get close to the time

limit, as a small increase in the frequency range would sometimes

cause a major rise in the extraction time. We will later describe

3.2 MFS MineSweep, Partitioning the Collection to
Approximate the MFS set 63

Table 3.3: INEX. Parallel extraction within circa 17 minutes, and

corresponding frequency thresholds using MineMFS directly and

MFS MineSweep on random partitions of size 2, 3 and 5.
Partitions (min,max) Extraction Time (avg) Bigrams

1 [MineMFS] (800,950) 18min14s (18min14s) 1,655

2 (500, 900) 13min02s (5min08s) 31,247

3 (400, 700) 10min47s (5min31s) 35,844

5 (400, 600) 10min53s (5min53s) 10,895

this phenomenon as decreasing average times. The reason is that

a small increase in the frequency range can cause the inclusion of

many new terms to be taken into account. This fact is unlikely, but

it is possible for the MFS extraction of every document collection.

It is thus clear that the more extractions that are run, the higher the

risk. Hence, the exposure to this phenomenon is linearly aggravated

by the number of subcollections we use, and by the number of

iterations of the experiments. For example, to calculate the values

for a partition in 5 subcollections, we had to run 50 distinct MFS

extractions (10 random iterations for each subcollection), which

on average took 5 minutes and 53 seconds each, but the average

slowest extraction for each experiment iteration took almost twice

this amount of time: 10 minutes and 53 seconds.

MFS MineSweep extracts better, but less compact descriptors

(Hypothesis H2).

We have verified H1 and observed that for a document collection

that is large enough, MineMFS fails to provide an interesting set

of descriptors, whereas MFS MineSweep permits to do so. The

claim of our second hypothesis H2 is that, even when MineMFS

permits to efficiently extract interesting descriptors, we can extract

more information using MFS MineSweep, although we then lose

the maximality property, subsequently leading to a less compact

description.

To verify this, we experiment with a document collection on

which both techniques are producing results efficiently, the 16Mb

Reuters-21578 newswire collection [Reu87], which originally con-

64 3 Advanced Document Descriptors - A proposal

Table 3.4: Reuters. Serial extraction within circa 5 minutes, and

corresponding frequency thresholds using MineMFS directly and

MFS MineSweep on random partitions of size 2, 3 and 5, 10, 20,

50 and 100.

Parts (min,max)
Time

Serial (Parallel)
Bigrams Descriptors Density

MineMFS(85,900) 4m35s (4m35s) 147,000 126,000 1.17

2 (90,1000) 4m58s (2m36s) 412,000 397,000 1.04

3 (60,660) 4m50s (1m41s) 405,000 388,000 1.04

5 (50,500) 4m31s (1m00s) 410,000 394,000 1.04

10 (40,300) 4m03s (0m53s) 181,000 169,000 1.07

20 (25,150) 3m51s (1m08s) 117,000 106,000 1.10

50 (20,75) 3m53s (0m53s) 68,000 63,000 1.08

100 (9,35) 4m28s (0m33s) 96,000 86,000 1.11

tains about 19, 000 non-empty documents. To place both tech-

niques on equal grounds, we set a practical time limit of 5 minutes,

and try to find minimal and maximal frequency thresholds that per-

mit to maximize the amount of information. We then compare the

resulting sizes, amounts and densities of information in Table 3.4.

The serial time is the time for partitioning the collection into n sub-

collections added to the total time needed to extract the MFS set

corresponding to each subcollection. The parallel time is the total

time needed to do this using a distinct computer for each subcol-

lection in parallel. Hence, the serial and parallel time values for the

partition in 10 subcollections mean that the partitioning and the

extraction of the 10 MFS sets took 4 minutes and 3 seconds, and

that the slowest individual MFS extraction, added to the partition-

ing time, took 53 seconds. As we mentioned earlier, all the values

are averaged over 10 iterations of the experiments. The variance

is very small, as for example, the number of bigrams for the 20-

partitionings varied between 178, 000 and 188, 000 for an average of

181, 000.

Multiplied initial procedures. We may be surprised to ob-

serve that the quantity of information stagnates between the 2-,

3-, and 5-partitions, and that it even decreases for larger parti-

tions. The reason is that the extraction of the MFS set of a docu-

3.2 MFS MineSweep, Partitioning the Collection to
Approximate the MFS set 65

ment collection requires a number of initial procedures, as we have

seen in Section 3.1.5, such as computing the frequencies of individ-

ual words, pairs, and trigrams, and pruning the too frequent and

infrequent ones. If we use a larger partition, we must for exam-

ple reinitialize the count of each word, pair and trigram for each

subcollection. The partition of the collection is another operation

whose cost grows with the number of subcollections to be produced.

In the end, if the extraction time is held constant, the total cost

of initial operations grows with the number of subcollections, and

the time left for the actual MFS extraction decreases correspond-

ingly. For smaller partitions, i.e., partitions with a small number

of subcollections, the more time-demanding preprocessing phase is

compensated by the gain induced by MFS MineSweep. For larger

partitions, this gain is not sufficient anymore. Another cause for the

decreasing performance when the number of subcollections grows

is the fact that the average extraction time decreases.

Decreasing average extraction times. Another observation

we can make already is that the difference between the parallel and

the average time grows with the number of subcollections. This

is easy to understand, as the parallel time is in fact the maximal

extraction time over the set of all subcollections. It is, hence, a

natural fact of statistics that more subcollections are more likely to

include one that is problematic with respect to MFS extraction. As

a consequence, we need to tighten the frequency range to keep the

extraction time of this problematic subcollection below 5 minutes,

implying a shorter extraction time for all the other subcollections in

the partition. This problem is also aggravated by the fact that we

run 10 iterations of each experiment. To obtain values for the 100-

partition actually requires finding a frequency range that permits

the extraction of 1, 000 MFS sets in less than 5 minutes for each of

the 10 iterations. None of the 1, 000 extractions can be slower.

To lower the impact of the repeated initial procedures, and to

take advantage of the independence of the MFS extraction process

between subcollections, we will now have a look at the results we

obtained when extracting the MFS set of each different document

subcollection in parallel. The results are presented in Table 3.5.

MFS MineSweep outperforms MineMFS. The first obser-

vation about the results in Table 3.5 is that the number of equivalent

bigrams is always much higher for MFS MineSweep than it is for

66 3 Advanced Document Descriptors - A proposal

Table 3.5: Reuters. Parallel extraction within circa 5 minutes, and

corresponding frequency thresholds using MineMFS directly and

MFS MineSweep on random partitions of size 2, 3 and 5, 10, 20,

50 and 100.

Parts (min,max)
Time

Parallel (Avg)
Bigrams Descriptors Density

MineMFS(85,900) 4m35s (4m35s) 147,000 126,000 1.17

2 (70,1000) 4m32s (4m18s) 836,000 814,000 1.03

3 (40,650) 4m31s (4m17s) 1,168,000 1,143,000 1.02

5 (30,500) 4m13s (2m36s) 1,456,000 1,428,000 1.02

10 (25,300) 4m58s (1m48s) 670,000 655,000 1.02

20 (25,175) 3m34s (1m14s) 352,000 355,000 0.99

50 (15,140) 2m52s (1m03s) 1,579,000 2,544,000 0.62

100 (10,75) 2m59s (0m31s) 1,534,000 2,515,000 0.61

MineMFS. Slightly confusing is the fact that this improvement

is not steady with respect to the number of partitions, as the re-

sults are surprisingly weak for the 10- and 20-partitions (670, 000

and 352, 000 bigrams), compared to the results obtained with the

5- and 50-partitions (1, 456, 000 and 1, 579, 000 bigrams). We claim

that this is due to the impact of decreasing average times, which

we will soon demonstrate with further experiments.

The description is less compact. As we predicted in Hypoth-

esis H2, we can see that the density of the phrasal representations

is decreasing with the number of subcollections. What we did not

expect is that the density ratio goes down to values below 1, mean-

ing that the number of equivalent bigrams is less than the number

of phrasal descriptors. This steep density decrease expresses more

than the loss of the maximality property. A lower density means

that the number of descriptors is growing faster than the number

of bigrams. When we split the collection into more disjoint sub-

collections, this means that more and more of the new descriptors

we find are only unknown combinations of bigrams that we already

found when we split the collection in less partitions. This sharp

decrease in density is in fact an indication that the discriminative

power of the phrasal description is peaking, and that further aug-

mentations of the number of partitions will be comparatively less

3.2 MFS MineSweep, Partitioning the Collection to
Approximate the MFS set 67

and less worthwhile.

Decreasing average extraction times. This phenomenon is

still present. The average extraction time decreases steadily when

the number of subcollections grows. The difficulty is now that, to

get results for the 100-subcollection for example, we must extract

MFS sets from 1, 000 different subcollections in less than 5 minutes

each. For many cases, a small variation can cause a drastic increase

in processing time, sometimes running for a few days before being

aborted. As an illustration, the parallel extraction time of the MFS

sets for the 100-partition for the frequency range 10−75 is well be-

low the 5-minute maximum, with 2 minutes and 59 seconds. When

we tried the same experiment with the frequency range 10− 80, no

less than 8 iterations (out of 10) exceeded the 5-minute limitation.

To remove the impact of the “decreasing average times”, we

did one more experiment, in which we found a frequency range for

every subcollection individually, such that the corresponding MFS

extraction time was always between 4 and 5 minutes. This was

achieved with a fairly simple heuristic, interrupting the process and

decreasing the frequency range when the extraction was too slow,

and increasing the frequency range after too fast an extraction.

The process stopped after a number of iterations, and the most

difficult cases were dealt with manually. The results are presented

in Table 3.6.

The number of bigrams increases steadily with the number of

subcollections. These results confirm our previous claims. The hy-

pothesis H2 is verified, an increase in the number of subcollections

is followed by a more exhaustive document description. In addi-

tion, the descriptions are less and less compact as the number of

partitions grows.

Now that we have verified H2, it only remains to check our third

hypothesis, and study the effect of splitting the document collection

into homogeneous partitions rather than random ones.

The more homogeneous the subcollections, the better the descriptors

(Hypothesis H3).

To support H3, we use the same newswire collection and com-

pare the size, amount and density of information obtained when

splitting the collection into random and homogeneous subcollec-

68 3 Advanced Document Descriptors - A proposal

Table 3.6: Reuters. Corresponding frequency ranges when every

subcollection is computed within 4 and 5 minutes using MineMFS

directly and MFS MineSweep on random partitions of size 2, 3,

5, 10, 20, 50 and 100.
Partitions (min,max) Bigrams Descriptors Density

1 [MineMFS] (85,900) 147,000 126,000 1.17

2 (60-70, 900-1000) 841,000 819,000 1.03

3 (40, 650-715) 1,223,000 1,197,000 1.02

5 (25-30, 400-600) 1,605,000 1,574,000 1.02

10 (5-28, 72-350) 1,453,000 1,466,000 0.99

20 (10-28, 162-385) 1,643,000 2,555,000 0.64

50 (4-20, 60-208) 2,927,000 7,448,000 0.39

100 (3-45, 27-630) 3,570,000 11,038,000 0.32

tions. In the experiments, we formed homogeneous subcollections

with the well-known k-means clustering algorithm (see for exam-

ple [Wil88, DAM02] for more details). We used the publicly avail-

able clustering tool implemented by George Karypis at the Univer-

sity of Minnesota2. Algorithm 2 shows a base k-means algorithm

that assumes the number of desired clusters k to be given and relies

on the idea to treat documents as data points, as is usual in the

vector space model. The main reason for the choice of k-means is

its linear time complexity in the total number of documents, but

many other document clustering techniques would be equally ap-

propriate [SKK00].

The quality of the phrasal descriptors resulting from homoge-

neous document partitions is shown in Table 3.7. In this first ex-

periment, we used the same frequency ranges as in Table 3.5. The

results are disappointing, whenever they could be obtained at all.

We are facing a critical illustration of the discrepancy between par-

allel and average running times. For example, for the partition in

5 clusters, the maximal running time was 25 hours and 38 minutes,

whereas the average running time of the other 4 clusters was only 6

minutes and 4 seconds. The impact of “decreasing average times”

2CLUTO, http://www-users.cs.umn.edu/∼karypis/cluto/

3.2 MFS MineSweep, Partitioning the Collection to
Approximate the MFS set 69

Algorithm 2 Base k-means algorithm.

1. Initialization:

• k points are chosen as initial centroids

• Assign each point to the closest centroid

2. Iterate:

• Compute the centroid of each cluster

• Assign each point to the closest centroid

3. Stop:

• As soon as the centroids are stable

Table 3.7: Reuters. Extraction and corresponding times, using

MineMFS directly and MFS MineSweep on homogeneous par-

titions of size 2, 3 and 5, 10, 20, 50 and 100, and with the same

frequency ranges as in Table 3.5. We interrupted the MFS extrac-

tions that were not completed after a week.

Clusters(min,max)
Time

Parallel (Avg)
Bigrams Descriptors Density

MineMFS(85,900) 4m35s (4m35s) 147,000 126,000 1.17

2 (70,1000) 16m22s (11m37s) 476,000 479,000 0.99

3 (40,650) 27m46s (15m18s) 405,000 472,000 0.86

5 (30,500) 25h38m (5h12m) 1,237,000 1,291,000 0.96

10 (25,300) week+ (N/A) N/A N/A N/A

20 (25,175) 46m48s (5m7s) 115,000 81,000 1.43

50 (15,140) week+ (N/A) N/A N/A N/A

100 (10,75) week+ (N/A) N/A N/A N/A

70 3 Advanced Document Descriptors - A proposal

is actually lowered by the removal of random factors, since we need

to run each experiment only once, in place of several iterations for

random procedures. This lowers the chances to encounter a prob-

lematic subcollection. But there are actually two more important

factors that increase this risk and cause extraction difficulties.

Homogeneity. It was our intention to obtain homogeneous

collections. The difficulty to obtain results in a reasonable time is

proof that we succeeded in this respect; since similar documents

have been gathered together, there are more similar text fragments

appearing in the same subcollections, and hence n-gram frequencies

are higher, the number of comparisons to be computed is higher,

and so on. In a word, MineMFS has more to extract from each

subcollection, and this naturally demands more time. A shift in fre-

quency is further likely to affect more items, making homogeneous

collections more vulnerable to the “decreasing average times” phe-

nomenon.

Variance in the size of the subcollections. Another con-

sequence of the k-means clustering is that the size of the subcol-

lections varies widely. In the partition in 100 clusters, the number

of documents per collection varied from 40 to 670, whereas in all

the 10 iterations of random partitioning, these numbers only varied

between 150 and 237. When the number of documents in the col-

lections varies so much, it is obviously not appropriate to use the

same frequency range for every subcollection.

To account for this and to remove the impact of the “decreasing

average times” phenomenon, we proceeded the same way as we

did with random partitions and we used a heuristic taking the size

of document collections into account, in such a way that we could

calculate the MFS set of every subcollection within 4 and 5 minutes.

The corresponding results are shown in Table 3.8.

MFS MineSweep outperforms MineMFS. What we had

observed with random partitions is confirmed with homogeneous

collections. We get a more exhaustive description of the document

collection if we use MFS MineSweep than if we use MineMFS

alone.

To permit an easier direct comparison, the quantities and den-

sities of information obtained with random and homogeneous par-

titions are presented in Table 3.9.

A more compact description. We can observe that when

3.2 MFS MineSweep, Partitioning the Collection to
Approximate the MFS set 71

Table 3.8: Reuters. Corresponding frequency ranges when every

subcollection is computed within 4 and 5 minutes using MineMFS

directly and MFS MineSweep on homogeneous partitions of size

2, 3, 5, 10, 20, 50 and 100.
Clusters (min,max) Bigrams Descriptors Density

1 [MineMFS] (85,900) 147,000 126,000 1.17

2 (40-130, 660-1569) 554,000 568,000 0.97

3 (7-129, 180-1470) 449,000 498,000 0.90

5 (3-55, 47-1224) 995,000 993,000 1.00

10 (5-22, 58-671) 1,255,000 1,280,000 0.98

20 (3-14, 11-682) 1,767,000 1,904,000 0.93

50 (2-37, 5-289) 2,201,000 2,748,000 0.80

100 (2-28, 7-220) 2,932,000 4,597,000 0.64

Table 3.9: Reuters. Quantities and densities of information when

every subcollection is computed within 4 and 5 minutes using

MFS MineSweep on random and homogeneous partitions of size

2, 3, 5, 10, 20, 50 and 100.
Partitions Random Homogeneous

2 841,000 (1.03) 554,000 (0.97)

3 1,223,000 (1.02) 449,000 (0.90)

5 1,605,000 (1.02) 995,000 (1.00)

10 1,453,000 (0.99) 1,255,000 (0.98)

20 1,643,000 (0.64) 1,767,000 (0.93)

50 2,927,000 (0.39) 2,201,000 (0.80)

100 3,570,000 (0.32) 2,932,000 (0.64)

72 3 Advanced Document Descriptors - A proposal

the number of partitions rises, the density of the description re-

sulting from homogeneous subcollections decreases slowly, whereas

the steep is much sharper for random partitions. We have already

seen that a sharp density decrease expresses a fall in the benefits

we get from an augmentation of the number of partitions. The

fact that the description densities resulting from homogeneous col-

lections remain nearly stable shows that there is room to improve

the discriminative power of phrasal descriptions if we partition the

document collection in even more clusters.

This is simple to understand. The descriptors extracted from

random subcollections are ones that are present all over the col-

lection. Splitting the collection into more subsets permits finding

more of those frequent n-grams, formed by the same frequent words,

but we reach a point where we only find combinations of the same

frequent words originating from different subcollections. On the

other hand, homogeneous subcollections permit gathering similar

documents together, excluding non-similar documents. Hence, the

frequency range can be adapted to extract the specifics of each

subcollection. With homogeneous clusters, producing more subsets

permits forming more specific subcollections, hence extracting more

specific MFSs. In the homogeneous case, increasing the number of

subcollections permits embracing more specificities of the document

collections, whereas in the random case, it only permits catching

more descriptors of the same kind.

Hence, for partitions of the same size, phrasal descriptors ex-

tracted through homogeneous partitions have a stronger

discriminative power than those extracted through random par-

titions.

Variance in the size of the subcollections. Although the

frequency ranges are now adapted to the size of the correspond-

ing subcollection, the variations in the size of the document collec-

tions remain problematic. Assume we have two partitions of the

19, 000-document Reuters collection in 2 subcollections. One of the

partitions has subcollections of size 9, 700 and 9, 300. The other

partition has subcollections of size 1, 000 and 18, 000. To extract

the MFS set of each subcollection in a time between 4 and 5 minutes

seems fair enough in the first case. Intuitively, in the second case

it does not seem so. We would wish to spend more time extracting

the MFS set of the larger subcollection, as it potentially contains

3.2 MFS MineSweep, Partitioning the Collection to
Approximate the MFS set 73

more descriptors.

To solve this problem is very hard. The first approach would

be to share the time upon the size of the subcollection. Of the

10 minutes total for the partition, we could assign 18
19 = 94.7% to

the 18, 000-document subcollection and the rest to the other one.

But the first problem with this idea is that the parallel extraction

time would not be 5 minutes any more, but 94.7% of 10 minutes,

that is, 9 minutes 28 seconds. The other major issue is the relative

cost of the initial procedures for the smaller subcollection. Only 32

seconds are left for the computation of its MFS set. If this small

subcollection was formed by clustering similar documents together,

it implies that it is very homogeneous and that there are potentially

numerous phrases to be extracted. It also means that the initial

procedures will be especially costly, leaving very short time for the

actual MFS extraction. This approach means ignoring a majority

of the data in the smaller subcollection.

It may be possible to find a good trade-off between assigning

equal computation times to each subcollection, and basing those

times on the size of the subcollections. This remains, however, an

unsolved problem. Although not optimal in terms of the individ-

ual homogeneity of the subcollections, a solution could come from

an attempt to produce subcollections of closer sizes. Some inspi-

ration can be found in the work of Hearst, and the scatter/gather

technique [HP96].

Clustering is safer. Even though the results are inconclusive

and we have not been able to clearly prove or disprove hypoth-

esis H3, we maintain our preference for the use of homogeneous

partitions. The stronger discriminative power of phrases extracted

through homogeneous partitioning is the first strong argument, but

there are a few others. As opposed to random partitioning, clus-

tering provides guarantees. It is more reliable, because it ensures

result. The strength of random partitioning is it gives good results

and permits MFS extraction in predictable times. But these facts

are only true on average. The problem if we use random parti-

tioning is that we should, in fact, run several iterations to protect

ourselves from an “unlucky” draw. We mentioned earlier that run-

ning several random iterations increases the exposure to factors of

difficult extraction. Because the extraction of MFS sets from homo-

geneous subcollections needs to be done only once, it is less costly in

74 3 Advanced Document Descriptors - A proposal

the end. Another issue with averaging numerous iterations is their

meaning in an application framework. We can compute an average

of different numbers of descriptors, but it is harder to average a

document description. If document d was represented 3 times by

gramA, and 1 time by gramB, gramC and gramD, what should be

the average document description of d? And what will remain of

the maximality property inherent to MFS?

For all these reasons, we think it is safer to use homogeneous sub-

collections in the MFS MineSweep process, although this could

be done more efficiently by solving a number of issues. There is

intrinsically more to extract from homogeneous subcollections, and

this naturally takes longer. The problem of how to distribute the

available computation time among different subcollections is a diffi-

cult one, as the running times are difficult to predict. This problem

could probably be eased if we were able to form homogeneous sub-

collections of similar sizes.

Conclusion

We established that MFS MineSweep is a good complement of

MineMFS, as it can be used to extract phrasal document de-

scriptors from document collections of virtually any size, whereas

MineMFS alone fails to do so, when the document collections are

large enough. MFS MineSweep further permits obtaining more

descriptive results faster, and even more drastically so when run-

ning MineMFS for different subcollections in parallel. Our ex-

periments showed that, for a partition of the document set in a

sufficient number of subcollections, the discriminative power of the

phrasal descriptors extracted by MFS MineSweep is higher when

the subcollections are homogeneous.

The main drawback of MFS MineSweep is the loss of the max-

imality property inherent to MFSs. This means that, for the same

quantity of information, a collection description originating from

MFS MineSweep is always less or equally compact to one origi-

nating from MineMFS.

3.3 Conclusion 75

3.3 Conclusion

We have introduced the concept of a maximal frequent sequence, a

compact approach to document description. We presented a num-

ber of techniques that permit to extract MFSs from sequential data,

before covering their weaknesses, when applied to textual data. An

efficient solution was introduced with MineMFS, although it still

fails to produce descriptors efficiently for too large document col-

lections.

We consequently presented MFS MineSweep, a technique to

obtain a better description efficiently, by running MineMFS on

homogeneous partitions of the document collection, and joining the

results. We introduced measures of quantity, size and density of in-

formation to compare results obtained by lone use of MineMFS to

those obtained by its use within the MFS MineSweep framework.

The general evaluation of individual descriptors remains an open

problem, however. In numerous real-life applications, it is crucial

to be able to rank or weight phrasal descriptors. Basic approaches,

such as using the rough length or frequency of the word sequences

appear insufficient. In the following chapter, we will present an

advanced technique for calculating the probability of occurrence,

document frequency, and general-purpose interestingness of discon-

tiguous sequences of any length.

76 3 Advanced Document Descriptors - A proposal

CHAPTER 4

Direct Evaluation of
Non-Contiguous Sequences

The main result of this chapter is to present a novel technique for

calculating the probability of occurrence of a discontinued sequence

of n words (actually, of n sequential items of any data type), that

is, the probability that those words occur, and that they occur

in a given order, regardless of which and how many other words

may occur between them. The technique is mathematically sound,

computationally efficient, and it is fully language- and application-

independent.

Hitherto, this dissertation has focused on the extraction of word

sequences as document descriptors. It is, however, certain that

techniques based on frequencies, such as MineMFS will extract a

number of uninteresting sequences. Frequent words naturally occur

together often, whereas the joint occurrence of infrequent words is

usually clearer evidence of a meaningful association. The latter are

generally more “interesting”.

Since the number of phrasal descriptors is often very high, it is

desirable to have means to sort them by their level of interesting-

ness. One main advantage of a ranked list over a set of phrasal

descriptors is that it permits the end-user to save time by reading

through the most important findings first. This is especially im-

portant in real-life applications, where time consumes money and

is therefore often limited.

However, to rank a list of phrasal descriptors is not trivial. In

this chapter, we will present a new technique to compute the exact

77

78 4 Direct Evaluation of Non-Contiguous Sequences

probability of a discontinued sequence of items with a very rea-

sonable computational complexity. It relies on the formalization of

word occurrences into a Markov chain model. Numerous techniques

of probability and linear algebra theory are exploited to offer an al-

gorithm of competitive computational complexity. The technique

is further extended to permit the calculation of the expected docu-

ment frequency of an n-words sequence in an efficient manner. The

generality of the approach (it suits not only words, but any type of

sequential data) ensures language- and domain-independence.

An application of this result is a fast and automatic tech-

nique to directly evaluate the interestingness of word se-

quences. This is done by exploiting statistical techniques, of hy-

pothesis testing, to evaluate the interestingness of sequences. The

idea of such techniques is to account for the fact that word se-

quences are bound to happen by chance, and to compare how often

a given word sequence should occur (by chance) to how often it

truly occurs.

4.1 Introduction

The probability of occurrence of words and phrases is a crucial mat-

ter in all domains of information retrieval. All language models rely

on such probabilities. However, while the probability of a word is

frequently based on counting its total number of occurrences in a

document collection (collection frequency), calculating the proba-

bility of a phrase is far more complicated. Counting the number

of occurrences of a multi-word unit is often intractable, unless re-

strictions are adopted, as we have seen in Chapters 2 and 3, such

as setting a maximal unit size, requiring word adjacency or setting

a maximal distance between two words.

The evaluation of lexical cohesion is a difficult problem. At-

tempts at direct evaluation are rare, simply due to the subjectivity

of any human assessment, and to the wide acceptance that we first

need to know what we want to do with a lexical unit before being

able to decide whether or not it is relevant for that purpose. A

common application of research in lexical cohesion is lexicography,

where the evaluation is carried out by human experts who simply

look at phrases to assess them as good or bad. This process permits

4.1 Introduction 79

scoring the extraction process with highly subjective measures of

precision and recall. However, a linguist interested in the different

forms and uses of the auxiliary “to be” will have a different view of

what is an interesting phrase than a lexicographer. What a human

expert judges as uninteresting may be highly relevant to another.

Hence, most evaluation has been indirect, through question-

answering, topic segmentation, text summarization, and passage

or document retrieval [Vec05]. To pick the last case, such an eval-

uation consists in trying to figure out which are the phrases that

permit to improve the relevance of the list of documents returned.

A weakness of indirect evaluation is that it hardly shows whether

an improvement is due to the quality of the phrases, or to the qual-

ity of the technique used to exploit them. Moreover, text retrieval

collections often have a relatively small number of queries, which

means that only a small proportion of the phrasal terms will be

used at all. This is a strong argument against the use of text re-

trieval as an indirect way to evaluate the quality of a phrasal index,

initially pointed out by Fox [Fox83].

There is a need to fill the lack of a general purpose direct eval-

uation technique, one where no subjectivity or knowledge of the

domain of application will interfere. Our technique permits exactly

that, and the current chapter will be showing how.

The technique we introduce permits to efficiently calculate the

exact probability (respectively, the expected document frequency)

of a given sequence of n words to occur in this order in a document of

size l, (respectively, in a document collection D) with an unlimited

number of other words eventually occurring between them.

This work tackles a number of challenges. First, it avoids the

computational risk inherent to using a potentially unlimited dis-

tance between each two words, while not making those distances

rigid (we do see “President John Kennedy” as an occurrence of

“President Kennedy”). Achieving language-independence and deal-

ing with document frequencies rather than term frequencies are

further specifics of this novel approach.

By comparing observed and expected frequencies, we can esti-

mate the interestingness of a word sequence. That is, the more

the actual number of occurrences of a phrase is higher than its ex-

pected frequency, the stronger the lexical cohesion of that phrase.

This evaluation technique is entirely language-independent, as well

80 4 Direct Evaluation of Non-Contiguous Sequences

as domain- and application-independent. It permits to efficiently

rank a set of candidate multi-word units, based on statistical evi-

dence, without requiring manual assessment of a human expert.

The techniques presented in this paper can be generalized fur-

ther. The procedure we present for words and documents may in-

deed similarly be applied to any type of sequential data, e.g., item

sequences and transactions.

In the next section, we will introduce the problem, present an

approximation of the probability of an n words sequence in a docu-

ment, and then present our technique in full detail before analyzing

its complexity and showing how it outperforms naive approaches.

In Section 3, we will show how the probability of occurrence of an

n words sequence in a document can be generalized to compute its

expected document frequency in a document collection, within an-

other very reasonable computational complexity. Section 4 explains

and experiments with the use of statistical testing as an automatic

way to rank general-purpose non-contiguous lexical cohesive rela-

tions. This paper comes to its conclusion in Section 5.

4.2 The Probability of Discontinued

Occurrence of an n-Words Sequence

4.2.1 Problem Definition

Let A1, A2, . . . , An be n words, and d a document of length l (i.e., d

contains l word occurrences). Each word Ai is assumed to occur in-

dependently with probability pAi
. This assumption of independent

word occurrences is a common simplification in statistical NLP.

Problem: In d, we want to calculate the probability P (A1 →

A2 → · · · → An, l) of the words A1, A2, . . . , An to occur at least

once in this order, an unlimited number of interruptions of any size

being permitted between each Ai and Ai+1, 1 ≤ i ≤ (n − 1).

More definitions.

Let D be the document collection, and W the set of all distinct

words occurring in D. As the probability pw of occurrence of a

word w, we use its term frequency in the whole document collection,

4.2 The Probability of Discontinued Occurrence of an n-Words
Sequence 81

divided by the total number of word occurrences in the collection.

One good reason to prefer term frequency versus, e.g., document

frequency, is that in this case, the set of all word probabilities {pw |

∀w ∈ W} is a (finite) probability space. Indeed, we have

∑

w∈W

pw = 1,

and

∀w ∈ W : pw ≥ 0.

For convenience, we will simplify the notation of pAi
to pi, and

define qi = 1−pi, the probability of non-occurrence of the word Ai.

A running example.

Let there be a hypothetic document collection containing only three

different words A, B, and C, each occurring with equal frequency.

We want to find the probability that the bigram A → B occurs in

a document of length 3.

For such a simple example, we can afford an exhaustive manual

enumeration. There exist 33 = 27 distinct documents of size 3, each

occurring with equal probability 1
27 . These documents are:

{AAA, AAB , AAC, ABA , ABB , ABC , ACA, ACB , ACC,

BAA, BAB , BAC,BBA,BBB,BBC,BCA,BCB,BCC,

CAA, CAB , CAC,CBA,CBB,CBC,CCA,CCB,CCC}

The seven framed documents contain the n-gram AB. Thus, we

have p(A → B, 3) = 7
27 .

4.2.2 A Decent Over-Estimation in the General Case

We can attempt to enumerate the number of occurrences of A1 →

· · · → An in a document of size l, by separately counting the number

of ways to form the (n − 1)-gram A2 → · · · → An, given the l

possible positions of A1. For each of these possibilities, we can

then separately count the number of ways to form the (n−2)-gram

A3 → · · · → An, given the various possible positions of A2 following

that of A1. And so on until we need to find the number of ways to

form the 1-gram An, given the various possibilities left for placing

An−1.

82 4 Direct Evaluation of Non-Contiguous Sequences

In other words, we want to sum up the number of ways to form

the n-gram, knowing that A1 occurs in position posA1
, with posA1

varying between 1 and (l − n + 1) (the n-gram can only be formed

if posA1
≤ (l − n + 1), because A2, . . . , An must still occur). For

each possible position of A1, we sum up the number of ways to

form the n-gram, knowing that A2 occurs in position posA2
, with

posA2
varying between (posA1

+ 1) and (l − n + 2). And so on,

until the summation of the number of ways to form the n-gram for

each possible position of An−1, knowing that An occurs in position

posAn , with posAn varying between (posAn−1
+ 1) and l.

This enumeration leads to n nested sums of binomial coefficients:

l−n+1∑

posA1
=1




l−n+2∑

posA2
=posA1

+1


· · ·

l∑

posAn=posAn−1
+1

(
l − posAn

0

)


 ,

(4.1)

where each posAi
, 1 ≤ i ≤ n, denotes the position of occurrence of

Ai.

The following can be proved easily by induction:

n∑

i=k

(
i

k

)
=

(
n + 1

k + 1

)
,

and we can use it to simplify formula (4.1) by observing that:

l−n+i∑

posAi
=posAi−1

+1

(
l − posAi

n − i

)
=

l−posAi−1
−1∑

posAi
=n−i

(
posAi

n − i

)

=

(
l − posAi−1

n − i + 1

)
.

Therefore, leaving further technical details to the reader, the pre-

vious nested summation (4.1) interestingly simplifies to
(

l
n

)
, which

permits to obtain the following result:

enum overestimate(A1 → · · · → An, l) =

(
l

n

)
·

n∏

i=1

pi,

where
(

l
n

)
is the number of ways to form the n-gram, and

∏n
i=1 pi the

probability of conjoint occurrence of the words A1, . . . , An (since we

4.2 The Probability of Discontinued Occurrence of an n-Words
Sequence 83

assumed that the probability of occurrence of a word in one position

is independent of which words occur in other positions).

The big flaw of this result, and the reason why it is an approx-

imation only, is that some of the ways to form the n-gram are

obviously overlapping. Whenever we separate the alternative ways

to form the n-gram, knowing that Ai occurs in position posAi
, with

1 ≤ i ≤ n and (posAi−1
+ 1) ≤ posAi

≤ (l − n + i), we do ignore

the fact that Ai may also occur before position posAi
. In this case,

we find and add different ways to form the same occurrence of the

n-gram. We do enumerate each possible case of occurrence of the

n-gram, but we count some of them more than once, since it is

actually the ways to form the n-gram that are counted.

Running Example. This is better seen by returning to the

running example presented in subsection 4.2.1. As described above,

the upper-estimate of the probability of the bigram A → B, based

on the enumeration of the ways to form it in a document of size

3 is: (1
3)2
(3
2

)
= 9

27 , while the actual probability of A → B is 7
27 .

This stems from the fact that in the document AAB (respectively

ABB), there exist two ways to form the bigram A → B, using the

two occurrences of A (respectively B). Hence, out of the 27 possible

equiprobable documents, 9 ways to form the bigram A → B are

found in the 7 documents that contain it.

With longer documents, the loss of precision due to those cases

can be considerable. Still assuming we are interested in the bi-

gram A → B, we will count one extra occurrence for every docu-

ment that matches *A*B*B*, where * is used as a wildcard. Simi-

larly, 8 ways to form A → B are found in each document matching

*A*A*B*B*B*B*.

4.2.3 Exact Probability of a Discontiguous Word Sequence

With a slightly different approach, we can actually reach the exact

result. The previous technique exposed overlapping ways to form a

word sequence. That is why the result was only an overestimate of

the desired probability.

In this section, we will present a way to categorize the different

sets of documents of size l in which the n-gram A1 → · · · → An

occurs, with the property that all the sets are disjoint and that no

case of occurrence of the n-gram is forgotten. This ensures that we

84 4 Direct Evaluation of Non-Contiguous Sequences

can calculate p(A1 → · · · → An, l) by summing up the probabilities

of each set of documents where A1 → · · · → An occurs.

A Disjoint Categorization of Successful Documents.

We can split the successful documents (those in which the n-gram

occurs) of size l, depending on the position from which a successful

outcome is guaranteed. For example, and for l ≥ n, the documents

of size l for which success is guaranteed as soon as from position n

onwards can be represented by the set of documents E0:

E0 = {A1A2 . . . AnW l−n},

where as defined earlier W is the set of all words in the document

collection, and using regular expression notation, W l−n stands for

a concatenation of any (l − n) words of W . Because each word

is assumed to occur independently of the others, the probability

of a given document is a conjunction of independent events, and

therefore it equals the multiplication of the probability of all the

words in the document. The probability of the set of documents

E0 is the probability of occurrence of A1, A2. . . , and An once, plus

(l − n) times any word of W (with probability 1). Therefore,

p(E0) = p1 · p2 . . . pn · 1l−n =

n∏

i=1

pi.

Similarly, the documents in which the occurrence of the n-gram

is guaranteed as soon as the (n + 1)-th word can be represented by

the set E1 where, for 1 ≤ k ≤ n, ik ≥ 0:

E1 = {Ā1
i1A1Ā2

i2A2 . . . Ān
inAnW l−n−1 |

n∑

k=1

ik = 1},

where Āk, 1 ≤ k ≤ n, represents any word but Ak. In other words,

E1 is the set of all documents where a total number of 1 word is

inserted before each word of the n-gram. The probability of this

set of documents is:

p(E1) = (q1p1p2 . . . pn1l−n−1) + (p1q2p2 . . . pn1l−n−1) +

· · · + (p1p2 . . . pn−1qnpn1l−n−1)

=

n∏

i=1

pi

n∑

k=1

qk.

4.2 The Probability of Discontinued Occurrence of an n-Words
Sequence 85

We can proceed similarly for the following positions after which

a successful outcome is guaranteed. Finally, the same idea provides

an expression for the set of documents for which the occurrence of

the n-gram was not complete before the word in position l (and

therefore the last word of the document is An):

El−n = {Ā1
i1A1Ā2

i2A2 . . . Ān
inAn |

n∑

k=1

ik = (l − n)}.

The set El−n contains all the possibilities to disseminate exactly
(l −n) other words before the words of the n-gram. Its probability
of occurrence is:

p(El−n) = p

({
Ā1

i1
A1 . . . Ān

in
An |

n∑

k=1

ik = (l − n)

})

= pn

l−n∑

in=0

qin

n
p

({
Ā1

i1
A1 . . . ¯An−1

in−1

An−1 |
n−1∑

k=1

ik = (l − n − in)

})

= pnpn−1

l−n∑

in=0

l−n−in∑

in−1=0

qin

n
q

in−1

n−1

p

({
Ā1

i1
A1 . . . ¯An−2

in−2

An−2 |

n−2∑

k=1

ik = (l − n − in − in−1)

})

= . . .

=

n∏

i=2

pi

l−n∑

in=0

· · ·

l−n−(in+···+i3)∑

i2=0

qin

n . . . qi2
2

p
({

Ā1
i1

A1 | i1 = l − n − (in + · · · + i2)
})

=

n∏

i=1

pi

l−n∑

in=0

· · ·

l−n−(in+···+i3)∑

i2=0

qin

n . . . qi2
2 q

l−n−(in+···+i2)
1 .

In general, for 0 ≤ k ≤ l − n , we can write:

p(Ek) =
n∏

i=1

pi

k∑

in=0

· · ·

k−(in+···+i3)∑

i2=0

q
k−

Pn
j=2 ij

1 qi2
2 . . . qin

n .

The precise formula.

It is clear that the sets Ek, for 0 ≤ k ≤ (l − n), are all disjoint,
because in any document, the presence of the n-gram is ensured

86 4 Direct Evaluation of Non-Contiguous Sequences

from only one position onwards. It is also evident that in any
document of size l containing the n-gram, its occurrence will be
ensured between the n-th and l-th position. Therefore the sets
Ek are mutually exclusive, for 0 ≤ k ≤ (l − n), and their union
contains all the documents of size l where A1 → · · · → An occurs.
Consequently,

p(A1 → · · · → An, l) =

l−n∑

k=0

p(Ek)

=

n∏

i=1

pi

l−n∑

k=0




k∑

in=0

· · ·

k−(in+···+i3)∑

i2=0

q
k−

Pn
j=2

ij

1 qi2
2 . . . qin

n




=
n∏

i=1

pi

l−n∑

in=0

· · ·

l−n−(in+···+i3)∑

i2=0

l−n−(in+···+i2)∑

i1=0

qi1

1 qi2

2 . . . qin

n
.

So finally, the formula of the probability of occurrence of a dis-

contiguous sequence of length n in a document of length l is:

p(A1 → · · · → An, l) =

n∏

i=1

pi

l−n∑

in=0

· · ·

l−n−(in+···+i2)∑

i1=0

qi1
1 qi2

2 . . . qin
n .

(4.2)

Running Example. For better comprehension, let us return to

the running example:

p(A → B, 3) = papb

1∑

ib=0

1−ib∑

ia=0

qia
a q

ib
b

= papb

(
1∑

ia=0

qia
a +

0∑

ia=0

qia
a qb

)

= papb (1 + qa + qb)

=
1

3
×

1

3
×

(
1 +

2

3
+

2

3

)

=
7

27
.

We indeed find the exact result. But we will now see that the direct

calculation of Formula 4.2 is is not satisfying in practice because of

an exponential computational complexity.

4.2 The Probability of Discontinued Occurrence of an n-Words
Sequence 87

Computational Complexity.

Let us observe the steps involved in the computation of p(Ek), 0 ≤

k ≤ l − n. To calculate this probability consists in multiplying n

values (the pi’s) by a summation of summations. The total number

of terms resulting from these nested summations equals the total

number of ways to insert k terms in n different positions: nk. Thus,

p(Ek) is the result of multiplying n values by a summation of nk

distinct terms, each individually calculated by k multiplications.

Hence, the gross number of operations to calculate p(A1 → · · · →

An, l) with Formula 4.2 is:

n

l−n∑

k=0

knk.

Therefore, the order of complexity of the direct computation

of Formula 4.2 is O(lnl−n). Consequently, this formula is hardly

usable at all, except for extremely short documents and length-

restricted n-grams.

4.2.4 Efficient Computation through a Markov Chain

Formalization

We found a way to calculate the probability of discontiguous occur-

rence of an n-words sequence in a document of size l. However, its

computational complexity cuts clear any hope to use the result in

practice. The following approach permits to reach the exact result

with a far better complexity.

An Absorbing Markov Chain.

Another interesting way to formalize the problem is to consider it

as a sequence of l trials whose outcomes are X1, X2, . . . , Xl. Let

each of these outcomes belong to the set {0, 1, . . . , n}, where the

outcome i signifies that the i-gram A1 → A2 → · · · → Ai has

already occurred. This sequence of trials verifies the following two

properties:

(i) All the outcomes X1, X2, . . . , Xl belong to a finite set of out-

comes {0, 1, . . . , n} called the state space of the system. If i

88 4 Direct Evaluation of Non-Contiguous Sequences

n2

p
2

p p
n−1

p

q

n

1

n−1

q

0

1 q

p
1 1

p
n

Figure 4.1: The state-transition diagram of the Markov Chain M.

is the outcome of the m-th trial (Xm = i), then we say that

the system is in state i at the m-th step. In other words, the

i-gram A1 → A2 → · · · → Ai has been observed after the

m-th word of the document.

(ii) The second property is called the Markov property: the out-

come of each trial depends at most upon the outcome of the

immediately preceding trial, and not upon any other previ-

ous outcome. In other words, the future is independent of the

past, given the present. This is verified indeed; if we know

that we have seen A1 → A2 → · · · → Ai, we only need the

probability of Ai+1 to determine the probability that we will

see more of the desired n-gram during the next trial.

These two properties are sufficient to call the defined stochastic

process a (finite) Markov chain. The problem can thus be repre-

sented by an (n + 1)-states Markov chain M (see Figure 4.1). The

state space of the system is {0, 1, . . . , n} where each state, numbered

from 0 to n tells how much of the n-gram has already been observed.

Presence in state i means that the sequence A1 → A2 → · · · → Ai

has been observed.Therefore, Ai+1 → · · · → An remains to be seen,

and the following expected word is Ai+1. It will be the next word

with probability pi+1, in which case a state transition will occur

from i to (i + 1). Ai+1 will not be the following word with proba-

bility qi+1, in which case we will remain in state i. Whenever we

reach state n, we can denote the experience a success: the whole

n-gram has been observed. The only outgoing transition from state

n leads to itself with associated probability 1 (such a state is said

to be absorbing).

4.2 The Probability of Discontinued Occurrence of an n-Words
Sequence 89

Stochastic Transition Matrix (in general).

Another way to represent this Markov chain is to write its transition

matrix.

For a general finite Markov chain, let pi,j denote the transition

probability from state i to state j for 1 ≤ i, j ≤ n. The (one-step)

stochastic transition matrix is:

P =




p1,1 p1,2 . . . p1,n

p2,1 p2,2 . . . p2,n

. . .

pn,1 pn,2 . . . pn,n


 .

Theorem 4.1 [Fel68] Let P be the transition matrix of a Markov

chain process. Then the m-step transition matrix is equal to the

m-th power of P. Furthermore, the entry pi,j(m) in P m is the prob-

ability of stepping from state i to state j in exactly m transitions.

Our stochastic transition matrix of interest.

For the Markov chain M defined above, the corresponding stochastic

transition matrix is the following (n + 1) × (n + 1) square matrix:

M =




states 0 1 2 . . . n − 1 n

0 q1 p1 0 0

1 0 q2 p2
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . . qn pn

n 0 0 1




.

Therefore, the probability of the n-gram A1 → A2 → · · · → An

to occur in a document of size l is the probability of stepping from

state 0 to state n in exactly l transitions. Following Theorem 4.1,

this value resides at the intersection of the first row and the last

column of the matrix M l:

M l =




m1,1(l) m1,2(l) . . . m1,n+1(l)

m2,1(l) m2,2(l) . . . m2,n+1(l)

. . .

mn+1,1(l) mn+1,2(l) . . . mn+1,n+1(l)


 .

90 4 Direct Evaluation of Non-Contiguous Sequences

Thus, the result we are aiming at can simply be obtained by

raising the matrix M to the power of l, and looking at the value

in the upper-right corner. In terms of computational complexity,

however, one must note that to multiply two (n + 1) × (n + 1)

square matrices, we need to compute (n + 1) multiplications and

n additions to calculate each of the (n + 1)2 values composing the

resulting matrix. To raise a matrix to the power l means to repeat

this operation l − 1 times. The resulting time complexity is then

O(ln3).

One may object that there exist more time-efficient algorithms

for matrix multiplication. The lowest exponent currently known is

by Coppersmith and Winograd: O(n2.376) [CW87]. This result fol-

lows up work by Strassen [Str69], who first beat the naive approach

with an O(n2.807) algorithm. These results are achieved by studying

how matrix multiplication depends on bilinear and trilinear com-

binations of factors. The strong drawback of such techniques is

the presence of a constant so large that it removes the benefits of

the lower exponent for all practical sizes of matrices [HJ94]. For

Strassen’s algorithm, this factor is about 4.537 asymptotically. For

our purpose, the use of such an algorithm is typically more costly

than to use the naive O(n3) matrix multiplication.

Linear algebra techniques, and a careful exploitation of the speci-

ficities of the stochastic matrix M will, however, permit to perform

a few transformations that will drastically reduce the computa-

tional complexity of M l over the use of any matrix multiplication

algorithm (it has been proved that the complexity of matrix multi-

plication cannot possibly be lower than O(n2)).

The Jordan normal form.

Definition: A Jordan block Jλ is a square matrix whose elements

are zero except for those on the principal diagonal, which are equal

to λ, and those on the first superdiagonal, which are equal to unity.

Thus:

4.2 The Probability of Discontinued Occurrence of an n-Words
Sequence 91

Jλ =




λ 1 0

λ
. . .
. . . 1

0 λ




.

Theorem 4.2 (Jordan normal form) [ND77] If A is a general square

matrix, then there exists an invertible matrix S such that

J = S−1AS =




J1 0

J2

. . .

0 Jk


 ,

where the Ji are ni × ni Jordan blocks. The same eigenvalues may

occur in different blocks, but the number of distinct blocks corre-

sponding to a given eigenvalue is equal to the number of eigenvec-

tors corresponding to that eigenvalue and forming an independent

set. The number k and the set of numbers n1, . . . , nk are uniquely

determined by A.

In the following subsection we will show that M is such that

there exists only one block for each eigenvalue.

Uniqueness of the Jordan block corresponding to any given

eigenvalue of M .

Theorem 4.3 For the matrix M , no two eigenvectors correspond-

ing to the same eigenvalue can be linearly independent. Following

theorem 4.2, this implies that there exists a one-one mapping be-

tween Jordan blocks and eigenvalues.

Proof. Because M is triangular, its characteristic polynomial is

the product of the diagonals of (λIn+1 − M): f(λ) = (λ − q1)(λ −

q2) . . . (λ − qn)(λ − 1). The eigenvalues of M are the solutions of

the equation f(λ) = 0. Therefore, they are the distinct qi’s, and 1.

Now let us show that whatever the order of multiplicity of such

an eigenvalue (how many times it occurs in the set {q1, . . . , qn, 1}),

it has only one associated eigenvector. The eigenvectors associ-

ated to a given eigenvalue e are defined as the non-null solutions

92 4 Direct Evaluation of Non-Contiguous Sequences

of the equation M · V = e · V . If we write the coordinates of V

as [v1, v2, . . . , vn+1], we can observe that M · V = e · V results in a

system of (n+1) equations, where, for 1 ≤ j ≤ n, the j-th equation

permits to express vj+1 in terms of vj , and therefore in terms of v1.

That is,

for 1 ≤ j ≤ n : vj+1 =
e − qj

pj

vj =
(e − qj) . . . (e − q1)

pj . . . p1
v1.

In general (for all the qi’s), v1 can be chosen freely to have any

non-null value. This choice will uniquely determine all the values

of V .

Since the general form of the eigenvectors corresponding to any

eigenvalue of M is V = [v1, v2, . . . , vn+1], where all the values can

be determined uniquely by the free choice of v1, it is clear that no

two such eigenvectors can be linearly independent. Hence, one and

only one eigenvector corresponds to each eigenvalue of M . 2

Following theorem 4.2, this means that there is a single Jor-

dan block for each eigenvalue of M , whose size equals the order

of algebraic multiplicity of the eigenvalue, that is, its number of

occurrences in the principal diagonal of M . In other words, there

is a distinct Jordan block for every distinct qi (and its size equals

the number of occurrences of qi in the main diagonal of M), plus a

block of size 1 for the eigenvalue 1.

Therefore we can write:

J = S−1MS =




Je1
0

Je2

. . .

0 Jeq




,

where the Jei
are ni×ni Jordan blocks, corresponding to the distinct

eigenvalues of M . Following the general properties of the Jordan

normal form, we have:

J l =




J l
e1

0

J l
e2

. . .

0 J l
eq




.

4.2 The Probability of Discontinued Occurrence of an n-Words
Sequence 93

Also,

M l =
(
SJS−1

)l

=

l times︷ ︸︸ ︷(
SJS−1

)
·
(
SJS−1

)
. . .
(
SJS−1

)

= S · J ·

(l − 1) times︷ ︸︸ ︷(
S−1 · S

)
· J ·

(
S−1 · S

)
· J . . .

(
S−1 · S

)
· J ·S−1

= S ·

l times︷ ︸︸ ︷
J · J . . . J ·S−1

= S · J l · S−1.

Therefore, by multiplying the first row of S by J l (i.e., by raising

each Jordan block to the power l), and multiplying the resulting

vector by the last column of S−1, we do obtain the upper right value

of M l, that is, the probability of the n-gram (A1 → · · · → An) to

appear in a document of size l.

Calculating powers of a Jordan block.

As mentioned above, to raise J to the power l, we can simply write

a direct sum of the Jordan blocks raised to the power l. In this

section, we will show how to compute J l
ei

for a Jordan block Jei
.

Let us define Dei
and Nei

such that Jei
= Dei

+ Nei
, where Dei

contains only the principal diagonal of Jei
, and Nei

only its first

superdiagonal. That is,

Dei
= eiIni

=




ei 0

ei

. . .

0 ei


 ,

and

Nei
=




0 1 0
. . .

1

0 0


 .

94 4 Direct Evaluation of Non-Contiguous Sequences

Observing that Nei
Dei

= Dei
Nei

, we can use the binomial the-

orem:

J l
ei

= (Dei
+ Nei

)l =
l∑

k=0

(
l

k

)
Nk

ei
Dl−k

ei

Because Nei
is nilpotent (N k

ei
= 0,∀k ≥ ni), we can shorten the

summation to:

J l
ei

= (Dei
+ Nei

)l =

ni−1∑

k=0

(
l

k

)
Nk

ei
Dl−k

ei

Hence, to calculate J l
ei

, one can compute the powers of Dei
and

Nei
from 0 to l, which is a fairly simple task. The power of a

diagonal matrix is easy to compute, as it is another diagonal matrix

where each term of the original matrix is raised to the same power

as the matrix. D
j
ei is thus identical to Dei

, except that the main

diagonal is filled with the value e
j
i instead of ei. Hence, we have:

Dk
ei

=




ek
i 0

ek
i

. . .

0 ek
i


 .

To compute Nk
ei

is even simpler. Each multiplication of a power

of Nei
by Nei

results in shifting the non-null diagonal one row up-

wards (the values on the first row are lost, and those on the last

row are 0’s).

The result of Nk
ei

D
j
ei resembles N

j
ei , except that the ones on the

only non-null diagonal (the j-th superdiagonal) are replaced by the

value of the main diagonal of D
j
ei , that is, e

j
i . Therefore, we have:

Nk
ei

Dl−k
ei

=




0 el−k
i 0

. . .

el−k
i

0 0




.

Since each value of k corresponds to a distinct diagonal, the

4.2 The Probability of Discontinued Occurrence of an n-Words
Sequence 95

summation
∑l

k=0

(
l
k

)
Nk

ei
Dl−k

ei
is easily written as:

J l
ei

=
l∑

k=0

(
l

k

)
Nk

ei
Dl−k

ei

=




(
l
0

)
· el

i . . .
(

l
k

)
· el−k

i . . .
(

l
ni−1

)
· el−ni+1

i

. . .
. . .

...(
l
0

)
· el

i

(
l
k

)
· el−k

i
. . .

...

0
(

l
0

)
· el

i




.

Conclusion.

The probability of the n-gram A1 → · · · → An in a document of

size l can be obtained as the upper-right value in the matrix M l

such that:

M l = SJ lS−1

= S




J l
e1

0

J l
e2

. . .

0 J l
eq




S−1,

where the J l
ei

blocks are as described above, while S and S−1 are

obtained through the Jordan Normal Form theorem (Theorem 4.2).

We actually only need the first row of S and the last column of

S−1, as we are not interested in the whole matrix M l but only in

its upper-right value.

In the next subsection we will calculate the worst case time com-

plexity of the technique that we just presented. Before that, let us

return to the running example presented in subsection 4.2.1.

Running Example.

The state-transition diagram of the Markov Chain corresponding

to the bigram A → B has only three states (see Figure 4.2). The

96 4 Direct Evaluation of Non-Contiguous Sequences

o/seen:

0

qqaa=2/3=2/3 bq =2/3

1
seen:A

p
a
=1/3 p

b
=1/3

seen:AB

2

1

Figure 4.2: The state-transition diagram of the Markov Chain cor-

responding to our running example.

corresponding transition matrix is:

Mre =




2
3

1
3 0

0 2
3

1
3

0 0 1


 .

Following Theorem 4.2 on the Jordan normal form, there exists

an invertible matrix Sre such that

Jre = S−1
re MreSre =


 J 2

3

0

0 J1


 ,

where J1 is a block of size 1, and J 2

3

a block of size 2 since

qa = qb = 2
3 . We can actually write Jre as:

Jre =




2
3 1 0

0 2
3 0

0 0 1


 .

Since we seek the probability of the bigram A → B in a document

of size 3, we need to calculate J 3
re:

J3
re =



(
3
0

)
(2
3)3

(
3
1

)
(2
3)2 0

0
(
3
0

)
(2
3)3 0

0 0 1




=




8
27

4
3 0

0 8
27 0

0 0 1


 .

In the next subsection, we will give further details as to the

practical computation of Sre and the last column of its inverse S−1
re .

4.2 The Probability of Discontinued Occurrence of an n-Words
Sequence 97

For now, let us simply assume they were calculated, and we can

thus obtain the probability of the bigram A → B in a document of

length 3 as:

P (A → B, 3) =

first row of S︷ ︸︸ ︷
(1 0 1)




8
27

4
3 0

0 8
27 0

0 0 1




last column of S−1

︷ ︸︸ ︷

−1

−1
3

1




=
(

8
27

4
3 1

)


−1

−1
3

1




=
7

27
.

Our technique indeed obtains the right result. But how effi-

ciently is it obtained? The purpose of the following subsection is to

answer this question.

4.2.5 Algorithmic Complexity

The process of calculating the probability of occurrence of an n-

gram in a document of size l consists of two main phases: calculating

J l, and computing the transformation matrix S and its inverse S−1.

Below, we will study the worst-case time complexity, but it is

interesting to observe that in practice, for a corpus big enough, the

number of words equally-weighed should be small. This is especially

true since, following Zipf’s law, infrequent words are most likely

to have equal weights, and they precisely are often pruned during

preprocessing.

The following complexity analysis might be easier to follow, if

studied together with the general formulas of M l and the Jordan

blocks as presented in the conclusion of Section 4.2.4, on page 95.

Time complexity of the J l calculation.

Observing that each block J l
i contains exactly ni distinct values, we

can see that J l contains
∑

1≤k≤q nk = n + 1 distinct values. Those

(n + 1) values are (n + 1) multiplications of a binomial coefficient

by the power of an eigenvalue.

98 4 Direct Evaluation of Non-Contiguous Sequences

The computation of the powers between 0 and l of each eigen-

value is evidently achieved in O(lq), because each of the q distinct

eigenvalues needs to be multiplied by itself l times.

For every Jordan block J l
i , the binomial coefficients to be com-

puted are:
(

l
0

)
,
(

l
1

)
, . . . ,

(
l

ni−1

)
. For the whole matrix J l, we thus

need to calculate
(

l
k

)
where 0 ≤ k ≤ maxblock and maxblock =

maxq
i=1 ni. Observing that

(
l

j+1

)
=
(

l
j

)
l−j
j+1 , and thus, that

(
l

j+1

)

can be computed from
(

l
j

)
in a constant number of operations, we

see that the set {
(

l
k

)
| 1 ≤ k ≤ maxblock} can be computed in

O(maxblock).

Finally, all the terms of J l are obtained by (n+1) multiplications

of powers of eigenvalues (computed in O(lq)) and combinatorial

coefficients (computed in O(maxblock)). Note that if l < n, the

probability of occurrence of the n-gram in l is immediately 0, since

the n-gram is longer than the document. Therefore, the current

algorithm is only used when l ≥ n ≥ maxblock. We can therefore

conclude that the time complexity of the computation of J l

is O(lq).

Time complexity for computing the transformation matrix and its

inverse.

The second phase is to calculate S, the transformation matrix from

M to J , and its inverse, S−1.

Calculating the transformation matrix S. Following general

results of linear algebra [ND77], the (n+1)×(n+1) transformation

matrix S can be written as:

S =
[
S1S2 . . . Sq

]
,

where each Si is an ni × (n + 1) matrix corresponding to the

eigenvalue ei, and such that

Si =
[
vi,1vi,2 . . . vi,ni

]
,

where:

• vi,1 is an eigenvector associated with ei, thus such that Mvi,1 =

eivi,1, and

4.2 The Probability of Discontinued Occurrence of an n-Words
Sequence 99

• vi,j, for all j = 2 . . . ni, is a solution of the equation Mvi,j =

eivi,j + vi,j−1.

The vectors vi,1vi,2 . . . vi,ni
are sometimes called generalized eigen-

vectors of ei. We have already seen in Section 4.2.4 that the first

coordinate of each eigenvector can be assigned freely, and that ev-

ery other coordinate can be expressed in function of its immediately

preceding coordinate. Setting the first coordinate a1 to 1, we can

write:

vi,1 =




a1

a2

a3
...

ai

ai+1
...

an+1




=




1
ei−q1

p1

(ei−q1)(ei−q2)
p1p2

...
(ei−q1)...(ei−qi−1)

p1...pi−1

0
...

0




The resolution of the system of (n+1) linear equations following

Mvi,2 = eivi,2 + vi,1 permits to write:

vi,2 =




b1

b2

b3
...

bi

bi+1

bi+2
...

bi+k

bi+k+1
...

bn+1




=




b1
a1

p1
+ ei−q1

p1
b1

a2

p2
+ ei−q2

p2
b2

...
ai−1

pi−1
+

ei−qi−1

pi−1
bi−1

ai

pi
ei−qi+1

pi+1
bi+1

...
ei−qi+k−1

pi+k−1
bi+k−1

0
...

0




,

where k is such that (i + k) is the position of second occurrence

of ei on the principal diagonal of M (that is, qi+k = qi = ei), the

position of first occurrence being i.

100 4 Direct Evaluation of Non-Contiguous Sequences

We can similarly write the other column vectors vi,j , where j =

3 . . . ni. Hence, it is clear that each coordinate of those vectors can

be calculated in a constant number of operations. Therefore, we

can compute each column in O(n), and the whole matrix S in

O(n2).

Observe that the value of b1 is free and that it can be set to

0, without loss of generality. The same is true for the value in

the first row of each column vector vi,j, where j = 2 . . . ni. In

our implementation (notably when applying this technique to the

running example on page 95), we made the choice to assign those

first row values to 0. This means that the only non-null values on

the first row of S are unity, and that they occur on the q eigenvector

columns. This will prove helpful when calculating the expected

frequency of occurrence of an n-gram by lowering the complexity

of repeated multiplications of the first row of S by various powers

of the matrix J .

The inversion of S. The general inversion of an (n + 1) ×

(n+1) matrix can be done in O(n3) through Gaussian elimination.

To calculate only the last column of S−1 does not help, since the

resulting system of (n+1) equations still requires O(n3) operations

to be solved by Gaussian elimination.

However, some specificities of our problem will again permit an

improvement over this general complexity. When describing the

calculation of the similarity matrix S, it became clear that the ni

occurrences of ei on the main diagonal of the matrix M are matched

by ni column vectors whose last non-null values exactly correspond

to the ni positions of occurrence of ei on the main diagonal of M .

This is equivalent to saying that S is a column permutation

of an upper-triangular matrix. Let T be the upper-triangular

matrix corresponding to the column permutation of S. We can

calculate the vector x, equal to the same permutation of the last

column of S−1, by solving the triangular system of linear equations

4.2 The Probability of Discontinued Occurrence of an n-Words
Sequence 101

that follows TT−1 = In+1:




T1,1 T1,2 . . . T1,n+1

0 T2,2 T2,n+1
...

. . .
. . .

...

0 . . . 0 Tn+1,n+1




x =last column of T−1

︷ ︸︸ ︷


x1

x2
...

xn+1




=

last column of In+1︷ ︸︸ ︷


0
...

0

1


 .

The solution x is calculated by backward substitution:





xn+1 = 1
Tn+1,n+1

xn = − 1
Tn,n

(Tn,n+1xn+1)
...

x1 = − 1
T1,1

(T1,2x2 + T1,3x3 + · · · + T1,n+1xn+1)

This way, the set of (n + 1) triangular linear equations can be

solved in O(n2). It only remains to apply the reverse permutation

to x to obtain the last column of S−1.

Finding the permutation and its inverse are simple sorting opera-

tions. Thus, the whole process of computing the last column

of the transformation matrix S is O(n2).

Conclusion

To obtain the final result, the probability of occurrence of the n-

gram in a document of size l, it only remains to multiply the first

row of S by J l, and the resulting vector by the last column of S−1.

The second operation takes (n+1) multiplications and n additions.

It is thus O(n).

The general multiplication of a vector of size (n + 1) by an (n +

1) × (n + 1) square matrix takes (n + 1) multiplications and n

additions for each of the (n+1) values of the resulting vector. This

102 4 Direct Evaluation of Non-Contiguous Sequences

is thus O(n2). However, we can use yet another trick to improve this

complexity. When we calculated the matrix S, we could assign the

first row values of each column vector freely. We did it in such a way

that the only non-null values on the first row of S are unity, and that

they occur on the q eigenvector columns. Therefore, to multiply the

first row of S by a column vector simply consists in the addition

of the q terms of index equal to the index of the eigenvectors in S.

That operation of order O(q) needs to be repeated for each column

of J l. The multiplication of the first row of S by J l is thus O(nq).

The worst-case time complexity of the computation of the prob-

ability of occurrence of an n-gram in a document of size l is finally

max{O(lq), O(n2)}. Clearly, if l < n, the document is smaller than

the n-gram, and thus the probability of occurrence of the n-gram

therein can immediately be said to be null. Our problem of interest

is hence limited to l ≥ n.

Therefore, following our technique, an upper bound of the

complexity for computing the probability of occurrence of an

n-gram in a document of size l is O(ln). This is clearly better

than directly raising M to the power of l, which is O(ln3), not to

mention the computation of the exact mathematical Formula 4.2,

which is only achieved in O(lnl−n).

4.3 The Expected Frequency of an n-Words

Sequence

Now that we have defined a formula to calculate the probability of

occurrence of an n-gram in a document of size l, we can use it to cal-

culate the expected document frequency of the n-gram in the whole

document collection D. Assuming the documents are mutually in-

dependent, the expected frequency in the document collection is

the sum of the probabilities of occurrence in each document:

Exp df(A1 → · · · → An, D) =
∑

d∈D

p(A1 → · · · → An, |d|),

where |d| stands for the number of word occurrences in the docu-

ment d.

4.3 The Expected Frequency of an n-Words Sequence 103

4.3.1 Naive Computational Complexity

We can compute the probability of an n-gram to occur in a doc-

ument in O(ln). A separate computation and summation of the

values for each document can thus be computed in O(|D|ln), where

|D| stands for the number of documents in D.

In practice, we do improve the computational efficiency by count-

ing the number of documents of same length and multiplying this

number by the probability of occurrence of the n-gram in a doc-

ument of that size, rather than reprocessing and summing up the

same probability for each document of equal size. But as we are cur-

rently considering the worst case time complexity of the algorithm,

we are facing the worst case situation in which every document has

a distinct length.

4.3.2 Better Computational Complexity

We can achieve better complexity by summarizing everything we

need to calculate and organizing the computation in a sensible way.

Let L = maxd∈D |d| be the size of the longest document in the

collection. We first need to raise the Jordan matrix J to the power

of every distinct document length, and then to multiply the (at

worst) |D| distinct matrices by the first row of S and the resulting

vectors by the last column of its inverse S−1.

The matrix S and the last column of S−1 need to be computed

only once, and as we have seen previously, this is achieved in O(n2),

whereas the |D| multiplications by the first row of S are done in

O(|D|nq). It now remains to find the computational complexity of

the various powers of J .

We must first raise each eigenvalue ei to the power of L, which

is an O(Lq) process. For each document d ∈ D, we obtain all the

terms of J |d| by (n+1) multiplications of powers of eigenvalues by a

set of combinatorial coefficients computed in O(maxblock). The total

number of such multiplications is thus O(|D|n), an upper bound for

the computation of all combinatorial coefficients. The worst case

time complexity for computing the set { J |d| | d ∈ D}, is thus

max{O(|D|n), O(Lq)}.

Finally, the computational complexity for calculating the

expected frequency of an n-gram in a document collection

104 4 Direct Evaluation of Non-Contiguous Sequences

D is max{O(|D|nq), O(Lq)}, where q is the number of words in

the n-gram having a distinct probability of occurrence, and L is the

size of the longest document in the collection. The improvement

is considerable, compared to the computational complexities of the

more naive techniques, in O(|D|lnl−n) and O(|D|ln3).

4.4 Direct Evaluation of Lexical Cohesive

Relations

In this section, we will introduce an application of the expected

document frequency that fills a gap in information retrieval. We

propose a direct technique, language and domain-independent, to

rank a set of phrasal descriptors by their interestingness, regardless

of their intended use.

4.4.1 Hypothesis Testing

A general approach to estimate the interestingness of a set of events

is to measure their statistical significance. In other words, by eval-

uating the validity of the assumption that an event occurs only by

chance (the null hypothesis), we can decide whether the occurrence

of that event is interesting or not. If a frequent occurrence of a

multi-word unit was to be expected, it is less interesting than if it

comes as a surprise.

To estimate the quality of the assumption that an n-gram occurs

by chance, we need to compare its (by chance) expected frequency

and its observed frequency. There exists a number of statistical

tests, extensively described in statistics textbooks, even so in the

specific context of natural language processing [MS99]. In this pa-

per, we will base our experiments on the t-test :

t =
Obs df(A1 → · · · → An, D) − Exp df(A1 → · · · → An, D)√

|D|Obs DF (A1 → · · · → An)

MFSs are very appropriate non-contiguous lexical units to be

evaluated through our technique, since they are built with an un-

limited gap and no length ceiling. The extraction algorithm also has

the advantage of providing each MFS with its document frequency.

4.4 Direct Evaluation of Lexical Cohesive Relations 105

To compare the observed frequency of MFSs to their expected fre-

quency is thus especially meaningful, and we will hence be able to

sort the set of MFSs according to their statistical significance.

4.4.2 Experiments

Corpus

For experiments we used the publicly available Reuters-21578 news-

wire collection [Reu87], which originally contains about 19, 000 non-

empty documents. We split the data into 106, 325 sentences. The

average size of a sentence is 26 word occurrences, while the longest

sentence contains 260.

Using a minimum frequency threshold of 10, we extracted 4, 855

MFSs, distributed in 4, 038 2-grams, 604 3-grams, 141 4-grams, and

so on. The longest sequences had 10 words.

The expected document frequency and the t-test of all the MFSs

were computed in 31.425 seconds on a laptop with a 1.40 Ghz pro-

cessor and 512Mb of RAM. We used an implementation of a sim-

plified version of the algorithm that does not make use of all the

improvements presented in this paper.

Results

Table 4.1 shows the overall best-ranked MFSs. The number in

parenthesis after each word is its frequency. With Table 4.2, we

can compare the best-ranked bigrams of frequency 10 to their worst-

ranked counterparts (which are also the worst-ranked n-grams over-

all), noticing a difference in quality that the observed frequency

alone does not reveal.

It is important to note that our technique permits to rank longer

n-grams amongst pairs. For example, the best-ranked n-gram of a

size higher than 2 lies in the 10th position: “chancellor exchequer

nigel lawson” with t-test value 0.02315, observed frequency 57, and

expected frequency 0.2052e − 07.

In contrast to this high-ranked 4-gram, the last-ranked n-gram of

size 4 occupies the 3, 508th position: “issuing indicated par europe”

with t-test value 0.009698, observed frequency 10, and expected

frequency 22.25e − 07.

106 4 Direct Evaluation of Non-Contiguous Sequences

Table 4.1: Overall 10 best-ranked MFSs and the corresponding

expected and observed frequencies (in the columns “exp” and “obs”,

respectively).

t-test n-gram exp obs

0.03109 los(127) angeles(109) 0.08085 103

0.02824 kiichi(88) miyazawa(184) 0.09455 85

0.02741 kidder(91) peabody(94) 0.04997 80

0.02666 morgan(382) guaranty(93) 0.20726 76

0.02485 latin(246) america(458) 0.65666 67

0.02432 orders(516) orders(516) 1.54953 66

0.02431 leveraged(85) buyout(145) 0.07198 63

0.02403 excludes(350) extraordinary(392) 0.79950 63

0.02389 crop(535) crop(535) 1.66546 64

0.02315
chancellor(120) exchequer(100)

nigel(72) lawson(227)
0.2052e-07 57

Table 4.2: The 5 best- and worst-ranked bigrams of frequency 10.
t-test n-gram exp obs

9.6973-03 het(11) comite(10) 0.6430-03 10

9.6972-03 piper(14) jaffray(10) 0.8184-03 10

9.6969-03 wildlife(18) refuge(10) 0.0522-03 10

9.6968-03 tate(14) lyle(14) 0.1458-03 10

9.6968-03 g.d(10) searle(20) 0.1691-03 10

8.2981-03 pacific(502) security(494) 1.4434 10

8.2896-03 present(496) intervention(503) 1.4521 10

8.2868-03 go(500) go(500) 1.4551 10

8.2585-03 bills(505) holdings(505) 1.4843 10

8.2105-03 cents(599) barrel(440) 1.5337 10

4.4 Direct Evaluation of Lexical Cohesive Relations 107

Now, let us attempt to compare our ranking, based on the ex-

pected document frequency of discontiguous word sequences to a

ranking obtained through a well-known technique. We must first

underline that such a “ranking comparison” can only be empirical,

since our standpoint is to focus on general-purpose descriptors. It

is therefore, by definition, impossible to assess descriptors individ-

ually as interesting and not.

Evaluation through Mutual Information. The choice of an

evaluation technique to oppose is rather restricted. A computa-

tional advantage of our technique is that it does not use distance

windows or the distances between words. A consequence is that no

evaluation technique based on the mean and variance of the distance

between words can be logically considered. Smadja’s z-test [Sma93]

is then out of reach. Another option is to apply a statistical test,

using a different technique for the calculation of the expected fre-

quency of the word sequences. We decided to opt for pointwise

mutual information, as first presented by Fano [Fan61] and applied

to collocations discovery by Church and Hanks [CH90], an approach

we already discussed in Section 2.3.2.

The rank of all word pairs is obtained by comparing the fre-

quency of each pair to the probability that both words occur to-

gether by chance. Given the independence assumption, the proba-

bility that two words occur together by chance is the multiplication

of the probability of occurrence of each word. And pointwise mutual

information is thus calculated as follows:

I(w1, w2) = log2
P (w1, w2)

P (w1)P (w2)
.

If I(w1, w2) is positive, and thus P (w1, w2) is greater than P (w1)×

P (w2), it means than the words w1 and w2 occur together more

frequently than chance. In practice, the mutual information of all

the pairs is greater than zero, due to the fact that the maximal

frequent sequences that we want to evaluate are already a selection

of statistically remarkable phrases.

As stated by Fano [Fan61], the intrinsic definition of mutual

information is only valid for bigrams. Table 4.3 presents the best

10 bigrams, ranked by decreasing mutual information. Table 4.4

shows the 5 best- and worst-ranked bigrams of frequency 10 (again,

the worst ranked bigrams of frequency 10 are also the worst ranked

108 4 Direct Evaluation of Non-Contiguous Sequences

Table 4.3: Mutual Information: the 10 best bigrams.
Bigram Frequency Mutual Information

het(11) comite(10) 10 17.872

corpus(12) christi(12) 12 17.747

kuala(14) lumpur(13) 13 17.524

piper(14) jaffray(10) 10 17.524

cavaco(15) silva(11) 11 17.425

lazard(16) freres(16) 16 17.332

macmillan(16) bloedel(13) 13 17.332

tadashi(11) kuranari(16) 11 17.332

hoare(15) govett(14) 13 17.318

ortiz(16) mena(14) 13 17.225

overall).

We can observe that, for the same frequency, the rankings are

very comparable. Where our technique outperforms mutual infor-

mation is in ranking together bigrams of different frequencies. It is

actually a common criticism against mutual information, to point

out that the score of the lowest frequency pair is always higher, with

other things equal [MS99]. For example, the three best-ranked MFS

in our evaluation, “Los Angeles”, “Kiichi Miyazawa” and “Kidder

Peabody”, which are among the most frequent pairs, rank only 191st,

261st and 142nd with mutual information (out of 4, 038 pairs).

Mutual information is not defined for n-grams of a size longer

than two. Other techniques are defined, but they usually give

much higher scores to longer n-grams, and in practice, rankings

are successions of decreasing size-wise sub-rankings. A noticeable

exception is the measure of mutual expectation introduced by Dias

(see [DGBPL00a], and our overview in Section 2.3.2).

Compared to the state of the art, the ability to evaluate n-grams

of different sizes on the same scale is one of the major strengths of

our technique. Word sequences of different size are ranked together,

and furthermore, the variance in their rankings is wide. While most

of the descriptors are bigrams (4, 038 out of 4, 855), the 604 trigrams

are ranked between the 38th and 3, 721st overall positions. For the

141 4-grams, the position range is 10−3, 508.

4.5 Conclusion 109

Table 4.4: Mutual Information: the 5 best and worst bigrams of

frequency 10.

Bigram Frequency Mutual Information

het(11) comite(10) 10 17.872

piper(14) jaffray(10) 10 17.524

wildlife(18) refuge(10) 10 17.162

tate(14) lyle(14) 10 17.039

g.d(10) searle(20) 10 17.010

pacific(502) security(494) 10 6.734

present(496) intervention(503) 10 6.725

go(500) go(500) 10 6.722

bills(505) holdings(505) 10 6.693

cents(599) barrel(440) 10 6.646

4.5 Conclusion

We presented a novel technique for calculating the probability and

expected document frequency of any given non-contiguous lexical

cohesive relation. We first calculated an exact formula to reach this

result, and observed that it is not usable in practice, because of an

exponential computational complexity. We then found a Markov

representation of the problem and exploited the specificities of that

representation to reach linear computational complexity. The initial

order of complexity of O(lnl−n) was brought down to O(ln).

We further described a method that compares observed and ex-

pected document frequencies through a statistical test as a way to

give a direct numerical evaluation of the intrinsic quality of a multi-

word unit (or of a set of multi-word units). This technique does not

require the work of a human expert, and it is fully language- and

application-independent. It permits to efficiently compare n-grams

of different length on the same scale.

A weakness that our approach shares with most language mod-

els is the assumption that terms occur independently from each

other. In the future, we hope to present more advanced Markov

representations that will permit to account for term dependency.

110 4 Direct Evaluation of Non-Contiguous Sequences

CHAPTER 5

Exploratory Application to
Document Retrieval

The previous chapter presented a technique to evaluate the quality

of phrasal descriptors directly. We will now take a closer look at

their use in the framework of an information retrieval application,

namely document retrieval. First of all, we will define essential con-

cepts of document retrieval in Section 5.1 before providing a short

summary of related techniques to exploit phrases in the retrieval

task (Section 5.2).

We will then present the last contribution of this monograph in

the form of a novel technique to compute the phrase-based simi-

larity of documents (Section 5.3). To understand and evaluate the

impact of this contribution, we formulate in Section 5.4 a number of

hypotheses and questions together with the definition of a set of ex-

periments that are expected to provide the corresponding answers.

Finally, the results are presented and discussed in Section 5.5.

5.1 Basic Concepts of Document Retrieval

5.1.1 The Document Retrieval Task

The task of document retrieval consists of selecting a set of docu-

ments in a collection, in response to a user’s request.

The user initially formulates her information need, as a ques-

tion in natural language, for example, or as a set of keywords or

111

112 5 Exploratory Application to Document Retrieval

keyphrases. We refer to the formulation of an information need as

a topic.

The task of a document retrieval system is then to transform

the topic into a machine-interpretable query. Depending on the

document retrieval system, this query can be of different types,

e.g., if the system is based on the vector space model, the topic will

be transformed into a vector.

This transformation of a topic permits to compare it to the doc-

uments of the collection. With respect to a given query, the doc-

uments of a collection can be assigned similarity values by which

they may be sorted. The answer of a document retrieval system to

a user-defined topic is a list of documents, ranked by correspond-

ing similarity values (also called Retrieval Status Value (RSV)) in

decreasing order.

In large collection testbeds, the evaluation of a system is based

on its combined performance versus a number of queries. The set of

answers corresponding to a set of topics is called a run. Document

retrieval systems are evaluated through the quality of the runs they

produce. In the following section, we will outline the main measures

for the evaluation of document retrieval, with an emphasis on the

ones we will use in the rest of this chapter.

5.1.2 Evaluation of Document Retrieval Systems

The effectiveness of the set of documents returned to a topic is

generally measured upon judgments of which documents are truly

relevant to the user’s information need and which are not. Given

a topic and an associated set of relevance assessments, i.e., a list

of which documents of the collection were judged as relevant by a

domain expert, we can define a number of evaluation measures.

A document selected by the retrieval system as relevant to a

given topic is called a positive. Based on the relevance assessments,

we further qualify such a retrieved document as a true positive (TP)

if it was truly assessed as relevant, and as a false positive (FP) if

it was not. Symmetrically, a document that is not returned by

the system is called a negative. It is a true negative (TN) if it

was judged as irrelevant, and a false negative (FN) if it should have

been returned by the system. The concepts of positive and negative

documents, true and false, are summarized in Figure 5.1.2.

5.1 Basic Concepts of Document Retrieval 113

Documents relevant not relevant

retrieved True Positives False Positives

not retrieved False Negatives True Negatives

Figure 5.1: True and false, positive and negative documents.

Recall and Precision. Given the number of truly relevant doc-

uments, i.e., the sum of the number of true positives and false neg-

atives, we can compute a ratio of exhaustiveness by dividing the

number of relevant documents found by the total number of rele-

vant documents. This measure is the recall :

Recall =
TP

TP + FN
.

In practice, the number of false negatives is often an estimation

only, as it is too time-demanding for a domain expert to assess every

single document of a collection as relevant or irrelevant. Among the

documents retrieved, the ratio of relevant ones is the precision of

the retrieval:

Precision =
TP

TP + FP
.

We may observe that returning all the documents of the col-

lection is an easy way to ensure 100% recall. But the precision

is then low. In a similar fashion, to get high precision ratios, a

safe heuristics is to return a limited number of documents, the ones

with the very highest similarity measures, with respect to the topic.

Subsequently weak is the recall. Efficient evaluation of document

retrieval systems is in fact based on combinations of recall and pre-

cision values. For example, the F-measure [VR79] of a ranked list

of documents is the harmonic mean of recall and precision:

F-measure =
2 × recall × precision

recall + precision
.

The F-measure is null when either recall or precision is null, and it

is equal to 1 if and only if both recall and precision are equal to 1.

Precision at k. A common way to obtain a measure of preci-

sion that also accounts for recall is to look only at the k best ranked

documents. This measure looks at the performance at the top of

114 5 Exploratory Application to Document Retrieval

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Figure 5.2: A recall-precision graph.

the list and is intuitive of the behavior of users, as they scan the

ranked list from top to bottom, and actually in many practical ap-

plications, for example web searching, they only scan through the

very first results of a ranked document list, until they find a rel-

evant document. However, such measures are typically less useful

for information needs where exhaustivity is important, i.e., to see

as many of the relevant documents as possible.

Recall-Precision curve. Another approach to estimate the qual-

ity of a list of retrieved documents is to plot a recall-precision graph.

A typical such graph is shown in Figure 5.2. The graph is drawn by

extrapolation from a number of data points. Typical data points

are measures of precision at every 10% of recall, i.e., at recall 0, 0.1,

0.2,. . . , and 1. For example, the precision measure corresponding to

a 40% recall tells the ratio of relevant documents the user needs to

go through before she has seen 40% of all the relevant documents.

A subsequent popular measure of the quality of a ranked list of

documents is the average precision over a number of points of recall.

For example, for the data points at every 10% of recall, we talk

about 11-point average precision. Reading the ranked document list

from top to bottom, we can also calculate the precision each time a

true positive is encountered. By averaging all those precision values

5.1 Basic Concepts of Document Retrieval 115

together, we obtain a popular measure, the mean average precision

(MAP).

Different measures for different information needs. In some

applications, such as searching for information on the web, users

typically look at the first 10 results only. In this case, an appropriate

measure is the precision at 10. Values at the left-hand side of the

recall-precision graph are most important.

There are cases, however, when finding every bit of relevant in-

formation is crucial. Typical such domains are patent validation,

where every similar existing patent must be carefully checked, or

jurisprudence searches in the judicial domain. A lawyer does not

want to miss a case that presents strong similarities to the one she

is working on. To find the retrieval system that is most appropriate

to her information need, precision at 10 is an inappropriate evalu-

ation measure. We rather wish to know the proportion of relevant

documents she had to go through before reading all the relevant

documents (or more realistically 80 or 90% of them). In this case,

it is values at the right-hand side of the recall-precision graph that

matter most. And we may wish to compute an evaluation measure

based on this very part of the graph, for example the 11-point av-

erage precision for recall values above 50%, e.g., 0.5, 0.55, 0.6, . . . ,

and 1.

5.1.3 Document Retrieval and Multiple Languages

To illustrate and support the fact that the contributions of this the-

sis are applicable to any human language, we are about to present

experiments on a few languages that are radically different in na-

ture, namely, English, Japanese, Korean, and Chinese. Since we

have no knowledge of the last three languages, the ability to ex-

periment with them is good support for our early plan to develop

techniques that do not require knowledge about the language of

the documents at hand. We will now briefly clear up terminology

issues and explain why our work may not consensually qualify as

“multilingual”.

Following the general definition of the adjective “multilingual”

(using or having the ability to use several languages), we can cer-

tainly claim that all the techniques we presented in this dissertation

are multilingual. However, this may cause some confusion, as the

116 5 Exploratory Application to Document Retrieval

meaning of the term “multilingual” has shifted within the over-

lapping research communities of information retrieval and compu-

tational linguistics. It is indeed often misused for “cross-lingual”.

Cross-Lingual Information Retrieval (CLIR) is a subdomain of doc-

ument retrieval of which the goal is to support queries in one lan-

guage against a collection in other languages [AAB+03]. The typ-

ical use case is truly serving multilingual users, as to obtain doc-

uments in all the languages she can understand, a user only needs

to query in one of them. This is opposed to monolingual retrieval,

where the answers to queries formulated in one language are doc-

uments in the same language. This denomination unfortunately

makes no distinction between techniques that are specifically con-

ceived for one language, and techniques that are well suited and

applied to any.

Hence, all the techniques we presented in this dissertation, as

well as the one that remains to be presented in Section 5.3 can duly

be called multilingual. However, to avoid misleading researchers in

the field, and to follow the practice of its sublanguage, a more ad-

equate qualification of our work would be “monolingual techniques

for any language”

5.2 Previous Attempts to Use Phrases in

Document Retrieval

As opposed to words, the higher content specificity of phrases is a

strong motivation for their extraction. Word sequences in document

retrieval should hence be more precise index terms than individual

words. The potential improvement of using phrases in document

retrieval is supported by the behavior of users. In an analysis of

the query log of the Excite search engine (more than 1.5 million

queries), Williams et al. [WZB04] found that 8.4% of the queries

contained explicit phrases, that is, they included at least two words

enclosed in quotes. Even more interestingly, the authors found it

beneficial to treat 40% of the queries without quotation marks as

phrases rather than independent words. Consequently, there is no

doubt that an efficient technique to use phrases may bring solid

improvement to document retrieval applications.

5.2 Previous Attempts to Use Phrases in Document Retrieval 117

Work on the use of phrases in IR has been carried out for more

than 25 years. Early results were very promising. However, unex-

pectedly, the constant growth of test collections caused a drastic

fall in the quality of the results. In 1975, Salton et al. [SYY75]

showed an improvement in average precision over 10 recall points

between 17% and 39%. In 1989, Fagan [Fag89] reiterated the exact

same experiments with a 10 Mb collection and obtained improve-

ments from 11% to 20%. This negative impact of the collection size

was lately confirmed by Mitra [MBSC97] over a 655 Mb collection,

improving the average precision by only one percent. Turpin and

Moffat [TM99] revisited and extended this work to obtain improve-

ments between 4% and 6%.

A conclusion of this related work is that phrases improve results

in high levels of recall, but are globally inefficient for the n first

ranked documents. According to Mitra [MBSC97], this low bene-

fit from phrases to the best answers is explained by the fact that

phrases promote documents that deal with only one aspect of possi-

bly multi-faceted queries. For example, a topic of TREC-4 is about

“problems associated with pension plans, such as fraud, skimming,

tapping or raiding”. Several top-ranked documents discuss pension

plans, but no related problem. This problem, as we already men-

tioned in Section 2.4.4, was termed by Mitra as one of inadequate

query coverage.

In our opinion, this does not contradict the idea that adding

document descriptors accounting for word order must permit to

improve the performance of IR systems. In Section 2.4, we ex-

panded on the need to improve the ways to account for phrases in

document representations. Another difficult problem is to find effi-

cient ways to benefit from those phrases. Related work has shown

the need for another way to combine phrase and word term descrip-

tors [SK98]. This need was illustrated by work of Lewis [Lew92] and

Vechtomova [Vec05], who both decided to involve human experts in

the process. Both obtained small improvement, suggesting that the

techniques to exploit the extracted phrases can also be perfected.

There are various ways to exploit phrase descriptors. The most

common technique is to consider phrases as supplementary terms

of the vector space, using the exact same technique as for word

terms. In other words, phrases are thrown into the bag of words.

However, according to Strzalkowski and Carballo [SC96], using a

118 5 Exploratory Application to Document Retrieval

standard weighting scheme is inappropriate for mixed feature sets

(such as single words and phrases). In such cases, the weight given

to the least frequent phrases is considered too low. Their specificity

is nevertheless often crucial in order to determine the relevance of a

document [Lah00]. In weighting the phrases, the interdependency

between a phrase and the words that compose it is another difficult

issue to account for [SSW+98].

An advanced matching technique was recently introduced by

Vechtomova [Vec05]. Its contribution is to address the problem

of overlapping phrases, in a way that accounts for the relative po-

sitions of occurrence of the words they contain. The problem of

overlapping phrases occurs for phrases of more than two words.

Given a query phrase ABC, it is the question of how to evaluate

a document that contains the phrase ABC and a document that

contains the phrases AB and BC separately.

For each query phrase, a pass through the document collection

is done, to retain every occurrence of terms of the query phrase

and their original positions in the document. Terms that form

the keyphrase or one of its sub-phrases are gathered into so-called

“windows”. Each window is weighed upon the idf of the words that

compose it and the distance that separated them originally:

WindowWeight(w) =
∑

i∈w

idfi ×
n

(span + 1)p
,

where i is a word occurring in the window w, span is the distance

between the first and last word of the window, and p is a tuning

parameter, arbitrarily set to 0.2 in [Vec05]. The score attributed

to each document is calculated as the sum of the weights of the

phrases it contains, where the weight of a phrase a in a document

is defined as follows:

PhraseWeight(a) =
(k + 1) ×

∑n
w=1 WindowWeight(w)

k × NF + n
,

where n is the number of windows w extracted for the phrase a,

k is a phrase frequency normalization factor, arbitrarily set to 1.2

in [Vec05], and NF is a document length normalization factor:

NF = (1 − b) + b ×
DocLen

AveDocLen
,

5.3 An Advanced Phrase-Matching Technique 119

where DocLen and AveDocLen are the document length and the

average document length in the corpus (number of words), and b is

a tuning constant, set to 0.75.

A major drawback is the computational complexity of this pro-

cess. In this method, there is no static phrase index that gives

a phrasal representation of the document collection. It is only at

query-time that a representation of the collection is built that only

contains the terms of the query. Such heavy processing in response

to a query is quite problematic, as users usually expect to obtain

results promptly.

In practice, the method has only been used for re-ranking the

1, 000 best documents returned to a query by a vector space model

relying on single word features. The results demonstrate a perfor-

mance improvement in terms of average precision, which is unfor-

tunately not statistically significant. They also confirm a common

observation when using phrases for document retrieval: compared

to the use of single word features only, improvement is observed at

high recall levels, while the impact is negative at lower levels.

In the following section, we will introduce a new technique for

computing phrase-based document similarity. We will then apply

it to document retrieval.

5.3 An Advanced Phrase-Matching Technique

5.3.1 Problem Definition and Goals

Problem definition. Given a set of sequences that describe the

documents of a collection, how can we determine to what extent the

sequence p1 . . . pn, issued from the document collection, corresponds

to the sequence q1 . . . qm, found in a user query? And how can we

subsequently rank the documents according to how well we think

they answer to the query?

We propose an approach that consists in comparing a set of de-

scriptive phrases extracted from the document collection, to a set of

keyphrases from the query. Given a query, every document receives

a reward for every sequence it contains that matches a keyphrase

of the query. This bonus generally differs for each different phrase.

Note that from here onwards, the term keyphrase will be used to

120 5 Exploratory Application to Document Retrieval

refer to a phrase found in a query.

A base weight. The most informative lexical associations

should notably be promoted, using statistical information such as

their term and inverted document frequency.

Longer matches are better matches. Further, it is natural

to wish that longer matches should be better rewarded. If a query

contains the keyphrase “XML structured information retrieval”, the

most appropriate documents are those whose descriptors contain

this exact sequence, followed by those containing a subsequence

of size 3 (e.g., “structured information retrieval”), and finally by

documents containing a subpair of the keyphrase (e.g., “structured

information” or “information retrieval”).

Adjacency should not be required. Clearly, a phrasal de-

scriptor containing the pair “XML retrieval” has a relationship with

the keyphrase “XML structured information retrieval”. This illus-

trates the fact that natural language is richer in variety than only

recurrent adjacent word sequences.

But adjacency is generally a stronger indicator. We

should, however, bear in mind the general rule that the more dis-

tant two words are, the less likely they are to be related. And the

degree to which the relatedness of two words is affected by distance

certainly varies greatly with different languages.

Inverted usage. An extension of the previous comments about

word adjacency is that we should also try to take into account the

fact that words might as well occur in inverted order, while still

not necessarily being adjacent. For example, a phrase ”retrieval of

XML” triggers interest with respect to the earlier keyphrase “XML

structured information retrieval”.

Jones and Sinclair [JS74] give the example of the pair “hard

work”, where throughout their document collection, the words “hard”

and “work” are occurring together in distinct order, and with a vari-

able distance between them. Of course, in English, not all colloca-

tions are this relaxed, and others are exclusively rigid, for example

the pair “Los Angeles” is very unlikely to occur in a different or-

der, or with other words inserted. They term those two types of

collocations as position dependent and position free collocations.

By attributing a positive score to matches and ignoring misses, we

can get around this problem. If we look for phrasal document de-

scriptors containing “Angeles Los” or for the occurrence of “Los”

5.3 An Advanced Phrase-Matching Technique 121

and “Angeles” separated by other words, and we fail to find any,

it will not worsen the retrieval performance. Whereas finding that

a document about “retrieval of XML” is relevant to a query about

“XML retrieval” is evidently better than failing to observe it.

In the next subsection, we will introduce our approach to the

problem. It aims at taking into account all the observations above

in a sensible way.

5.3.2 Document Score Calculation

Our approach exploits and combines two complementary document

representations. One is based on single word terms, in the vector

space model, and the other is a phrasal description, taking the

sequential nature of text data into account.

Once documents and queries are represented within those two

models, a way to estimate the relevance of a document with respect

to a query remains to be found. We must sort the document list

with respect to each query, which is why we need to compute a

Retrieval Status Value (RSV) for each document and query. Below,

we will explain how we calculate two separate RSVs, one for a word

features vector space model and one for our phrasal description. In

a later step, we aggregate these two RSVs into one single relevance

score for each document with respect to a query.

Word features RSV

Our first document representation is a standard vector space model,

of which all features are single words. It represents a baseline model

that our goal is to perfect by the addition of sequential information

from our second document model.

The index term vocabulary W is as simple as can be, it includes

every word found in the document collection, without preselection.

Further, the words are left in their original form, morphological

conflation techniques being left aside. This guarantees generality, as

this can be done in an equally simple way for document collections

written in any language.

Hence, as we have seen in detail in section 2.2, each document

is represented by a ‖W‖-dimensional vector filled in with a weight

standing for the importance of each word token with respect to

122 5 Exploratory Application to Document Retrieval

the document. To calculate this weight, we use a term-frequency

normalized version of term-weighted components, as described by

Salton and Buckley [SB88], that is:

tfidfw =
tfw · log |D|

dfw

max(tf) ·

√
∑

wi∈W

(
tfwi

· log |D|
dfwi

)2

where tfw and dfw are the term and document frequencies of the

word w, |D| is the total number of documents in the collection D,

and max(tf) is the (term-) frequency of the most (term-) frequent

word, i.e., max(tf) = maxwi∈W tfwi
.

The vector space model offers a very convenient framework for

computing similarities between documents and queries. Among the

number of techniques to compare two vectors, we chose cosine sim-

ilarity because of its computational efficiency. By normalizing the

vectors, which we do in the indexing phase, cosine(
−→
d1 ,

−→
d2) indeed

simplifies to the vector product (d1 · d2).

We have already expanded on the weaknesses and the amount of

information that such a simple model cannot catch. This is why we

will complement this model with a phrasal one, bringing sequential

information into the document model, and aiming to carry it on

into document retrieval.

Phrasal RSV

The core of techniques for the extraction of phrasal document de-

scriptors was covered in Chapters 2 and 3. Once such a technique

has been applied and the phrasal descriptors have been extracted,

an index is easily built for the document collection. The only task

is to associate each document with the list of all phrasal descriptors

that it contains. This can involve an extra step when the retrieval

granularity does not match the extraction granularity. For exam-

ple, MFSs are often extracted from a sentence collection, whereas

text retrieval applications often seek longer document fragments.

Once this first step has been achieved, and a set of n-grams is

attached to each document, it remains to define a procedure to

match a phrase describing a document and a keyphrase.

Our approach consists in decomposing keyphrases of the query

into key pairs. Each of these pairs is bound to a score representing

5.3 An Advanced Phrase-Matching Technique 123

its inherent quantity of relevance. Informally speaking, the quantity

of relevance of a key pair tells how much it makes a document

relevant to contain an occurrence of this pair. This value depends on

a basic measure of the importance of the pair (its base weight, which

can be its inverted document frequency, for example) combined with

a number of modifiers, meant to take into account the distance

between two words of a pair, to penalize their possible inverted

usage, and so on.

Definitions. Let D be a document collection and K1 . . . Km a

keyphrase of size m. Let Ki and Kj be two words of K1 . . . Km. We

define the quantity of relevance associated to the key pair KiKj as:

Qrel(KiKj) = Base Weight(KiKj , D) · Integrity(KiKj),

where Base Weight(KiKj , D) represents the general importance

of KiKj in the collection D. A possible measure of this kind is the

statistical significance of the pair, or its specificity, measured in

terms of inverted document frequency:

idf(KiKj, D) = log

(
|D|

df(KiKj)

)
,

Integrity Modifier. When decomposing the keyphrase K1 . . . Km

into pairs, the Integrity Modifier of the key pair KiKj is defined as

the combination of a number of modifiers:

Integrity(KiKj) = adj(KiKj) · inv(KiKj) · dup(KiKj).

Non-adjacency penalty. Adj(KiKj) is a score modifier meant

to penalize key pairs formed from non-adjacent words. Let d(Ki,Kj)

be the distance between Ki and Kj , that is, the number of other

words appearing in the keyphrase between Ki and Kj (d(Ki,Kj)

= 0 means that Ki and Kj are adjacent). We define:

adj(KiKj) =





1, if d(Ki,Kj) = 0

α1, 0 ≤ α1 ≤ 1, if d(Ki,Kj) = 1

α2, 0 ≤ α2 ≤ α1 if d(Ki,Kj) = 2

. . .

αm−2, 0 ≤ αm−2 ≤ αm−3, if d(Ki,Kj) = m − 2

Accordingly, the larger the distance between the two words, the

lower a quantity of relevance is attributed to the corresponding

124 5 Exploratory Application to Document Retrieval

pair. In the experiments, we set only a base value of non-adjacency

penalty adj pen that is raised to the power of the distance be-

tween the two words of the key pair. In other words, αd(Ki,Kj) =

adj pend(Ki,Kj). In practice, choosing the example value of 0.9 for

adj pen means that the base matching quantity awarded to doc-

uments containing KiKj is lowered by 10% for every other word

occurring between Ki and Kj in the original keyphrase.

A further possibility is to define a maximal distance between two

words by setting, for example, αk = 0, for k greater than a given

maximal distance threshold. As we have seen, a maximal distance

of 5 was suggested for English document collections [JS74, Sma93,

DGBPL00b].

Inversion penalty. Inv(KiKj) is another score modifier used

to penalize key pairs KiKj that occur in the opposite order in the

original keyphrase:

inv(KiKj) =

{
1, if Ki occurs before Kj.

inv pen ≤ 1, otherwise.

Evidently, the non-adjacency and inversion penalties are strongly

language- and domain-dependent. The less relative word positions

matter, the lower those penalties should be. For a theoretical docu-

ment collection where relative word positions have no importance,

we should have inv pen = 1 and, for 0 ≤ l ≤ (m − 2), αl = 1.

Observe, that for such a theoretical document collection, a bag of

words representation would be optimal, and the use of phrasal de-

scriptors would actually not bring any supplementary information.

Duplication bonus. A result of the creation of non-adjacent

and inverted key pairs is that the list of pairs representing a query

may contain a number of duplicates. Rather than incrementing a

corresponding number of matching quantities, we decide to remove

the duplicates, and keep one occurrence of the key pair together

with its highest associated matching quantity. This highest match-

ing quantity is further increased by dup(KiKj), a relative weight

increase awarded to those pairs occurring several times in the orig-

inal keyphrase.

Maximal matching distance. Observe that the question of

which parts of a document descriptor can be matched with a pair

was left open. If the phrasal descriptors are maximal frequent se-

quences, it is a sensible option to allow for an unlimited gap between

5.3 An Advanced Phrase-Matching Technique 125

Table 5.1: Quantity of relevance stemming from various indexing

phrases with respect to a keyphrase query ABCD. Bw stands for

Base Weight.

Document Description Quantity of relevance

d1 AB Bw(AB)

d2 ACD Bw(CD) + α1Bw(AC) + α2Bw(AD)

d3 AFB Bw(AB)

d4 ABC Bw(AB) + Bw(BC) + α1Bw(AC)

d5 ACB
Bw(AB) + α1Bw(AC) +

α1 · inv pen · Bw(CB)

each two words of the descriptor, because by definition, if ABCD

is frequent, then so are AB, AC, AD, BC, BD, and CD. In the

general case, however, we allow for the possibility to use a maximal

matching distance maxd. We try to match two words of a phrasal

descriptor against a key pair only if there is no more than maxd

other words occurring between them.

Example. To illustrate these definitions, let us have a look at

the decomposition of the keyphrase ABCD. It is decomposed into

12 tuples (pair, integrity modifier):

(AB, 1), (AC,α1), (AD,α2),(BC, 1), (BD,α1), (CD, 1), (BA,

inv pen), (CA,α1 · inv pen), (DA,α2 · inv pen), (CB, inv pen),

(DB,α1 · inv pen), (DC, inv pen).

Let us compare this keyphrase to the documents d1, d2, d3, d4

and d5, represented respectively by the phrasal descriptors AB, AC,

AFB, ABC and ACB. The maximal matching distance maxd is set

higher than 1. The corresponding quantities of relevance brought

by matching part of the keyphrase ABCD are shown in table 5.1.

Assuming equal Base Weight values, we observe that the quan-

tities of relevance form an order matching the desirable properties

that we had wished for in Section 5.3.1. The longest matches rank

first, and matches of equal size are untied by relative word posi-

tions (adjacency and inversion). Moreover, non-adjacent matches

(AC and ABC) are not ignored as in many other phrase represen-

126 5 Exploratory Application to Document Retrieval

tations [MBSC97].

Aggregated RSV

In practice, a query may not contain any keyphrases, and a doc-

ument may not be represented by any phrasal descriptors. How-

ever, there can of course be correct answers to these queries, and

those documents must be relevant to some information needs. Also,

all documents containing the same matching phrases get the same

phrasal RSV. If the phrasal description is small, it is necessary to

find a way to break ties. The cosine similarity measure based on

word features is very appropriate for that.

Another response could have been to decompose the pairs into

single words and form document vectors accordingly. However, this

would not be satisfying, because a relevant word term may not

occur frequently enough to belong to any phrasal descriptor. An

even more important category of missed words is that of the words

that are individually frequent but do not frequently co-occur with

other words. The loss would be considerable.

This is the reason to compute another RSV using a basic word-

feature vector space model. To combine both RSVs to one single

score, we must first make them comparable by mapping them to a

common interval. To do so, we used Max Norm, as presented by

Lee [Lee95], which permits to bring all positive scores within the

range [0,1]:

New Score =
Old Score

Max Score

Following this normalization step, we aggregate both RSVs using

a linear interpolation factor λ representing the relative weight of

scores obtained with each technique (similarly as in [MKR02]).

Aggregated Score = λ · RSVWord Features + (1 − λ) · RSVPhrasal

The evidence of experiments with the INEX 2002 collection and

MFS phrasal descriptors [Dou04] showed good results when weight-

ing the single word RSV with the number of distinct word terms

in the query (let a be that number), and the phrasal RSV with the

5.4 Experimental Framework 127

<Keywords>

"concurrency control"

"semantic transaction management"

"application" "performance benefit"

"prototype" "simulation" "analysis"

</Keywords>

Figure 5.3: Topic 47

number of distinct word terms found in keyphrases of the query (let

b be that number). Thus:

λ =
a

a + b

For example, in Figure 5.3, showing topic 47 of the INEX col-

lection, there are 11 distinct word terms and 7 distinct word terms

occurring in keyphrases. Thus, for this topic, we have λ = 11
11+7 ≈

0.61.

5.4 Experimental Framework

We will now present our practical approach to the evaluation of

MFSs as content descriptors in the application domain of document

retrieval.

5.4.1 Open Questions and Protocol of the Experiments

In the experiments, we will apply MFSs and our novel matching

technique to document retrieval. Crucially, these are two contri-

butions whose impact should be evaluated separately. To decide

whether the results are influenced by the intrinsic quality of MFSs

as indexing terms for document retrieval, or whether the results are

due to the matching technique, we will need to answer the following

two crucial questions:

• (Q1) Does our matching technique permit effective improve-

ments in the use of MFSs in document retrieval?

• (Q2) Are MFS good indexing terms for document retrieval?

128 5 Exploratory Application to Document Retrieval

• WVSM, the baseline, a retrieval run that follows the vector

space model as described in Section 2.2, relying on word term

features only.

• VSM-AdjBig, VSM with words and adjacent bigrams: a

retrieval run that follows the vector space model as described

in Section 2.2, except that all the adjacent bigrams of the

document collection are added to word features in the same

tfidf weighting scheme. Adjacent bigrams are thrown into

the bag of words, so to say.

• MFS-Big, VSM with all the bigrams occurring in MFSs: In

this run, all the bigrams occurring in an MFS are added to

the vector space. For example, with an MFS ABCD, the

bigrams AB, AC, AD, BC, BD and CD are thrown into the

bag of words.

• MFS-Adv, advanced use of MFSs: This run applies the tech-

nique we presented in Section 5.3.

Figure 5.4: Description of the runs to be produced for the experi-

ments of Chapter 5.

To answer these questions efficiently, we will need to produce a

consequent number of runs, listed in Figure 5.4. This set of four

runs per collection permits to give answers to the questions Q1 and

Q2.

To answer Q1, about the performance of our phrase-matching

algorithm (MFS-Adv), we can notably measure the results of MFS-

Adv against the use of phrasal descriptors as a set of frequent pairs

used to augment the vector space (MFS-Big). Naturally, we will

also compare those two approaches to the word features baseline

(WVSM).

To study the inherent quality of MFSs as content descriptors

and answer Q2, we can compare the two previous results (MFS-

Adv and MFS-Big) and compare them to a straight addition in the

word-term vector space of all the adjacent bigrams of the document

collection (VSM-AdjBig).

5.4 Experimental Framework 129

5.4.2 Tuning our Matching Technique

Although we expect that the techniques presented in this disser-

tation can be applied to any language and any type of document,

we can make conjectures about document collections for which our

phrase-based similarity measure will typically perform better and

worse. The following hypotheses are to be verified in the experi-

ments.

• H1: Because our matching technique can account equally for

multi-word units whose words occur at various relative po-

sitions, we believe that it will bring higher improvement for

languages where the relative positions of words are less impor-

tant (hypothesis H1). A corresponding family of languages

is known as that of agglutinative languages. The least im-

portance of relative positions is due to the fact that word-

modifying morphemes are typically agglutinated to the cor-

responding word, meaning that changing its position seldom

changes its role in the sentence. Typical agglutinative lan-

guages are, e.g., Turkish, Finnish and Japanese. In the oppo-

site situation, where relative word positions are most impor-

tant, we do not expect great performance from our matching

technique. This situation is that of isolating languages, such

as Chinese, Vietnamese, Samoan, or to a lesser extent, En-

glish.

• H2: The number of multi-word units that are regularly and

consistently used throughout a document collection is gen-

erally known to be greater if that collection is specialized.

Typically, more multi-word units tend to occur in a technical

document than in a newspaper article. Our second hypothesis

(H2) is that the improvement brought by our technique will

be greater for a more specialized document collection.

As we have seen in Section 5.3, our matching technique func-

tions with a number of parameters to be applied to the key phrases,

namely, inversion and non-adjacency penalties, duplication bonus,

and maximal matching distance. In this dissertation, we will present

a few experiments to determine suitable parameter values for each

document collection. Naturally, in real-life applications, this would

130 5 Exploratory Application to Document Retrieval

Table 5.2: MFS-Adv. The five different runs of the advanced match-

ing technique and their different parameter values for maximal

distance (maxd), inversion (inv pen) and non-adjacency penalty

(adj pen).
maxd inv pen adj pen

Adj Baseline 0 0 not def.

Balanced 5 0.5 0.8

No Inv 5 0 0.8

Dist pen 5 0.5 0.2

Maxd 10 0.5 0.8

not always be possible. We can, however, give guesses on what

would be good parameters, depending on the nature of the docu-

ment collection.

The same train of thoughts that led us to formulating hypothe-

ses H1 and H2 also leads us to thinking that agglutinative lan-

guages and specialized collections will benefit from a higher max-

imal distance than isolating languages and general collections. To

inflict a lower penalty to pairs occurring in inverse order or with

many other words between them should similarly benefit aggluti-

native languages and specialized collections, rather than isolating

languages and general collections. To verify these assumptions, we

will run our advanced matching technique for each collection with

5 different sets of parameters. The corresponding five runs are de-

scribed in Table 5.2. “Adj Baseline” rejects inversion, and only

considers adjacent words of the key phrase. The run “Balanced”

is meant to integrate some of each spice: each parameter is rep-

resented with a reasonable general value. Each of the last three

runs emphasizes one of the three parameters, as compared to the

run “Balanced”. For example, “Dist pen” emphasizes the distance

penalty because it lowers the weight of pairs formed from distant

words, by setting adj pen to 0.2 instead of 0.8.

To perform the set of experiments needed, we will now introduce

two appropriate document collections, upon which our techniques

will be applied.

5.4 Experimental Framework 131

5.4.3 Presentation of the Document Collections

After summarizing the open questions and hypotheses to which we

shall answer with experiments, it appears clearly that we need doc-

ument collections written in different languages, possibly represent-

ing radically different types of human languages. To check whether

our technique, as we expect, is better performing for specialized

than general document collections, we also need representative cor-

pora of these kinds.

Two appropriate collections are the NTCIR collection1, and the

INEX collection2. The INEX collection, which we introduced ear-

lier (see Sections 2.3.1 and 3.2.3), is a collection of computer sci-

ence journal articles written in English. The NTCIR collection

contains news-feed documents in four distinct languages, namely,

English, Japanese, Chinese and Korean. The corresponding collec-

tions will permit to confirm or disprove the domain-independence

claim we made about our technique, by comparing the results we

obtain with scientific and news-feed articles in English, i.e., spe-

cialized and non-specialized terminology. Since Chinese is a typical

isolating language, and Japanese a typical agglutinative one, we will

also be able to measure the performance evolution of our technique

versus radically different languages.

NTCIR

With the aim to promote information retrieval research on East

Asian languages, the Japanese National Institute of Informatics

(NII) has made a number of collections of newspaper articles avail-

able in English, Japanese, Chinese and Korean under the acronym

NTCIR, standing for “NII Test Collection for IR systems”. Since

these collections are meant for evaluating the performance of doc-

ument retrieval systems, they are provided with a set of topics and

associated manual relevance assessments. A sample topic in En-

glish is shown in Figure 5.5. Our experiments will only use the

concept element (<CONC>) that gathers keywords relevant to the

topic. As a general rule, keyphrases are comma-separated, which

1details available at http://research.nii.ac.jp/ ntcadm/index-en.html
2details available at http://inex.is.informatik.uni-duisburg.de/2005/

132 5 Exploratory Application to Document Retrieval

<TOPIC>

<NUM>013</NUM>

<SLANG>CH</SLANG>

<TLANG>EN</TLANG>

<TITLE>NBA labor dispute</TITLE>

<DESC>To retrieve the labor dispute between the two

parties of the US National Basketball Association at

the end of 1998 and the agreement that they reached.

</DESC>

<NARR>

<REL>The content of the related documents should

include the causes of NBA labor dispute, the relations

between the players and the management, main

controversial issues of both sides, compromises after

negotiation and content of the new agreement, etc. The

document will be regarded as irrelevant if it only

touched upon the influences of closing the court on

each game of the season.</REL>

</NARR>

<CONC>NBA (National Basketball Association), union,

team, league, labor dispute, league and union,

negotiation, to sign an agreement, salary, lockout,

Stern, Bird Regulation.</CONC>

</TOPIC>

Figure 5.5: An NTCIR topic in English.

5.4 Experimental Framework 133

Table 5.3: Number of documents and fully assessed topics in the

NTCIR-3 collection, per language.
Language Documents Topics

Chinese 381,681 42

Japanese 220,078 42

Korean 66,146 30

English 22,927 30

simplifies greatly their extraction from the topics.

In the experiments, we used the NTCIR-3 document collections,

about which statistics are summarized in Table 5.3. A sample of a

Japanese document is shown in Figure 5.6.

INEX

The document collection of the Initiative for the Evaluation of XML

retrieval (INEX3) is a 494Mb collection of 12, 107 English-written

computer science articles from IEEE journals. Naturally, much

research has been directed at using the deep XML structure of

this collection, but in the following experiments, we will ignore the

XML markup and only use the collection for plain text document

retrieval, since our purpose here is to find a corpus with specialized

terminology to confront to the non-specialized English corpus of

NTCIR.

We carried out experiments based on the set of 30 topics and cor-

responding assessments of the 1st INEX initiative. We have only

used the Keyword element of each topic, of which an example was

shown earlier in Figure 5.3. A sample document was also shown in

Figure 2.2. Following the requirements of XML retrieval, the assess-

ments follow a 2-dimensional scale, where one dimension represents

relevance and the other represents exhaustivity. For our purpose,

we ignored the exhaustivity values and used solely the relevance

assessments.

The inaccuracy of the recall base needs to be underlined. The

evaluation procedure was meant for XML retrieval systems, and

3available at http://inex.is.informatik.uni-duisburg.de/2005/

134 5 Exploratory Application to Document Retrieval

Figure 5.6: A sample Japanese document of the NTCIR collection.

thus the set of true positives contains different types of XML el-

ements. Since we only return articles, the maximal recall we can

reach is far below one, and the results we will present will seem

very weak, compared to the NTCIR collection results. This is only

due to the rough use of an XML retrieval assessment as a document

retrieval one.

5.5 Results

5.5.1 Generalities

An important point of the contributions of this dissertation is the

development of language- and domain-independent techniques. This

is put in practice in the following experiments. We have used no list

of stopwords, and have applied no stemming. The only exception

we made to this rule is in fact applicable to all languages: sentences

are delimited by punctuation. We, hence, used every item in the

text as a feature, with the exception of punctuation marks (e.g.,

periods, commas, parentheses, exclamation and question marks).

5.5 Results 135

Encoding

For characters of the Roman alphabet, words can be defined as

space-separated units. This approach does not function for most

Asian characters, where there may be no whitespace at all. Ko-

rean is in fact an exception, but to keep generality, we opted for a

very low-level approach, based on character encodings. In the main

character settings (e.g., EUC or BIG5 encodings), Asian characters

are represented by multiple bytes, while Roman characters are rep-

resented by a single byte. Simple regular expressions applied to the

hexadecimal code of a text permit to detect the beginning and the

end of a character.

We used this bit of knowledge to build the document features on

which we based all of our experiments. What we will later refer to

as “a word” is obtained as follows.

• Characters encoded with multiple bytes are represented by a

concatenation of the hexadecimal code of the corresponding

bytes.

• Characters encoded on a single byte are concatenated to ad-

jacent characters that are also encoded on a single byte.

• The subsequent units are space-separated.

The input of our technique is a document representation that con-

sists of a space-separated sequence of characters from Asian alpha-

bets and of strings of characters from the Roman alphabet. The

corresponding representation of the document sample of Figure 5.6

is shown in Figure 5.7. We can verify the presence of full stops

and observe that the two numbers occurring in the original docu-

ment (“39” and “1997”) are not replaced by hexadecimal code and

concatenated (on the second and third line of Figure 5.7). This is

because they are formed of characters encoded on a single byte.

MFS extraction

We applied MFS MineSweep to all document collections with the

following settings. First, following the recommendation of Chap-

ter 3, we used a sentence-level granularity for the MFS extraction.

In other words, preprocessing of the MFS extraction has split the

136 5 Exploratory Application to Document Retrieval

a1ce bcd2 b9f0 a1cf a1d6 c2e8 39 b2f3 cbe8 c6fc b7dd

bdd1 bede a1d7 b7e8 a4de a4eb a1a1 c2e8 39 b2f3 cbe8

c6fc b7dd bdd1 bede a1ca 1997 c7af c5d9 a1cb a4ce bcf5

bede bcd4 a4ac b7e8 a4de a4ea a4de a4b7 a4bf . a4b3

a4ce bede a4cf c5f6 c7af c5d9 a1a2 cda5 a4ec a4bf b7dd

bdd1 b3e8 c6b0 a4f2 a4b7 a4bf b8c4 bfcd . c3c4 c2ce

a4cb c2a3 a4eb a4e2 a4ce a4c7 a1a2 b3c6 caac ccee a4ce

c2bf bff4 a4ce c0ec cce7 b2c8 a4ce a4b4 b0d5 b8ab a4f2

Figure 5.7: A sample of the representation of the Japanese docu-

ment shown in Figure 5.6.

Table 5.4: Number of sentences and clusters in the application of

MFS MineSweep to the NTCIR-3 and INEX collections.
Collection Sentences Clusters

NTCIR3-Chinese 5,697,191 114

NTCIR3-Japanese 3,140,092 62

NTCIR3-Korean 617,947 12

NTCIR3-English 510,798 10

INEX (English) 4,823,813 96

collection into sentences. The sentences were then clustered into

homogeneous subcollections using k-means, where the value of k

was uniformly decided to be 1 per 50, 000 sentences. The following

number of clusters for each collection is shown in Table 5.4.

A weakness and a consequence of our focus on generality is

that the detection of sentence boundaries was often faulty. Full

stops (e.g., periods, exclamation and question marks) often do not

truly indicate a sentence boundary, as in “e.g.” or “George W.

Bush”. More advanced heuristics permit to detect sentence bound-

aries more accurately, but they are essentially language-dependent.

5.5 Results 137

Table 5.5: MFS-Adv. Summary of Mean Average Precision for the

five different variations of MFS-Adv.

Adj Baseline Balanced No Inv Dist pen Maxd

NTCIR-CH 0.1885 0.1818 0.1837 0.1846 0.1820

NTCIR-JP 0.2232 0.2154 0.2246 0.2190 0.2189

NTCIR-KR 0.1370 0.1498 0.1477 0.1378 0.1499

NTCIR-EN 0.2186 0.2180 0.2208 0.2162 0.2180

INEX(EN) 0.04370 0.04193 0.04193 0.04193 0.04193

5.5.2 Results and Discussion

Tuning the matching parameters

For each collection, our novel matching technique will be applied

to the MFS-based collection representation to produce one retrieval

run (MFS-Adv). This requires finding good parameter values for

each collection. We have computed the five runs described in Ta-

ble 5.2 for each collection, and we will use the results to deter-

mine the score of MFS-Adv, and to verify the Hypotheses H1 and

H2, claiming that our technique should do best for agglutinative

languages and specialized collections, as opposed to isolating lan-

guages and general collections. The hypotheses further suggested

that agglutinative languages and specialized collections should ben-

efit more from raising the maximal distance or lowering the distance

and inversion penalties than isolating languages and general collec-

tions. This is what we will check with the five runs presented in

Table 5.2, whose corresponding results are now given in Table 5.5.

The confirmation of our assumptions is clear for Chinese, whose

isolating nature is shown by the best performance observed when

only adjacent non-inverted pairs are considered. As compared to

the “Balanced” parameter values, suppressing inverted pairs and

penalizing distance more heavily are both beneficial. The only fea-

ture for which we cannot confirm our assumptions is the augmen-

tation of the maximal distance. The results are then very similar

to those of the “Balanced” run.

The same idea is confirmed with NTCIR-KR, where the agglu-

tinative nature of the Korean language is shown by the domination

138 5 Exploratory Application to Document Retrieval

of the runs in which few restrictions are applied on relative word

positions. Using adjacent non-inverted pairs only (0.1370) and em-

phasizing the distance penalty (0.1378) perform far worse than the

other three attempts. Increasing the maximal distance permitted

the best performance (0.1499), but the improvement over the bal-

anced parameter set was not significant. Surprisingly, allowing for

the inversion of the word pairs affected the results negatively. We

mentioned earlier, in Section 5.5.1, that a particularity of the Ko-

rean language is that words are space-separated. To preserve gener-

ality, we chose to ignore this fact. The negative impact of allowing

for inverted (character) pairs may well be a consequence of this de-

cision. Inverting words should not be a problem in an agglutinative

language, but the only outcome of inverting individual characters

may be to destroy the words and create non-sense. Worse, these

inversions may accidentally form other words.

Japanese is a very typical agglutinative language, yet we ob-

served the same phenomenon. The run that does not account for

inverted pairs is the best-performing of all. The second best is ob-

tained with adjacent non-inverted pairs. However, we could verify

that allowing for a longer distance is beneficial for the Japanese col-

lection, as with other things equal, we obtained better results with

a maximal distance of 10 (0.2189) than with a maximal distance of

5 (0.2154).

When varying the parameter values, it turns out to be impossible

to study the evolution of the results for the two English collections

for the simple reason that there is nearly no evolution. The reason

is that the queries are typically much shorter. In practice, there is

no difference in using a maximal distance of 5 or 10 words, because

none of the queries are long enough. The other parameter variations

produce insignificant differences.

Now that we have determined suitable parameter values for our

matching technique for each document collection, we can present a

summary of our results of this chapter (Table 5.6). The results will

be further analyzed in the following sections.

5.5 Results 139

Table 5.6: Summary of Mean Average Precision for our experiment

set.
WVSM VSM-AdjBig MFS-Big MFS-Adv

NTCIR-CH 0.1705 0.1955 0.1327 0.1885

NTCIR-JP 0.2151 0.2808 0.1480 0.2246

NTCIR-KR 0.1707 0.2334 0.1049 0.1499

NTCIR-EN 0.2555 0.2836 0.2692 0.2208

INEX(EN) 0.04193 0.05298 0.04935 0.04370

Better results for agglutinative languages and specialized collections

(Hypotheses H1 and H2)

Agglutinative and isolating languages (H1). For the four NT-

CIR collections, if we compare the results obtained with the word

term vector space model (column WVSM) to those obtained with

our technique (column MFS-Adv), we can notice that our technique

provides better results for Chinese and Japanese, while it is beaten

for English and Korean. Hypothesis H1 was that our technique

would perform better for agglutinative languages than for isolat-

ing languages. Chinese and Japanese respectively are often cited

as very typical of the isolating and agglutinative families of lan-

guages. Additionally, English is considered isolating and Korean

agglutinative.

Hence, our results do not confirm H1, as we obtained an increase

in MAP for both Chinese (+10.6%) and Japanese (+4.4%), while

the outcome was a decrease for both English (-13.6%) and Korean

(-12.2%). Our results thus contradict H1. They neither indicate a

better performance for agglutinative nor for isolating languages.

Specialized and general collections (H2). By similarly op-

posing the differences between the MAP results of the word terms

vector space model (WVSM) and of our technique (MFS-Adv) for

the specialized INEX collection and the NTCIR English news-feed

collection, we can observe that only the INEX collection obtains

better results with MFS-Adv (+4.2%). The specificity of the col-

lection truly seems to make a difference, as opposed to the MAP

decrease observed with the English NTCIR collection (-13.6%).

H2 is therefore confirmed, as we obtain better performance

140 5 Exploratory Application to Document Retrieval

for the specialized collection.

5.5.3 Impact of our Matching Technique (Q1)

Looking at Table 5.6, we can extend the comments we made as we

verified the hypotheses H1 and H2. As compared to the word term

vector space model (WVSM), the impact of our matching technique

was beneficial for NTCIR-CH (+10.%), NTCIR-JP (+4.4%) and

the collection of English-written computer science articles of INEX

(+4.2%). On the other hand, the retrieval of NTCIR-KR (-12.2%)

and NTCIR-EN (-13.6%) was more successful with a word-based

vector model.

As mentioned in the protocol of the experiments, to truly eval-

uate the impact of our technique and not the impact of MFSs as

descriptors for document retrieval, we should actually compare the

results of MFS-Adv to those of MFS-Big. MFS-Big is the approach

where the adjacent bigrams occurring in the set of phrasal descrip-

tors are added as extra dimensions of the vector space model. The

comparison of our technique to MFS-Big shows a decrease for both

English collections, -11.4% for the INEX collection and -18.0% for

NTCIR-EN. A very clear improvement is, however, observed for

all three Asian languages. For Japanese, the MAP improvement

is as high as +51.2%. Comparably high benefits are observed for

Chinese (+42.0%) and Korean (+42.3%).

The main difference between the way we processed the English

and Asian document collections is that we formed words in the En-

glish collection, while we worked at the character level for the three

Asian collections. This difference of granularity may be a good ex-

planation for the clear improvement brought by our technique in

one case, and for the harm it did in the other. This would indicate

that the benefit of MFS-based descriptors is linked to the granular-

ity of the items at hand, with same-sized sequences of small items

being more useful than those of large items. In other words, a se-

quence of 5 characters would be more beneficial than a sequence of 5

words, because a sequence of 5 words is too specific. Consequently,

our technique permits a higher improvement versus a 2-gram base-

line, when the grams represent smaller items, e.g., characters rather

than words. Unfortunately, our poor knowledge of Asian languages

does not permit guaranteeing the validity of this explanation.

5.5 Results 141

It is important to note that despite our initial goal of separating

both cases, the evaluation of the matching technique is very related

to that of MFSs for document retrieval. We have indeed been able

to try different parameters for the exploitation of the topics, but

we have always used the same sets of phrasal descriptors, stem-

ming from MFS MineSweep. One must bear in mind that, even

when only adjacent pairs of words are selected from the phrasal de-

scription, the original distance that separated them in the original

documents is only limited by the length of the sentence of origin.

5.5.4 Quality of MFSs as Indexing Terms for Document

Retrieval (Q2)

For all the collections, the best MAP is always obtained by VSM-

AdjBig, the experiment where all the adjacent word pairs of the

collection are represented by dimensions of the vector space together

with the word terms.

The use of MFS for document retrieval therefore appears ques-

tionable. We should, however, underline that the difference between

the best use of MFSs and VSM-AdjBig is most often decent. For

Chinese and the two English collections, it is only -3.6%, -5.1%

and -6.9% respectively. Moreover, this difference is compensated

by the use of a far lower number of descriptors. The numbers of

feature terms used in WVSM and VSM-AdjBig are shown in Ta-

ble 5.7 together with the number of distinct bigrams of the MFS-

based phrasal descriptions. The percentages indicate the increase

of terms, compared to the word-based vector space. Observe that,

for WVSM and VSM-AdjBig, the number of features is the number

of dimensions of the vector space.

For the three Asian languages, the number of features is about

3 times higher for VSM-AdjBig than it is for MFS-Adv. The dif-

ference is 15- to 25-fold for English. This high number of features

has a subsequent cost that cannot be neglected.

The use of MFSs in document retrieval may then be thought of

as a compact representation of collections, performing a bit worse,

but more efficient to exploit.

142 5 Exploratory Application to Document Retrieval

Table 5.7: Number of features, and percentage of augmentation

compared to using only word terms.

WVSM VSM-AdjBig MFS-Adv

NTCIR-CH 56,093 3,238,957 (+5774%) 1,014,109 (+1810%)

NTCIR-JP 40,182 1,103,594 (+2746%) 424,134 (+1056%)

NTCIR-KR 19,876 411,717 (+2071%) 176,623 (+889%)

NTCIR-EN 81,861 1,363,445 (+1566%) 49,914 (+61%)

INEX(EN) 423,195 5,697,211 (+1246%) 328,892 (+78%)

5.5.5 Results in the Context of Related Work

To relate our results to comparable related work is difficult for the

simple reason that there is very little comparable work. For the

INEX collection, we have returned full documents, whereas the aim

of the INEX initiative is to retrieve XML elements. As we men-

tioned earlier, this means notably that most of the recall base was

out of reach of our system. In the first INEX initiative, the results

of the runs that we presented in Table 5.6 would have placed 18th

(WVSM), 9th (VSM-AdjBig), 13th (MFS-Big) and 16th (MFS-Adv)

positions out of 49 official runs submitted. Ironically, in this first

edition of the XML retrieval initiative, returning full documents

permits to obtain fairly good performance. This is good motivation

for the need to perform research in XML retrieval, but this result is

also due to a weakness of the evaluation system in use in INEX at

the time. It took neither the length of returned documents nor the

amount of overlap in submitted runs into account. The only conse-

quence of this evaluation flaw for full document retrieval is unduly

low recall values, but this does not affect the relative comparison

of mean average precision values. The position of most of our runs

in the first third of the ranking shows the coherence of our experi-

mental benchmark in the real world. In addition, most of the other

approaches used word stemming, stoplists, relevance feedback, and

so on. All those techniques permit performance improvement, but

we left them aside to preserve generality.

The NTCIR is the only evaluation forum for the retrieval of some

of the languages it addresses. Hence, a number of purely language-

5.5 Results 143

Table 5.8: Mean average precision and relative comparison with a

comparable system presented in the NTCIR-3 workshop.

Collection NTCIR-CH NTCIR-JP NTCIR-KR NTCIR-EN

Juang et al. 0.2403 0.2674 0.2675 N/A

VSM-AdjBig 0.1955 0.2808 0.2334 0.2836

Difference -18.6% +5.0% -12.7% N/A

dependent techniques are indirectly evaluated in the NTCIR forum.

Other low-level techniques that we did not use also seem to permit

considerable improvement. For instance, it is a common prepro-

cessing of the Chinese collection to convert it from “Traditional

Chinese” to “Simplified Chinese”, a simplified character set devel-

oped by the Chinese government in the 1950s to try to eliminate

unnecessary variations. In Japanese, there exist three main scripts

that are commonly dealt with differently, namely Kanji, Hiragana

and Katakana. And last but not least, the main focus of NTCIR

is cross-language information retrieval, a task we do not address

in this dissertation. The very few papers that presented generalist

techniques did use longer topic parts and were not quite language-

independent, with the exception of a technique presented by Juang

and Tseng [JT03]. They identically applied a phrase-extraction

technique, originally built for Chinese, to the Japanese and Korean

collections. This method has been tuned for Chinese and, report-

edly, the character associations it extracts permit to form words

with an accuracy of 86%. In a sense, even though this technique

is truly language-independent, it still benefited from the knowledge

of its authors, at least in the Chinese language. They could check

what their technique extracted and improve it to obtain the extrac-

tion of meaningful units most often corresponding to words. We, on

the other hand, have no idea what our descriptors represent, besides

maximal frequent sequences of characters from homogeneous parti-

tions of the collection. The outcome, using the same topic part and

evaluation measure as we did, is shown in Table 5.8. Their results

demonstrate comparable effectiveness in all three languages. An

illustration of the orientation of their method is that it is precisely

for Chinese that their results outperform ours very clearly (-18.6%).

144 5 Exploratory Application to Document Retrieval

For Japanese, our version of the vector space model that includes

words and adjacent bigrams actually obtains a better performance

(+5.0%). Unfortunately, they did not report any experiment with

the English data set, where the Chinese-oriented origins of the tech-

nique may not have benefited in the same way. Given our level of

ignorance of the languages at hand, we believe that the performance

of our system compares honorably.

5.5.6 Conclusion

We presented a novel technique for measuring the similarity of

phrasal document descriptors and combining it to word-based vec-

tor space similarity measures. After a short review on the use of

phrases in information retrieval, we applied our technique to the

problem of document retrieval, where we compared the MFS-based

phrasal representations of documents to sets of keyphrases describ-

ing user needs.

Due to a number of adjustable parameters, our method allows

accounting for occurrences of the words of a phrase over a longer

span, or in a different order. These usages may be gradually pe-

nalized, as compared to an exact phrase occurrence, i.e., adjacent

words occurring in the same order. This approach permits taking

a wide variation of word usages into account.

It notably deals with the problem of overlapping phrases, as

described by Vechtomova [Vec05]. She states the problem of over-

lapping phrases as the fact that, given a query ABC, a document

containing the exact match ABC and a document containing AB

and BC separately both obtain the same score in numerous ap-

proaches of the state of the art. A subsequent issue is that the

weight of the word B becomes artificially heavier than that of A

and C, because B is present in both pairs AB and BC. Our tech-

nique permits eradicating this problem, since it can also take the

pair AC into account. Hence, the distance one between A and C

in the first document (with ABC) ensures that it gets a better

score than the second document (with AB and BC). Another con-

sequence is that the weights of A and C are increased along with

that of B, avoiding to unbalance the individual term weights within

the phrase. A weakness, however, remains with this approach: the

word terms that belong to a long phrase appear in numerous sub-

5.5 Results 145

pairs, and hence their artificial weight increase is more important

than that of a word occurring in a shorter phrase. Notably, the

weight of individual word terms that do not occur in a keyphrase

is made lower in comparison to that of word terms occurring in a

keyphrase. A solution would be to normalize the weight of terms

upon the number and size of the phrases they occur in. This prob-

lem is not straightforward, as was recently suggested by work of

Robertson et al. [RZT03] who suggested subtracting the individ-

ual weight of words that occurred redundantly in keyphrases and

obtained very disappointing results.

Our experiments suggested that MFSs may not be very appro-

priate for document retrieval, or that a way to exploit them remains

to be found. When it comes to our novel similarity measure, the

experiments showed mixed results. As compared to throwing all

descriptors in a bag of words, it is more efficient, as it uses less

features. The quality of the results was further greatly improved

for the NTCIR collections in Chinese, Japanese and Korean, with

encouraging amelioration ranging between +42% and +51%. This

suggests that exploiting languages at a character level may well be

the appropriate way for applying our technique with worthwhile

improvement. The nature of most Asian alphabets is well suited

therefore.

One must underline the better overall performance of represent-

ing every word and adjacent bigram by a dimension of the vector

space. Given the far better performance of our matching technique

for taking advantage of MFSs in the three Asian collections, a natu-

ral continuation of this work will be to experiment on our similarity

measure with better performing phrasal descriptors.

146 5 Exploratory Application to Document Retrieval

CHAPTER 6

Conclusions

In this thesis, we have considered the use of the sequential nature

of text for document representations. A central point of our work

is a voluntary choice of generality. We developed techniques that

are suited for document collections of any type and that may be

written in any language.

The first result of our work is the development of an efficient

technique for the extraction of a compact set of word sequences

from text. Built upon MineMFS, an existing technique for the

extraction of maximal frequent sequences from text, we proposed

MFS MineSweep, an improvement of this technique that is based

on splitting the original document collection into homogeneous par-

titions. The outcome is that we can obtain more exhaustive results

faster. Further, a drawback of MineMFS is that it fails to pro-

duce any descriptor at all for large document collections, whereas

our contribution permits to extract phrasal descriptors out of a

collection of virtually any size.

The following contribution of this thesis permits filling a gap in

the current research on multi-word units and their use for infor-

mation retrieval applications. We presented efficient algorithms for

computing the probability and expected frequency of occurrence of

a given sequence of items. One application of this technique is the

direct evaluation of sequences, notably word sequences, obtained by

interestingness measures that are calculated by comparing the ex-

pected and observed document frequencies of a sequence. The more

the hypothesis that a sequence occurs by pure chance is wrong, the

more that sequence is interesting with respect to the corpus. Our

147

148 6 Conclusions

technique offers an efficient alternative to the current evaluation

methods of word sequences. These techniques are indeed essen-

tially task-based, relying on time-consuming manual assessments,

as is the case in lexicography, or embedded within an application

framework as is usually done in information retrieval. The weakness

of indirect evaluation is that it remains difficult to decide whether

any result stems from the quality of the phrases or from the way

they were used. The evident benefit of a direct evaluation technique

such as ours is that its results are easier to interpret, as neither in-

tervenes a separate application, nor a subjective human judgment.

Our last contribution results from exploratory work on an at-

tempt to use MFS-based phrasal descriptors in document retrieval.

We developed a new phrase-based similarity measure and experi-

mented with it with MFS-based descriptors on a number of doc-

ument collections, written in four different languages. Our exper-

iments did not demonstrate a result improvement for the use of

MFS-based descriptors, as opposed to a straightforward utilization

of adjacent bigrams. Our phrase-based similarity measure, how-

ever, clearly outperformed the incorporation of bigram features in

the vector space model for document collections written in three

Asian language collections. An under-performance was, however,

observed with English collections, defined at the word level. Since

the benefit in using maximal frequent sequences was not demon-

strated for document retrieval, a natural continuation of this work

is to experiment our phrase-based similarity measure with other

phrasal descriptors, and check whether this provides comparable

improvement as it did with MFS-based descriptions. The signifi-

cance of the amelioration obtained with the Asian language docu-

ment collections allows for some optimism in this case.

References

[AAB+03] James Allan, Jay Aslam, Nicholas Belkin, Chris

Buckley, Jamie Callan, Bruce Croft, Sue Dumais,

Norbert Fuhr, Donna Harman, David J. Harper, Djo-

erd Hiemstra, Thomas Hofmann, Eduard Hovy, Wes-

sel Kraaij, John Lafferty, Victor Lavrenko, David

Lewis, Liz Liddy, R. Manmatha, Andrew McCallum,

Jay Ponte, John Prager, Dragomir Radev, Philip

Resnik, Stephen Robertson, Roni Rosenfeld, Salim

Roukos, Mark Sanderson, Rich Schwartz, Amit Sing-

hal, Alan Smeaton, Howard Turtle, Ellen Voorhees,

Ralph Weischedel, Jinxi Xu, and ChengXiang Zhai.

Challenges in information retrieval and language

modeling: report of a workshop held at the center for

intelligent information retrieval, university of mas-

sachusetts amherst, september 2002. SIGIR Forum,

37(1):31–47, 2003.

[AM05] Helena Ahonen-Myka. Mining all maximal frequent

word sequences in a set of sentences. In Proceedings

of the 2005 International Conference on Information

and Knowledge Management, poster session, October

31 - November 5, 2005, Bremen, Germany, pages

255–256. ACM, 2005.

[AMD05] Helena Ahonen-Myka and Antoine Doucet. Data

mining meets collocations discovery. In Inquiries

into Words, Constraints and Contexts, pages 194–

203. CSLI Publications, Center for the Study of Lan-

guage and Information, University of Stanford, 2005.

149

150 References

[AS95] Rakesh Agrawal and Ramakrishnan Srikant. Mining

sequential patterns. In Philip Yu and Arbee Chen,

editors, Eleventh International Conference on Data

Engineering, pages 3–14, Taipei, Taiwan, 1995. IEEE

Computer Society Press.

[BM05] Holger Bast and Debapriyo Majumdar. Why spectral

retrieval works. In SIGIR ’05: Proceedings of the

28th annual international ACM SIGIR conference on

Research and development in information retrieval,

pages 11–18, New York, NY, USA, 2005. ACM Press.

[BP03] Satanjeev Banerjee and Ted Pedersen. The design,

implementation, and use of the Ngram Statistic Pack-

age. In Proceedings of the Fourth International Con-

ference on Intelligent Text Processing and Computa-

tional Linguistics, Mexico City, February 2003.

[BPSM+04] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve

Maler, and Francois Yergeau. Extensible Markup

Language (XML) 1.0 - W3C recommendation 04

february 2004. Technical Report REC-xml-20040204,

2004.

[Cai02] Guoray Cai Cai. Geovsm: An integrated retrieval

model for geographic information. In GIScience

’02: Proceedings of the Second International Confer-

ence on Geographic Information Science, pages 65–

79, London, UK, 2002. Springer-Verlag.

[CH90] Kenneth W. Church and Patrick Hanks. Word asso-

ciation norms, mutual information, and lexicography.

Computational Linguistics, 16(1):22–29, 1990.

[CH03] Nick Craswell and David Hawking. Overview of the

TREC-2003 Web Track. In Proceedings of TREC-

2003, Gaithersburg, Maryland USA, November 2003.

[CH04] Nick Craswell and David Hawking. Overview of the

TREC-2004 Web Track. In Proceedings of TREC-

2004, Gaithersburg, Maryland USA, November 2004.

References 151

[CKN83] Yaacov Choueka, Shmuel T. Klein, and E. Neuwitz.

Automatic retrieval of frequent idiomatic and collo-

cational expressions in a large corpus. Journal for

Literary and Linguistic computing, 4:34–38, 1983.

[Cla05] Charles L. A. Clarke. Controlling overlap in content-

oriented xml retrieval. In SIGIR ’05: Proceedings

of the 28th annual international ACM SIGIR con-

ference on Research and development in information

retrieval, pages 314–321, New York, NY, USA, 2005.

ACM Press.

[Cry00] David Crystal. Language Death. Cambridge Univer-

sity Press, first edition, 2000.

[Cry03] David Crystal. The Cambridge Encyclopedia of the

English Language. Cambridge University Press, sec-

ond edition, 2003.

[CSW97] Michal Cutler, Yungming Shih, and Meng Weiyi. Us-

ing the structure of html documents to improve re-

trieval. In Proceedings of the USENIX Symposium

on Internet Technologies and Systems (NISTS’97),

1997.

[CW87] Don Coppersmith and Shmuel Winograd. Matrix

multiplication via arithmetic progressions. In STOC

’87: Proceedings of the nineteenth annual ACM con-

ference on Theory of computing, pages 1–6, 1987.

[DALP03] Antoine Doucet, Lili Aunimo, Miro Lehtonen, and

Renaud Petit. Accurate retrieval of XML document

fragments using EXTIRP. In Proceedings of the Sec-

ond Annual Workshop of the Initiative for the Evalu-

ation of XML retrieval (INEX 2003), ERCIM Work-

shop Proceedings, Schloss Dagstuhl, Germany, 2003.

[DAM02] Antoine Doucet and Helena Ahonen-Myka. Naive

clustering of a large xml document collection. In

Proceedings of the First Workshop of the Initiative

for the Evaluation of XML Retrieval (INEX), pages

81–87, Schloss Dagsuhl, Germany, 2002.

152 References

[DDL+90] Scott C. Deerwester, Susan T. Dumais, Thomas K.

Landauer, George W. Furnas, and Richard A. Harsh-

man. Indexing by latent semantic analysis. Jour-

nal of the American Society of Information Science,

41(6):391–407, 1990.

[DGBPL00a] Gaël Dias, Sylvie Guilloré, Jean-Claude Bassano,

and José Gabriel Pereira Lopes. Combining linguis-

tics with statistics for multiword term extraction: A

fruitful association? In Proceedings of Recherche

d’Information Assisteé par Ordinateur (RIAO 2000),

2000.

[DGBPL00b] Gaël Dias, Sylvie Guilloré, Jean-Claude Bassano, and

José Gabriel Pereira Lopes. Extraction automatique

d’unités complexes: Un enjeu fondamental pour la

recherche documentaire. Traitement Automatique des

Langues, 41(2):447–472, 2000.

[Dou04] Antoine Doucet. Utilisation de séquences fréquentes

maximales en recherche d’information. In Proceed-

ings of the 7th International Conference on the Sta-

tistical Analysis of Textual Data (JADT-2004), pages

334–345, Louvain-La-Neuve, Belgium, March 2004.

JADT-2004.

[Est16] Jean-Baptiste Estoup. Gammes Sténographiques. In-

stitut Sténographique de France, Paris, fourth edi-

tion, 1916.

[FA96] Katerina Frantzi and Sophia Ananiadou. Extracting

nested collocations. In Proceedings of the 16th confer-

ence on Computational linguistics (COLING), pages

41–46, Morristown, NJ, USA, 1996. Association for

Computational Linguistics.

[Fag89] Joel L. Fagan. The effectiveness of a nonsyntactic

approach to automatic phrase indexing for document

retrieval. Journal of the American Society for Infor-

mation Science, 40:115–132, 1989.

References 153

[Fan61] Robert M. Fano. Transmission of Information: A

statistical Theory of Information. MIT Press, Cam-

bridge MA, 1961.

[FAT98] Katerina Frantzi, Sophia Ananiadou, and Jun-ichi

Tsujii. The c-value/nc-value method of automatic

recognition for multi-word terms. In ECDL ’98: Pro-

ceedings of the Second European Conference on Re-

search and Advanced Technology for Digital Libraries,

pages 585–604. Springer-Verlag, 1998.

[Fel68] William Feller. An Introduction to Probability Theory

and Its Applications, volume 1. Wiley Publications,

third edition, 1968.

[Fel98] Christiane Fellbaum, editor. WordNet: An Electronic

Lexical Database. The MIT Press, 1998.

[FGKL02] Norbert Fuhr, Norbert Gövert, Gabriella Kazai, and

Mounia Lalmas, editors. Proceedings of the First

Workshop of the INitiative for the Evaluation of

XML Retrieval (INEX), Schloss Dagstuhl, Germany,

December 9-11, 2002, 2002.

[FLM03] Norbert Fuhr, Mounia Lalmas, and Saadia Malik, ed-

itors. Proceedings of the Second Workshop of the INi-

tiative for the Evaluation of XML Retrieval (INEX),

Schloss Dagstuhl, Germany, December 15-17, 2003,

2003.

[FLMS05] Norbert Fuhr, Mounia Lalmas, Saadia Malik, and

Zoltán Szlávik, editors. Advances in XML Infor-

mation Retrieval, Third International Workshop of

the Initiative for the Evaluation of XML Retrieval,

INEX 2004, Dagstuhl Castle, Germany, December 6-

8, 2004, Revised Selected Papers, Lecture Notes in

Computer Science. Springer, 2005.

[Fox83] Edward A. Fox. Some considerations for implement-

ing the smart information retrieval system under

unix. Technical Report TR 83-560, Department of

154 References

Computer Science, Cornell University, Ithaca, NY,

September 1983.

[GJ05] Raymond G. Gordon Jr., editor. Ethnologue: Lan-

guages of the World. SIL International, fifteenth edi-

tion, 2005.

[Hav03] Taher H. Haveliwala. Topic-sensitive pagerank: A

context-sensitive ranking algorithm for web search.

IEEE Transactions on Knowledge and Data Engi-

neering, 15(4):784–796, 2003.

[HJ94] Roger A. Horn and Charles R. Johnson. Topics in

matrix analysis. Cambridge University Press, New

York, NY, USA, 1994.

[HP96] Marti A. Hearst and Jan O. Pedersen. Reexamining

the cluster hypothesis: scatter/gather on retrieval re-

sults. In SIGIR ’96: Proceedings of the 19th annual

international ACM SIGIR conference on Research

and development in information retrieval, pages 76–

84, New York, NY, USA, 1996. ACM Press.

[IV98] Nancy Ide and Jean Véronis. Word sense disambigua-

tion: The state of the art. Computational Linguistics,

24(1):1–40, 1998.

[JS74] Stuart Jones and John Mc Hardy Sinclair. English

lexical collocations: A study in computational lin-

guistics. Cahiers de Lexicologie, 24:15–61, 1974.

[JT03] Da-Wei Juang and Yuen-Hsien Tseng. Uniform in-

dexing and retrieval scheme for chinese, japanese, and

korean. In Keizo Oyama, Emi Ishida, and Noriko

Kando, editors, Proceedings of the Third NTCIR

Workshop on Evaluation of Information Retrieval,

Automatic Text Summarization and Question An-

swering, pages 137–141. National Institute of Infor-

matics (NII), 2003.

[Kar00] Jussi Karlgren. Stylistic Experiments for Information

Retrieval. PhD thesis, Stockholm University, 2000.

References 155

[KF67] Henry Kucera and Nelson Francis. Computational

Analysis of Present-Day American English. Brown

University Press, Providence, Rhode Island, 1967.

[KLdV04] Gabriella Kazai, Mounia Lalmas, and Arjen P.

de Vries. The overlap problem in content-oriented

xml retrieval evaluation. In SIGIR ’04: Proceedings

of the 27th annual international ACM SIGIR con-

ference on Research and development in information

retrieval, pages 72–79, New York, NY, USA, 2004.

ACM Press.

[Kle99] Jon M. Kleinberg. Authoritative sources in a hyper-

linked environment. Journal of the ACM (JACM),

46(5):604–632, 1999.

[KRS05] Jaap Kamps, Maarten De Rijke, and Börkur Sig-

urbjörnsson. The importance of length normalization

for xml retrieval. Information Retrieval, 8(4):631–

654, 2005.

[Lah00] Timo Lahtinen. Automatic Indexing: an approach

using an index term corpus and combining linguistic

and statistical methods. PhD thesis, University of

Helsinki, 2000.

[Lee95] Joon Ho Lee. Combining multiple evidence from dif-

ferent properties of weighting schemes. In SIGIR ’95:

Proceedings of the 18th annual international ACM

SIGIR conference on Research and development in

information retrieval, pages 180–188. ACM Press,

1995.

[Lew92] David Dolan Lewis. Representation and learning in

information retrieval. PhD thesis, University of Mas-

sachusetts at Amherst, 1992.

[Luh57] Hans Peter Luhn. A statistical approach to me-

chanical encoding and searching of literary informa-

tion. IBM Journal of Research and Development,

1(4):309–317, 1957.

156 References

[MBSC97] Mandar Mitra, Chris Buckley, Amit Singhal, and

Claire Cardie. An analysis of statistical and syntac-

tic phrases. In Proceedings of RIAO97, Computer-

Assisted Information Searching on the Internet,

pages 200–214, 1997.

[MKR02] Maarten Marx, Jaap Kamps, and Maarten de Rijke.

The university of amsterdam at inex 2002. In Pro-

ceedings of the First Workshop of the Initiative for

the Evaluation of XML Retrieval (INEX), pages 24–

28, Schloss Dagsuhl, Germany, 2002.

[MS99] Christopher D. Manning and Hinrich Schütze. Foun-

dations of Statistical Natural Language Processing.

MIT Press, Cambridge MA, second edition, 1999.

[MTV95] Heikki Mannila, Hannu Toivonen, and Inkeri

Verkamo. Discovering frequent episodes in sequences.

In KDD, pages 210–215, 1995.

[ND77] Ben Noble and James W. Daniel. Applied Linear Al-

gebra, pages 361–367. Prentice Hall, second edition,

1977.

[NJ02] Andrew Nierman and H.V. Jagadish. Evaluating

Structural Similarity in XML. In Fifth International

Workshop on the Web and Databases (WebDB 2002),

Madison, Wisconsin, 2002.

[otI95] United States Department of the Interior. U. S. Ge-

ological Survey, Geographic Names Information Sys-

tem: Data Users Guide 6. Reston, VA, USA, 4th

printing, revised edition, 1995.

[PBMW98] Lawrence Page, Sergey Brin, Rajeev Motwani, and

Terry Winograd. The pagerank citation ranking:

Bringing order to the web. Technical report, Stanford

Digital Library Technologies Project, 1998.

[Por80] Martin F. Porter. An algorithm for suffix stripping.

Program, 14(3):130–137, 1980.

References 157

[PWCB00] Gordon W. Paynter, Ian H. Witten, Sally Jo Cun-

ningham, and George Buchanan. Scalable browsing

for large collections: a case study. In DL ’00: Pro-

ceedings of the fifth ACM conference on Digital li-

braries, pages 215–223, New York, NY, USA, 2000.

ACM Press.

[QLZ+05] Tao Qin, Tie-Yan Liu, Xu-Dong Zhang, Zheng Chen,

and Wei-Ying Ma. A study of relevance propaga-

tion for web search. In SIGIR ’05: Proceedings of the

28th annual international ACM SIGIR conference on

Research and development in information retrieval,

pages 408–415, New York, NY, USA, 2005. ACM

Press.

[Res95] Philip Resnik. Using information content to evaluate

semantic similarity in a taxonomy. In IJCAI, pages

448–453, 1995.

[Reu87] Reuters-21578. Text categorization test collection,

distribution 1.0, 1987.

http://www.daviddlewis.com/resources/testcollections/reuters21578.

[RLHJ99] Dave Raggett, Arnaud Le Hors, and Ian Jacobs.

Html 4.01 specification - W3C recommendation 24

december 1999. Technical Report REC-html401-

19991224, 1999.

[RZT03] Stephen E. Robertson, Hugo Zaragoza, and Michael

Taylor. Microsoft cambridge at trec-12: Hard track.

In TREC, pages 418–425, 2003.

[SA96] Ramakrishnan Srikant and Rakesh Agrawal. Min-

ing sequential patterns: Generalizations and per-

formance improvements. In Peter Apers, Mokrane

Bouzeghoub, and Georges Gardarin, editors, Proc.

5th Int. Conf. Extending Database Technology,

EDBT, volume 1057, pages 3–17. Springer-Verlag,

25–29 1996.

[SB88] Gerard Salton and Chris Buckley. Term-weighting

approaches in automatic text retrieval. Information

158 References

Processing and Management: an International Jour-

nal, 24(5):513–523, 1988.

[SBM96] Amit Singhal, Chris Buckley, and Mandar Mitra.

Pivoted document length normalization. In Proceed-

ings of the 19th ACM SIGIR Conference on Research

and Development in Information Retrieval, pages 21–

29, 1996.

[SC96] Tomek Strzalkowski and Jose Perez Carballo. Nat-

ural language information retrieval: TREC-4 report.

In Text REtrieval Conference, pages 245–258, 1996.

[SDGPL99] Joaquim Ferreira da Silva, Gaël Dias, Sylvie Guil-

loré, and José Gabriel Pereira Lopes. Using local-

maxs algorithm for the extraction of contiguous and

non-contiguous multiword lexical units. In Proceed-

ings of the 9th Portuguese Conference on Artificial

Intelligence, pages 113–132. Springer-Verlag, 1999.

[Seb02] Fabrizio Sebastiani. Machine learning in auto-

mated text categorization. ACM Computing Survey,

34(1):1–47, 2002.

[Sha48] Claude E. Shannon. A mathematical theory of com-

munication. Bell System Tech, 27:379–423, 623–656,

1948.

[Sim89] John Simpson, editor. Oxford English Dictionary.

Oxford University Press, second edition, 1989.

[Sin97] Amitabh K. Singhal. Term Weighting Revisited. PhD

thesis, Cornell University, 1997.

[SJ72] Karen Spärck Jones. A statistical interpretation of

term specificity and its application in retrieval. Jour-

nal of Documentation, 28:11–21, 1972.

[SJ99] Karen Spärck Jones. Natural Language Information

Retrieval, pages 1–24. Dordrecht: Kluwer Academic

Publishers, 1999.

References 159

[SK98] Alan F. Smeaton and Fergus Kelledy. User-chosen

phrases in interactive query formulation for informa-

tion retrieval. In Proceedings of the 20th BCS-IRSG

Colloquium, 1998.

[SKK00] Michael Steinbach, George Karypis, and Vipin Ku-

mar. A Comparison of Document Clustering Tech-

niques. In Proceedings of KDD 2000, Workshop on

Text Mining, 2000.

[Sma93] Frank Smadja. Retrieving collocations from text:

Xtract. Journal of Computational Linguistics,

19:143–177, 1993.

[SSW+98] Tomek Strzalkowski, Gees Stein, G. Bowden Wise,

Jose Perez Carballo, Pasi Tapanainen, Timo Jarvi-

nen, Atro Voutilainen, and Jussi Karlgren. Natural

language information retrieval: TREC-6 report. In

Text REtrieval Conference, pages 164–173, 1998.

[Str69] Volker Strassen. Gaussian elimination is not optimal.

Numerical Mathematics, 13:354–356, 1969.

[Sus93] Michael Sussna. Word sense disambiguation for free-

text indexing using a massive semantic network. In

CIKM ’93: Proceedings of the second international

conference on Information and knowledge manage-

ment, pages 67–74, 1993.

[SWY75] Gerard Salton, A. Wong, and C.S. Yang. A vec-

tor space model for information retrieval. Journal

of the American Society for Information Science,

18(11):613–620, 1975.

[SY73] Gerard Salton and C.S. Yang. On the specification of

term values in automatic indexing. Journal of Docu-

mentation, 29:351–372, 1973.

[SYY75] Gerard Salton, C.S. Yang, and Clement T. Yu. A

theory of term importance in automatic text analy-

sis. Journal of the American Society for Information

Science, 26(1):33–44, 1975.

160 References

[SZ03] Azadeh Shakery and ChengXiang Zhai. Relevance

propagation for topic distillation uiuc trec 2003

web track experiments. In Proceedings of TREC-

2003, pages 673–677, Gaithersburg, Maryland USA,

November 2003.

[TG01] Ilias Tsoukatos and Dimitrios Gunopulos. Efficient

mining of spatiotemporal patterns. In SSTD ’01:

Proceedings of the 7th International Symposium on

Advances in Spatial and Temporal Databases, pages

425–442, London, UK, 2001. Springer-Verlag.

[TM99] Andrew Turpin and Alistair Moffat. Statistical

phrases for vector-space information retrieval. In

Proceedings of the 22nd ACM SIGIR Conference on

Research and Development in Information Retrieval,

pages 309–310, 1999.

[TVBK04] Takaaki Tanaka, Aline Villavicencio, Francis Bond,

and Anna Korhonen, editors. Second ACL Work-

shop on Multiword Expressions: Integrating Process-

ing, 2004.

[Vec05] Olga Vechtomova. The role of multi-word units in in-

teractive information retrieval. In Proceedings of the

27th European Conference on Information Retrieval,

Santiago de Compostela, Spain, pages 403–420, 2005.

[Vos98] Piek Vossen, editor. EuroWordNet: A Multilingual

Database with Lexical Semantic Networks. Kluwer

Academic Publishers, 1998.

[VR79] C. J. Van Rijsbergen. Information Retrieval, 2nd

edition. Department of Computer Science, University

of Glasgow, 1979.

[Wil88] Peter Willett. Recent trends in hierarchic document

clustering: a critical review. Information Processing

and Management, 24(5):577–597, 1988.

[WP94] Allison Gyle Woodruff and Christian Plaunt. GIPSY:

Georeferenced information processing SYstem. Tech-

nical Report S2K-94-41, 25, 1994.

References 161

[WWX+05] Lee Wang, Chuang Wang, Xing Xie, Josh Forman,

Yansheng Lu, Wei-Ying Ma, and Ying Li. Detect-

ing dominant locations from search queries. In SI-

GIR ’05: Proceedings of the 28th annual interna-

tional ACM SIGIR conference on Research and de-

velopment in information retrieval, pages 424–431,

New York, NY, USA, 2005. ACM Press.

[WZB04] Hugh E. Williams, Justin Zobel, and Dirk Bahle.

Fast phrase querying with combined indexes. ACM

Transactions on Information Systems, 22(4):573–

594, 2004.

[YBLS83] Clement T. Yu, Chris Buckley, K. Lam, and Ger-

ard Salton. A generalized term dependence model in

information retrieval. Information Technology: Re-

search and Development, 2(4):129–154, 1983.

[YS00] Jeonghee Yi and Neel Sundaresan. A classifier

for semi-structured documents. In Proceedings of

the sixth ACM SIGKDD international conference on

Knowledge discovery and data mining, Boston, Mas-

sachusetts, pages 340–344, 2000.

[Zak01] Mohammed J. Zaki. Spade: An efficient algorithm

for mining frequent sequences. Mach. Learn., 42(1-

2):31–60, 2001.

[ZK01] Ying Zhao and George Karypis. Criterion functions

for document clustering. Technical report, Depart-

ment of Computer Science and Engineering, Univer-

sity of Minnesota Twin Cities, 2001.

[ZTMFE97] Chengxiang Zhai, Xiang Tong, Natašha Milić-

Frayling, and David A. Evans. Evaluation of syntac-

tic phrase indexing. In Proceedings of the 5th Text

Retrieval Conference, TREC-5, pages 347–358, 1997.

TIETOJENKÄSITTELYTIETEEN LAITOS DEPARTMENT OF COMPUTER SCIENCE
PL 68 (Gustaf Hällströmin katu 2 b) P.O. Box 68 (Gustaf Hällströmin katu 2 b)
00014 Helsingin yliopisto FIN-00014 University of Helsinki, Finland

JULKAISUSARJA A SERIES OF PUBLICATIONS A

Reports may be ordered from: Kumpula Science Library, P.O. Box 64, FIN-00014 Uni-
versity of Helsinki, Finland.

A-1993-1 E. Ukkonen: On-line construction of suffix-trees. 15 pp.

A-1993-2 Alois P. Heinz: Efficient implementation of a neural net α-β-evaluator.
13 pp.

A-1994-1 J. Eloranta: Minimal transition systems with respect to divergence preserv-
ing behavioural equivalences. 162 pp. (Ph.D. thesis).

A-1994-2 K. Pohjonen (toim./ed.): Tietojenkäsittelyopin laitoksen julkaisut 1992–93
– Publications from the Department of Computer Science 1992–93. 58 s./pp.

A-1994-3 T. Kujala & M. Tienari (eds.): Computer Science at the University of
Helsinki 1993. 95 pp.

A-1994-4 P. Floréen & P. Orponen: Complexity issues in discrete Hopfield networks.
54 pp.

A-1995-1 P. Myllymäki: Mapping Bayesian networks to stochastic neural networks:
a foundation for hybrid Bayesian-neural systems. 93 pp. (Ph.D. thesis).

A-1996-1 R. Kaivola: Equivalences, preorders and compositional verification for linear
time temporal logic and concurrent systems. 185 pp. (Ph.D. thesis).

A-1996-2 T. Elomaa: Tools and techniques for decision tree learning. 140 pp. (Ph.D.
thesis).

A-1996-3 J. Tarhio & M. Tienari (eds.): Computer Science at the University of
Helsinki 1996. 89 pp.

A-1996-4 H. Ahonen: Generating grammars for structured documents using gram-
matical inference methods. 107 pp. (Ph.D. thesis).

A-1996-5 H. Toivonen: Discovery of frequent patterns in large data collections. 116 pp.
(Ph.D. thesis).

A-1997-1 H. Tirri: Plausible prediction by Bayesian inference. 158 pp. (Ph.D. thesis).

A-1997-2 G. Lindén: Structured document transformations. 122 pp. (Ph.D. thesis).

A-1997-3 M. Nykänen: Querying string databases with modal logic. 150 pp. (Ph.D.
thesis).

A-1997-4 E. Sutinen, J. Tarhio, S.-P. Lahtinen, A.-P. Tuovinen, E. Rautama & V.
Meisalo: Eliot – an algorithm animation environment. 49 pp.

A-1998-1 G. Lindén & M. Tienari (eds.): Computer Science at the University of
Helsinki 1998. 112 pp.

A-1998-2 L. Kutvonen: Trading services in open distributed environments. 231 + 6
pp. (Ph.D. thesis).

A-1998-3 E. Sutinen: Approximate pattern matching with the q-gram family. 116 pp.
(Ph.D. thesis).

A-1999-1 M. Klemettinen: A knowledge discovery methodology for telecommunica-
tion network alarm databases. 137 pp. (Ph.D. thesis).

A-1999-2 J. Puustjärvi: Transactional workflows. 104 pp. (Ph.D. thesis).

A-1999-3 G. Lindén & E. Ukkonen (eds.): Department of Computer Science: annual
report 1998. 55 pp.

A-1999-4 J. Kärkkäinen: Repetition-based text indexes. 106 pp. (Ph.D. thesis).

A-2000-1 P. Moen: Attribute, event sequence, and event type similarity notions for
data mining. 190+9 pp. (Ph.D. thesis).

A-2000-2 B. Heikkinen: Generalization of document structures and document assem-
bly. 179 pp. (Ph.D. thesis).

A-2000-3 P. Kähkipuro: Performance modeling framework for CORBA based dis-
tributed systems. 151+15 pp. (Ph.D. thesis).

A-2000-4 K. Lemström: String matching techniques for music retrieval. 56+56 pp.
(Ph.D.Thesis).

A-2000-5 T. Karvi: Partially defined Lotos specifications and their refinement rela-
tions. 157 pp. (Ph.D.Thesis).

A-2001-1 J. Rousu: Efficient range partitioning in classification learning. 68+74 pp.
(Ph.D. thesis)

A-2001-2 M. Salmenkivi: Computational methods for intensity models. 145 pp.
(Ph.D. thesis)

A-2001-3 K. Fredriksson: Rotation invariant template matching. 138 pp. (Ph.D.
thesis)

A-2002-1 A.-P. Tuovinen: Object-oriented engineering of visual languages. 185 pp.
(Ph.D. thesis)

A-2002-2 V. Ollikainen: Simulation techniques for disease gene localization in isolated
populations. 149+5 pp. (Ph.D. thesis)

A-2002-3 J. Vilo: Discovery from biosequences. 149 pp. (Ph.D. thesis)

A-2003-1 J. Lindström: Optimistic concurrency control methods for real-time database
systems. 111 pp. (Ph.D. thesis)

A-2003-2 H. Helin: Supporting nomadic agent-based applications in the FIPA agent
architecture. 200+17 pp. (Ph.D. thesis)

A-2003-3 S. Campadello: Middleware infrastructure for distributed mobile applica-
tions. 164 pp. (Ph.D. thesis)

A-2003-4 J. Taina: Design and analysis of a distributed database architecture for
IN/GSM data. 130 pp. (Ph.D. thesis)

A-2003-5 J. Kurhila: Considering individual differences in computer-supported special
and elementary education. 135 pp. (Ph.D. thesis)

A-2003-6 V. Mäkinen: Parameterized approximate string matching and local-similarity-
based point-pattern matching. 144 pp. (Ph.D. thesis)

A-2003-7 M. Luukkainen: A process algebraic reduction strategy for automata theo-
retic verification of untimed and timed concurrent systems. 141 pp. (Ph.D.
thesis)

A-2003-8 J. Manner: Provision of quality of service in IP-based mobile access net-
works. 191 pp. (Ph.D. thesis)

A-2004-1 M. Koivisto: Sum-product algorithms for the analysis of genetic risks. 155
pp. (Ph.D. thesis)

A-2004-2 A. Gurtov: Efficient data transport in wireless overlay networks. 141 pp.
(Ph.D. thesis)

A-2004-3 K. Vasko: Computational methods and models for paleoecology. 176 pp.
(Ph.D. thesis)

A-2004-4 P. Sevon: Algorithms for Association-Based Gene Mapping. 101 pp. (Ph.D.
thesis)

A-2004-5 J. Viljamaa: Applying Formal Concept Analysis to Extract Framework
Reuse Interface Specifications from Source Code. 206 pp. (Ph.D. thesis)

A-2004-6 J. Ravantti: Computational Methods for Reconstructing Macromolecular
Complexes from Cryo-Electron Microscopy Images. 100 pp. (Ph.D. thesis)

A-2004-7 M. Kääriäinen: Learning Small Trees and Graphs that Generalize. 45+49
pp. (Ph.D. thesis)

A-2004-8 T. Kivioja: Computational Tools for a Novel Transcriptional Profiling Method.
98 pp. (Ph.D. thesis)

A-2004-9 H. Tamm: On Minimality and Size Reduction of One-Tape and Multitape
Finite Automata. 80 pp. (Ph.D. thesis)

A-2005-1 T. Mielikäinen: Summarization Techniques for Pattern Collections in Data
Mining. 201 pp. (Ph.D. thesis)

