
“Indexing” — 2006/10/30 — 13:56 — page i — #1

Department of Computer Science
Series of Publications A

Report A-2006-3

Indexing Heterogeneous XML for

Full-Text Search

Miro Lehtonen

Academic Dissertation

To be presented, with the permission of the Faculty of
Science of the University of Helsinki, for public criti-
cism in Auditorium XII of the Main Building, on 14
November 2006, at 12 pm.

University of Helsinki
Finland

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14916903?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


“Indexing” — 2006/10/30 — 13:56 — page ii — #2

Copyright c© 2006 Miro Lehtonen

ISSN 1238-8645
ISBN 952-10-3452-1 (paperback)
ISBN 952-10-3453-X (PDF)
http://ethesis.helsinki.fi/

Computing Reviews (1998) Classification: H.2.4, H.3.1, I.7.2

Helsinki University Printing House
Helsinki, November 2006 (185+3 pages)



“Indexing” — 2006/10/30 — 13:56 — page iii — #3

Indexing Heterogeneous XML for Full-Text
Search

Miro Lehtonen
Department of Computer Science
P.O. Box 68, FI-00014 University of Helsinki, Finland
Miro.Lehtonen@cs.Helsinki.Fi

Abstract

XML documents are becoming more and more common in various
environments. In particular, enterprise-scale document manage-
ment is commonly centred around XML, and desktop applications
as well as online document collections are soon to follow. The grow-
ing number of XML documents increases the importance of appro-
priate indexing methods and search tools in keeping the information
accessible. Therefore, we focus on content that is stored in XML
format as we develop such indexing methods.

Because XML is used for different kinds of content ranging all the
way from records of data fields to narrative full-texts, the methods
for Information Retrieval are facing a new challenge in identifying
which content is subject to data queries and which should be in-
dexed for full-text search. In response to this challenge, we analyse
the relation of character content and XML tags in XML documents
in order to separate the full-text from data. As a result, we are
able to both reduce the size of the index by 5-6% and improve the
retrieval precision as we select the XML fragments to be indexed.

Besides being challenging, XML comes with many unexplored
opportunities which are not paid much attention in the literature.
For example, authors often tag the content they want to emphasise
by using a typeface that stands out. The tagged content constitutes
phrases that are descriptive of the content and useful for full-text
search. They are simple to detect in XML documents, but also
possible to confuse with other inline-level text. Nonetheless, the
search results seem to improve when the detected phrases are given
additional weight in the index. Similar improvements are reported
when related content is associated with the indexed full-text includ-
ing titles, captions, and references.

iii



“Indexing” — 2006/10/30 — 13:56 — page iv — #4

iv

Experimental results show that for certain types of document
collections, at least, the proposed methods help us find the relevant
answers. Even when we know nothing about the document struc-
ture but the XML syntax, we are able to take advantage of the
XML structure when the content is indexed for full-text search.

Computing Reviews (1998) Categories and Subject Descriptors:
H.2.4 Database management: Systems—Textual

databases
H.3.1 Information Storage and Retrieval: Content

Analysis and Indexing—indexing methods
I.7.2 Document and Text Processing: Document

Preparation—index generation, markup languages

General Terms: Algorithms, Experimentation, Theory

Additional Key Words and Phrases: XML, Full-text search, XML
information retrieval



“Indexing” — 2006/10/30 — 13:56 — page v — #5

Acknowledgements

This thesis has been a long-term project which is now finished after
over three years of writing. For the professional support, I would
like to thank my supervisor, Helena Ahonen-Myka, as well as the
reviewers, Jaana Kekäläinen and Pekka Kilpeläinen. Additional
help with the evaluation of my research was provided by Antoine
Doucet and Benjamin Piwowarski who I am also grateful to.

For inspiration and Tuesday afternoon coffee, I would like to
thank the do-re-mi research group: Helena, Greger, Roman, An-
toine, and whoever made appearances. Special thanks to Juha and
Oskari for the seemingly useless — but so frequent — debates which
always took my mind away from writing and gave me new ideas and
inspiration.

I also thank my fellow musicians, friends, and graduate students
of HOS Big Band for their company at the rehearsals, in pubs, on
concert trips, and anywhere else we went together. All that time
we have spent together keeps my mind fresh and prevents me from
becoming a complete nerd. I appreciate all my other friends, as
well, who have not forgotten me despite my busy schedule.

Finally, I want to thank my family for bearing with me, and,
in particular, my son Elliot for understanding why daddy has been
so busy with work. I am also grateful for Elliot’s grandparents for
babysitting, and my brother for catsitting, because that has given
me more chances to work on this thesis, and Diana, for help with
proofreading. Whatever stress was caused by the writing process
was taken care of by my feline companions — Istvan and Aziz —
who are most reliable stress relievers.

v



“Indexing” — 2006/10/30 — 13:56 — page vi — #6

vi



“Indexing” — 2006/10/30 — 13:56 — page vii — #7

Contents

1 Introduction 1

2 Indexing heterogeneous XML 5
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Right kind of XML . . . . . . . . . . . . . . . 9
2.2.2 Adapting XML to full-text search . . . . . . 12

2.3 Terms and definitions . . . . . . . . . . . . . . . . . 14
2.4 Specialised vs. generalised methods . . . . . . . . . . 16

2.4.1 Specialising in a document type . . . . . . . . 16
2.4.2 Mapping multiple document types . . . . . . 17
2.4.3 Generalising to arbitrary document types . . 19

2.5 Design principles . . . . . . . . . . . . . . . . . . . . 21
2.6 Related work . . . . . . . . . . . . . . . . . . . . . . 22

2.6.1 Unstructured search . . . . . . . . . . . . . . 23
2.6.2 Structured XML retrieval . . . . . . . . . . . 24
2.6.3 XML mining . . . . . . . . . . . . . . . . . . 25

3 XML Fragments 27
3.1 Motivation for fragmentation . . . . . . . . . . . . . 27

3.1.1 Underspecified standard . . . . . . . . . . . . 28
3.1.2 Optimisation of bandwidth . . . . . . . . . . 29
3.1.3 Topical diversity . . . . . . . . . . . . . . . . 30
3.1.4 Displays with a limited resolution . . . . . . 31
3.1.5 Structural heterogeneity . . . . . . . . . . . . 31
3.1.6 Common and distinctive features . . . . . . . 32

3.2 Fragments for full-text retrieval . . . . . . . . . . . . 33

vii



“Indexing” — 2006/10/30 — 13:56 — page viii — #8

viii Contents

3.2.1 Complete units for Information Retrieval . . 34
3.2.2 Examples of XML Full-Text fragments . . . . 36

3.3 Granularity levels . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Evidential full-text fragments . . . . . . . . . 39
3.3.2 Statistical full-text fragments . . . . . . . . . 43

3.4 Measuring the probability of full-text . . . . . . . . . 45
3.4.1 Full-text indicators . . . . . . . . . . . . . . . 45
3.4.2 Entity references in element content . . . . . 48
3.4.3 Independence of document types . . . . . . . 49
3.4.4 Qualified full-text fragments . . . . . . . . . . 52

4 Selection of indexed fragments 55
4.1 An ideal collection of fragments . . . . . . . . . . . . 55

4.1.1 Content to be included . . . . . . . . . . . . . 56
4.1.2 Fragments as individual entities . . . . . . . . 57

4.2 Structural issues . . . . . . . . . . . . . . . . . . . . 58
4.3 Discarding data fragments . . . . . . . . . . . . . . . 61

4.3.1 Data and full-text separated . . . . . . . . . . 61
4.3.2 Criteria for separating full-text from data . . 62

4.4 Algorithm for fragment selection . . . . . . . . . . . 63
4.4.1 Requirements . . . . . . . . . . . . . . . . . . 64
4.4.2 Parameters for the algorithm . . . . . . . . . 64
4.4.3 Tree traversal . . . . . . . . . . . . . . . . . . 65
4.4.4 Example articles divided into fragments . . . 68
4.4.5 Finding the maximal number of fragments . . 71

4.5 Evaluation of fragment selection . . . . . . . . . . . 73
4.5.1 Measured qualities . . . . . . . . . . . . . . . 73
4.5.2 Division examples evaluated . . . . . . . . . . 75
4.5.3 Ideal fragment selection . . . . . . . . . . . . 76

5 Fragment expansion 79
5.1 Markup semantics . . . . . . . . . . . . . . . . . . . 80

5.1.1 Writer’s point of view . . . . . . . . . . . . . 80
5.1.2 Semantic units of XML . . . . . . . . . . . . 82

5.2 Analysis of full-text fragments . . . . . . . . . . . . . 84
5.2.1 Referred and related content . . . . . . . . . 84
5.2.2 Changes in the typeface . . . . . . . . . . . . 89

5.3 Indexing expanded fragments . . . . . . . . . . . . . 94
5.3.1 The vector space model for XML documents 95



“Indexing” — 2006/10/30 — 13:56 — page ix — #9

Contents ix

5.3.2 Weighting methods . . . . . . . . . . . . . . . 96
5.3.3 Selecting the fragment expansion techniques . 98

6 Dividing the INEX collection into fragments 101
6.1 Overview of the document collection . . . . . . . . . 101
6.2 University of Helsinki at INEX 2003 . . . . . . . . . 104
6.3 EXTIRP 2004: Towards heterogeneity . . . . . . . . 105

6.3.1 INEX XML documents analysed . . . . . . . 106
6.3.2 Fragment selection with derived parameters . 108

6.4 Comparison to other approaches . . . . . . . . . . . 113

7 Test methodology 115
7.1 Fragment collections under testing . . . . . . . . . . 115
7.2 Test runs . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.1 Queries . . . . . . . . . . . . . . . . . . . . . 118
7.2.2 Baseline process . . . . . . . . . . . . . . . . 119
7.2.3 Additional options . . . . . . . . . . . . . . . 120

7.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 121
7.3.1 Relevance assessments . . . . . . . . . . . . . 121
7.3.2 Quantisation of the assessments . . . . . . . . 122
7.3.3 Metrics: inex eval ng, GR, and PRUM . . . 123
7.3.4 Ideal answer sets . . . . . . . . . . . . . . . . 125

7.4 Future work . . . . . . . . . . . . . . . . . . . . . . . 128

8 Results and evaluation 131
8.1 Baseline performance . . . . . . . . . . . . . . . . . . 131
8.2 Full-text content required . . . . . . . . . . . . . . . 135
8.3 Relevant links . . . . . . . . . . . . . . . . . . . . . . 140
8.4 Emphasis on the emphasised . . . . . . . . . . . . . 143
8.5 Titles as fragment descriptors . . . . . . . . . . . . . 150
8.6 Case study: Topic 124 . . . . . . . . . . . . . . . . . 154
8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . 157
8.8 Other granularities . . . . . . . . . . . . . . . . . . . 159

9 Conclusions 163

References 165

A Big article divided into fragments 187



“Indexing” — 2006/10/30 — 13:56 — page x — #10

x Contents



“Indexing” — 2006/10/30 — 13:56 — page 1 — #11

CHAPTER 1

Introduction

Information Retrieval is one of the oldest research areas currently
classified as a Computer Science. Despite its shorter history, the
Extensible Markup Language (XML) — the other essential research
subject of this thesis — has become widely accepted as a common
format for both documents and data. Combining the two into XML
Information Retrieval has given spark to publications since the turn
of the millennium, which means that this active field of research is
still relatively young.

The concept of a document makes XML retrieval fundamentally
different from the traditional kind of Information Retrieval. While
documents have traditionally been atomic units that are indexed
and retrieved independently of each other, XML documents merely
represent the largest logical units of XML that may comprise any-
thing between a single XML element and a whole document col-
lection. Therefore, we retrieve XML elements, or, more generally,
XML fragments, instead of retrieving whole documents. Despite
the structure of the retrieved answers, the format is considered ir-
relevant as long as the information need is satisfied. For example,
relevant answers may include the chapters of a book, sections of an
article, subsections of a thesis, or even a single paragraph about the
topic of the query. What satisfies the information need is not the
structure but the sole content.

Although the structured nature of XML facilitates queries on
the document structure in addition to allowing queries on the con-
tent, in this thesis we will concentrate on the traditional full-text
queries that only consist of search terms such as keywords and key

1



“Indexing” — 2006/10/30 — 13:56 — page 2 — #12

2 1 Introduction

phrases. The notion of full-text will be used in the same sense as
defined in the ISO/IEC 13249 standard [ISO00] as well as the W3C
specification of the full-text extension to the XML query language
XQuery 1.0 [W3C05b]. The content that is subject to full-text
querying is composed of complete sentences rather than individual
words. In contrast, XML documents without full-text content typ-
ically consist of data items that are rarely sentence-level objects, if
they contain any text at all.

Specialising in retrieval methods for heterogeneous XML docu-
ments, which requires that the XML retrieval methods generalise,
has turned out to be a challenging research direction with few suc-
cessful efforts so far at tackling the problems. By definition, a het-
erogeneous collection of XML documents contains documents that
represent several different document types. Independence of the
document types thus increases the suitability of the methodology
for heterogeneous XML as it can be applied to arbitrary XML doc-
uments. Moreover, the generalising methods are necessary if the
document type and the document structure are unknown either to
the user inputting queries or to the application evaluating them.

When we compare traditional full-text retrieval systems to those
that specialise in XML, the major differences lie in the indexing
methods. As a document is simply not the best or the only indexed
unit of XML, we need more sophisticated ways to store XML doc-
uments in a full-text index. Keeping in mind that there are loads
of previous work on Information Retrieval, we may choose from
two different approaches to indexing XML documents: 1) either
the legacy methodology is made aware of the XML markup, or 2)
the XML documents are adapted to full-text search by reducing
the significance of the markup. By choosing the latter approach,
we effectively avoid the need for new methods for relevance compu-
tation, and instead, we may focus on supporting the state-of-the-
art methods. For example, in terms of similarity-based relevance
computation, we rely on such traditional concepts as the Vector
Space Model [SWY75], which, in this thesis, is first challenged with
XML documents, analysed for requirements, and, finally, adopted
for XML fragments.

The main contributions of this thesis include an algorithm for
dividing arbitrary XML documents into indexed fragments that
contain full-text as well as three techniques of fragment expansion



“Indexing” — 2006/10/30 — 13:56 — page 3 — #13

3

which modify the weights of the content of the indexed fragments
in order to improve retrieval precision. A great deal of the work
is based on the contrast between data and full-text which plays an
important role in the definitions for different types of XML frag-
ments. By studying the properties of data and full-text content, we
avoid dependence on particular document types and, consequently,
develop methods suitable for heterogeneous XML documents. The
main contributions will also undergo initial testing that should pre-
dict future research prospects for this topic.

This thesis is organised as follows. The research conducted for
this thesis is put into perspective in Chapter 2 by introducing re-
lated work and separating the in-scope research questions from
those that fall outside the scope. In Chapter 3, we review nu-
merous definitions for XML fragments and also present a few of
our own in order to have a normative basis for the fragment selec-
tion algorithm presented in Chapter 4. Once the indexed fragments
have been selected, we study various ways to expand the fragment
content in Chapter 5. The first contribution currently being tested
is the algorithm for fragment selection, which is applied to a rather
large document collection in Chapter 6. The methodology for test-
ing how choices made in fragment selection and fragment expansion
affect the retrieval quality is described in Chapter 7, which is fol-
lowed by the application of the test methodology in Chapter 8, in
which the results are also analysed. The final conclusions are drawn
from both the results and the research in this thesis in Chapter 9.



“Indexing” — 2006/10/30 — 13:56 — page 4 — #14

4 1 Introduction



“Indexing” — 2006/10/30 — 13:56 — page 5 — #15

CHAPTER 2

Indexing heterogeneous XML

Indexing text documents is found at the core of many applications
of Information Retrieval, such as web search engines, web crawlers,
and systems for XML Retrieval. The former have traditionally spe-
cialised in certain document formats such as HTML, PDF etc. by
analysing and utilising the structure of the documents in addition
to processing the plain text. The research in this thesis focuses
on the latter as they index XML documents. Why we want to spe-
cialise in XML documents is motivated in Section 2.1 and the scope
of this thesis is further defined in Section 2.2. In order to improve
the accessibility of this thesis, important terminology and concepts
are defined in Section 2.3. The common approaches to indexing and
interpreting XML documents are introduced in Section 2.4 which
is followed by the principles in Section 2.5 that guide the research
in this thesis. Section 2.6 is a brief overview on the related work.

2.1 Motivation

The completion of the Recommendation for the Extensible Markup
Language [W3C98] in 1998 was one of the first milestones in the his-
tory of the World Wide Web Consortium1 (W3C) that started the
rapid growth of the family of standards related to XML. Another
significant milestone was reached in 2000 when the development of

1http://www.w3.org/

5



“Indexing” — 2006/10/30 — 13:56 — page 6 — #16

6 2 Indexing heterogeneous XML

the SGML-based web document language HTML was superseded
by that of the first XML compliant version called XHTML [W3C02]
which has also been the basis for the future versions. Despite the
widespread approval of the W3C specifications, the success of XML
on the web has had a slow start because of some XHTML-related
problems which are nicely pointed out in the famous article by Ian
Hickson2. However, XML and the related standards have become
a permanent addition to the set of common web technologies, and
the status of XML as a common document format is expected to
get stronger in the future. A piece of supporting evidence for this
prediction is found in the syndicated newsfeeds on web pages which
have become one of the first real breakthroughs for XML on the web
[Rai05].

XML has had more success stories as the document format of
enterprise-scale document collections such as the Vaisala3 techni-
cal documents [LPHL02] which have been produced in XML since
the early 00’s. Other common examples include legal documents4

and news articles [WDM+02]. These document collections typically
cover a single domain but several different document types are pos-
sible. The XML format of the source documents gives easy access
to publishing through multiple output channels in multiple output
formats. In a common scenario, legacy document collections are
converted into XML to be used in a system for XML-based doc-
ument assembly [Leh01] or some other corresponding publishing
system. The next step in the development of such systems is to
implement the search features that make the contents of the doc-
uments accessible throughout various applications and through a
single search interface.

In the near future, we are likely to see even more XML docu-
ments created by desktop applications when the Microsoft Office
Open XML Formats become the default document formats for the
new versions of Microsoft Office Word, Excel R© and PowerPoint R©
included in the upcoming Office 12 suite. The expected time of
release is scheduled for the second half of the year 2006. The wide
popularity of the software makes this a significant change towards

2http://www.hixie.ch/advocacy/xhtml
3http://www.vaisala.com/
4http://www.legalxml.org/



“Indexing” — 2006/10/30 — 13:56 — page 7 — #17

2.1 Motivation 7

more interoperable document formats. The killer application could
be a high-quality search system that indexes the full-text of the
locally stored documents and, in addition, specialises in the XML
format.

Now that we have some faith in XML being or becoming the de
facto document format in various domains, we move on to moti-
vate XML-specific Information Retrieval. The importance of this
research as well as the widely spread interest in the topic are well
expressed in the great number of participating institutions in the
Heterogeneous Collections Track of the INEX 20045 and 2005 ini-
tiatives6 which have been the common ground for researchers in the
field of XML retrieval. For full-text retrieval, the major goal of the
“het track” is the development of methods that are independent
of the document type [SR05]. Despite the popularity of the track,
only one session in the INEX 2004 workshop was devoted to het-
erogeneous collections, which reflects the challenges of the field. In
2005, the schedule of the het track was stretched past the workshop
so that heterogeneous collections were not discussed in a separate
session despite being the topic of the most popular optional track.

The previous work in the field of indexing XML documents
for full-text search can be divided into two categories: 1) tradi-
tional indexing methods for plain text and hypertext documents,
and 2) quite recently developed methods for storing text in XML
databases. Methodology in the first category is applicable to het-
erogeneous XML documents but it often falls short in its negligence
of the additional markup. At best, the methods assume the HTML
structure of the indexed documents. From that point of view, there
is a need for the traditional methods to take advantage of the na-
ture of XML: all the content has been marked up, and we may
know more about the content than how it should be presented in
a visual form. The second category consists of methods that rely
on well-defined XML structures. Making these methods compat-
ible with arbitrary XML documents is a major challenge as the
efficient indexing of XML data requires highly optimised processes,
which in turn shows in the dependence on a single document type.
What textual databases seem to need the most is more flexibility so

5http://inex.is.informatik.uni-duisburg.de:2004/
6http://inex.is.informatik.uni-duisburg.de/2005/



“Indexing” — 2006/10/30 — 13:56 — page 8 — #18

8 2 Indexing heterogeneous XML

that the indexing methods scale to a number of different document
types without having to define the correspondence of different XML
vocabularies.

The current work on XML Information Retrieval started at a
higher volume in 2002 when the first round of the INEX Initiatives
was organised. Right from the beginning, the participants were clas-
sified by their approaches as members of either the database com-
munity or the IR community [FGKL02]. The departure from the
traditions has been slow but the communities have at least found
each other: many systems combine features from both databases
and traditional IR. For example, the Hyper-media Retrieval En-
gine for XML (HyREX) [FGG02] implements the XIRQL query
language [FG01] where prespecified types of elements are indexed
into data structures that correspond to tables of a database —
each one for a single element type. The relevance of the elements
is computed with similarity measures adopted from traditional IR
as if the XML elements were independent documents. The short-
comings of HyREX are similar to those in previous research: only
a single document type is supported, whereas the analysis of the
XML structure is limited to defining the boundaries between the
indexed document fragments which, in practice, are subtrees of the
parsed XML documents.

The research presented in this thesis does not originate in the
DB community, nor is it greatly inspired by research in the IR
community. Instead, the original approach to XML Retrieval in
this thesis comes from the XML community, which, among the
INEX participants, has been a unique background once filed under
the heading “Other models” in the workshop proceedings [FLM04].
Consequently, the problems that non-native XML methodology has
to face can be effectively avoided by taking XML as the focal point
of the research.

The role of the physical structure of the indexed documents is an
example of the fundamental differences between related work and
the work presented in this thesis. As XML defines the logical struc-
ture of documents, we completely ignore how the documents are
stored in the file system. In the XML-centric approach, we process
and analyse the parsed XML documents, whereas in related work,
the indexed document collection is often described as a set of XML
articles or even XML files [TO04]. Discarding the physical docu-



“Indexing” — 2006/10/30 — 13:56 — page 9 — #19

2.2 Scope 9

ment structure is essential when the methods should be applicable
to heterogeneous XML documents. However, such methods have
not yet been described in related work.

2.2 Scope

The scope of the research in this thesis has two dimensions. The
first one in Section 2.2.1 deals with what makes XML documents
relevant to this research, and the second dimension in Section 2.2.2
focuses on how the relevant XML is processed. We also identify
some interesting research questions that fall outside the scope of
this thesis, and as for the moment, the questions remain open for
future research.

2.2.1 Right kind of XML

Heterogeneity of the XML documents was one of the most impor-
tant inspirations for starting this research, so there should not be
any kind of XML that our methodology could not handle. The well-
formedness of the documents is a minimum requirement, though,
and in this thesis, XML shall be short for well-formed XML. Valid-
ity of the XML documents is not required.

Although we want to be able to handle any kind of well-formed
XML, it would be näıve to think that any kind of XML could be
useful for the purposes of Information Retrieval. Therefore, we
have to define the kind of XML documents that are potentially
interesting to us. One way to decide between the right and wrong
kind of XML is to ask whether the document is mainly intended for
publication in a readable format, as that kind of documents most
likely contain full-text that can be searched. Typical examples of
such XML documents include books, scientific articles, magazines,
journals, blogs, newsfeed articles, and other tagged text documents.
Another point of view is to think of whether traditional search
engines can index the document if the format is first changed into
plain text. In fact, we are interested in indexing the same kind of
full-text documents that were indexed before the XML era. As a
summary, the scope of this research covers full-text XML documents



“Indexing” — 2006/10/30 — 13:56 — page 10 — #20

10 2 Indexing heterogeneous XML

which are defined as any XML documents with at least some full-
text content with no restrictions on the topical domains covered.

Although web pages using XML fall inside the scope, neither
XHTML nor any other single document type is given special atten-
tion. Moreover, hyperlinks and other references between different
documents are ignored, and documents containing shared fragments
are treated as independent documents, not as a set of web pages
sharing content.

The right kind of XML comes in a number of different logical for-
mats with varying degrees of heterogeneity. At least, the following
cases are possible:

A large document collection For example, a WWW-scale in-
dex contains billions of full-text documents representing sev-
eral different document types.

Heterogeneous document collections Enterprise-scale document
collections typically contain documents of several different
document types as they may consist of several homogeneous
collections.

Homogeneous document collections Document collections with
a single domain usually contain documents of a single docu-
ment type, but when it comes to the size, the documents still
seem heterogeneous.

Oversized XML documents Sometimes it may be handy to present
a whole collection of documents under a single root element,
which leads to documents that are too big or too incoherent
to be seen as one unit of interest. These documents have to
be divided into fragments of digestible size.

Whether small XML documents with little amounts of full-text
are the right kind of XML may be disputed, but including them in
the scope should be rather safe as traditional methods for IR already
can handle small documents, e.g., by normalising the document
length. Although the documents may contain unparsed entities,
such as images, video, or multimedia, we will only take into account
the content as far as it can be parsed. The physical structure into
which the XML documents have been serialised is irrelevant. For



“Indexing” — 2006/10/30 — 13:56 — page 11 — #21

2.2 Scope 11

example, we are not interested in how many files or entities an XML
document consists of.

Equally important to defining what kind of documents are rele-
vant to this research is to present examples of XML documents that
fall outside the scope of this thesis. The first major category of XML
documents that we will not be indexing is XML data which could
be seen as the content of XML databases. Processing and querying
XML data with techniques that originate in the IR communities
is hardly meaningful. Besides, appropriate techniques for handling
such data already exist, and, to a large extent, they can be adopted
from the world of databases. Therefore, data in XML databases
and XML documents will be neglected despite of its XML format.
Program-readable and purely transactional XML is another major
category that falls outside the scope. The typical documents in
this category are often generated automatically, and transformed,
interpreted, and processed by applications. The common document
types for program-read XML include XML Stylesheets7, SOAP8,
and SMIL9.

One of the few classifications for the document types of XML
was presented by Choi who categorised DTDs into three classes
according to their purpose [Cho02]:

1. Database-like data, e.g. baseball statistics.

2. Data interchange between applications, e.g. bookmark ex-
change.

3. Document markup and metadata, e.g. dramatical plays.

Although his examples may seem outdated, the categorisation
is still sound as it differentiates data from text documents. As we
already discarded the first two categories as irrelevant, the third
category is the only one of interest in this thesis. However, the
problem with these categories is the same problem as with the
scope definition: not all XML documents belong to any single class.
For example, Really Simple Syndication (RSS)10 documents which

7http://www.w3.org/Style/
8http://www.w3.org/2000/xp/Group/
9http://www.w3.org/AudioVideo/

10http://web.resource.org/rss/1.0/spec



“Indexing” — 2006/10/30 — 13:56 — page 12 — #22

12 2 Indexing heterogeneous XML

describe syndicated XML feeds are processed by applications, but
they also contain both data and full-text. With the support of XML
Namespaces, we may have arbitrary combinations of different kinds
of content in one XML document.

The grey area of the document type spectrum a.k.a. the XML
usage spectrum has been recently described in the literature as a
continuum instead of a binary division into data and documents. In
2003, Charles Goldfarb stated that “...there is no longer a differ-
ence in kind between the two, only a difference in degree” [Gol03].
Further support was provided by Glushko and McGrath in 2005
who find that “...difficult distinctions arise in the middle of the
Document Type Spectrum where documents contain both narrative
and transactional features” [GM05]. The documents that belong to
this grey area are especially relevant to the thesis due to the chal-
lenge of separating the document fragments that can be indexed for
full-text search from those that could be queried as data.

2.2.2 Adapting XML to full-text search

The right kind of XML is rarely ready to be indexed for full-text
search, as it is. For one thing, it is usually too heterogeneous, and
for another, it has unused potential that goes beyond the capabili-
ties of traditional indexing methods for plain text or even hypertext
documents. In this thesis, we investigate two major issues concern-
ing full-text documents in XML format. The first research question
concerns how the right kind of XML can be automatically
recognised, and whether the recognition of the wrong kind of XML
also is necessary. The second research question is about how the
heterogeneous XML can be indexed so that the traditional
indexing methods are applicable, in particular those that re-
gard documents as a bag of words. In the approach chosen for this
research, XML documents are indexed as a collection of indepen-
dent XML fragments which have also been called index nodes in
recent literature11 [FG01].

Selecting the indexed fragments is one of the key areas of interest,
as the concept of a document has significantly changed from that in

11The term “index node” was originally introduced by Fuhr and Großjohann

in the context of the query language XIRQL.



“Indexing” — 2006/10/30 — 13:56 — page 13 — #23

2.2 Scope 13

traditional Information Retrieval. Web search engines have faced a
similar problem which has led to the block-level searching of web
pages [CYWM04]. Another feature that we want to adopt from the
modern web search methodology is that the structure of web pages
and HTML documents is analysed to the fullest by www-robots
and search engines that index web pages. A similar yet different
analysis of XML documents helps apply different weighting schemes
to the indexed XML fragments.

Combining the traditional indexing methods with the analysis
of the XML structure is not a trivial workout, either, as it involves
the removal of the XML markup without losing the information
it encodes. Moreover, the resulting plain text fragments should
have the properties of traditional documents so that they can be
prepared for querying. Whatever can be done to XML documents
before the markup is removed is included in the scope of this thesis.

The following research questions are related to the major topics
of this thesis either through the settings of the evaluation or through
the challenges in realistic application areas.

Element score computation Various language and retrieval mod-
els as well as techniques related to Natural Language Pro-
cessing (NLP) may be applied to the computation of element
relevance. However, investigating or evaluating such methods
is a wide area of research that, though closely related, is not
regarded in this thesis in much detail.

Element score combination and propagation Related to the
computation of the element scores, we need score combina-
tion or propagation methods when the relevance to a query
is computed for disjoint fragments only. The relevance of the
parent elements is computed recursively with these methods
based on the relevance scores of the children. Upward prop-
agation of scores is also known as the augmentation method
for which various weighting techniques have been proposed
[FG01, GS02, Leh05, TSW05]. In addition, Mihailović et al.
considered the downwards propagation of scores [MBHA05].
When all the elements in the XML documents are associated
with a relevance score, it is rather simple to determine the
relative ranking for elements representing different granulari-
ties.



“Indexing” — 2006/10/30 — 13:56 — page 14 — #24

14 2 Indexing heterogeneous XML

Presentation of the search results Depending on the user model,
we may request the search results to be presented as a list of
pointers or as a list of links to relevant standalone documents.
The biggest challenge lies in the results that originate in the
same document or even overlap with each other. Grouping
these results by the source documents easily interferes with
the original relevance-based ranking.

Formatting XML without stylesheets The standalone documents
consist of arbitrary XML fragments. Even if the document
type is known, stylesheets may not be available or they may
not be applicable to a single document fragment, which makes
other methods necessary for displaying the search results.
Ahonen et al. proposed an approach as early as in 2000
[AMHHK00] but few other proposals have been seen since
then.

Anti-spamming techniques As indexing methods develop, so do
the spamming techniques which are supposed to increase the
visibility of the documents by deception. The anti-spamming
techniques are often one step behind in the race. Nevertheless,
more widespread use of XML search engines is required for the
race to begin.

Although some of these topics have already been covered in re-
cent literature, all of them are still subject to further research.

2.3 Terms and definitions

This section is devoted to descriptions and definitions of the essen-
tial terminology used in this thesis. Most of the terms introduced
are related to XML which is not always clearly described in the
scientific literature. The use of the following terms and concepts in
this thesis should not contradict with how the identical terms are
used in the W3C specifications, however, there might be examples
of conflicting usage of the terms in the scientific literature.

XML document Access to document content including XML el-
ements and text is provided through XML documents which



“Indexing” — 2006/10/30 — 13:56 — page 15 — #25

2.3 Terms and definitions 15

are the largest units of XML that have to be processed at one
time. In this thesis, bigger units such as XML collections are
processed serially, one XML document at a time.

XML element XML elements consist of the start tag, element
content, and the end tag, with the exception of empty ele-
ments that only consist of the empty element tag.

Content model The content model of an XML element defines
what kind of content is allowed for a particular element type,
such as the names and order of child elements, text content,
or empty content.

XML tag A tag name enclosed in angle brackets makes an XML
tag. In addition, end tags come with a slash before the tag
name and empty element tags with one after the tag name.

XML fragment The somewhat vaguely defined unit which can be
bigger than an XML element but smaller than a whole XML
document is called an XML fragment. Numerous definitions
are regarded in Chapter 3.

Root element The outermost XML element such as the first ele-
ment of an XML document is the root element of the docu-
ment. XML fragments may have more than one root element,
but the definition is similar: elements not enclosed within
other elements are fragment root elements.

Text The text content of an XML document may occur in two
kinds of environments: in the element content and in the
start tag as an attribute value. Any other content including
comments and tag names is not considered to be text content.

Nodes XML documents are often discussed in their parsed tree
representation, which is when documents, elements, and text
all become nodes of the document tree.

Node type Each node is associated with a type, e.g., elements are
parsed into element nodes, and text is parsed into text nodes.
The capitalised Node Type refers to the DOM Node Type
such as the Element Node and the Text Node.



“Indexing” — 2006/10/30 — 13:56 — page 16 — #26

16 2 Indexing heterogeneous XML

Overlapping elements The content of nested elements comes with
overlap by definition. When document trees are considered,
ancestor nodes overlap with their descendants.

Inline elements An element with text node siblings is an inline
element.

Block-level elements Any element with text node children but
without text node siblings can be called a block-level element.
In practice, a block-level element starts a new line.

2.4 Specialised vs. generalised methods

What we know and what we can safely assume about the indexed
XML documents set the basis for the methods chosen for the in-
dex construction. As a rule of a thumb, the more we know about
the document structure, the more we can specialise in the type of
the indexed documents, and also, the more we assume about the
structure, the more we actually do specialise. In this section, we
study what specialising in a document type involves. First, we re-
gard the problem from the viewpoint of a single document type
in Section 2.4.1. Several different document types are considered
in Section 2.4.2 which is followed by discussion about generalised
methods in Section 2.4.3, where no specialisation is allowed at all.

2.4.1 Specialising in a document type

Indexing methods that specialise in a certain document type are
appropriate when the document type is known or at least assumed.
For example, a famous web search engine that specialises in the
html document type has made the following announcement:

“Google12 goes far beyond the number of times a term appears
on a page and examines all aspects of the page’s content (and the
content of the pages linking to it) to determine if it’s a good match
for your query.”

When interpreted, the message says that besides relying on meth-
ods for flat text retrieval, Google analyses the structure of the

12http://www.google.com/



“Indexing” — 2006/10/30 — 13:56 — page 17 — #27

2.4 Specialised vs. generalised methods 17

HTML (and XHTML) documents including assumptions about the
semantics of the structure.

Indexing methods relying on information specific to a document
type require a manual analysis of the DTD or the Schema defi-
nition. Valid document instances should also be analysed if very
irregular structures are typical of the documents. Based on the
analysis, element types are given meanings, roles, and heuristic in-
dexing instructions. These guidelines for indexing could declare,
for example, that the <title> element shall contain the title of the
document and it shall be given an appropriate weight in the index,
or that <p> element shall contain full-text to be indexed and only
the element content shall be considered [LZC04].

Applying the specialised indexing methods requires the identifi-
cation of the document type, which is usually based on the docu-
ment type declaration13 that refers to a DTD, or a reference to a
Schema definition. If the DOCTYPE declaration is missing or if the
document is not valid, we need other ways to identify the document
type of a single document. The name of the document element and
other common elements usually provide useful evidence when de-
termining the document type. Alternatively, we may assume the
document type, in particular when validity is not required. For
example, web search engines and browsers typically assume that
files with the extension .html are HTML documents. Internet Ex-
plorer (IE) 6.0 goes even further by ignoring both the extension
.xml and the XML declaration, given that the root element is html,
and the MIME type text/html is assumed for all XHTML docu-
ments. Applications can specialise in any XML document type in
a similar fashion.

2.4.2 Mapping multiple document types

When the indexed documents represent several document types, we
may want to specialise in each type separately. If the types are sim-
ilar enough, we can save some of the trouble by mapping equivalent
or compatible elements (or paths) between different document types
and translate either the queries or the resulting answers accordingly.

13In XML documents, the declaration starts with <!DOCTYPE, and it often

follows the XML declaration.



“Indexing” — 2006/10/30 — 13:56 — page 18 — #28

18 2 Indexing heterogeneous XML

The mapping is performed manually, or semi-automatically at best,
after a careful analysis of the document type definitions. Special-
ising in each document type thus requires a learning process which
can hardly be automatic or unsupervised. Therefore, specialised
methods are not suitable for anything larger than enterprise-scale
collections with a limited number of different document types and
low volatility in document type definitions.

The actual mappings include the typical one-to-one, one-to-many,
and many-to-one relations between path expressions that consist
of elements, attributes, and attribute values. The problems and
challenges are also typical as they are similar to those in feder-
ated databases [SL90, Col97], ontology mapping [Cha00, DMD+03,
MFRW00], and view generation [ACM+02, JH01]. Thanks to the
mappings, both federated databases and heterogeneous XML col-
lections are queried and searched using a common query language
with the illusion that the user is accessing either a single database
or documents of a single document type. This way, a heterogeneous
collection of XML documents is treated as multiple homogeneous
collections where document-type specific assumptions are applied
to each homogeneous subcollection.

How practical and useful the mappings turn out to be depends
largely on how accurately the document type definition describes
the document instances. The success of a mapping can be estimated
by measuring the amount of variance allowed in valid documents.
If the documents show great structural variance, the DTD does not
accurately describe all the valid documents, and the mappings can-
not thus be very reliable. However, a bigger challenge is caused by
document types that are so incompatible that mappings between
types cannot be defined. For example, mappings between docu-
ment types that describe the presentation of the content and those
that describe the semantics thereof are nearly impossible to define
because of the different semantics of the XML vocabularies.

Mappings can be defined within a single document type, too. Ac-
cording to the INEX 2003 guidelines for topic development [KLM03],
the interpretation of the Vague Content-And-Structure (VCAS)
queries implies the equivalence of elements that belong to the same
group. For example the section elements sec, ss1, ss2, and ss3
are considered equal in the evaluation of the search results. The
equivalence classes of the INEX VCAS queries were defined by a



“Indexing” — 2006/10/30 — 13:56 — page 19 — #29

2.4 Specialised vs. generalised methods 19

team of INEX activists who analysed the groupings of the element
type definitions in the DTD. If equivalence classes are defined for
other document types, the similarity of the content models may
also be taken into account.

2.4.3 Generalising to arbitrary document types

Even if the indexing methods could be trained to handle documents
of several different types, we need generalised methods that make
no assumptions specific to a document type. In particular, XML
documents with full-text content often employ document types that
allow irregular and unpredictable structures to such an extent that
the assumptions about the document type go simply wrong. For
example, a typical element type definition does not set any limit for
the size of its full-text content. Although the size of an article ele-
ment in the INEX test collection14 varies between 186 and 228,112
characters, it is a common misconception, e.g. in [FGKL02], that
there is a one-to-one correspondence between scientific journal ar-
ticles and XML elements called article. By looking more closely,
one finds a diversity of papers between the article tags including
indices, errata, lists of reviewers, and calls for papers.

Besides the intentional heterogeneity of document structures,
there is a lot of room for unintended inconsistency due to the dif-
ferent practices of document authors. In particular, automatic con-
version processes from other document formats into XML further
increase the risk of inconsistent usage of the designated markup.
Again, the INEX test documents are a good source of examples.
The DTD defines certain element types for titles, but not all of the
title elements contain titles in the actual documents. Moreover,
some of the titles in the documents are not contained in any title
element. Such findings make the reliance on document type def-
initions seem quite prone to errors. Yet another reason to avoid
the specialisation into certain document types is spamming which
can be based on the misuse of element names. The HTML meta
(keywords) element used to be a good example of spamming that
is specific to a document type.

14See Section 6.1 for more details.



“Indexing” — 2006/10/30 — 13:56 — page 20 — #30

20 2 Indexing heterogeneous XML

Even when we do not specialise in any particular document type,
we do specialise in XML documents with full-text content. Not
much can be assumed about the vocabulary of the XML structures,
but we do have a lot to analyse in the pure XML syntax of the doc-
uments. For example, every XML element has a content model, a
size, and a position in the document which is related to the other
elements of the document. The elements may also have attributes
and text content. Both elements and attributes may be assigned
types that are common to all XML documents, e.g. the atomic data
types of XML Schema. Assumptions about the meaning of content
models, size, types, etc., concern all XML documents regardless of
their document type, and they are thus applicable to heterogeneous
XML documents. The major difference from the specialised meth-
ods is that the assumptions only apply to the document instances,
whereas the document type definitions need not be analysed at all.

Not assuming anything about the document type serves the pur-
pose of developing indexing methods that apply to arbitrary XML
documents, e.g. all the documents in a heterogeneous collection.
However, regularities and heuristic rules that are based on analysing
the documents might not be very reliable if too much heterogeneity
is involved. For example, the size and the type of the text content is
strongly dependent on the language, text orientation, the character
set, and the encoding. If all the details were taken into account,
the complexity of the methods would increase to such proportions
that the specialised methods might even be less error-prone in com-
parison. A possible solution to the complexity of the generalised
methods could be the combination of specialised and generalised
methods. For example, if the DTD is available, we may scan the
DTD for attribute list definitions and learn which ones are of types
ID or IDREF(S), which is faster and more reliable than trying to
detect the same attributes in the valid XML documents [BM03].

These hybrid indexing methods that allow the limited use of the
document type definitions are appropriate in cases that involve a
limited number of document types, e.g. an enterprise-scale doc-
ument collection. What is a reasonable amount of specialisation
depends on the nature of the collection: how regular the document
structures are, how the XML is produced, etc. If the documents are
still too heterogeneous for the indexing methods, we may have to
resort to indexing only what can be reliably indexed and recognising



“Indexing” — 2006/10/30 — 13:56 — page 21 — #31

2.5 Design principles 21

the rest of the documents where the methods do not apply.

2.5 Design principles

So far, we have described what kind of XML we want to process and
what kind of processing awaits the indexed XML documents. In the
previous section, the common approaches to indexing XML were
compared with each other. In this section, we make the necessary
choices and set the goals for the research conducted for this thesis.
The major pinciples are introduced in the following paragraphs.

Information specific to a document type is disregarded. In-
dependence of document types and document structures is con-
sidered important because we want to be able to index heteroge-
neous XML collections. By applying generalised methods to the
documents actually makes them seem homogeneous. Meanwhile,
analysing document types manually becomes unnecessary.

Documents are indexed independently of each other. The
order of indexing should make no difference in the outcome, which
implies that we can index one XML document at a time and that
the document representation in the index is independent of the
other indexed documents. Consequently, the indexing methods are
scalable, and the large size of a document collection will not be a
problem.

Information accessible through the W3C DOM representation
only is considered. Because validating XML parsers do not have
to report details related to the physical properties of the document
such as ignorable whitespace, parsed entities, and file names, we
cannot rely on information about the physical structure of the doc-
uments. However, we do assume that the logical structure of the
documents is provided by a compliant DOM parser.

Traditional relevance and document models are applied. De-
spite the differences between highly structured XML documents
and the traditional plain text documents, existing methods for In-
formation Retrieval should be applicable after some adaptation of
the XML documents. The adaptation of XML documents to the
models of traditional IR is actually one of the main contributions
of this thesis.



“Indexing” — 2006/10/30 — 13:56 — page 22 — #32

22 2 Indexing heterogeneous XML

The indexing methods are independent of queries. Some
users require more in their query than just the topical relevance
of the answers: they also specify the size of granularity of the rele-
vant answers. While some systems have different indices for differ-
ent tasks, e.g. finding paragraph-sized or section-sized answers, our
goal is a single index that is used with all the queries. The size of
the returned answers is determined by the relevance of the answer
instead of by the constraints in the query.

Other important principles might also be recognised, but those
that were mentioned are those that together make this research
different from the related approaches. Some principles that have
been considered important elsewhere have been intentionally left
out. For example, no particular query language is given any special
support, and in addition, the structural constraints that may occur
in full-text queries are not taken into consideration. As these goals
were set before the actual research was started, they show direction
to this research more than dictate it.

2.6 Related work

XML Information Retrieval has gained popularity as a field of re-
search since the SIGIR workshop on XML and Information Re-
trieval in 2000 [BYFSDW00, CMS00], followed by sequels in 2002
[BYFM02a, BYFM02b] and 2004 [BYM04]. The number of imple-
mentations of experimental XML search engines was boosted by a
common ground for the evaluation provided by the INEX initia-
tives in 2002–2005 [FGKL02, FLM04, FLMS05, FLMK06] which
further inspired the INEX workshop on Element Retrieval Method-
ology in Glasgow in 2005 [TLF05]. These efforts have resulted in
a great number of publications in the field of full-text search of
XML documents. After reviewing the most important work in the
field in Section 2.6.1, we proceed to the related research areas of
structured XML retrieval and XML mining which are reviewed in
Sections 2.6.2 and 2.6.3.



“Indexing” — 2006/10/30 — 13:56 — page 23 — #33

2.6 Related work 23

2.6.1 Unstructured search

Full-text search of structured documents has been studied since the
early 90’s [Wil94]. Countless reports and articles have been written
since then about searching HTML documents, and more recently,
also about keyword queries on XML documents. Because of the
explicit structure of XML documents, it has been common to build
keyword indices either on a fixed set of element types [DALP04,
FGG02, MM04], a configurable set of element types [LZC04], or
an unrestricted set of element types [HLR04, WMSB04]. Indices
that are built on more than one element type often include the
same content multiple times because of the nested structure of ele-
ments. In order to address the issue of overlapping content in the
index, systems like EXTIRP specialise in defining disjoint index
units [Leh05]. More details will be provided in Chapters 4 and 6.

Regarding the content of a full-text index, Kamps et al. pre-
sented some intuitively useful results after studying length normal-
isation in XML retrieval [KdRS04]. One of their interesting ob-
servations was that units shorter than 50 or even 60 index terms
can be left outside the full-text index without the cost of losing
potentially relevant answers. Similar cut-off values will be studied
in this thesis, though the lower bound is measured in characters
rather than in index terms.

The important role of structure when indexing and searching
XML has been acknowledged by several research groups. Typically,
the content of some elements is given more weight than that of other
elements. The heavier weights have been associated either with cer-
tain element types [LZC04, MJKZ98] or with the relevance of the
surrounding content [AJK05]. Term selection has also gained some
new flavour from XML. The same term in a different context is suc-
cessfully considered a different term [CMM+03, LZC04, WMSB04].

Quite separated from the researcher communities of INEX and
SIGIR, several vendors have developed and incorporated search fea-
tures into their enterprise-scale document management systems.
The commercial systems that support the retrieval of XML ele-
ments instead of whole documents include the MarkLogic Server15,

15http://www.marklogic.com/



“Indexing” — 2006/10/30 — 13:56 — page 24 — #34

24 2 Indexing heterogeneous XML

TEXTML Server by IXIASOFT16, and IBM WebSphere R© Infor-
mation Integrator OmnifindTM Edition. Of the public search en-
gines that specialise in XML, at least Feedster17 and Feedplex18

are worth mentioning. Both of them are tuned for indexing and
searching XML feeds.

2.6.2 Structured XML retrieval

One of the advantages of XML over plain text document formats is
the structure which can be tested in the queries assuming that some
structural constraints are set in addition to the conventional key-
words specifying the information need. While unstructured queries
can be expressed in keywords and keyphrases and possibly some log-
ical operators, the structured queries usually require a more com-
plex query language that comes with a syntax for presenting the
structural requirements both for the queried documents and for the
retrieved answers. The most widely used XML query language is
XQuery [W3C05a] which has been extended to provide the full-text
search capabilities in work-in-progress such as the W3C XQuery
1.0 and XPath 2.0 Full-Text [W3C05b], TeXQuery [AYBS04], and
FleXPath [AYLP04]. Earlier proposals for an XML query language
include Lorel [AQM+97], ELIXIR, an Expressive and Efficient Lan-
guage for XML Information Retrieval [CK01], which extends the
query language XML-QL [DFF+99] with a textual similarity op-
erator, Quilt [CRF00] which is one of the predecessors of XQuery,
and XIRQL [FG01] which supports features specific to Information
Retrieval such as weighting and ranking. One of the most recent
proposals is XSQuirrel [SA05] which specialises in sub-document
queries.

A common approach to processing queries that contain path
expressions is to index the data and answer the queries by prob-
ing the index only. A path index is supposed to speed up the
evaluation of the path expressions, but it also reduces the size
of the index considerably in comparison with a flat document in-
dex. Simple path queries without branches are supported by one of

16http://www.ixiasoft.com/
17http://www.feedster.com/
18http://www.fybersearch.com/feeds/



“Indexing” — 2006/10/30 — 13:56 — page 25 — #35

2.6 Related work 25

the earliest path-oriented document summarisation structure called
DataGuides [GW97] which indexes each distinct path in the XML
document. DataGuides has been further developed in several occa-
sions [WMSB04, EOY05, WSM05]. For example, the Index Fabric
[CSF+01] indexes frequent query patterns that may contain wild-
cards in addition to indexing the paths included in the DataGuides.

Milo and Suciu proposed a structure similar to DataGuides called
1-index [MS99] which considers the label paths from document root
to each element. Identical label paths form the equivalence classes
that together compose an accurate structural summary of the XML
document. The large size of the 1-index is optimised in the A(k)-
index [KSBG02] which only considers label paths that are no longer
than k, thus making it an approximate index for paths longer than k.
The D(k)-index [CLO03] is an optimised version of the A(k)-index
in that the index graphs of the D(k)-index are adapted according to
the query load and irregularity of query patterns. The M(k)-index
[HY04] further develops the D(k)-index by allowing different values
of k for different nodes and even multiple values of k are possible
in the M*(k)-index [HY04] that consists of a collection of M(k)-
indexes. Yet another path index that is aware of the workload was
named APEX [CMS02]. It enhances the path summary with a hash
tree that enables a more efficient querying of frequently occurring
paths.

Support for queries with branches is included in most of the
more recent index structures, such as the F&B Index [KBNK02]
which has been optimised in its disk-based version where also cod-
ing schemes are integrated into the index [WWL+05]. Zou et al.
proposed a two-level tree structure called Ctree for indexing XML
[ZLC04]. The group level of Ctree consists of the path summary
of the document, whereas the element level contains links to par-
ent and child elements. Besides paths, an index can also be built
on nodes with various numbering schemes [LM01, ZND+01] or se-
quences [MJCW04, PK05, RM04, WPFY03].

2.6.3 XML mining

Methodology on document analysis, recognition, and understanding
is traditionally applied to hardcopy documents [Cur97, TDL+94,
Lub04] but, more recently, also to structured documents [HB03,



“Indexing” — 2006/10/30 — 13:56 — page 26 — #36

26 2 Indexing heterogeneous XML

MYTR03]. When corresponding methods are applied to XML doc-
uments, the research area can be called XML mining in a similar
fashion to how HTML documents are subject to web document min-
ing. XML mining is an emerging field of research, which has lead to
new arenas for presenting contributions, such as the first workshop
on Knowledge Discovery from XML Documents (KDXD)19 in 2006.

Despite the decent body of work in the field, there have been no
widely accepted definitions for XML mining tasks [ZY04]. A com-
mon data mining task — data classification — and its application
to XML data was studied by Zaki et al. [ZA03]. They presented
an algorithm (XRules) that finds structural rules by analysing fre-
quent subtrees in XML documents. The resulting classifier is able
to predict the class of the data content by only considering the XML
structure around it. While XRules seems appropriate for the data
classification task, it does not account for the challenges presented
by the full-text content of XML documents. Mining for association
rules is another common task that has also been applied to XML
documents that contain data [BCKL02, WD03]. However, research
on XML Information Retrieval does not benefit much from the suc-
cess of XML mining methods as long as the emphasis falls on XML
data instead of XML full-text.

The common factor with XML mining and the research in this
thesis is that the methods for XML mining do not assume much
more about the data than the XML syntax. In a similar fashion,
we only assume the XML syntax of the indexed full-text content in
the rest of this thesis.

19http://sky.fit.qut.edu.au/˜nayak/KDXD06/overview.html



“Indexing” — 2006/10/30 — 13:56 — page 27 — #37

CHAPTER 3

XML Fragments

It was not long after the publication of the XML Recommenda-
tion [W3C98] that the concept of an XML fragment became known
across various contexts and application areas. The well-defined
terms of XML document and XML element were simply too inflex-
ible, i.e. they could not denote arbitrary portions of XML markup
that covered several elements but not a whole document, so it was
only safe to talk about vague XML fragments with no conventional
definition. In Section 3.1, we first review the related work and see
diverse definitions for XML fragments with a focus on those that
are indexed, those that contain full-text, and those that can be
detected. What kind of fragments are relevant to information re-
trieval, and what qualities are required, preferred, and favoured are
then examined in Section 3.2. Measuring and defining the size of
the relevant fragments is the subject of Section 3.3, finally followed
by heuristics in Section 3.4 for automatically determining whether
the fragment contains full-text.

3.1 Motivation for fragmentation

Various parties have found different ways to divide structured docu-
ments into fragments. Not all of the related work specifically define
XML fragments, but, more general fragments of structured full-text
documents are described instead. Because the definitions are often
applicable to some XML documents, e.g. XHTML documents, it is

27



“Indexing” — 2006/10/30 — 13:56 — page 28 — #38

28 3 XML Fragments

worthwhile to investigate whether they can be applied to arbitrary
XML documents, as well.

The definitions for a document fragment vary according to the
requirements specific to the application area. A selection of the
proposed definitions is reviewed in this section, classified by the
needs behind fragmentation. The common purposes of use include
fragment interchange in Section 3.1.1, caching of web pages in Sec-
tion 3.1.2, topical segmentation in Section 3.1.3, document adap-
tation to low-resolution displays in Section 3.1.4, and fine-grained
search in Section 3.1.5. What the definitions have in common and
how they differ are summarised in Section 3.1.6.

3.1.1 Underspecified standard

One of the early efforts in the field was put forth by the World Wide
Web consortium (W3C)1 which chartered a working group for XML
fragments. The motivation for the intended specification for XML
Fragment Interchange came from purely XML-oriented needs: how
to view, edit, or send entities of XML documents without having to
view or edit the entire document. Although the specification has not
been rewarded a status higher than a Candidate Recommendation
and although there has been no active work on the document since
February 2001, some terminology was laudably defined. The terms
that are here specified will be used and further clarified throughout
this thesis.

According to the definition in this W3C work-in-progress [W3C01],
a well-balanced fragment matches the production of element content:

[43] content ::= CharData? ((element | Reference |
CDSect | PI | Comment) CharData?)*

If a fragment contains any part of XML markup, it has to con-
tain all of it. In case of an XML element, all of the start tag and
the end tag must be included in a well-balanced fragment. There
can be several root elements in a well-balanced fragment which can
also be empty or contain text but no root element. The object rep-
resenting the fragment removed from the source document is called

1http://www.w3.org/



“Indexing” — 2006/10/30 — 13:56 — page 29 — #39

3.1 Motivation for fragmentation 29

the fragment body. Information not available in the fragment body
but available in the complete source document is called fragment
context information. For example, it includes information about
content that is referred in the fragment body. The storage object
for a single fragment is called the fragment entity. Fragment entities
are the units of fragment interchange.

3.1.2 Optimisation of bandwidth

In order to avoid the overhead of frequent updates caused by web-
sites with dynamic content, Ramaswamy et al. propose an al-
gorithm for dividing web pages into update-friendlier cache units
[RILD04]. They consider each web page of a web site a candidate
fragment. The candidate fragment is detected as a cost-effective
cache unit if it meets the following criteria:

• It is shared among at least two distinct fragments, which con-
stitutes the sharing factor.

• It is maximal: There is no other fragment that contains the
candidate fragment and is also shared among the same frag-
ments.

• It has distinct personalisation and lifetime characteristics so
that no ancestor fragment is updated at the same frequency
of time.

The definition also includes a minimum fragment size as a pa-
rameter subject to optimisation. The algorithm is proven useful in
the experiments as it reduces the amount of required disk space as
well as the number of bytes transferred between the cache and the
server. The authors assume that the cached documents are well-
formed HTML documents but claim that the approach is applicable
to XML documents, too.

Challenger et al. also take into account the rate at which the
content of different parts of web pages is updated [CDIW05]. They
categorise web page fragments into computer-generated immediate
fragments which have a relatively short lifetime and quality con-
trolled fragments which require a longer publishing process includ-
ing proof-reading and revision. This binary division is interesting



“Indexing” — 2006/10/30 — 13:56 — page 30 — #40

30 3 XML Fragments

as the immediate fragments are typically rich of data whereas the
quality controlled fragments tend to contain human-written full-
text. The recognition of the different fragment types is not auto-
matic as it is based on object dependence graphs (ODGs) which are
specified by the users such as web page designers.

3.1.3 Topical diversity

Web search engines have long had to deal with the problems caused
by multiple-topic and varying-length web pages. Several different
solutions have been proposed. One of the earliest efforts involved
the HITS algorithm that categorises web pages into hubs and au-
thorities [Kle99]. A page with a good collection of links has a high
hub score whereas a popular page or an authoritative source of in-
formation has a high authority score. In order to improve the qual-
ity of the hubs, Chakrabarti’s algorithm disaggregates web pages
considered hubs into coherent regions by segmenting their DOM
trees [Cha01, CJT01]. The segmentation results in improvements
in topic distillation, and it can also be used for extracting relevant
snippets from partially relevant hubs.

Web mining tasks have also inspired the development of page
segmentation algorithms. The VIsion-Based Page Segmentation
(VIPS) algorithm [YCWM03] operates on the semantic tree struc-
ture extracted from the web page by its visual presentation. The
nodes in the semantic tree correspond to web page blocks enabling
both block-level link analysis [CHWM04] and block-level web search
[CYWM04]. Song et al. further develop the approach by not only
considering the layout of the page, but also analysing the content
of the blocks [SLWM04].

The common factor in these approaches is that they all di-
vide topically incoherent pages into coherent fragments in order
to improve the precision of Information Retrieval and also, in or-
der to provide the readers with digestible portions of information.
Whether the division, segmentation, or fragmentation, is based on
textual content, page-to-page references, or page structure depends
on the implementation [BYR02].



“Indexing” — 2006/10/30 — 13:56 — page 31 — #41

3.1 Motivation for fragmentation 31

3.1.4 Displays with a limited resolution

Small displays have limitations in the amount of information that
can be shown without too much user interaction such as scrolling.
WebTV’s that are viewed from distance have to deal with similar
issues because of their low resolution. Although many approaches
are based on thumbnail pictures, the unlimited size of web pages
requires that the scalable methods include the fragmentation of web
pages into smaller blocks.

The content of the page is analysed in some methods, such as
single-subject splitting and multi-subject splitting [CMZ03], whereas
the structure of the document and the page layout are considered
important in others. For example, Hoi et al. present an automatic
Document Segmentation and Presentation System (DSPS) [HLX03]
which analyses the hierarchical document structure and, given the
display size, divides the page into logical segments. DSPS spe-
cialises in HTML documents as it relies on HTML tag names in the
analysis. Another example was proposed by Xiao et al. whose page
splitting algorithm transforms pages into box-shaped blocks where
the screen size, block size, number of blocks and the semantic co-
herence between the blocks are taken into account [XLHF05]. The
algorithm starts from the VIPS tree representation of the web page
which is split into blocks with a non-binary variant of the binary
slicing tree algorithm [LW01].

3.1.5 Structural heterogeneity

The XML specification sets no limits on the size of XML documents
which can contain anything from short messages to large reference
books. As a consequence, the size of an indexed or retrieved docu-
ment is no longer determined by the author of the content but by
the retrieval system instead. Besides being a necessity, the new re-
sponsibility of the systems is seen as an opportunity, as well. When
the documents are indexed as fragments, the users can be given di-
rect access to the relevant fragments instead of making them browse
through whole documents.

A typical challenge when searching scientific articles is that we
may want to skip the parts that we are familiar with in addition
to ignoring the parts that are plain old irrelevant. For example,



“Indexing” — 2006/10/30 — 13:56 — page 32 — #42

32 3 XML Fragments

scientists tend to motivate their research with an introduction in
the beginning of each publication. Though useful to the big audi-
ence, the peer researchers may want to skip the introduction and
go straight down to business with the sections where the contribu-
tions are detailed. This is a realistic scenario when the size of the
returned answers is decided independently for each query.

3.1.6 Common and distinctive features

The definitions in the related work are wrapped up in this section
by analysing what they have in common and explaining how they
are different. The first detail that all the definitions share is that
the content of any single fragment comes from one XML document
— the source document according to W3C. The source document it-
self is the biggest fragment of any XML document. Literally speak-
ing, an XML fragment is a well-defined part of an XML document,
however, all kinds of well-defined parts are not considered XML
fragments by all the different definitions. For example, most defi-
nitions either define or at least imply a minimum size requirement
for the fragments that are being defined.

The definitions differ in the criteria that divide the documents
into fragments. The criteria are categorised by what is analysed or
simply measured in the documents as follows:

Analysed content Approaches based on topical classification of
the textual content may completely ignore everything but the
plain text content in the analysis as they try to detect the
topic boundaries and segment the text into topical segments.

Analysed structure If we know the document type of the struc-
tured document, we may ignore the content and only look
into the document structure, identify tag names, analyse link
relations, etc. As a simple example, whole journal documents
are divided into article-sized fragments by separating the sub-
trees corresponding to the article elements recognised by their
tag name.

Analysed updates Detecting the frequency of local changes in
different parts of the document is useful when the contents
are updated regularly. According to the assumption behind



“Indexing” — 2006/10/30 — 13:56 — page 33 — #43

3.2 Fragments for full-text retrieval 33

update-based fragment detection, the updates always concern
whole fragments regardless of the size of the update.

Measured qualities If not much is known about the content or
the structure of the documents, we may settle with something
quite simple: instead of complex analyses, we can measure
simple properties of the documents and its potential frag-
ments such as fragment size and its tree distance from other
fragments. The parameters for the division criteria may be
set by hardware, such as the display size, but they may also
be based on statistics.

The criteria belonging to different categories may also be com-
bined in any possible way. One of the contributions of this thesis
is fragment selection algorithm which is mostly based on measured
qualities but, to some extent, also on analysing the document struc-
ture.

What also makes the definitions different is the role of markup
in the fragment. Markup is essential if the fragments are reused,
e.g. sent to an XML-aware application, whereas displaying raw
text or indexing the full-text content does not necessarily require
any information about the tags and XML attributes.

3.2 Fragments for full-text retrieval

Because none of the definitions in related research quite matches
our needs, a new definition that is applicable to XML retrieval
is proposed. The requirements for the definition are vague at the
early stages of the research, so we continue to characterise the XML
fragments that are relevant in the context of this thesis in a similar
fashion to how the relevant source documents were described in
Section 2.2.1. The biggest difference from the definitions in related
work lies in the application area, which also shows in the processing
methods that are applied later on. In Section 3.2.1, we look at
methods for determining whether an arbitrary XML fragment is
suitable for full-text retrieval, whereas the most typical examples
of such fragments are described in Section 3.2.2.



“Indexing” — 2006/10/30 — 13:56 — page 34 — #44

34 3 XML Fragments

3.2.1 Complete units for Information Retrieval

We start from the W3C notion of an XML fragment and extend
it into our own definition for an XML Full-Text fragment which is
more appropriate for the needs of Information Retrieval.

Any well-balanced fragment that can without the start and end
tags function as an independent unit in some context or use case
can be considered an XML Full-Text fragment.

The extended definition adds two requirements to the XML frag-
ments of the W3C: one for the independence of the text content,
because the W3C fragments may contain too little text to stand
alone, and another for the insignificance of the element names, be-
cause the content of the W3C fragments may have to be interpreted
according to the tag names. The interpretation of a full-text frag-
ment is independent of tag names as they often are instructions for
displaying the content, whereas the content in data fragments is
interpreted according to the tag names belonging to the absolute
XPath expression of the element, e.g. /article/author/lastname.
Having to be well-balanced is a syntactical requirement which is ig-
nored when the tree representations of the document are regarded
because every element node in a document tree is considered well-
balanced when serialised.

Determining the independence of a fragment may seem like a
matter of imagination: can we think of a context or a use case where
the fragment qualifies? In order to make the definition clearer, we
list three test questions which can be applied to a potential XML
Full-Text fragment:

(Q1) Is it meaningful to retrieve the fragment on its own?
Independent fragments are meaningful when returned by a
search engine, but it is also meaningful to return a good start-
ing point for navigation in the case that the fragment is closely
tied to other fragments.

(Q2) Is it meaningful to index the fragment as an inde-
pendent unit? Coherent or specific fragments can be in-
dexed as atomic units whereas exhaustive fragments that com-
bine diverse sources of information or fragments with several
links pointing to more specific fragments cannot be considered



“Indexing” — 2006/10/30 — 13:56 — page 35 — #45

3.2 Fragments for full-text retrieval 35

atomic enough because they might not allow for the dynamic
determination of the size of the retrieved unit.

(Q3) Could the fragment be regarded as a unit for frag-
ment interchange or reuse? Small but concise fragments
are simple to reuse, which is why systems with reusable doc-
umentation fragment the documents accordingly [Pri01]. In
addition, when the indexed fragments are the same as the
reused fragments, duplicates are easy to detect and remove.

One positive answer to these questions is enough for the fragment
to qualify as an XML Full-Text fragment, but in many cases, several
positive answers are expected as the set of questions is somewhat
redundant. For example, if it is meaningful to index a fragment as
an independent unit (Q2), it is most likely meaningful to retrieve
the fragment as such (Q1). Two different questions are useful be-
cause of their different points of view, however. Question (Q1) can
be rephrased into the question “Can we find a query...” whereas
Question Q2 becomes “When the whole XML document is indexed,
is this fragment among the indexed ones?”

The definition of an XML Full-Text fragment leaves out frag-
ments that are too small in that they contain too little information
or that they are too closely tied to other fragments. For example,
the content of a too small fragment can be ambiguous when taken
out of the context which is found in the surrounding elements. The
smallest fragments that satisfy the conditions are minimal complete
units of full-text, but also bigger fragments qualify.

The definition of a well-balanced fragment is useful as it requires
completeness from the markup, but as such, it is not sufficient.
Well-balanced fragments may not contain any elements at all, and
even with element content, there can be text outside the root ele-
ments of the well-balanced fragments. These orphaned text nodes
do have original parent nodes (often also more sibling nodes) in the
source document, which can be considered a dependence relation,
and as such, the well-balanced fragments may be both incomplete
and dependent on the source document. Moreover, allowing text
nodes before and after the fragment root elements complicates the
issue of fragment identification. The nodelist that identifies the
fragment would no longer contain only element nodes which are
simple to address, but it would contain both root elements and



“Indexing” — 2006/10/30 — 13:56 — page 36 — #46

36 3 XML Fragments

text nodes. For these reasons, text nodes are only welcome as a
descendant of a root element of an XML Full-Text fragment.

More clues about which fragments are suitable can be found
in the way fragments are linked together. If the documents are
updated frequently, they often share the fragments with static data
content, whereas the fragments with dynamic full-text content are
shared to a much lesser extent [RILD04].

3.2.2 Examples of XML Full-Text fragments

The test questions (Q1–Q3) might not be sufficiently exhaustive
in all possible cases, so we want to complete the characterisation
of XML Full-Text fragments with appropriate examples. Remem-
bering that the scope of this thesis covers indexing and retrieving
XML fragments when XML documents are too big or too unspecific
to be indexed as a single unit, we identify three possible types of
structures in the acceptable fragments:

1. A single element, possibly complex type content.

2. A range2 of consecutive elements that is defined by the start-
ing and ending point.

3. A set of elements that is not a continuous sequence in docu-
ment order.

The first type is sufficient to represent all the indexed fragments
if the answers to a query should function as starting points for
user navigation. The second and the third type are useful when
standalone-type answers are desired. In order for the third type
to be meaningful, the elements have to be connected with links or
by other ways. Although the definition allows for character data
to appear before the start tag and after the end tag, in typical
cases, character data occurs only between the start and end tags.
Consequently, each entire fragment is a composite of whole elements
of the source document.

2As defined in DOM Level 2, see

http://www.w3.org/TR/DOM-Level-2-Traversal-Range/



“Indexing” — 2006/10/30 — 13:56 — page 37 — #47

3.2 Fragments for full-text retrieval 37

Besides the structural possibilities, XML Full-Text fragments
may come in different sizes, too. The following list contains typi-
cal fragments representative of different granularities also including
some that do not meet the requirements of the definition. The
descriptions use the concept of text depth which is defined as the
node distance between the fragment root element and character
data. The numerical values originate in an experimental analysis
of a large collection of scientific journals which is described in 6.1.

1. Small inline-level element. The interesting elements with
text node siblings typically contain phrases of 1–20 words, e.g.
conceptual terms, definitions, proper names, and quotations.
On their own, they might not be of interest for the purposes of
traditional information retrieval, but they do have potential
in systems for Information Extraction and Question Answer-
ing. Even smaller inline elements are common, but character
strings shorter than a word hardly meet the requirement of
independence.

2. Paragraph. Most of the text (>90%) of the smallest block-
level elements is stored in the child nodes of the root element
which results in average text depths of 1.0–1.2. Paragraph
elements have no text node siblings, but they may contain a
single-digit number of descendant elements and 200–500 char-
acters.

3. Subsection. Most of the text (>65%) of the smallest con-
tainers of block-level elements is stored in the grandchild
nodes of the root element. The text depth averages around
2.2–2.8. Typical subsections contain 20–60 descendant ele-
ments and 1,000–3,000 characters.

4. Section. Less than 50% of the text is found in the grandchild
nodes of the root element. The rest of the character data
is deeper, which shows in the average text depths of 2.8–
3.2. Sections typically contain 40–80 descendant elements,
including subsection elements, and 3,000–7,000 characters.

5. Traditional document. In a stereotypical article, the dis-
tance to most of the text equals at most 5 nodes which results
in average text depths of 4.0–5.0. The number of descendant



“Indexing” — 2006/10/30 — 13:56 — page 38 — #48

38 3 XML Fragments

elements varies in the range 400–800 which is remarkably big-
ger than that of sections. The amount of characters show even
more variance with counts between 10,000 and 100,000.

6. Oversized document. The documents that are too big to be
retrieved as one unit include books, article collections, whole
journals, etc. Most text nodes in these documents are at least
six nodes away on the descendant axis starting from the root
element. The number of descendant elements tops 10,000 and
the number of characters may well be measured in millions.

Not surprisingly, we observe that the number of descendant ele-
ments of a fragment correlates with the average depth of the text
nodes. We have assumed the Latin alphabet in the estimated char-
acter counts of the fragments, and the numbers may differ if the
examples are taken from documents with a different character set.
The size of unparsed entities is not taken into account here.

Whether the inline-level elements are at all suitable for indexing
can be questioned for several reasons. For one thing, processing all
inline-level elements is expensive. For another, if the content length
is small, the element cannot be considered a unit worth indexing as
a fragment of its own. Big inline-level elements may be a possible
exception, however. For example, paragraph elements may contain
list environments with enough text content to warrant the status of
an XML Full-Text fragment, but in that case, we would still have
to deal with orphaned text nodes as well as with having to prove
the parenting paragraph element inappropriate for indexing.

The oversized documents form another class of fragments that
cannot always function as XML Full-Text fragments. These big
documents require suitable indexing methods that are capable of
dealing with the structured nature of the content and not based
on the traditional concept of a document. Such methods are not
presented in this thesis.

3.3 Granularity levels

From the characterisations in Section 3.2, we proceed to more pre-
cise definitions. Two complementary definitions are introduced: 1)
evidential full-text fragments where the evidence lies in the content



“Indexing” — 2006/10/30 — 13:56 — page 39 — #49

3.3 Granularity levels 39

models and 2) statistical full-text fragments where the fragment size
is the most important piece of statistical information. Both kind
of definitions are applicable when modelling the granularity of full-
text fragments.

The definitions in this section do not assume any element type
(or name) for a number of reasons. For example, in full-text docu-
ments, elements of the same type have plenty of variation in their
content. The variation is both structural and semantical, which is
inherent to full-text, and it seems that the full-text elements — re-
gardless of the element name — allow for arbitrary text to appear
in the document. Moreover, the more the definitions generalise, the
easier it is to apply them to heterogeneous XML documents, which
is one of the important areas in this research.

3.3.1 Evidential full-text fragments

The purpose of the definitions for evidential full-text fragments is
to get statistics concerning those fragments that are subject to full-
text search (XML Full-Text fragments as defined in Section 3.2.1).
With the statistics at hand, we are able to index and retrieve full-
text fragments of a certain granularity that may not be specified in
terms of the statistics but in natural language instead, such as “the
granularity of sections”. Obviously, the missing link in this process
is a mapping between the human-readable label of the granularity
and the computer-generated statistics originally collected from the
indexed documents. That is where evidential full-text fragments
enter the scene. Each one of them represents at least one level of
the granularity which is specified by the user.

As the name suggests, we are looking for clear evidence of full-
text content in this section. The challenge here and in the upcoming
sections is to determine whether the content can be considered full-
text or not in order to exclude other kind of XML which shall be
called data in this thesis. XML fragments containing pure data are
not considered reasonable answers on their own to full-text queries.
They would also distort the statistics if treated as full-text XML.
Recognition of full-text content is thus necessary. What adds to
the importance is that full-text documents tend to contain other
kind of text, too, which can usually be characterised as data, i.e.
meta-data.



“Indexing” — 2006/10/30 — 13:56 — page 40 — #50

40 3 XML Fragments

Because counting nodes and comparing their sizes does not nec-
essarily make data and full-text look very different, we need to re-
gard some stronger evidence in order to differentiate the two types
of content. The definitions for evidential full-text fragments are
based on 1) the content models of the root elements of the frag-
ment and the ones of the descendant elements and 2) the minimum
text depth which is the distance from fragment root to the near-
est text node. With a DTD, five different content models can be
defined: 1) Elements, 2) Text, 3) Mixed, 4) Empty, and 5) Any.
Only the first three content models are meaningful when analysing
fragment content. The mixed content model is the most challenging
one to recognise as the elements may have the appearance of the
Elements or the Text content models, as well. However, only those
elements that have both text and element content have supporting
evidence of full-text content, regardless of how exactly the mixed
content is defined for the corresponding element type in the DTD.
This reasoning originates in the key hypothesis:

Mixed content does not occur in elements that contain
data.

Reasons behind the hypothesis are practical: Definining the
mixed content model for data would make mapping XML elements
to data items difficult. Moreover, as Michael Kay states, “writ-
ing the code to handle the document would become a nightmare”
[WBD+00]. It is also a common practice to avoid the mixed con-
tent model when describing data. In this light, mixed content is a
strong full-text indicator, which follows from the hypothesis.

We use DOM Nodes3 and trees for distance calculation between
the fragment root and the nearest Text node. Examples of common
minimal distances are shown in Table 3.1. Our definition for a Text
node corresponds to that of the DOM Text node, but we would like
to exclude those with only whitespace content and those without
any indexed content. Excessive whitespace is removed by normal-
ising all Text nodes, but the removal of any non-empty Text nodes
cannot be taken into account with XML tools only. In order to ig-
nore the noisy content, we may remove stopwords, punctuation, and
special characters, and possibly require a minimum length of the

3See, for example, http://java.sun.com/j2se/1.5.0/docs/api/org/w3c/dom/Node.html



“Indexing” — 2006/10/30 — 13:56 — page 41 — #51

3.3 Granularity levels 41

Min. dist. Granularity Significant Text node axes
0 Character Text node siblings
1 Paragraph Text node children but

no Text node siblings
2 Paragraph group Text node grandchildren but

or subsection no Text node children
n Nearest Text node nth descendant

Table 3.1: Distances to Text nodes defined.

remaining content words. For the sake of completeness, CDATA-
Section nodes are treated as Text nodes, as well.

The evidential full-text fragments are defined by the level of
granularity which corresponds to the fragment size. Some of the
names such as “inline level” are in common use while others describe
the size of the fragment in a hypothetical document.

Level 0: Inline-level elements. The minimum text depth equals
0, which necessitates Text node siblings. The content model of
the element itself is irrelevant, but the parent element must
have the mixed content model. These elements occur com-
monly in full-text fragments and rarely in data fragments.

Level 1: Paragraph elements. Mixed content and a minimum
text depth of 1 are required. The parent element must not
have mixed content, which forbids the occurrence of Text node
siblings. The Text node descendants must contain a sufficient
amount of text, but setting the actual threshold is left as a
matter of parameter tuning. Level 1 fragments are common
in full-text documents and rare in documents containing only
data as they are the parent nodes of Level 0 fragments.

Level 2: Subsection elements. Element content and a minimum
text depth of 2 are required. At least one child element must
be a Level 1 fragment. Level 2 fragments may contain other
Level 2 fragments, but the content model of the parent ele-
ment is irrelevant.



“Indexing” — 2006/10/30 — 13:56 — page 42 — #52

42 3 XML Fragments

Level 3: Section elements. As at Level 2, element content and
a minimum text depth of 2 are required, whereas the content
model of the parent element is irrelevant. In addition, at least
one child element must be a Level 2 fragment.

Level N: Indefinite elements. When N≥2, element content and
a minimum text depth of 2 are required, and at least one child
element must be a Level N-1 fragment.

Level A: Article elements. The coarsest granularity cannot be
defined in terms of content models and text depths, but Level
A fragments usually contain elements of all the Levels 0–3.

Definitions for Level 0 and Level 1 fragments are quite straight-
forward but the complexity increases towards the higher levels. For
example, the elements that parent both Level 1 and Level 2 frag-
ments are both Level 2 and Level 3 fragments themselves assuming
that the other conditions are satisfied. This is not a problem as
the definitions are used for statistical purposes only. Moreover, the
descendant elements of Level 0 fragments can be Level 2 or Level 3
fragments because ancestor nodes are ignored in the corresponding
definitions. However tempting it is to look into the ancestor axis,
it would make the definitions weak as full-text fragments can have
an unlimited number of ancestor elements by definition. Exact def-
initions for fragments bigger than sections are unrealistic in their
complexity if only content models and text depth are considered
because almost all the descendant elements can have any of the
possible content models. This would deteriorate the quality of the
fragments at Levels N where N>3.

It is not necessary that all full-text fragments match any of these
definitions because they are used for statistical purposes only. Also,
the amount of evidence of a fragment having full-text content varies
from one fragment to another. However, we need a statistically
significant number of fragments and a sufficient amount of evidence
of the content being full-text.

Besides being independent of document types, the granularity
levels also solve the problem of recursive structures where elements
of the same type are nested, occurring at several levels. The statis-
tics collected level by level are thus more accurate than those col-
lected by self-defined classes of element types.



“Indexing” — 2006/10/30 — 13:56 — page 43 — #53

3.3 Granularity levels 43

3.3.2 Statistical full-text fragments

Arbitrary XML fragments may not match any of the levels of ev-
idential full-text fragments because of the lack of mixed content,
which makes the definitions incomplete as a model for full-text
fragments. A complementary approach is presented in this sec-
tion by modelling the same granularities with corresponding sta-
tistical definitions which are simple and applicable to all full-text
fragments. After several attempts to take advantage of different
kinds of statistical information, we observe that measuring the size
of the fragment is sufficient in order to determine the granularity
of a full-text fragment. More statistical data including the average,
minimum, and the most common text depth is available but dis-
carded at the current stage of the research. Future work will show
whether the other statistical information could help us determine
the granularity of fragments and eventually determine the size of
both the indexed and the retrieved units of XML. The definitions
can be extended with the additional data at a later point of time if
the value of adding complexity to the definitions becomes clear.

There are a number of different units for the size of a full-text
fragment. For the sake of simplicity, the fragment size is measured
in characters throughout this thesis. The length of the string value
of the fragment is available through the DOM and SAX interfaces in
the parsed XML document, and as a unit, the number of characters
is independent of the document type. The statistical fragment size
is defined by first measuring the evidential full-text fragments level
by level according to the classification introduced in Section 3.3.1. If
mixed content does not occur frequently in the document collection,
the statistical size can be measured from other documents as long
as the language and the character set are the same. Without a
significant amount of evidential full-text fragments, the statistics
are not representative of the full-text content in a whole collection
of documents.

After collecting the statistics, we have the ingredients for the
initial definitions for statistical full-text fragments. For example,
for the paragraph level, we define the granularity using the following
notation:

Gparagraph = {s(FragmentL1)},



“Indexing” — 2006/10/30 — 13:56 — page 44 — #54

44 3 XML Fragments

where s(FragmentL1) denotes the median size of evidential full-
text fragments at Level 1. However, for most fragments, the size
falls somewhere between the median sizes of different granularities,
so we need to expand the definition into the form

G = {[min,max]}.
We assume there is a correlation between the average sizes of ev-

idential and statistical full-text fragments. As our goal is to define
a size range for each granularity, we need two correlation factors
(cfmin and cfmax) with which the ranges can be defined. For ex-
ample, the statistical definition for the size range of the section
level is added to the corresponding definition for the granularity as
follows:

Gsection = {[cfmin × s(FragmentL3), cfmax × s(FragmentL3)]}.

If we assume that the median size of a section element equals
5,000 characters, cfmin = 0.5, and cfmax = 2.0, we can define the
corresponding granularity

Gsection = {[0.5× 5000, 2.0× 5000]} = {[2500, 10000]}.

As the definitions are based on ranges on a gradual scale, we
can actually model an infinite number of different granularities in
addition to those defined in the previous section. This is useful
when the granularity is not set by the user but by the requirements
of the software or hardware instead.

Setting good values for the correlation factors requires a sub-
stantial amount of experimental testing with different size ranges
in order to find the good minimum and maximum size for each
granularity. The preliminary test results are included in this the-
sis but, unfortunately, no definite answers could yet be discovered.
Once the ideal values are discovered, we can study the statistical
distribution of fragment sizes at each granularity level and see if the
ideal cf values can be derived from the distribution and if the same
values are ideal for each of the granularity levels. Determining the
actual values is left as a topic for future research.

Finding more sophisticated units for fragment size is another
area calling for further research. For example, counting the actual
index terms may lead to more precise retrieval results than sim-
ply counting characters. However, finding the index terms requires



“Indexing” — 2006/10/30 — 13:56 — page 45 — #55

3.4 Measuring the probability of full-text 45

extra parsing of the content. Moreover, counting characters was
proven useful in related work: Ramaswamy et al. made a success-
ful case of automatic fragment detection and defined the size of an
augmented fragment (AF) tree as the length of the subtree value
[RILD04].

3.4 Measuring the probability of full-text

Because not all full-text fragments qualify as evidential full-text
fragments and because also other than full-text fragments qualify
as statistical full-text fragments, we need a more precise definition
that matches practically all full-text fragments and nothing but full-
text fragments. As a solution, we study one of the contributions of
this thesis: a way to classify XML fragments into full-text fragments
and data fragments. An essential part of the classification is based
on the structural clues in the fragment which are introduced in
Section 3.4.1. How entity references can be taken into account in
the measurements of full-text content is analysed in Section 3.4.2.
Whether the measurements generalise to documents of an arbitrary
document type is argumented in Section 3.4.3 in response to the
critics who may have doubts. The definition of a statistical full-
text fragment is extended into a more satisfactory form of a qualified
full-text fragment in Section 3.4.4.

3.4.1 Full-text indicators

Given any XML fragment, we want to be able to make a judg-
ment about the fragment containing a sufficient amount of full-text
content. A sufficient amount of such content makes the fragment
suitable for full-text search. An automatic judgment mechanism re-
quires that we can measure the fragments on a scale where typical
full-text fragments are situated at one end of the scale and typical
data fragments at the other end. The important points are not at
the ends of the scale, however, but in the middle where a pivot point
divides the scale into ranges of full-text and data values. Indicators
that return appropriate values on such a scale actually calculate
the Full-Text Likelihood of the fragment. Based upon our earlier
assumption about the meaning of mixed content, we propose that



“Indexing” — 2006/10/30 — 13:56 — page 46 — #56

46 3 XML Fragments

the measures of full-text likelihood should reflect the proportional
amount of mixed content in a fragment. We can identify two such
measures which slightly differ from each other:

1. T/E (Text nodes/Element nodes) ratio. A pivot point be-
tween data and full-text is defined as T/E = 1.00 where a
fragment with a T/E value greater than 1.00 is considered a
full-text fragment.

2. C/E (Characters/Element nodes) ratio. The pivot point of
the C/E measure is dependent on the language and the char-
acter set, but it maybe possible to derive the pivot point value
from the document statistics. Full-text fragments generally
have bigger C/E values than data fragments, which is similar
to the behaviour of the T/E measure, but one undisputable
pivot point cannot be determined.

The values of both measures fall in the range [0,∞] so that empty
elements have the value of 0, data fragments have values in the
range ]0,p], and full-text fragments in the range [p,∞[, given that
the pivot point p is defined.

In order to demonstrate the behaviour of the T/E and C/E mea-
sures, we study how elements with different content models mea-
sure. Example (3.1) shows an element with the “text only” content
model where T/E = 1.00 and C/E = 9.00.

(3.1) <p>text only</p>

This kind of elements are common in both full-text and data
fragments, but by themselves, they are too small to qualify as a
full-text fragment. The T/E value of 1.00 is typical of elements
with only text content, and it does not indicate full-text or data
content per se, but the very low C/E value of 9.00 is a strong
indicator of a content other than full-text.

A typical case of a data fragment, where T/E < 1.00, is presented
in Example (3.2).

(3.2) <pubdate>
<month>May</month>
<year>1975</year>

</pubdate>



“Indexing” — 2006/10/30 — 13:56 — page 47 — #57

3.4 Measuring the probability of full-text 47

Observed model Effect on a neutral element Common content
Elements decrease data

Text neutral or increase data, full-text
Mixed increase full-text

Table 3.2: Content models in relation with the T/E values and
types of content.

The interpretation of the fragment content is heavily dependent
on the tag names such as “year” and “pubdate”, which is typical
of data fragments. The three Element nodes and two Text nodes
result in a T/E value of 0.67 while the C/E value of the fragment
equals 2.33. Both indicators clearly flag for the fragment containing
data.

A fragment with the mixed content model is shown in Example
(3.3). The T/E measure has the value of 1.50 which is expectedly
on the right side of the pivot point of 1.00.

(3.3) <p>Some <i>important</i> full-text.</p>

The C/E measure has a rather low value of 12.50 because of the
small size of the fragment. While the C/E value can be ten times
higher in real-life full-text fragments as shown in Section 6.3, the
T/E value of 1.50 is common in full-text fragments of all sizes.

The examples show how the T/E measure actually describes the
content models of the elements of the fragment. The T/E value of
a whole fragment combines the effect of the content models of the
fragment root and its descendant elements. The possible effects of
a single element on the T/E values are detailed in Table 3.2.

We define the pivot point value of 1.00 neutral to the type of con-
tent. Lower values which occur in elements that only have element
children cause the T/E value of the whole fragment to decrease to-
wards the range of data values, whereas mixed content has a similar
effect of an increase towards the full-text values.



“Indexing” — 2006/10/30 — 13:56 — page 48 — #58

48 3 XML Fragments

3.4.2 Entity references in element content

XML elements that have text content may also contain entity ref-
erences to entities with string values. When parsed into a DOM
Node, the text content with entity references consists of both Text
nodes and EntityReference nodes, and, in data fragments in par-
ticular, the values of the T/E measure become deceptive. This
phenomenon shall be called the ER effect. When measuring XML
fragments, the ER effect shows in the average distance between the
fragment root and the characters as well as in an increased number
of Text nodes:

• A Text node child of an EntityReference node is deeper in
the fragment than the Text node siblings of the EntityRefer-
ence node although both appear at the same level when the
fragment is parsed and the entity references are expanded.

• If a character in a Text node is replaced with an entity ref-
erence referring to the character entity of the character itself,
the number of Text nodes increases by two. Afterwards, there
are three Text nodes instead of just one: one preceding the
entity reference, one following it, and the substituted char-
acter entity as a child node. If the replaced character is the
leading or trailing character of the text node, only one new
text node appears.

In particular, when the language of the text and the default
character encoding (UTF-8) are not a perfect match, e.g. fragment
(3.4), entity references commonly replace the special characters of
the language. The T/E value of fragment (3.4) equals 5.00 whereas
the C/E value equals 20.00.

(3.4) <p>Text &agrave; la fran&ccedil;aise.</p>
123456 789012345 67890

The T/E measure is sensitive to the ER effect whereas the C/E
measure is not. We cannot, however, resort to using the C/E mea-
sure when entity references are common in data content, as the
downside of the C/E measure is that determining the pivot point
is not trivial. The textual size of a data item may fall in the same
range as the size of a full-text fragment. Nevertheless, if we assume



“Indexing” — 2006/10/30 — 13:56 — page 49 — #59

3.4 Measuring the probability of full-text 49

that entity references are evenly distributed among data fields and
full-text, the distinguishing capability of the T/E measure is not
greatly influenced by the ER effect although the pivot point still
requires adjustment.

If we want to eliminate the ER effect, we can modify the T/E
measure into T−2·R

E , where R stands for the number of entity ref-
erences. As replacing a character in the middle of a text node in-
creases the number of text nodes by two and the number of entity
references by one, we have to multiply R by two. However, should
R stand for all entity references with a string value or for only those
referring to a single character is not clear. The original pivot point
of the T/E measure is well defined for the modified measure, as
well. For example, the value of the modified T/E measure equals
1.00 in Fragment (3.4).

3.4.3 Independence of document types

Whether the full-text indicators proposed in Sections 3.4.1 and 3.4.2
actually classify XML fragments correctly with appropriately de-
fined pivot points should, without a question, be tested on authen-
tic XML documents. However, a question can be raised about the
quality of the test documents: How many document types need
to be represented sufficiently in the document collection where the
distinguishing traits — the full-text indicators and the correspond-
ing pivot points — are verified? If we can show that the measures
are independent of document types, one document type suffices in
the verification as the validity in others can be induced, which is
ideal. Otherwise, a wider variety of documents are needed in the
test collection.

One argument against the independence of the document types
says:

“...some DTD might induce a high proportion of elements and
some [might] not...”4

According to our first counter-argument, a DTD cannot dictate
that an element for full-text content parents a high proportion of
elements. We reckon that the elements parenting full-text must

4From an anonymous reviewer of the ACM Fourteenth Conference on Knowl-

edge and Information Management 2005 (CIKM’05).



“Indexing” — 2006/10/30 — 13:56 — page 50 — #60

50 3 XML Fragments

<xsd:element name="fulltext">
<xsd:complexType mixed="true">
<xsd:sequence>
<xsd:element name="a" type="xsd:string"

minOccurs="1"/>
<xsd:element name="b" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

Figure 3.1: Schema definition for a full-text element.

have either the “text only” or mixed content model. If elements
are not allowed in the content model, even a single text node in
element content makes the proportion equal to 1/1. When both
elements and text are allowed, we need to consider the appropriate
definitions. With the DTD, the mixed content model is defined as
shown in Example (3.5).

(3.5) <!ELEMENT fulltext (#PCDATA|a|b|c|d)*>

There is no other way to define the mixed content model in a
DTD. The fulltext elements as defined in the example may or
may not contain text and the listed elements (a, b, c, and d) in an
arbitrary order. The definition does not enforce the occurrence of
any possible child element. The XML Schema definitions allow for
more complex definitions for the mixed content model, though. An
example is shown in Figure 3.1.

With a schema definition, the appearance and order of the child
elements can be enforced in the mixed content model. The element
a in Figure 3.1 provides such an example. However, only two con-
tent models in the descendant elements of the fragment may steer
the T/E value towards the range of data values: the empty and
“element only” content models. If the content model suggests the
occurrence of several such elements, we may well question whether
the defined element is truly designated to full-text content.



“Indexing” — 2006/10/30 — 13:56 — page 51 — #61

3.4 Measuring the probability of full-text 51

Another argument concerns the previously defined pivot point
of the T/E measure:

“...proposal sets an arbitrary value of 1.0 for the ratio of ele-
ments. ...different values may be appropriate for other collections
(depending on the characteristics of the DTD) and no single value
may be appropriate in a heterogeneous collection.”5

In response to the arguments, we show that the pivot point value
of the T/E measure comes from the content models of full-text ele-
ments, not from properties specific to any DTD, and thus, the value
of 1.0 is not chosen arbitrarily nor is it dependent on the charac-
teristics of a DTD. If only text content is allowed, the T/E value
is at least 1.00 depending on the number of entity references. If
mixed content is allowed, the occurrence of any elements cannot
be enforced with a DTD. Moreover, requirements for elements with
the “element only” content model is not meaningful — it even con-
tradicts with the synonymous concept of free text — although it is
possible with a schema definition.

With the pivot point of 1.00, single elements can be misjudged
by only looking at the T/E value but all full-text content cannot.
It is always possible to have a full-text element with a T/E value of
at least 1.00. One of the few cases where full-text content could be
misjudged as data is when some structured content, such as a table,
occurs at the inline level. Another such case occurs if all the words
of the full-text are wrapped in individual elements, e.g. if the text
is tagged with elements marking the part-of-speech of the words.
Judging these borderline cases as data might be a very reasonable
choice of action. Data content can be misclassified, too, if mixed
content is allowed in data elements but again, instead of questioning
the pivot point value, we may as well question the content being
data.

There are also cases which may at first sight seem like full-text
documents but, as expected, the appropriate full-text indicators
reveal the real quality of the content. A typical example of such
a document is shown in Figure 3.2 where the content cannot be
considered data in the sense it has in the context of databases.
However, not all the criteria for an XML Full-Text fragment are
met, either, as the interpretation of the content is heavily dependent

5From another anonymous reviewer at CIKM’05 conference.



“Indexing” — 2006/10/30 — 13:56 — page 52 — #62

52 3 XML Fragments

...
<SCNDESCR>SCENE England; afterwards France.</SCNDESCR>
<PLAYSUBT>KING HENRY V</PLAYSUBT>
<ACT><TITLE>ACT I</TITLE>
<PROLOGUE><TITLE>PROLOGUE</TITLE>
<STAGEDIR>Enter Chorus</STAGEDIR>
<SPEECH>
<SPEAKER>Chorus</SPEAKER>
<LINE>O for a Muse of fire, that would ascend</LINE>
<LINE>The brightest heaven of invention,</LINE>
<LINE>A kingdom for a stage, princes to act</LINE>
<LINE>And monarchs to behold the swelling scene!</LINE>

...

Figure 3.2: Excerpt from the Shakespeare play Henry V marked up
in XML, courtesy of Jon Bosak.

on the tag names, and the fragment has to be seen as data in the
binary classification.

3.4.4 Qualified full-text fragments

The definitions for the granularity of a full-text fragments in Sec-
tions 3.3.1 and 3.3.2 offer a good basis for further extension, and
they will be reused in this section as follows. First, we analyse the
classes of evidential full-text fragments at different levels of gran-
ularity. Second, we define the corresponding statistical full-text
fragments by using the results of the analysis. Third, we restrict
the definition with a requirement for full-text content because the
statistical definition is not strict enough by itself. The additional
requirement is supposed to help discard the fragments that do not
have full-text content so that only qualified full-text fragments fit
the definition. The restricted definition for a statistical full-text
fragment includes the requirement for full-text likelihood. In gen-
eral, the granularity of qualified full-text fragments is defined using
the following notation:



“Indexing” — 2006/10/30 — 13:56 — page 53 — #63

3.4 Measuring the probability of full-text 53

G = {[min,max], T/E ≥ 1.0}.

For example, the paragraph granularity is defined as follows:

Gpara = {[cfmin×s(FragmentL1), cfmax×s(FragmentL1)], T/E ≥ 1.0}.

Assuming that the median size of a paragraph-level fragment
equals 500 characters so that s(Fragment1) = 500, cfmin = 0.3,
and cfmax = 5, the paragraph granularity is then defined as

Gparagraph = {[150, 2500], T/E ≥ 1.0}.

A requirement for a C/E value may be added to the definition
when the pivot point is well-defined. While we are uncertain about
the cf values and whether they are dependent on the level of gran-
ularity, we know that the same pivot points of the T/E and C/E
measures can define any granularity as they describe the full-text
likelihood of the fragments instead of measuring the fragment size.

With the definitions presented in this section, we can determine
whether any given XML fragment is a qualified full-text fragment
at a given granularity. How the definitions are used in practice is
shown in Chapter 6 where a whole document collection is analysed.



“Indexing” — 2006/10/30 — 13:56 — page 54 — #64

54 3 XML Fragments



“Indexing” — 2006/10/30 — 13:56 — page 55 — #65

CHAPTER 4

Selection of indexed fragments

While Chapter 3 introduced individual XML fragments in the con-
text of their source documents, our interest in this chapter centres
on whole collections of XML fragments and methods for dividing
XML documents into such fragments that are indexed for full-text
retrieval. Defining the properties of an ideal selection of fragments
is far from trivial in the scope of heterogeneous XML documents.
Nevertheless, the goals regarding the content of a fragment collec-
tion are skecthed in Section 4.1, followed by the structural issues
concerning the relation of individual fragments to the source docu-
ments and to each other in Section 4.2. The differing characteristics
of data and full-text and the consequent effects on dividing XML
documents into fragments are the topic of Section 4.3, whereas Sec-
tion 4.4 is devoted to the algorithm that determines which frag-
ments are indexed and how they are selected. Finally, metrics for
evaluating the qualities of the division process and its outcome are
investigated in Section 4.5.

4.1 An ideal collection of fragments

Collections of indexed documents traditionally consist of documents
in their entirety with quite natural boundaries between each docu-
ment. Taking into account that we want the traditional methods to
be applicable to our XML fragments, the set of indexed fragments
should resemble the traditional collection to some extent. For ex-
ample, the text content of an XML fragment should correspond to

55



“Indexing” — 2006/10/30 — 13:56 — page 56 — #66

56 4 Selection of indexed fragments

that of a document in its traditional sense so that language models
and vector spaces can be defined in terms of these fragments as if
they were independent documents. Properties that are obvious in
the traditional documents must, however, be carefully defined for
the fragments which can be seen as virtual documents inside XML
documents before they are materialised into actual “documents”
that are returned to the user. Our wishes regarding the content of
the fragment index are presented in Section 4.1.1 followed by those
for the quality of the individual fragments in Section 4.1.2.

4.1.1 Content to be included

The goals for the contents of the final fragment collection have to be
explicitly defined because not all of the content in the original doc-
uments is worth indexing. The process of dividing documents into
fragments is also a good opportunity to filter out some unwanted
content which might only be detected by analysing the XML struc-
tures associated with the content. Because the goals indentified
in this section are hypothetical, they are not intended to be com-
pletely exhaustive regarding the ideal fragment collection. Instead,
they will give motivation and direction to the methods presented
later on in this thesis.

There are two approaches to setting these goals. First, we specify
which content should be included in the index, and second, we
characterise what could be excluded.

Full-text All of the full-text content should be included by
default. This goal is fundamental as we are developing methods
for full-text search. Heavy arguments are required if any full-text
content is to be ignored.

Meta-data The meta-data describing the fragments is associ-
ated with the fragments in the source documents. The associations
should be preserved in the fragment index. The important meta-
data includes titles, captions, keywords, and even footnotes. The
importance of the meta-data is magnified in relatively small frag-
ments with little amounts of full-text content.

Link relations A link connecting two elements is broken if the
elements end up in different fragments in the fragment collection.
The link itself can be lost, but the information it codes for should
be preserved. Such information includes the content at the other



“Indexing” — 2006/10/30 — 13:56 — page 57 — #67

4.1 An ideal collection of fragments 57

end of the link.
Exclusion of unimportant content In principle, text that is

not likely to be a satisfactory answer to any full-text query can be
discarded. Such text can hardly serve as meta-data, either, which
further supports its exclusion. Common examples include elements
containing no index terms, elements with no indexed content, or
elements with an excess of only index terms and page numbers, e.g.
a fragment containing a keyword index. However, this goal with
its vague definition is not crucial because good indexing techniques
are able to handle the noise that is not filtered at this point.

None of the goals presented here are applicable to traditional
documents where all the text of the undivided text documents is
included in the index by definition, and meta-data as well as link
relations can only be lost if the documents are divided into frag-
ments. If so desired, unimportant and noisy content can be cleaned
at the same time as punctuation and stopwords are removed upon
the application of language models. In order to achieve these goals
for XML documents, we have to succeed in detecting the appropri-
ate content in the original document collection, after which it can
be included in the set of indexed fragments.

4.1.2 Fragments as individual entities

So far, we have identified two major requirements for the indexed
fragments regarded as individual entities: the fragments should be
both coherent and independent.

Coherence Topical unity is ideal in the indexed fragments. It
shows in that a coherent fragment is almost completely either highly
relevant or highly irrelevant with respect to a given query, and in
that it never needs to be divided further into smaller fragments.
In comparison, all the seemingly similar items in a bibliography
are not as closely related as consecutive paragraphs in a section,
which explains the incoherence of bibliographies when compared
to coherent sections. Other incoherent fragments that should not
be indexed as independent units include tables of contents, indices,
glossaries, and collections of articles.

Independence Each fragment should be independent of other
fragments including those that are not indexed. An independent
fragment can be indexed as a single unit, and it can be included



“Indexing” — 2006/10/30 — 13:56 — page 58 — #68

58 4 Selection of indexed fragments

as such in the list of retrieved answers for a query. Moreover, in-
formation outside the fragment is not needed when the relevance
score of an independent fragment is computed. For example, it has
no significant links pointing to elements outside the fragment, and
as stated in the previous section, we consider all links significant.

Bibliographies are stereotypical examples of document fragments
that fail to meet either of the requirements. They are dependent
on the citations and they may deal with a wide variety of different
topics. In practice, the significance of rejecting bibliographies as in-
dividual fragments shows when the search terms occur frequently in
bibliographical data and rarely in the full-text content, i.e. “trans-
actions”, “journal”, “proceedings”, and “communications”. These
words can actually stand out in the other fragments even when they
are less common there than in bibliographies.

The qualities of coherence and independence are highly appreci-
ated in undivided documents, too, but the only way towards meet-
ing these fine qualities is to reject the unacceptable documents in
their entirety. When the documents are divided, we have more
choices at hand: we can adjust the parameters that control the di-
vision process and we can also reject particular parts of whole doc-
uments. In this thesis, we choose an approach where we first define
a set of coherent fragments to be further refined and expanded so
that the goal of independence is achieved, as well.

When the goals for the structure of individual fragments are
considered at the collection level, it is not realistic to expect that
100% of the indexed fragments meet the requirements. An ideal
collection of fragments is likely to contain some fragments of bor-
derline quality, because in some cases excluding them would lead
to a bigger loss than including them in the index.

4.2 Structural issues

Dividing a document collection into fragments with unsupervised
methods hardly results in an ideal fragment collection, but it is
reasonable to expect the result to be a good compromise. There
are different ways to achieve this goal depending on the choices
that are made about how the fragments are related to whole XML
documents.



“Indexing” — 2006/10/30 — 13:56 — page 59 — #69

4.2 Structural issues 59

Overlapping fragment context information For example, all
parts of a section are under the same section title which belongs
to the fragment context. Several fragments linking to the same
element is another typical example of context information that is
shared by multiple fragments. If the link relations are preserved,
the common element should be duplicated several times. Otherwise,
the fragments are not independent. Terms appearing in the copied
elements may seem more common than they really are, which in
some weighting schemes leads to lower term weights. This should
be taken into account when duplicating content.

Partly overlapping fragment bodies When a section with three
subsections is divided into two fragments, we may choose to include
the second subsection in both fragments. In addition to the shared
subsection, both fragments also contain a non-overlapping subsec-
tion. Even partial overlap complicates the process of creating in-
dices, and anyway, overlap is an undesired property per se in the
result list for a query.

Nested fragments The special case of overlapping fragment
bodies is such that one fragment is completely included in another
as a descendant fragment that comprises at least one descendant el-
ement. Nested fragments increase redundance in the index, unless
the original document structure is preserved and the overlapping
parts of each fragment are only indexed once. The attempt to
avoid redundance would, however, compromise the goal of keeping
the fragments independent. Another factor against nested frag-
ments is that although the granularity of returned answers should
be determined dynamically, e.g. based on their topical relevance, it
does not imply that the size of the indexed units could not be fixed.
As a conclusion, we can safely choose not to have nested fragments
in the index.

Discontinuous fragment bodies Full-text fragments may con-
tain sections of data that are not needed in the index, e.g. data
charts of listings of program code. Removing the data is rather
straightforward, but it is still unclear whether we have good reason
to deny access to the data sections when the stripped fragment is
given to the user. Returning a node or a location in the original
document is challenging, should part of the corresponding subtree
be excluded.



“Indexing” — 2006/10/30 — 13:56 — page 60 — #70

60 4 Selection of indexed fragments

Fragment bodies with several root elements When a big el-
ement has a flat structure, it typically contains many small child
elements or many text node children. The most natural way to di-
vide such an element into fragments is to define split points where
one fragment ends and another one begins. All the root elements
of the resulting fragments have a common parent element which is
not, however, part of the fragment. Fragment segmentation is an
additional challenge that is avoided when the element structures
are not flat.

Fragment bodies with orphaned text nodes In the rare case
that a block-level element is too big to be indexed as a single unit,
we may have to divide the element into fragments that start and
end with either text or inline-level elements. However, block-level
elements are rarely so big that we would lose significant amounts of
full-text by requiring that all text nodes have a parenting element
node in the same fragment.

The decisions concerning the structural issues do not have to be
black-and-white yes or no answers, but we can also define a degree
in the grey area, e.g. describing how much overlap and nesting is
acceptable. Independent fragments can overlap and they can be
nested, but the combination at a later point of time may be more
efficient with non-overlapping fragments.

Any overlap also causes interference with the concept of docu-
ment frequency (df). For example, if a term occurs exactly once in
two different documents and zero times elsewhere, then the term
occurs exactly twice in the document collection and the document
frequency of the term equals 2. However, if the documents overlap
and if the term occurs in the common part of the overlapping docu-
ments, it only occurs once in the collection, thus contradicting with
the df value. This issue is discussed in more detail in Section 5.3.

The solutions to these issues often come from the features and
limitations specific to the implementations that assume certain user
models, e.g. ones where standalone answers are required, or others
where pointers to relevant nodes in the document tree are suffi-
cient. Overlap of the answers is acceptable when they are treated
as starting points for user navigation, whereas overlap in standalone
answers causes redundance. Moreover, if all the indexed fragments
are potential answers to users’ queries, the format and presentation
of the answers may set requirements for the structure of the in-



“Indexing” — 2006/10/30 — 13:56 — page 61 — #71

4.3 Discarding data fragments 61

dexed fragments. For example, discontinuous fragments cannot be
presented with standardised pointer or linking techniques, and in
some cases, also fragments with multiple root elements are beyond
the expressive power of the result list format. The structure of the
indexed documents is another factor that may not leave us many
choices concerning the structural issues of the indexed fragments,
in particular when the structure is either very flat or deeply nested.

4.3 Discarding data fragments

When the indexed fragments are selected from a collection of doc-
uments, an appropriate size is the most important requirement for
the fragments. However, granularity that is purely defined by the
size is not the only factor when selecting the fragments, but also
fragment content should be taken into account. As a contrast to
Section 3.3.1, our perspective in this section consists of a whole col-
lection of full-text fragments instead of single fragments. Despite
that an ideal collection contains as few data fragments as possible,
we may still include all the contents of the data fragments in the
collection of full-text fragments as is proposed in Section 4.3.1. In
Section 4.3.2, we will see how different kinds of content are treated
differently and how setting limits on the minimum and maximum
size of fragments is not enough.

4.3.1 Data and full-text separated

XML documents have traditionally been divided into data-centric
and document-centric documents. One of the earliest references to
the term document-centric dates back to June 1997 when Bruce
Peat contrasted databases and full-text search engines on the xml-
dev mailing list1. In 1998, the term data-centric XML became
commonly used on the same mailing list. A corresponding division
can be done to the content inside one XML document. To avoid
confusion, we talk about full-text-oriented and data-oriented XML
instead of using the terms associated with different types of whole

1http://lists.xml.org/archives/xml-dev/199706/msg00001.html [6/6/2005]



“Indexing” — 2006/10/30 — 13:56 — page 62 — #72

62 4 Selection of indexed fragments

XML documents. The separation is based upon the following hy-
potheses characterising the differences between data and full-text.

Hypothesis H1 Data-oriented content has a coherent struc-
ture, but content-wise, it is incoherent in comparison with full-text
content. Typical data-oriented content includes lists of references,
lists of tables, figures, and footnotes.

Hypothesis H2 Data-oriented content is more dependent than
full-text-oriented content on content in other fragments. For exam-
ple, bibliographic data is included only when referred to.

In addition to the separation of data and full-text at the concep-
tual level, we perform the separation in practice. The motivation
comes from hypotheses H1 and H2, according to which XML data
fragments are incoherent and dependent on other fragments, which
makes them less than ideal to be included in the fragment collec-
tion. Data may also appear as noise if data fragments are indexed
together with full-text fragments, e.g. if the keyword index of a
thesaurus is indexed as an individual entry.

When data-oriented content is associated with references in full-
text-oriented content, the separation causes portions of the referring
content to be separated from the referred data. Examples include
references to the bibliography or out-of-line content such as foot-
notes. After the referred data-oriented content has been separated
from the documents, it is completely excluded from the fragment
collection unless it can be reassociated with the selected full-text
fragments, e.g. through ID-IDREF relations.

A successful separation of data and full-text results in a fragment
collection where all the fragment bodies are full-text fragments and
data can only be found in the fragment context information. Al-
though some data-oriented content might not be included in the
index at all, it can still be returned as an answer to a query. For
example, the data-oriented parts of an article should not be indexed
as independent units, but they are included in the answer when the
whole article is returned, regardless of whether they were included
in the index or not.

4.3.2 Criteria for separating full-text from data

The names of XML elements are one of the simplest criteria for
separating data from full-text. However, as the tag names are de-



“Indexing” — 2006/10/30 — 13:56 — page 63 — #73

4.4 Algorithm for fragment selection 63

pendent on the vocabulary associated with some document type,
we have to discard the criterion as unadaptable to heterogeneous
documents. The second most obvious criterion could be the size of
the element, but then the argument is that XML elements of equal
size are rarely of equal interest. Let us compare the stereotypical
back matter element <bm> and section element <sec>. Although
both of them have the same average size of around 5,000 charac-
ters, full-text is more likely found in section elements than in back
matter elements. Unfortunately, this sort of behaviour is only typ-
ical of elements of these types and it cannot be taken as a rule.
Exceptions are common, such as data-oriented sections and back
matters with full-text content. More information is thus needed in
order to reliably distinguish between a full-text element and a data
element.

Assuming that the mixed content model implies full-text content,
we can base our distinctive criteria on the definition of a qualified
full-text fragment which was presented in Section 3.4.4. According
to the definition, when the number of elements in the fragment
content is greater than the number of text nodes, the fragment
is considered data-oriented. By measuring the full-text likelihood,
we can identify and discard data fragments without any explicit
knowledge about the element names or types. If the division into
fragments is based on the criterion of sufficient full-text likelihood,
we can safely assume that the resulting fragment collection consists
of full-text fragments.

4.4 Algorithm for fragment selection

So far, we have considered what kind of fragments are preferred
in the index, how they are identified, and what kind of properties
a collection of such fragments can have. At this point, we are
ready to present an algorithm that determines from heterogeneous
XML documents a set of XML Full-Text fragments of a chosen
granularity.



“Indexing” — 2006/10/30 — 13:56 — page 64 — #74

64 4 Selection of indexed fragments

4.4.1 Requirements

In Section 4.2, we looked at various structural issues concerning
the output of the algorithm. As we have to account for the is-
sues prior to developing the algorithm, the choices we make are
treated as requirements for the algorithm in this section. Firstly,
non-nesting fragment bodies are a necessary requirement because
we highly value the independence of fragments and because we want
to take advantage of the traditional IR methods which assume that
the documents are independent of each other. Secondly, we allow
overlapping fragment context information so that we can experi-
ment with different ways to deal with the overlap. We are also
interested in the significance of the problem on the whole: Are the
overlap-originating changes in term and document frequencies so
unevenly distributed over the fragments that the retrieval precision
is jeopardised? Test results both with and without overlapping
context information are presented in Chapter 8.

Because of the INEX-related limitations in our test environment,
each fragment must consist of a single root element, which in prac-
tice disallows partial overlap, discontinuous fragment bodies, and
orphaned text nodes outside the fragment root, when returning an-
swers to queries. Whether we still allow discontinuous (or incom-
plete) fragment bodies in the index can be reconsidered later with-
out having to make substantial changes to the algorithm. These lim-
itations may be lifted in the future INEX initiatives, which would
give us more freedom in the design of the algorithm.

One more requirement comes from the definition of the scope of
this thesis. As we want to be able to index heterogeneous XML
documents, the tag names as well as other information specific to
a document type must be disregarded. The definitions of eviden-
tial, statistical, and qualified full-text fragments already meet this
requirement, so there should be no major problems in developing
the algorithm for selecting full-text fragments along the same lines.

4.4.2 Parameters for the algorithm

The granularity level of the indexed fragments is the most signifi-
cant parameter for the algorithm. In a user-centred scenario, the
level of granularity could be one of the user preferences which is



“Indexing” — 2006/10/30 — 13:56 — page 65 — #75

4.4 Algorithm for fragment selection 65

presented verbally, e.g. paragraph, subsection, section, or article.
Because the algorithm requires the parameters in a more precise
form, the name of the level is interpreted in terms of limits for the
size, as well as other significant factors. For example, the granular-
ity can be verbally presented in the form

G = Gx, where x ∈ {paragraph, subsection, section, document},

which is converted into a size range for full-text fragments, so
that

G = {[min,max], T/E ≥ 1.00}.

When the interpretation of the names of the granularities is
based on a mapping between the names and the levels of evidential
full-text fragments, e.g. paragraph ' L1, the minimum and maxi-
mum sizes can be inferred from the collection-specific statistics as
shown in Section 3.3.2. It is nonetheless irrelevant to the algorithm
how exactly the parameter values are set, as long as the format
is precise, e.g., the verbally given name of the granularity can be
interpreted.

Given granularity G, we perform the division d of a document
collection C into n fragments f1, ..., fn. The division can also be
defined as a function

dG(C) = {f1, ..., fn},

where C is a set of arbitrary XML documents. According to the
requirements, the bodies of the fragments f1, ..., fn must be disjoint,
but they may share context information with each other.

Additional parameters concerning the postprocessing of the se-
lected set of fragment bodies are presented in Chapter 5 as they are
irrelevant to the algorithm that merely determines the composition
of such set.

4.4.3 Tree traversal

As each of the divided XML documents is considered independent
of the other documents, we process the collection of documents
serially, one XML document at a time. Because the definitions



“Indexing” — 2006/10/30 — 13:56 — page 66 — #76

66 4 Selection of indexed fragments

for different kinds of full-text fragments require that we operate
on document trees, the algorithm basically defines how the tree is
traversed and what to do with the traversed nodes.

The näıve approach is to traverse the whole tree from first to
last node and test all the element nodes on the way. Besides being
slow, this approach may also lead to other problems concerning
nested elements because it is possible that both the parent and
the child elements qualify. However, being thorough may work if
overlapping and nested fragments are acceptable in the index, but
otherwise, additional testing of nodes is necessary for each node that
is traversed. If we optimise the tree traversal by adding conditions
on branch selection we do not only make the traversal more efficient
but we also have the option of restricting the output to disjoint
fragments without an extra cost.

In the optimised approach, the beginning state of the division
consists of an empty fragment collection F = ∅ and the current
node c which is set to be the document root. The current node is
first tested for size. If the size is bigger than the maximum size of
the granularity, c is assigned each of the child element nodes one
by one. If the size of the current node falls in the given range,
the node is tested for full-text likelihood. In the case that c has
too structured content so that T/E<1, c is again assigned each of
the child element nodes. Otherwise, when the size of c fits the
given range and when the content passes as full-text, we add c to F
and move on to the next branch (subree sibling) in the document
tree. The acceptance as a full-text fragment and a size below the
given range are both stopping conditions for the recursive testing
of child nodes. In other words, the child nodes are tested until
they contain enough full-text or until they are too small. The tree
traversal is then repeated for each document in collection C. When
the algorithm stops, the fragment bodies that have been added to F
represent the disjoint full-text fragments that can be selected from
the XML documents in the colletion.

The pseudo code for the algorithm is presented in Figure 4.1.
The accepted size range [Gmin, Gmax] is considered a global vari-
able more than an actual parameter by its nature, and only the
current node c is passed on at each recursive function call. The
algorithm can be optimised by reordering the tests. However, the
optimal order is dependent on the input documents. For example,



“Indexing” — 2006/10/30 — 13:56 — page 67 — #77

4.4 Algorithm for fragment selection 67

Algorithm SelectFullText(node) {
if size(node) > Gmax

// Discard node (too big)
for each child: SelectFullText(node.child);

else if size(node) < Gmin
// Discard node (too small)
break; // Skip children

else if ftl(node) = data //Discard node as data
for each child: SelectFullText(node.child);

else
accept(node);
break;

}

Figure 4.1: Pseudo code of the algorithm that returns a set of
disjoint qualified full-text fragments from a given XML document.

if the test for full-text likelihood ftl(node) fails more often than
the test for the fragment size, it should come before the size test
assuming that they can be computed at an equal cost.

If a relatively small maximum size is given to the algorithm, the
conditions for testing the child elements should be reconsidered.
Small elements are likely to have text node children, from which
follows that the child elements are at the inline level. Although
some inline-level elements are seemingly good candidate fragments,
e.g. lists, tables, and their inclusion in the division is easily justified,
we are bound to discard their text node siblings, given that disjoint
fragments are required. Whether this is generally acceptable de-
pends on the nature of the documents and what would actually be
lost in the orphaned text nodes. As a solution for these cases, we
can define a soft limit for the maximum size of a fragment. Elements
that have text node children are then tested against the soft limit
instead of the actual maximum size. This solution compromises the
definition of a qualified full-text fragment, though.

The problem of determining the set of full-text fragments is actu-
ally treated as a classification problem in the algorithm. It classifies



“Indexing” — 2006/10/30 — 13:56 — page 68 — #78

68 4 Selection of indexed fragments

all the nodes of a document into three pre-defined classes: 1) Qual-
ified full-text fragments, 2) “Too small” fragments, and 3) Other
fragments (which are either too big or too data-oriented). Although
the classes are fixed, the classification rules must be learned if no
supervision is available. The unsupervised classifier is trained by
collecting statistics from the document collection itself before it can
be used in the algorithm. How to learn the minimum and maxi-
mum size for each granularity level was studied in Section 3.3, and
some experiments with an actual document collection are reported
in Chapter 6.

4.4.4 Example articles divided into fragments

In order to demonstrate how the algorithm works, we give two ex-
ample documents to the algorithm and study the details of both
the tree traversal and the output. The granularity is defined as

G = {[150, 8K], T/E ≥ 1.00}.

The first input document represents a typical small article ex-
tracted from a collection of scientific articles. The file size equals
19,888 bytes. When parsed into a DOM tree, the XML document
contains 204 Element nodes and 17,061 Characters in 345 Text
nodes. The Attribute nodes and their values are ignored as they
are not needed in the algorithm. The first element to be tested for
size is the article element which is bigger than the upper bound
of 8,000 characters. Then we proceed to the child elements and
test each of them for the size as shown in Figure 4.2 which also
shows the document order, according to which the tested elements
are processed.

A total of 15 out of 204 elements (7.4%) in the small article is
tested for size. The ten elements whose size falls in the accepted
range are also tested for full-text likelihood. With the chosen pa-
rameters, the division of this article results in ten disjoint full-text
fragments. The front matter (fm element) which typically contains
the abstract of the article did not qualify because of its small size
as there was no abstract in this article. Another less typical feature
in this article is the back matter (bm element) which just barely
qualifies as a full-text fragment. While most back matters seem too



“Indexing” — 2006/10/30 — 13:56 — page 69 — #79

4.4 Algorithm for fragment selection 69

PATH T/E SIZE [150,8K] T/E>1.00
/article[1]: 1.69 17061 Too big
/article[1]/fno[1]: 1.00 5 Too small
/article[1]/doi[1]: 1.00 19 Too small
/article[1]/fm[1]: 1.10 114 Too small
/article[1]/bdy[1]: 2.36 15499 Too big
/article[1]/bdy[1]/sec[1]: 1.57 265 FT-qualified
/article[1]/bdy[1]/sec[2]: 2.25 971 FT-qualified
/article[1]/bdy[1]/sec[3]: 1.71 822 FT-qualified
/article[1]/bdy[1]/sec[4]: 1.71 1967 FT-qualified
/article[1]/bdy[1]/sec[5]: 2.00 1844 FT-qualified
/article[1]/bdy[1]/sec[6]: 3.33 2248 FT-qualified
/article[1]/bdy[1]/sec[7]: 2.63 3959 FT-qualified
/article[1]/bdy[1]/sec[8]: 2.80 1119 FT-qualified
/article[1]/bdy[1]/sec[9]: 1.88 2304 FT-qualified
/article[1]/bm[1]: 1.03 1424 FT-qualified
/article[1]/bm[1]/bib[1]: 0.81 626 (not tested)
/article[1]/bm[1]/app[1]: 2.50 798 (not tested)

Figure 4.2: Paths, T/E values, and sizes of the interesting elements
of the small article.



“Indexing” — 2006/10/30 — 13:56 — page 70 — #80

70 4 Selection of indexed fragments

data-oriented, this one is exceptional for two reasons. First, it has
relatively few bibliographical entries, and second, it ends with an
appendix containing the biography of the author.

While the algorithm nicely adapts to these less typical features
by discarding the front matter and by accepting the back matter
element, it also reveals its weakness by including the bibliography
(bib element) inside the qualified full-text fragment. We may think
that the problem goes back to the pivot point value of 1.00 which in
this case seems just a little too low, but when half of the fragment
consists of data and the other half of full-text, any T/E value near
1.00 actually describes the fragment perfectly. The criticism should
thus be directed at the algorithm itself. By increasing the number
of tested nodes, we are able to detect these fragments that are half
data and half full-text, but in practice, the solution complicates the
algorithm so much that the issue is dropped to the bin of ideas for
future work on the topic.

The second input document with a file size of 251,158 bytes is
one of the biggest articles in the whole document collection which is
described in Section 6.1. The document consists of 4,635 elements,
5,384 Text nodes, and 182,497 Characters in the Text nodes. Alto-
gether, 1,106 elements (22.9%) are tested for size. Out of the tested
elements, 13 elements (1.2%) are too big, 934 elements (84.4%) are
too small, and 159 elements (14.4%) are tested for full-text like-
lihood. The number of data-oriented elements equals 97 (8.8%)
whereas only 62 elements (3.3% of the tested elements, 1.3% of
all elements) are finally accepted as qualified full-text fragments. A
more extensive listing of the tested nodes is included in Appendix A.

By looking into the bibliography at the end of the article, we
see how the algorithm systematically discards the bibliographical
entries. All of the 201 bibliographical entries were tested for size.
The number of entries that were discarded as too small equals 104,
whereas 96 out of the 97 entries that were big enough were discarded
as too data-oriented. Only one bibliographical entry with the size of
180 characters and a T/E value of 1.00 (T=10, E=10) passed both
tests, thanks to the character references in the text content. The
element classification accuracy still reached 99.5% for the entries in
this extensive bibliography.

The keyword element (kwd) in the front matter is another ex-
ample of a fragment misclassified as full-text although its content



“Indexing” — 2006/10/30 — 13:56 — page 71 — #81

4.4 Algorithm for fragment selection 71

is much less data-oriented than that of a bibliographical entry. Ex-
ample (4.1) shows how the element content starts with a b element
containing a title-like phrase, after which the character reference
separates the b element from the remaining comma-separated list
of keywords. The size of the keyword element equals 328 characters,
and the full-text likelihood T/E = 3/2 = 1.50.

(4.1) <kwd><b>Index Terms</b>&mdash;Review, content
based, retrieval, semantic gap, sensory gap,
narrow domain, ...
</kwd>

The keyword element demonstrates a weak point in the T/E
measure rather than one in the algorithm. As hinted in Section 3.4.3,
fragments with unstructured data may look like full-text fragments
if only the T/E value is consulted. The algorithm, however, handles
nicely the front matter element (fm) which itself does not qualify as
too data-oriented (T/E value of 0.98), but the abstract inside the
front matter does (T/E = 1.66).

Altogether, we detected 10 qualified full-text fragments in the
small article and 62 in the big one. Most of them seem to pass the
tests for XML Full-Text fragments introduced in Section 3.2.1, but
some clearly do not. Besides the bibliographical entry, it is hardly
meaningful to retrieve the keyword element as one unit because it
only contains a comma-separated list of noun phrases. In addi-
tion, the interpretation of the fragment content would be difficult
without knowing the tag name which in this case tells us that the
content is actually metadata about other fragments. Another ques-
tionable fragment is the back matter element in the small article
which contains both bibliographical entries and a biography of the
author. The education and awards of the author together with the
literature that he cites make the fragment rather incoherent in com-
parison with the other qualified fragments. In addition to the two
example documents, we study in less detail how a whole collection
of documents divides into fragments in Chapter 6.

4.4.5 Finding the maximal number of fragments

Oversized elements and a flat structure is a combination that the
algorithm has problems with: If the size of an element is bigger than



“Indexing” — 2006/10/30 — 13:56 — page 72 — #82

72 4 Selection of indexed fragments

the upper limit and if the sizes of all child elements are smaller
than the lower limit, no elements in the subtree qualify. This is
typical of big elements with the mixed content model which shows
in numerous text node children and inline elements.

One possible solution involves the modification of the algorithm
by introducing soft limits in addition to the size range given as a
parameter. The soft limits would be in effect only when no fragment
in a subtree passes the size test. Those new fragment bodies that
can now be selected still consist of a single element. This solution is
not perfect, however. Defining the soft limits is not trivial, and even
when they are defined, we can find elements that do not fit in the
range between the soft limits. Nevertheless, making the upper limit
flexible might solve the problem in practice despite its complicating
effect on the algorithm where additional testing of nodes would be
required.

Another approach to solving the “flat structure” problem is to
look at the fragments that are discarded as too small. Those that
form contiguous sequences should first be tested for full-text likeli-
hood, after which they can be grouped into fragments of an appro-
priate size. The combinations of discarded elements that meet the
requirements of a qualified full-text fragment are potential candi-
dates to be included in the index. The compromise in this solution
is that these additional fragment bodies have more than one root
element, which has to be taken into account. An additional chal-
lenge may be caused by the small size of the contiguous sequences
of discarded fragments. The fragments that are big enough may
break the flat structure into such pieces that the remaining content
does not include any contiguous sequence that passes the size test.

How to ensure the inclusion of all the important content in the
fragment index when XML documents are divided into disjoint
full-text fragments is still an open problem, though not significant
enough to deserve more attention in this thesis. In the current
setup, only marginal amounts of full-text are discarded when the
granularity is properly defined. Referred content, out-of-line con-
tent, and other data can be added to the fragment index later if
necessary.

The significance of the lower size limit for the qualified frag-
ments may be questioned so that also the very small fragments are
indexed, even when they only contain a few words. From the full-



“Indexing” — 2006/10/30 — 13:56 — page 73 — #83

4.5 Evaluation of fragment selection 73

text point of view, however, small fragments are unnecessary. A
single noun phrase is around the size of a typical full-text query
that consists of keywords and keyphrases. A perfect match would
be identical to the query, but an identical match is of no value to
the user. Also, the distinction between data and full-text is blurred
when the fragment size is measured in numbers of phrases. Al-
though systems for Information Extraction and Question Answer-
ing can benefit from small answers such as single noun phrases, the
lower bound for the fragment size is an important parameter when
full-text fragments for Information Retrieval are in question.

4.5 Evaluation of fragment selection

No standard evaluation metrics exist for evaluating algorithms for
fragment selection. In this section, we consider the possibilities for
developing such metrics so that we can compare the behaviour of the
algorithm when it is given different parameters. As the algorithm
is run offline, we will not grade its effectivity — how soon it stops
— but we will evaluate the output instead by analysing the set of
selected fragments. Because we look at the resulting fragments,
the evaluation is dependent on the set of input documents. An
ideal algorithm might not adapt perfectly to all possible document
collections, but it should produce decent results with at least most
of them. The properties that can be measured are regarded in
Section 4.5.1. Two articles are again taken as examples in Section
4.5.2 where the evaluation results are reported as far as they are
applicable to the division of single documents. Finally, in Section
4.5.3, we consider the evaluation of optimal results in order to give
direction to future efforts on the development of better algorithms.

4.5.1 Measured qualities

Two kinds of measures are identified for the evaluation of an in-
dexed fragment collection. The absolute measures describe the re-
lation between the original document collection and the fragment
collection which is the result of the division. The relative measures
reflect the performance of the fragment collection with certain IR
methods and a certain set of test queries.



“Indexing” — 2006/10/30 — 13:56 — page 74 — #84

74 4 Selection of indexed fragments

The absolute measures include two types of metrics for cover-
age: one where a 100% coverage is trivial to achieve but far from
the actual goals for fragment selection and another where the 100%
coverage is the actual goal. The first type is related to the size of
the fragment collection in proportion with the size of the original
document collection. We can measure the size in different units, for
example, as the number of Characters included in the collection di-
vided by the number of Characters in the original collection. Other
countable units include bytes2, words, index terms, Text nodes, and
elements.

The definitions for second type of the absolute measures are
close to our goals for the output of the algorithm, which is why
measuring the subjective error rate of the algorithm itself indicates
how far we are from the optimal coverage. For example, we can
study how many fragments containing full-text were misidentified
as data so that it led to the discarding of the full-text, or we can
detect how often data was misidentified as full-text. Being difficult
to measure automatically, the error rate may have to be measured
as a proportional size instead. If we assume that elements with
the mixed content model are full-text fragments, the error rate is
measured as the proportion of mixed content that was not included
in the fragment collection. However, this strict interpretation of the
mixed content may lead us astray in the evaluation, in particular
as we already are analysing how frequently the T/E measure leads
to a false interpretation of the content.

The relative measures are applicable to the evaluation of any
fragment collection but in particular to those where the fragments
have been further processed, e.g. by appending some of the frag-
ment context information to the fragment bodies. If these fragment
collections are measured with the absolute measures, we could get
coverages greater than 100% which is rather useless regarding the
goals of the evaluation. Therefore, the relative measures introduce
a third dimension to the evaluation: a system for XML retrieval
with a set of test queries. Different collections are then compared
by the quality of the search results, given that the XML retrieval
system and the queries are a constant factor.

2The bytesize of the parsed document is a comparable unit whereas the byte-

size of the file is not, as it may be different even for equivalent XML documents.



“Indexing” — 2006/10/30 — 13:56 — page 75 — #85

4.5 Evaluation of fragment selection 75

If we have access to the set of relevant answers which is also
known as the ideal recall base, we can measure the proportion of
the relevant answers that is included (or alternatively, not included)
in the fragment collection and thus available to the XML search
engine. Because of the hierarchical structure of the fragments and
because of the possible overlap in the ideal recall base, we may
need more complicated ways to measure the proportion than simply
counting the relevant fragments in the collection. For example, we
can take the near misses into account by considering the parent and
child nodes of the relevant elements. Luckily, several evaluation
metrics have been implemented for measuring various aspects of
Information Retrieval including those mentioned in this section.
Such metrics include combinations and variants of the traditional
metrics such as precision and recall.

4.5.2 Division examples evaluated

The example documents introduced and divided into fragments in
Section 4.4.4 are now evaluated as if they were small fragment col-
lections. Evaluating the IR performance of the division of a single
document is not meaningful because reliable IR testing requires
larger quantities of test material. However, the absolute measures
can be evaluated of the divisions of single documents.

When the small article is divided into fragments, the size of
the fragment collection comes down to 16,923 characters which is
99.19% of the size of the original article (17,061 characters). The
discarded Text nodes contain only 138 characters. However, when
the big article is measured after fragment selection, we only have
151,498 out of 182,497 characters (83.01%) included in the fragment
collection. The differences in the coverage can be partly explained
by the bibliography in the small article (626 characters) that was
mistakenly included because its parent element is a qualified full-
text fragment, but even if the bibliography is excluded, the coverage
would still be as high as 95.52%. These numbers demonstrate how,
regardless of the size unit, a 100% coverage is not a property of
successful fragment selection.

When measuring the error rate of the algorithm, we must re-
member that misjudging full-text as data is a more serious error
than misjudging data as full-text because a fragment classified as



“Indexing” — 2006/10/30 — 13:56 — page 76 — #86

76 4 Selection of indexed fragments

data will not be indexed as an independent unit. When data con-
tent is classified as full-text, e.g. part of the back matter in the
small article, we may still recover from the error with good text
and language processing techniques. The small article did not have
any full-text that was misjudged as data — in fact, no data content
at all was detected — whereas only the front matter and the bib-
liographical entries were considered data in the big article, which
results in a 0% error rate. Regarding the other point of view, we
can identify three data fragments that qualified as full-text frag-
ments: one list of keywords, one bibliographical entry, and one
back matter containing a list of references. Out of the 169 elements
that were tested for full-text likelihood, a total of 72 were selected
as full-text fragments while only 69 out of the 169 elements could
actually be truly considered full-text fragments. The error rate
thus equals 1.8% (3/169). The overall performance grade of the
algorithm seems good as all of the full-text content in the articles
is included in the fragment collection, and moreover, some of the
unimportant content is excluded.

4.5.3 Ideal fragment selection

So far, we have discovered what can be measured from a collection
of indexed fragments, and we have also seen some numbers con-
cerning the evaluation of the example articles. We will next focus
on the grading of the measured values. The starting point to our
problem is that if we want to index all full-text without too much
data-oriented content, a 100% coverage does not describe an ideal
fragment collection. Then we ask, what is the coverage of an ideal
fragment collection or do we even have to know it? As expected,
single right answers cannot be given to these questions.

The ultimate goal of the evaluation is to find out which values
of the absolute measures yield the best IR performance with an
arbitrary document collection and what is required of the related IR
techniques. However, a sufficient goal for now is to find parameter
values or settings that, first of all, do not prevent the system from
achieving the ideal IR performance and second, that aid the system
in reaching towards the ideal performance. Even this goal may
turn out to be utopia according to two simple claims: 1) the fewer
fragments we search, the easier finding the relevant ones is, and 2)



“Indexing” — 2006/10/30 — 13:56 — page 77 — #87

4.5 Evaluation of fragment selection 77

the fewer fragments we index, the fewer queries will have access to
the ideal set of answers. Anyway, the best performance is expected
from fragments that comply with the qualities of an XML Full-
Text fragment as defined in Section 3.2.1. These qualities cannot
be measured with any simple metric because their evaluation is
based on human perception.

Assuming that the ideal fragment collection can be selected from
one document collection, the absolute values can be measured and
either generalised or regularised in order to be applicable to other
collections. However, not all values generalise in all cases. For
example, the number of characters is dependent on the character
encoding, and the number of words is specific to the language of the
documents. Moreover, document collections are different from each
other in that the proportion of full-text and data varies from one
document and one collection to another. If the properties of a col-
lection can be regularised, we can define a set of rules by which the
values of the same properties can be inferred for other collections.

Measuring performance and the overall effects on the quality of
Information Retrieval is more complicated because other techniques
are always involved, e.g. clustering, query processing, scoring, score
combination, relevance feedback, and query expansion. Because
division into fragments is one of the first steps of indexing XML,
comparing different fragment collections is difficult: the consequent
steps cannot always be repeated identically.

Performance at different levels of granularity is especially chal-
lenging to compare. Some precision and recall metrics are favourable
to exhaustive answers whereas others prioritise specificity of the an-
swers. When the size of a relevant answer plays a role in the eval-
uation metric, the choice of granularity sets intrinsic boundaries
on the achievable scores. If a score combination method is applied
so that the granularity of the returned fragments may be decided
at the time of query processing, a fixed granularity will not be the
problem. However, after score combination, the fragment collection
is no longer evaluated on its own merits.



“Indexing” — 2006/10/30 — 13:56 — page 78 — #88

78 4 Selection of indexed fragments



“Indexing” — 2006/10/30 — 13:56 — page 79 — #89

CHAPTER 5

Fragment expansion

When the indexed fragments have been selected but not yet isolated
from the document collection, we can apply the techniques of frag-
ment expansion to the selected fragments. The purpose of fragment
expansion is to help an XML search engine sort the fragments by
relevance with respect to any given query. A good technique aids
in the task by making the fragments more self-descriptive. Two
different approaches are studied: 1) How to find metadata in the
contextual information which is available in the document but not
in the fragment itself, and 2) how to locate and weight the de-
scriptive content inside the fragment. The XML structure of the
fragments plays an essential role in both approaches, which makes
fragment expansion the last chance to utilise the fragment context
information and the XML markup before the fragments are sepa-
rated into independent entities and converted into another format,
e.g. plain text.

This chapter is organised as follows. The methodology that XML
markup supplies to the content provider for adding style and struc-
ture to the written text are studied in Section 5.1. Section 5.2 is
devoted to analysing the XML structure. Whether unsupervised
algorithms for the analysis are obtainable is also investigated. In
Section 5.3, we consider the possibilities regarding different weight-
ing schemes in the vector space model.

79



“Indexing” — 2006/10/30 — 13:56 — page 80 — #90

80 5 Fragment expansion

5.1 Markup semantics

The inspiration for finding meanings in the markup of structured
documents comes from similar research on natural language where
various interpretations of the semantics of style have been proposed
[Lan70]. For example, by analysing the semantic components of the
sentential structures we can classify texts into distinct stylistic cat-
egories [LS81]. In a similar fashion, we strive to understand how
semantics can be encoded in XML documents and how to decode
the information written “between the tags”. Instead of concentrat-
ing on the lexical and grammatical categories of a natural language,
we now collect statistics of different types of nodes and node struc-
tures of markup languages.

5.1.1 Writer’s point of view

In this context, a writer is a person who produces the full-text con-
tent for XML documents with a writing tool such as a text editor
or a word processing application. Practice has shown that profes-
sional writers rarely produce or edit raw XML, but the writing tool
converts the documents into an XML format instead. In order to
define the expected qualities of the resulting markup, we need to
determine whether we can assume a lossless conversion, and if not,
to what extent and how the writer’s intentions are preserved dur-
ing conversion. An automatic conversion into a standalone XML
document often results in a number of XML attributes describing
the style of each XML element, which shows in redundant style def-
initions and causes overhead in the form of big file sizes. However,
XML is making its way to the heart of more and more applications1

where it will be serving as a native file format for text documents,
after which there is no longer need for conversions. In these cases,
most of the information about the style and the layout of the doc-
ument is stored in separate style files, i.e. stylesheets or document
templates, which fall outside the scope of this thesis.

There are no official guidelines for writing or producing XML
although, for each individual document type, they often are speci-

1Sun’s StarOffice and the open source project OpenOffice currently support

XML. Microsoft is also contemplating on following the trend.



“Indexing” — 2006/10/30 — 13:56 — page 81 — #91

5.1 Markup semantics 81

fied. For instance, HTML is a widely used document type with more
books, tutorials, and online guides than one can imagine, but the
instructions are specific to HTML documents and therefore they
are not directly applicable to arbitrary XML documents. Other
document types have similar problems, which partly explains why
not XHTML nor any other XML document type has become the
golden standard for full-text documents.

Furthermore, XML does not come with any rules for defining a
document type for a specific purpose. For example, full-text content
can be stored in element content just as easily as in an attribute
value as far as the XML specification is concerned, although the
latter option is unusual and often also unpractical. However, the
characteristic features that are specific to XML are available in all
XML documents regardless of their document type. We will now
look into some commonly used techniques for marking up text in
XML documents.

References In order to add credibility to the text, writers may
refer to previously written authoritative work. Other motives such
as quotations and citations are also common for referring to other
texts. The references contain identifiers of the referred content such
as a combination of the author’s surname and the year of publica-
tion. When marked up in an XML document, an identifier can be a
URI-reference pointing to a resource in another XML document or
the value of an IDREF-type attribute pointing to another element
in the same XML document. The identifier is associated with an
element which typically occurs at the inline level and contains or
trails a few carefully selected words as the anchoring text.

Labels of structure Titles of various sizes and levels make the
structure of the text clearer and more intuitive and also easier to
read. Titles are usually the only content of certain title elements
which commonly occur either in the beginning of the correspond-
ing content element or as its immediate precedent. In these cases,
the path in the document tree from any fragment to the nearest
preceding title would be ”first child or previous sibling of the par-
ent node”. A good title is considerably shorter than the content
it describes, which also shows in the sizes of the title elements. A
challenge is, however, that the element names of the title elements
vary from one document type to another, and sometimes even one
document type may suggest different element names for titles at



“Indexing” — 2006/10/30 — 13:56 — page 82 — #92

82 5 Fragment expansion

different levels, e.g. article title and section title.
Labels of concepts New concepts and essential phrases are

often italicised by tagging the phrase with appropriate tags. Other
temporary changes in the typeface are used for the same purpose:
to make a portion of text stand out from the surrounding content.
As a result, the text with a differing typeface becomes the content
of an inline-level element. This is common to all document types.
Only the name of the inline-level element varies from one document
type to another. It is insignificant whether the style is defined in a
separate stylesheet or encoded in the tag name because an element
is needed in both cases for marking the part of the text which the
different style is applied to.

Other labels From the point of view of an XML parser, highly
annotated full-text in XML format looks remarkably different from
unannotated text. Breaking up the full-text into individual words
and phrases and surrounding them with new tags increases drasti-
cally the number of text nodes and decreases the average length of
the text nodes. However, annotation of text can hardly be expected
of content producers. For one thing, it requires extra work from the
writer, and for another, no standard conventions exist for annotat-
ing textual entities. Nevertheless, automatic annotation algorithms
can be successfully applied to the contents of full-text documents
[CHS04, DEG+03].

5.1.2 Semantic units of XML

From the writer’s point of view, we move on to the XML proces-
sor which handles parsed XML documents and passes on the full-
text content to appropriate indexing tools. Like an XML parser, a
general-purpose XML processor is blind to the semantics of element
and attribute names as it does not assume any particular document
type. However, we do assume that there is semantic information
encoded in XML markup as seen by XML processors.

Analogical reasoning in linguistics starts from the morphemes of
natural languages which are defined as the smallest units of lan-
guage that are capable of carrying semantic meanings. To adapt
the definition to XML documents, we are interested in the small-
est units of XML markup that carry information useful in XML
retrieval — the morphemes of XML. The most common ones are



“Indexing” — 2006/10/30 — 13:56 — page 83 — #93

5.1 Markup semantics 83

introduced in this section.
We consider four kinds of nodes in an XML document which is

first parsed into a DOM Node:

1. Element nodes. There is a clear distinction between inline
elements and other elements as the former do have text node
siblings and the latter do not. The content models of both the
element itself and its ancestor elements are another distinctive
feature that we look for in element nodes.

2. Attribute nodes. Attribute values are as difficult to interpret
as attribute names unless the attribute type is known. The
most interesting types are ID, IDREF, and IDREFS. If there
is an IDREF-type attribute in one element and corresponding
ID-type attribute in another element, we can interpret iden-
tical attribute values as a link connecting the corresponding
two elements.

3. EntityReference Nodes. The semantic meaning of entity ref-
erences is not always intuitive, but knowing the type of an
entity that is being referred helps us determine its impor-
tance. For example, references to character entities can be
interpreted as a character encoding issue, whereas references
to longer string values may function as phrase markers. These
two kinds may appear in both text content and attribute val-
ues. Unexpanded external entities are more challenging to
interpret as compliant XML parsers only report them as En-
tity Nodes and, as a consequence, they have a rather unpre-
dictable effect on the true size of the ancestor elements.

4. Text Nodes2. The full-text content in XML documents is
found in the values of text nodes. Different Text nodes are
distinguished by the type of their parent nodes, e.g. elements,
attributes or entity references3.

2For simplicity, CDATASection Nodes are also treated as Text nodes in this

thesis.
3Entity references may be present in the DOM tree although they are ex-

panded by validating XML parsers.



“Indexing” — 2006/10/30 — 13:56 — page 84 — #94

84 5 Fragment expansion

Other types of nodes that are not investigated in this thesis,
include Document Nodes, ProcessingInstruction Nodes, Comment
Nodes, DocumentType Nodes, Entity Nodes, and Notation Nodes.
Although they may turn out to be relevant and even useful, they
are either too irregular or too uncommon to have significance at the
current stage of the research. In the future, as the XML standards
and tools develop, we may also consider other types of nodes such
as those for storing document fragments.

5.2 Analysis of full-text fragments

In Section 5.1, we looked at how various writing techniques ap-
pear in the XML markup. The point of view in this section is
the opposite: we want to study how the writing techniques can be
recognised by only analysing the XML markup. Keeping in mind
the goal of being independent of document types, we estimate how
successfully the semantics of document structures can be detected
and interpreted without a DTD and, with a DTD, how the validity
constraints may help in the process. As far as it concerns fragment
expansion, analysing document type definitions themselves is rather
trivial and therefore it is excluded as irrelevant. Besides fragment
expansion, we find motivation and inspiration for the analysis in
related work which is briefly introduced in this section.

5.2.1 Referred and related content

The purpose of regarding content outside a fragment, in particular
the fragment context information as defined in Section 3.1.1, is
to make the fragment more self-descriptive and independent and,
consequently, easier to find. This is achieved by appending related
terms and phrases to the fragment. There are two different ways
to find useful content descriptors in the fragment context. Some
are located by following explicit links (references) pointing out of
the fragment and others by backtracking to the beginning of the
document and detecting the structural labels, e.g. headers and
titles, on the way.

The inspiration for studying links inside a document comes from
the work of Maarek et al., according to whom, proximity of text



“Indexing” — 2006/10/30 — 13:56 — page 85 — #95

5.2 Analysis of full-text fragments 85

...and for the first time the world learned of the
&ldquo;Ultra Secret&rdquo;<ref rid="BIBA100321"
type="bib">1</ref> and of
&ldquo;Codebreakers.&rdquo;<ref rid="BIBA100322"
type="bib">2</ref> The details of the existence of
large computational devices was delayed ...

--- fragment boundary ---
<bb
id="BIBA100322"><au><fnm>D.</fnm><snm>Kahn</snm></au>
<ti>The Codebreakers; the story of secret writing,</ti>
<obi>MacMillan, New York,</obi>
<pdt><yr>1967.</yr></pdt>
</bb> ...

Figure 5.1: Lexical affinities relating the word “Codebreakers” and
a linked bibliographical entry.

and links within a page is a measure of the relevance of one to the
other because of their lexical affinity [MBK91]. In practice, the text
at the other end of the link may be more relevant to the topic of the
anchoring text than the text in the following paragraph. Further-
more, Maarek et al. define that two words share a lexical affinity if
they are involved in a modifier–modified relation. Figure 5.1 rep-
resents a case where the word “Codebreakers” is modified by the
content that is found at the other end of the link, which suggests
lexical affinities between the modified word and the bibliographical
entry (bb element).

When the theory of lexical affinities is applied to any kind of full-
text with links appearing at the inline level, e.g. hypertext, we have
to relax the requirement that lexical affinities cannot relate words
belonging to different sentences. As the sentences in the full-text
content are not isolated by an XML parser, the sentence struc-
tures are, in fact, completely ignored. However, we seem to find
sound modifier–modified relations by simply following links that
point to other fragments, including data fragments. The commonly
occurring modifiers include both block-level content, such as tables,



“Indexing” — 2006/10/30 — 13:56 — page 86 — #96

86 5 Fragment expansion

figures, and corresponding captions, and out-of-line content, such
as notes, footnotes, biographies, and bibliographical entries. If the
link points to an element inside the fragment, the referred content
is part of the fragment, and although we may still find useful lexical
affinities, appending the referred content again will not make the
fragment more self-descriptive. The bigger the fragments, the more
common this scenario is and the more we could benefit from other
ways to utilise the discovered lexical affinities. On a further note,
analysing links that point to other XML documents falls outside
the scope of this thesis.

Reliable indentification of the attribute types and values requires
that the definitions be available either in an XML DTD or a schema
definition. Without any definition for the document type, finding
the best set of candidate ID and IDREF(S) attributes is an NP-
hard optimisation problem where a 100% accuracy is beyond reach
[BM03].

When the attribute type definitions are known, link recognition
is quite straightforward. Links inside one document are unidirec-
tional, pointing from one element to another.4 The starting point
of the link has an attribute of type IDREF or IDREFS, and the
element at the end of the link has an ID type attribute with an
identical value. Upon fragment expansion, the content of the el-
ement with the ID attribute is associated with the fragment that
contains the referring element with the IDREF attribute. A slightly
different approach was presented by Liu et al. who map a referring
element to a referred element [LZC04].

Associating referred content with the fragment is also motivated
by the Relevant Linkage Principle [BYR02], according to which,
links point to relevant resources. Whether this assumption about
hyperlinks in hypertext documents holds for the links in XML doc-
uments for scientific articles is studied in Chapter 8.

As seen in the example where a big article was divided into
fragments (see Section 4.4.4, details in Appendix A), a section (sec
element) is sometimes considered too big to be indexed as such, and
the subsections (ss1 element) of the section are indexed instead.
However, because a section is typically not merely a union of its

4However, several links between two XML elements are possible, which in

practice enables bidirectional links.



“Indexing” — 2006/10/30 — 13:56 — page 87 — #97

5.2 Analysis of full-text fragments 87

subsections, some essential content such as the section title is at risk
to be neglected in the index. Most of the sections of the big article
offer us examples of this kind with the exception of the third section
where even more content is left out as too small. If most section
titles are not included in the indexed fragments, the self-descriptive
value of the fragments deteriorates. To what extent it does so is
complicated to evaluate because there are several ways to associate
the related titles with the indexed fragments. For example, because
the title of a section is related content to all of its subsections, it
can be associated likewise assuming that the subsections qualify as
full-text fragments. Furthermore, the titles of the corresponding
article, journal, and even the section in the journal, can also be
considered related content to the subsections, but it is well worth
questioning whether it makes the fragment more self-descriptive if
the title of a journal is associated with a small subsection. A good
compromise might be that the tree distance is taken into account
when assessing the importance of a title–fragment relation.

More motivation for paying heed to titles comes from related
research: Titles have been found valuable as an asset to Machine
Translation thanks to their restricted grammar and vocabulary. Na-
gao et al. found proof for this in the TITRAN system which spe-
cialises in the translation of titles of scientific papers from English
into Japanese [NT80, NTHK80, NTYK82]. They also discovered
the restricted semantics of the titles. More than 98% of the titles
were noun phrases, most of which were carefully selected termino-
logical words specific to a particular field with no polysemic ambigu-
ity. To information retrieval systems, these words are ideal content
to be indexed, as they have the characteristics of good search terms,
as well.

The structural labels that we are interested in include any kind
of titles, subtitles, or headings that can be considered useful in
describing the related content. Example (5.1) from a real-world
document collection shows a typical case where the title of a section
is presented in the content of a st element.

(5.1) <sec>
<st>Conclusions</st>
...

</sec>



“Indexing” — 2006/10/30 — 13:56 — page 88 — #98

88 5 Fragment expansion

However, looking at the element names is not sufficient as Ex-
ample (5.2) proves. An empty title element seems common in the
beginning of the first section as similar examples are easy to find
throughout the document collection of scientific articles. In some
cases, we find additional information in the attributes, but in most
cases, we have no attributes to look into. Fortunately, titles like
“Introduction” do not add a great amount descriptive value to any
full-text fragment.

(5.2) ... <bdy>
<sec type="intro"><st></st>
<p>The August 1995 Micro Law reported... </p>
...

</sec> ...

Example (5.3) presents us a case where the position of the most
title-like element (b element) is less than typical. It is deep inside
the vt element it describes. However, it is the first element bearing
textual content just like in Example (5.1), which gives us hope for
finding regularity in the relative position of titles.

(5.3) ... <bm>
<vt id="a100471A">
<fig>
<art file="a100471A.gif" />
<fgc>
<p><b>James Worthy</b> was named professor

of management...</p><p>... </p>
<p>...</p>

</fgc>
</fig>

</vt></bm>...

To our disappointment, examples contradicting the assumptions
about the position of titles are found in the same documents where
the titles of whole articles are positioned deep inside the front mat-
ter element, after groups of header elements with publication data.
Although the article titles all have the same element name, locat-
ing them automatically is challenging because they are not found in



“Indexing” — 2006/10/30 — 13:56 — page 89 — #99

5.2 Analysis of full-text fragments 89

the very beginning of any element and because the elements nearby
have text content of a similar length.

All these examples are extracted from documents with the same
document type. Other document types can be expected to show
even more diversity in the element structures around different kind
of titles. Consequently, all titles cannot be reliably found in a het-
erogeneous XML collection without or even with human interpre-
tation of element names. As seen in the examples, there are usually
one or more element types assigned to different kinds of titles and
headings, however, also style elements can make title elements. In
addition, the contrary is true. The title elements are commonly
used because of their effect on the style, such as font size, even
when the element content is not considered a title. The header
elements of HTML (h1, h2, h3, etc.) provide us a rich supply of
examples, i.e. the intention of having consecutive header elements
with lengthy content in each rarely has anything to do with pre-
senting a group of long titles to the reader. The length of the
element content, however, has been found useful in title recognition
together with its position inside a document fragment [Hei00]. If we
also remember that the nearest related title is not always very near
and that sometimes a related title cannot be found, we do have
ingredients for a set of heuristics that help us locate the related
titles.

5.2.2 Changes in the typeface

Systems that index full-text often neglect the information that is
implicitly available in the layout and presentation of full-text. They
may perform sophisticated linguistic analysis including full gram-
matical parsing etc. but, at the same time, they are only capable
of processing the plain text presentation of the XML documents
where all markup and other information about the text formatting
has been removed. In order to fix the shortfall, we want to find
methods that analyse formatting properties, typefaces in particu-
lar, by taking document structures into account.

Motivation for the analysis comes from the rather simple writing
technique of adding emphasis to selected parts of text as described
in Section 5.1.1. From what we know about labelling concepts with
differing typefaces, we infer the following hypothesis:



“Indexing” — 2006/10/30 — 13:56 — page 90 — #100

90 5 Fragment expansion

A temporary change in the typeface implies a phrase boundary.
Assuming that we can detect the temporary changes in the type-

face, the hypothesis should turn out to be helpful in phrase detection
which in turn aids in building separate phrase indices and enables
schemes for phrase weighting.

Thanks to the XML markup, we can locate the portions of text
content that are supposed to be formatted with a typeface differ-
ent from the surrounding content. In order to be independent of
document types, we intend to ignore what the specific typefaces are
called, what they look like, or even how they differ from other type-
faces. Therefore, any kind of change in the typeface is potentially
interesting, which makes this theory applicable to all documents
where typefaces are used for presentational purposes.

It is necessary to read document type definitions if, for example,
we want to know what the intended content models of elements are.
Without knowing the content model, we cannot confidently deter-
mine whether or not text nodes containing only whitespace can be
ignored. Zwol et al. presented an approach where they first analyse
the DTD in order to find those elements that can have the mixed
content model [vZWD05]. The descendant elements in the mixed
content — inline-level elements — are then given a multiplicated
weight. Although their results showed slight improvement when
inline-level elements were given heavier weights, the overall perfor-
mance of their system was too low to demonstrate the significance
of the idea.

DTDs and schemas also tell us which elements can be used for
adding emphasis or changing the typeface. However, by only know-
ing the element name, we cannot know if the change is temporary in
the parenting element or if that typeface is dominant in the whole of
the parent element. For example, all the full-text of one document
can be presented in italics aslong as the DTD only is concerned. Be-
cause of the distinction between temporary and permanent changes
in the typeface, we cannot rely on any interpretations of element
names but we have to look at the relations of element and text
nodes instead.

We know that marking a phrase with a typeface that differs from
the surrounding text implies that the phrase be content of an inline
element such as the it element in Example (5.4).



“Indexing” — 2006/10/30 — 13:56 — page 91 — #101

5.2 Analysis of full-text fragments 91

(5.4) ...difference in firing modes. Timed (stochastic)
PN’s use the <it>strong firing mode</it> in which
a transition is forced to fire immediately after
it is enabled...

This is a typical example of the intention to change the typeface
temporarily in order to emphasise the important content. There
are numerous other cases where elements appear at the inline level
without having anything to do with typefaces. We find typical
examples in the XHTML specification [W3C02] which allows tables
and lists to appear at the inline level. They should be simple to
distinguish, though, as their content differs greatly from that of the
inline elements that change typefaces. Table and list elements have
structured content, i.e. they contain several child elements, whereas
inline elements marking phrases typically have only one text node
child. Nevertheless, it is intuitively clear that also inline elements
with structured content imply phrase boundaries.

Even when an inline element is used for changing the typeface,
it might not contain a useful phrase. Examples include elements
for subscript, superscript, embedded program code, preformatted
text, mathematical formulae, etc. The content of these elements is
often treated differently from full-text content at a later point of
indexing and not much harm is done if treated as full-text during
fragment expansion. For example, program code is mostly ignored
merely due to the large amount of special characters and stopwords
such as if and then.

As a contrast to Example (5.4), the inline elements in Example
(5.5) and (5.6) do not contain phrases although they mark tempo-
rary changes in the typeface. In this kind of cases, the markup is
placed in the middle of a word, and the inline elements are not sepa-
rated by word delimiters from the surrounding content. More signs
of deceptive inline elements are seen in the sizes of text nodes. The
text length at the inline level is extremely short (1–2 characters)
in Example (5.5), whereas in Example (5.6), the inline elements
themselves only contain 1–2 characters.

(5.5) <ti>C<scp>OMPARISON OF</scp>
A<scp>RCHITECTURAL</scp> F<scp>EATURES</scp></ti>

(5.6) ...through SilRi (<it>si</it>mple



“Indexing” — 2006/10/30 — 13:56 — page 92 — #102

92 5 Fragment expansion

<it>l</it>ogic-based <it>R</it>DF
<it>i</it>nterpreter, ...

In the light of these examples, the original hypothesis should
be amended with a remark that a phrase boundary can only occur
between words. However tempting it might be, the assumption
that words are separated with whitespace characters is specific to
languages and writing systems. In languages like English, leading
and trailing non-whitespace characters provide negative evidence
when deciding the usefulness of an inline element, but languages
with other kind of writing systems need different criteria for finding
word boundaries.

Discovery of useful phrases is the subsequent goal of detecting
phrase boundaries. In addition to the hypothesis, we also claim that
the typeface does not change within a useful phrase, as shown in
Example (5.4). In order to recognise the significant phrase bound-
aries, we define a qualified inline element which contains a phrase
that can be considered more important to the fragment than the
surrounding content. The phrase is often emphasised with a differ-
ent typeface when the text content is displayed, but this is more of
a consequence than a requirement. An XML element is considered
a qualified inline element when it meets the following conditions:

(C1) The text node siblings contain at least n characters after
whitespace has been normalised.

(C2) The text node descendants contain at least m characters after
normalisation.

(C3) The element has no element node descendants.

(C4) The element content is separated from the text node siblings
by word delimiters.

Defining the lower bounds of n and m improves the quality of
detected phrases in the qualified inline elements. If the text node
siblings contain fewer than n non-whitespace characters, the inline
element is not likely to denote a temporary change in the typeface.
It might not even change the typeface at all. If the normalised string
value of the inline element is shorter than m characters, it is likely
that the string is too short to be indexed. Setting the minimum



“Indexing” — 2006/10/30 — 13:56 — page 93 — #103

5.2 Analysis of full-text fragments 93

length of the trimmed phrase m reduces the number of qualified
inline elements, which in turn reduces processing overhead. If the
values of n and m are set properly, the fourth condition may be
redundant.

In the third condition, the definition for qualified inline elements
differs most from the HTML definition for inline elements in that
qualified inline elements may only contain string-valued content,
not other inline elements. This definition is also independent of
any tag names and document types. Furthermore, a descriptive
definition is more useful than a prescriptive one because it reflects
the practice of how tag names are actually used instead of simply
assuming the intended usage.

Setting a threshold for the maximum size of an inline element
is excluded in the definition, which allows for phrases of arbitrary
length to qualify. Fortunately, the amount of excessively big inline
elements among the qualified ones is minimal — less than 0.01% —
in the document collection described in Section 6.1. The ones that
occur in the collection contain several sentences of text. The num-
ber of lengthy phrases can be reduced by modifying the condition
(C3) as follows:

(C3b) The element has only text node descendants.

With the modified condition (C3b), we have the definition of
a simple inline element where entity references are not allowed.
Because the probability of a phrase containing entity references
is proportional to the phrase length, the condition reduces most
the number of lengthy phrases. Consequently, some useful phrases
similar to the contents of the it element in Example (5.7) do not
qualify as simple inline elements.

(5.7) ... The <it>Audio &amp; Video Recorder</it>
consists of audio-visual equipment such as ...

According to the definition, an inline element does not qual-
ify if more than one element is needed for changing the typeface
temporarily. Example (5.8) shows two different phrases where two
inline-level elements define the changes in the typeface. The type-
face of both phrases is actually subject to three different changes:
boldface, italics, and capitalisation.



“Indexing” — 2006/10/30 — 13:56 — page 94 — #104

94 5 Fragment expansion

(5.8) ...similar in several respects to Bertrand Meyer’s
<b><it>BILINEAR</it></b> [<ref>12</ref>],
pp. 141-146 and <b><it>TWO_WAY_LIST</it></b> ...

From our experience, the inline level content where two or more
changes have been applied to the typeface consists of mostly of
single characters, e.g. italicised superscript, and pieces extracted
from program code, e.g. names of variables, functions, or even files.
Example (5.8) represents the best phrases in the test collection
where two inline level elements are used, and even their quality
hardly compares with that of the most common case presented in
Example (5.4).

Although detecting cases similar to Example (5.8) would not do
much harm, we cannot consider it worthwhile because of the ques-
tionable quality of the phrases combined with the added complexity
of computation. Moreover, the presupposition behind the heuris-
tics (two or more elements changing the typeface) does not apply to
all document types although the heuristics themselves are indepen-
dent of document types. While some DTDs only define elements
for marking temporary typefaces, others may have corresponding
definitions for attributes, which implies only one element occurring
at the inline level.

Hoi et al. rely on the HTML document type [HLX03], but they
are unable to account for cases such as Example (5.9) where the
style is defined by inline CSS.

(5.9) <p style="background: blue; color: white;">
A new background and font color with inline CSS</p>

Because of CSS and other stylesheet languages, knowing the tag
names is not sufficient when analysing HTML documents, and this
conclusion can be generalised to other document types as well that
allow such structural heterogeneity.

5.3 Indexing expanded fragments

The full-text fragments are ready to be indexed after the analytical
part of fragment expansion is completed. How the results of the
analysis are utilised when building an index for the fragments is



“Indexing” — 2006/10/30 — 13:56 — page 95 — #105

5.3 Indexing expanded fragments 95

the question for the next stage. Our ultimate goal is naturally an
improved quality of information retrieval. We also want the tradi-
tional methods for indexing to be applicable although they do not
directly support XML as the document format. Such methodology
includes the vector space model characterised in Section 5.3.1. How
the content can be weighted without changing the conversion pro-
cess between the XML presentation and the vector presentation of
fragments is considered in Section 5.3.2, while in Section 5.3.3, we
focus on selecting the set of applied weighting methods.

5.3.1 The vector space model for XML documents

The first ideas about the vector space model were presented by
Gerard Salton as early as the mid 60’s [Sal64, SL65]. The ideas de-
veloped further in the 70’s with the contributions of Karen Spärck
Jones, who presented the concept of inverse document frequency
[Jon72], into what is presently known as the original Vector Space
Model (VSM) [SWY75]. Adaptations of the original VSM are still
used by several search engines such as GoogleTM[BP98] and appar-
ently many others [KT00], which gives account of the high potential
of the ideas.

XML documents that are processed as a set of XML fragments
differ from the traditional documents in that the fragments share
content with each other. For example, the content of each sec-
tion fragment of a book is included in the content of the book
because of the nested structure of the fragments. Applying the tra-
ditional vector space model to XML documents is thus nontrivial.
Although several XML-aware extensions to the VSM have been
proposed [CEL+02, GS02], we choose to get around the need for
new models by modifying the structural relations instead inside the
XML documents. The problem of vectors representing overlapping
documents becomes irrelevant by dividing the XML documents into
disjoint fragments using the algorithm presented in Section 4.4. The
disjoint fragments will be treated as single documents in the tradi-
tional sense of the word.

When XML fragments are converted into term vectors or corre-
sponding data structures, each term is represented by a dimension
of the vector with a value denoting its relative weight in the frag-
ment. Carmel et al. presented an interesting XML-aware approach



“Indexing” — 2006/10/30 — 13:56 — page 96 — #106

96 5 Fragment expansion

where terms are paired with their path inside the fragment and
each pair is assigned a dimension in the vector [CMM+03]. As a
consequence, the same term can actually be represented by differ-
ent dimensions depending on the context where it appears in the
fragment. Nevertheless, we choose to model the fragments as bags
of words so that the traditional vector space model applies, and the
XML-aware versions are left for further research.

In this thesis, the commonly used terms are defined as follows:

Term Frequency (tf) The number of occurrences of a term in a
document fragment.

Document Frequency (df) The number of document fragments
where the term occurs.

Inverse Document Frequency (idf) The inverse of the df5.

Completely new definitions are not needed because the document
fragments are treated as documents in the traditional sense — as
if they were undivided entities.

The term weighting in the vector space model is often based
upon a system proportional to a tf·idf function which assigns largest
weights to terms appearing frequently in individual documents but
rarely in the document collection as a whole. Both tf and idf can
be upweighted or downweighted with the logarithm function or ad-
ditional multipliers if, for example, we want to include probability
factors in the function.

5.3.2 Weighting methods

Because traditional methods cater for plain text representation of
documents best, we want to be able to remove all XML markup
before the traditional weighting schemes are applied. In practice,
the XML markup is removed from the fragments after the weighting
methods related to fragment expansion have been applied. The
result consists of fragment-sized plain text “documents”.

5The definition for idf was originally introduced by Karen Spärck Jones in

1972 [Jon72].



“Indexing” — 2006/10/30 — 13:56 — page 97 — #107

5.3 Indexing expanded fragments 97

By default, the weight of a term comes from the number of its
occurrences in the indexed document. This principle concerns all
the indexed terms. When the goal is a plain text presentation of
the fragments, we only have a limited number of ways to affect the
default weights of the content inside the fragment. Basically, we
can only insert and delete nodes in the subtree corresponding to
the fragment. In practice, we manipulate the fragment content in
one or more of the following ways in order to apply special weighting
schemes:

Reordering of Element and Text nodes. This affects the phrases
and consequently the phrase frequencies of the phrases that
occur in the word sequence.

Reduplication or deletion of Element and Text nodes. Both
reduplication and deletion affect term frequencies, which is
useful when applying weighting schemes. Deletion of nodes
additionally decreases document frequencies if all of the occur-
rences of a term are removed. Modifying the node frequencies
also implies changes in the absolute order of the nodes.

Insertion of new Element and Text nodes. Term frequencies
increase when new content is appended to the fragment. In
addition, the document frequency is affected if the new nodes
contain new terms to the fragment.

Some consideration is important when adding new content to
fragments. If we associate structurally related content, e.g. titles,
with each fragment, the effect on document frequencies is multi-
plied by the number of fragments sharing the title. If important
title words are given reduced weights because of their magnified
document frequency, we may hardly talk about a successful weight-
ing method. Applying a zero weight — deletion in practice —
does not have such dramatic effects on document frequencies unless
the same index terms are deleted from multiple fragments, which
sounds unusual.

The overall effect of node duplication depends on the indexing
methods. If normalised term vectors model the fragment, dupli-
cation of an index term does not quite double the weight of the
duplicated word, but it also reduces the weights of other terms be-
cause the sum of weights is constant. Consequently, the relative



“Indexing” — 2006/10/30 — 13:56 — page 98 — #108

98 5 Fragment expansion

term weight doubles. Anyway, duplication is still a rather coarse
weighting method in general.

Going directly from XML fragments to a vector representation
would enable us to define non-integer weights for the content of
selected nodes without having to resort to an intermediary cod-
ing format between XML and term vectors. However, not having
any intermediate fragment format requires the parsing and further
processing of the fragment content while performing fragment ex-
pansion. This shortcut is a clear restriction on the freedom of choice
of indexing methods because it requires that the methods support
XML. Therefore, we prefer to have an intermediate bag-of-words
type format for the fragments.

Individual fragments can also be weighted as a whole entity.
For example, we might want to assign a lower weight to a typical
back matter fragment than a section fragment. However, we still
face a problem with presenting the weighting factor because the
reduplication of nodes only scales well to a small proportion of the
indexed content. Once we have a more sophisticated way to present
the overall weight of a fragment, we may find fragment size and full-
text likelihood useful when computing the weighting factors.

5.3.3 Selecting the fragment expansion techniques

After the analysis, different parts of the fragment can be given dif-
ferent weights. Although all of the fragment expansion techniques
can be recommended, the best result might not be achieved by
choosing all of them. If we go too far, e.g. if practically all the
content of most fragments gets a double weight, we return to where
we started from.

Increasing the weight of the qualified inline elements follows the
principle, according to which the content emphasised in the frag-
ment should be emphasised in the index. The impact is rather
local because the content subject to heavier weighting has a non-
zero weight by default. Document frequencies of single terms are
not affected at all, but useful phrases should be easier to spot.
Regarding the other fragment expansion techniques, many content
descriptors, such as titles, table and figure captions, and footnotes,
may be completely ignored unless the fragments are expanded with
both referred and related content. By default, content that does



“Indexing” — 2006/10/30 — 13:56 — page 99 — #109

5.3 Indexing expanded fragments 99

not belong to any indexed fragment has a zero weight in the index.
When combined, the fragment expansion techniques affect both

term and document frequencies in a mutual vector space, which
makes the combined effect challenging to predict. For example,
the same terms may occur in both titles and referred content, and
by appending both to the fragments, the raise in term frequency
may be cancelled out if also the corresponding document frequency
grows in the same proportion. Moreover, an elevated document
frequency lowers the tf×idf weight of the term in all the fragments,
too, where the term occurs. If, however, the words appearing in the
appended fragment context information also occur in the fragment
bodies, the biggest impact hits the term frequencies, and the effect
on document frequencies is less drastic. The optimal solution could
be a compromise where either the referred content or the related
content is appended to the fragment.

Stemming and other linguistic processing bring more factors of
uncertainty to the picture, e.g. two slightly different words may be
processed as identical words after stemming. However, considering
the linguistic issues in more detail is bypassed in this thesis.



“Indexing” — 2006/10/30 — 13:56 — page 100 — #110

100 5 Fragment expansion



“Indexing” — 2006/10/30 — 13:56 — page 101 — #111

CHAPTER 6

Dividing the INEX collection into
fragments

The methodology for selecting the indexed fragments is tested on
a real collection of XML documents in this chapter. In order to
compare methods that are specific to a document type with those
that are independent thereof, we study first what is found when
the element names and structures are assumed, and second, which
fragments are selected by only analysing the structure of the docu-
ments. When the collection is divided into fragments, we are inter-
ested in which fragments belong to which levels of granularity, and,
level-wise, what kind of properties the fragments of each granularity
have.

The test collection consisting of documents of a single document
type is introduced in Section 6.1. The DTD is available, so we
can choose from two approaches: 1) either we rely on the DTD as
described in Section 6.2, or 2) we can ignore information specific
to the document type, which is demonstrated in Section 6.3. Ap-
proaches proposed by fellow researchers are compared to ours in
Section 6.4, as far as they concern the division of the collection into
fragments or the selection of the indexed nodes.

6.1 Overview of the document collection

The testbed for the experiments in this thesis has been widely used
among our fellow researchers practising XML retrieval as it was the

101



“Indexing” — 2006/10/30 — 13:56 — page 102 — #112

102 6 Dividing the INEX collection into fragments

official test collection (v1.4) for the INEX initiatives in 2002–2004.
The collection consists of 125 volumes of scientific journals from the
IEEE Computer Society1 publications, so the common domain of
the full-texts is Computer Science. The 860 journals included in
the collection were published between the years 1995 and 2002.

The 125 volumes were converted from an unspecified format into
125 XML documents which contain 12,107 elements at the article
level roughly corresponding to the size of a traditional “document”.
The number of XML elements equals 8,239,997, the number of Text
nodes 9,751,714, and the number of characters in the Text nodes
390,849,5632 which comes down to 494 megabytes.

The physical structure of the test collection is irrelevant if the
documents are processed with XML literate tools that provide an
interface to the parsed XML documents. In several cases, however,
the tools and methods are not fully XML-enabled, which magnifies
the role of the physical structure of the documents. For example,
old scholars may prefer adding light XML support to their legacy
tools to re-implementing their ideology with actual XML tools. The
different approaches have lead to conceptual clashes that can be
explained by taking a closer look at the file structure of the test
collection: Each scientific article and article level element is stored
in a separate file as an external entity — an article file. The corre-
sponding entity declarations and entity references are found in the
internal DTD of each XML document — a volume file. The XML
documents also refer to an external DTD which is a common subset
of the DTDs of the 125 XML documents.

Because of a confusion with vocabulary, the INEX document
collection is often misrepresented; see [FGKL02, FL04]. We will
now explain what the collection looks like to XML-oriented people
in order to have a common terminological basis with the reader.

INEX XML documents. An XML Document is the biggest log-
ical unit of XML. It can be stored in several XML files which
are part of the physical structure of the document. When
parsed into DOM3 trees, each XML document has exactly one

1http://www.computer.org/
2Excessive whitespace has been normalised. The collection contains

394,368,715 characters before the normalisation.
3http://www.w3.org/DOM/



“Indexing” — 2006/10/30 — 13:56 — page 103 — #113

6.1 Overview of the document collection 103

Document Node in the tree. The DOM trees representing the
whole INEX collection total 125 Document Nodes because
the collection consists of 125 XML documents. Each XML
document contains one volume of an IEEE journal.

INEX articles. The concept of a document has changed because
of XML. A document is no longer considered the atomic unit
of retrieval. However, XML should have no effect on the con-
cept of an article. While it is true that there are 12,107
article elements in the document collection, the number
of articles is smaller. According to the common perception,
many article elements do not have article content. Instead,
they contain a number of other papers such as errata, lists
of reviewers, calls for papers, term indices, or even images
without any text paragraphs.

INEX tags. The specification for XML4 defines three different
kind of tags: start tags, end tags, and empty element tags.
A DTD does not define any tags, but it does define element
types. In the XML documents, though, each non-empty ele-
ment contains two different kinds of tags. Counting the differ-
ent tags in the collection (361) is different from counting the
different element type definitions in the DTD (192), different
element types inside the article elements (178), or different el-
ement types that are actually present in the whole collection
(183). We ignore the XML attributes in the start tags when
counting the different tags in the collection.

INEX content models. The content models of the collection are
defined in the DTD. Each element type definition consists
of the name of the element and the content model that fol-
lows the name. The 192 element types each have one content
model, but only 65 of those are different. Of the 65 differ-
ent content models, only 59 appear in the articles of the col-
lection. For example, the content models of element types
journal and books are not allowed in article content, and
elements such as couple, line, and stanza are not present
in the collection at all.

4http://www.w3.org/TR/REC-xml/



“Indexing” — 2006/10/30 — 13:56 — page 104 — #114

104 6 Dividing the INEX collection into fragments

As a contrast to traditional test collections for IR systems, the
125 documents of the INEX collection are too big to be treated
as documents in the traditional sense of the word. Consequently,
the first challenge of the research is to identify what kind of units
of XML are indexed and retrieved. In the following sections, this
challenge is answered with methods relying on 1) the DTD, 2) the
statistical properties of the markup, and 3) the physical structure.

6.2 University of Helsinki at INEX 2003

The INEX team at the University of Helsinki5 submitted official
runs to the INEX initiative for the first time in 2003. The sub-
mission consisted of the maximum number of three runs contain-
ing answers for the “Content Only” type queries described in Sec-
tion 7.2.1. In the creation of the three runs, we implemented the
fragment index with two different fixed granularities: 1) sections
and 2) paragraphs, both of which were based on a manual analysis
of the DTD.

The division into section-sized fragments concerned the subtrees
of the following XML elements: sec (section), fm (front matter),
bm (back matter), dialog (interview), vt (vitae). In the document
tree, all of these elements are close descendants of the article
element, and none of them have text node children. In a simi-
lar fashion, the paragraph-sized elements taken into account in the
paragraph-level division were p, p1, p2 (paragraphs), ip1, ip2,
ip3 (introductory paragraphs), bq (blockquote). These elements
have text node children, and also, most of the text content of the
collection is covered by choosing these elements. The details pre-
sented in Table 6.1 show how heterogeneous the chosen fragments
were even when regarding a single element type. In particular,
the variance in the sizes can be considered a conflict between the
intended usage and the actual usage of the element types. The
empty elements included in the fragment collections were no single
outliers as there were tens of thousands of fragments in Gparagraph

that contained less than ten characters.

5http://www.cs.helsinki.fi/group/inex/



“Indexing” — 2006/10/30 — 13:56 — page 105 — #115

6.3 EXTIRP 2004: Towards heterogeneity 105

Element Count Min. size Max. size Avg.size (chars)
Gparagraph 985,391 0 7,343 345.70

p 762,223 0 7,343 356.61
p1 25,911 1 1,771 94.05
p2 6,936 3 1,125 91.10
ip1 183,643 0 6,116 349.48
ip2 4,493 0 2,074 184.91
ip3 182 1 2,150 191.41
bq 2,003 0 6,127 358.04

Gsection 110,427 0 110,574 3,695.59
sec 69,735 0 100,373 4,820.91
fm 12,107 60 5,542 756.55
bm 10,065 0 110,574 4,992.83

dialog 194 198 31,735 5,527.48
vt 18,326 0 4,943 623.28

Table 6.1: Fragments of EXTIRP in 2003 in the statistics.

Some overlap was caused by nested elements, e.g. those p ele-
ments that are ancestors of other p elements, and the vt elements
that are always descendants of the bm element. A more detailed
description of the entire system called EXTIRP was published in
the workshop proceedings [DALP04].

6.3 EXTIRP 2004: Towards heterogeneity

The major changes of EXTIRP from 2003 are described in this sec-
tion as far as they concern the selection of the indexed units which
now meet the requirements for qualified full-text fragments as spec-
ified in Section 3.4.4. First, we collect statistics from the document
collection as if we could not assume anything about the document
type. Selected statistical properties of fragments representing dif-
ferent levels of granularity are presented in Section 6.3.1. Second,
the statistical information is applied to the selection of fragments,



“Indexing” — 2006/10/30 — 13:56 — page 106 — #116

106 6 Dividing the INEX collection into fragments

Class Count Mean size Median size T/E C/E
FragL1 559,983 403.33 307 2.07 78.83
FragL2 261,914 1,727.69 844 1.45 56.49
FragL3 106,043 7,217.66 2,749 1.26 47.32

p 762,223 356.61 281 2.26 129.60
ss2 16,288 1,806.20 1,274 1.45 61.23
ss1 61,492 2,645.18 1,859 1.44 60.12
sec 69,735 4,820.91 2,949 1.43 65.32

article 12,107 32,555.31 26,816 1.18 48.00
journal 860 458,568.27 422,040 1.18 47.86

fm 12,107 756.55 578 0.84 23.87
bm 10,065 4,992.83 3,910 0.80 20.23
bibl 8,551 2,529.43 1,853 0.76 10.18

index 117 20,255.30 14,852 0.88 19.84

Table 6.2: Statistics concerning the size and full-text indicators of
evidential full-text fragments and element types.

though in a rather heuristic way at this point. The resulting frag-
ment collection is described in Section 6.3.2.

6.3.1 INEX XML documents analysed

The statistical information collected from the INEX document col-
lection is summarised in Table 6.2. Each of the three categories
of fragments FragLx represents the level Lx of evidential full-text
fragments as defined in Section 3.3.1. Statistics for the other shown
fragments that are grouped by element type are shown for compar-
ison.

Elements in the first group (p, ss2, ss1, sec, ...) are represen-
tative of typical elements with full-text content at different levels
of granularity. As expected, the averaged T/E measure shows val-
ues that clearly indicate full-text content for these elements. The
second group contains elements that typically have data-oriented
content such as the fm (front matter), bm, (back matter) and bibl



“Indexing” — 2006/10/30 — 13:56 — page 107 — #117

6.3 EXTIRP 2004: Towards heterogeneity 107

(bibliography). Now the T/E values are well below the pivot point
indicating data content, and also, the C/E measure shows much
lower values for the stereotypical data elements than for the typical
full-text elements.

Looking more closely at each granularity level of evidential full-
text fragments, we present more selections of the collected statistics.
The granularity levels are shown category by category in Tables 6.3–
6.5 which are sorted by the frequency of the root element of the
fragment. The Average size column shows the mean of the number
of characters among the elements that fall in the category.

Element Count % Average size T/E C/E
p 355,977 63.57 475.0 2.04 86.92

ip1 108,574 19.39 427.0 2.11 75.91
p1 17,469 3.12 110.4 2.08 36.02
fgc 9,220 1.65 177.6 2.18 49.08
* 559,983 100.00 403.3 2.07 78.83

Table 6.3: Category FragmentL1 in detail.

Element Count % Average size T/E C/E
ss1 45,560 17.40 2,926.5 1.47 56.18
sec 45,157 17.24 5,222.9 1.46 62.34
li 30,959 11.82 243.3 1.63 33.85

item 25,721 9.82 258.1 1.36 41.64
vt 15,438 5.89 631.9 1.00 156.97
ss2 11,876 4.53 2,143.8 1.47 56.24
* 261,914 100.00 1,727.4 1.45 56.49

Table 6.4: Category FragmentL2 in detail.

The first category, FragmentL1 , seems to be the most homoge-
neous of the three categories. The reason is clear: mixed content
is required of the immediate descendant nodes of the root elements
of the fragments. However, the more general requirement of full-
text content in at least one descendant element does not offer very
strong evidence for the whole fragment being full-text. This is best



“Indexing” — 2006/10/30 — 13:56 — page 108 — #118

108 6 Dividing the INEX collection into fragments

Element Count % Average size T/E C/E
sec 20,736 19.55 9,551.9 1.43 55.47
bdy 10,788 10.17 29,494.0 1.42 63.73
ss1 10,000 9.43 5,387.6 1.44 48.28
fig 8,696 8.20 402.2 1.66 34.46
list 8,154 7.69 906.3 1.13 35.93
bm 7,432 7.01 5,768.4 0.79 21.15
* 106,043 100.00 7,215.6 1.26 47.32

Table 6.5: Category FragmentL3 in detail.

demonstrated in Table 6.5 where the T/E measure shows a rather
high variance among the fragments of the same category. We ob-
serve that bigger fragments are likely to have both data and full-
text content and sometimes a greater emphasis falls on data than
on full-text. For example, the back matter (bm) elements in the
category FragmentL3 have an average T/E value of 0.79 which is
far below the typical values of full-text fragments. Although some
data-oriented content does intrude into the set of evidential full-
text fragments, the statistics still seem sufficiently reliable to be
used in the definitions for statistical full-text fragments. From an-
other point of view, if the selection of indexed fragments is treated
as a classification problem, as mentioned at the end of Section 4.4.3,
the statistics are actually used for training the classifier. In either
case, our goal is to derive the size range of fragments at each level
of granularity.

6.3.2 Fragment selection with derived parameters

The definition for statistical full-text fragments in Section 3.3.2
left us with several open questions. When asked what kind of size
ranges define a single level of granularity, we find a partial answer in
the statistical information after analysing the document collection.
It is intuitive to start from the mean or median sizes of a chosen
level of evidential full-text fragments, but we still wonder how much



“Indexing” — 2006/10/30 — 13:56 — page 109 — #119

6.3 EXTIRP 2004: Towards heterogeneity 109

deviation from the average values is significant and whether there
are other ways to utilise the statistical information. At the current
stage of research, however, it is still premature to try to define pre-
cise correlation factors that describe the correlation of the average
fragment size with the minimum and maximum sizes of fragments of
the same granularity. Instead, we may consider what kind of ranges
are worth testing in order to save time in the rather time-consuming
task of experimental testing.

We assume that the lower bound of a size range defines the size
of a minimal unit that can be retrieved by the system. If this lower
bound becomes unnecessarily small, we are not dealing with a se-
rious shortcoming as the small units make bigger units when com-
bined. However, the computation of fragment relevance is generally
more precise when the minimal fragments are bigger and fewer. Too
big fragments, however, are difficult to divide into smaller units dur-
ing runtime if they are indexed as independent units and if they are
modelled as a bag of words. To conclude, we require that both the
lower and upper bound should be small enough in order for the min-
imal units to qualify. Moreover, although the bounds can hardly
be too low, selecting very small fragments to the index would be
pushing the XML search engine to its limits.

We start the experiments with three different lower bounds (100,
150, and 200 characters) and five different upper bounds ranging
from 6,000 to 20,000 characters. By combining these bounds into
size ranges, we have a set of parameters for the fragment selec-
tion algorithm presented in Section 4.4. Selected statistics of eight
different fragment collections resulting from the size-based division
are shown in Table 6.6. For each granularity, the algorithm was run
twice: once with the test for full-text likelihood and once without it.
The values of the T/E measure are not shown, but in the full-text
(Ft) collections (values parenthesised), the average T/E measure
seems rather stable with values between 1.46 and 1.48.

Two of these granularities were represented in the two new frag-
ment collections that were used as a basis for our official submis-
sions in 2004: d[150,8K] and d[200,20K]. Full-text likelihood was
tested in both cases. The most common paths to the root ele-
ments of the fragments are shown in Figure 6.1 for the granularity
{[150, 8K], T/E ≥ 1.0}, and for the granularity {[200, 20K], T/E ≥
1.0} in Figure 6.2. Each path is preceded by its frequency in the



“Indexing” — 2006/10/30 — 13:56 — page 110 — #120

110 6 Dividing the INEX collection into fragments

Division Fragments (Ft) Avg. size (Ft) Coverage (Ft)
d[100,6K] 357,274 (348,549) 1,079.50 (1,044.10) 98.68 (93.11)
d[100,8K] 260,369 (269,303) 1,487.34 (1,358.67) 99.09 (93.62)
d[150,8K] 236,630 (233,989) 1,624.10 (1,545.30) 98.33 (91.69)
d[150,10K] 184,181 (187,750) 2,097.16 (1,936.22) 98.83 (93.01)
d[200,8K] 216,948 (215,313) 1,755.76 (1,664.32) 97.46 (91.68)
d[200,10K] 171,420 (173,351) 2,240.40 (2,082.67) 98.26 (92.37)
d[200,12K] 140,986 (144,654) 2,736.68 (2,509.59) 98.72 (92.88)
d[200,20K] 86,386 (92,299) 4,498.94 (3,975.05) 99.44 (93.87)

Table 6.6: Absolute properties of fragment collections after size-
based division.

fragment collection.
The most common root elements are much like those of the

evidential full-text fragments: sections (sec), subsections (ss1),
paragraphs (p), and introductory paragraphs (ip1). However, the
frequencies of the most common root elements are not fully com-
parable with those of the evidential full-text fragments because the
algorithm for fragment selection proceeds top-down whereas the
evidential full-text fragments are defined in a bottom-up fashion.
Consequently, there can be several evidential full-text fragments
under a single root element of a fragment selected for indexing.

For comparison, the most common paths of the fragments that
are selected at the same levels of granularity without a requirement
for the full-text likelihood are shown in Figures 6.3 and 6.4. The
most striking difference is seen in the number of back matter ele-
ments (/article/bm) which goes up to 7,451 from 2,761 (+170%)
if the full-text likelihood is not tested and full-text content is not
required in the fragment collection d[150,8K]. The corresponding
numbers in the collections d[200,20K] are 6,842 and 1,814 which re-
sult in an increase of 277%. The number of qualified front matter
elements (/article/fm) also increases substantially if size is the
only requirement for the indexed fragments.

Correspondingly, the number of descendant elements in the bm



“Indexing” — 2006/10/30 — 13:56 — page 111 — #121

6.3 EXTIRP 2004: Towards heterogeneity 111

47349 /article/bdy/sec/p
46641 /article/bdy/sec
32487 /article/bdy/sec/ss1
14873 /article/bdy/sec/ip1
13235 /article/bdy/sec/ss1/p
8720 /article/fm
7352 /article/bm/vt
4799 /article/bdy/sec/ss1/ip1
4155 /article/bdy/sec/ss1/ss2
3320 /article/bdy/sec/tf
2923 /article/bm/bib/bibl/bb
2761 /article/bm
2254 /article/bdy/sec/ss1/ss2/p
2242 /article/bm/app
...
1566 /article

Figure 6.1: Most common paths to the selected full-text fragments
with a size in the range of 150–8,000 characters.

40267 /article/bdy/sec
6826 /article/bdy/sec/ss1
6683 /article/bdy/sec/p
6120 /article/fm
5718 /article/bm/vt
4802 /article
2717 /article/bdy/sec/ip1
1814 /article/bm
1222 /article/bm/ack
1202 /article/bdy/footnote
1158 /article/bdy/ack
1112 /article/bm/vt/p
1010 /article/bm/app
822 /article/bm/footnote
726 /article/bdy

Figure 6.2: Most common paths to selected full-text fragments with
a size in the range of 200–20,000 characters.



“Indexing” — 2006/10/30 — 13:56 — page 112 — #122

112 6 Dividing the INEX collection into fragments

47794 /article/bdy/sec/p
46866 /article/bdy/sec
32749 /article/bdy/sec/ss1
14894 /article/bdy/sec/ip1
12860 /article/bdy/sec/ss1/p
9932 /article/fm
8318 /article/bm/bib/bibl/bb
7451 /article/bm
5085 /article/bm/vt
4608 /article/bdy/sec/ss1/ip1
4184 /article/bdy/sec/ss1/ss2
3561 /article/bdy/footnote
3319 /article/bdy/sec/tf

Figure 6.3: Most common paths to selected fragments with a size
in the range of 150–8,000 characters.

40404 /article/bdy/sec
7020 /article/fm
6842 /article/bm
6829 /article/bdy/sec/ss1
6631 /article/bdy/sec/p
4832 /article
2889 /article/bdy/footnote
2687 /article/bdy/sec/ip1
1290 /article/bdy/ack
827 /article/bdy/index/index-entry
716 /article/bdy
555 /article/bdy/sec/ss1/p
451 /article/bm/bib/bibl/bb

Figure 6.4: Most common paths to selected fragments with a size
in the range of 200–20,000 characters.



“Indexing” — 2006/10/30 — 13:56 — page 113 — #123

6.4 Comparison to other approaches 113

elements is greater when full-text content is required of the indexed
fragments. As most bm elements do not qualify because of the
data-oriented content, many of their descendants do, such as the
vitae elements vt and the appendices app. The bibliographical
entries (bb element), however, are far less frequent in the full-text
collections, the path /article/bm/bib/bibl/bb having only 2,923
occurrences in the full-text collection d[150,8K] compared with 8,318
occurrences in the other d[150,8K] collection. These numbers also
show how the algorithm and the T/E measure are not perfect in
separating data from full-text because there are hardly thousands
of bb elements that contain full-text in the collection. However,
the 2,923 bb elements only represent 1.25% of the 233,989 elements
selected for the fragment collection and 1.96% of the total of 149,168
bb elements in the whole document collection.

Further observations were made from the collections represent-
ing other granularities. When the minimum size is tuned down to
100 characters, the smallest qualifying fragments do not even con-
tain complete sentences. For example, some publication titles in the
bibliographies are longer than 100 characters. Although they rep-
resent the data content of the collection, they qualify as a full-text
fragment because of their T/E value of 1.0. Other similar portions
of XML data also qualify if the lower bound for the fragment size
is set very low.

Fragment selection was not the only change in EXTIRP 2004.
For example, query expansion was given up due to the lack of human
resources. A more detailed description of the system was included
in the workshop proceedings [Leh05].

6.4 Comparison to other approaches

The physical structure of the document collection has often been
used as the basis for dividing the XML documents into fragments.
For example, List et al. emulated flat-document retrieval on XML
documents by only including article elements in the index [LMdV+04].
The article elements are physically stored in separate XML files
as external entities which are brought into the XML documents
through entity references, and it is thus natural to assimilate an
XML file to a document in its traditional sense. Moreover, there



“Indexing” — 2006/10/30 — 13:56 — page 114 — #124

114 6 Dividing the INEX collection into fragments

are many cases where the scanning for smaller fragments starts from
the level of article entities instead of starting from the root of the
XML documents [SKdR04, Lar04]. The content outside the arti-
cles is ignored in these approaches, such as the context information,
e.g. headers in the journal where the articles are grouped by topic.
Only few participants in INEX’03 chose to ignore the physical file
structure and use the logical structure of XML documents as the
basis for their approach [PVG04, STW04].

If information that is not included in the XML Information Set
[W3C04] is given a crucial role in an XML retrieval system, the
flexibility of the system is seriously compromised. For example, we
consider a WWW crawler that fetches documents from remote sites
for an XML search engine. In order to find well-formed XML, it has
to parse the documents, or otherwise, any document containing “tag
soup” would do. Therefore, the XML documents to be included in
the index should come through an XML parser or an XML server
which do not have to provide the indexing module of the search
engine with any other information than that included in the XML
Information Set. Among others, the physical file structure of an
XML document does not have to be reported. In fact, some XML
documents might not even exist in files.

The retrieval of XML elements instead of whole documents is es-
sential in most approaches to XML retrieval. Those with a database-
related background typically consider any XML element a potential
answer to a query [HLR04, SHBM04], whereas others have found it
worthwhile to reduce the number of elements that are first indexed
and eventually scored, i.e., by defining a set of indexed element
types, by indexing only the leaf-level elements, or by ignoring very
small elements. The algorithm demonstrated in the previous sec-
tion is similar to these approaches in that only a fraction of all the
possible elements are indexed, and different from them because it
relies on the size and full-text likelihood of the indexed elements.



“Indexing” — 2006/10/30 — 13:56 — page 115 — #125

CHAPTER 7

Test methodology

The purpose of testing fragment collections is to learn how different
factors affect the quality of retrieval results. The factors of interest
include the parameters for dividing documents into fragments, e.g.
the bounds for fragment size, as well as fragment expansion tech-
niques and their combinations. In order to measure retrieval qual-
ity, we need to create runs that produce answers from the fragment
collection for a fixed set of queries. The answer sets are evaluated
with a choice of metrics, and the results are normalised for a fair
comparison. These test methods and the testing plan are presented
in detail in this chapter.

7.1 Fragment collections under testing

Analysing the qualities of the division process at one granularity
level requires the testing of several fragment collections. Testing
one fragment collection and evaluating the answer sets takes ap-
proximately 24–48 hours of processor time on a 3GHz processor
depending on the amount of optimisation. Thence, thorough tests
are performed on collections representing only two different gran-
ularities. In addition, baseline testing is selectively conducted on
divisions at several other granularity levels.

All baseline fragment collections are similar: the document col-
lection is filtered for fragments of an accepted size with no restric-
tions on the amount of data in the fragment content. The biggest
qualifying fragments are included in the baseline fragment collec-

115



“Indexing” — 2006/10/30 — 13:56 — page 116 — #126

116 7 Test methodology

Division Fragment Size (characters) Coverage
id count min max avg % chars

Base1 86,386 200 20,000 4,499 99.44
Base1Ft 92,299 200 20,000 3,975 93.87
Base4 236,630 150 8,000 1,624 97.45

Base4Ft 233,989 150 8,000 1,545 91.69

Table 7.1: Statistics about the baseline and full-text oriented frag-
ment collections.

tion. This method is based on the algorithm presented in Sec-
tion 4.4. The tree traversal only differs in that full-text likelihood
is not tested, and all the fragments of the right size qualify.

The fragment collections resulting from each baseline division
are described in detail in Table 7.1. The baseline division at gran-
ularity level X is dubbed BaseX. The size of a fragment is defined
as the total number of Characters in the Text node descendants af-
ter whitespace characters have been normalised. According to this
definition, the coverage of the fragments is calculated by dividing
the size of the fragment collection by the total size of the document
collection which equals 390,849,563 Characters.

The corresponding full-text oriented fragment collections are also
shown in Table 7.1 because the set of fragments they contain is
different from those resulting from the baseline divisions. The Ft
divisions differ from the baseline divisions in that fragments with
too much data are not accepted. If the full-text likelihood of a
fragment goes below 1.00 by the T/E measure, it is further divided
into smaller fragments as described in Section 4.4. The collections
involving fragment expansion techniques are omitted as they are
redundant: fragment expansion has no effect on the set of selected
fragments.

The first granularity [200, 20K] was chosen for testing because
it was the basis of one of the official submissions for the INEX 2004
initiative. After several rounds of testing on other granularities, the
second baseline [150, 8K] was topping the performance charts, thus
rewarding itself a place among the thoroughly tested granularities.



“Indexing” — 2006/10/30 — 13:56 — page 117 — #127

7.1 Fragment collections under testing 117

One of the fragments at Base4 granularity is located in the front
matter of a journal which is above the article level in the document
collection. It is discarded in the actual tests because of limitations
set by the test environment of the INEX initiative.

Each granularity is subject to the same set of tests which mea-
sure the effects of selective division and fragment expansion. None
of these tests are included in the BaseX divisions. The following
factors are inspected one by one:

Selective division For a granularity X, a full-text collection Ba-
seXFt is created with the algorithm presented in Section 4.4
which excludes fragments with too data-oriented content.

Association of referred content Division BaseXLi produces a
fragment collection where each referred element is appended
at most once to the fragment that contains the reference. Ref-
erences are based on the ID type attribute values in the re-
ferred element and corresponding IDREF type attribute val-
ues in each selected fragment. Self-references are ignored if
the referred element is part of the referring fragment.

Weighting of marked-up phrases Qualified inline-level elements
as defined in Section 5.2 are duplicated in division BaseXEm
under the conditions that the sibling nodes contain at least
five non-whitespace characters and the descendant nodes at
least three. Further tests are conducted on simple inline ele-
ments in BaseXsEm divisions. Triplication of the inline con-
tent is performed in divisions BaseXEm3 and BaseXsEm3.

Titles The descriptive value of titles is tested in division BaseXTi
by appending the nearest preceding title element to each frag-
ment assuming that one is found in the same article. Recog-
nition of the title elements is based on the DTD.

Performance of the resulting fragment collections is compared to
that of BaseX collections when studying the effect of a single factor.
In order to discover the facts of the combined effect, further tests are
necessary. The additional test pairs comprise BaseXAll divisions
where all the four techniques are deployed and BaseXT1T2T3 (Ti ∈
{Ft, Em, Li, T i}, 1 ≤ i ≤ 3) where only three out of four factors
are present.



“Indexing” — 2006/10/30 — 13:56 — page 118 — #128

118 7 Test methodology

An ideal technique improves the IR performance of the baseline
whereas the lack of such technique should result in a decline in
performance. When measuring the IR performance with a function
fp(fragment collection) where f quantises a metric p, the following
inequalities should hold for most granularities:

fp(BaseX) < fp(BaseXIdeal)

and
fp(BaseXAll − Ideal) < fp(BaseXAll).

The function fp can be replaced with any reliable evaluation
metric. By comparing the IR performance of the four fragment
collections, we can determine the ideality of the selected techniques.

7.2 Test runs

Each test run can be seen as an independent system that first com-
putes similarities between the test queries and the fragments of a
given collection, and then returns the answers it considers the most
relevant. In this section, we present the run specifications which
define how the indices are created from the fragment collection and
how the queries are processed. At the outcome of a run, each query
is answered with a ranked list of XML fragments sorted by rele-
vance. The result lists will function as the basis for the evaluation
of the test run.

7.2.1 Queries

The set of test queries is based on the 32 “Content-Only” (CO)
topics of the INEX 2003 initiative, for which the corresponding rel-
evance assessments are available. The Content-Only type topics are
traditional in Information Retrieval. They contain a combination
of keywords and keyphrases specifying the topic of the user’s in-
formation need. Keyphrases consist of at least two keywords. The
CO topics contain no structural hints or constraints for the XML
structure of the answers, which makes the actual queries inherently
independent of any document type. By default, any fragment is a
potential answer regardless of the tag names or fragment context.



“Indexing” — 2006/10/30 — 13:56 — page 119 — #129

7.2 Test runs 119

Only the content of the answers matters when their relevance to
the topic is judged. An example of a CO topic is presented in Sec-
tion 8.6 where also the corresponding results are studied in detail.

Converting the topics into queries is rather straightforward. Af-
ter the explicitly marked phrases are recognised, the topic is pre-
sented as a vector. Only the title and keywords parts of the topic
are used.

7.2.2 Baseline process

The baseline runs should be simple in that they introduce as few
new factors affecting the results as possible. The number of vari-
ables should be minimal in order to make the results easy to inter-
pret and compare. Moreover, reduced optionality helps eliminate
possible side-effects.

As a first step, two separate inverted indices are built from the
fragment collection to be tested. A word index is created after
punctuation and stopwords are removed and the remaining words
are stemmed with the Porter algorithm [Por80]. The phrase index
is based on Maximal Frequent Sequences (MFS) [AM99]. Maximal
phrases of two or more words are stored in the phrase index if they
occur in seven or more fragments. The threshold of seven comes
from the computational complexity of the algorithm. Although
lower values for the threshold produce more MFSs, the computation
itself would take too long to be practical. More details concerning
the configuration of the phrase index are included in the PhD thesis
of Antoine Doucet [Dou05].

Besides the indexed fragments, also the queries are presented as
normalised vectors. As we have two indices, we initially compute
two relevance scores based on the cosine product for each fragment.
One score indicates the similarity of the query terms to the terms
in the fragment, whereas the other indicates phrase similarity. The
Retrieval Status Value (RSV) is a combination of these scores so
that both scores have an equal weight. After all the fragments are
ranked by the RSV, the top 1,500 fragments for each query are
included in the result lists which consist of disjoint fragments of a
fixed granularity.



“Indexing” — 2006/10/30 — 13:56 — page 120 — #130

120 7 Test methodology

7.2.3 Additional options

The baseline process is a heavily compromised version of a full
XML retrieval system. One of the biggest compromises is the fixed
granularity of the answers. Dynamic granularity of the answers
does not require anything more but the combination of the RSV
scores of the fragment siblings, after which the fragments can be
combined into bigger fragments. For example, instead of returning
three relevant subsections, it might be more appropriate to return
the entire section. This would also enable us to set the granularity of
indexed fragments to represent the absolute minimal size instead of
a settling with the compromise of indexing answer-sized fragments.

There is no standard score combination method that could be
used in a baseline process. As any such method would have a strong
impact on the final results returned to the user, the test runs are
expected to be more useful without any score combination. It might
not be until the fragment selection algorithm and the fragment
expansion techniques have been thoroughly tested, when it is the
right time to move on and add score combination methods to the
test run specification.

Query expansion with words from the answers — even when
using only the most highly ranked answers — improves the over-
all quality given that the answers at the top ranks are relevant
[Voo94]. The sooner the precision of the results drops, the greater
is the potential gain that query expansion could offer. At this point,
however, we first want to find out how to attain the best possible
results without query expansion so that the maximum benefit could
be made later.

Phrase detection could also be optimised by tuning the param-
eters for creating MFSs. Although it would lead us to better eval-
uation scores, the main purpose of the tests is to find out how
the indexed fragments should be selected and whether we can take
advantage of the document markup with fragment expansion tech-
niques. Optimisation of the process should thus not change the
observations that can be made about the tested subjects. There-
fore, we are well off with a less than optimal phrase index.



“Indexing” — 2006/10/30 — 13:56 — page 121 — #131

7.3 Evaluation 121

7.3 Evaluation

The evaluation of the test runs is based on the official INEX 2003
evaluation metrics and the final set of relevance assessments1. Ad-
ditionally, results are reported using other metrics which measure a
bit different aspects of XML retrieval. In order to normalise the ac-
tual scores, we need to construct sets of ideal results which represent
the theoretical maximum performance of a search system. In this
section, we go through the different factors that affect the evalua-
tion: the complex concept of relevance in XML retrieval is opened
in Section 7.3.1, different ways to quantise the assessments are in-
troduced in Section 7.3.2, the metrics are described in Section 7.3.3,
and finally, rankings that are ideal according to the assessments are
regarded in Section 7.3.4.

7.3.1 Relevance assessments

For each query, the top 100 answers of each official submission were
collected into a pool of results to be assessed. A human assessor
gave an assessment of relevance to each pooled answer as well as
to each relevant element in the article view of a pooled answer. In
the INEX 2003 initiative, relevance had two dimensions: exhaus-
tiveness2 and specificity. The exhaustiveness of an answer indicates
how completely the answer satisfies the information need of the
query, whereas the specificity of the answer describes the propor-
tion of the relevant content to the irrelevant content in the answer.
Using the notation (exhaustiveness, specificity), both measures are
given an assessment value on the scale 0–3 where 0 stands for not,
1 for marginally, 2 for fairly, and 3 for highly. For example, a rel-
evance assessment of (3,2) denotes a highly exhaustive and fairly
specific answer. More details about the assessments including a de-
scription of the assessment interface are presented in the articles by
Piwowarski and Lalmas [PL04a, PL04b].

In many ways, the assessments are not perfect. Relevant an-
swers might not be assessed at all if they were not included in the

1Version 2.5 from 7 March 2003.
2In 2005, the dimension was called exhaustivity as the scale was reduced to

0–2.



“Indexing” — 2006/10/30 — 13:56 — page 122 — #132

122 7 Test methodology

top 100 answers of any official submitted result set. Moreover, hu-
man assessment is always prone to human mistakes, not to mention
semantical conflicts in the ways different assessors perceive topical
relevance. Nevertheless, the official set of assessments is considered
to be a reliable asset for the evaluation of XML retrieval. Thanks
to the diversity of the systems providing results to the pool, we
can safely assume that nearly all of the relevant content has been
assessed, and that the answers judged relevant by the assessors are
representative of all the relevant answers to each query.

7.3.2 Quantisation of the assessments

Each metric requires the quantisation of the two-dimensional assess-
ments into a single value in the range [0,1]. While several quantisa-
tion functions are available, only the strict and generalised quantisa-
tion are used in the evaluation of the test runs. The corresponding
functions fstrict(e, s) and fgen(e, s) [KLdV04] are defined as follows.

fstrict(e, s) =

{
1 if (e, s) = (3, 3)
0 otherwise

fgen(e, s) =



1 if (e, s) = (3, 3)
0.75 if (e, s) ∈ {(2, 3), (3, 2), (3, 1)}
0.5 if (e, s) ∈ {(1, 3)(2, 2), (2, 1)}
0.25 if (e, s) ∈ {(1, 1), (1, 2)}
0 if (e, s) = (0, 0)

Most other quantisation functions are variants of fgen so that
some are specificity-oriented whereas some favour exhaustivity. Past
experience has shown that the scores produced by these variants
are not significantly different from those of fgen. One slightly dif-
ferent quantisation function is called probability P (Re) of relevance
[PG03] which is defined as follows:

P (Re) =


1 if (e, s) = (3, 3)
0.5 if (e, s) = (3, 2)
0.25 if (e, s) = (3, 1)
0 otherwise

Although the probability P (Re) is stricter than the generalised
quantisation, it still takes into account the different degrees of rel-
evance.



“Indexing” — 2006/10/30 — 13:56 — page 123 — #133

7.3 Evaluation 123

7.3.3 Metrics: inex eval ng, GR, and PRUM

The choice of metrics for the evaluation of XML retrieval is still ev-
erything but a trivial question because no single metric has become
conventional, yet. Since 2002, new metrics have been proposed one
after another as the weak points of the previous metrics have been
pointed out. As a result, we have access to implementations of dif-
ferent metrics where different aspects of XML retrieval have been
addressed. In order to reduce the effect a single metric may have
on the results, it is considered important to evaluate the test runs
with several different metrics.

As the test queries are part of the INEX 2003 test suite, it is an
obvious choice to evaluate the results with the official implemen-
tation of the official INEX 2003 metric inex eval ng [GKFL03].
In principle, the resulting scores are comparable with those of the
official submissions of the participating institutions. The biggest
improvement in inex eval ng from the official INEX 2002 metric
is the option of considering overlap of the retrieved answers. When
the overlap is considered, systems are rewarded for returning unseen
relevant content, which effectively discourages attempts to “milk”
the recall base by returning relevant descendant elements of pre-
viously seen elements. Besides the quantised relevance, the size of
a relevant answer is the other important factor that contributes to
the score of a returned element.

As the official submissions in 2003 were evaluated according to
both the strict and generalised quantisation of the assessments, re-
sults in this thesis are also reported by both quantisations. The
option where overlap of the answers is ignored is not reported, how-
ever, as we see no potential gain in ignoring non-existing overlap.
Were the overlap ignored, the number of relevant answers would
be bigger, and a set of disjoint answers would yield a lower preci-
sion compared to an evaluation where overlap is considered. The
reported scores and graphs for inex eval ng consist of 1) the aver-
age precision over all topics which is computed for each topic from
the precision values at 100 recall points distributed among the ranks
1–1,500, and 2) curves showing the relation between precisiono and
recallo3. The official evaluation software version 2003.007 will be

3The subscript o indicates that the overlap of the relevant answers is taken



“Indexing” — 2006/10/30 — 13:56 — page 124 — #134

124 7 Test methodology

used when computing the evaluations with the official metric.
During the recent years, inex eval ng has been criticised for

not being stable in all cases, i.e. when evaluating systems that re-
turn overlapping elements [KLdV04]. The criticism is justified. If
ancestor nodes are returned before their descendants, only the an-
cestor nodes, weighted by their assessed score, will be considered
in the evaluation where overlap is considered. If the order is re-
versed, both nodes contribute to the overall score. The test runs
evaluated in this thesis, however, only contain disjoint fragments.
Consequently, small changes in the fragment ranks will not have a
drastic effect on the overall evaluation. Another point of criticism
concerns the size of the relevant elements which is overappreciated
by inex eval ng. The problem surfaces when huge marginally rel-
evant elements are valued higher than rather small but highly rele-
vant elements. Again, the significance of this problem to our tests is
minimal as our tested fragment collections consist of size-controlled
fragments.

As a contrast to inex eval ng, we choose Generalised Recall
(GR) to be used as an additional metric which was formerly known
as the Expected Ratio of Relevant units (ERR) [PG03]. GR indi-
cates the expectation of the number of relevant units seen in the
list of answers. For example, if the GR at 20 is 7.5, by viewing the
first twenty answers, the user sees 7.5% of all the relevant XML el-
ements. For an ideal answer set, the GR reaches the value of 100.0
after all the relevant answers have been returned. The quantisa-
tion of the assessments is implemented as the probability P (Re) of
relevance.

GR does not favour big answers like inex eval ng as it ignores
the size of the relevant answers. Moreover, it does not favour sys-
tems returning overlapping elements because by seeing a relevant
element, the user is considered to see the overlapping elements, as
well. Briefly said, GR favours the smallest highly exhaustive an-
swers.

User’s behaviour is taken into account in the third test metric
that is chosen for the evaluation: Precision and Recall with User
Modelling (PRUM) [PD06]. Basically, it favours systems that re-

into account in the amount of relevant content. For example, 100% recall does

not require that overlapping answers be returned.



“Indexing” — 2006/10/30 — 13:56 — page 125 — #135

7.3 Evaluation 125

turn a large number of distinct relevant elements or irrelevant ele-
ments near relevant ones. The latter are also called near misses
which PRUM values higher than completely irrelevant answers.
According the general assumptions about the user models, it is
highly likely that users proceed from the near misses towards rele-
vant content with a high probability. The different models for user
behaviour implemented into PRUM have different probabilities for
how users navigate through the document. We have chosen the
model where the hierarchical behaviour is expected of the users be-
cause a similar user behaviour is assumed in other INEX metrics,
such as those based on the xCG [KLdV04]. The probability of nav-
igating from one element to another element is proportional to the
sizes of the elements in the assumed hierarchical user behaviour.
Unless otherwise mentioned, the PRUM scores are computed with
the strict quantisation of assessments.

The online evaluation tool4 originally developed by Benjamin
Piwowarski with implementations of the additional GR and PRUM
metrics was used in the evaluation.

7.3.4 Ideal answer sets

An ideal answer set, as intended in this thesis, can be created for
any granularity by sorting the collection of disjoint fragments by
relevance, after which the fragments are in the ideal order. The
ranking is not ideal in the absolute sense, as better evaluation scores
may be achieved by allowing for fragments of various levels of gran-
ularity to appear in the same ranking. Nevertheless, the ideally
ranked list of fragments represents the best result set that can be
returned without aggregating the indexed fragments into bigger an-
swers. Consequently, the best result sets are ideal when comparing
the IR performance of fragment collections at a single granular-
ity level because the effects of indexing techniques and similarity
computation are eliminated. We can thus study whether we gain
anything by discarding data-oriented content in the index, or if we
lose some relevant content by requiring full-text content of the in-
dexed fragments. Another subject of interest is to see how close to
perfect we can actually get in a realistic setting.

4Source code available at http://sourceforge.net/projects/evalj/



“Indexing” — 2006/10/30 — 13:56 — page 126 — #136

126 7 Test methodology

For both the baseline and full-text collection of each granularity,
an answer set simulating an ideal run is built from the assessments.
The two-dimensional relevance assessments are first quantised into
a one-dimensional scale using the generalised quantisation function
fgen(e,s). Given the fixed set of fragments, those that have a non-
irrelevant assessment are then sorted with the quantised assessment
value as the primary sort key and the size as the secondary sort key,
so that the most relevant and the biggest fragments come first. Last,
the top 1,500 fragments for each topic are listed in the ideal answer
set, although, for most of the 32 topics, there are fewer than 1,500
disjoint answers assessed as non-irrelevant. After all the relevant
answers have been used, the rest of the list is filled with irrelevant
answers sorted into a descending order by size.

The resulting ideal answer sets are only ideal with regards to the
strict quantisation of inex eval ng and nearly ideal regarding the
generalised quantisation, GR, and PRUM. For example, the ideal
ranking for the generalised quantisation of inex eval ng requires the
sort key to be defined as the product

size× fgen(e, s),

whereas the ideal ranking for GR with P (Re) only requires a
small change: when answers where (e,s) = (2,3) are given a smaller
quantised value than 0.75, the order is ideal. For the PRUM met-
ric, however, the creation of an ideal answer set would require the
computation of quantised values for the near misses, too, which are
dependent on the elements within a short navigational distance.

For other metrics than inex eval ng with strict quantisation,
the ideal answer sets represent systems of a superior quality instead
of being ones that yield the maximum scores. If we built different
ideal runs for each metric, we could not properly compare the results
with each other as they would describe different systems. Hence,
we settle with only one method for creating a perfect ranking for
the indexed fragments.

The need to develop a new method for computing the ideal an-
swer set is a point that can be criticised. Other methods have
already been proposed in order to evaluate the behaviour of differ-
ent evaluation metrics in the works of de Vries5 and Kazai et al.

5http://homepages.cwi.nl/˜arjen/INEX/metrics2004.html



“Indexing” — 2006/10/30 — 13:56 — page 127 — #137

7.3 Evaluation 127

[KL05], however, none has become a standard. New metrics pro-
posed each year bring up new assumptions about the user models
and user behaviour, which in turn imply new requirements for the
ideal system for XML retrieval. Since we are not trying to evalu-
ate the evaluation metrics themselves, but we only evaluate differ-
ent configurations for an XML retrieval system, we define an ideal
system as one that achieves either the best or a reasonably high
score with any suitable metric. Moreover, the fragment collections
that are ranked in the upcoming tests consist of disjoint fragments,
which makes the computation rather simple compared with the ear-
lier methods that also have to sort overlapping fragments into an
ideal order. How different metrics deal with overlap is an additional
factor that, fortunately, can be ignored in this thesis.

The completeness of the ideal answer sets is directly proportional
to that of the assessments, which has been tempting to criticise in
the past years [HKW+04]. It is more than possible that there are
relevant answers in the document collection that did not, however,
make it to the top 100 in the result lists of any participant. These
answers may not have assessed relevance values at all, in which
case they are considered irrelevant in the evaluation. Nevertheless,
if some answer is not included in the top 100 of any of the official 56
submitted answer sets, it is highly likely that the answer actually is
irrelevant. Moreover, even if a few relevant answers were missing,
the ideal answer sets still give us a perspective into what could
theoretically be achieved.

The ideal parameters for selecting the indexed fragments can
be estimated by comparing the evaluation results of different ideal
runs. The ideal parameters vary from one query to another, how-
ever, so that whichever fragment collection is valued best for one
query might not be best for another. The evaluations are especially
different when, for instance, small answers (10–500 characters) are
assessed as highly relevant for one query but completely irrelevant
for another. Bigger answers are usually not systematically discrim-
inated by the assessors. The average scores are somewhat more
stable, and any general conclusions should be drawn from them in
order to avoid tuning the parameters towards specific queries. An-
other thing to consider is that when working with ideal runs, the
conclusions drawn by comparing results in an ideal setting might
not generalise into any realistic setting.



“Indexing” — 2006/10/30 — 13:56 — page 128 — #138

128 7 Test methodology

7.4 Future work

Several areas of this research would benefit from more precise test-
ing whenever the circumstances become favourable. For example,
string-valued XML entities consisting of more than one character
provide a potential mine of good phrases. Confirming or contra-
dicting this claim requires initial testing on a collection where re-
placement texts are commonly stored in entities. The INEX test
collection is not well-suited for the purpose, but otherwise, full test
suites such as that provided by the INEX initiative are required for
any quantitative evaluation of the quality of the phrases.

The next step of studying the indicators of full-text likelihood in-
volves tests with the modified T/E measure that takes into account
the effect entity references have. The modified measure is expected
to further reduce the amount of data fragments in the index. For
example, the only misclassified bibliographical entry in the bigger
example article in Section 4.4.4 has a T/E value of 1.0, whereas the
modified version T−2·R

E gives the value of 0.6 to the same fragment,
thus correcting the classification into one of the data fragments.

The syntax of the run submissions for the INEX initiatives only
allows for single-root fragments to be returned as an answer. The
assessment tool and the evaluation tool have corresponding limita-
tions. However, allowing multiple roots in the fragment body would
be practical in cases where, for instance, a section as a whole is too
big to be included in the fragment collection, and most of its 150
child elements are too small on their own. From the INEX 2003
initiative, this would require modification in the result set format,
the assessment tool, and the assessment format. Many problematic
issues would also arise. When the relevance of a multiroot frag-
ment is assessed, e.g. one that contains the first 50 paragraphs of a
section, it is not yet possible to determine which other root combi-
nations should also be assessed for completeness. The assessment
procedure changed in 2005 so that some of the new requirements
are already supported. The specificity of answers is computed au-
tomatically from what the assessor has marked relevant, which has
lead to a shift from the four-step scale (0–3) into a gradual scale
of 0–100% specificity. The exhaustivity dimension still needs more
work and possible new metrics so that we can estimate the ex-
haustivity of a multiroot fragment. For example, we may want to



“Indexing” — 2006/10/30 — 13:56 — page 129 — #139

7.4 Future work 129

define how many fairly or marginally exhaustive answers make a
highly exhaustive answer. Charles Clarke proposed an extension
to the syntax of the INEX result set [Cla05] but it was not yet
implemented for the INEX 2005 initiative. However, more support
for these ideas are expected at INEX 2007 with a paradigm shift
towards passage retrieval [TG06].



“Indexing” — 2006/10/30 — 13:56 — page 130 — #140

130 7 Test methodology



“Indexing” — 2006/10/30 — 13:56 — page 131 — #141

CHAPTER 8

Results and evaluation

The evaluation of the major contributions of this thesis — the frag-
ment selection algorithm and the three fragment expansion tech-
niques — is presented in this chapter. After the tests are run as
described in the previous chapter, we can analyse the results in or-
der to get some insight on the impact of the proposed methods. For
example, we are not only interested in what kind of tasks benefit
most from each technique, but we also want to know whether any
method is uncalled for in any situation. In general, the purpose of
the tests is to study how each method affects the quality of search
results.

The analysis starts from Section 8.1 where baseline fragment
collections are compared with each other. The fragment selection
algorithm with T/E measure as the full-text indicator is evaluated
in Section 8.2. The results concerning the fragment expansion tech-
niques are presented in Sections 8.3–8.5, followed by a case study
in Section 8.6 where the effects of fragment expansion are studied
at the level of a single query. The effects of the tested methods are
compared to each other in Section 8.7. Finally, we expand the anal-
ysis to cover other granularities in Section 8.8 in order to increase
the statistical significance of the results.

8.1 Baseline performance

Baseline fragment collections together with a baseline process are
needed for the evaluation of a baseline performance from which the

131



“Indexing” — 2006/10/30 — 13:56 — page 132 — #142

132 8 Results and evaluation

 0.1

 0.2

 0.3

 0.4

 0  25  50  75  100

P
re

ci
si

on
o

Recallo

Baseline of granularity (strict)

[200, 20K] 0.0815
[200, 12K] 0.1147
[200, 10K] 0.1091

[200, 8K] 0.1000
[150, 10K] 0.1046

[150, 8K] 0.1026
[100, 8K] 0.1001
[100, 6K] 0.0982

 0.2

 0.3

 0.4

 0.5

 0  25  50  75  100

P
re

ci
si

on
o

Recallo

Baseline of granularity (generalised)

[200, 20K] 0.0591
[200, 12K] 0.0709
[200, 10K] 0.0733

[200, 8K] 0.0720
[150, 10K] 0.0730

[150, 8K] 0.0729
[100, 8K] 0.0717
[100, 6K] 0.0731

Figure 8.1: Absolute average precisions of eight baseline collections
with curves zoomed into the recall levels 1–100/1,500.

relative improvement of the enhanced collections is measured. As
we are testing whether fragment expansion improves the potential
performance of a fragment collection, we need an individual baseline
for each granularity. The performance of the baseline run on base-
line fragment collections at a selection of eight levels of granularity
is shown in Figure 8.11.

The average fragment size which is inversely proportional to the
number of fragments in each division seems to be the most sig-
nificant factor when comparing the average precision at the very
low recall levels, e.g. the ranks 1–20 (the first 20 answers for each
query). The divisions with the biggest fragments have the steepest
curves. Whatever relevant content is found can be included in just
a few fragments at the top ranks after which the set of best hits is
exhausted and the retrieval precision drops. When the fragments
are smaller, returning all the relevant content requires a greater
number of fragments, which results in flatter curves.

1How to read the figures: The quantisation of the assessments — strict

or generalised — is parenthesised in the title. Because the evaluated result

sets are built from disjoint results, the overlap is considered in the measures of

Precisiono and Recallo.



“Indexing” — 2006/10/30 — 13:56 — page 133 — #143

8.1 Baseline performance 133

Granularity strict -o generalised -o
[200, 20K] 17.00% (0.0815/0.4793) 14.07% (0.0591/0.4201)
[200, 12K] 22.29% (0.1147/0.5145) 15.56% (0.0709/0.4558)
[200, 10K] 20.92% (0.1091/0.5214) 15.72% (0.0733/0.4662)
[200, 8K] 18.67% (0.1000/0.5356) 14.94% (0.0720/0.4818)
[150, 10K] 20.06% (0.1046/0.5215) 15.63% (0.0730/0.4670)
[150, 8K] 19.15% (0.1026/0.5357) 15.09% (0.0729/0.4832)
[100, 8K] 18.68% (0.1001/0.5360) 14.81% (0.0811/0.4841)
[100, 6K] 17.64% (0.0982/0.5566) 14.60% (0.0731/0.5008)

Table 8.1: Baseline precision in proportion with the ideal precision
with the absolute precision values parenthesised: baseline/ideal.

The majority of the curves converge at higher recall levels, which
by the generalised quantisation shows in rather similar values of
average precision after all 1,500 answers have been returned for each
query. For the strict quantisation, however, the number of relevant
answers is remarkably smaller for each query, and the collections
that do well at low recall levels also get best scores overall.

As planned in Section 7.1, the baseline collections of two granu-
larities, [150, 8K] and [200, 20K], will be used as benchmarks when
the effects of selective division and fragment expansion techniques
are analysed. The baseline precisions for the strict quantisation are
then 0.0815 and 0.1026, and for the generalised quantisation 0.0591
and 0.0729.

Besides fragment expansion, which should improve the precision
regardless of the granularity of the indexed fragment collection,
we are also interested in which size range leads to the best initial
precision when answers of a fixed size are returned. In order to
fairly compare the baseline runs at different granularity levels, the
absolute precision values are normalised by the ideal precision of
the corresponding fragment collection. The normalised IR perfor-
mance of the baseline collections is shown in Table 8.1 with the
corresponding ideal precision in the parentheses.

The first obvious question from a reader not yet familiar with



“Indexing” — 2006/10/30 — 13:56 — page 134 — #144

134 8 Results and evaluation

the evaluation of XML retrieval concerns the precision of an ideal
answer set: why is it not 1.00 (or 100%)? The answer lies in the
varying recall base used in inex eval ng. Relevant elements that
are completely included in the previously returned answers are con-
sidered irrelevant, thus decreasing the average precision, whereas
returning even partially unseen relevant elements increases the pre-
cision. The earlier the biggest relevant elements are returned, the
sooner is the recall base exhausted regardless of the fact that the
big elements may be only marginally specific. Consequently, even if
we assume that we have 1,500 elements (or 100%) that are assessed
as relevant to some query, our result lists may still contain several
elements that do not count as relevant because of total or partial
overlap.

Another factor decreasing the ideal precision is that not all the
relevant answers are included in the baseline fragment collections
as each of them represents a single granularity of fragments. Even
when answers of any granularity are available, the ideal ranking of
answers when overlap is considered only yields an average precision
below 0.682. Nevertheless, when the ideal precision is normalised,
it is actually set to 1.00.

The next obvious question concerns the relative precision: how
good is a system that only reaches a relative precision of 17–23%
while corresponding systems at Text REtrieval Conferences3 (TREC)
achieve remarkably higher precisions? The best systems that par-
ticipated in the INEX 2003 Initiative achieved relative precisions of
30–40%, but, due to the different nature of retrieved documents, dif-
ferent task definitions, and the comparatively immature evaluation
methods, the TREC and INEX results are not directly comparable.

By looking at the average precision values of the collections with
ideal rankings, we observe that lowering the minimum fragment
size from 200 characters has practically no effect on the amount of
highly relevant content in the fragment collection. The highest pos-
sible average precision by strict quantisation depends mostly on the
maximum fragment size which plays the role of a stopping condition
in the fragment selection algorithm. The marginal improvement in
average precision by generalised quantisation indicates that only

2The perfect run generated by Arjen de Vries, strict quantisation.
3http://trec.nist.gov/



“Indexing” — 2006/10/30 — 13:56 — page 135 — #145

8.2 Full-text content required 135

the amount of marginally or fairly relevant content increases when
fragments smaller than 200 characters are included in the collection.
For example, compare the granularities [200, 10K] and [150, 10K].
According to the strict quantisation, the ideal precisions are 0.5214
and 0.5215, whereas the generalised quantisation brings about a
small difference in the values of 0.4662 and 0.4670. Similar obser-
vations were made by Kamps et al. who tested cut-off values of 20,
40, 50, and 60 words as the minimum size of the indexed elements
[KdRS04].

Based on these results, we cannot yet draw confident conclusions
about the optimal granularity of the indexed fragments. The rea-
sons are many. Even with a reliable method for score combination
(1) and the best combination of fragment expansion techniques (2),
we cannot find the exact size range that can be proven best for
the test collection — not to mention any heterogeneous document
collections (3). The numerous factors of uncertainty include the de-
pendence on the queries (4), quality of relevance assessments (5),
and the simplicity of the fragment selection algorithm (6). Nev-
ertheless, the tested baseline performance serves as a good basis
for further tests in order to determine a good granularity for the
indexed fragments.

8.2 Full-text content required

Fragments that look data-oriented according to the T/E measure
are not accepted as individual fragments in a full-text (Ft) frag-
ment collection, which leads to the compared collections containing
slightly different sets of fragments despite representing the same
granularity. The absolute properties of the tested full-text collec-
tions and their counterparts were analysed in Chapter 6. Details
about the composition of the tested collections before fragment ex-
pansion were shown in Figures 6.1–7.4. For each collection, the
average precision measured with four different evaluation methods
is presented in Table 8.2.

Comparing the ideal rankings of the different fragment collec-
tions is most useful when evaluating what the best composition of
a fragment collection would be at a single granularity level. As the
ideal rankings are built from the assessments, no operational system



“Indexing” — 2006/10/30 — 13:56 — page 136 — #146

136 8 Results and evaluation

Division strict -o generalised -o GR PRUM
Base1 0.0815 0.0591 21.0692 1.0231
Base1Ft 0.0923 0.0656 20.7702 1.2621
Base1EmLiTi 0.0949 0.0650 22.0037 1.0914
Base1All 0.0954 0.0686 21.1940 1.2952
Ideal1 0.4793 0.4201 32.8415 6.5695
Ideal1Ft 0.4793 0.4195 31.8924 6.5510
Base4 0.1026 0.0729 27.1790 1.7181
Base4Ft 0.1056 0.0736 26.2124 2.4539
Base4EmLiTi 0.1114 0.0797 27.7506 2.4607
Base4All 0.1170 0.0831 27.6774 2.5398
Ideal4 0.5357 0.4832 46.1536 10.2947
Ideal4Ft 0.5356 0.4817 45.0670 10.7041

Table 8.2: Overall performance of fragment collections with and
without data-oriented fragments.

is needed in the evaluation. The unstable factor of computing the
relevance scores is thus eliminated. The ideal runs show little differ-
ence between the baseline and full-text collections according to the
inex eval ng metric which is known to favour big answers. The
fragments of a full-text collection are relatively smaller in size than
those of the corresponding baseline collection because the data-
oriented fragments, which are not accepted, are further divided into
smaller fragments during the selection of full-text fragments.

Accepting only full-text fragments does not increase the amount
of relevant content in the fragment collection, and the reason is
clear: full-text collections are proper subsets of the correspond-
ing baseline collections. They are also 5–6% smaller in size than
the baseline collections. Nevertheless, the amount of highly specific
and highly exhaustive content is practically the same in both collec-
tions. For example, the number of characters in Base1Ft collection
is 5.6% smaller than that in Base1 collection as shown in Table 7.1,
but the average precision of the corresponding ideal runs remains
the same (0.4793) as far as the strict quantisation is concerned.



“Indexing” — 2006/10/30 — 13:56 — page 137 — #147

8.2 Full-text content required 137

Division strict -o generalised -o GR PRUM
Base1Ft +13.3 +11.0 –1.4 +23.4
Base1All +0.5 +5.5 –3.7 +18.7
Ideal1Ft +0.0 –1.4 –2.9 –0.3
Base4Ft +2.9 +1.0 –3.6 +42.8
Base4All +5.0 +4.3 –0.3 +3.2
Ideal4Ft –0.0 –0.3 –2.4 +4.0

Table 8.3: Percentual change of requiring full-text content
(T/E≥1.0) of the indexed fragments.

Regarding the ideal runs, the slightly decreased average precision
by the generalised quantisation of inex eval ng compared with
practically unchanged precision by the strict quantisation indicates
that the amount of less than highly relevant content decreases by
not accepting data-oriented content. The number of fragments that
contain this marginally relevant content may, however, increase.

Although the absolute numbers are comparable with the official
results, the actual effect of discarding data fragments has to be
read between the lines. In order to clarify the capabilities of the
T/E measure, the relative effect of requiring full-text content is
summarised in Table 8.3 where the full-text oriented collections
were compared with their counterparts with no requirement for the
T/E values.

Measured with metrics inex eval ng and PRUM, testing full-
text likelihood leads to an improved performance both by itself and
with additional fragment expansion. The intuititive observation is
that relevant content is easier to find in a fragment collection with
a reduced size than in the original baseline collection. Because the
amount of improvement is quite different at both tested granular-
ities, further tests on other granularities are required before very
specific conclusions can be drawn. However, it seems rather safe to
state that requiring full-text content improves the performance of
the less-than-ideal operational systems more than it stretches the
ideal performance, and as far as our systems are far from perfect,



“Indexing” — 2006/10/30 — 13:56 — page 138 — #148

138 8 Results and evaluation

we benefit from this technique.
By going through the assessments and samples of selected frag-

ments, we find examples that describe the typical effects of testing
the full-text likelihood of fragments. There are some cases where
the relevant material in the discarded content is isolated from other
relevant material, e.g. a small item such a single word or phrase in
a bibliographical entry with a relevance assessment of (3,3). Such
content is likely to be discarded as data when the indexed full-text
fragments are selected and, at the end, it shows in a negative ef-
fect on the ideal scores although it might actually be a question
of misjudged relevance. There are other cases where the discarded
data fragment contains full-text content, such as a back matter ele-
ment with both a data-oriented bibliography and full-text-oriented
appendices. If the potentially relevant appendices qualify, the con-
sequences with respect to the metrics are two-fold. First, the prob-
ability of the user seeing the relevant content increases because the
content of a relevant appendix is easy to find as a standalone answer
or through a direct pointer compared to navigation that starts from
the beginning of the back matter. Second, the amount of marginally
relevant content decreases as the back matter is not included in its
entirety anymore.

To remind the reader, the GR and PRUM metrics favour systems
returning many relevant elements (or entry points) regardless of the
size of the answers, whereas inex eval ng favours systems return-
ing lots of relevant content. The difference between the GR and
PRUM scores can be explained by the assumption behind PRUM,
according to which near misses lead the user towards relevant con-
tent and, as such, they should contribute to the overall score. More-
over, the fragments have to be highly exhaustive in order to be con-
sidered relevant by GR, and a reduction in the average fragment
size leads to a reduced probability of the fragments being highly
exhaustive answers to any query. The examples together with the
known characteristics of the metrics explain the different evalua-
tion scores, from which we can conclude that although discarding
data fragments reduces the total amount of relevant content, the
probability of users’ seeing it increases nonetheless.

While studying the quality of all the 1,500 answers to each query
is useful when a high recall is important, zooming to the beginning
of the result list is necessary in order to see how to excel in tasks



“Indexing” — 2006/10/30 — 13:56 — page 139 — #149

8.2 Full-text content required 139

 0.2

 0.3

 0.4

 0.5

 0  25  50

P
re

ci
si

on
o

Recallo

[200, 20K]: Full-text (strict)

All 0.0954
All but full-text 0.0949

Full-text 0.0923
Baseline 0.0815

 0.2

 0.3

 0.4

 0.5

 0.6

 0  25  50

P
re

ci
si

on
o

Recallo

[200, 20K]: Full-text (generalised)

All 0.0686
All but full-text 0.0650

Full-text 0.0656
Baseline 0.0591

 0.2

 0.3

 0.4

 0.5

 0  25  50

P
re

ci
si

on
o

Recallo

[150, 8K]: Full-text (strict)

All 0.1170
All but full-text 0.1114

Full-text 0.1056
Baseline 0.1026

 0.2

 0.3

 0.4

 0.5

 0.6

 0  25  50

P
re

ci
si

on
o

Recallo

[150, 8K]: Full-text (generalised)

All 0.0831
All but full-text 0.0797

Full-text 0.0736
Baseline 0.0729

Figure 8.2: Comparable curves showing how the requirement for
full-text likelihood (T/E≥1.0) effects the precision at recall levels
1–50.

where high precision is preferred. The curves zoomed where the
interesting differences occur are shown in Figure 8.2. What is not
shown is that the curves converge towards higher levels of recall.

At the relatively low recall levels of 1–50, discarding data frag-
ments in the index seems to have a strong positive effect when
big fragments are allowed. When the maximum fragment size is
set down to 8,000 characters, the effect is still positive, but to a
lesser extent. The natural conclusion from these observations is



“Indexing” — 2006/10/30 — 13:56 — page 140 — #150

140 8 Results and evaluation

that when we allow fragments up to 20,000 characters in size, we
need to require full-text content of them or otherwise some un-
wanted fragments are indexed. Lowering the maximum size from
20,000 characters down to 8,000 characters also helps discard some
of the unwanted data fragments, which shows in a more modest
improvement at the granularity level [150,8K].

8.3 Relevant links

The fragment expansion technique where referred content outside
the fragment is associated with the indexed fragments concerned
56,161 out of 86,386 fragments (65.0%) at Base1 granularity and
92,502 out of 236,630 fragments (39.1%) at Base4 granularity. The
rest of the fragments did not contain references to external resources
in other parts of the source document. Although outlinks are un-
likely to occur in fragments that consist of whole articles, they are
even less common in the Base4 collection that consists of smaller
fragments. The measured performance of the fragment collections
with linked content and their counterparts without it is presented
in Table 8.4.

Division strict -o generalised -o GR PRUM
Base1 0.0815 0.0591 21.0692 1.0231
Base1Li 0.0966 0.0656 21.9236 2.7439
Base1FtEmTi 0.0980 0.0665 21.5136 1.7760
Base1All 0.0954 0.0686 21.1940 1.2952
Base4 0.1026 0.0729 27.1790 1.7181
Base4Li 0.1054 0.0770 28.1738 2.2771
Base4FtEmTi 0.1072 0.0760 26.7753 2.5364
Base4All 0.1170 0.0831 27.6774 2.5398

Table 8.4: The performance of fragment collections compared with
and without referred content.

The differences in the absolute scores measured with different
metrics are striking. While GR and inex eval ng seem to agree
about the effect of granularity by giving the best four scores to the
collections with smaller fragments, PRUM considers the Base1Li



“Indexing” — 2006/10/30 — 13:56 — page 141 — #151

8.3 Relevant links 141

collection the best. The differences are not surprising if we consider
that PRUM neglects the amount of content in a relevant fragment
and that it also rewards systems for finding “near misses” where
the granularity of the fragment is less than ideal.

When the number of relevant answers is preferred to the quantity
of content in the relevant answers, BaseXLi is the best configura-
tion, which is reflected in the top GR and PRUM scores for each
granularity. From the fact that inex eval ng shows less apprecia-
tion to the BaseXLi systems, we draw the conclusion that associat-
ing the referred content and discarding the other fragment expan-
sion techniques promotes the importance of smaller fragments.

Moving on from the absolute scores, we look at how the evalu-
ation scores are affected when the intra-document links are taken
into account. The results which show improvement in most cases
are presented in Table 8.5. Appending linked content to fragments
seems to have a more positive effect on the bigger fragments at
Base1 granularity when other fragment expansion techniques are
not used (Base1Li), however, with other techniques (Base1All), the
effect is positive only according to the generalised quantisation of
inex eval ng. When the fragments are smaller, this fragment ex-
pansion technique improves the score both on its own and with
other techniques. When the effect varies a lot between the granu-
larities, we want to be careful not to jump into conclusions too soon,
and therefore, the 168.2% improvement is not considered anything
but just “improvement” at this point. Therefore, a more detailed
analysis is provided in Section 8.5 where we have more data avail-
able as the associated titles have an effect on the scores that is very
similar to that of the linked content.

Division strict -o generalised -o GR PRUM
Base1Li +18.5 +11.0 +4.1 +168.2
Base1All –2.7 +3.2 –1.5 –27.1
Base4Li +2.7 +5.6 +3.7 +32.5
Base4All +9.1 +9.3 +3.4 +0.1

Table 8.5: Percentual change of appending linked content to frag-
ments.

The zoomed curves corresponding to the compared collections



“Indexing” — 2006/10/30 — 13:56 — page 142 — #152

142 8 Results and evaluation

 0.2

 0.3

 0.4

 0.5

 0  25  50

P
re

ci
si

on
o

Recallo

[200, 20K]: Links (strict)

All 0.0954
All but links 0.0980

Links 0.0966
Baseline 0.0815

 0.2

 0.3

 0.4

 0.5

 0.6

 0  25  50

P
re

ci
si

on
o

Recallo

[200, 20K]: Links (generalised)

All 0.0686
All but links 0.0665

Links 0.0656
Baseline 0.0591

 0.2

 0.3

 0.4

 0.5

 0  25  50

P
re

ci
si

on
o

Recallo

[150, 8K]: Links (strict)

All 0.1170
All but links 0.1072

Links 0.1054
Baseline 0.1026

 0.2

 0.3

 0.4

 0.5

 0.6

 0  25  50

P
re

ci
si

on
o

Recallo

[150, 8K]: Links (generalised)

All 0.0831
All but links 0.0760

Links 0.0770
Baseline 0.0729

Figure 8.3: The curves concerning the importance of linked content
zoomed into recall levels 1–50.

are shown in Figure 8.3. By focusing on the low recall levels, we
observe once again that all the baseline curves show the lowest per-
formance, but, contrary to the previous results in this section, the
Base1All configuration clearly outperforms the other systems for
the same granularity. From this observation, we can naturally con-
clude that links do point to relevant resources in the test collection
and that even with other fragment expansion techniques, the ref-
erences inside documents should be taken into account in order to
maximise the precision at low recall levels.



“Indexing” — 2006/10/30 — 13:56 — page 143 — #153

8.4 Emphasis on the emphasised 143

8.4 Emphasis on the emphasised

In order to picture the magnitude of the potential influence of the
structure-based phrase detection and phrase weighting, we present
the number of qualified inline elements in Table 8.6. The param-
eters were set to a minimum of three (3) characters in at least one
Text node child and a minimum of five (5) characters in at least
one Text node sibling. EntityReference nodes may not appear in
the Simple inline elements by definition, but the frequencies show
that this additional condition only disqualifies 1.2–1.3% of all the
qualified inline elements.

Division Simple (5,3) Others (5,3) All (5,3)
Base1 532,475 6,750 539,225
Base1Ft 523,853 6,743 530,596
Base4 520,965 6,643 527,608
Base4Ft 511,866 6,636 518,502
Whole collection 544,495 7,226 551,721

Table 8.6: Qualified inline elements in the tested collections.

By comparing the numbers of the baseline collections to those
of the full-text oriented collections, we can make a somewhat inter-
esting observation: by discarding data-oriented content we also lose
many qualified inline elements, 8,622 in the Base1Ft collection and
9,099 in the Base4Ft collection. The amounts are not alarming,
though, and we can still consider mixed content a good indicator of
full-text content. For one thing, some of the lost inline elements are
left out because their source fragment is too small, not because it
looks too data-oriented. For another thing, compared to the 5–6%
reduction in the total size of the collection, the 1.6–1.8% reduc-
tion in the number of qualified inline elements is within reasonable
limits.

In order to see real phrases that are emphasised in the INEX
document collection, we study Figure 8.4 which shows a selection
of qualified inline elements, each preceded by their frequency. The
seemingly best phrases are found in those inline elements that have
a relatively low frequency in the whole collection. The phrases that
benefit most from heavier weighting are such that the words of the



“Indexing” — 2006/10/30 — 13:56 — page 144 — #154

144 8 Results and evaluation

phrase occur in quite many fragments, but they are emphasised in
relatively few fragments.

67 <it>deterministic</it>

65 <it>weight</it>

65 <it>internal</it>

65 <it>fixed</it>

64 <it>functionally redundant</it>

63 <it>capacity</it>

60 <it>minimum</it>

58 <ref>Lamport’s Algorithm</ref>

57 <b>Algorithm</b>

51 <tt>player</tt>

28 <it>sequentially redundant</it>

28 <ref>Sort Partition</ref>

27 <b>primitive</b>

24 <it>dependency relation</it>

21 <it>middle buffering</it>

19 <ref>Hybrid Partition</ref>

17 <b>architecture</b>

17 <it>shape space</it>

16 <it>input buffering</it>

16 <it>false sharing</it>

16 <it>critical path</it>

15 <it>useless shared copies</it>

15 <it>problem complexity</it>

15 <it>perceived usefulness</it>

Figure 8.4: Qualified inline elements preceded by the frequency in
the document collection.

In order to show when phrase weighting is useful, we consider
the phrase “critical path” and the related word frequencies in the
236,630 fragments of the Base4 collection. The word ‘critical’ oc-
curs in 8,413 fragments, ‘path’ in 12,927 fragments, both words in
950 fragments, and the phrase “critical path” in 631 fragments. All
of these frequencies are directly proportional to the corresponding
document frequencies in the tf*idf weighting scheme. As the con-
tent of a qualified inline element, the phrase occurs 16 times in 16
different fragments. It is intuitively easy to understand that one
phrase is emphasised only once in a fragment although it might
occur there several times. The term frequency of the words ‘crit-
ical’ and ‘path’ thus increases in 16 fragments when the qualified
inline elements are given extra weight. As both words have a rather
high document frequency, triplication of the inline element might
be more effective than duplication. Nevertheless, those fragments



“Indexing” — 2006/10/30 — 13:56 — page 145 — #155

8.4 Emphasis on the emphasised 145

where the phrase is emphasised are expected to be more relevant
to corresponding queries than those where the words occur unem-
phasised.

The actual effect on XML retrieval was studied by creating frag-
ment indices with eight different configurations for both of the
tested granularities. Besides the tests where the duplication of in-
line elements is either on or off, we also tested whether triplication
is better than duplication, and whether there is any difference be-
tween the simple inline elements and all qualified inline elements.
The results of the baseline runs on each index are reported in Ta-
ble 8.7.

Division strict -o generalised -o GR PRUM
Base1 0.0815 0.0591 21.0692 1.0231
Base1Em 0.0894 0.0589 21.3262 1.3529
Base1Em3 0.0958 0.0635 21.6545 1.3932
Base1sEm 0.0924 0.0616 21.5971 1.6038
Base1sEm3 0.0886 0.0613 21.6547 1.3999
Base1FtLiTi 0.0969 0.0669 20.9796 1.4314
Base1All 0.0954 0.0686 21.1940 1.2952
Base1sEmAll 0.0918 0.0679 21.0951 1.2591
Base4 0.1026 0.0729 27.1790 1.7181
Base4Em 0.1040 0.0733 27.2178 2.4100
Base4Em3 0.1025 0.0727 27.2384 2.1141
Base4sEm 0.1055 0.0761 26.5913 1.8040
Base4sEm3 0.1029 0.0717 26.3486 2.4839
Base4FtLiTi 0.1133 0.0806 27.6353 2.8075
Base4All 0.1170 0.0831 27.6774 2.5398
Base4sEmAll 0.1138 0.0821 27.1297 2.5799

Table 8.7: Added weight on the emphasised content.

Trying to find some agreement in the results among different
metrics is somewhat challenging, so the interpretation of the re-
sults may, at times, seem vague. When duplicating the content is
the only fragment expansion technique applied, in most cases the
definition for the simple inline elements (BaseXsEm) seems to work
better than the one that allows for entity references to appear in the



“Indexing” — 2006/10/30 — 13:56 — page 146 — #156

146 8 Results and evaluation

text content (BaseXEm). In the case where triplication is applied,
the metrics give a slight favour on all the qualified inline elements
(BaseXEm3). With other fragment expansion techniques, the met-
rics almost unanimously suggest that duplicating only simple in-
line elements (BaseXsEmAll) is not sufficient: a better precision is
achieved by also duplicating inline elements with entity references
(BaseXAll).

Whether duplication is more effective than triplication is some-
what dependent on the granularity. In most cases, triplication of
the simple inline elements (BaseXsEm3) leads to a lower search
quality than the duplication thereof (BaseXsEm). When all qual-
ified inline elements are concerned, however, triplication improves
the results more than duplication at Base1 granularity (Base1Em3),
but at the granularity of the Base4 collections (Base4Em3), the re-
sults are better when the qualified inline elements are only given
double weight (Base4Em).

The actual effect of giving heavier weights on emphasised con-
tent is shown in Table 8.8 where each collection is compared to
their counterpart without additional weighting. The biggest im-
provement is displayed in the PRUM scores, according to which,
however, duplication of inline elements does not improve the re-
sults at all when other fragment expansion techniques are applied.
Both the improvement and the decline in the results seem to be
more pronounced in the Base1 collections where the fragments are
fewer and bigger.

In order to find out which weighting scheme works best for the
detected phrases, we may try to analyse which configuration leads
to the biggest improvement in the evaluation scores. Table 8.8 tells
us that, of the two weighting schemes, duplication works better
when simple inline elements are weighted at Base4 granularity and
when all qualified inline elements are weighted at Base1 granularity,
whereas triplication is preferrable when all qualified inline elements
of the Base1 collection are weighted. Which weighting method is
best for the simple inline elements at Base4 granularity seems to
depend on the evaluation metric. We can also draw the conclusion
that as the only fragment expansion technique, giving additional
weight to the qualified inline elements does not automatically result
in a significant improvement in average precision, although, in most
of the tested cases, it does.



“Indexing” — 2006/10/30 — 13:56 — page 147 — #157

8.4 Emphasis on the emphasised 147

Division strict -o generalised -o GR PRUM
Base1Em +9.7 –0.3 +1.2 +32.2
Base1Em3 +17.5 +7.4 +2.8 +36.2
Base1sEm +13.4 +4.2 +2.5 +56.8
Base1sEm3 +8.7 +3.7 +2.8 +36.8
Base1All –1.5 +2.5 +1.0 –9.5
Base1sEmAll –5.3 +1.5 +0.6 –12.0
Base4Em +1.4 +0.5 +0.1 +40.3
Base4Em3 –0.1 –0.3 +0.2 +23.0
Base4sEm +2.8 +4.4 –2.2 +5.0
Base4sEm3 +0.3 –1.6 –3.1 +44.6
Base4All +3.3 +3.1 +0.2 –9.5
Base4sEmAll +0.4 +1.9 –1.8 –8.1

Table 8.8: Percentual change of increasing the absolute frequency
of qualified inline elements.

The effect of phrase weighting at the low recall levels is pictured
in Figure 8.5 which shows the curves associated with all qualified
inline elements. From the curves zoomed into the first 50 answers
per query, similar observations can be made about the effects of this
technique to those that were made of the overall evaluation scores.
Although the effect seems more or less positive for the granularity
[200, 20K], it seems close to random for the smaller fragments in
the Base4 collection. However, all the figures mostly agree that the
curves are the furthest apart from their comparative counterpart at
the lowest levels of recall, after which they start to converge.

Figure 8.6 shows the average precision at low recall levels with
a focus on the simple inline elements. In all the test cases, giving
triple weight to simple inline elements leads to a higher average
precision than a double weight — but only when the very first
answers are considered. Although the improvement is limited to the
top two or three answers per query, the observation may be valuable
to applications where high precision is preferred. Nonetheless, the
triplication of the simple inline elements causes the precision to



“Indexing” — 2006/10/30 — 13:56 — page 148 — #158

148 8 Results and evaluation

 0.2

 0.3

 0.4

 0.5

 0  25  50

P
re

ci
si

on
o

Recallo

[200, 20K]: Emphasis (strict)

All 0.0954
All but emphasis 0.0969

3x Emphasis 0.0958
Emphasis 0.0894
Baseline 0.0815

 0.2

 0.3

 0.4

 0.5

 0.6

 0  25  50

P
re

ci
si

on
o

Recallo

[200, 20K]: Emphasis (generalised)

All 0.0686
All but emphasis 0.0669

3x Emphasis 0.0635
Emphasis 0.0589
Baseline 0.0591

 0.2

 0.3

 0.4

 0.5

 0  25  50  75  100

P
re

ci
si

on
o

Recallo

[150, 8K]: Emphasis (strict)

All 0.1170
All but emphasis 0.1133

3x Emphasis 0.1025
Emphasis 0.1040
Baseline 0.1026

 0.2

 0.3

 0.4

 0.5

 0.6

 0  25  50

P
re

ci
si

on
o

Recallo

[150, 8K]: Emphasis (generalised)

All 0.0831
All but emphasis 0.0806

3x Emphasis 0.0727
Emphasis 0.0733
Baseline 0.0729

Figure 8.5: Emphasising qualified inline elements has the greatest
effect on retrieval quality at the low recall levels of 1–50.



“Indexing” — 2006/10/30 — 13:56 — page 149 — #159

8.4 Emphasis on the emphasised 149

 0.2

 0.3

 0.4

 0.5

 0  25  50

P
re

ci
si

on
o

Recallo

[200, 20K]: Simple Emphasis (strict)

All with Simple Em 0.0918
All but emphasis 0.0969

3x Simple Em 0.0886
Simple Emphasis 0.0924

Baseline 0.0815

 0.2

 0.3

 0.4

 0.5

 0.6

 0  25  50

P
re

ci
si

on
o

Recallo

[200, 20K]: Simple Emphasis (generalised)

All with Simple Em 0.0679
All but emphasis 0.0669

3x Simple Em 0.0613
Simple Emphasis 0.0616

Baseline 0.0591

 0.2

 0.3

 0.4

 0.5

 0  25  50  75  100

P
re

ci
si

on
o

Recallo

[150, 8K]: Simple Emphasis (strict)

All with Simple Em 0.1138
All but Emphasis 0.1133

3x Simple Em 0.1029
Simple Emphasis 0.1055

Baseline 0.1026

 0.2

 0.3

 0.4

 0.5

 0.6

 0  25  50

P
re

ci
si

on
o

Recallo

[150, 8K]: Simple Emphasis (generalised)

All with Simple Em 0.0821
All but emphasis 0.0806

3x Simple Em 0.0717
Simple Emphasis 0.0761

Baseline 0.0729

Figure 8.6: The effect of emphasising simple inline elements shown
at recall levels 1–50.

sink after the first few answers, and as it sinks even lower than the
baseline, it is everything but recommendable for tasks where high
recall is appreciated.

Giving extra weight to qualified inline elements has a strong ef-
fect on the term frequencies as over 500,000 inline elements are
involved. However, the overall effect on an individual fragment
depends on the term frequency before the additional weighting.
Although duplication of the inline element increases the term fre-
quencies by 1, the actual term frequency rarely doubles because the



“Indexing” — 2006/10/30 — 13:56 — page 150 — #160

150 8 Results and evaluation

same terms tend to occur in the same fragments unemphasised, as
well. Further tests with collections of different granularities would
produce more data to be analysed, but the most certain conclusion
that can be drawn from the results presented is that neither du-
plication nor triplication alone is a reliable method for improving
the retrieval quality. Instead, the variance in the results suggests
that we need more sophisticated weighting methods where differ-
ent inline elements can be weighted individually. For example, we
could consider the context of the whole fragment when weighting
a detected phrase, so that the corresponding term weights in the
whole fragment are doubled instead of duplicating a single occur-
rence of the terms. Future work on this fragment expansion tech-
nique should thus be directed at weighting methods because the
quality of the detected phrases can hardly be improved if indepen-
dence of document types is required of the methods.

8.5 Titles as fragment descriptors

The nearest preceding title was appended to 81,554 out of 86,386
fragments (94.41%) in the fragment collection Base1Ti, and to
235,049 out of 236,630 fragments (99.33%) in the collection Base4Ti.
The only fragments with no additional title added were those that
comprise a whole article element. The evaluation scores of the frag-
ment collections where titles were added are presented in Table 8.9
with the comparative scores of their counterparts without the ad-
ditional titles.

By comparing the results at the two granularity levels, we ob-
serve quite contradictory scores for the collections where the frag-
ment expansion techniques other than appending the titles are
applied (BaseXFtEmLi). According to the strict quantisation of
inex eval ng, this particular configuration is best for the Base1
granularity, whereas for the smaller fragments of Base4 granularity,
it is hardly better than the baseline. The generalised quantisa-
tion leads to fewer surprises in the relative system rankings: the
baseline collections have clearly the lowest scores, whereas the ‘All’
collections have clearly the highest scores for each granularity.

The relative effect of appending title words to the fragments is
shown in Table 8.10. As the only fragment expansion technique,



“Indexing” — 2006/10/30 — 13:56 — page 151 — #161

8.5 Titles as fragment descriptors 151

Division strict -o generalised -o GR PRUM
Base1 0.0815 0.0591 21.0692 1.0231
Base1Ti 0.0956 0.0631 21.2052 1.2752
Base1FtEmLi 0.0982 0.0665 21.1706 1.3478
Base1All 0.0954 0.0686 21.1940 1.2952
Base4 0.1026 0.0729 27.1790 1.7181
Base4Ti 0.1081 0.0751 27.3364 1.8464
Base4FtEmLi 0.1033 0.0769 27.0489 2.2274
Base4All 0.1170 0.0831 27.6774 2.5398

Table 8.9: The descriptive value of titles measured in absolute eval-
uation scores.

Division strict -o generalised -o GR PRUM
Base1Ti +17.3 +6.8 +0.6 +24.6
Base1All -2.9 +3.2 +0.1 –3.9
Base4Ti +5.4 +3.0 +0.6 +7.5
Base4All +13.3 +8.1 +2.3 +14.0

Table 8.10: Relative improvement of associating titles with the in-
dexed fragments.

including the contents of the title elements in the fragments of the
Base1 collection seems to have a strong positive effect on the average
precision whereas the positive effect is more modest on the Base4
collection. Together with other fragment expansion techniques, the
effect of the granularity is reversed: the other techniques seem to
make the titles unnecessary when the fragments are big (Base1All).
There is a strong agreement on this behaviour among the metrics
inex eval ng and PRUM with the strict quantisation, which is
reasoned as follows.

First, as shown in Figure 6.4, more than half of the fragments in
the Base1 granularity are section and front matter elements where
the nearest preceding title is the title of the article. Second, the
most relevant section elements at the Base1 granularity are more



“Indexing” — 2006/10/30 — 13:56 — page 152 — #162

152 8 Results and evaluation

likely to contain the title words than the smaller fragments at Base4
granularity. Given that, appending the titles does not add any new
terms to the most relevant sections but it merely increases the cor-
responding term frequencies. Third, as sibling elements are consid-
ered equal, the words in the article title are also added to the less
relevant sections, though, as new terms this time, which causes the
df values of the title words to increase and the corresponding term
weights throughout the collection to decrease. Fortunately, the less
relevant sections are nonetheless relevant according to the gener-
alised quantisation, which explains the 3.2% improvement origi-
nating in the titles in the Base1All collection. Fourth, creating
associations to the referred content also adds article titles to the
fragments, in particular when the references point to bibliograph-
ical entries. The proliferation of the title words makes them look
more common than they actually are, which in turn causes their
descriptive value to deteriorate.

Why these problems do not have a negative effect on the re-
sults at the Base4 granularity can be explained by looking into the
composition of the fragment index. The fragments of the Base4
collection (Figure 6.3) are considerably smaller than the maximum
size of 20,000 characters of the Base1 granularity, the most common
fragment root element being p (paragraph). The associated titles
are now found in the beginning of the sections and subsections, and
as they describe smaller portions of text, they are often more spe-
cific than the article titles which have to be general enough to label
the whole article. Moreover, linked content is associated with less
than 40% of the fragments at the Base4 granularity, whereas the
corresponding figure was as high as 65% for the Base1 granularity.
We can thus come to the conclusion that when the fragments are
smaller, e.g. 8,000 characters or less in size, we are less likely to
overdo the fragment expansion by associating most useful search
terms with too many fragments and inflating their value.

The connection between titles and the linked content is obvious
when we compare the percentages in Table 8.10 to those of links
presented in Table 8.5 in Section 8.3. While it is clear that the two
fragment expansion techniques interfere with each other, we cannot
pick out either one of them as the scapegoat. The evaluation scores
only show that the best configuration for fragment expansion is
highly dependent on the fragment size and the different aspects of



“Indexing” — 2006/10/30 — 13:56 — page 153 — #163

8.5 Titles as fragment descriptors 153

 0.2

 0.3

 0.4

 0.5

 0  25  50

P
re

ci
si

on
o

Recallo

[200, 20K]: Titles (strict)

All 0.0954
All but titles 0.0982

Titles 0.0956
Baseline 0.0815

 0.2

 0.3

 0.4

 0.5

 0.6

 0  25  50

P
re

ci
si

on
o

Recallo

[200, 20K]: Titles (generalised)

All 0.0686
All but titles 0.0665

Titles 0.0631
Baseline 0.0591

 0.2

 0.3

 0.4

 0.5

 0  25  50

P
re

ci
si

on
o

Recallo

[150, 8K]: Titles (strict)

All 0.1170
All but titles 0.1033

Titles 0.1081
Baseline 0.1026

 0.2

 0.3

 0.4

 0.5

 0.6

 0  25  50

P
re

ci
si

on
o

Recallo

[150, 8K]: Titles (generalised)

All 0.0831
All but titles 0.0769

Titles 0.0751
Baseline 0.0729

Figure 8.7: Curves demonstrating the effect of associating frag-
ments with related titles.

the retrieval task which are reflected in the evaluation metrics.
The precision at low recall levels is shown in Figure 8.7. By com-

paring the curves to the corresponding values of average precision
in the legend, we observe that they do not seem like a good match
at all. What is not shown in the zoomed figures is that the ap-
pended titles affect the curves all the way to the 1,500th result for
each query, thus improving the recall more than the other fragment
expansion techniques. Why the improvement on precision is more
modest at low recall levels may be because the importance of the



“Indexing” — 2006/10/30 — 13:56 — page 154 — #164

154 8 Results and evaluation

<inex_topic topic_id="124" query_type="CO" ct_no="125">

<title>application, algorithm, +clustering, +k-means, +c-means,

"vector quantization", "speech compression",

"image compression", "video compression" </title>

<description>find elements about clustering procedures,

particularly k-means, aka c-means, aka Generalized Lloyd

algorithm, aka LBG, and their application to image speech

and video compression. </description>

<narrative>interested only in application, and or the algorithm or

procedure applied to speech video or image compression. </narrative>

<keywords>vector, quantization, VQ, LVQ, "Generalized Lloyd",

GLA, LBG, "cluster analysis", clustering, "image compression",

"video compression", "speech compression"</keywords>

</inex_topic>

Figure 8.8: The official Content Only topic #124 of the INEX 2003
initiative.

title words is diluted by artificially increasing their document fre-
quencies. Statistical document frequencies should be a good remedy
for this as it also makes the methods scalable to the incremental
indexing of an infinite number of documents.

Associating related titles with the indexed fragments is the most
influential fragment expansion technique presented in this thesis as
it affects the term frequencies of nearly all the indexed fragments
and the document frequencies of the most descriptive index terms.
As a technique complementing the others, it is especially impor-
tant to the relatively small fragments. The presented results imply
high prospects for future research on heuristics for finding titles in
heterogeneous XML documents without assuming the names of the
title elements.

8.6 Case study: Topic 124

Topic 124 of the official test topics of the INEX 2003 initiative was
chosen to demonstrate how essential for accurate retrieval the frag-
ment expansion techniques can be at their best. Figure 8.8 shows
the original formulation of the topic. The title and keywords
elements were taken into account when the query was processed



“Indexing” — 2006/10/30 — 13:56 — page 155 — #165

8.6 Case study: Topic 124 155

into the presentation of a normalised query vector. The narrative
element is only meant to aid the human assessor to judge the rele-
vance of the answers, so it is not used when computing the vector
products. The description element was ignored altogether.

Although only one granularity is represented in this case study,
the results should generalise to fragment collections of other gran-
ularities, as well, given the particular topic. The configurations of
the tested fragment collections together with the results are shown
in Table 8.11 which also includes statistics concerning two common
terms: ‘k-means’ and ‘clustering’. The different systems in this
comparison consist of those already analysed in the previous sec-
tions, however, in the first column, they are introduced without the
prefix ‘Base1’.

System ’k-means’ ’clustering’ strict -o Effect Rank
Base1 91 1,996 0.0569 — 22
Em 91(4) 1,996(79) 0.1434 +152.2% 8
Em3 91(4) 1,996(79) 0.0808 +42.0% 18
sEm 91(4) 1,996(79) 0.0613 +7.7% 21
sEm3 91(4) 1,996(79) 0.0747 +31.3% 19
Li 104 2,093 0.1572 +176.4% 8
Ti 93 2,098 0.0801 +40.8% 18
Ft 79 1,619 0.0524 -7.9% 24
EmLiTi 106(4) 2,226(79) 0.1634 +187.2% 8
All 93(4) 2,024(79) 0.1997 +251.1% 1

Table 8.11: The number of fragments containing the keywords and
the overall effect of fragment expansion at the granularity level of
[200,20K].

The second column shows the number of fragments in each col-
lection that contains the term ’k-means’ followed by the number
of fragments in parentheses where the corresponding inline element
was duplicated. For example, in the last configuration ’All’, the
word ’k-means’ occurred in 93 different fragments, and in four dif-
ferent fragments, it was duplicated as content of an inline element.
Besides duplication, we also tested the triplication of the qualified
inline elements but the results were not encouraging. The best per-
formance was achieved by increasing the frequency of the detected



“Indexing” — 2006/10/30 — 13:56 — page 156 — #166

156 8 Results and evaluation

phrases by one.
In the third column, we present similar statistics for the word

’clustering’ which occurs in 1,996 out of 86,386 fragments (2.3%)
in the baseline collection. Other search words and phrases are less
common in the fragment collection with only one qualified inline
element that contains the term ‘LVQ’ and a handful of those where
the terms “video compression” and “image compression” are dupli-
cated.

According to inex eval ng with the strict quantisation, the av-
erage precision with the baseline collection is relatively low for this
topic (0.0569), but it is still ranked the 22nd of the 56 official sub-
missions. The corresponding average precision of all the test topics
is as high as 0.0815. All the three fragment expansion techniques
significantly improve the precision, both on their own and com-
bined. The only configuration resulting in a slight decline regard-
ing topic 124 is the full-text oriented collection with no fragment
expansion techniques applied. However, the importance of testing
full-text likelihood is best realised by comparing the last two con-
figurations. By adding the test for full-text likelihood to the con-
figuration ’EmLiTi’, we get a result list that is ranked first of the
official submissions with a precision that is 11% higher than that
of the best official submission (0.1799). The purpose of comparing
the results with the official runs of 2003 is to show that the im-
provement from the baseline is significant. If the best test run were
ranked among the weakest systems, the real value of the methods
would remain a question mark despite over 200% improvement.

Whether topic 124 is an exception or a representative example
of a typical query is analysed by regarding the individual evalua-
tion scores of all the topics collectively. The topicwise results are
summarised for both Base1 and Base4 granularities in Table 8.12.
As different topics benefit from different fragment expansion tech-
niques, the best configuration overall is ’All’ where the improve-
ments caused by different techniques are combined. At best, the
search results improve for 25 out of 32 topics according to the gen-
eralised quantisation while only 7 out of 32 topics suffer. According
to the strict quantisation, there were up to seven topics that neither
benefit nor suffer from fragment expansion, either because answers
relevant to the query do not exist (5 out of 7 topics) or because the
existing relevant answers were not retrieved with any configuration



“Indexing” — 2006/10/30 — 13:56 — page 157 — #167

8.7 Summary 157

for two topics.

System Base1: strict Base1: gen Base4: strict Base4: gen
Em 13/12 19/13 15/10 14/17
Em3 14/11 16/16 15/10 17/14
sEm 15/10 21/11 14/11 15/16
sEm3 17/8 19/13 16/9 16/15
Links 20/6 22/10 13/12 22/10
Titles 19/6 19/13 18/7 16/15
Ft 19/6 21/11 14/11 17/14
EmLiTi 18/8 21/11 17/8 24/8
All 18/7 25/7 21/4 25/7

Table 8.12: Number of topics that benefit from the configuration
compared to the baseline vs. number of topics that suffer according
to inex eval ng.

Analysing the results topicwise shows that whether a certain
fragment expansion technique is useful depends on the search terms
and search phrases. Although the biggest improvement and the
highest precision may be achieved even with a single fragment ex-
pansion technique, the highest probability of improvement and the
lowest risk of deteriorating the precision is only achieved by in-
cluding all the three fragment expansion techniques as well as the
selective fragmentation algorithm in the system configuration.

8.7 Summary

While Sections 8.2–8.5 were devoted to analysing the results of each
method separately, the same results are compared to each other in
this section. Because none of the evaluation metrics has an estab-
lished position as a standard metric, we give each evaluation method
one vote as we study which configurations are better than others.
The metrics include all the official metrics of the INEX 2003 initia-
tive, inex eval ng with both the options of “overlap considered”
and “overlap ignored”. In addition, the results were evaluated with
the PRUM metric under two different settings considering the mod-
els for user behaviour. In one setting, we assume the “hierarchical”



“Indexing” — 2006/10/30 — 13:56 — page 158 — #168

158 8 Results and evaluation

System Avg. Best Rank System Avg. Best Rank
All 4.17 1 (x6) Ti 8.17 1
FtLiTi 4.33 1 (x2) Em3 8.67 2 (x2)
Li 5.06 1 (x3) Ft 8.89 3
FtEmTi 5.33 1 sEm 9.06 3 (x2)
sEmAll 5.33 2 (x8) sEm3 10.17 3
EmLiTi 5.89 1 (x3) Em 10.33 7 (x2)
FtEmLi 6.39 1 (x4) Base 12.67 8

Table 8.13: Relative rankings of 14 different systems averaged over
nine different configuations of evaluation metrics at granularity lev-
els Base1 and Base4.

user behaviour, and in the other, the “NULL” behaviour. Both
the strict and generalised quantisation function of the assessments
were applied to the settings of inex eval ng and PRUM. The third
metric involved is GR as presented in Section 7.3.3.

How the systems with 14 different configurations were ranked
among each other is shown in Table 8.13. The averages are cal-
culated from a total of 18 rankings which come from nine different
combinations of metrics and quantisation functions at the two gran-
ularity levels of [200, 20K] and [150, 8K].

The ‘All’ runs where all three fragment expansion techniques are
applied to the selected full-text fragments are ranked first a total
of six times, whereas runs where only two fragment expansion tech-
niques are used (FtLiTi, FtEmTi, FtEmLi) are ranked first a total
of seven times. If the full-text likelihood is not tested but all three
fragment expansion techniques are applied to fragments selected
only by their size (EmLiTi), the runs are ranked best according to
three different evaluation methods. We may conclude from these
observations that the whole selection of tricks is not necessary in
order to achieve the maximal performance. Surprisingly, though,
any single one of the four options may be deselected without an
undisputable negative effect on the ranking: any of the four config-
urations with all but one technique is ranked first, given that the
evaluation method is chosen appropriately. Nevertheless, it seems



“Indexing” — 2006/10/30 — 13:56 — page 159 — #169

8.8 Other granularities 159

Granularity strict -o generalised -o
[200, 20K] 0.0954 +17.1 0.0686 +16.1
[200, 12K] 0.1143 -0.3 0.0751 +5.9
[200, 10K] 0.1117 +2.4 0.0785 +7.0
[200, 8K] 0.1139 +11.4 0.0795 +10.4
[150, 10K] 0.1154 +10.3 0.0790 +8.2
[150, 8K] 0.1170 +14.0 0.0831 +14.0
[100, 8K] 0.1087 +8.6 0.0811 +13.1
[100, 6K] 0.1099 +11.9 0.0803 +9.8

Table 8.14: The “All” systems compared to the baseline at eight
granularity levels.

that the best chances to achieve good results are available if we
take the advantage of all the four techniques that were tested. In
addition, not including any of the techniques (Base) leads clearly to
the poorest results, which confirms the earlier observations about
the importance of fragment expansion.

8.8 Other granularities

So far, we have been comparing the results to the baseline of only
two levels of granularity. The results have been mostly positive, but
there is the chance that the choice of granularity plays a role in the
amount of improvement that each tested technique brings about.
In order to get more evidence and thus increase the significance
of these tests, we want to widen the perspective by evaluating the
“All” counterparts of all the eight baseline collections introduced
in Section 8.1. The combined effect of discarding data fragments
and expanding the fragments (All) is shown in Table 8.14.

With only one exception, the combined effect of the tested meth-
ods is positive. The one negative example is most likely not a sign
of weakness as the average precision is relatively high (0.1143), and
the score of the corresponding baseline system is exceptionally high
(0.1147). The absolute scores are not fully comparable, though, and



“Indexing” — 2006/10/30 — 13:56 — page 160 — #170

160 8 Results and evaluation

 0.1

 0.2

 0.3

 0.4

 0.5

 0  25  50  75  100

P
re

ci
si

on
o

Recallo

Best of granularity (strict)

[200, 20K] 0.0954
[200, 12K] 0.1143
[200, 10K] 0.1117

[200, 8K] 0.1139
[150, 10K] 0.1154

[150, 8K] 0.1170
[100, 8K] 0.1087
[100, 6K] 0.1099

 0.2

 0.3

 0.4

 0.5

 0.6

 0  25  50  75  100

P
re

ci
si

on
o

Recallo

Best of granularity (generalised)

[200, 20K] 0.0686
[200, 12K] 0.0751
[200, 10K] 0.0785

[200, 8K] 0.0795
[150, 10K] 0.0790

[150, 8K] 0.0831
[100, 8K] 0.0811
[100, 6K] 0.0803

Figure 8.9: Absolute average precision of the “All” configuration of
each granularity zoomed into the recall levels 1–100/1,500.

we cannot draw conclusions from these results about which granu-
larity would be the best for the fragment index. The granularity of
the retrieved answers in each of the evaluated runs is fixed instead
of being sensitive to the query, which is a great difference in nature
from operative systems. What we can observe is that all the curves
of the runs shown in Figure 8.9 are plotted higher up on the scale
than those of the corresponding baselines shown in Figure 8.1.

What was stated about the baseline performance in Section 8.1
also holds for the “All” systems. For example, when the maximum
fragment size increases, the precision slightly improves at the first
few recall points, whereas, the lowest maximum sizes seem to yield
better performance when we go further down on the curve. From
the previous sections, we have learned that the positive effect of
fragment expansion is expressed the most at the beginning of the
result lists, e.g., the first 100 answers out of 1,500. If we restrict
our comparison to the first 100 recall points which are shown in the
figures, the improvement is clear at all the tested granularities —
even at that of [200, 12K] which was the only exception when com-
paring the average precision over 1,500 answers per query. Based
on these observations, it is likely that the fragment selection and
expansion methods presented in this thesis improve the quality of



“Indexing” — 2006/10/30 — 13:56 — page 161 — #171

8.8 Other granularities 161

retrieved answers regardless of how the granularity of the indexed
fragments is chosen.



“Indexing” — 2006/10/30 — 13:56 — page 162 — #172

162 8 Results and evaluation



“Indexing” — 2006/10/30 — 13:56 — page 163 — #173

CHAPTER 9

Conclusions

In this thesis, we have studied various methods and techniques for
exploring and analysing XML documents without knowing anything
about the document type. Not being aware of the vocabulary used
in element and attribute names, we can only assume that we are
analysing well-formed XML, and the range of appropriate tools is
quite different from what traditional methods for indexing full-text
are based on. The first challenge was to determine the indexed units
of text which are usually called documents in the related literature.
We call them qualified full-text fragments which is a subset of the
more general concept of XML fragments. One of the contributions
of this thesis was the definition for such fragments which helps us
index the full-text content of arbitrary XML documents. Thanks
to the indicators of full-text likelihood, we are able to exclude 5–
6% of the content from the index without a negative effect on the
retrieval quality.

Other major contributions include three techniques for fragment
expansion. The experimental test results show that this selection
of methods improves the overall retrieval precision, and that the
effect is emphasised at relatively low levels of recall. In general,
the weighting schemes associated with each of the techniques help
rank the most obvious relevant answers at the top ranks at the cost
of the marginally relevant answers getting a decreased relevance
score. This tradeoff is acceptable for tasks where high precision is
preferred to high recall. In other words, the XML search applica-
tions that benefit most from the proposed methods process queries
where relatively few highly relevant answers satisfy the informa-

163



“Indexing” — 2006/10/30 — 13:56 — page 164 — #174

164 9 Conclusions

tion need and where less than highly relevant content is considered
irrelevant. Examples of such search environments may also have
additional requirements due to low bandwidth, small display, or
limited browsing time.

Future work on the topic includes the evaluation of the methods
on different document collections in order to confirm the suitability
of the methods for heterogeneous XML documents. If the methods
turn out to be successful, we will be interested in more sophisticated
weighting schemes that would further improve the results. The pos-
itive experiences with the INEX test collection as well as future
document collections are also likely to encourage us to develop the
methodology that is applicable to arbitrary XML documents. For
example, we may come up with new or improved fragment expan-
sion techniques, or we may invent something completely different;
the chances are unlimited.



“Indexing” — 2006/10/30 — 13:56 — page 165 — #175

References

[ACM+02] Vincent Aguilera, Sophie Cluet, Tova Milo,
Pierangelo Veltri, and Dan Vodislav. Views in a
large-scale XML repository. The VLDB Journal,
11(3):238–255, 2002.

[AJK05] Paavo Arvola, Marko Junkkari, and Jaana
Kekäläinen. Generalized contextualization method
for XML information retrieval. In CIKM ’05: Pro-
ceedings of the 14th ACM international conference
on Information and knowledge management, pages
20–27, New York, NY, USA, October 2005. ACM
Press.

[AM99] Helena Ahonen-Myka. Finding all frequent maximal
sequences in text. In Dunja Mladenic and Marko
Grobelnik, editors, Proceedings of the 16th Inter-
national Conference on Machine Learning ICML-99
Workshop on Machine Learning in Text Data Anal-
ysis, pages 11–17, Ljubljana, Slovenia, June 1999. J.
Stefan Institute.

[AMHHK00] Helena Ahonen-Myka, Barbara Heikkinen, Oskari
Heinonen, and Mika Klemettinen. Printing struc-
tured text without stylesheets. In Proceedings of
XML Scandinavia 2000, May 2000.

[AQM+97] Serge Abiteboul, Dallan Quass, Jason McHugh, Jen-
nifer Widom, and Janet L. Wiener. The Lorel
query language for semistructured data. Interna-
tional Journal on Digital Libraries, 1(1):68–88, 1997.

165



“Indexing” — 2006/10/30 — 13:56 — page 166 — #176

166 References

[AYBS04] Sihem Amer-Yahia, Chavdar Botev, and Jayavel
Shanmugasundaram. TeXQuery: a full-text search
extension to XQuery. In WWW ’04: Proceedings
of the 13th international conference on World Wide
Web, pages 583–594, New York, NY, USA, May
2004. ACM Press.

[AYLP04] Sihem Amer-Yahia, Laks V. S. Lakshmanan, and
Shashank Pandit. FleXPath: flexible structure and
full-text querying for XML. In SIGMOD ’04: Pro-
ceedings of the 2004 ACM SIGMOD international
conference on Management of data, pages 83–94,
New York, NY, USA, June 2004. ACM Press.

[BCKL02] Daniele Braga, Alessandro Campi, Mika Klemet-
tinen, and Pier Luca Lanzi. Mining Association
Rules from XML Data. In DaWaK 2002: Proceed-
ings of the 4th International Conference on Data
Warehousing and Knowledge Discovery, pages 21–
30. Springer-Verlag, September 2002.

[BM03] Denilson Barbosa and Alberto O. Mendelzon. Find-
ing ID Attributes in XML Documents. In Pro-
ceedings of the First International XML Database
Symposium (XSym 2003), volume 2824 of Lec-
ture Notes in Computer Science, pages 180–194.
Springer-Verlag, September 2003.

[BP98] Sergey Brin and Lawrence Page. The anatomy of
a large-scale hypertextual Web search engine. In
WWW7: Proceedings of the seventh international
conference on World Wide Web 7, pages 107–117,
Amsterdam, The Netherlands, April 1998. Elsevier
Science Publishers B. V.

[BYFM02a] Ricardo Baeza-Yates, Norbert Fuhr, and Yoelle S.
Maarek, editors. Proceedings of the SIGIR 2002
Workshop on XML and Information Retrieval, Tam-
pere, Finland, August 2002.

[BYFM02b] Ricardo Baeza-Yates, Norbert Fuhr, and Yoelle S.
Maarek. Second edition of the ”XML and informa-



“Indexing” — 2006/10/30 — 13:56 — page 167 — #177

References 167

tion retrieval” workshop held at SIGIR’2002, Tam-
pere, Finland, 15 Aug 2002. ACM SIGIR Forum,
36(2):53–57, 2002.

[BYFSDW00] Ricardo Baeza-Yates, Norbert Fuhr, Ron Sacks-
Davis, and Ross Wilkinson, editors. Proceedings of
the SIGIR 2000 Workshop on XML and Information
Retrieval, Athens, Greece, July 2000.

[BYM04] Ricardo Baeza-Yates and Yoelle S. Maarek, editors.
Proceedings of the SIGIR 2004 Workshop on XML
and Information Retrieval, Sheffield, England, July
2004.

[BYR02] Ziv Bar-Yossef and Sridhar Rajagopalan. Template
detection via data mining and its applications. In
WWW ’02: Proceedings of the eleventh interna-
tional conference on World Wide Web, pages 580–
591. ACM Press, 7–11 May 2002.

[CDIW05] Jim Challenger, Paul Dantzig, Arun Iyengar, and
Karen Witting. A fragment-based approach for effi-
ciently creating dynamic web content. ACM Trans-
actions on Internet Technology, 5(2):359–389, 2005.

[CEL+02] David Carmel, Nadav Efraty, Gad M. Landau,
Yoëlle S. Maarek, and Yosi Mass. An Extension of
the Vector Space Model for Querying XML Docu-
ments via XML Fragments. In Baeza-Yates et al.
[BYFM02a], pages 14–25.

[Cha00] Hans Chalupsky. Ontomorph: A translation system
for symbolic knowledge. In Proceedings of the 7th In-
ternational Conference on Principles of Knowledge
Representation and Reasoning (KR 2000), pages
471–482, San Fransisco, California, USA, April 2000.
Morgan Kaufmann.

[Cha01] Soumen Chakrabarti. Integrating the document ob-
ject model with hyperlinks for enhanced topic dis-
tillation and information extraction. In WWW ’01:
Proceedings of the tenth international conference on



“Indexing” — 2006/10/30 — 13:56 — page 168 — #178

168 References

World Wide Web, pages 211–220. ACM Press, May
2001.

[Cho02] Byron Choi. What are real DTDs like. In Proceed-
ings of Fifth International Workshop on the Web
and Databases (WebDB 2002), pages 43–48, June
2002.

[CHS04] Philipp Cimiano, Siegfried Handschuh, and Steffen
Staab. Towards the self-annotating web. In WWW
’04: Proceedings of the 13th international conference
on World Wide Web, pages 462–471, New York, NY,
USA, May 2004. ACM Press.

[CHWM04] Deng Cai, Xiaofei He, Ji-Rong Wen, and Wei-Ying
Ma. Block-level link analysis. In SIGIR ’04: Pro-
ceedings of the 27th annual international ACM SI-
GIR conference on Research and development in in-
formation retrieval, pages 440–447, New York, NY,
USA, July 2004. ACM Press.

[CJT01] Soumen Chakrabarti, Mukul Joshi, and Vivek
Tawde. Enhanced topic distillation using text,
markup tags, and hyperlinks. In SIGIR ’01: Pro-
ceedings of the 24th annual international ACM SI-
GIR conference on Research and development in in-
formation retrieval, pages 208–216, New York, NY,
USA, September 2001. ACM Press.

[CK01] Taurai Tapiwa Chinenyanga and Nicholas Kushm-
erick. Expressive retrieval from xml documents. In
SIGIR ’01: Proceedings of the 24th annual interna-
tional ACM SIGIR conference on Research and de-
velopment in information retrieval, pages 163–171.
ACM Press, September 2001.

[Cla05] Charles L. A. Clarke. Range results in XML re-
trieval. In Trotman et al. [TLF05], pages 4–5.

[CLO03] Qun Chen, Andrew Lim, and Kian Win Ong. D(k)-
index: an adaptive structural summary for graph-
structured data. In SIGMOD ’03: Proceedings of



“Indexing” — 2006/10/30 — 13:56 — page 169 — #179

References 169

the 2003 ACM SIGMOD international conference on
Management of data, pages 134–144, New York, NY,
USA, June 2003. ACM Press.

[CMM+03] David Carmel, Yoëlle S. Maarek, Matan Mandel-
brod, Yosi Mass, and Aya Soffer. Searching XML
documents via XML fragments. In SIGIR ’03: Pro-
ceedings of the 26th annual international ACM SI-
GIR conference on Research and development in in-
formation retrieval, pages 151–158. ACM Press, July
2003.

[CMS00] David Carmel, Yoelle S. Maarek, and Aya Soffer.
XML and information retrieval: a SIGIR 2000 work-
shop. ACM SIGIR Forum, 34(1):31–36, 2000.

[CMS02] Chin-Wan Chung, Jun-Ki Min, and Kyuseok Shim.
Apex: an adaptive path index for xml data. In
SIGMOD ’02: Proceedings of the 2002 ACM SIG-
MOD international conference on Management of
data, pages 121–132, New York, NY, USA, June
2002. ACM Press.

[CMZ03] Yu Chen, Wei-Ying Ma, and Hong-Jiang Zhang. De-
tecting web page structure for adaptive viewing on
small form factor devices. In WWW ’03: Proceed-
ings of the 12th international conference on World
Wide Web, pages 225–233, New York, NY, USA,
May 2003. ACM Press.

[Col97] Robert M. Colomb. Impact of semantic heterogene-
ity on federating databases. The Computer Journal,
40(5):235–244, 1997.

[CRF00] Donald D. Chamberlin, Jonathan Robie, and
Daniela Florescu. Quilt: An XML query language
for heterogeneous data sources. In Selected pa-
pers from the Third International Workshop WebDB
2000 on The World Wide Web and Databases, vol-
ume 1997 of Lecture Notes in Computer Science,
pages 1–25. Springer-Verlag, May 2000.



“Indexing” — 2006/10/30 — 13:56 — page 170 — #180

170 References

[CSF+01] Brian Cooper, Neal Sample, Michael J. Franklin,
Gı́sli R. Hjaltason, and Moshe Shadmon. A fast in-
dex for semistructured data. In VLDB ’01: Proceed-
ings of the 27th International Conference on Very
Large Data Bases, pages 341–350, San Francisco,
CA, USA, September 2001. Morgan Kaufmann Pub-
lishers Inc.

[Cur97] James E. Curtis. Managing hardcopy documentation
in a multiplatform environment. In SIGDOC ’97:
Proceedings of the 15th annual international confer-
ence on Computer documentation, pages 35–37, New
York, NY, USA, October 1997. ACM Press.

[CYWM04] Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying
Ma. Block-based web search. In SIGIR ’04: Pro-
ceedings of the 27th annual international ACM SI-
GIR conference on Research and development in in-
formation retrieval, pages 456–463, New York, NY,
USA, July 2004. ACM Press.

[DALP04] Antoine Doucet, Lili Aunimo, Miro Lehtonen, and
Renaud Petit. Accurate Retrieval of XML Document
Fragments using EXTIRP. In Fuhr et al. [FLM04],
pages 73–80.

[DEG+03] Stephen Dill, Nadav Eiron, David Gibson, Daniel
Gruhl, R. Guha, Anant Jhingran, Tapas Kanungo,
Sridhar Rajagopalan, Andrew Tomkins, John A.
Tomlin, and Jason Y. Zien. Semtag and seeker:
bootstrapping the semantic web via automated se-
mantic annotation. In WWW ’03: Proceedings of the
12th international conference on World Wide Web,
pages 178–186, New York, NY, USA, May 2003.
ACM Press.

[DFF+99] Alin Deutsch, Mary Fernandez, Daniela Florescu,
Alon Levy, and Dan Suciu. A query language for
XML. In WWW ’99: Proceeding of the eighth in-
ternational conference on World Wide Web, pages
1155–1169. ACM Press, May 1999.



“Indexing” — 2006/10/30 — 13:56 — page 171 — #181

References 171

[DMD+03] AnHai Doan, Jayant Madhavan, Robin Dhamankar,
Pedro Domingos, and Alon Halevy. Learning to
match ontologies on the semantic web. The VLDB
Journal, 12(4):303–319, 2003.

[Dou05] Antoine Doucet. Advanced Document Description,
a Sequential Approach. PhD thesis, University of
Helsinki, November 2005.

[EOY05] Takeharu Eda, Makoto Onizuka, and Masashi Ya-
mamuro. Processing XPath queries with XML sum-
maries. In CIKM ’05: Proceedings of the 14th ACM
international conference on Information and knowl-
edge management, pages 223–224, New York, NY,
USA, October 2005. ACM Press.

[FG01] Norbert Fuhr and Kai Großjohann. XIRQL: a query
language for information retrieval in XML docu-
ments. In SIGIR ’01: Proceedings of the 24th an-
nual international ACM SIGIR conference on Re-
search and development in information retrieval,
pages 172–180. ACM Press, September 2001.

[FGG02] Norbert Fuhr, Norbert Gövert, and Kai Großjohann.
HyREX: hyper-media retrieval engine for XML. In
SIGIR ’02: Proceedings of the 25th annual interna-
tional ACM SIGIR conference on Research and de-
velopment in information retrieval, page 449. ACM
Press, August 2002.

[FGKL02] Norbert Fuhr, Norbert Gövert, Gabriella Kazai, and
Mounia Lalmas, editors. INEX: Evaluation Initia-
tive for XML retrieval — INEX 2002 Workshop Pro-
ceedings, DELOS Workshop, Schloss Dagstuhl, Ger-
many, December 2002.

[FL04] Norbert Fuhr and Mounia Lalmas. Report on the
INEX 2003 Workshop, Schloss Dagstuhl, 15-17 De-
cember 2003. SIGIR FORUM, 38(1):42–47, June
2004.



“Indexing” — 2006/10/30 — 13:56 — page 172 — #182

172 References

[FLM04] Norbert Fuhr, Mounia Lalmas, and Saadia Malik,
editors. INitiative for the Evaluation of XML Re-
trieval (INEX). Proceedings of the Second INEX
Workshop, Schloss Dagstuhl, Germany, March 2004.

[FLMK06] Norbert Fuhr, Mounia Lalmas, Saadia Malik, and
Gabriella Kazai, editors. Advances in XML Infor-
mation Retrieval and Evaluation: Fourth Interna-
tional Workshop of the Initiative for the Evalua-
tion of XML Retrieval (INEX 2005), Dagstuhl, Ger-
many, 28–30 November 2005, volume 3977 of Lecture
Notes in Computer Science. Springer, 2006.

[FLMS05] Norbert Fuhr, Mounia Lalmas, Saadia Malik, and
Zoltán Szlávik, editors. Advances in XML Infor-
mation Retrieval, Third International Workshop of
the Initiative for the Evaluation of XML Retrieval
(INEX 2004), Dagstuhl Castle, Germany, 6–8 De-
cember 2004, Revised Selected Papers, volume 3493
of Lecture Notes in Computer Science. Springer,
2005.

[GKFL03] Norbert Gövert, Gabriella Kazai, Norbert Fuhr, and
Mounia Lalmas. Evaluating the effectiveness of
content-oriented XML retrieval. Technical report,
University of Dortmund, Computer Science 6, 2003.

[GM05] Robert J. Glushko and Tim McGrath. Document
Engineering. MIT Press, August 2005.

[Gol03] Charles F. Goldfarb. The XML Handbook. Defini-
tive XML Series. Prentice Hall PTR, 5th edition,
December 2003.

[GS02] Torsten Grabs and Hans-Jörg Schek. Generat-
ing Vector Spaces On-the-fly for Flexible XML Re-
trieval. In Baeza-Yates et al. [BYFM02a], pages 4–
13.

[GW97] Roy Goldman and Jennifer Widom. Dataguides:
Enabling query formulation and optimization in



“Indexing” — 2006/10/30 — 13:56 — page 173 — #183

References 173

semistructured databases. In VLDB ’97: Proceed-
ings of the 23rd International Conference on Very
Large Data Bases, pages 436–445, San Francisco,
CA, USA, August 1997. Morgan Kaufmann Publish-
ers Inc.

[HB03] Jianying Hu and Amit Bagga. Identifying story and
preview images in news web pages. In Proceedings
of the Seventh International Conference on Docu-
ment Analysis and Recognition (ICDAR 2003), Ed-
inburgh, Scotland, August 2003. IEEE Computer
Society.

[Hei00] Barbara Heikkinen. Generalization of Document
Structures and Document Assembly. PhD Thesis,
Series of Publications A, Report A-2000-2, Depart-
ment of Computer Science, University of Helsinki,
Finland, April 2000.

[HKW+04] Kenji Hatano, Hiroko Kinutani, Masahiro Watan-
abe, Yasuhiro Mori, Masatoshi Yoshikawa, and
Shunsuke Uemura. Keyword-based XML Fragment
Retrieval: Experimental Evaluation based on INEX
2003 Relevance Assessments. In Fuhr et al. [FLM04],
pages 81–88.

[HLR04] Andreas Henrich, Volker Lüdecke, and Günter Rob-
bert. Applying the IRStream retrieval engine to
INEX 2003. In Fuhr et al. [FLM04], pages 118–125.

[HLX03] Ka Kit Hoi, Dik Lun Lee, and Jianliang Xu. Docu-
ment visualization on small displays. In Proceedings
of the 4th International Conference on Mobile Data
Management (MDM 2003), pages 262–278, Berlin,
Germany, January 2003. Springer-Verlag.

[HY04] Hao He and Jun Yang. Multiresolution Indexing of
XML for Frequent Queries. In ICDE ’04: Proceed-
ings of the 20th International Conference on Data
Engineering, pages 683–694, Washington, DC, USA,
March 2004. IEEE Computer Society.



“Indexing” — 2006/10/30 — 13:56 — page 174 — #184

174 References

[ISO00] ISO/IEC 13249-2:2000. Information technology —
Database languages — SQL Multimedia and Appli-
cation Packages — Part 2: Full-Text, International
Organization for Standardization, 2000.

[JH01] Euna Jeong and Chun-Nan Hsu. Induction of in-
tegrated view for XML data with heterogeneous
DTDs. In CIKM ’01: Proceedings of the tenth inter-
national conference on Information and knowledge
management, pages 151–158, New York, NY, USA,
November 2001. ACM Press.

[Jon72] Karen Spärck Jones. A statistical interpretation of
term specificity and its application to retrieval. Jour-
nal of Documentation, 28(1):11–20, March 1972.

[KBNK02] Raghav Kaushik, Philip Bohannon, Jeffrey F
Naughton, and Henry F Korth. Covering indexes
for branching path queries. In SIGMOD ’02: Pro-
ceedings of the 2002 ACM SIGMOD international
conference on Management of data, pages 133–144,
New York, NY, USA, June 2002. ACM Press.

[KdRS04] Jaap Kamps, Maarten de Rijke, and Börkur Sig-
urbjörnsson. Length normalization in XML re-
trieval. In SIGIR ’04: Proceedings of the 27th An-
nual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
pages 80–87. ACM Press, July 2004.

[KL05] Gabriella Kazai and Mounia Lalmas. Notes on What
to Measure in INEX. In Proceedings of the INEX
2005 Workshop on Element Retrieval Methodology,
pages 22–38. Department of Computer Science, Uni-
versity of Otago, Dunedin, New Zealand, 2005.

[KLdV04] Gabriella Kazai, Mounia Lalmas, and Arjen P.
de Vries. The overlap problem in content-oriented
XML retrieval evaluation. In SIGIR ’04: Proceed-
ings of the 27th annual international conference on
Research and development in information retrieval,



“Indexing” — 2006/10/30 — 13:56 — page 175 — #185

References 175

pages 72–79, New York, NY, USA, July 2004. ACM
Press.

[Kle99] Jon M. Kleinberg. Authoritative sources in a hyper-
linked environment. Journal of the ACM, 46(5):604–
632, 1999.

[KLM03] Gabriella Kazai, Mounia Lalmas, and Saadia Malik.
INEX’03 Guidelines for Topic Development, May
2003.

[KSBG02] Raghav Kaushik, Pradeep Shenoy, Philip Bohannon,
and Ehud Gudes. Exploiting local similarity for in-
dexing paths in graph-structured data. In ICDE’02:
Proceedings of the 18th International Conference on
Data Engineering, pages 129–140. IEEE Computer
Society, February 2002.

[KT00] Mei Kobayashi and Koichi Takeda. Information
retrieval on the web. ACM Computing Surveys
(CSUR), 32(2):144–173, 2000.

[Lan70] Michael Lane, editor. Structuralism: a reader.
Jonathan Cape, London, UK, 1970.

[Lar04] Ray R. Larson. Cheshire II at INEX’03: Component
and algorithm fusion for XML retrieval. In Fuhr
et al. [FLM04], pages 38–45.

[Leh01] Miro Lehtonen. Semi-automatic document assembly
with structured source data. Master’s thesis, Uni-
versity of Helsinki, 2001.

[Leh05] Miro Lehtonen. EXTIRP 2004: Towards heterogene-
ity. In Fuhr et al. [FLMS05], pages 372–381.

[LM01] Quanzhong Li and Bongki Moon. Indexing and
querying XML data for regular path expressions.
In VLDB ’01: Proceedings of the 27th International
Conference on Very Large Data Bases, pages 361–
370, San Francisco, CA, USA, September 2001. Mor-
gan Kaufmann Publishers Inc.



“Indexing” — 2006/10/30 — 13:56 — page 176 — #186

176 References

[LMdV+04] Johan List, Vojkan Mihajlovic, Arjen P. de Vries,
Georgina Ramı́rez, and Djoerd Hiemstra. The TI-
JAH XML-IR system at INEX 2003. In Fuhr et al.
[FLM04], pages 102–109.

[LPHL02] Miro Lehtonen, Renaud Petit, Oskari Heinonen, and
Greger Lindén. A dynamic user interface for docu-
ment assembly. In Proceedings of the ACM Sym-
posium on Document Engineering, pages 134–141.
ACM Press, November 2002.

[LS81] Geoffrey Leech and Mick Short. Style in Fiction: A
Linguistic Introduction to English Fictional Prose.
English Language Series; 13. Longman, London,
UK, 1981.

[Lub04] HDP ’04: Proceedings of the 1st ACM workshop
on Hardcopy document processing, New York, NY,
USA, November 2004. ACM Press. General Chair-
Kirk Lubbes.

[LW01] Minghorng Lai and Martin D. F. Wong. Slicing tree
is a complete floorplan representation. In Proceed-
ings of the Conference on Design, Automation and
Test in Europe (DATE 2001), pages 228–232. ACM
Press, March 2001.

[LZC04] Shaorong Liu, Qinghua Zou, and Wesley W. Chu.
Configurable indexing and ranking for XML infor-
mation retrieval. In SIGIR ’04: Proceedings of the
27th Annual International ACM SIGIR Conference
on Research and Development in Information Re-
trieval, pages 88–95. ACM Press, July 2004.

[MBHA05] Vojkan Mihajlović;, Henk Ernst Blok, Djoerd Hiem-
stra, and Peter M. G. Apers. Score region algebra:
building a transparent XML-IR database. In CIKM
’05: Proceedings of the 14th ACM international con-
ference on Information and knowledge management,
pages 12–19, New York, NY, USA, October 2005.
ACM Press.



“Indexing” — 2006/10/30 — 13:56 — page 177 — #187

References 177

[MBK91] Yoëlle S. Maarek, Daniel M. Berry, and Gail E.
Kaiser. An information retrieval approach for au-
tomatically constructing software libraries. IEEE
Trans. Softw. Eng., 17(8):800–813, 1991.

[MFRW00] Deborah L. McGuinness, Richard Fikes, James Rice,
and Steve Wilder. The Chimaera Ontology Environ-
ment. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence and Twelfth
Conference on Innovative Applications of Artificial
Intelligence, pages 1123–1124. AAAI Press / The
MIT Press, 2000.

[MJCW04] Xiaofeng Meng, Yu Jiang, Yan Chen, and Haixun
Wang. Xseq: an indexing infrastructure for tree
pattern queries. In SIGMOD ’04: Proceedings of
the 2004 ACM SIGMOD international conference on
Management of data, pages 941–942, New York, NY,
USA, June 2004. ACM Press.

[MJKZ98] Sung Hyon Myaeng, Dong-Hyun Jang, Mun-Seok
Kim, and Zong-Cheol Zhoo. A flexible model for
retrieval of SGML documents. In Proceedings of the
21st Annual International ACM SIGIR Conference
on Research and Development in Information Re-
trieval, pages 138–145. ACM Press, August 1998.

[MM04] Yosi Mass and Matan Mandelbrod. Retrieving the
most relevant XML Components. In Fuhr et al.
[FLM04], pages 53–58.

[MS99] Tova Milo and Dan Suciu. Index structures for
path expressions. In ICDT ’99: Proceeding of
the 7th International Conference on Database The-
ory, pages 277–295, London, UK, January 1999.
Springer-Verlag.

[MYTR03] Saikat Mukherjee, Guizhen Yang, Wenfang Tan, and
I.V. Ramakrishnan. Automatic discovery of seman-
tic structures in HTML documents. In Proceedings



“Indexing” — 2006/10/30 — 13:56 — page 178 — #188

178 References

of the Seventh International Conference on Docu-
ment Analysis and Recognition (ICDAR 2003), Ed-
inburgh, Scotland, August 2003. IEEE Computer
Society.

[NT80] Makoto Nagao and Jun-Ichi Tsujii. Some topics of
language processing for machine translation. Inter-
national Forum on Information and Documentation,
5(2):32–37, 1980.

[NTHK80] Makoto Nagao, Jun-Ichi Tsujii, Hideki Hirakawa,
and Masako Kume. A Machine Translation system
from Japanese into English - Another Perspective of
MT Systems. In COLING 1980 Volume 1: The 8th
International Conference on Computational Linguis-
tics, pages 414–423, Tokyo, Japan, September 1980.

[NTYK82] Makoto Nagao, Jun-Ichi Tsujii, Koji Yada, and
Toshihiro Kakimoto. An English Japanese machine
translation system of the titles of scientific and en-
gineering papers. In Coling 1982: Proceedings of the
Ninth International Conference on Computational
Linguistics, pages 245–252, Prague, Czechoslovakia,
July 1982.

[PD06] Benjamin Piwowarski and Georges Dupret. Eval-
uation in (XML) Information Retrieval: Expected
Precision-Recall with User Modelling (EPRUM). In
SIGIR ’06: Proceedings of the 29th annual interna-
tional ACM SIGIR conference on Research and de-
velopment in information retrieval, pages 260–267,
New York, NY, USA, August 2006. ACM Press.

[PG03] Benjamin Piwowarski and Patrick Gallinari. Ex-
pected ratio of relevant units: A measure for struc-
tured information retrieval. In Norbert Fuhr, Mou-
nia Lalmas, and Saadia Malik, editors, INitiative for
the Evaluation of XML Retrieval (INEX). Proceed-
ings of the Second INEX Workshop, Dagstuhl, Ger-
many, December 2003.



“Indexing” — 2006/10/30 — 13:56 — page 179 — #189

References 179

[PK05] K. Hima Prasad and P. Sreenivasa Kumar. Efficient
indexing and querying of XML data using modi-
fied Prüfer sequences. In CIKM ’05: Proceedings
of the 14th ACM international conference on Infor-
mation and knowledge management, pages 397–404,
New York, NY, USA, October 2005. ACM Press.

[PL04a] Benjamin Piwowarski and Mounia Lalmas. Interface
pour l’évaluation de systèmes de recherche sur des
documents XML. In Proceedings of Premiere COn-
ference en Recherche d’Information et Applications
(CORIA’04), pages 109–120. Hermès, March 2004.

[PL04b] Benjamin Piwowarski and Mounia Lalmas. Provid-
ing consistent and exhaustive relevance assessments
for XML retrieval evaluation. In CIKM ’04: Pro-
ceedings of the Thirteenth ACM conference on Infor-
mation and knowledge management, pages 361–370,
New York, NY, USA, November 2004. ACM Press.

[Por80] Martin F. Porter. An algorithm for suffix stripping.
Program, 14(3):130–137, July 1980.

[Pri01] Michael Priestley. DITA XML: a reuse by refer-
ence architecture for technical documentation. In
SIGDOC ’01: Proceedings of the 19th annual in-
ternational conference on Computer documentation,
pages 152–156, New York, NY, USA, October 2001.
ACM Press.

[PVG04] Benjamin Piwowarski, Huyen-Trang Vu, and Patrick
Gallinari. Bayesian networks and INEX’03. In Fuhr
et al. [FLM04], pages 33–37.

[Rai05] Lee Rainie. Report: The state of blogging. Techni-
cal report, PEW Internet & American Life Project,
January 2005.

[RILD04] Lakshmish Ramaswamy, Arun Iyengar, Ling Liu,
and Fred Douglis. Automatic detection of fragments
in dynamically generated web pages. In WWW ’04:
Proceedings of the 13th international conference on



“Indexing” — 2006/10/30 — 13:56 — page 180 — #190

180 References

World Wide Web, pages 443–454, New York, NY,
USA, May 2004. ACM Press.

[RM04] Praveen Rao and Bongki Moon. PRIX: Indexing
And Querying XML Using Prüfer Sequences. In
ICDE ’04: Proceedings of the 20th International
Conference on Data Engineering, pages 288–300,
Washington, DC, USA, March 2004. IEEE Com-
puter Society.

[SA05] Arnaud Sahuguet and Bogdan Alexe. Sub-
Document Queries Over XML with XSQuirrel. In
WWW ’05: Proceedings of the 14th international
conference on World Wide Web, pages 268–277, New
York, NY, USA, May 2005. ACM Press.

[Sal64] Gerard Salton. A document retrieval system for
man-machine interaction. In Proceedings of the 1964
19th ACM national conference, pages L2.3–1–L2.3–
20, New York, NY, USA, 1964. ACM Press.

[SHBM04] Karen Sauvagnat, Gilles Hubert, Mohand
Boughanem, and Josiane Mothe. IRIT at INEX
2003. In Fuhr et al. [FLM04], pages 142–148.

[SKdR04] Börkur Sigurbjörnsson, Jaap Kamps, and Maarten
de Rijke. An element-based approach to XML re-
trieval. In Fuhr et al. [FLM04], pages 19–26.

[SL65] Gerard Salton and Michael E. Lesk. The SMART
automatic document retrieval systems — an illus-
tration. Commun. ACM, 8(6):391–398, 1965.

[SL90] Amit P. Sheth and James A. Larson. Federated
database systems for managing distributed, hetero-
geneous, and autonomous databases. ACM Comput-
ing Surveys, 22(3):183–236, September 1990.

[SLWM04] Ruihua Song, Haifeng Liu, Ji-Rong Wen, and Wei-
Ying Ma. Learning important models for web
page blocks based on layout and content analysis.
SIGKDD Explor. Newsl., 6(2):14–23, 2004.



“Indexing” — 2006/10/30 — 13:56 — page 181 — #191

References 181

[SR05] Zoltán Szlávik and Thomas Rölleke. Building and
experimenting with a heterogeneous collection. In
Fuhr et al. [FLMS05], pages 349–357.

[STW04] Ralf Schenkel, Anja Theobald, and Gerhard
Weikum. XXL @ INEX 2003. In Fuhr et al. [FLM04],
pages 59–66.

[SWY75] Gerard Salton, A. Wong, and C. S. Yang. A vec-
tor space model for automatic indexing. Commun.
ACM, 18(11):613–620, 1975.

[TDL+94] Suzanne Liebowitz Taylor, Deborah A. Dahl, Mark
Lipshutz, Carl Weir, Lewis M. Norton, Roslyn Nil-
son, and Marcia Linebarger. Integrated text and
image understanding for document understanding.
In HLT ’94: Proceedings of the workshop on Hu-
man Language Technology, pages 421–426, Morris-
town, NJ, USA, March 1994. Association for Com-
putational Linguistics.

[TG06] Andrew Trotman and Shlomo Geva. Passage Re-
trieval and Other XML-Retrieval Tasks. In Proceed-
ings of the SIGIR 2006 Workshop on XML Element
Retrieval Methodology, pages 43–50, Dunedin, New
Zealand, 2006. University of Otago.

[TLF05] Andrew Trotman, Mounia Lalmas, and Norbert
Fuhr, editors. Proceedings of the INEX 2005 Work-
shop on Element Retrieval Methodology. Department
of Computer Science, University of Otago, July
2005.

[TO04] Andrew Trotman and Richard A. O’Keefe. Identify-
ing and Ranking Relevant Document Elements. In
Fuhr et al. [FLM04], pages 149–154.

[TSW05] Martin Theobald, Ralf Schenkel, and Gerhard
Weikum. An efficient and versatile query engine for
TopX search. In VLDB ’05: Proceedings of the 31st
international conference on Very Large Data Bases,
pages 625–636. VLDB Endowment, August 2005.



“Indexing” — 2006/10/30 — 13:56 — page 182 — #192

182 References

[Voo94] Ellen M. Voorhees. Query expansion using lexical-
semantic relations. In SIGIR ’94: Proceedings of
the 17th annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 61–69, New York, NY, USA, July
1994. Springer-Verlag New York, Inc.

[vZWD05] Roelof van Zwol, Frans Wiering, and Virginia
Dignum. The Utrecht Blend: Basic Ingredients for
an XML Retrieval System. In Fuhr et al. [FLMS05],
pages 140–152.

[W3C98] W3C. Extensible Markup Language (XML)
1.0, W3C Recommendation 10-February-
1998, February 1998. Available at
http://www.w3.org/TR/1998/REC-xml-19980210.

[W3C01] W3C. XML Fragment Interchange, W3C Candidate
Recommendation 12 February 2001, 2001. Available
at http://www.w3.org/TR/xml-fragment.

[W3C02] W3C. XHTMLTM1.0 The Extensible Hyper-
Text Markup Language, W3C Recommendation,
2nd edition, 1 August 2002. Available at
http://www.w3.org/TR/xhtml1/.

[W3C04] W3C. XML Information Set, W3C Rec-
ommendation, 2nd edition, 4 Febru-
ary 2004. Latest version available at
http://www.w3.org/TR/xml-infoset/.

[W3C05a] W3C. XQuery 1.0: An XML Query Language, W3C
Candidate Recommendation, 3 November 2005.
Available at http://www.w3.org/TR/xquery/.

[W3C05b] W3C. XQuery 1.0 and XPath 2.0 Full-Text, W3C
Working Draft, 3 November 2005. Available at
http://www.w3.org/TR/xquery-full-text/.

[WBD+00] Kevin Williams, Michael Brundage, Patrick Dengler,
Jeff Gabriel, Andy Hoskinson, Michael Kay, Thomas
Maxwell, Marcelo Ochoa, Johnny Papa, and Mohan



“Indexing” — 2006/10/30 — 13:56 — page 183 — #193

References 183

Vanmane. Professional XML Databases. Wrox Press
Inc., 1st edition, January 2000.

[WD03] Jacky W. W. Wan and Gillian Dobbie. Extract-
ing association rules from XML documents using
XQuery. In WIDM ’03: Proceedings of the 5th
ACM international workshop on Web information
and data management, pages 94–97. ACM Press,
November 2003.

[WDM+02] Louis Weitzman, Sara Elo Dean, Dikran Melikse-
tian, Kapil Gupta, Nianjun Zhou, and Jessica Wu.
Transforming the content management process at
ibm.com. In CHI ’02: Case studies of the CHI2002 /
AIGA Experience Design FORUM, pages 1–15, New
York, NY, USA, April 2002. ACM Press.

[Wil94] Ross Wilkinson. Effective retrieval of structured doc-
uments. In Proceedings of the 17th Annual Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 311–317.
ACM Press, August 1994.

[WMSB04] Felix Weigel, Holger Meuss, Klaus U. Schulz, and
Fran cois Bry. Content and structure in indexing and
ranking XML. In WebDB ’04: Proceedings of the 7th
International Workshop on the Web and Databases,
pages 67–72, New York, NY, USA, June 2004. ACM
Press.

[WPFY03] Haixun Wang, Sanghyun Park, Wei Fan, and
Philip S. Yu. ViST: A dynamic index method for
querying XML data by tree structures. In SIGMOD
’03: Proceedings of the 2003 ACM SIGMOD inter-
national conference on Management of data, pages
110–121, New York, NY, USA, June 2003. ACM
Press.

[WSM05] Felix Weigel, Klaus U. Schulz, and Holger Meuss.
Exploiting native XML indexing techniques for XML
retrieval in relational database systems. In WIDM



“Indexing” — 2006/10/30 — 13:56 — page 184 — #194

184 References

’05: Proceedings of the 7th annual ACM interna-
tional workshop on Web information and data man-
agement, pages 23–30, New York, NY, USA, Novem-
ber 2005. ACM Press.

[WWL+05] Hei Wang, Hongzhi Wang, Hongjun Lu, Haifeng
Jiang, Xuemin Lin, and Jianzhong Li. Efficient pro-
cessing of XML path queries using the disk-based
F&B index. In VLDB ’05: Proceedings of the 31st
international conference on Very Large Data Bases,
pages 145–156. VLDB Endowment, August 2005.

[XLHF05] Xiangye Xiao, Qiong Luo, Dan Hong, and Hongbo
Fu. Slicing*-tree based web page transformation for
small displays. In CIKM ’05: Proceedings of the 14th
ACM international conference on Information and
knowledge management, pages 303–304, New York,
NY, USA, October 2005. ACM Press.

[YCWM03] Shipeng Yu, Deng Cai, Ji-Rong Wen, and Wei-Ying
Ma. Improving pseudo-relevance feedback in web
information retrieval using web page segmentation.
In WWW ’03: Proceedings of the 12th international
conference on World Wide Web, pages 11–18, New
York, NY, USA, May 2003. ACM Press.

[ZA03] Mohammed J. Zaki and Charu C. Aggarwal. XRules:
an effective structural classifier for XML data. In
KDD ’03: Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery
and data mining, pages 316–325. ACM Press, Au-
gust 2003.

[ZLC04] Qinghua Zou, Shaorong Liu, and Wesley W. Chu.
Ctree: A compact tree for indexing XML data. In
WIDM ’04: Proceedings of the 6th annual ACM in-
ternational workshop on Web information and data
management, pages 39–46, New York, NY, USA,
November 2004. ACM Press.

[ZND+01] Chun Zhang, Jeffrey Naughton, David DeWitt,
Qiong Luo, and Guy Lohman. On supporting con-



“Indexing” — 2006/10/30 — 13:56 — page 185 — #195

References 185

tainment queries in relational database management
systems. In SIGMOD ’01: Proceedings of the 2001
ACM SIGMOD international conference on Man-
agement of data, pages 425–436, New York, NY,
USA, May 2001. ACM Press.

[ZY04] Ming Zhang and JingTao Yao. XML Algebras for
Data Mining. In Proceedings of SPIE Vol. 5433,
Data Mining and Knowledge Discovery: Theory,
Tools, and Technology VI, pages 209–217, April
2004.



“Indexing” — 2006/10/30 — 13:56 — page 186 — #196

186 References



“Indexing” — 2006/10/30 — 13:56 — page 187 — #197

CHAPTER A

Big article divided into fragments

/article[1]: 1.16 182497 BIG

/article[1]/fno[1]: 1.0 5 SMALL

/article[1]/doi[1]: 1.0 19 SMALL

/article[1]/fm[1]: 0.98 1824 DATA

/article[1]/fm[1]/hdr[1]: 1.15 129 SMALL

/article[1]/fm[1]/tig[1]: 0.66 60 SMALL

/article[1]/fm[1]/au[1]: 0.57 37 SMALL

/article[1]/fm[1]/au[2]: 0.5 13 SMALL

/article[1]/fm[1]/au[3]: 0.57 23 SMALL

/article[1]/fm[1]/au[4]: 0.57 23 SMALL

/article[1]/fm[1]/au[5]: 0.57 20 SMALL

/article[1]/fm[1]/abs[1]: 1.66 1191 FT-Q

/article[1]/fm[1]/kwd[1]: 1.5 328 FT-Q

/article[1]/bdy[1]: 1.88 144868 BIG

/article[1]/bdy[1]/sec[1]: 2.75 6602 FT-Q

/article[1]/bdy[1]/sec[2]: 1.68 16255 BIG

/article[1]/bdy[1]/sec[2]/st[1]: 1.0 5 SMALL

/article[1]/bdy[1]/sec[2]/ip1[1]: 1.0 293 FT-Q

/article[1]/bdy[1]/sec[2]/ss1[1]: 1.66 2840 FT-Q

/article[1]/bdy[1]/sec[2]/ss1[2]: 1.66 4325 FT-Q

/article[1]/bdy[1]/sec[2]/ss1[3]: 1.625 4483 FT-Q

/article[1]/bdy[1]/sec[2]/ss1[4]: 1.73 1993 FT-Q

/article[1]/bdy[1]/sec[2]/ss1[5]: 1.57 2316 FT-Q

/article[1]/bdy[1]/sec[3]: 1.95 15039 BIG

/article[1]/bdy[1]/sec[3]/st[1]: 1.66 37 SMALL

/article[1]/bdy[1]/sec[3]/ip1[1]: 1.0 294 FT-Q

/article[1]/bdy[1]/sec[3]/p[1]: 1.5 291 FT-Q

/article[1]/bdy[1]/sec[3]/tf[1]: 1.0 36 SMALL

/article[1]/bdy[1]/sec[3]/en[1]: 1.0 3 SMALL

/article[1]/bdy[1]/sec[3]/ip1[2]: 1.90 397 FT-Q

/article[1]/bdy[1]/sec[3]/fig[1]: 1.0 86 SMALL

/article[1]/bdy[1]/sec[3]/p[2]: 1.0 158 FT-Q

/article[1]/bdy[1]/sec[3]/p[3]: 1.75 660 FT-Q

/article[1]/bdy[1]/sec[3]/tf[2]: 1.0 97 SMALL

/article[1]/bdy[1]/sec[3]/en[2]: 1.0 3 SMALL

/article[1]/bdy[1]/sec[3]/ip1[3]: 1.83 127 SMALL

/article[1]/bdy[1]/sec[3]/tf[3]: 1.0 80 SMALL

187



“Indexing” — 2006/10/30 — 13:56 — page 188 — #198

188 A Big article divided into fragments

/article[1]/bdy[1]/sec[3]/en[3]: 1.0 3 SMALL

/article[1]/bdy[1]/sec[3]/p[4]: 1.875 1335 FT-Q

/article[1]/bdy[1]/sec[3]/ss1[1]: 1.94 5071 FT-Q

/article[1]/bdy[1]/sec[3]/ss1[2]: 2.375 1768 FT-Q

/article[1]/bdy[1]/sec[3]/ss1[3]: 1.92 2312 FT-Q

/article[1]/bdy[1]/sec[3]/ss1[4]: 1.8 2281 FT-Q

/article[1]/bdy[1]/sec[4]: 1.87 24057 BIG

/article[1]/bdy[1]/sec[4]/st[1]: 1.6 30 SMALL

/article[1]/bdy[1]/sec[4]/ip1[1]: 1.0 257 FT-Q

/article[1]/bdy[1]/sec[4]/ss1[1]: 1.76 3756 FT-Q

/article[1]/bdy[1]/sec[4]/ss1[2]: 1.93 5728 FT-Q

/article[1]/bdy[1]/sec[4]/ss1[3]: 1.86 2395 FT-Q

/article[1]/bdy[1]/sec[4]/ss1[4]: 1.83 1131 FT-Q

/article[1]/bdy[1]/sec[4]/ss1[5]: 1.89 3987 FT-Q

/article[1]/bdy[1]/sec[4]/ss1[6]: 1.88 2138 FT-Q

/article[1]/bdy[1]/sec[4]/ss1[7]: 1.75 4635 FT-Q

/article[1]/bdy[1]/sec[5]: 1.93 23915 BIG

/article[1]/bdy[1]/sec[5]/st[1]: 1.5 27 SMALL

/article[1]/bdy[1]/sec[5]/ip1[1]: 1.5 319 FT-Q

/article[1]/bdy[1]/sec[5]/fig[1]: 0.75 60 SMALL

/article[1]/bdy[1]/sec[5]/ss1[1]: 1.95 2260 FT-Q

/article[1]/bdy[1]/sec[5]/ss1[2]: 1.96 5434 FT-Q

/article[1]/bdy[1]/sec[5]/ss1[3]: 1.85 1834 FT-Q

/article[1]/bdy[1]/sec[5]/ss1[4]: 1.89 2568 FT-Q

/article[1]/bdy[1]/sec[5]/ss1[5]: 1.89 4797 FT-Q

/article[1]/bdy[1]/sec[5]/ss1[6]: 1.83 1537 FT-Q

/article[1]/bdy[1]/sec[5]/ss1[7]: 2.09 2061 FT-Q

/article[1]/bdy[1]/sec[5]/ss1[8]: 1.71 3018 FT-Q

/article[1]/bdy[1]/sec[6]: 1.88 23094 BIG

/article[1]/bdy[1]/sec[6]/st[1]: 1.0 11 SMALL

/article[1]/bdy[1]/sec[6]/ip1[1]: 1.5 577 FT-Q

/article[1]/bdy[1]/sec[6]/ss1[1]: 1.91 2993 FT-Q

/article[1]/bdy[1]/sec[6]/ss1[2]: 1.86 6911 FT-Q

/article[1]/bdy[1]/sec[6]/ss1[3]: 1.91 2948 FT-Q

/article[1]/bdy[1]/sec[6]/ss1[4]: 1.84 6187 FT-Q

/article[1]/bdy[1]/sec[6]/ss1[5]: 1.71 3467 FT-Q

/article[1]/bdy[1]/sec[7]: 1.95 17913 BIG

/article[1]/bdy[1]/sec[7]/st[1]: 1.33 13 SMALL

/article[1]/bdy[1]/sec[7]/ss1[1]: 1.97 7777 FT-Q

/article[1]/bdy[1]/sec[7]/ss1[2]: 2.0 4559 FT-Q

/article[1]/bdy[1]/sec[7]/ss1[3]: 1.97 4561 FT-Q

/article[1]/bdy[1]/sec[7]/ss1[4]: 1.25 1003 FT-Q

/article[1]/bdy[1]/sec[8]: 1.44 17993 BIG

/article[1]/bdy[1]/sec[8]/st[1]: 1.33 17 SMALL

/article[1]/bdy[1]/sec[8]/ip1[1]: 1.0 77 SMALL

/article[1]/bdy[1]/sec[8]/list[1]: 1.43 17899 BIG

/article[1]/bdy[1]/sec[8]/list[1]/item[1]: 1.28 1650 FT-Q

/article[1]/bdy[1]/sec[8]/list[1]/item[2]: 1.44 2007 FT-Q

/article[1]/bdy[1]/sec[8]/list[1]/item[3]: 1.44 3969 FT-Q

/article[1]/bdy[1]/sec[8]/list[1]/item[4]: 1.375 2606 FT-Q

/article[1]/bdy[1]/sec[8]/list[1]/item[5]: 1.375 2206 FT-Q

/article[1]/bdy[1]/sec[8]/list[1]/item[6]: 1.9 1818 FT-Q

/article[1]/bdy[1]/sec[8]/list[1]/item[7]: 1.375 2524 FT-Q

/article[1]/bdy[1]/sec[8]/list[1]/item[8]: 1.28 1119 FT-Q

/article[1]/bm[1]: 0.88 35781 BIG



“Indexing” — 2006/10/30 — 13:56 — page 189 — #199

189

/article[1]/bm[1]/ack[1]: 1.25 350 FT-Q

/article[1]/bm[1]/footnote[1]: 1.0 819 FT-Q

/article[1]/bm[1]/footnote[2]: 1.5 55 SMALL

/article[1]/bm[1]/bib[1]: 0.87 30083 BIG

/article[1]/bm[1]/bib[1]/bibl[1]: 0.87 30083 BIG

/article[1]/bm[1]/bib[1]/bibl[1]/h[1]: 1.0 10 SMALL

/article[1]/bm[1]/bib[1]/bibl[1]/h[1]/scp[1]: 1.0 9 SMALL

/article[1]/bm[1]/bib[1]/bibl[1]/bb[1]: 0.77 175 DATA

/article[1]/bm[1]/bib[1]/bibl[1]/bb[1]/au[1]: 0.66 9 SMALL

/article[1]/bm[1]/bib[1]/bibl[1]/bb[1]/au[2]: 0.66 7 SMALL

/article[1]/bm[1]/bib[1]/bibl[1]/bb[1]/obi[1]: 1.0 3 SMALL

/article[1]/bm[1]/bib[1]/bibl[1]/bb[1]/au[3]: 0.66 10 SMALL

/article[1]/bm[1]/bib[1]/bibl[1]/bb[1]/atl[1]: 3.0 88 SMALL

/article[1]/bm[1]/bib[1]/bibl[1]/bb[1]/ti[1]: 1.0 34 SMALL

/article[1]/bm[1]/bib[1]/bibl[1]/bb[1]/obi[2]: 0.5 7 SMALL

/article[1]/bm[1]/bib[1]/bibl[1]/bb[1]/pp[1]: 1.0 12 SMALL

/article[1]/bm[1]/bib[1]/bibl[1]/bb[1]/pdt[1]: 0.5 5 SMALL

/article[1]/bm[1]/bib[1]/bibl[1]/bb[2]: 0.84 143 SMALL

/article[1]/bm[1]/bib[1]/bibl[1]/bb[3]: 0.82 172 DATA

...

/article[1]/bm[1]/bib[1]/bibl[1]/bb[44]: 1.0 180 FT-Q

...

/article[1]/bm[1]/bib[1]/bibl[1]/bb[199]: 0.83 115 SMALL

/article[1]/bm[1]/bib[1]/bibl[1]/bb[200]: 0.78 120 SMALL

/article[1]/bm[1]/bib[1]/bibl[1]/bb[201]: 0.82 157 DATA

/article[1]/bm[1]/bib[1]/bibl[1]/bb[201]/au[1]: 0.66 5 SMALL

/article[1]/bm[1]/bib[1]/bibl[1]/bb[201]/obi[1]: 1.0 3 SMALL

/article[1]/bm[1]/bib[1]/bibl[1]/bb[201]/au[2]: 0.66 12 SMALL

/article[1]/bm[1]/bib[1]/bibl[1]/bb[201]/atl[1]: 3.0 48 SMALL

/article[1]/bm[1]/bib[1]/bibl[1]/bb[201]/ti[1]: 1.0 54 SMALL

/article[1]/bm[1]/bib[1]/bibl[1]/bb[201]/obi[2]: 0.66 14 SMALL

/article[1]/bm[1]/bib[1]/bibl[1]/bb[201]/pp[1]: 1.0 12 SMALL

/article[1]/bm[1]/bib[1]/bibl[1]/bb[201]/pdt[1]: 0.66 9 SMALL

/article[1]/bm[1]/vt[1]: 1.5 940 FT-Q

/article[1]/bm[1]/vt[2]: 1.2 623 FT-Q

/article[1]/bm[1]/vt[3]: 1.33 812 FT-Q

/article[1]/bm[1]/vt[4]: 1.2 742 FT-Q

/article[1]/bm[1]/vt[5]: 1.44 1357 FT-Q



“Indexing” — 2006/10/30 — 13:56 — page 190 — #200

TIETOJENKÄSITTELYTIETEEN LAITOS DEPARTMENT OF COMPUTER SCIENCE
PL 68 (Gustaf Hällströmin katu 2 b) P.O. Box 68 (Gustaf Hällströmin katu 2 b)
00014 Helsingin yliopisto FIN-00014 University of Helsinki, Finland

JULKAISUSARJA A SERIES OF PUBLICATIONS A

Reports may be ordered from: Kumpula Science Library, P.O. Box 64, FIN-00014 Uni-
versity of Helsinki, Finland.

A-1992-1 J. Kivinen: Problems in computational learning theory. 27 + 64 pp. (Ph.D.
thesis).

A-1992-2 K. Pohjonen & J. Tarhio (toim./eds.):

A-1992-3 Th. Eiter, P. Kilpeläinen & H. Mannila: Recognizing renamable generalized
propositional Horn formulas is NP-complete. 11 pp.

A-1992-4 A. Valmari: Alleviating state explosion during verification of behavioural
equivalence. 57 pp.

A-1992-5 P. Floréen: Computational complexity problems in neural associative mem-
ories. 128 + 8 pp. (Ph.D. thesis).

A-1992-6 P. Kilpeläinen: Tree matching problems with applications to structured text
databases. 110 pp. (Ph.D. thesis).

A-1993-1 E. Ukkonen: On-line construction of suffix-trees. 15 pp.

A-1993-2 Alois P. Heinz: Efficient implementation of a neural net α-β-evaluator.
13 pp.

A-1994-1 J. Eloranta: Minimal transition systems with respect to divergence preserv-
ing behavioural equivalences. 162 pp. (Ph.D. thesis).

A-1994-2 K. Pohjonen (toim./ed.): Tietojenkäsittelyopin laitoksen julkaisut 1992–93
– Publications from the Department of Computer Science 1992–93. 58 s./pp.

A-1994-3 T. Kujala & M. Tienari (eds.): Computer Science at the University of
Helsinki 1993. 95 pp.

A-1994-4 P. Floréen & P. Orponen: Complexity issues in discrete Hopfield networks.
54 pp.

A-1995-1 P. Myllymäki: Mapping Bayesian networks to stochastic neural networks:
a foundation for hybrid Bayesian-neural systems. 93 pp. (Ph.D. thesis).

A-1996-1 R. Kaivola: Equivalences, preorders and compositional verification for linear
time temporal logic and concurrent systems. 185 pp. (Ph.D. thesis).

A-1996-2 T. Elomaa: Tools and techniques for decision tree learning. 140 pp. (Ph.D.
thesis).

A-1996-3 J. Tarhio & M. Tienari (eds.): Computer Science at the University of
Helsinki 1996. 89 pp.

A-1996-4 H. Ahonen: Generating grammars for structured documents using gram-
matical inference methods. 107 pp. (Ph.D. thesis).

A-1996-5 H. Toivonen: Discovery of frequent patterns in large data collections. 116 pp.
(Ph.D. thesis).

A-1997-1 H. Tirri: Plausible prediction by Bayesian inference. 158 pp. (Ph.D. thesis).

A-1997-2 G. Lindén: Structured document transformations. 122 pp. (Ph.D. thesis).

A-1997-3 M. Nykänen: Querying string databases with modal logic. 150 pp. (Ph.D.
thesis).



“Indexing” — 2006/10/30 — 13:56 — page 191 — #201

A-1997-4 E. Sutinen, J. Tarhio, S.-P. Lahtinen, A.-P. Tuovinen, E. Rautama & V.
Meisalo: Eliot – an algorithm animation environment. 49 pp.

A-1998-1 G. Lindén & M. Tienari (eds.): Computer Science at the University of
Helsinki 1998. 112 pp.

A-1998-2 L. Kutvonen: Trading services in open distributed environments. 231 + 6
pp. (Ph.D. thesis).

A-1998-3 E. Sutinen: Approximate pattern matching with the q-gram family. 116 pp.
(Ph.D. thesis).

A-1999-1 M. Klemettinen: A knowledge discovery methodology for telecommunica-
tion network alarm databases. 137 pp. (Ph.D. thesis).

A-1999-2 J. Puustjärvi: Transactional workflows. 104 pp. (Ph.D. thesis).

A-1999-3 G. Lindén & E. Ukkonen (eds.): Department of Computer Science: annual
report 1998. 55 pp.

A-1999-4 J. Kärkkäinen: Repetition-based text indexes. 106 pp. (Ph.D. thesis).

A-2000-1 P. Moen: Attribute, event sequence, and event type similarity notions for
data mining. 190+9 pp. (Ph.D. thesis).

A-2000-2 B. Heikkinen: Generalization of document structures and document assem-
bly. 179 pp. (Ph.D. thesis).

A-2000-3 P. Kähkipuro: Performance modeling framework for CORBA based dis-
tributed systems. 151+15 pp. (Ph.D. thesis).

A-2000-4 K. Lemström: String matching techniques for music retrieval. 56+56 pp.
(Ph.D.Thesis).

A-2000-5 T. Karvi: Partially defined Lotos specifications and their refinement rela-
tions. 157 pp. (Ph.D.Thesis).

A-2001-1 J. Rousu: Efficient range partitioning in classification learning. 68+74 pp.
(Ph.D. thesis)

A-2001-2 M. Salmenkivi: Computational methods for intensity models. 145 pp.
(Ph.D. thesis)

A-2001-3 K. Fredriksson: Rotation invariant template matching. 138 pp. (Ph.D.
thesis)

A-2002-1 A.-P. Tuovinen: Object-oriented engineering of visual languages. 185 pp.
(Ph.D. thesis)

A-2002-2 V. Ollikainen: Simulation techniques for disease gene localization in isolated
populations. 149+5 pp. (Ph.D. thesis)

A-2002-3 J. Vilo: Discovery from biosequences. 149 pp. (Ph.D. thesis)

A-2003-1 J. Lindström: Optimistic concurrency control methods for real-time database
systems. 111 pp. (Ph.D. thesis)

A-2003-2 H. Helin: Supporting nomadic agent-based applications in the FIPA agent
architecture. 200+17 pp. (Ph.D. thesis)

A-2003-3 S. Campadello: Middleware infrastructure for distributed mobile applica-
tions. 164 pp. (Ph.D. thesis)

A-2003-4 J. Taina: Design and analysis of a distributed database architecture for
IN/GSM data. 130 pp. (Ph.D. thesis)

A-2003-5 J. Kurhila: Considering individual differences in computer-supported special
and elementary education. 135 pp. (Ph.D. thesis)



“Indexing” — 2006/10/30 — 13:56 — page 192 — #202

A-2003-6 V. Mäkinen: Parameterized approximate string matching and local-similarity-
based point-pattern matching. 144 pp. (Ph.D. thesis)

A-2003-7 M. Luukkainen: A process algebraic reduction strategy for automata theo-
retic verification of untimed and timed concurrent systems. 141 pp. (Ph.D.
thesis)

A-2003-8 J. Manner: Provision of quality of service in IP-based mobile access net-
works. 191 pp. (Ph.D. thesis)

A-2004-1 M. Koivisto: Sum-product algorithms for the analysis of genetic risks. 155
pp. (Ph.D. thesis)

A-2004-2 A. Gurtov: Efficient data transport in wireless overlay networks. 141 pp.
(Ph.D. thesis)

A-2004-3 K. Vasko: Computational methods and models for paleoecology. 176 pp.
(Ph.D. thesis)

A-2004-4 P. Sevon: Algorithms for Association-Based Gene Mapping. 101 pp. (Ph.D.
thesis)

A-2004-5 J. Viljamaa: Applying Formal Concept Analysis to Extract Framework
Reuse Interface Specifications from Source Code. 206 pp. (Ph.D. thesis)

A-2004-6 J. Ravantti: Computational Methods for Reconstructing Macromolecular
Complexes from Cryo-Electron Microscopy Images. 100 pp. (Ph.D. thesis)

A-2004-7 M. Kääriäinen: Learning Small Trees and Graphs that Generalize. 45+49
pp. (Ph.D. thesis)

A-2004-8 T. Kivioja: Computational Tools for a Novel Transcriptional Profiling Method.
98 pp. (Ph.D. thesis)

A-2004-9 H. Tamm: On Minimality and Size Reduction of One-Tape and Multitape
Finite Automata. 80 pp. (Ph.D. thesis)

A-2005-1 T. Mielikäinen: Summarization Techniques for Pattern Collections in Data
Mining. 201 pp. (Ph.D. thesis)

A-2005-2 A. Doucet: Advanced Document Description, a Sequential Approach. 161
pp. (Ph.D. thesis)

A-2006-1 A. Viljamaa: Specifying Reuse Interfaces for Task-Oriented Framework Spe-
cialization 179+107 pp. (Ph.D. thesis)

A-2006-2 S. Tarkoma: Efficient Content-based Routing, Mobility-aware Topologies,
and Temporal Subspace Matching 192+6 pp. (Ph.D. thesis)


