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Abstract

In this Thesis we study issues related to learning small tree and graph formed
classifiers. First, we study reduced error pruning of decision trees and branch-
ing programs. We analyze the behavior of a reduced error pruning algorithm for
decision trees under various probabilistic assumptions on the pruning data. As a
result we get, e.g., new upper bounds for the probability of replacing a tree that
fits random noise by a leaf. In the case of branching programs we show that the
existence of an efficient approximation algorithm for reduced error pruning would
imply P=NP. This indicates that reduced error pruning of branching programs is
most likely impossible in practice, even though the corresponding problem for
decision trees is easily solvable in linear time.

The latter part of the Thesis is concerned with generalization error analysis, more
particularly on Rademacher penalization applied to small or otherwise restricted
decision trees. We develop a progressive sampling method based on Rademacher
penalization that yields reasonable data dependent sample complexity estimates
for learning two-level decision trees. Next, we propose a new scheme for deriving
generalization error bounds for prunings of induced decision trees. The method
for computing these bounds efficiently relies on the reduced error pruning algo-
rithm studied in the first part of this Thesis. Our empirical experiments indicate
that the obtained training set bounds may be almost tight enough to be useful in
practice.
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Chapter 1

Introduction

We begin with an informal motivation for the subject of the Thesis, after which
the contributions of the author are briefly summarized in Section 1.2.

1.1 Motivation

We are interested in learning small trees and graphs that generalize. The main
emphasis will be on the generalization ability of the learned classifiers — the in-
terpretable graph structure and small size will either facilitate generalization or
come as a free bonus. In this section we briefly motivate our interests, starting
with smallness. The discussion will be very informal and pragmatic, thus avoid-
ing delving on the philosophical debate around Occam’s principle [9, 43]. Only
minimal background on machine learning will be assumed. Concepts used here
without being properly introduced will be defined in detail later. For a more thor-
ough introduction to machine learning and related issues, see the next chapter and,
e.g., [50, 58].

Small size is considered to enhance understandability. It is probably easier
to understand the inner logic of a classifier — that is, a function that classifies
objects based on their attributes — if its description fits on a single page than if its
shortest description fills an entire library. Smallness thus has some connection to
simplicity, at least on an intuitive level. As we would like the learned classifiers
to not only give correct classifications but also represent some knowledge in a
human understandable way, smallness is a good property to look for.

Another fact favoring smallness is that small size is beneficial from a compu-
tational point of view. With any sensible definition of smallness, small classifiers
require little storage space (e.g. memory in a computer). In case of classifiers
that have a tree or graph structure, small size also implies that classification of
instances is fast. Thus, a small classifier is efficient with respect to both space and

1



2 1 INTRODUCTION

time complexity, the most important complexity measures studied in computer
science.

A deeper reason for being interested in small classifiers is that the set of all
small classifiers (classifiers with short descriptions with respect to a fixed descrip-
tion method) is itself small and thus not overly complex. For example, the number
of things one can say on a single page of text is relatively small, at least if com-
pared to the multitude of different things one could communicate using an entire
library full of books. In the learning framework studied in this Thesis the small-
ness of sets of small classifiers enables one to prove generalization error bounds.
That is, one can (under certain assumptions) prove that a classifier performing well
on learning data will with high probability perform well on unseen data, too, given
that the classifier is selected from a small set of classifiers. Here, what actually
matters is not the small size of individual classifiers but that of classes of classi-
fiers. However, since the former implies the latter we can conclude that (again
under suitable assumptions) small classifier size guarantees some generalization
capability. Learning classifiers that generalize well is commonly considered one
of the ultimate goals in machine learning, so even if we were not particularly in-
terested in generalization — which we are — the connection between small size
and good generalization would strongly support learning small classifiers.

Human experts commonly think that tree formed classifiers are easy to under-
stand [14], although no experimental study supporting this seems to exist [15].
The reason graph formed classifiers are considered easy to understand is prob-
ably their visualizable discrete structure that determines the logic by which the
classifiers classify examples. Any deeper analysis of understandability would, of
course, require some understanding of what understanding means and so on. In
this Thesis, however, understandability is used only as a motivation for our objec-
tives and will not be a subject for any further study.

From a computer science viewpoint a more appealing property of tree and
graph formed classifiers is the fact that objects like trees and graphs are well-
studied discrete structures that can be efficiently represented in and handled by
computers [17]. The computational problems arising in learning such classifiers
have thus a combinatorial flavor and can be attacked using tools most familiar to
a computer scientist. Finally, decision trees have not only been studied theoreti-
cally but are also widely used in data analysis and have been observed to perform
well on a wide range of problems with practical importance [14, 57, 42, 25]. Ad-
vances in the theory of decision tree learning may thus have strong significance in
applications.

Small tree and graph formed classifiers and their generalization performance
is not only the cement that glues the four papers constituting this Thesis together.
These topics are also central to each of the individual papers. In Papers 1 and
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2 the focus is more on smallness. We analyze reduced error pruning of decision
trees and graphs, respectively. Reduced error pruning is an elementary pruning
algorithm, i.e., an algorithm that tries to find and delete the parts of a graph formed
classifier that do not enhance its classification performance on unseen data. Thus,
pruning aims at reducing the size of a classifier while maintaining or improving
its accuracy — both goals well in line with our agenda.

The remaining two papers concentrate on generalization error analysis of deci-
sion trees. In Paper 3 we apply a recently introduced technique called Rademacher
penalization to progressive sampling. More specifically, we use Rademacher
penalties for estimating the amount of data that is needed to learn two-level deci-
sion trees that meet given generalization performance guarantees. In Paper 4 we
apply the reduced error pruning algorithm for decision trees analyzed in Paper 1
to computing Rademacher penalties of the class of prunings of an induced deci-
sion tree. This technique enables us to prove tight data-dependent generalization
error bounds for decision trees learned by standard two-phase decision tree learn-
ing algorithms like C4.5 [57]. Even though small size is not the main concern in
Papers 3 and 4 it is an important ingredient in providing good generalization error
bounds.

1.2 Main Contributions

For easy access, the main research contributions presented in this Thesis are listed
below. The numbering of the list corresponds to the numbering of the papers that
constitute the bulk of this Thesis.

1. The analysis of reduced error pruning (Paper 1) yields improved results on
the behavior of reduced error pruning of decision trees with less imposed
assumptions than those in previous studies.

2. Our hardness results on reduced error pruning of branching programs (Pa-
per 2) show that branching program pruning — at least in the reduced error
pruning sense — is probably a lot harder than pruning decision trees.

3. Applying Rademacher penalization in the context of progressive sampling
(Paper 3) is to the author’s knowledge the first application of data dependent
generalization error bounds to sample complexity estimation. The empir-
ical results suggest that the approach improves significantly on previous
theoretically motivated sample complexity estimation methods that do not
take the data distribution into account.

4. Rademacher penalization over decision tree prunings (Paper 4) is a con-
ceptually new way of providing generalization error bounds for decision
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trees. To the authors best knowledge, the obtained bounds are the tightest
published training set bounds for decision tree prunings.

The author of this Thesis made the main contribution to papers 1, 3, and 4. Paper
2 that improves on our earlier results on branching program pruning [23], is to
a large extent due to Professor Richard Nock. Even in this paper the author’s
contribution is substantial.

The rest of this Thesis is devoted to describing the above contributions in more
detail. The next chapter presents some preliminaries necessary for understanding
the chapters that follow. The main results of Papers 1–4 will be presented in
Chapters 3–6, respectively, while the conclusions of this study are summarized in
Chapter 7. Papers 1–4 in their original published form are included in the end of
the Thesis.



Chapter 2

Preliminaries

The first section of this chapter presents the learning model of statistical learning
theory that underlies the rest of this Thesis. After that, a short introduction to
established generalization error analysis methods is given in Section 2.2. A special
emphasis is given to Rademacher penalization. Background information on topics
like decision tree learning and progressive sampling, is given in later chapters as
needed.

2.1 Learning Model

We are interested in learning classifiers from examples, which is a special case of
supervised learning. As our learning framework we use statistical learning theory.
A good introduction to classical results in this field is given by Vapnik [65]. Here,
we will review only the very basics. Related and sometimes quite orthogonal
approaches to learning classifiers from examples include, e.g., PAC-learning [62]
and its agnostic variant [35], Bayesian approaches [31], different versions of query
learning [1], and a whole variety of on-line learning models [67, 36, 19, 68].

We consider the following learning situation. The learner (e.g. a ma-
chine learning algorithm) is presented with an ordered set of labeled examples
(x1, y1), . . . , (xn, yn) called the learning sample. Here, the attribute vectors
xi ∈ X represent the attributes of the examples and the yi ∈ Y are the corre-
sponding labels. We will be interested in classification only, so Y is assumed to
be finite. For a concrete example, suppose the learner tries to learn to classify
digitalized 16 × 16 gray-scale images of hand-written digits from 0 to 9. In this
case, the attribute space X might be {0, . . . , 255}256 (assuming 8 bits are used to
encode the shade of gray of a pixel) and the label space Y would be {0, . . . , 9}.
Thus, an example (x, y) would consist of a gray-scale image x labeled with a digit
y ∈ {0, . . . , 9}.

5



6 2 PRELIMINARIES

The learner outputs a classifier (also referred to as a hypothesis) f : X → Y
based on the learning sample (x1, y1), . . . , (xn, yn). In the hand-written digit
classification problem, a classifier would simply be a function associating to each
gray-scale image x ∈ X some digit y ∈ Y . Usually, the learner does not consider
all possible functions from X to Y , but restricts itself to a hypothesis class F that
is a subset of all functions f : X → Y . The restriction to such a subset F has an
important role in generalization error analysis and will be discussed in the next
section. Intuitively, F can be seen to represent the prior assumptions the learner
has about the learning task. That is, the learner assumes that the learning task is
such that the class F contains some hypotheses f that perform well on the task. In
this Thesis, the hypothesis class F will usually consist of a subset of the classifiers
that can be represented by decision trees or branching programs.

So far, we have in no way restricted the process generating the learning sample
or the way the learner chooses its classifier. In order to make the learning model
non-vacuous, we have to at least specify some quality criteria that the classifier
output by the learner should meet. For example in the handwritten digit recogni-
tion problem the classifier output by the learner should be such that it gives correct
labels to all reasonably clearly written digits. This hints that in order to specify
a quality criterion for the classifiers we first have to assume something about the
learning sample generating process — without a definition of what a reasonably
clearly written digit means, there is no way to make the intuitive quality criterion
above precise. Ideally, we would like to assume as little as possible of the learning
sample generating process, as the properties of this process are exactly what we
want to model with the learned classifier. However, nothing can be done without
prior assumptions, a fact exemplified by the various no free lunch theorems [69].

A natural way of measuring the performance of a classifier is to see how ac-
curately it predicts the labels of previously unseen examples, that is, how well it
generalizes. For example, in the digit recognition problem we want the learned
classifier to classify correctly also hand-written digits that it has not encountered
before. If we wish the learner to be able to learn a classifier that performs well
on unseen examples, we have to guarantee that the learning sample and the future
examples are somehow related. In statistical learning theory [65] one assumes
that the learning examples (xi, yi) are chosen independently at random from a
fixed but unknown distribution P over X × Y . The learning sample is thus just a
random element of (X ×Y)n selected according to the n-fold product distribution
Pn. The goal of the learner is to find a classifier f ∈ F with small generalization
error

ε(f) = P (f(X) 6= Y ),

where the random vector (X, Y ) is distributed according to P . In other words,
the learner is supposed to find a classifier whose probability of misclassification
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on examples chosen from the same distribution as the learning examples is low.
Other characteristics of the classifier that the learner could try to optimize, e.g.,
the size of the classifier, are ignored in this theoretical model.

Of course, the problem here is that P is not known to the learner. Otherwise,
the learner could simply choose the provably optimal Bayes-classifier [20]

fbayes(x) = arg max
y∈Y

P (y|x)

or the best approximation thereof as its classifier. In the learning model of sta-
tistical learning theory, the only knowledge of P available to the learner is the
randomly chosen learning sample (x1, y1), . . . , (xn, yn). It is this knowledge the
learner should use in finding a classifier with good generalization performance.
One theoretically motivated way to find classifiers with guaranteed generalization
performance is outlined in the next section.

2.2 Generalization Error Analysis

2.2.1 Main Ideas

Given that we have the sample (x1, y1), . . . , (xn, yn) at our disposal, it is natural
to try to approximate the generalization error of a classifier — its true probability
of misclassification — by the observable empirical rate of misclassifications on
the learning sample. To this end, let us define the empirical error ε̂n(f) of a
classifier f as

ε̂n(f) =
1

n

n
∑

i=1

Jf(xi) 6= yiK.

Here, the notation J·K means the function taking the value 1 if the expression inside
the double brackets is true and 0 otherwise. When the sample size is clear from
context we often drop the subscript n from ε̂n(f).

Suppose that the empirical errors of all the classifiers in F can with high
probability be guaranteed to be close to the corresponding generalization errors.
That is, suppose

sup
f∈F

(ε(f) − ε̂(f)) (2.1)

is small with high probability. Then the learner can solve the learning task by
picking a classifier with small empirical error, because when (2.1) is small, any
hypothesis with small empirical error will have a small generalization error, too:

ε(f) = ε̂(f) + ε(f) − ε̂(f) ≤ ε̂(f) + sup
f∈F

(ε(f) − ε̂(f)).
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This principle of selecting the classifier with minimal empirical error has been
introduced by Vapnik [64]. It is called the empirical risk minimization (ERM)
principle and will be of central importance throughout the rest of this Thesis.

We have shown that the intuitively appealing ERM principle solves the learn-
ing problem if we succeed in proving good upper bounds for (2.1). Deriving such
upper bounds is a special case of generalization error analysis, which can be de-
fined in mathematical terms as follows. Given a confidence parameter δ > 0, find
some penalty term A such that with probability at least 1 − δ we have

ε(f̂) ≤ ε̂(f̂) + A, (2.2)

where f̂ ∈ F is the classifier chosen by the learning algorithm based on the learn-
ing sample (x1, y1), . . . , (xn, yn). The complexity penalty term A may depend
on anything known to the learning algorithm, for example on the algorithm it-
self, the properties of the classifier f̂ , the hypothesis class F , the learning sample
(x1, y1), . . . , (xn, yn) and of course the confidence parameter δ. Obviously, the
goal is to make A as small as possible, that is, to prove tight generalization error
bounds. A dual problem for generalization error analysis is sample complexity
analysis: Given δ and some upper bound ε for A, find a lower bound for the
sample size that ensures inequality (2.2) holds. We will return to a variant of the
sample complexity analysis problem in Chapter 4 when discussing the results of
Paper 3 on progressive sampling.

Bounding the quantity (2.1) leads to the the special case of inequality (2.2) in
which A is not allowed to depend on f̂ nor the algorithm for choosing it. Thus, A
has to be a uniform bound for the difference between the generalization error and
the empirical error of a hypothesis over the whole class F . As A does not depend
on f̂ , the ERM hypothesis is the one that minimizes the upper bound for the
generalization error. This is the principal motivation behind the ERM principle.
Of course, bounding

sup

{

ε(f) − ε̂(f) | f ∈ F and ε(f) = min
g∈F

ε(g)

}

directly might (and sometimes does [5]) lead to tighter bounds for ERM. Such
bounds, however, have turned out to be very hard to obtain in practice so we will
mostly confine ourselves to uniform bounds of the form (2.1). Bounds in which A
may depend on f̂ in some way lead to different learning principles. Thus, deriving
new ways to analyze the generalization error gives as an important side product
new criteria for selecting classifiers. Even generalization error bounds that are too
loose to be applicable in practice may thus be useful as they may provide new
insight for designing learning algorithms [12].



2.2 Generalization Error Analysis 9

Machine learning literature is packed with different approaches to proving
generalization error bounds. Following Langford [40], these can be roughly di-
vided into two categories: test set bounds and training set bounds. In test set
bounds, the learning algorithm is allowed to use only part of the learning sample
in learning the classifier f̂ while the rest of the sample is used in providing an
unbiased test error estimate for ε(f̂). On the other hand, in training set bounds the
learner may use all the data for learning purposes, which means that the perfor-
mance of the learned classifier has to be evaluated on the sample that was used in
choosing it. In training set bounds we thus have more data to learn from, but as
there is no separate test set, the generalization error analysis is a more complicated
task and the resulting bounds are therefore often not particularly tight.

To give a general picture of existing generalization error analysis techniques
and to relate our work to them we will next present some examples of both test
set and training set bounds. First, we will derive the basic test error bound (2.3),
after which training set bounds for finite hypothesis classes and classes with finite
VC dimension [10, 64] are given. Test set bounds not discussed here include,
e.g., cross validation bounds and leave one out estimates [20], while some of
the most important uncovered training set bounds are those based on covering
numbers [2], marginals of linear classifiers [18], sparseness [26], Occam’s the-
orem [9], PAC-Bayesian theorems [46], PAC-MDL theorems [8], the luckiness
framework [60, 30] and stability [13]. In Section 2.2.3 we will finally present the
basics of Rademacher penalization [37], a relatively new data-dependent general-
ization error analysis technique that is central to the work presented in Papers 3
and 4. The currently less practical local variations of Rademacher penalization
presented in the literature [39, 4] will not be discussed further in this Thesis.

2.2.2 Examples of Generalization Error Bounds

The idea behind test error bounds is the following. First divide the learning sample
randomly into two parts of size n − m and m, say S1 and S2. Then, give S1 to
the learner that selects a classifier f̂ based on it. The generalization error of f̂ can
now be estimated by its test set error

ε̂test(f̂) =
1

m

∑

(x,y)∈S2

Jf̂(x) 6= yK.

It is clear that mε̂test(f̂) has binomial distribution with parameters m and ε(f̂)
since it is a sum of independent Bernoulli(ε(f̂)) distributed random variables.
Hence, a moment of thought (or a look at [41]) reveals that with probability at
least 1 − δ we have

ε(f̂) ≤ Bin
(

ε̂test(f̂), m, δ
)

,
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where Bin(k/m, m, δ) is the inverse binomial tail [41] defined by

Bin

(

k

m
, m, δ

)

= max
p∈[0,1]

{

p :

k
∑

i=0

(

m

i

)

pi(1 − p)m−i ≥ δ

}

.

If a closed-form upper bound for Bin(k/m, m, δ) is desired, we can use the ex-
ponential moment method of Chernoff [28] to get, e.g., the well-known approxi-
mation

Bin

(

k

m
, m, δ

)

≤ k

m
+

√

ln(2
δ )

2m
.

However, as computing numerical estimates for the inverse binomial tail is easy,
the sometimes loose Chernoff type approximations should be used with care.

Putting the above derivations together, we get the following theorem.

Theorem 2.2.1 Suppose f̂ does not depend on the test sample S2. Then, with
probability at least 1 − δ over the choice of S2, we have

ε(f̂) ≤ Bin(ε̂test(f̂), m, δ) ≤ ε̂test(f̂) +

√

ln(2
δ )

2m
. (2.3)

The first inequality of Theorem 2.2.1 can be put (a bit artificially) into the
form of (2.2) by picking A = −ε̂(f̂) + Bin(ε̂test(f̂), m, δ), which coincidentally
shows that minimization of empirical error does not necessarily have anything to
do with minimizing a test error bound, a fact supported by empirical experiments
with, e.g., decision tree learning [14]. Indeed, the ERM classifier is often not the
classifier with best generalization performance. In such cases, the ERM classifier
is said to overfit the training data.

It is evident from inequality (2.3) that the test error bound for a fixed hypothe-
sis f̂ ∈ F is the tighter the larger m is — that is, the more data we have for testing
purposes. However, if we have only a fixed number n of learning examples at
our hands, then increasing the test set size m results in a decrease in n − m, the
amount of data that remains for actual learning purposes. Hence, the hypothesis f̂
has to be chosen on the basis of a smaller sample which in turn may increase the
test error term in (2.3). One of the reasons for developing training set bounds is
to circumvent this trade-off by allowing the use of all examples for both learning
and bounding the error of the learned hypothesis.

In the proof of Theorem 2.2.1 it is essential that the classifier f̂ whose general-
ization error we bound and the test sample on which the classifier is evaluated are
independent. However, when we try to prove training set bounds that are based
on the empirical error of the classifier, the sample used for learning and testing
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is the same. This complicates things a lot, as the scaled empirical error nε̂(f̂) of
the learned classifier is typically not binomially distributed even though the scaled
empirical errors nε̂(f) for fixed f ∈ F are. Hence, to get training set bounds we
need more refined techniques than the simple ones that suffice in the case of a
separate test set.

The simplest way around the above problem is to analyze the deviations of
each classifier f ∈ F separately as in the test error case and then combine these
bounds using the union bound for probabilities. More specifically, as nε̂(f) ∼
Bin(n, ε(f)) for every fixed f ∈ F , the inequality

ε(f) ≤ Bin
(

ε̂(f), n, δ′
)

(2.4)

holds for any fixed f ∈ F with probability at least 1 − δ′. If F is finite and we
have no prior beliefs about the goodness of the classifiers f ∈ F , we can take
δ′ = δ/|F |. A simple application of the union bound for probabilities then gives

Pr[some f ∈ F violates (2.4)] ≤
∑

f∈F

Pr[f violates (2.4)] ≤
∑

f∈F

δ

|F | = δ,

thus establishing a bound of the form (2.1):

Theorem 2.2.2 In case F is finite, with probability at least 1 − δ it is true that

ε(f) ≤ Bin

(

ε̂(f), n,
δ

|F |

)

≤ ε̂(f) +

√

√

√

√

ln
(

2|F |
δ

)

2n
(2.5)

for all f ∈ F .

The most important weaknesses of Theorem 2.2.2 are that it only applies to
finite F , it does not take the observed learning sample into account in any way (ex-
cept through the empirical errors of the classifiers) and it contains slackness due
to the careless use of the union bound. These weaknesses arise from measuring
the complexity of F by its cardinality alone, thus naïvely ignoring the correlations
between the classifiers in F as functions on all of X or on the observed learning
sample. Bounds based on VC dimension are a way to get rid of the finiteness
assumption, but the VC bounds still suffer from the other two problems. These
will be partially solved by the Rademacher penalization bounds discussed in the
next subsection.

The bounds based on VC dimension as introduced by Vapnik and Chervo-
nenkis [66] apply only to classes of binary classifiers, so let us assume throughout
the rest of this subsection that |Y| = 2, say Y = {0, 1}. Under this assumption,
the VC dimension of a set of classifiers F can be defined as the cardinality of the
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largest set of points in X that can be classified in all possible ways by functions
in F . Formally,

VCdim(F ) = max{|A| | |F |A| = 2|A|},

where F |A means the set of restrictions of functions in F to the set A ⊂ X .1 Us-
ing Sauer’s lemma [59], VC dimension can be used to provide an upper bound for
the shatter coefficient [20, 65] of a class of classifiers F — the number of different
ways in which the classifiers in F can behave on a set of unlabeled examples with
a given size. This way VC dimension can be connected to generalization error
analysis, giving the following theorem [64].

Theorem 2.2.3 Suppose |Y| = 2, let F be a class of classifiers and let P be an
arbitrary probability distribution on X ×Y . Suppose F has a finite VC dimension
d. Then with probability at least 1 − δ the inequality

ε(f) ≤ ε̂(f) + 2

√

d
(

ln
(

2n
d

)

+ 1
)

+ ln
(

9
δ

)

n
(2.6)

holds for all f ∈ F .

From this theorem we see immediately that if a set of classifiers has finite
VC dimension, then the empirical errors of its classifiers converge uniformly to
the corresponding generalization errors independently of the choice of P . Thus,
finite VC dimension is a sufficient condition for the ERM principle to work in an
asymptotic sense — the generalization error of the ERM classifier will converge
to min{ε(f) | f ∈ F} as the sample size increases. The implication can also
be reversed [64], so a hypothesis class is learnable using the ERM principle if
and only if its VC dimension is finite. This and the fact that the convergence rate
implied by inequality (2.6) is essentially the best one can prove without making
further assumptions about the example generating distribution P [20] makes VC
dimension a central concept in learning theory.

The VC dimension bound does not take into account the properties of P that
are revealed to the learner by the learning sample. The bound is in this sense
distribution independent making the bound worst-case in nature. We will next
review a more recent approach called Rademacher penalization that improves on
the VC dimension based bounds by using the information in the learning sample
to decrease the complexity penalty term for distributions better than the worst.

1As a byproduct, we get a practical example of how multiple uses of a symbol (here |) may make
things confusing.
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2.2.3 Rademacher Penalization

Rademacher penalization was introduced to the machine learning community by
Koltchinskii near the beginning of this millennium [39, 37], but the roots of the
approach go back to the theory of empirical processes that matured in the 1970s.
Here, we will only give the basic definition of Rademacher complexity and a
generalization error bound based on it — for proofs and other details, see, e.g.,
[37], [6] and [63].

Let r1, . . . , rn be a sequence of Rademacher random variables, that is, sym-
metrical random variables that take values in {−1, +1} and are independent of
each other and the learning examples. The Rademacher penalty of a hypothesis
class F is defined as

Rn(F ) = sup
f∈F

∣

∣

∣

∣

∣

1

n

n
∑

i=1

riJf(xi) 6= yiK

∣

∣

∣

∣

∣

. (2.7)

Thus, Rn(F ) is a random variable that depends both on the learning sample and
the randomness introduced by the Rademacher random variables. A moment of
thought shows that the expectation of Rn(F ) taken over the Rademacher random
variables is large if F contains classifiers that can classify the learning sample
with arbitrary labels either accurately or very inaccurately. Otherwise, most of the
terms in the sum cancel out each other thus making the value of Rn(F ) small.
Hence, Rn(F ) has at least something to do with the intuitive concept of complex-
ity of F .

It may seem confusing that the value of Rn(F ) depends on the Rademacher
random variables that are auxiliary to the original learning problem. However,
as a consequence of the concentration of measure phenomenon [61] the value of
Rn(F ) is typically insensitive to the actual outcome of the Rademacher random
variables. More specifically, Rn(F ) can be shown to be near its expectation (over
the choice of the values of the Rademacher random variables or those and the
learning sample) with high probability [6]. Thus we can conclude that the random
value of Rn(F ) is large only if F is complex in the sense that it can realize almost
any labeling of the randomly chosen unlabeled learning sample (x1, . . . , xn). As
the value of Rn(F ) depends on the actual learning sample, Rn(F ) is a data de-
pendent complexity measure which makes it potentially more accurate than data
independent complexity measures like VC dimension discussed in the previous
subsection.

The following theorem provides a generalization error bound in terms of the
Rademacher penalty, thus justifying calling Rn(F ) a measure of complexity of
F . Unlike the VC dimension bound of Theorem 2.2.3, the next theorem applies
also in case |Y| > 2.
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Theorem 2.2.4 With probability at least 1 − δ over the choice of the learning
sample and the Rademacher random variables, it is true for all f ∈ F that

ε(f) ≤ ε̂(f) + 2Rn(F ) + 5

√

ln(2/δ)

2n
. (2.8)

As the Rademacher penalty does not depend on P directly, the learner has
at its hands all the data it needs in evaluating the bound — the values for the
Rademacher variables can be generated by flipping a fair coin. Thus, although
the complexity penalty term in the bound depends on P through Rademacher
complexity’s dependence on the learning sample, the bound can still be evaluated
without knowing P .

For an extreme example of the difference between Rademacher penalty and
VC dimension as complexity measures, suppose F is the class of all functions
from X to Y and P is a measure whose marginal concentrates on a single point in
X . Then x1 = . . . = xn and Rn(F ) simplifies to

max

{

1

n

∣

∣

∣

∣

∣

∑

i:yi 6=y

ri

∣

∣

∣

∣

∣

: y ∈ Y
}

.

Hence, Rn(F ) will be small with high probability over the choice of the
Rademacher random variables as long as the learning sample is large compared to
the size of Y . The VC dimension of the class of all functions, however, is infinite,
so the bound of Theorem 2.2.3 is not applicable. Such extreme distributions P
may not be likely to be met in practice, but neither are the worst-case distribu-
tions for which the VC dimension based bound is tailored. It is thus plausible that
Rademacher penalization may yield some improvements on real world domains,
a belief supported by the results of empirical experiments summarized in Papers
3 and 4.

In order to use the bound (2.8) directly, one has to be able to evaluate Rn(F )
given the learning sample and a realization of the Rademacher random variables.
By the definition of Rn(F ), this is an optimization problem, where the objective is
essentially given by

∑n
i=1 riJf(xi) 6= yiK and the domain is the hypothesis class

F . As shown by Koltchinskii [37] in the case |Y| = 2, the problem can be solved
by the following strategy:

1. Toss a fair coin n times to obtain a realization of the Rademacher random
variable sequence r1, . . . , rn.

2. Flip the class label yi if ri = +1 to obtain a new sequence of labels
z1, . . . , zn, where

zi =

{

1 − yi if ri = +1

yi if ri = −1.
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3. Find functions f1, f2 ∈ F that minimize the empirical error with respect to
the set of labels zi and their complement labels 1 − zi, respectively.

4. The Rademacher penalty is given by the maximum of |{i : ri = +1}| /n−
ε̂(f1) and |{i : ri = −1}| /n − ε̂(f2), where the empirical errors ε̂(f1) and
ε̂(f2) are with respect to zi and their complements, respectively.

The above strategy can be extended to cope with multiple classes, also, as
described in Section 6.1. The hard part, here, is step 3 that requires an ERM al-
gorithm for F . Unfortunately, in the case of many important hypothesis classes,
like the class of linear classifiers, no such algorithm is known and the existence
of one would violate widely believed complexity assumptions like P 6= NP. Fur-
thermore, there are no other known general methods for evaluating Rademacher
penalties than the one outlined above. It is a major open question whether the
Rademacher penalties or their expectations over the Rademacher random vari-
ables can, in general, be evaluated exactly or even approximately in a computa-
tionally efficient manner.

Even though evaluating Rademacher penalties for general F seems to be hard,
it is not at all difficult in case an efficient ERM algorithm for F exists. We have ex-
perimented with Rademacher penalization using as our hypothesis class the class
of two-leveled decision trees and the class of prunings of a given decision tree.
For two-leveled decision trees, the ERM algorithm we used is a decision tree in-
duction algorithm by Auer et al. [3]. The case of decision tree prunings is more
interesting, as it turns out that reduced error pruning, the algorithm studied in
Paper 1, is an ERM algorithm for the class of prunings of a decision tree. We
will return in Chapters 4 and 5 to our experiments that show that Rademacher
penalization can yield good sample complexity estimates and generalization error
bounds in real world learning domains.
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Chapter 3

Reduced Error Pruning of Decision
Trees

Decision trees are usually learned using a two-phase approach consisting of a
growing phase and a pruning phase. Our focus will be on pruning and more
specifically on reduced error pruning, the algorithm analyzed in Paper 1. First,
we will briefly introduce the basics of decision tree learning in Section 3.1. The
reduced error pruning algorithm is outlined in the second section, while our results
on it are summarized in the final section of this chapter.

3.1 Growing and Pruning Decision Trees

In the machine learning context decision tree is a data structure used for represent-
ing classifiers (or more general regression functions). A decision tree is a finite
directed rooted tree, in which the edges go from the root toward the leaves. One
usually assumes that the out-degree of all the internal nodes is at least 2 — in case
the out-degree of every internal node is exactly 2, we say that the decision tree
is binary. At each internal node a there is a branching function ga mapping the
example space X to a’s children. The leaves of the tree are labeled with elements
of Y .

A decision tree classifies examples x ∈ X by routing them through the tree
structure. Each example starts its journey from the root of the tree. Given that x
has reached an internal node a with branching function ga, x moves on to ga(x).
The label of the leaf to which x finally arrives is the classification given to x.
Viewed in this way a decision tree represents a function f : X → Y , that is, a
classifier.

The class of functions from which the branching functions are chosen is usu-
ally very restricted. A typical case is that X is a product space X1 × · · · × Xk,
where each of the component spaces Xi, 1 ≤ i ≤ k is either finite or R. The

17
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x1
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x3 x3 x3

0 1 1 0 1 0 0 1

Figure 3.1: A minimal decision tree representation for the exclusive-or function
of three bits. Filled arrow heads correspond to set bits.

set of branching functions might be the projections of X to its finite components
and the threshold functions x = (x1, . . . , xk) 7→ Jxi ≤ θK, where Xi = R and
the threshold θ ∈ R is arbitrary. Even though this class of branching functions is
relatively simple, it is easily seen that the decision trees built over it are potentially
extremely complex.

Figure 3.1 gives an example of a binary decision tree computing the exclusive-
or function of three bits x1, x2 and x3. Here, the examples are represented by bi-
nary attribute vectors (x1, x2, x3) ∈ X = {0, 1}3 and the label space Y = {0, 1}.
The class of branching functions consists of the projections of X to its compo-
nents. It is easy to verify that this is a most concise decision tree representation of
the exclusive-or of three bits and that in general representing the exclusive-or of
k bits requires a decision tree with at least 2k+1 − 1 nodes.

Decision trees enable constructing complex classifiers from simple building
blocks in a structured way. This is advantageous in many respects, the first being
understandability. As the branching functions are usually simple, human experts
can easily understand individual branching decisions. The tree structure provides
further insight to the functioning of the classifier. For example, one can see why
an example ended up in the leaf it did by backtracking its path to the root and look-
ing at the branching functions on the way. As another example, it is commonly
believed that the branching functions close to the root of the decision tree are im-
portant in classifying the examples as most of the examples have to go through
these nodes on their way toward the leaves.

The structure of decision trees is central to learning them, too. Even though
learning a small decision tree that has small empirical error is in general NP-
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complete and inapproximable [27], there exist dozens of efficient greedy heuris-
tics for decision tree learning that have been observed to perform relatively well on
real world problems [49] and that can also be motivated theoretically in the weak
learning framework [21]. These algorithms first grow a large decision tree that
has small empirical error. In the second phase of the algorithms the tree is pruned
in order to reduce its complexity and to improve its generalization performance.

The tree growing heuristics start from a single-node tree, which they then ex-
tend by iteratively replacing leaves of the current tree with new internal nodes.
The choice of which leaf to replace, which branching function to use in the result-
ing new internal node, and how to label the new leaves differs from one algorithm
to another (see, e.g., [49]). The common property is that all the algorithms try to
greedily optimize the value of some heuristic that measures how well the partition
of training data induced by the decision tree fits the labels of the data. The pro-
cess of replacing leaves ends when the empirical error of the tree drops to zero or
when adding new internal nodes does no longer help in reducing the value of the
goodness measure.

The problem with growing decision trees is that the resulting tree is often very
large and even of size linear in the number of the training examples [16, 52, 53].
The problem is especially severe on noisy learning domains on which the classes
of the examples cannot be determined by a (simple) function of the attributes.
Large decision trees lack all comprehensibility and (provable) generalization ca-
pability. In order to decrease the size of the trees and to improve their general-
ization performance the decision tree learning algorithms try to prune the tree.
Pruning means replacing some subtrees of the original tree with leaves with the
goal of reducing the size of the tree while maintaining or improving its generaliza-
tion error. The pruning decisions are made based on the structure of the decision
tree and on learning data, so that pruning can be viewed as learning, too.

There are lots of different pruning algorithms to choose from, most of them
ad-hoc heuristics (see e.g. [57, 48, 24]) but some also with clear theoretical moti-
vation [34, 29]. The majority of pruning algorithms makes their pruning decisions
based on the same data set that was used in growing the tree (for some examples,
see [57]), while some require a separate sample of pruning examples [14, 56] or
work in an on-line fashion [29]. Also the goals of the algorithms vary — the focus
may be on accuracy [56, 51], on small size [16, 11], on a combination of those
two [34, 47], or on something completely different [44]. As the field of pruning al-
gorithms is so diverse we will not even try to explore it here to any depth. Instead,
we will go directly to reduced error pruning, the pruning algorithm analyzed in
Paper 1.
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3.2 Reduced Error Pruning

Reduced error pruning (REP) is an elementary pruning algorithm introduced by
Quinlan [56]. The original description of the algorithm was quite loose and left
much room (or need) for interpretation. As a consequence, there exists a whole
family of different variants of the REP algorithm. Here, we will only consider the
bottom-up version analyzed in Paper 1.

REP makes its pruning decisions based on a separate set of pruning examples.
The overall learning strategy is thus to first split the learning sample randomly into
a growing set and a pruning set. The growing set is then fed into a decision tree
induction algorithm. Finally, the induced tree and the pruning set are given as
input to the REP algorithm.

The intuition behind the pruning decisions of REP is the following. If a sub-
tree does not improve the classification performance over the best single-node
decision tree on pruning data, then the subtree is most likely to fit noise or other
irrelevant properties of the growing set and should be removed. Otherwise, the
subtree is considered to be relevant for improving classification accuracy on fu-
ture data, too, and is retained. The subtrees to be removed by the above criterion
can be found in linear time by a single bottom-up sweep of the tree to be pruned —
for algorithmic details, see Paper 1. The result of REP is what remains after these
removals.

The performance of REP on benchmark learning tasks is good but still slightly
worse than the performance of the best known pruning heuristics [48]. One reason
for the slightly inferior results is that as REP requires a separate pruning set, less
data remains for the tree growing phase. The unpruned tree that REP starts with
may thus be worse than the one that its rival pruning algorithms not requiring a
separate pruning set get to work on. It has also been claimed that REP prunes too
aggressively removing also relevant parts of the tree [56, 24].

The main advantage of REP is its simplicity which makes it easier to analyze
than most other pruning algorithms that rely on complex heuristics and empiri-
cally tuned parameters. Our analysis of REP is a follow-up to an earlier analysis
of Oates and Jensen [54]. Their intention was to use REP to explain the empir-
ically observed phenomenon that the size of pruned decision trees tends to grow
linearly in the size of the set of learning data [16, 52, 53]. In other words, the
pruning phase of decision tree induction is not able to keep the complexity of the
resulting classifier under control, even on domains on which the added complex-
ity cannot yield any improvement in classification accuracy. We try to explain the
same phenomenon, but using different techniques in order to make the analysis
more rigorous and less dependent on unrealistic assumptions.
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3.3 Analysis of Reduced Error Pruning

After clarifying the differences between the variants of REP that live on in the
literature, we show that the version of REP that in our eyes seems to be the correct
one solves a well-defined optimization problem, namely the following:

Reduced Error Pruning (REP)

Instance: A decision tree T and a set E of pruning examples.

Goal: Find the pruning T ′ of T that is the smallest among the prunings of T
having the minimal empirical error on E.

The fact that REP is a solution to the above problem has been known and used
before, but to our knowledge a rigorous proof has not been published previously.
As a corollary we get that REP is an ERM algorithm for the class of prunings of
the given tree T , a property of great importance to our work in Paper 4.

Another thing we analyze is how the pruning process of REP proceeds
through the decision tree. To formulate our main result in this direction we need
to define the concept of a safe node. First, say a node belongs to the fringe of a
tree if it has leaves as children, or is a child of a node belonging to the fringe. The
safe nodes are the fringe nodes whose parents do not belong to the fringe. Our
theorem (Theorem 4) says that a sub-tree will be pruned to a leaf if and only if

• all subtrees rooted at its safe nodes are pruned and

• the majority class of pruning examples in all its safe nodes is the same.

These properties of the REP algorithm are the basis for our analysis of its behav-
ior under various probabilistic assumptions. Following [54], we concentrate on
situations in which the attributes x ∈ X of the pruning examples are independent
of their class labels y ∈ Y while nothing is assumed about the tree to be pruned.
Even though it is unrealistic to assume that this independence assumption holds in
the whole tree, it may be used in approximating REP’s behavior in subtrees that
fit only noise. Given that the class is independent of the attributes, a decision tree
that consists of a single leaf predicting the majority class of the pruning examples
is clearly the smallest classifier with minimal generalization error. Nevertheless,
we show in two different settings that REP will with high probability end up with
a more complex decision tree.

In the first setting, we assume that the class labels of the n pruning examples
are chosen independently of their attributes and that the probability p of the most
probable class label is at least 0.5. We consider pruning a tree with k safe nodes
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and assume that all safe nodes receive at least one example. With these assump-
tions we can prove that the probability that the whole tree is pruned to a leaf is at
most

(

Φ

(

(p − 1/2)
√

r
√

p(1 − p)

))k/2

, (3.1)

where r = 2n/k and Φ is the distribution function of the normal distribution. It is
obvious that if we let k increase while n and p are fixed, the pruning probability
drops to 0 exponentially fast. The same happens even if we let n grow with k
so that r remains constant. Thus, we have shown that in such cases the pruning
probability of a (sub)tree is low even if it fits pure noise.

In the previous analysis we made no assumptions on the distribution of exam-
ples to the nodes of the tree to be pruned, apart from assuming that all safe nodes
receive a non-empty set of pruning examples. In the second setting, we assume
again that the attributes contain no information of the class labels, but this time we
also assume that the pruning examples are distributed uniformly to the safe nodes.
This additional assumption enables us to prove slightly tighter upper bounds for
the pruning probability of the root node and allows us take the contribution of
empty safe nodes into account. The bound we get resembles the bound (3.1), but
as both the bound and the analysis leading to it are less elegant, we refer the reader
to the paper for details.

Using the bound (3.1) we can finally attack the original question, i.e., why
REP fails to keep the size of pruned decision trees under control even in cases
where the decision tree with best generalization accuracy is known to be small.
We give a concrete example in which

• the class labels are independent from attributes and

• any decision tree with zero empirical error on the set of growing data has to
have expected size linear in the number of growing examples.

Suppose we get increasing amounts of data to learn from and that we use a fixed
proportion of the data for growing a tree and the rest for pruning it. In this ex-
ample, the size of the grown tree increases at least linearly with the amount of
learning data. If we hypothesize that the number of safe nodes receiving exam-
ples in the grown tree grows linearly, too, then we can apply the bound (3.1) to
show that the probability of pruning the tree to a single node drops exponentially
to zero. This, of course, is still far from fully understanding the linear growth of
pruned decision trees, but still provides some insight to the question.



Chapter 4

The Difficulty of Branching Program
Pruning

In this chapter we consider branching programs, a generalization of decision trees.
After a brief introduction to the subject in Section 4.1, we present the main hard-
ness result of Paper 2 in Section 4.2.

4.1 Branching programs and learning them

Branching programs (BPs) are a generalization of decision trees in which the
graph underlying the classifier may be an arbitrary finite rooted directed acyclic
graph. The root of the graph has in-degree 0, while all other nodes have in-degree
at least 1. Nodes with out-degree 0 are called leaves. As in a decision tree, each
non-leaf node of a BP is associated with a branching function mapping the at-
tribute space X to the node’s children, and the leaves are labeled with class labels
y ∈ Y . The classification of examples is done exactly as in the case of decision
trees. For two examples of (visualizations of) branching programs, see Figure 4.1.

The advantage of branching programs over decision trees is that in branching
programs substructures of a classifier can be shared. This may lead to exponential
savings in the size of the classifier as explained in Paper 2. Not only can BPs rep-
resent classifiers more concisely, but the BP representations can also be learned
from examples using a recently introduced boosting algorithm [45]. The algo-
rithm and its analysis are motivated by the boosting analysis of greedy decision
tree growing heuristics [21]. The bounds obtained in the case of BPs are sub-
stantially tighter than the best known bounds for growing DTs — the upper bound
on the size of induced BPs with given empirical error guarantees is exponentially
smaller than the one on the size of induced DTs, provided that both classes of clas-
sifiers utilize the same set of branching functions. The bounds, however, depend
on a weak learning parameter measuring the power of the class of the underly-
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Figure 4.1: A minimal branching program counting the exclusive-or of three bits
(left) and one of its prunings (right).

ing branching functions on the example distributions encountered in the induction
process. Since these distributions and hence also the behavior of the weak learn-
ing parameter varies between the algorithms, a direct comparison of the bounds
does not make sense. Unfortunately, no theory concerning the behavior of the
weak learning parameter currently exists.

Although the theoretical results hint that branching programs might be expo-
nentially smaller than the corresponding decision trees, this size advantage does
not seem to materialize in practice — branching programs and decision trees in-
duced from benchmark data sets seem to be approximately of the same size [22].
Thus, it seems natural to try to add a pruning phase to branching program learn-
ing. Our empirical experiments indicate that heuristic branching program prun-
ing is indeed advantageous [22] — it reduces the size of the branching programs
while maintaining their accuracy. However, as shown in Paper 2, finding even an
approximately most accurate pruning of branching programs is intractable, pro-
vided that P6=NP.

4.2 Hardness results

Before presenting the hardness results proved in Paper 2, let us first define the
branching program reduced error pruning (BPREP) optimization problem for-
mally. Analogously to decision tree pruning, we define a pruning of a branching
program P to be a branching program P ′ that is obtainable by the following pro-
cedure:
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1. Select a subset of the nodes of P .

2. Convert the selected nodes to leaves by labeling them with class y ∈ Y
labels and removing all outgoing arcs attached to them.

3. Remove all parts of P that become inaccessible from the root after remov-
ing the arcs in step 2.

With this definition of branching program prunings, we can formulate the BPREP

minimization problem as follows.

Branching Program Reduced Error Pruning (BPREP)

Instance: A branching program P , a set E of pruning examples with boolean
attribute vectors, and a weight function w : E → [0, 1] satisfying
∑

e∈E w(e) = 1.

Feasible solutions: Prunings P ′ of P .

Cost Function: The sum of weights of examples misclassified by the pruning P ′.

The weight function here is included mostly for convenience, the hardness results
apply to the unweighted case as well. Observe also that this formulation does not
take the size of the prunings into account. This, of course, only simplifies the
computational problem and makes the hardness results stronger.

Our first result is that the decision problem corresponding to the minimiza-
tion problem BPREP is NP-complete. Thus, there is no hope in finding a poly-
nomial time algorithm solving the BPREP problem exactly, unless P=NP. The
NP-completeness result was proved originally in [23] where we also show that
if P6=NP, the optimization version of BPREP cannot be approximated to within
1.006.

The inapproximability ratio obtained in [23] is still so close to 1 that an ap-
proximate algorithm sufficient for all practical purposes could well exist without
contradicting the hardness results. After all, an increase of at most 0.6% in the em-
pirical error of a pruning would under most conceivable circumstances be negligi-
ble compared to stochastic variation. In Paper 2 we settle the question of whether
a practical BPREP algorithm exists by presenting stronger inapproximability the-
orem whose proof also yields a simpler proof for our original NP-completeness
result.

Theorem 4.2.1 Unless NP ⊂ DTIME(nlog log n), BPREP is not approximable to
within log1−δ k for any δ > 0, where k is the number of components in the boolean
attribute vectors.
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This result on the inapproximability of BPREP shows that finding accurate prun-
ings of BPs is essentially harder than it is for decision trees. Thus, we have to
pay a price for the representational efficiency of branching programs in an in-
crease in the computational complexity of manipulating them. Another drawback
in branching program representations of classifiers is that they cannot be visual-
ized or comprehended as easily as decision trees can. Since our empirical results
on growing BPs were not too promising either [22], there seems to be little reason
for using them instead of decision trees.



Chapter 5

Progressive Rademacher Sampling
Applied to Small Decision Trees

In this chapter we consider progressive sample complexity estimation, a dual
problem for data dependent generalization error analysis. Section 5.1 intro-
duces a variant of the estimation problem which is then solved using progressive
Rademacher sampling in Section 5.2. The provided solution not only yields rea-
sonably good results on benchmark data sets, but also has provable optimality
properties.

5.1 Progressive Sampling

In generalization error analysis we are given a sample of n learning examples and
a confidence parameter δ > 0. Based on these, we have to produce a classifier and
an upper bound on its generalization error that has to be true with probability at
least 1− δ. Thus, the goal is to find a classifier with as good a generalization error
bound as possible, given a learning sample of a fixed size. Sometimes, however,
the dual problem called sample complexity estimation is a more natural formula-
tion. In traditional sample complexity estimation learning takes place according
to the following protocol. The learner is first given only an accuracy parameter
ε > 0 and a confidence parameter δ > 0. It then has to choose a learning sample
size N having the property that with probability at least 1 − δ, the generalization
error of the classifier the learner would choose based on a randomly chosen learn-
ing sample of size N is at most ε larger than its empirical error. Finally, the learner
gets a learning sample of size N which it then uses to select its final hypothesis.

The primary motivation for the criterion the sample complexity estimate N
has to meet is that in the realizable case — the case in which the hypothesis class
used by the learner is guaranteed to contain a hypothesis with perfect generaliza-
tion — the criterion ensures that the generalization error of any ERM hypothesis
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will be below ε with probability at least 1 − δ, too. The criterion is less natural
in the more realistic non-realizable case in which the existence of a consistent hy-
pothesis cannot be guaranteed. However, it still implies that the ERM hypothesis
for a sample of size N has with high probability nearly optimal generalization
performance.

The sample complexity estimate N may depend on the parameters ε and δ, the
hypothesis class, and more generally on all kinds of background information like
the properties of the learning algorithm. However, as the learner gets the learn-
ing sample only after outputting the sample size estimate N , the estimate itself
cannot depend on the sample. This kind of data independent sample complexity
analysis has a long history in learning theory dating back to the very first papers
on PAC learning [62]. Traditionally, sample complexity bounds have relied on
data independent generalization error bounds like the VC dimension based bound
presented as Theorem 2.2.3. The penalty term A (cf. Section 2.2.1) in these kinds
of data independent bounds depends only on the hypothesis class H, the confi-
dence parameter δ, and the sample size n. Thus, one can turn them into sample
complexity bounds simply by solving n from the equation A(H, δ, n) = ε that
does not depend on the learning data in any way. As data independent sample
complexity bounds can be converted into generalization error bounds in a simi-
lar fashion, the tasks of generalization error and sample complexity analysis are
essentially equivalent when only data independent methods are considered.

Transforming data dependent generalization error bounds to sample complex-
ity bounds is somewhat more challenging. This is because the penalty term A
now depends on the sample and the equality A = ε cannot thus be solved for
the sample size n without seeing a sample of that size first. Hence, the sample
complexity analysis framework has to be refined in order to make data dependent
sample complexity estimation possible. One way to do this is to extend the learn-
ing model to allow progressive sampling, a scheme in which the learner is allowed
to increase the size of the learning sample iteratively until some stopping criterion
is met.

In practice, progressive sampling is one of the methods of estimating the
amount of learning data that is needed in order to find a classifier with nearly
optimal performance on the learning task. Using a minimal amount of learning
data is beneficial for many reasons. For example, producing labeled learning ex-
amples is often difficult or at least expensive. Also, increasing the size of the
learning data set can be computationally intolerably costly, especially if the learn-
ing algorithm has high time or space complexity. Further motivation can be found
in Paper 3.

Our basic idea is to evaluate the penalty term A = An on increasing samples
of sizes n0, n1, . . . belonging to some sampling schedule {ni | i ∈ N} until a
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sample size nk is found for which Ank
≤ ε. The intuition is that this nk is the

smallest sample size belonging to the sampling schedule that suffices to guaran-
tee that the empirical error of every hypothesis is within ε of its generalization
error with at least probability 1 − δ. The matter is, however, complicated by the
fact that the bounds Ani

are now random variables that depend on the increasing
learning samples. Thus, even if each of the generalization error bounds based on
the random penalty terms Ani

were true with probability at least 1− δ, the bound
based on the random sample size min{ni | Ani

≤ ε} might still fail with prob-
ability larger than δ. We will show how to cope with these complications using
novel techniques introduced by Koltchinskii et al. [38] in a controller design con-
text. As a result we get a progressive sampling scheme that yields nearly optimal
sample size estimates in a sense described in detail in the next section.

The progressive sampling methods that have been observed to perform well in
practice are typically based on learning curve extrapolation [32, 55]. As the theo-
retical understanding concerning the behavior of learning curves is rather limited,
the methods based on learning curve assumptions are necessarily heuristic in na-
ture. The method we propose next is not competitive with these heuristics, but
clearly outperforms the earlier theoretically motivated approaches.

5.2 Progressive Rademacher Sampling

In this section, we will adapt the techniques originally developed by Koltchinskii
et al. [38] for solving difficult controller design problems to fit our progressive
sampling framework. These techniques rely heavily on the theory of empirical
processes [63] and especially on Rademacher penalization. For a brief introduc-
tion to the latter, see Section 2.2.3.

In order to guarantee that with probability at least 1−δ the empirical errors of
all hypotheses h ∈ H are within ε of their true errors, we need to have a sample
of size at least

nP
min(ε, δ) = min

{

n ∈ N | Pr

(

sup
h∈H

|ε(h) − ε̂n(h)| ≥ ε

)

≤ δ

}

.

Here, nP
min(ε, δ) depends on P directly (through the generalization errors ε(h)),

so that it cannot be used as a sample complexity estimate — it merely represents
an ideal sample size to which the sample complexity estimates produced by real-
izable estimation schemes can be compared.

We will restrict our attention to geometric sampling schedules in which ni =
2in0, where n0 = n0(ε, δ) is some fixed initial sample size. The main benefit of
using a geometric schedule is that if the time complexity of the learning algorithm
is super linear, the computation time lost in learning intermediate hypotheses is
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dominated by the time used in learning the final hypothesis [55]. Thus, the time
complexity of geometric sampling is only a constant times larger than the time
complexity of the underlying learning algorithm on the final sample size.

As the sampling schedule itself is fixed in advance, the remaining thing is to
derive a stopping criterion that determines the sample size ni ∈ N at which to stop
sampling. For the theory to go through, the stopping criterion has to be a stopping
time [33] — informally, a random variable τ taking non-negative integral values
and satisfying the additional condition that, for each n ∈ N, the event {τ = n}
depends only on information available by time n. Following [38], a stopping
criterion τ is called well-behaving with parameters ε, δ if τ ≥ n0(ε, δ) and

Pr

(

sup
h∈H

|ε̂τ (h) − ε(h)| ≥ ε

)

≤ δ.

An immediate consequence of this definition is that if τ is well-behaving with
parameters ε, δ and ĥ is a hypothesis that minimizes empirical risk based on the
sample {(xi, yi) | i = 1, . . . , τ}, then

Pr

(

ε(ĥ) ≥ inf
h∈H

ε(h) + 2ε

)

≤ δ.

In other words, it is enough to draw τ examples in order to find, with high proba-
bility, a hypothesis that is almost as accurate as the most accurate one in H.

Now that we have a general definition for a stopping criterion, we can
use Rademacher penalties (defined by equation (2.7) on page 13) to define the
Rademacher stopping time ν(ε, δ) with parameters (ε, δ) for the hypothesis class
H as

ν(ε, δ) = min
i∈N

{

ni = 2in0(ε, δ) | Rni
(H) < ε

}

.

Here, a reasonable choice for the initial sample size n0(ε, δ) is

n0(ε, δ) =

⌊

4

ε2
log

(

4

δ

)⌋

+ 1;

that is, the least choice satisfying the preconditions of the next two theorems.
The theorems are rather straightforward modifications of the corresponding results
presented in [38].

Theorem 5.2.1 Let

n0(ε, δ) ≥
⌊

4

ε2
log

(

4

δ

)⌋

+ 1.

Then, for all ε > 0 and δ ∈ (0, 1),

1. ν(ε, δ) is well-behaving with parameters (5ε, δ).
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2. If nP
min(ε, δ) ≥ n0(ε, δ), then for all ε > 0 and δ ∈ (0, 1/2), the probability

that ν(24ε, δ) > nP
min(ε, δ) is at most 3δ (for any class H of hypotheses and

any distribution P ).

Theorem 5.2.2 If

n0(ε, δ) ≥
⌊

4

ε2
log

(

4

δ

)⌋

+ 1

and 12/ε ≤ nP
min(ε, δ) ≤ n0(ε, δ), then

Pr (ν(30ε, δ) > 2n0(ε, δ)) ≤ δ.

The theorems show that, under certain mild conditions, ν(ε, δ) is well-
behaving and, furthermore, that it yields sample size estimates that are compara-
ble to the unknown optimal distribution dependent sample complexity nP

min(ε, δ).
This is in clear contrast to the stopping times that one could define using the gen-
eralization error bounds based on VC dimension or other distribution independent
complexity measures as those would be competitive with nP

min(ε, δ) for worst-case
P only.

To test the performance of progressive Rademacher sampling in practice, we
conducted experiments on some benchmark data sets from the UCI machine learn-
ing repository [7]. As our learning algorithm we used T2 [3], an ERM algorithm
for learning two-level decision trees with discrete and continuous attributes. Thus,
the set of hypotheses H consists in this case of all two-level decision trees learn-
able by T2. Even though this hypothesis class is relatively simple, its good perfor-
mance on real world learning tasks shows that it is both non-trivial and interesting
from a practical point of view. The fact that T2 is an ERM algorithm for this
hypothesis class enables us to compute the associated Rademacher penalties and
hence also the stopping times ν(ε, δ) efficiently by simply following the strategy
described in Section 2.2.3.

In the experiments we compared the sample complexity estimates provided
by Rademacher penalization to those obtainable using the bounds based on VC
dimension. The results show that the sample complexity estimates obtainable
using progressive Rademacher penalization can be substantially smaller than the
estimates based on data independent VC dimension bounds. For example, on the
Adult (Census) domain the estimate given by the proposed method is of the order
60,000 while the VC dimension based estimate is approximately 2,623,000. On
the other hand, the optimal sample size for the more complex problem of learning
decision trees using C4.5 as determined empirically by Provost et al. [55] using a
heuristic learning curve sampling method [52] is around 8,000. Thus, progressive
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Rademacher sampling does not seem to be competitive with the heuristic stopping
time determination methods used in practice, whereas it seems to clearly outper-
form other theoretically sound sample complexity estimation schemes. For more
details on the experiments including some plots on the Adult data set, see Paper 3.



Chapter 6

Generalization Error Bounds for
Decision Tree Prunings Using
Rademacher Penalties

In this chapter we show how Rademacher penalization can be used to derive tight
data dependent generalization error bounds for decision tree prunings. Before
presenting the main idea of Paper 4 in Section 6.2 we first describe how one can
compute Rademacher penalties in multiclass settings. The presented ideas result
in a generalization error analysis scheme that yields non-trivial error bounds for
general decision tree prunings with little computational overhead.

6.1 Evaluating Rademacher Penalties in a Multiclass Set-
ting

Multiclass learning tasks — tasks in which the label set Y has more than two ele-
ments — are common in practice. Still, the standard forms of traditional general-
ization error bounds like the VC bounds are applicable only in two-class settings.
Unlike them, the bounds based on Rademacher penalization remain true as long
as the loss function according to which the cost of (mis)classifications is mea-
sured is bounded [37]. In our case, the loss function is the obviously bounded 0-1
loss ` : Y × Y → {0, 1} given by `(y, y′) = Jy 6= y′K. Thus, the error bounds
based on Rademacher penalties are applicable irrespective of the cardinality of
Y — provided that we can evaluate them efficiently.

In Paper 4, we present a derivation that leads to the following strategy for
computing the values of Rademacher penalties in multiclass settings. Instead of
flipping class labels that was enough in the two-class case, we now replace a
class label y ∈ Y by its complement class ȳ ∈ Ȳ = {z̄ = Y \ {z} | z ∈ Y}
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that represents all the classes but y. Accordingly, an example with class ȳ is
considered correctly classified if its classification is in ȳ and misclassified only if
the classification is y. The classifications themselves are still required to belong
to Y .

With this notation, the computation of the Rademacher penalty Rn(F ) for a
class of multi-class classifiers F proceeds as follows.

1. Toss a fair coin n times to obtain a realization of the Rademacher random
variable sequence r1, . . . , rn.

2. Change the label yi to ȳi if and only if ri = +1 to obtain a new sequence
of labels z1, . . . , zn.

3. Find functions h1, h2 ∈ F that minimize the empirical error with respect to
the set of labels zi and z̄i, respectively. Here, we follow the convention that
¯̄z = z for all z ∈ Y ∪ Ȳ .

4. The Rademacher penalty is given by the maximum of |{i : ri = +1}| /n−
ε̂(h1) and |{i : ri = −1}| /n− ε̂(h2), where the empirical errors ε̂(h1) and
ε̂(h2) are with respect to the labels zi and z̄i, respectively.

This strategy obviously bears a strong resemblance to the two-class version intro-
duced by Koltchinskii [37] and reviewed in Section 2.2.3. However, the optimiza-
tion problem in step 3 is now a bit more involved as the optimization algorithm has
to cope with complement classes, too. Fortunately, both of the ERM algorithms
that we have considered in this Thesis can easily be extended to handle this more
general setting. For details, see Paper 4.

6.2 Rademacher Penalization over Decision Tree Prun-
ings

The class of all decision trees has infinite VC-dimension already if X = R and
the set of branching functions is {x 7→ Jx ≤ θK | θ ∈ R}. Thus, decision
trees are not learnable in the PAC learning model [10]. This means in particular
that there is no hope in proving data independent generalization error bounds for
them. We will, nevertheless, present a data dependent generalization error analysis
methodology that enables us to prove non-trivial bounds for unrestricted decision
trees learned by two-phase decision tree learning algorithms. Thus, by making use
of the information in the learning sample we will achieve something that would
be provably impossible otherwise.

The decision tree learning strategy we consider here is the one outlined in
Section 3.2. In particular, in addition to the growing set there is a separate set
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of pruning examples. The growing set is used in inducing a decision tree that
is then pruned using the pruning data. The key idea in our approach is to view
the pruning phase as empirical risk minimization in the class of prunings of the
induced decision tree. As the tree induction phase is not restricted in any way, the
tree to be pruned and hence also its prunings may be arbitrary. Still, we are able to
provide non-trivial error bounds for this data dependent class of prunings on real
world learning domains.

It is interesting to relate the proposed approach to the dichotomy of gener-
alization error bounds suggested by Langford [40] and briefly discussed in Sec-
tion 2.2.1. Our bound resembles test set bounds in that part of the data is put aside
in the tree growing phase. Still, this set of data is not reserved for testing purposes
only as the pruning phase of decision tree learning is proper learning, too. Our ap-
proach uses the pruning set as a test set for the tree growing phase — thus enabling
us to prove generalization error bounds for unrestricted decision trees — and as a
standard training set for the pruning phase.

In summary, the strategy we propose in Paper 4 is the following:

1. Split the learning sample randomly into a growing set and a pruning set.

2. Choose one of the available decision tree growing heuristics (or even better,
invent one of your own) and induce a decision tree by applying it to the set
of growing examples.

3. Prune the tree built in the previous step by feeding it and the pruning set
to REP (or your own favorite pruning algorithm — this time deviating from
REP is never advantageous, though, if error bounds are the only concern).
The obtained pruning is the final hypothesis.

4. Evaluate the error bound based on the Rademacher penalty corresponding
to the class of prunings F of the decision tree induced in step 1.

Evaluating the error bound in step 4 can be done efficiently as REP is a linear
time ERM algorithm for the class of prunings of a decision tree. Even multiclass
problems present no problem by the arguments given in the previous section. For
example, if one used REP for pruning anyway, the proposed approach would
provide error bounds for the final hypothesis for the price of two additional runs
of the REP algorithm. Most importantly, the proposed bounds are training set
bounds in that no learning data has to be reserved for testing purposes.

Of course, there is no magic in splitting the learning data into separate growing
and pruning sets — we are still unable to provide non-trivial generalization error
bounds for general decision trees on all learning domains. The bounds we pro-
vide are potentially informative only in case the decision tree induction heuristic
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is successful, i.e., the induced decision tree is both sufficiently small and con-
tains prunings with low generalization error. Otherwise, the hypothesis class we
work in the pruning phase would either be too complex or its hypotheses would
all be inaccurate. The conditions under which heuristic decision tree growing
succeeds may not be easily characterizable, but empirical experiments have unde-
niably shown that decision tree learning performs well on a wide variety of real
world learning domains.

The empirical success of decision tree induction is only a necessary but not a
sufficient condition for our generalization error analysis approach to work well. It
could still be the case that the complexity penalty term in Rademacher penaliza-
tion would overestimate the true complexity of the class of prunings of a decision
tree, thus resulting in loose and uninteresting generalization error bounds. For-
tunately, our experiments on UCI benchmark data sets indicate that our bounds
are tighter than the previous data independent bounds for decision tree prunings
and that they may give information that could be of some value in practice. Still,
the bounds leave room for further improvement as they are on all domains signif-
icantly above the test error bounds.



Chapter 7

Conclusions

The results in this Thesis lie somewhere between theoretical and practical machine
learning. Our primary goal is not to advance the theory itself but only to bring it
closer to practice. An ideal end product of such research would thus be a theoreti-
cally sound machine learning method that works well on real world problems. Of
course, we did not quite reach this ambitious goal – the methods we proposed do
have some theoretical performance guarantees, but they do not perform as well as
the best ad-hoc heuristics for the tasks in question.

Our research on reduced error pruning yielded two-fold results. For decision
trees, we extended the results of previous analyses and provided more rigorous
derivations for some existing results. In particular, the fact that reduced error
pruning is an ERM algorithm for the class of prunings of a decision tree turned
out to be of major importance in our later work. On the other hand, the branching
program version of the reduced error pruning problem turned out to be intractable,
at least if P6=NP. This hardness result further supports our belief that using branch-
ing programs in machine learning is a bad idea.

The first of our generalization error analysis related results is on sample com-
plexity estimation. We highlighted the connection of progressive sampling and
data dependent generalization error analysis, leading to a new data dependent
sample complexity estimation scheme. The proposed progressive Rademacher
sampling methodology is in theory nearly optimal among a wide class of sample
complexity estimates. It also seems to work well in practice – at least better than
the previously introduced theoretically sound methods.

The final result of this Thesis concerns generalization error bounds for prun-
ings of an induced decision tree. These bounds are again based on Rademacher
penalization. This time, however, the hypothesis class is determined by an induced
decision tree and is thus data dependent. The bounds obtained are applicable to all
decision tree learning algorithms that use a separate set of pruning data. To evalu-
ate the bounds, we use the reduced error pruning algorithm for decision trees that
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was studied earlier in this Thesis. Hence, the bound can be evaluated in linear
time. Our empirical experiments suggest that the proposed methodology gives
non-trivial training set bounds that clearly outperform the earlier bounds based on
data independent complexity measures.

As future work, it would be interesting to explore further possibilities of tight-
ening generalization error bounds in the statistical learning framework. Besides
that, it might be fruitful to try to apply techniques similar to the ones used in this
Thesis to other problems in data analysis and computer science in general. For ex-
ample, the methods used in this Thesis can be used to derive generalization error
bounds and sample complexity estimates in semi-supervised and active learning
settings. Methods like Rademacher penalization might also give better sample
complexity bounds for sampling based randomized algorithms, e.g., clustering al-
gorithms based on random sampling. Thus, there still seems to be a lot of work to
be done.
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