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Abstract

Minimum Description Length (MDL) is an information-theoretic principle
that can be used for model selection and other statistical inference tasks.
There are various ways to use the principle in practice. One theoretically
valid way is to use the normalized maximum likelihood (NML) criterion.
Due to computational difficulties, this approach has not been used very
often. This thesis presents efficient floating-point algorithms that make it
possible to compute the NML for Multinomial, Naive Bayes and Bayesian
tree models. None of the presented algorithms rely on asymptotic analysis
and with the first two model classes we also discuss how to compute exact
rational number solutions.
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Preface

“A fall into a ditch makes you wiser.”

Chinese proverb

Making a Ph.D. dissertation is a process. It is the process of knowing
the inner-self better. During that process you feel sometimes happy, but
mostly you feel miserable, stupid and lonely — or at least, I did. There are
high moments, the moments of discovering something new, but nine times
out of ten I found out I was wrong. Even in those cases where discoveries
were valid and correct, the happiness rapidly decayed after a few days and
imperfection filled my mind. However, no man is an island. Luckily there
was and is other people in my life that were ready to listen to me and help
me during the process. Without these people you would not be able to read
this text, because this book would not exist.

It would be a lie to claim that this process of mine did not affect other
people. There were several hard times when I was feeling no joy at all. I
was just too focused and all those wonderful things that usually give me
great joy, just irritated me. The journey of learning how to be a researcher
is a two-bladed sword: it gives great pleasure to find new knowledge, but
on the other hand it is very demanding to aim at a target infinitely far
away — the dissertation.

The public discussion and indirect statements of the Ministry of Edu-
cation that students are lazy and are using state funding inefficiently do
not make the situation of a student or a Ph.D. student any better. As a
student is thought to be an increment or decrement in some statistics cou-
pled with financial figures, he or she can be handled via economic terms.
We are not living persons with feelings, but just investments and we have
some expected future gain. Bit by bit these ideas have reached the faculty
and the department levels. I have not been treated like this, but it does
not hinder me to have equal feelings. I feel like an inanimate object on an
assembly line with a serial number — the student number.

iv
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As it took me almost ten years to reach this point, it must mean that at
some point during the process I have been very inefficient. I luckily started
my Ph.D. studies during the last days of the old and inefficient Finnish
university — the very same that has produced most of current professors,
but will not produce future ones. I truly believe that those Ph.D. students
just now starting the process, do not have the luxury to spend ten years.
They will be replaced by new, more eager students, if they are as inefficient
as I have been.

This printed book represents an outcome of the process. Something
that hopefully gives the Department of Computer Science possibility to
collect the profit of its investment or at least minimize the loss. During the
process I have learned many things and still managed to somehow live my
life — my true life with my family. I want to express my special gratitude
to those who were ready to listen to me and discussed also topics not re-
lated to research interests.

Acknowledgments: I would like to thank my advisor, Professor Petri
Myllymäki, for helping me in formulation of the results and showing sev-
eral incoherencies during editing. Without his invaluable help in writing,
manuscripts might have never got accepted. I am also grateful to my pre-
vious advisor, Professor Henry Tirri, who let me freely wonder around and
find the inspiration of my own. In those years I learned a lot and without
those skills some of the results, essential to this thesis, would not exist.

It is very important to work in a research group, because new ideas are
appearing too fast in active research areas. A single researcher, without
a group, cannot keep track of results made by others. This limitation,
however, does not seem to bother Professor Emeritus Jorma Rissanen, who
has developed the MDL theory, on which this research is based on. I
did this dissertation mostly while working in the CoSCo research group
and I benefitted greatly from ideas of my fellow-workers Petri Kontkanen
and Hannes Wettig. Petri’s previous results and ideas presented in the
discussions between me and him were the starting point of many papers in
this dissertation. Preliminary work of Hannes gave inspiration for Paper
5. Sometimes only a few words can open new worlds: we travelled to
Eindhoven to meet Alessandro Di Bucchianico and he gave us the idea of
utilizing multivariate generating functions. Without his idea, although it
was targeted to solve a different problem, the results presented in Paper
3 would not exist. I am grateful to him for the idea. I want to thank
Professor Patric Österg̊ard and Dr. Ciprian Doru Giurcaneanu for their
useful comments that further improved this thesis.
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Chapter 1

Introduction

In this chapter, first we give an informal introduction to the topic area of
this thesis. After that we summarize the main contributions of the author.

1.1 Motivation

Bayesian Networks are versatile probability models that can be used e.g. in
prediction and modelling tasks [14, 30]. Models can be constructed either
by hand using only prior knowledge or the best model can be found using an
algorithm working on given observed data. In the latter case we are talking
about machine learning — thus a computer is automatically searching in a
set of models that describes the data best. However, in the prediction case
we want our model to also predict properties of unseen future data correctly.
Thus machine learning algorithms need a scoring (model selection) criterion
that correctly evaluates the true goodness of a model.

For Bayesian networks there exists a Bayesian scoring criterion called
BDeu [5], which is often used for selecting the best Bayesian network for the
given data. The score can be considered to be a state-of-the-art score for
the purpose. However, it is not purely objective, as there is a free hyperpa-
rameter called equivalent sample size (ESS). Traditionally this parameter is
often set to 1. Due to recent development of exhaustive search algorithms,
it has been empirically observed that the value of this parameter affects the
criterion heavily [40]. One possible solution is of course to try to prove some
theoretically valid method for determining the value of this parameter [42].
However, in the following we instead take a different path and consider an
entirely different criterion that has its roots in information theory. This
information-theoretic criterion can be considered more objective as it has
no free parameters that need to be tuned.

1
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2 1 Introduction

The minimum description length (MDL) principle originates from the
ideas of Kolmogorov complexity. Kolmogorov complexity measures the com-
plexity of strings [26]. The complexity of a string is the length of the short-
est description (program) that produces the string and stops after that. In
real life, the Kolmogorov complexity cannot be computed for an arbitrary
string, because the found description cannot be proved to be the optimal
one: as the description set consists of all the possible programs in the
world, there may always be a program that gives even a shorter description
than the found one. The MDL principle, on the other hand, says that you
are allowed to constrain the set of possible probability models (programs)
[35, 13]. This constrained set can be for example a Bayesian network struc-
ture with free parameters. Now we can take a structure and our observed
data compressed (described) with the structure. Then in this fixed set we
are able to find the parameter setting that minimizes (in a certain sense to
be explained later) the length of the description. This minimum length is
called the stochastic complexity.

The intuition behind this complexity measure is quite straight forward.
If we have a very complex model, it can give a short description for the
data, but the description of the model itself is complicated (long). On the
other hand, if we have a simple model, it gives a long description for the
data. Hence, adding a model and the observed data into the same package
forces us to find the optimal complexity of the model. This also ties up the
model complexity to be dependent on data length. For big data, we can
allow a model to be more complex, because the complex model describes
the data part more efficiently. But for small data, a model has to be simple,
because otherwise the description of the model increases the length of the
whole description. Thus this kind of a criterion has internal over- and
under-fitting control.

There still remains the question of actual formulation of the stochastic
complexity. Several versions have been proposed by Rissanen during the
last decades [32, 33, 34]. At first the definition was based on the so-called
two-part-code, where the model complexity and the data complexity are
defined independently from each other. Then next version was based on the
marginal likelihood definition that takes an average solution over all models
(the BDeu score mentioned above is an example of marginal likelihood
scores). The latest definition is to use the normalized maximum likelihood
(NML) distribution (Shtarkov distribution [39]), which has been proven to
be worst-case optimal [34, 13]. Hence, the selected model gives the shortest
code among our set of models for worst-case data.

The NML-based stochastic complexity criterion has given very good
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1.1 Motivation 3

results in many application areas. In human genome compression the NML
code provides a state-of-the-art method [24, 25, 44]. In image denoising the
best NML method is almost as good as the best methods [37]. There exists a
histogram estimation method based on the NML that seems to produce very
believable histograms [21]. Finally, the factorized normalized maximum
likelihood (fNML) criterion for Bayesian networks has been reported to
beat the BDeu criterion [41]. The fNML is computational simplification of
the true stochastic complexity and therefore the fNML criterion can also
be seen as some kind of an approximation of the NML.

The hardest problem when utilizing the stochastic complexity approach
is how to overcome computational difficulties: normalized maximum like-
lihoods are hard to compute, because they involve a normalization term
which requires summing over all possible data tables that are of the same
size as the observed data table. There are three options: to compute the
sum exactly, to use sampling or to use asymptotic approximation. In this
thesis we present new efficient methods for computing the normalizing sums
using the exact approach. We also present various new approaches that
may eventually lead to computationally even more efficient methods. Even
though the sampling approach may finally be the only option in the case
of complex models and small data sets, the exact results also support this
research, giving at least in some cases a yardstick to which approximations
can be compared. The asymptotic approximation approach is probably not
usable with small data sets, because in these cases the results cannot be
guaranteed to be the correct one or even close enough to the correct one.
Therefore for comparison purposes we must know the exact values to avoid
pointless and tremendous analytic analyses that just prove the accuracy
not to be very good.

The scope of this thesis is to develop a computational method for
computing the stochastic complexity of certain simple probabilistic graph-
ical models. The work contains no comparative analysis between different
model selection criteria, but focuses only on stochastic complexity. The true
practical value of this work will show up later. In this thesis we first give
efficient algorithms that compute the normalizing sum for a single multino-
mial variable. The fastest algorithm is sub-linear. The exact method can
be considered to be efficient enough for almost all practical uses. After this
we formulate an algorithmic framework for the Naive Bayes case. For nor-
mal data sizes the algorithms based on this framework are also fast enough.
The last case is Bayesian forests. For practical purposes the algorithm is
fast enough only for forests with binary variables.
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4 1 Introduction

1.2 Main Contributions

For easy access, below we summarize the main contributions of each paper.
In the following the list numbers refer to publication numbers.

1. The normalizing sum of a multinomial variable can be represented
using a confluent hypergeometric function. The new form appears to
be very fast to compute. This computationally simple representation
can also be used with mathematical software packages. We show
that the form is closely connected to certain moments of the famous
birthday problem.

2. Relying on the form in Paper 1, we use the hypergeometric represen-
tation to derive a sub-linear algorithm for computing the multinomial
stochastic complexity with fixed precision. We also have to assume
that the sufficient statistics are precomputed. The algorithm is based
on a relatively good upper bound that we derive in the paper.

3. We show that the known generating function for computing the multi-
nomial stochastic complexity is actually a family of marginal gener-
ating functions. We demonstrate that in general we have a bivariate
generating function, derive representation for the other marginal gen-
erating function family and give implications to recurrence formulas.
We also suggest that the same kind of bivariate generating functions
exists in the case of more complex models, based on our empirical
results.

4. We derive a generating function that can be used for computing
stochastic complexities of Naive Bayes Models. The generating func-
tion explains the previously known recurrence formulas and gives a
new framework for designing faster algorithms for the task.

5. An algorithm for computing the stochastic complexity of a Bayesian
forest using matrices is presented. Computation is made more efficient
using a generating polynomial approach with polytopes and reusing
already computed components. To the author’s best knowledge, the
algorithm is still the fastest known method for exact computation of
normalized maximum likelihood for Bayesian forests.

The author of this thesis made the main contribution in all of these papers.
The rest of this thesis is organized as follows: The next chapter gives

the required definitions and preliminary information that is essential for un-
derstanding the chapters that follow. Chapter 3 summarizes computational
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1.2 Main Contributions 5

main results with respect to a single multinomial variable. The results are
collected from papers 1-3. Computation of the stochastic complexity for
Naive Bayes models is presented in Chapter 4 and it is based on papers 1,
2, 3 and 4. The stochastic complexity of the Bayesian tree model is con-
sidered in Chapter 5. The main results are from Paper 5 and some minor
discussion originates from Paper 3. The concluding chapter ties up all the
results in a single package. The original publications are reprinted at the
end of this thesis.
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Chapter 2

Information Theory and Models

In this chapter we introduce all the required basic concepts and mathe-
matical theory that is necessary for understanding the main results of this
thesis. The first two sections establish the starting points of the research.
The third section introduces the mathematical machinery used.

2.1 Information Theory, Stochastic Complexity

and Modelling

Information theory is a theory of communication over a channel [7]. The
basic setting is the following: A sender wishes to send information using
the channel to some receiver. The sender wants to encode the data that
will be sent in such a way that the receiver will be able to decode it and
read the original message. The sender wants to send as few bits as possible,
hence achieve the best possible compression for data. However, in the true
world channels are usually noisy, thus they are generating errors to the
data. This means that the sender has to merge extra bits to the sent
message, so that the receiver can infer the original compressed data even if
the channel has mutilated the compressed data. The study of these issues
belongs to classical information theory. Nowadays the ideas of information
theory have broadened to various application areas, such as into statistical
inference. In this thesis we will not consider noise or other limitations that
a channel might cause, but we focus on the source coding problem. Thus,
we have fixed-length strings — our data — generated by some source, and
the sender has to encode the data using some coding method known by
the receiver. The sender encodes data using some code words so that more
frequent patterns existing in data should have shorter code words than less
frequent ones. In order to achieve any compression, the length of frequent

6
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2.1 Information Theory, Stochastic Complexity and Modelling 7

code words should obviously be shorter than the corresponding substrings
in data. On the other hand, infrequent code words are allowed to be longer
than original substrings.

A prefix code is such that in a set of code words, there is no code word
that is the prefix of another code word. Prefix codes have a very pleasant
property that we can just concatenate code words without any external bits
indicating the ending of a code word. In our statistical inference framework
we are only interested in lengths of the code words, not the actual code
words. The following inequality [7] defines the relationship between code
word lengths and existence of prefix codes:

Theorem 2.1 (Kraft Inequality): For any countable infinite set of code
words that form a prefix code, the codeword lengths LC(x) satisfy the Kraft
inequality

∑

x

2−LC(x) ≤ 1 (2.1)

Conversely, given any code lengths satisfying the Kraft inequality, we can
construct a prefix code.

A prefix code is complete, if there does not exist a shorter prefix code. This
means that a prefix code is complete if and only if the left hand side of the
Kraft inequality is 1.

We argued above that frequent patterns should have short codes. We
can say that the probability of a pattern is relative to the frequency of that
pattern and define

LC(x) = − log P (x). (2.2)

Our code word lengths are not integer values any more, but in fact this
does not make a big difference as argued in [13]. We also see that this code
can be interpreted to be complete by previous definitions.

Now finally we are ready to make a big leap and consider an information-
theoretic approach to probabilistic modeling. Let xn ∈ X n, where xn is a
sequence of length n and X n is the set of all sequences. A parametric proba-
bilistic model assigns a probability distribution over these sequences. Each
instantiation of the parameters defines a different probability distribution.
For each data sequence xn, there exists a parameter instantiation (distri-
bution) which gives for this particular sequence the maximal probability
— these parameters are called the maximum likelihood parameters for this
data. However, note that taking the maximum likelihood for each data
sequence does not constitute a probabilistic model as the sum of the prob-
abilities is greater than 1, which means that the Kraft inequality condition
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8 2 Information Theory and Models

is not fulfilled. However, there exists an easy solution: we can normalize
each individual maximum likelihood with a sum over all maximum likeli-
hoods (for all the data sets) and get the normalized maximum likelihood
(NML) distribution [13]. This distribution is also known as the Shtarkov
distribution.

Definition 1 The normalized maximum likelihood distribution using a para-
metric model M is

PNML(xn | M) =
P (xn | θ̂(xn),M)

∑

yn P (yn | θ̂(yn),M)
, (2.3)

where θ̂(xn) is a set of maximum likelihood parameters of the modelM for
data xn. The stochastic complexity (code length) can now be defined as

SC(xn | M) = − log PNML(xn | M). (2.4)

Let us look at the properties of the above definition. First, now each
sequence is mapped to some code word, and the length of this code word
is given by (2.4). However, there cannot be a single model that is best for
all data sets, but we are trying to get as close as we can with this kind
of a model [13]. For each data sequence, the maximum likelihood gives
obviously the theoretical limit we can try to reach (it cannot be exceeded,
as it is the maximum). A model (distribution) is considered to be universal,
if it gives almost as high probability for all the data sets as the best model
(i.e. the maximum likelihood model) for each data set gives. Redundancy
is the difference of code lengths between the best model P and our model
P̄ for given data. By selecting the data that maximizes this redundancy,
we get the worst-case redundancy REDmax. A model P̄ = {P̄ (1), P̄ (2), . . . }
is universal, if

lim
n→∞

REDmax(P̄
(n), P )

n
= 0. (2.5)

This means that redundancy can increase only sub-linearly with respect to
data size. Notice also that a universal model is considered to be a sequence
of distributions — one for each data size.

The normalized maximum likelihood gives the smallest worst-case re-
dundancy among all the universal models [13]. It is therefore a minimax
optimal universal model and hence the worst case optimal. This property
is in fact very desirable, because with the worst case data we lose the least
against the best model. We also know that most of the sequences are in-
compressible, so this worst-case optimality can also be seen as average-case
optimality.
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2.2 Bayesian Models 9

We can use the stochastic complexity in model selection by computing
it with different parametric models. We compare these code lengths and
select the model that has the shortest code length for the observed data.
The stochastic complexity then favors a simple good fitting model, thus
it is obeying the Occam’s razor principle: simple models are better. The
search problem is still left: how to find the best model from a huge set of
models. However, stochastic optimization methods and search algorithms
are not a subject of this thesis and therefore in the sequel we omit further
discussion on that topic.

There exists yet a very interesting view point that favors the usage of the
normalized maximum likelihood in modelling: it is called indistinguishabil-
ity [3, 13]. In practice if we have very little data, we cannot reliably say
which one of the models (distributions) generated it. As we get more and
more data, we can rule out an increasing set of models. Generally speaking,
two models are indistinguishable, if we cannot rule the other out given the
data.

The volume of indistinguishable distributions around a given distribu-
tion is shrinking as the data size increases. In the limit indistinguishability
leads essentially to the same penalization as MDL (while truth lies in the
family) and this complexity can be interpreted to be related to a fraction
of distributions in the space of distributions that lie close to the truth.
Thus, a simple model has only a small amount of parameter settings that
can bring it close to the truth, as a complex model has many parameter
settings that bring it close to the truth. As we penalize according to the
volume of indistinguishable distributions, we are again ending up with the
Occam’s razor principle.

2.2 Bayesian Models

We adopt the language from statistics. A binary variable is a two-valued
variable and a multi-valued variable is called a multinomial variable. If
the variables are i.i.d. (independent and identically distributed), and we
compute the sum of binary variables, we have as a result a binomial variable
defining the binomial distribution. On the other hand a sum of statistical
multinomial i.i.d. variables is called a multinomially distributed variable
and it defines the multinomial distribution. This terminology may cause
some confusion, which we try to avoid.

We have only one data table and we are not considering different order-
ings of the rows that produce the same relative frequencies, the observed
ordering is enough. Hence, for a single variable (Figure 2.1) with L values
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10 2 Information Theory and Models

and observed data points xn = (x1, . . . , xn) the likelihood is

P (xn | MMN(L)) = θh1
1 · · · θ

hL

L , (2.6)

where hk is a number of points assigned to the kth value [22] and θk is the
probability of the corresponding value. This does not define a multinomial
distribution (the multinomial coefficient is missing), because then we would
actually take all the data sets that have the same relative frequencies, and
we want only to compute the probability of the observed one. Probabilities
θk can be assigned several ways, but if we compute the observed relative
frequencies of each variable value (the terms inside brackets in (2.7)), we
get the highest possible likelihood for our observed data. We denote these
parameters by θ̂1, . . . , θ̂L and call them maximum likelihood parameters.

Definition 2 The maximum likelihood for the observed data in the multi-
nomial case is

P (xn | θ̂(xn),MMN(L)) =

(

h1

n

)h1

· · ·
(

hL

n

)hL

. (2.7)

Hence, this is the numerator of the NML for one node Bayesian network
(single multinomial variable). The denominator will be presented in Chap-
ter 3.

The Naive Bayes model can be used for classification and clustering
tasks. The model has a class variable and m predictor variables of a multi-
nomial type (Figure 2.1). When represented as a Bayesian network, the
model is a two-layer tree where the class variable is the root node Y0 and
predictor variables are leaf nodes Y1, . . . , Ym that are independent of each
other given the value of the root variable [17]. Thus the joint probability
factorizes as

P (y) = P (y0)
m
∏

i=1

P (yi | y0), (2.8)

where yi is the value of the corresponding variable Yi. In the previous single
variable case, data was just a vertical vector of length n. Now we have a ta-
ble that has n rows and m+1 columns. We denote it by xn = (x1, . . . ,xn),
where each xj is a vector (xj,0, . . . , xj,m). The maximum likelihood pa-
rameters correspond to the observed relative frequencies (the terms inside
brackets in (2.9)), unconditional with the root and conditional with the leaf
variables.

Definition 3 The maximum likelihood for the Naive Bayes model can be
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2.2 Bayesian Models 11

computed using the formula

P (xn | θ̂(xn),MNB) =

L
∏

k=1

(

hk

n

)hk m
∏

i=1

Ki
∏

v=1

(

fikv

hk

)fikv

, (2.9)

where hk is the number of vectors assigned to the kth value of the root
variable and fikv is the number of vectors, where the root variable (parent)
value is k and ith predictor variable has the value v [22].

As already mentioned, the Naive Bayes is actually a very simple two-
level tree (see Figure 2.1). If we have more levels, we get more complicated
trees.

A Bayesian tree is a directed acyclic graph, where each node has only
one parent node (Figure 2.1). We call node A the parent of node B, if node
B has an incoming directed arch from node A. Hence, every tree has only
one root node. For this model the joint probability factorizes as

P (y) =

s
∏

i=1

P (yi | yg(i)), (2.10)

where s is the number of variables and g(i) is the function that returns the
index of the parent node of node i.

Definition 4 The maximum likelihood for Bayesian trees is

P (xn | θ̂(xn),Mtree) =

s
∏

i=1

Kg(i)
∏

k=1

Ki
∏

v=1

(

fikv

fg(i),k

)fikv

, (2.11)

where fg(i),k is the number of vectors assigned to the kth value of the parent
node of i and Kg(i) is the number of values of the parent node of node i.

A Bayesian forest is a set of Bayesian trees. The maximum likelihood
of data can be computed taking the product of maximum likelihoods of
the trees in the forest. We only mention that there exist more complex
structures called Bayesian networks that are directed acyclic graphs. How-
ever, we are not computing stochastic complexity for these structures in
this thesis and therefore we do not define them formally. The scope of
this thesis is purely computational and there are very good introductory
texts on Bayesian networks, thus we are not broadening the view more than
necessary. Readers interested in the subject can revise for example [17].

This concludes the introduction of the model families. Stochastic com-
plexity formulas for each of these models are defined in the corresponding
chapters.
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12 2 Information Theory and Models

Figure 2.1: Multinomial (left), Naive Bayes (middle) and Bayesian tree
(right) models. All graphs together can be interpreted as a forest with
three trees.

2.3 Mathematical Tools for Computation

Now we start presenting mathematical tools that are utilized to make com-
putation of the NML denominators efficient for the previous models.

2.3.1 Generating Functions and Polynomials

Generating functions are powerful tools used in combinatorics and many
other areas [11]. The basic idea is that we have two presentations for our
target family of functions. The first one is a formal power series presenta-
tion, i.e. a generating function presentation, and the other one is a closed-
form presentation for the series (does not necessarily exist). We may switch
between these presentations and manipulate the form that happens to al-
low a particular operation more easily. We are actually interested in only
the coefficients of a formal power series. These are the functions or values
that we want to compute.

In a single variable case we are interested in two different kinds of gener-
ating functions: an ordinary generation function (OGF) and an exponential
generating function (EGF). In the following we list the necessary properties
of both.

The ordinary generating function is a formal power series

G(z) =
∞
∑

k=0

akz
k, (2.12)

and we are interested in the coefficients a0, a1, . . . , which are the quanti-
ties we want to compute. We denote a sequence of coefficients by (an) =
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2.3 Mathematical Tools for Computation 13

(a0, a1, . . . ) and the function of k that gives coefficients by a(k). The vari-
able z is kind of a dummy variable. We usually never evaluate this function
G(z) by setting z to some value. If there is a closed-form presentation for
the above series, which we have in many interesting cases, we may utilize
it as well.

Let us go through some operations we can apply to ordinary generating
functions [11, 12]. We use the standard notation for coefficient extraction:
ak = [zk]G(z). If we multiply two ordinary generating functions G(z) and
F (z) and get

∞
∑

k=0

ckz
k = G(z)F (z) = (

∞
∑

k=0

akz
k)(

∞
∑

k=0

fkz
k), (2.13)

then the mth coefficient of the resulting series is defined by a discrete con-
volution formula:

cm =
m
∑

k=0

akfm−k. (2.14)

Hence, we achieve the resulting ordinary generating function by computing
the discrete convolution between sequences of coefficients (Cauchy prod-
uct). Using the same formula we can easily compute the powers of the
generating function G(z). We can achieve any power L by doing O(log L)-
discrete convolutions and using a well-known combinatorial trick that is
presented for example in [22]: first take the convolution of G(z) with itself
to get G(z)2. After this take the convolution of G(z)2 with itself to get
G(z)4. This way we finally achieve any L = 2i and the general case also
goes similarly.

The exponential generating function is a formal power series

EG(z) =

∞
∑

k=0

bk
zk

k!
, (2.15)

where we are interested in coefficients b0, b1, . . . and denote the sequence of
coefficients by (bn) = (b0, b1, . . . ). The function of k that gives coefficients
is denoted by b(k).

We use the standard notation for coefficient extraction: bk = [zk]EG(z).
Notice that we rule out here the factorial term in the denominator, so we are
not extracting ordinary formal power series coefficients, but the exponen-
tial ones. The resulting coefficients after multiplication of two exponential
generating functions EG(z) and EF (z) are defined by the binomial convo-
lution formula:

dm =
m
∑

k=0

(

m

k

)

bkhm−k, (2.16)
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14 2 Information Theory and Models

where (hn) is the coefficient sequence of EF (z). As in the ordinary case, we
can also raise EG(z) to higher positive integer powers by doing binomial
convolution several times.

As we are interested in computational issues, we may want to use com-
putationally more simple operations for ordinary generating functions. We
can write ak = bk

k! and this way present an exponential generating function
as the ordinary generating function. Thus even if we are dealing with ex-
ponential generating functions, we may handle these as ordinary ones. For
example this way we do not have to use the binomial convolution formula,
but we can just utilize the ordinary convolution formula. We can also take
a product of ordinary and exponential generating functions handling both
as ordinary ones.

The final operation we go through for single variable generating func-
tions is the Lagrange inversion formula (LIF)[36]. The idea is to write a
composition in such a way that we do not have the composition anymore.
Let A(z) be any formal power series and B(z) = b1z + b2z + · · · any formal
power series with b1 6= 0. Thus B(z) has to be an invertible formal power
series. Then the following is true:

[zn]A(B(z)) = [zn]A(z)B′(z)

(

B(z)

z

)−n−1

, (2.17)

where B(z) is the compositional inverse of B(z). Hence, we can transform
the composition into a product and still get the same coefficients as before.
The basic idea is that the right-hand side gives something that we can
handle more easily: if we know how to represent the coefficients of A(z)
and the coefficients of B′(z)(B(z)/z)−n−1, then we get the coefficients of the
original composite function by just using some convolution formula. Thus
if the complicated expression involving an inner function gives something
simple, for which we know the coefficient presentation, we achieve our goal
easily. There also exist other versions of the Lagrange inversion formula,
but as we use only this one later, we will not go through the other versions.

There exist many problems that can be solved with a one-variable func-
tion, but also many problems, which cannot. Therefore sometimes we also
need bivariate generating functions or even multivariate generating func-
tions [11] (the latter case is not relevant in this thesis). We define only a
single exponential version of the bivariate generating function, and leave
ordinary and double exponential versions undefined.

Definition 5 The bivariate exponential generating function is a bivariate
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2.3 Mathematical Tools for Computation 15

formal power series:

BG(z, u) =

∞
∑

k=0

∞
∑

l=0

rk,l
zk

k!
ul. (2.18)

We can describe these coefficients in the form of an infinite table. This table
has marginals and we define that each row and each column is generated
by some marginal generating function. Furthermore these functions form a
family of horizontal generating functions and a family of vertical generating
functions. Each of these functions is a formal power series of a single
variable. The horizontal generating function (one-parameter) family is

MGk(u) =

∞
∑

l=0

rk,lu
l (2.19)

and the vertical generating function (one-parameter) family is defined by

MEG〈l〉(z) =

∞
∑

k=0

rk,l
zk

k!
. (2.20)

Hence, k is the row index and l is the column index, and to get a corre-
sponding marginal generating function from either of the families, we have
to fix either of the indices to some value. We can expand the presented
mathematical operations of ordinary and exponential generating functions
in a canonical way to these marginal generating functions.

We define multivariate generating polynomials to be multivariate poly-
nomials, whose coefficients encode some desired information. We can de-
note

PGj(X ) =
∑

x∈X

axzx1
1 zx2

2 · · · z
xj

j , (2.21)

where x = (x1, . . . , xj) are vectors in a finite set of positive integer-valued
vectors X and ax:s are the coefficients. Variables z1 to zj are dummy
variables similar to the ones of generating functions.

In a way the generating polynomials glue both presentations together.
They are truncated (finite) formal power series as well as closed-form repre-
sentations of themselves. We can also do operations such as take a product
between two multivariate polynomials. This kind of multiplication corre-
sponds to a higher order convolution operation. In fact, we are only inter-
ested in doing convolution operations between different quantities, but for
representational reasons we need all this machinery to simplify notation.



i

i

“book” — 2009/11/10 — 15:20 — page 16 — #26
i

i

i

i

i

i

16 2 Information Theory and Models

2.3.2 Umbral Calculus

In the previous section we introduced some basic generating function forms.
There is yet one form that we need to present. We define a generating
function of the form

∞
∑

k=0

sk,x
zk

k!
= A(z)exB(z), (2.22)

where
A(z) = a0 + a1z + a2z

2 + · · · (a0 6= 0) (2.23)

and
B(z) = b1z + b2z

2 + · · · (b1 6= 0), (2.24)

where we denote the (compositional) inverse of B(t) by overline [36]. We
use inverse series B(z) in the definition, because in Paper 1 we mainly need
B(t) and we do not have to then use overlines. Hence, two-variable coef-
ficients sk,x form the sequence (s0,x, s1,x, . . . ) called the Sheffer sequence.
The sequence is defined by the right-hand side. This means that a series
expansion of a closed form that is of the given form, defines a Sheffer se-
quence. Using the definition in the previous chapter we can interpret this
generating function to be actually a vertical generating function family of
the exponential type. However, for this generating function has been devel-
oped a theory of its own, called umbral calculus [36, 8]. Several important
polynomials belong into the Sheffer class: e.g. Hermite, Laguerre, Bernoulli
and Abel polynomials.

We defined the Sheffer sequence using (2.22). If A(z) = 1, we call the
sequence of coefficients an associated sequence. This case is simpler and in
fact this is the one we need. The sequence (sn,x) is said to be associated to
the functional B(t). This can in our framework be considered to be a fancy
way of saying that for the given class of exponential generating functions
we get coefficients mainly determined by the function B(t).

We only need one umbral calculus computational rule, Umbral com-
position [36]. As we mentioned in the previous section, we can handle a
composite function using the Lagrange inversion formula. However, for
this family of generating functions there is also a direct way to infer the
coefficients of the composite function.

Proposition 2.1 (Umbral composition)

If (pn,x) is associated to M(t) and
(qn,x) is associated to N(t) then

(
∑n

k=0 qnk
pk,x) is associated to N(M(t)), where qn,x =

∑n
k=0 qnk

xk.
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2.3 Mathematical Tools for Computation 17

Hence, if we can represent each coefficient of the outer series as a finite
formal power series of xk, where k = 0 . . . n, then we have a way to describe
coefficients of the composite function.

2.3.3 Hypergeometric Series and Functions

Generalized hypergeometric series is a formal power series, where the ratio
of successive terms defines a rational function. If the series converges, we
call it the generalized hypergeometric function. But before we can formally
define these concepts, we have to define the so called shifted factorials [36]:
The falling factorials are

xk = x(x− 1) · · · (x− k + 1) (2.25)

and the rising factorials are of the form

xk = x(x + 1) · · · (x + k − 1). (2.26)

At this point we actually need only rising factorials to present hypergeomet-
ric series, but falling factorials are utilized later in the thesis and therefore
we defined them also at the same time. The generalized hypergeometric
series is

∞
∑

k=0

ck
zk

k!
=

∞
∑

k=0

ak
1a

k
2 · · · ak

p

bk
1b

k
2 · · · bk

q

zk

k!
, (2.27)

where p is the number of rising factorial terms in the numerator and q is the
number of rising factorials in the denominator [12]. In the general setting ai

and bj can be for example complex numbers, but in our combinatorial task
we need only integer values. We can denote the above using the standard
notation

pFq

(

a1, a2, . . . , ap

b1, b2, . . . , bq

∣

∣

∣

∣

z

)

. (2.28)

Perhaps the most important property of the generalized hypergeometric
series is that the ratio of successive coefficients (of exponential function) is
a rational function:

ck+1

ck
=

(k + a1)(k + a2) · · · (k + ap)

(k + b1)(k + b2) · · · (k + bq)
. (2.29)

We have been discussing generalized hypergeometric series, because
mathematical software packages have implementations for the general form.
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18 2 Information Theory and Models

The word “generalized” has been added for historical reasons. If we simply
say hypergeometric function or hypergeometric series, we mean the function

2F1

(

a1, a2

b1

∣

∣

∣

∣

z

)

. (2.30)

and its series expansion. Solutions for the hypergeometric differential equa-
tion

z(1 − z)y′′ + (b1 − (a1 + a2 + 1)z)y′ − a1a2y = 0 (2.31)

can be described using hypergeometric functions. This equation has three
singular points. If two of three points merge, solutions can be given using
confluent hypergeometric functions 1F1 and 2F0 [2, 1]. The latter function
class is the one we will be using later, although we do not have to use the
differential equation connection. Hence, we are using the series that can be
written as

2F0

(

a1, a2

—

∣

∣

∣

∣

z

)

=
∞
∑

k=0

ak
1a

k
2

zk

k!
. (2.32)

If some of the ai:s are negative integer values, then the series is finite and
converges. This happens in our case, and we can therefore talk about
hypergeometric functions.

2.3.4 Recurrence Equations and Non-Holonomic Functions

Recurrence equations define the relation between coefficients of some series.
Although there exist many different types of recurrence equations, in this
thesis we are only interested in the linear ones. Let our function of interest
be

G(z) =

∞
∑

k=0

akz
k, (2.33)

which is a formal power series. We define a linear homogeneous recurrence
equation to be

p0(i)ai + p1(i)ai+1 + · · ·+ pr(i)ai+r = 0, (2.34)

where pk(i) is the kth polynomial in one variable and r is a finite positive
integer value [31, 46]. Some of the functions pk(i) must be non-zero. We
denoted coefficients of the series by ai. The above equation must apply for
all coefficients in the sequence. By solving ai+r from the above equation, we
get a recurrence formula, which can be used for computing coefficients of
the series. However, the r first coefficients (initial values) must be computed
first, before the recurrence formula can be used.
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We have already given one example of a linear homogeneous recurrence
of the first order: generalized hypergeometric functions. The ratio of suc-
cessive terms is a rational function. We can easily see that (2.29) can be
written in the form of a recurrence equation.

We define that, if there exists a finite homogeneous linear recurrence for
a coefficient sequence, it is P-recursive [27]. On the other hand, if we have
the corresponding series, then there exists a linear differential equation

qm(z)G(m)(z) + · · ·+ q2(z)G′′(z) + q1(z)G′(z) + q0(z)G(z) = 0 (2.35)

with a finite number of terms and the series (function) is D-finite. It hap-
pens that in a single variable case a closed-form is D-finite if and only if the
coefficient sequence is P-recursive. Notice that the smallest possible orders
of these two equations do not have to be the same. In some cases they are
and in other cases they are not.

We call a function and its coefficient sequence holonomic, if they are
D-finite and P-recursive. If they are not holonomic, then they are called
non-holonomic, which means there does not exist either a recurrence or
differential equation in the single variable case.

The function G(z) has been so far an ordinary generating function.
However, we know that G(z) is holonomic if and only if its exponential
counterpart (EGF) is holonomic [4]. Here we have to notice that in both
cases we are talking about coefficients of a formal power series, thus coef-
ficients are ak and ak

k! .
In the multivariate case the situation is a bit more complicated. The

following introduction is based on [27]. First we define the single variate
case another way: A single variable formal power series is holonomic, if the
infinite set of all derivatives of G(z) spans a finite dimensional vector space
over the field of rational functions in z. Now the multidimensional version
is analogous, but instead of derivatives we talk about partial derivatives.
This leads to the following:

Proposition 2.2 G(z) is D-finite if and only if G(z) satisfies a system of
linear partial differential equations, one for each j = 1, . . . ,m, of the form

{

qj,mj
(z)

(

∂

∂zj

)mj

+ qj,mj−1(z)

(

∂

∂zj

)mj−1

+ · · ·+ qj,0(z)

}

G(z) = 0,

where qi,mh
(z) is a multivariate polynomial and z = (z1, . . . , zm).

Hence, we have a linear differential equation with respect to every variable.
This leads to a thought that maybe we have the same kind of relationship
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20 2 Information Theory and Models

in the multivariate case between differential and recurrence equations as
in the single variable case. Unfortunately this is not the case, but we
can still create a relationship by setting additional restrictions for the set
of admissible recurrence equations. This leads to the following system of
recurrences:

Proposition 2.3 Let the sequence ai, i = (i1, . . . , im) satisfy a system of
recursions, one for each j = 1, . . . ,m, of the form

p
(j)
0 (ij)ai +

rj
∑

l=1

p
(j)
l (i1, . . . , im)ai1,...,ij−l,...,im = 0, (2.36)

where the p
(j)
0 are nonzero polynomials of one variable. Then the sequence

of ai1,...,im is holonomic.

So, we have the restriction that the first polynomials p
(j)
0 (ij) are just poly-

nomials of one variable. If we do not make this restriction, we may have a
valid system of recurrences, but they do not have the corresponding holo-
nomic formal power series. However, for the opposite direction we do not
need any restrictions.

Proposition 2.4 If the sequence ai is holonomic, then it satisfies a system
of recurrences, one for each j = 1, . . . ,m, of the form

rj
∑

l=0

p
(j)
l (i1, . . . , im)ai1,...,ij−l,...,im = 0. (2.37)

We can see that the relationship is asymmetric.
The nice thing about these recurrence equations is that they can be

seen as recurrence equations of marginal generating families. In the two-
variable case the two recurrence equations are valid of course for horizontal
and vertical generating function families.

We still need one important property of multivariate holonomic power
series: If a multivariate formal power series is holonomic, then all sections
of it are, too. The section of G(z) is a power series with fewer variables,
where some of the original variables are fixed to a certain value:

G1,...,s
is+1,...,im

(z1, . . . , zs) =
∑

i1,...,is

ai1,...,imzi1
1 · · · zis

s . (2.38)

Hence, if we find one section that is non-holonomic, then the original
formal power series is also non-holonomic.
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2.3.5 Polytopes

We are utilizing polytopes together with the previously presented generat-
ing polynomials. As we take a product of two multivariate generating poly-
nomials with all terms positive, we get a multivariate polynomial, which
has more terms than the original ones. We are interested only in some co-
efficients of this new polynomial and therefore other terms may not be used
at all. We want to minimize the computational effort and avoid computing
unnecessary terms. Polytopes are multidimensional convex bodies, which
we can use as “cages”: we have to compute all the terms inside a cage, but
none of the outside. In the following we define the problem more rigorously.

Each term of the multivariate generating polynomial can be mapped
into a unique point of the space N

k. For example, if we take a term

axzx1
1 zx2

2 · · · z
xk

k , (2.39)

we can map it by setting the value ax to the point (x1, . . . , xk). Using
this method we can map all the terms of the given multivariate generating
polynomial. The multiplication is defined by the ordinary multidimensional
convolution formula

cy =

y1
∑

x1=0

· · ·
yk
∑

xk=0

ax · by−x, (2.40)

where cy is the coefficient of the product polynomial. Terms ax and by−x

are coefficients of the polynomials to be multiplied. Now the idea is to say
that we need to know only coefficients of integer points (y1, . . . , yk) that
belong to some set S. We can select a multidimensional convex body so
that each of the points in set S is inside the body that we call a polytope.

We have two different ways to describe a polytope [47]. The first one is
to define a convex hull over a finite set of points (V-polytope). The second
method is to define a bounded H-polyhedron, which is called H-polytope.
The H-polyhedron can be defined via an intersection of a finite number of
closed half spaces:

{f1,iy1 + f2,iy2 + · · · + fk,iyk ≤ s | i = 1 . . . r}, (2.41)

where some of the multipliers fj,i may be identically zero and s has some
boundary value. The number of half spaces is some number r. Depending
on the case, either description can be more simple than the other. Also we
need different algorithms depending on which one of the presentations we
choose. We should always select the presentation that leads to a simpler
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algorithm for a given task. In this thesis we use only the half-space descrip-
tion and call the body simply a polytope. An integer lattice is formed by all
integer points inside the given polytope (Figure 2.2). As we already defined
above, these or some set of these are only the points that are relevant to
us.

Figure 2.2: A polytope with the integer lattice.

We are only interested in some coefficients and therefore the general
idea is to do a restricted multiplication of multivariate generating functions
inside polytopes. This reduces the computational effort in our setting.
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Chapter 3

The Multinomial Stochastic

Complexity

In this chapter we show how to compute the stochastic complexity for a sin-
gle multinomial variable. In our setting multinomial variables correspond
with nodes of Bayesian network models. We will see later that we need
the stochastic complexity of these basic components also with more com-
plex models. First we define the multinomial stochastic complexity. Then
we introduce a more general setting for the computation using bivariate
generating functions instead of the previously used single variable gener-
ating function. After that, we will present new methods to compute the
denominator of NML in the multinomial case.

3.1 Definitions

As we saw earlier, stochastic complexity can be computed by taking a
negative logarithm of the normalized maximum likelihood (Theorem 1).
Thus computation reduces to computation of the NML. For those models,
for which we can easily compute the maximum likelihood, also computation
of the numerator is straightforward. We defined the NML numerator of a
single multinomial variable already in (2.6). In the multinomial case it takes
linear time with respect to data size to compute it. We have to go through
the observed data once, because otherwise it is impossible to compute the
relative frequencies exactly. On the other hand, if the relative frequencies
are given, the task is trivial.

Later on, we use the term sufficient statistics [9], when we are refer-
ring to the relative frequencies. Thus, relative frequencies contain all the
relevant information from the observed data that is needed to fix all free

23
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24 3 The Multinomial Stochastic Complexity

parameters of a parametric model uniquely. Sufficient statistics can be seen
as the original data packed losslessly with respect to a model family. In
this thesis we adopt the convention where a model structure (which defines
the number of parameters and their meaning) is called (parametric) model,
and for us a model family is a set of model structures — e.g. all Bayesian
trees.

Now we are ready to define the NML denominator, which is much harder
to compute than the previously presented numerator. The denominator
(the normalizing constant or the multinomial normalizing sum) is

CMN (L, n) =
∑

h1+···+hL=n

n!

h1! · · ·hL!

L
∏

k=1

(

hk

n

)hk

, (3.1)

where L is the number of values of the variable and n is the size of observed
data [22]. The multinomial model family is denoted by the subscript MN .
Using the definition directly, we need to compute a sum of O(nL) terms.
This can be easily reduced to O(nL−1) using a simple parameter substitu-
tion trick that can be seen more easily from the most common definition
of the binomial normalizing sum:

CMN (2, n) =

n
∑

k=0

(

n

k

)(

k

n

)k (n− k

n

)n−k

, (3.2)

where h1 = k and h2 = n − k. One of the sums is in fact redundant,
because of the requirement that all the counts hi sum to n. Notice that
the binomial normalizing sum is actually a somewhat misleading name,
albeit a very convenient one: we should be talking about binary variable
normalizing sums as we are computing the maximum likelihood for binary
variables, not for the variables that define binomial distributions. However,
the sum is exactly the same for both cases and the binomial normalizing
sum is not as cumbersome to use as the binary variable normalizing sum,
therefore we are using the word ’binomial’.

Next we are going to discuss recurrence formulas for computing the
desired sum CMN (L, n). After that we tackle the efficient presentation for
the sum and show some useful properties of it. Finally we concretize the
results by giving algorithms and computation methods.

3.2 Recurrence Formulas

We start by introducing generating functions that can be used for deriving
new results for the computation of the denominator. This idea itself is
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3.2 Recurrence Formulas 25

not new, as the best existing results [19, 20, 43] have been derived using a
generating function that we define later. However, in this thesis we define
a more general setting — the bivariate generating function, which provides
new results.

Definition 6 The bivariate generating function for computing the multi-
nomial normalizing sums is

f(z, u) =
∞
∑

L=0

∞
∑

n=0

CMN (L, n)nn zn

n!
uL =

T (z)− 1

T (z)− 1 + u
, (3.3)

where T (z) is a tree function.

The right-hand side is only seemingly closed form, because the definition
of the tree function [19] is

T (z) =
∞
∑

n=1

nn−1 zn

n!
(3.4)

and it has no closed form. It also has a very simple connection to Lambert’s
W function [6] from physics: T (z) = −W (−z). Using this bivariate gen-
erating function we can compute the previously presented horizontal and
vertical generating function families.

The one-parametric vertical generating function family is previously
known. Some of the previous authors simply use the name generating
function for the whole family [23]. The family is defined by

f 〈L〉(z) =
∞
∑

n=0

CMN (L, n)nn zn

n!
=

(

1

1− T (z)

)L

(3.5)

with free parameter L. There are many highly useful results that can be
derived using this closed form.

The one-parametric horizontal generating function family is previously
unknown, although there is for example a simple recurrence formula over
the coefficients.

Theorem 3.1 The horizontal generating function family for the multino-
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mial normalizing sum with the free parameter n is of the form

f0(u) =
1

1− u
and (3.6)

fn(u) =

∞
∑

L=0

CMN (L, n)nnuL (3.7)

= nnu

(

1 +

(

u

1− u

) n
∑

L=0

n!

nL(1− u)L(n− L)!

)

. (3.8)

The (closed) form may look awkward, but if we fix n and expand, we get
rational generating functions (Paper 3). This means that we have functions
with a finite representation unlike in the vertical case.

Let us look at computational issues. We have three different presen-
tations: the bivariate generating function, the horizontal family and the
vertical family. Any of these presentations can be used to compute the
desired CMN (L, n) and we want to use those that lead us to the most ef-
ficient solution or solutions. Furthermore, with more complex models, we
usually start by computing the table of CMN (L, n) all the way to some fixed
L and n. Hence, with practical models it is not enough to compute just
one normalizing sum. This kind of problems are commonly solved with
dynamic programming. We need two recurrence formulas: one going over
L (horizontal family) and the other going over n (vertical family). For this
purpose, there must be the corresponding recurrence equations.

There is a well-known recurrence formula over L, and many experimen-
tal model selection applications are already using it. This formula [16, 20],
in the form of a homogeneous linear recurrence equation, is

(L− 2)CMN (L, n) + (2−L)CMN (L− 1, n) + (−n)CMN (L− 2, n) = 0 (3.9)

and it is valid for all L ≥ 0 and a for fixed data size n > 0. The equa-
tion also works for the case n = 0, because the second term goes to zero
and CMN (L, 0) = 1 for all L. This same equation is valid for the whole
horizontal family. When used as a recurrence formula, it needs two initial
values at the beginning: CMN (1, n) = 1 for all n and the other value can be
computed using for example (3.2). The formula can be proven using rather
simple calculus of the one-parametric generating function family (vertical
family) [20].

There exists also a standard way to construct a recurrence formula for
a given rational generating function. The particular form of our rational
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generating functions gives another recurrence equation (Paper 3):

n+1
∑

j=0

(

n + 1

j

)

(−1)jCMN (L− j, n) = 0. (3.10)

We can write this using the backward difference operator ∇. Defining
∇LCMN (L, n) = CMN (L, n)− CMN (L− 1, n), the previous recurrence gets
form

(∇L)n+1CMN (L, n) = 0, (3.11)

where (∇L)n+1 means applying the operator n + 1 times with respect to
variable L.

Notice that the number of terms in this recurrence is depending on data
size n, which means that the recurrence is not related to the family, but
to single members of the horizontal family. However, the recurrence seems
to have a very pleasant property: we can always leap over any constant
number of terms and the recurrence is still valid. Thus, CMN (L− j, n) can
be replaced with CMN (L − b · j, n), where b is a positive non-zero integer
value. Using this property, we can utilize an increasing leap size and this
way compute the multinomial normalizing sum for arbitrary large values of
L. Although this kind of an algorithm does not seem to have any obvious
practical use, it still reveals something that may be valuable in the future.

What about the recurrence equation over n? For the vertical family as
a whole, not a single solution has been found so far. In fact, there has not
been found a good solution for single members of the family either. Knuth
and Pittel have presented one interesting recurrence formula in [19], but
the formula needs all the previous normalizing terms (over n) to compute
the next one, which makes it useless. The formula also changes parameter
L to L − 2 in the same time and therefore it does not correspond to the
recurrence we are looking for. We showed in Paper 3 that the bivariate
generating function is non-holonomic, because it has a non-holonomic sec-
tion f 〈1〉(z). Therefore, there cannot be a linear homogeneous recurrence
formula for the vertical family. Otherwise the bivariate generating func-
tion would be holonomic as well as the non-holonomic section. We also
argued that because we do not have a linear homogeneous recurrence for
the sequence CMN (L, n)nn, a recurrence cannot exist for the sequence of
CMN (L, n) over n either. This argument, however, later appeared to be
incorrect. Let us look at

∞
∑

n=0

∞
∑

L=0

A(L, n)nn zn

n!
uL, (3.12)



i

i

“book” — 2009/11/10 — 15:20 — page 28 — #38
i

i

i

i

i

i
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where A(L, n) = 1 for all n and L. Now each vertical generating func-
tion is equal to f 〈1〉(z). However, A(L, n) satisfies the homogeneous linear
recurrence equation

A(L, n)−A(L, n− 1) = 0. (3.13)

Here we selected A(L, n) to be a constant, but for example the function
(L− 1)n + 1 could have been used as well. For setting L = 1, we find our
known non-holonomic section. However, this function has the second order
homogeneous linear recurrences for the both families.

The practical side of the non-holonomicity results is that automatic
algorithms that are using the vertical generating function family, the bi-
variate generating function or the corresponding sequences of these, cannot
find a homogeneous linear recurrence. However, such a recurrence for the
sequence of CMN (L, n) over n has not been found by any of the tested algo-
rithms either. Notice also that discrete convolution is done over sequences
that are known to be non-holonomic and nothing gets cancelled. These
observations strongly suggest that there may not exist such a recurrence.

3.3 Properties of the Normalizing Sum

Our task is usually to compute a table of normalizing sums (as mentioned
before), but there has not been found any efficient recurrences over n. Let us
start from a different view: how to compute each CMN (L, n) as efficiently as
possible without a recurrence. The whole table can be computed obviously
in time O(n2 +nL), by computing the binomial normalizing sums first and
then using the linear recurrence formula over L. If we want to compute
just one normalizing sum, it takes time O(n + L). This is the quantity
that we are trying to make as small as possible. Using an asymptotic
approximation formula [23], we can achieve time complexity O(nL) for
computing the whole table as each term CMN (L, n) takes only a constant
time to compute. This base line is our unreachable lower bound also for
the exact computation methods.

The first representation for the multinomial normalizing sum can be
derived using the vertical generating function family. The function family
can be interpreted to be a composite function. For this composite function
we apply the Lagrange inversion and binomial convolution formulas, which
gives as a result the following theorem (Paper 1):
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Theorem 3.2 The multinomial normalizing sum can be written as

CMN (L, n) =
n
∑

k=0

(

n

k

)

(L− 1)k

nk
, (3.14)

where n ≥ 1, L ≥ 1 and n,L ∈ N.

This theorem practically says that as we are just interested in positive inte-
ger points of the normalizing sum, then the computation formula simplifies
a great deal. This new form consists of only one sum and the rising facto-
rial notation hides one product. An almost similar-looking, but less optimal
form for our purposes, can be derived using the previously mentioned um-
bral calculus. The idea is to notice that the vertical generating function
family is a composition of two functions that are associated sequence form.
Then the second form can be found using the umbral composition formula
(Paper 1).

We can also represent the formula in Theorem 3.2 in another way using
confluent hypergeometric functions (Paper 1):

Theorem 3.3 A hypergeometric presentation for the multinomial normal-
izing sum is

CMN (L, n) = 2F0

(

L− 1,−n
—

∣

∣

∣

∣

− 1

n

)

. (3.15)

The hypergeometric form can be interpreted to be function 2F0 with pa-
rameters L−1 and −n evaluated at the point − 1

n . Thus each function with
the fixed integer parameters gives a value of the normalizing sum only in
one point (Figure 3.1). Although hypergeometric functions are presented
via infinite sums, the parameter −n causes each sum to consist only of n+1
terms and all the other terms are equal to zero.

The normalizing sum (3.15) has terms that can be written in the form

mk =
(L− 1)k

k!
· n

k

nk
(3.16)

and if L = 2, then (2− 1)k = 1k = k! and the first part disappears (Paper
2). We denote the terms of this more simple case by bk. A closer look at
these terms reveals that in the two-valued case the sequence of the terms
go rapidly to zero. This can be seen for example in the ratio of successive
terms:

bk

bk−1
=

n− k + 1

n
. (3.17)
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Figure 3.1: The solid line gives the values of binomial sums and dotted lines
are hypergeometric functions. The x-axis goes over n instead of − 1

n
for achieving

better separation between curves.

As double precision floating-point numbers can only present arbitrary
values by finite precision, a question arises: how many terms of the finite
sum are needed to get a result with a given precision? We defined precision
and the problem in a rigorous way in Paper 2, but here we only mention the
main results. After some mathematical analysis, in which we did not use
the Szpankowski approximation (explained in Section 3.4) due to analytical
complexity, we got the answer:

Theorem 3.4 Given precision in digits d and data size n, the index t of the

last needed term for the binomial case is
⌈

2 +
√

−2n ln(2 · 10−d − 100−d)
⌉

.

This is an upper-bound approximation, which means that if we sum t + 1
first terms, we can be sure that we achieve the wanted precision. The
approximation also seems to be reasonably tight as presented in Paper 2
(Figure 3.2). In fact, although minor changes to the proof would give even
a tighter bound, these changes would not cause any noticeable effect in
practice. The main consequence of this result is the observation that the
required number of terms to achieve the precision d is O(

√
dn). This means

that with reasonable data sizes we always need only a sub-linear number of
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terms. However, if n is very small and d is large, n terms are still needed,
because all the terms affect the result.

Next we take a closer look at a more complicated multinomial case. The

 0
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 9000

 0  200000  400000  600000  800000  1e+06

rig
ht

 b
ou

nd

data size

Figure 3.2: Terms needed for 16 (above) and 7 digit precisions with given data
size. Actual approximations are shown as a thick solid line. Thin dotted lines
represent optimal index values.

ratio of successive terms in the multinomial case is

mk

mk−1
=

(n− k + 1)(k + L− 2)

nk
, (3.18)

and it looks more complex than the binomial ratio. The terms mk are first
getting bigger instead of getting smaller as the terms bk. However, as in
Figure 3.3, we can plot the multinomial terms and it can be easily seen
that they form a unimodal function (Theorem 2 in Paper 2). The peak is
moving to the right, if L has bigger values. Thus we can interpret that in
the binomial case, the peak is located at k = 0, because the first term is the
biggest one. This behavior implicates that in the multinomial case there is
an interval of indices of terms, which we have to compute in order to achieve
certain precision d. However we have also the very efficient recurrence
equation (3.9) that can be used for computing multinomial normalizing
sums if the binomial sums are known. In fact, this recurrence method can be
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easily seen to be a more efficient way to compute multinomial normalizing
sums than the direct ratio method using (3.18). Although deriving the left
and right index bounds for the multinomial case might produce nice proofs,
we gain no increase in computational efficiency and therefore we did not
try to prove these bounds.

Now we are ready to collect all the observations and present efficient
algorithms based on them.

k
0 1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000

Value

0

0,2

0,4

0,6

0,8

1,0

Figure 3.3: The first 8000 terms of the trinomial (left) and the scaled 15-nomial
(right) normalizing sums when data size (n) is one million.

3.4 Efficient Computation and Algorithms

We will present two different type of algorithms that compute multinomial
normalizing sums: efficient computation methods that give exact rational
number answers and algorithms that give floating-point answers. The first
type of methods are used for research purposes, because in the latter type
of methods, we have to know the correct answers. The latter type is much
faster and is used in model selection tasks.

We can compute rational number solutions easily using standard mathe-
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matical software packages — for example Maple (Paper 1). Let the number
of data points be 100 and the number of bins (number of the values of the
multinomial variable) be 4. The exact value of the multinomial normalizing
sum can be computed in this case by writing

simplify(subs([L=4,n=100],hypergeom([L-1,-n],[],-1/n)));

and also the floating-point solution can be achieved by replacing the com-
mand simplify with the command evalf.

Usually the stochastic complexity criterion is coded using some pro-
gramming language as a part of a model selection software. In this case
the following sub-linear scheme for computing the denominator of the NML
should be utilized:

ComputeC_MN(d,n,L){

sum=1; b=1;

t=2+ceiling(sqrt(2*n*(-(log(2)-d*log(10))

-log(1-exp(-d*log(100)+d*log(10)-log(2))))));

for k from 1 to t{

b=(n-k+1)/n*b;

sum=sum+b;

}

sum_old=1;

for k from 3 to L{

sum_new=sum+n/(L-2)*sum_old;

sum_old=sum;

sum=sum_new;

}

return sum;

}

Computation of the index t differs from the formula in Theorem 3.3. The
reason is that direct usage of the formula causes some underflows and to
avoid this we need to modify the formula using logarithmic tricks. The
achieved time complexity for computing an (n × L)-table of normalizing
terms is now O(n3/2

√
d + nL) against previous O(n2 + nL).
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The same algorithmic ratio method can also be used for computing
exact rational number solutions: we can just sum all n + 1 terms instead
of t + 1 terms. Also the floating-point operations must be overloaded with
rational number operations. The time complexity of the algorithm rises
quite high as these new operations are applied.

The simple algorithm does not fulfill requirements of scientific comput-
ing in the floating-point case, because the presented elementary operations
make some floating-point errors and therefore the theoretical precision is
not achieved. However, in Paper 2 we empirically showed that the total
resulting error is not very significant and therefore in practice the simple
code can be utilized. There is a very simple method to achieve precision
d: we should use higher precision floating-point numbers and cut the tail
digits. Empirically it seems that even for the data size of 1012, with the
double precision floating-point numbers it is enough to cut about the 6 last
digits. The exact analysis confirming previous empirical results should be
done in the future. A very interesting open question is how many digits
we actually need in order to make the required difference between different
models of some model family. The answer could be utilized to optimize the
performance of a searching algorithm in a model selection task.

If the number of data points is very high and we need to compute a table
of normalizing sums, even the sub-linear algorithm can be too slow. In this
case we can use the previously known asymptotic approximation that was
already mentioned in the beginning of the previous section. The asymptotic
approximation is originally a result derived to compute the minimax redun-
dancy of memoryless sources by Szpankowski [43]. A memoryless source
generates a new data point each time without using information of previous
generated points. However, this approximation happens to be the same as
the logarithm of normalizing sums. The approximation is very good even
with moderate data sizes, but still the requirements of scientific computing
are not fulfilled. The given precision cannot be chosen or guaranteed even
in theory. As we will see later, with more complicated models we have
to use the discrete convolution formula over sequences of multinomial nor-
malizing sums. This kind of operations will cause errors to cumulate and
therefore usage of this approximation would give unpredictable results.

3.5 Connection to the Birthday Problem

The multinomial normalizing sum has a connection to the birthday prob-
lem. The birthday problem can be seen as a process, where we take a new
person at each step and look at his or hers birthday and compare birthdays
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of persons picked at preceding steps [10]. The process stops if two persons
have the same birthday. Now we can set a question: How many people on
average do we need so that at least two of them have the same birthday?
Let n be a number of possible labels. In the classical setting n is set to 365
and each label corresponds to one day of the year. The probability that
the process ends at step k is

P (n)(X = k) =
(k − 1)nk−1

nk
. (3.19)

An intuitive explanation of the numerator can be seen as choosing k −
1 distinct birthdays and when you pick the kth person, you have k − 1
possibilities to hit an already selected one. Now we get the answer to the
presented question by calculating the expectation

E(n)(X) =
n+1
∑

k=2

kP (n)(X = k). (3.20)

In the classical case we have E(365)(X) ≈ 24.6166. The answer is counter-
intuitive and that is why this problem is also known as the birthday para-
dox. There is a cryptographic attack method called birthday attack [28],
which uses the mentioned property. The method can be used for a digital
signature forgery. The basic idea is to replace a legitimate message with a
fraudulent message by doing minor modifications to both messages so that
the digital signatures of both messages coincide. This way the legitimate
message can be changed later to the fraudulent message. The birthday
paradox causes matching signatures to be easier to find than what the
intuition says.

We can compute (3.20) also by using a binomial normalizing sum. In
fact, there is one-to-one correspondence (Paper 1):

E(n)(X) = CMN (2, n). (3.21)

This immediately raises the question about an equivalent pair for the multi-
nomial normalizing sum. We need to define a new concept first: The rising
factorial moments. For the birthday problem these are

E(n)(Xm) = E(n)(X(X + 1) · · · (X + m− 1)) (3.22)

and the sought relationship between the multinomial normalizing sums and
these can be written as

E(n)(Xm) = m!CMN (m + 1, n). (3.23)
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Using this equation and the results for normalizing sums, we can write
trivial results for computing the rising factorial moments for the birthday
problem (Paper 1). There might also be some methods or results developed
for the birthday problem framework that can be useful in our side. An
especially interesting question is whether there are connections between
normalizing sums for trees and application areas of the birthday problem.
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Chapter 4

Stochastic Complexity of Naive

Bayes Models

In this chapter we propose a general framework for computing the normal-
izing sums for Naive Bayes models. We also present recurrence formulas
that can be used for the computation.

4.1 Definitions

Naive Bayes models can be utilized in prediction, classification and clus-
tering tasks. We already introduced this model class in Chapter 2.2 and
also showed how to compute the maximum likelihood for it. Now we focus
on the computation of the NML normalizing sum in this case. The origi-
nal formula is not shown here, because it is relatively complicated and not
easily interpretable. We present the Naive Bayes generating function here
without proving it. The first part of the proof can be found in [22] and the
second part is in Paper 4.

Definition 7 The basic series for the Naive Bayes model is of the form

E =
∞
∑

n=0

CMN (K1, n) · · · CMN (Km, n)nn zn

n!
, (4.1)

where the terms CMN (·, ·) are the multinomial normalizing sums of the cor-
responding predictor variables and by Ki we denote the number of values
(bins) of the ith predictor variable.

Raising the basic series to some power L, where L is the number of values
of the class (root) variable, we get a power form of the sought exponential
generating function. By expanding this form we have

37
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38 4 Stochastic Complexity of Naive Bayes Models

EL =

(

∞
∑

n=0

CMN (K1, n) · · · CMN (Km, n)nn zn

n!

)L

(4.2)

=
∞
∑

n=0

CNB(L,K1, . . . ,Km, n)nn zn

n!
, (4.3)

where the Naive Bayes normalizing sum is denoted by CNB(). Thus in the
basic series L = 1 and this corresponds to Naive Bayes models, where the
class variable has only one value.

Let us take a closer look at Formulas (4.2) and (4.3). If we write the
multinomial generating function in the same form, we have

(

∞
∑

n=0

nn zn

n!

)L

=
∞
∑

n=0

CMN (L, n)nn zn

n!
. (4.4)

These two forms look quite similar. However, in the Naive Bayes case we
do have a product of multinomial sums in the coefficients. The expansion
in both cases can be made using convolution formulas the way we described
in Section 2.3.1.

4.2 Recurrence Formulas

In the multinomial case there exist many efficient computation methods for
computing normalizing sums. The Naive Bayes case seems to be compu-
tationally more complex than the multinomial case, and despite research
efforts useful sub-quadratic time recurrence methods are still missing. It
is not known, for example, whether there exists any recurrence formula for
the ’horizontal’ generating function family. Actually in the Naive Bayes
case there is no natural horizontal generating function, because the model
has more than two parameters. We still choose to call a generating func-
tion that goes over L a horizontal generating function, because it seems to
have the same kind of qualities with the horizontal generating function in
the multinomial case. However, there exist two recurrence formulas: in the
following we first present a modification to the known recurrence method
and derive a new recurrence that can be very effective in a certain case.

There is a known recurrence method for computing the normalizing
sum for Naive Bayes models [22]. A similar formula also applies in the
multinomial case. This suggests that in fact this method is just based on
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4.2 Recurrence Formulas 39

utilization of the exponential convolution formula. For the Naive Bayes the
recurrence is of form

CNB(L,K1, . . . ,Km, n) =

n
∑

k=0

(

n

k

)(

k

n

)k (n− k

n

)n−k

· CNB(L∗,K1, . . . ,Km, k) CNB(L− L∗,K1, . . . ,Km, n− k). (4.5)

This is just a modified exponential convolution formula for two basic series
raised to powers L∗ and L − L∗. The two extra terms after the bino-
mial multiplier are related to removal of the multiplying term nn, which
is present in the basic series coefficients. The recurrence above gives us a
new normalizing sum when given two normalizing sums. However, if we use
this formula, we unnecessarily compute extra terms that cancel nn terms
all the time. For the sake of efficiency, we should use the Naive Bayes basic
series and the discrete convolution formula (2.14) for computation. When
the needed term is computed, we can cancel the term nn

n! by multiplying
and get the corresponding normalizing sum.

It appears that there may exist yet another recurrence (Paper 3) similar
to (3.11):

(∇L)n+1CNB(L,K1, . . . ,Km, n) = 0. (4.6)

This claim is however purely based on empirical tests, and we have not
mathematically derived the horizontal generating functions for Naive Bayes
models. If the claim is true, it means that the denominators of the gener-
ating functions (closed form) must be identical to the horizontal generating
functions in the multinomial case. In fact these generating functions can be
easily found using the Maple software: First compute the initial values for
the recurrence and suppose that recurrence applies. Then use the Maple
command rectodiffeq and after that solve the resulting equation.

What is most interesting is that a similar kind of recurrence is not valid
only for the root variable, but it seems to work also for the leaf variables.
In this case it takes the form

(∇Ki
)n+1CNB(L,K1, . . . ,Ki, . . . ,Km, n) = 0. (4.7)

Both of these recurrences also allow us to jump over fixed and equal sized
intervals. For example we can satisfy recurrence equations just by taking
every third coefficient. The undesired fact is that when using these re-
currence formulas, we need to compute initial values proportional to data
size. However, usually in practical applications the number of data vectors
is greater than the number values of a variable. This observation suggests
that the formulas cannot be applied directly to make the computation more
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40 4 Stochastic Complexity of Naive Bayes Models

efficient. However, the formulas suggest that there are some unknown prop-
erties that need to be examined more closely.

4.3 Efficient Computation and Algorithms

We start by first introducing a method for exact computation in the Naive
Bayes case (Paper 1). Writing the power form of the generating function
(4.2) using Maple notation, we get the first one hundred terms by writing

simplify(series((1+sum(hypergeom([3,-n],[],-1/n)

*hypergeom([4,-n],[],-1/n)*n**n/n!

*z**n,n=1..infinity))**2,z,101));

Here we have two predictor variables with 4 and 5 values and a binary
class variable. The size of data is up to 100 data vectors. The first term is
separated from the series and replaced according to the definition with the
value 1, as otherwise we would be dividing with zero.

The computation can be done also by coding the idea presented by the
previous Maple command line using some programming language. The fol-
lowing general scheme (Paper 4) can be used for computing the normalizing
sum:

1. Compute a table of multinomial terms. The size of the table
is (n + 1) × (maxi Ki). Use with floating-point numbers the
algorithm ComputeC MN (or equivalent) with a modification
that it saves during one pass the multinomial normalizing
sums for all L = 1, . . . ,maxi Ki.

With rational numbers the same algorithm can be applied,
but t is obsolete and must be replaced with n in the loop.

2. Compute the coefficients of a Naive Bayes basic series.

3. Use some algorithm to raise the basic series to the power of
L.

4. Extract the normalizing sums from the formal power series
coefficients by multiplying the kth coefficient by k!

kk .

The most time-consuming part of this algorithm is phase 3. One candi-
date algorithm for this phase is a method called the Miller formula [15]. If
we use this formula, we need to do only O(n2) multiplications when raising
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4.3 Efficient Computation and Algorithms 41

a truncated formal power series to an exponent (a positive real number).
Thus the number of multiplications does not depend on an exponent. This
is quite an amazing result, since the operational cost is the same whether
we take a product of a basic series by itself or raise the basic series to the
power of 106. This Miller formula can be formalized in the form of the
following proposition [18].

Proposition 4.1 (The Miller formula) If two formal power series are
V (z) = 1 +

∑∞
k=1 vkz

k and W (z) =
∑∞

k=0 wkz
k and W (z) = (V (z))α,

α ∈ R, then w0 = 1 and wn =
∑n

k=1

(

(α+1
n )k − 1

)

vkwn−k.

This formula can be utilized only when computing exact solutions using
rational numbers, because with floating-point numbers and almost with
all Naive Bayes structures the Miller method seems to be unstable (Paper
4). There may exist some stable algorithm, that does phase 3 in O(n2)
multiplications also in the floating-point case, but we are not aware of
such an algorithm. The fastest stable method that we know is the normal
sequential multiplication method using the discrete convolution formula.
Notice that instead of O(L) series multiplications we need only O(log2 L)
series multiplications, if we use sub-results, as we already mentioned in
Section 2.3.1. This of course means that the total number of multiplications
is O(n2 log2 L).
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Chapter 5

Stochastic Complexity of Bayesian

Forests

In this chapter we will show how to compute the normalizing sums for
Bayesian forests (the stochastic complexity was defined by (2.4) and the
numerator of (2.3) for the Bayesian forests was introduced in Chapter 2.2).
The task is much harder than in the multinomial or Naive Bayes cases. In
the previous cases the generating functions and power forms were known.
Now we do not have the generating function, but we have to mainly do
computation over all valid sufficient statistics and to use generating poly-
nomials.

First we start by defining the problem, then we motivate and give in-
sight on how to solve the computational problem and finally we present an
algorithm for the task. There is also some discussion about accelerating
the computation using various computational tricks.

5.1 Definitions

We present the values of sufficient statistics as k-compositions and k-
partitions (Paper 5)[45]. A k-composition is a partition of a positive inte-
ger n into k bins (k non-negative integers that sum up to n). For example
(7, 3, 1), (2, 6, 3) and (0, 0, 11) are 3-compositions of 11. On the other hand,
if the ordering of bins does not matter, we are actually talking about k-
partitions. All 3-compositions of 2 are (2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0),
(1, 0, 1) and (0, 1, 1), but there are only two 3-partitions of 2: (2, 0, 0)
and (1, 1, 0). Thus the number of k-compositions is a magnitude of k-
factorial more than the number of k-partitions. For a given k-partition

42
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5.1 Definitions 43

x = (x1, . . . , xk), the corresponding number of k-compositions is given by

m(x) =
k!

∏

w∈x µw(x)!
, (5.1)

where µw(x) = |u : xu = w| tells us how many times a value w appears in
a k-partition x [29]. For example for a 5-partition (3, 3, 2, 2, 0) there exists

5!
2!2!1! = 30 5-compositions, because there are 2 twos and 2 threes and 1
zero.

After these definitions we can define the problem-specific c()-function
as in Paper 5. We rewrite the definition of the multinomial normalizing
sum (3.1) in a new way:

CMN (k, n) =
∑

x1+···+xk=n

c((x1, . . . , xk)), (5.2)

where the sum goes over the set of all k-compositions of data size n. Notice
that k is equal to the previously mentioned L, but as k-compositions is the
generally used term, we shall from now on use k instead of L. An exact
formula for the c-function is

c((x1, . . . , xk)) =
(
∑k

i=1 xi)!
∏k

i=1(xi!)

k
∏

j=1

(

xj
∑k

i=1 xi

)xj

. (5.3)

Next we define a conditional version of c-function and for a while we talk
about splittings — without defining whether they are k-compositions or
k-partitions. An intuition behind this function is that the data is already
split in k bins and we want to compute a c-function value of new splitting
given the present one. Hence, the unconditional c-function can be written
as c((x1, . . . , xk) | (n)) = c((x1, . . . , xk)), which means that originally all
data are in the same bin. The conditional c-function is

c((x1, . . . , xk)|(y1, . . . , yl)) =
∑

Z∈Z

l
∏

i=1

c(z1i, . . . , zki), (5.4)

where Z is a matrix with marginals (x1, . . . , xk) and (y1, . . . , yl), and the
terms zij are elements of a matrix Z. All elements are non-negative integer
values. Set Z is the set of those matrices Z which satisfy the given marginals
(row and column sums):

Z =







z11 · · · z1l
...

. . .
...

zk1 · · · zkl







x1
...

xk

y1 · · · yl
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44 5 Stochastic Complexity of Bayesian Forests

The product of c-functions in (5.4) corresponds to one valid path from the
present composition to a new composition. Each c-function of the product
corresponds splitting the data from one of the present bins to new bins (bin
by bin). The sum outside collects all possible independent paths (Figure
5.1).

5 3 3 3

7 4 3

7

3

4

* *

**

+ + + + ...

c((3,2,2,0))

c((1,1,0,2))

c((1,0,1,1))

c((5,2,0,0))

c((0,1,3,0))

c((0,0,0,3))

+

Figure 5.1: Visualization of (5.4) with a couple of example paths. Data size is
14.

5.2 Intuition behind the Algorithm

Let us start with an example tree T , whose structure is (B ← A→ C → D).
We also consider first only k-compositions, because they are simpler to
handle. The normalizing sum for the given tree T is

CF (T ) =
∑

t

∑

s

∑

u

∑

v

c(fA
t )c(fB

u |fA
t )c(fC

s |fA
t )c(fD

v |fC
s ), (5.5)

where fX
i is the ith k-composition of variable X. Notice that the given

notation hides the data size n and the number of bins k. The sums go
over all possible sufficient data of each variable — all the k-compositions.
The items of the formula compose like probabilities to unconditional and
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5.3 Computation and Algorithm 45

conditional terms. Conditional c-functions are taking the parent node’s
l-composition and turning it into the target node’s k-composition.

We get more efficient computation by rearranging the sum formula
above. First we can make the observation that

∑

u

c(fB
u |fA

t ) =

l
∏

i=1

CMN (k, yi), (5.6)

where yi is the number of data points in the ith bin of the parent variable A,
which has l bins. The result comes from the fact that we have l bins to split
and we can do these independently, as we do not have any fixed target k-
composition. Therefore the result corresponds to a product of multinomial
normalizing sums. We use a shorthand notation

∨

fX = (x1, . . . , xk)1 ∨
· · · ∨ (x1, . . . , xk)b, where b is a number of k-compositions of n. The symbol
∨

means that we accept any valid sufficient statistics for node X. Now
(5.6) has the form

c(
∨

fB|fA
t ). (5.7)

Using this we can write

∑

t

c(fA
t )c(

∨

fB|fA
t )
∑

s

c(fC
s |fA

t )c(
∨

fD|fC
s ), (5.8)

where s is the index over node A compositions and t is the index over node
C compositions. So far we have only used k-compositions, but we can easily
say that the sums go over indexes of k-partitions. In this case we have to
multiply c-functions by the previously presented m-functions. For example

CMN (k, n) =
∑

i

c(fX
i ) =

∑

j

m(qX
j )c(qX

j ), (5.9)

where i goes over k-compositions of X and j goes over k-partitions of X.
The latter sum of course has less terms. Now (5.8) can be written using the
matrix form and the previous modification as CF (T ) = RA(LA

B⊙(MA
C LC

D)),
where ⊙ is the term-wise product (Hadamard product) between matrix
elements, R is a horizontal root node vector, M is an inner node matrix
and L is a vertical leaf node vector (Paper 5). We shall present these
components and operations in the next section.

5.3 Computation and Algorithm

Let X be the name of a node and Y be the name of its parent. Node X
has k values and node Y has l values. We also assume that node X has p
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46 5 Stochastic Complexity of Bayesian Forests

k-partitions and node Y has d l-partitions. The root node component is

RX =
[

m(qX
1 ) · c(qX

1 ) · · · m(qX
p ) · c(qX

p )
]

, (5.10)

the inner node component is of the form

MY
X =







m(qX
1 ) · c(qX

1 |qY
1 ) · · · m(qX

p ) · c(qX
p |qY

1 )
...

. . .
...

m(qX
1 ) · c(qX

1 |qY
d ) · · · m(qX

p ) · c(qX
p |qY

d )






(5.11)

and the leaf node component is

LY
X =







∑p
i=1 m(qX

i ) · c(qX
i |qY

1 )
...

∑p
i=1 m(qX

i ) · c(qX
i |qY

d )






. (5.12)

The root node component is trivial to compute using the definition. The
leaf node component is easy to compute using observations (5.6) and (5.9).
The hard part is the inner node component, but we leave further discussion
on this topic until the next section.

After the components have been computed for nodes of the given forest,
we can compute the normalizing sum of the forest doing simply a matrix
computation. The computation is started from the leaf components and
continues level-wise until we end up at the root nodes. The operation
between siblings is the term-wise product and between a parent and a
child the normal matrix multiplication. The operation between root nodes
(trees) is also the term-wise product as we can interpret them to be siblings
without a parent (Figure 5.3). For example the normalizing sum for the
forest S=(B ← A → C → D, E → F ) with two trees, can be written
as CF (S) = (RA(LA

B ⊙ (MA
C LC

D))) ⊙ (RELE
F ). A pseudo-code for the basic

algorithm is given as Algorithm 5.2.
As the computation is done from leaves to roots, the heaviest operations

are matrix-vector-multiplications, which can be performed in quadratic
time. The result of this operation is a vector and therefore also the next
operation is at most a matrix-vector-multiplication. Notice that the sizes
of the matrices are determined by the number of k- and l-partitions. A
real computational obstacle is still the computation time of the inner node
matrices — the topic, which we will discuss next.

5.4 Computation of Inner Node Matrices

The definition of the inner node matrix does not really show us how to com-
pute it efficiently. The first observation is that if we remove the m-functions,
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5.4 Computation of Inner Node Matrices 47

ComputeNormalizingTerm(bayesforest){

ComputeRootVectors(bayesforest);

ComputeLeafVectors(bayesforest);

ComputeInnerMatrices(bayesforest);

foreach(tree){

go through all nodes level-by-level starting from leaves{

case: the node X is a leaf node{

set corresponding leaf vector L to the leaf node X;

}

case: the node X is an inner node{

V <- take the termwise product of already computed

child vectors of the node X;

W <- multiply corresponding inner matrix M with the product vector V;

set the result vector W to the inner node X;

}

case: the node X is a root node{

V <- take the termwise product of already computed

child vectors of the node X;

w <- multiply corresponding root vector R with the product vector V;

set value of the tree normalizing sum (w) to the root node X;

}

}

}

return(the product of tree normalizing sums (all w values) in root nodes);

}

Algorithm 5.2: A pseudo-code for computing the normalizing sum for a
forest.

all the inner node matrices are actually sections of a bigger general matrix,
which we call the core inner node matrix (Paper 5). Later we simply say
the core matrix.

First we have to fix the right ordering among partitions so that every
matrix (and vector) has partitions in the same order. Otherwise sections
consist only of arbitrary k-partitions and also multiplication operations
compute arbitrary things. We choose the ordering to be the following:
first, order k-partitions into blocks with respect to the number of zero bins
(starting with the maximum number of zeros). It means that partitions
in each block have the same number of zero bins. Then order each block
according to the inverse lexicographic ordering.

The core matrix has to consist of all terms c(qi | qj) that are needed
for computation at any node in the corresponding forest. We define the



i

i

“book” — 2009/11/10 — 15:20 — page 48 — #58
i

i

i

i

i

i
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A

B C

D

E

F

* *

*

*

— ⊙ —

— ⊙ —

Figure 5.3: The operation between a parent and a child is the ordinary
matrix multiplication (*) and between siblings the term-wise product (⊙).

general form of the core matrix to be

CM =







c(q
max(X)
1 |qmax(Y )

1 ) · · · c(q
max(X)
P |qmax(Y )

1 )
...

. . .
...

c(q
max(X)
1 |qmax(Y )

D ) · · · c(q
max(X)
P |qmax(Y )

D )






, (5.13)

where q
max(X)
i and q

max(Y )
j are K- and L-partitions. Value D is the number

of L-partitions, where L is the maximum number of values that any inner
node’s parent has in the forest and P is the number of K-partitions, whereK
is the maximum number of values any inner node has in the forest. The idea
is now to take one by one all the needed sections of this matrix (Figure 5.4)
and multiply every matrix element by its corresponding m-function value.
In this way every inner node matrix can be achieved efficiently and there
is no need to compute the same elements several times. There still remains
one question: how to compute the core matrix itself efficiently? For that
we need generating polynomials and polytopes as we proposed in Paper 5
and we revise the idea again here.

Generating polynomials that we use have c-functions as coefficients. We
define them to be

P 0
k = 1 and (5.14)

P u
k =

∑

x1+x2+···+xk=u

c((x1, . . . , xk))z
x1
1 zx2

2 · · · z
xk

k , (5.15)

where u is less or equal to the data size. We take the product of these
polynomials with respect to some parent node’s l-partition (y1, . . . , yl):

T
(y1,...,yl)
k = P y1

k P y2

k · · ·P
yl

k (5.16)
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5.4 Computation of Inner Node Matrices 49

Figure 5.4: Core matrix with values max(Y ) = max(X) = 3 and n = 70 plotted.
Brighter pixel means bigger value, but for structural visibility purposes the picture
has been made brighter using image processing. Different regions are clearly visible:
2x2-partitions in the upper left corner, 2x3- and 3x2-partitions on up right and on
the left and 3x3 is the big area in the bottom right corner. Areas 1x1, 1x2 and 2x1
are not visible in the picture, because they are only one pixel wide.

and by extracting a coefficient with respect to the node’s k-partition, we
get the desired value of the conditional c-function:

c((x1, . . . , xk)|(y1, ..., yl)) = [zx1
1 · · · z

xk

k ]T
(y1,...,yl)
k . (5.17)

In fact we can read all values of a single core matrix row from the same
product polynomial. However, the multiplication process also creates many
terms that do not correspond to any desired value. We can reduce the
number of nuisance terms by truncating the multiplication process by using
restricting polytopes.

The first step in the polytope description is to observe that although
we have k-parameters that are (x1, . . . , xk), we only need k−1 parameters,
because every k-composition sums into the same value — namely n. One
parameter is therefore irrelevant and we need only k − 1 parameters to
represent each of our k-compositions. After this we map c(x1, . . . , xk) to the
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50 5 Stochastic Complexity of Bayesian Forests

coordinate (x2, . . . , xk). Thus we omit the biggest term x1, in k-partition
representation, to make our term space as small as possible during the
multiplication process.

Restricting polytopes consists of two different kinds of inequalities. The
first type is

0 ≤ xi ≤
⌊n

i

⌋

, (5.18)

where i goes from 2 to k. This defines a restricting hyper-rectangle that con-
sists of all required terms, because two-sided inequalities define the biggest
possible number of data points that each bin can have in the k-partition
representation.

The second type of inequalities describe additional restrictions, which
are also caused by the fact that according to our representation, bin values
are obeying the decreasing order. They describe situations where several
bins have the same number of data points. All the inequalities are achieved
by finding valid splittings between bins of k-partition and multiplying them
by a number of xi:s in each group. For example, 4-partitions have three
different splittings {x1x2|x3x4, x1x2|x3|x4, x1x2x3|x4}, where vertical bars
mean borders between different groups. Notice that as the count x1 is
redundant, there cannot be a split between x1 and x2, so x1 and x2 are
always in the same group. We get the following three inequalities:

2x2 + 2x4 ≤ n, 2x2 + x3 + x4 ≤ n, 3x3 + x4 ≤ n. (5.19)

Together all these inequalities define the wanted polytope. All the points
of the integer lattice are needed and none of the points outside the lattice.

The only remaining question is how to do the multiplication. Let us
do multiplication using two polytopes P1 and P2. The polytope formed
in this process is a result polytope and denoted by P. We get the value
of the given result polytope lattice point (v1, . . . , vr), where r = k − 1, by
computing

P(v1, . . . , vr) =
v1
∑

w1=0

· · ·
vr
∑

wr=0

P1(w1, . . . , wr) · P2(v1 − w1, . . . , vr −wr), (5.20)

which is naturally a higher order discrete convolution formula. The formula
is used for all the points inside the corresponding polytopes. The terms
outside are just ignored and therefore equal to zero.

The final big modification to make computation more efficient is to take
advantage of symmetries. This part was not described in Paper 5 due to lack
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of space. Our integer lattice points are actually k-compositions, not only
k-partitions. Now changing the order of bins gives us the same conditional
c-function values. Thus inside the polytope there are many equal values
on different sides of the symmetry axes. For example in the 3-partitions
case we have a symmetry axis x2 = x3 and for example lattice points (2, 1)
and (1, 2) have the same c-function value (Figure 5.5). The algorithm can
utilize these axes so that if some of these points are already computed, the
algorithm does not compute the same result again using (5.20).

x  =  x2 3

(9,9)(0,9)

(0,0)

(14,0)

x2

x3

c((12,10,6))

Figure 5.5: An example of a symmetry inside the polytope, where we have three
bins and 28 data vectors.

Even with these enhancements the algorithm has no use in most real-
life cases. A rough upper-bound approximation of efficiency says that the
number of basic operations (ordinary sums and products) is O(n2K+L−3 +
HnK+L−2), where H is the number of inner nodes in the forest, K is the
maximum number of values that any inner node has and L is the maximum
number of values that any inner node’s parent has. Probably a better way
to compute the normalizing sum for more complicated structures is to use a
Monte Carlo simulation as suggested in paper [38]. However, the proposed
floating-point algorithm is useful in the binary case with time complexity
O(n3), because MC simulation cannot give results with full floating-point
precision. Another possible use for this proposed algorithm is to verify the
correctness of other simulation algorithms developed in the future.

Our final observation is that a recurrence analogous to (4.7) for the
Naive Bayes normalizing sum based on rational generating functions seem
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to work also for the leaf variables. Our implementation does not allow us
to test the recurrence in a case of root or inner node variables. This obser-
vation raises open questions and may eventually lead to the development
of more useful algorithms.



i

i

“book” — 2009/11/10 — 15:20 — page 53 — #63
i

i

i

i

i

i

Chapter 6

Conclusions

In this thesis we have presented methods for computing the normaliza-
tion sums of the normalized maximum likelihood (NML) in the case of
simple Bayesian network models — single multinomial, Naive Bayes and
Bayesian Forest models. Without efficient computation methods of nor-
malizing sums, we cannot use NML-based model selection in practical ap-
plications. Several case studies have shown that the NML criterion chooses
good models even with small data sets. If the fundamental information-
theoretic base is accepted, the criterion can be seen to give an objective
method, without any subjective parameters, for model selection.

We presented how to compute the normalizing sums for the multinomial
and Naive Bayes models using Maple. For the multinomial normalizing sum
we developed a fast fixed precision sub-linear algorithm for floating-point
computation. For the Naive Bayes normalizing sums we defined a compu-
tational framework based on basic series and exponentiation of these series.
For the normalizing sums of Bayesian tree models we presented a method
that uses matrix components. If the core matrix for a given data size is
computed and stored, model search can be done relatively fast, because the
problem of computing the normalizing sum factorizes efficiently to matrix
components. The main task is then to do ordinary matrix computation,
unfortunately, with huge matrices. We also developed an algorithm for core
matrix computation that is using generating polynomials and polytopes.

This thesis gives some new directions for future work. The most impor-
tant subject of research is of course the actual performance of the stochastic
complexity in model selection with real life-data sets. These tests can now
be performed also with Bayesian trees. We also initiated the discussion on
fixed precision computation in the most simple case. This framework can
also be expanded for more complex models. Related to this, a very impor-
tant question that we did not answer is, what is the optimal precision given
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data size and a multinomial model? Optimal in this case means the small-
est possible precision that gives the correct answer by the NML criterion.
A very promising direction for efficient computation of normalizing sums is
Monte Carlo simulation and the previous question about optimal precision
is highly relevant also in this case. Another open issue is how to expand
the matrix component framework for general Bayesian networks. This may
not be interesting for application purposes, but it gives more information
about the problem and also gives correct answers that can be compared
with the results given by approximation and simulation methods. A more
elaborate analysis could be done also for core matrices: is there some good
approximation for the values of the elements or can they be computed even
more efficiently? Finally, the initial questions that inspired also this re-
search concern the problem of finding the generating functions and efficient
recurrence formulas for more complex probabilistic graphical models.
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Corrections

Paper I

Equation (3): SC(xn | M) = − log. . .

Page 20, row 9: . . . equivalent to nnC(L, n) by. . .

Page 20, 2nd col, row 8: . . . the solutions of these new confluent hy-
pergeometric equations can be defined using confluent . . .

Page 20, 2nd col, Proof of Theorem 3: . . . all the extra sum . . .

Paper III

Equation (15):
p0(i)a(i) + p1(i)a(i + 1) + · · ·+ pr(i)a(i + r) = 0, i, r ∈ N,

Page 285, 2nd col, row 3:
g(x1, . . . , xm) =

∑

i1,··· ,im
a(i1, . . . , im)xi1

1 · · · xim
m

Page 285, 2nd col, row 7:
g1,...,s
is+1,...,im

(x1, . . . , xs) =
∑

i1,...,is
a(i1, . . . , im)xi1

1 · · · xis
s

Proof of Theorem 2:
f1
1 (z) =

∑∞
n=0 C(1, n)nn zn

n! = · · · (x1 = z, x2 = u)

Theorem 3:
∑r2

l=0 pl(L, n) C(L, n− l) (n−l)n−l

(n−l)! = 0

Proof of Theorem 3: . . . sequence C(L, n)nn

n! is . . .

59



i

i

“book” — 2009/11/10 — 15:20 — page 60 — #70
i

i

i

i

i

i

Correction of an consequence of Theorem 3: For the vertical fam-
ily there cannot be a homogeneous linear recurrence equation, but this in
fact does not prove that the same applies also for the sequence of C(L, n)
over the variable n (The wrong consequence is mentioned in Abstract and
Conclusions).




