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Abstract

In this thesis, we consider minimality and size reduction issues of one-tape
and multitape automata. Although the topic of minimization of one-tape
automata has been widely studied for many years, it seems that some is-
sues have not gained attention. One of these issues concerns finding specific
conditions on automata that imply their minimality in the class of nonde-
terministic finite automata (NFA) accepting the same language.

Using the theory of NFA minimization developed by Kameda and Weiner in
1970, we show that any bideterministic automaton (that is, a deterministic
automaton with its reversal also being deterministic) is a unique minimal
automaton among all NFA accepting its language. In addition to the min-
imality in regard to the number of states, we also show its minimality in
the number of transitions. Using the same theory of Kameda and Weiner,
we also obtain a more general minimality result. We specify a set of suf-
ficient conditions under which a minimal deterministic automaton (DFA)
accepting some language or the reversal of the minimal DFA of the reversal
language is a minimal NFA of the language.

We also consider multitape bideterministic automata and show by a coun-
terexample that such automata are not necessarily minimal. However, given
a set of accepting computations of a bideterministic multitape automaton,
we show that this automaton is a unique minimal automaton with this set
of accepting computations.
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We have also developed a polynomial-time algorithm to reduce the size of
(one-way) multitape automata. This algorithm is based on simple language-
preserving automata transformations that change the order in which tran-
sitions involving different tapes occur in the automaton graph and merge
suitable states together. We present an example of a family of automata
on which the reduction algorithm works well.

Finally, we apply the multitape-automata size-reduction algorithm along
with the DFA minimization procedure to the two-way multitape automata
appearing in a string-manipulating database system. We have implemented
software to empirically evaluate our size-reduction algorithm on these au-
tomata. We have done experiments with automata corresponding to a set
of string predicates defining several different string properties. Good results
of these experiments suggest the usefulness of this approach on reducing
the size of the automata that appear in this system.
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Chapter 1

Introduction

During its fifty years of development, automata theory has become one of
the foundations of computer science. Automata theory has many branches
with different kinds of automata models introduced over these years, with
many applications such as programming languages, compilers (e.g. [1]),
verification systems etc. Some other recent applications in algebra, combi-
natorics, and image manipulation are considered in [25]. Although being a
well-studied part of computer science, automata theory is still an attractive
research area today with a wide range of topics.

One important as well as interesting topic in automata theory is min-
imization and size reduction of automata. If not specified otherwise, the
problem of minimization is usually understood as finding an automaton
with the minimum number of states, which accepts the language of a given
automaton. Such an automaton is said to be of minimal size. There is
much research done on the subject of minimization of one-tape automata.
Here, quite often, the minimization is understood in even narrower con-
text, namely as finding a deterministic finite automaton (DFA) with the
smallest number of states, accepting the given language. The minimization
of a DFA can be done efficiently based on the Myhill-Nerode theorem [19,
Theorem 3.9]. This theorem specifies the largest right-invariant equivalence
relation on the states of a DFA, indicating which states are equivalent and
thus can be merged, resulting in a minimal DFA. For every regular language
there is a unique (up to isomorphism) minimal DFA recognizing it. Many
DFA minimization algorithms have been proposed, of which Hopcroft’s al-
gorithm [17] has the best running time of O(n log n) where n is the number
of automaton states. A broad overview of DFA minimization algorithms is
presented in [35].

However, the minimal DFA is not necessarily a minimal automaton
accepting its language. In fact, the size of the minimal DFA of a given
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2 Chapter 1. Introduction

language can be exponentially larger than the size of a minimal nonde-
terministic finite automaton (NFA) of that language. However, finding a
minimal NFA for a given language is a more difficult problem. The deci-
sion problem of finding a minimal NFA when given a DFA of a language
is a PSPACE-complete problem [23]. Moreover, contrary to the unique-
ness property of the minimal DFA, in the class of NFAs there may exist
more than one automaton of minimal size accepting the given language.
The problem of NFA minimization has been a topic of several papers, for
example, [3, 24, 27, 31]. Because of the difficulty of the problem, efficient al-
gorithms to obtain NFAs that are reduced in some specific manner, instead
of strictly minimal ones, can be useful. For example, the same approach
as in DFA minimization, namely, finding the largest right-invariant equiv-
alence of the states of an NFA and then merging the equivalent states, is
used for size reduction of NFAs in [20] and [21]. The latter also considers
the left-invariant equivalence of the states for merging the states of an NFA.
By examples, good results are obtained in [21] if both of these equivalences
are used to reduce the size of an NFA but the problem of how to combine
them to get the best results is open. Another method for reducing the size
of NFAs using preorders instead of equivalence relations is considered in [5].
Both of these methods, that is, the one using equivalences and the other
using preorders, are considered in [22] which proposes fast algorithms for
these methods.

Other means to obtain minimal NFAs such as specifying lower bounds
for the size of a minimal NFA in special cases (for example, [8]), or deter-
mining other conditions under which an automaton is a minimal NFA, can
also be useful. In this thesis, we are interested in finding specific condi-
tions on automata which imply their minimality among all NFAs accepting
their languages. Efficiently testable conditions can be an easy way to prove
that the automaton in question is minimal. We address this problem in
this thesis by showing that a special class of automata called bidetermin-
istic automata are minimal among NFAs. We also present a more general,
although technical, set of sufficient conditions for an automaton to be a
minimal NFA.

The second subject of this thesis is size reduction of multitape automata.
Multitape automata, or more specifically, one-way multitape nonwriting fi-
nite automata, introduced by Rabin and Scott in [30], clearly are a more
difficult area of research than one-tape automata. Contrary to the one-tape
case, not all nondeterministic multitape automata have an equivalent de-
terministic counterpart, that is, a deterministic multitape automaton that
accepts the same language. In other words, the nondeterministic multitape
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automaton model has a bigger language-defining power than the deter-
ministic multitape model. Also, many decision problems that are solvable
for one-tape automata are unsolvable for nondeterministic multitape au-
tomata. One example of this kind of an undecidable problem is the equiv-
alence of nondeterministic automata [11]. The equivalence of deterministic
multitape automata has been found to be decidable [16] after being an open
problem for a long time. Research has been done on finding a system of
transformations with the property that for any two equivalent determinis-
tic multitape automata there exists a sequence of transformations in this
system that transforms one automaton to another [26]. However, we are
not aware of any attempt to find a minimization or even a size-reduction
procedure for multitape automata.

In this thesis, we consider a modification of the Rabin-Scott (one-way)
multitape automaton model [30]. In the Rabin-Scott model, every automa-
ton state is associated with a certain tape and all transitions leaving the
same state read a symbol (indicated by the transition label) from that tape.
In our model, no such state-tape association is made but different transi-
tions leaving the same state can involve different tapes. A transition label
in this model indicates the tape involved in this transition and the symbol
read from that tape. We present a size-reduction algorithm for automata
in this model that is based on simple automata transformations. While this
algorithm does not pretend to reduce the size of every reducible automaton,
there are cases in which it seems to work nicely.

The motivation for the multitape-automata size-reduction algorithm
came from the development of the string-manipulation database system
described in [9, 13, 14, 15]. This system involves a string-manipulating
extension where string predicates can be expressed using a specific language
called Alignment Declaration Language. These string predicates in the
form of alignment declarations are then compiled into two-way multitape
automata which are further transformed into executable programs. The
model for presenting these two-way multitape automata is very similar to
the modified Rabin-Scott model mentioned above. The main difference is
that in addition to the normal transitions that read the automaton tapes,
there are transitions that correspond to the tape head movements to the
left or right.

Our interest (in this issue, in regard to this thesis) is to try to reduce the
size of these two-way automata. Our approach is as follows. As our model
for presenting these two-way multitape automata is very similar to the one-
way multitape automaton model mentioned above (detailed descriptions
are presented in Section 2.2), we would like to use the one-way multitape
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automata size-reduction algorithm also for reducing the size of our two-way
multitape automata.

For this reason, we define a way to interpret a two-way multitape au-
tomaton as if it was a one-way multitape automaton instead. More specifi-
cally, we expand the alphabet of the one-way automaton so that it includes
also the special symbols that denote the tape movements in the transitions
of the two-way automaton. Then we can apply the size-reduction algorithm
to the one-way multitape automaton obtained this way. When we interpret
the resulting automaton back as a two-way automaton, it is equivalent to
the original two-way automaton because the transformations performed on
the corresponding one-way automaton are equivalence preserving. In ad-
dition, we also define a way to interpret a one-way multitape automaton
as if it was a (one-way) one-tape automaton instead, by a similar alpha-
bet expansion as above. This allows us to apply algorithms developed for
one-tape automata, on one-way multitape automata.

Combining these two levels of interpretations between the automaton
models, we use a method to reduce the size of a given two-way multi-
tape automaton, which involves two algorithms. Our (one-way) multitape-
automata size-reduction algorithm mentioned above, along with the (one-
way one-tape) DFA-minimization procedure, is used in this method, with
appropriate interpretations of one automaton model into another. We ap-
ply these two algorithms in alternate manner until no more reduction of
the automaton size is achieved. The language of the resulting two-way mul-
titape automaton is the same as the language of the original automaton.
This approach seems to work well on reducing the size of the automata cor-
responding to alignment declarations, as the experimental results in Chap-
ter 6 suggest.

1.1 Contributions of this work

Using the theory of NFA minimization developed by Kameda and Weiner
in [24], we show that any bideterministic automaton (that is, a determin-
istic automaton with its reversal also being deterministic) is a minimal
automaton among all NFAs accepting its language. We also show that any
non-deterministic (that is, not deterministic) automaton equivalent to a
bideterministic automaton has more states than the latter one. This re-
sult along with the earlier-known and easily-seen fact that a bideterministic
automaton is the unique minimal DFA of its language (observed, for ex-
ample, by [2] and [29]) yields the result that a bideterministic automaton
is a unique minimal automaton accepting the given language. In addition
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to the minimality in regard to the number of states, we also show that a
bideterministic automaton has a minimal number of transitions.

Using the same theory of Kameda and Weiner, we also obtain a more
general minimality result. We specify a set of sufficient conditions under
which a minimal DFA accepting some language, or the reversal of the min-
imal DFA of the reversal language, is a minimal NFA of the language.
Although technical, these conditions are not difficult to test and provide a
simple way to prove the minimality of automata. Actually, any bidetermin-
istic automaton meets these conditions, so the minimality of bideterministic
automata can be obtained using this result as well.

We also consider multitape bideterministic automata and show by a
counterexample that such automata are not necessarily minimal. However,
given a set of accepting computations of a bideterministic multitape au-
tomaton, we show that this automaton is a unique minimal automaton
with this set of accepting computations.

We have also developed a polynomial-time algorithm to reduce the size
of (one-way) multitape automata. This algorithm is based on four simple
language-preserving automaton transformations that change the order in
which transitions involving different tapes appear in the automaton graph
and merge suitable states together. We have specified a set of sufficient
conditions concerning certain transitions and paths in the automaton graph;
if these conditions hold then the transformations reduce the automaton size
by a specified amount. Also, these transformations eliminate at least the
same number of transitions from the automaton. We present an example
of a family of automata on which the reduction algorithm works well.

Finally, we apply the multitape-automata size-reduction algorithm to-
gether with the DFA-minimization procedure to the two-way multitape
automata appearing in the string-manipulating database system of [9]. We
have implemented software to empirically evaluate our size-reduction al-
gorithm on these automata. We have done experiments with automata
corresponding to a set of string predicates defining several different string
properties. Good results of these experiments suggest the usefulness of this
approach on reducing the size of the automata that appear in this system.

Most of the results concerning the minimality issues of one-tape au-
tomata have appeared earlier in the conference paper [33] and in the journal
version of that article [34].
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1.2 Overview of the thesis

This thesis has the following structure. In Chapter 2 we give the defini-
tions of one-tape and multitape automata models that we use and show
how to interpret automata given in a certain model in other models. In
Chapter 3 we present the main results of the NFA minimization theory of
Kameda and Weiner [24], and based on this theory, prove the minimal-
ity of bideterministic automata as well as the theorem specifying a set of
more general conditions guaranteeing the minimality of certain automata.
The results concerning bideterministic multitape automata are presented in
Chapter 4. We develop the multitape-automata size-reduction algorithm in
Chapter 5, and in Chapter 6 we apply the reduction algorithm along with
the DFA-minimization procedure to the automata appearing in a string-
manipulation database system. Finally, the conclusions are presented in
Chapter 7.



Chapter 2

One-tape and multitape finite
automata

In this chapter we present the definitions of one-tape and multitape finite
automata and related concepts. First we discuss the well known one-tape
automaton model. From the models of multitape automata, we consider the
classical Rabin-Scott model and its modification that we call the mixed-state
model. Both of these are one-way automaton models. We also consider a
two-way version of the mixed-state model, motivated by the development
of the string database system of [9]. For the purposes of applying the
techniques developed for one-tape or one-way multitape automata on two-
way multitape automata in Chapter 6, we describe here a way to interpret
two-way multitape automata as one-way multitape automata, and one-way
multitape automata as one-tape automata.

2.1 One-tape automata

One of the most well known automaton models involves one tape and one
head to scan that tape, moving in one direction only. The symbols on the
tape are scanned from left to right, one at a time, starting from the first
symbol and ending with the last symbol on the tape. When the automaton
is in some of its states, it reads the next symbol on the tape and, depending
on the state-symbol pair, goes to the next state. In the beginning, the
automaton is in one of its initial states. The automaton accepts the string
on the tape if, after reading the last symbol on the tape, the automaton is
in one of its accepting states.

Formally, a one-tape finite automaton is a quintuple A = (Q,Σ, δ, I, F )
where Q is a finite set of states, Σ is the input alphabet, δ : Q×Σ → 2Q is the

7



8 Chapter 2. One-tape and multitape finite automata

transition function, I ⊆ Q is the set of initial states and F ⊆ Q is the set of
final states. An automaton A is deterministic (DFA) if it has a unique initial
state and if for every q ∈ Q and every a ∈ Σ, |δ(q, a)| ≤ 1. The general case
of finite automata is nondeterministic (NFA). The reversal of an automaton
A is the automaton AR = (Q,Σ, δR, F, I) where δR(p, a) = {q | p ∈ δ(q, a)}
for all p ∈ Q and a ∈ Σ. An automaton A is called bideterministic if both
A and its reversal automaton AR are deterministic.

The empty string is denoted by ε. For any string x = x1...xk, where
xi ∈ Σ for i = 1, ..., k, we denote by xR the reversal of x which is the string
xk...x1.

We define the extended transition function δ̂ : Q × Σ∗ → 2Q so that
δ̂(q, ε) = {q} and δ̂(q, xa) =

⋃
p∈δ̂(q,x)

δ(p, a) for all q ∈ Q, x ∈ Σ∗ and

a ∈ Σ. A string x ∈ Σ∗ is accepted by A if there exists q0 ∈ I such that
δ̂(q0, x) ∩ F 6= ∅. The set L(A) = {x | ⋃

q∈I

δ̂(q, x) ∩ F 6= ∅} is called the

language accepted by A. The reversal of a language L, denoted by LR,
is the set of the reversals of all the strings belonging to L. A language
accepted by a bideterministic automaton is a bideterministic language.

A minimal automaton is an automaton with the smallest number of
states among all automata that accept the given language. A state q of A
is useful if L((Q,Σ, δ, I, {q})) 6= ∅ and L((Q,Σ, δ, {q}, F )) 6= ∅. Two states
qi and qj of A are equivalent if L((Q,Σ, δ, {qi}, F )) = L((Q,Σ, δ, {qj}, F )).
Using the Myhill-Nerode theorem [19, Theorem 3.9] it can be proven that
a deterministic automaton is minimal among all DFAs accepting the same
language if and only if all of its states are useful and no two states of it
are equivalent. Two automata are equivalent if they accept the same lan-
guage. Given an automaton A, using the well-known operation of the sub-
set construction, we obtain an equivalent deterministic automaton D(A) =
(Q′, Σ, δ′, {q′}, F ′) [18, Section 2.3.5], [19, Theorem 2.1]. We also call this
operation determinization. The automaton D(A) consists of only useful
states, that is, the states that appear on some path from the initial state to
a final state of the automaton. However, it is not necessarily the minimal
DFA for L(A).

Sometimes a stricter notion of determinism of an automaton than the
definition given above is used by requiring that for all q ∈ Q and a ∈ Σ,
|δ(q, a)| = 1 (instead of |δ(q, a)| ≤ 1). This implies that some determin-
istic automata must have a so-called dead state q∅ such that q∅ /∈ F and
δ(q∅, a) = q∅ for all a ∈ Σ. With this notion of determinism, the class of
bideterministic automata is smaller when compared to the class of bideter-
ministic automata obtained by using the definition of determinism as above.
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A deterministic automaton with a dead state q∅ cannot be bideterministic
as there must be some a ∈ Σ for which |δR(q∅, a)| > 1. For example, while
the language L∗2 of Example 3.3 in Section 3.2 is bideterministic by our
definition of determinism, it is not bideterministic by this stricter notion of
determinism. An example of a language that is bideterministic according
to both definitions is the language L((0 + 1)((0 + 1)(0 + 1))∗) of Exam-
ple 3.4.

Sometimes we allow an automaton to have transitions on the empty
string ε. Then the transition function of the automaton is δ : Q×(Σ∪{ε}) →
2Q. We call such an automaton an ε-NFA.

2.2 Multitape automata

There are several models of multitape automata that have been presented
over the years. The most known are perhaps the Rabin-Scott model intro-
duced in [30], the Elgot-Mezei model [6], and the read-only one-way Turing
machine model. An overview of these models was given in [7]. Here we
consider two models of multitape automata: first, the Rabin-Scott model,
and second, a modified version of that model which we call the mixed-state
model. Both are one-way models but we also present a two-way version of
the latter model.

2.2.1 The Rabin-Scott model

In the Rabin-Scott model a machine has n tapes and a scanning head for
every tape. The beginning and the end of each tape are indicated, respec-
tively, by the left endmarker [ and the right endmarker ]. These two are
special symbols not belonging into the input alphabet of the automaton.
Initially, the machine is in one of the initial states, with its heads placed
on the left endmarkers for all tapes. The first symbol the machine reads
on each tape is the left endmarker. The reading of the tapes is done so
that only one tape is read at a time. For this reason every state of the
machine is associated with one of the tapes. When the machine is in some
state it reads the next symbol on the tape associated with that state, and
depending on the symbol read goes into the next state indicated by the
state-symbol pair. The n-tuple of tapes is accepted by the machine if it is
in a final state after reading the right endmarker on all of its tapes.1

1This definition of acceptance is different from the one in [30] where the acceptance
criterion is that the machine is in a final state after reading the right endmarker on one
of its tapes. Also, the original model described only deterministic automata and did not
have the left endmarker. While the left endmarker is not important in this model, the



10 Chapter 2. One-tape and multitape finite automata

Let us assume that a function tape : Q → {1, ..., n} associates every
state of the automaton with a certain tape. Now, formally, an n-tape
automaton is given by a six-tuple (Q, tape,Σ, δ, I, F ) where Q is a finite
set of states with a partition into the sets Q1, ..., Qn so that Qi = {q ∈
Q|tape(q) = i} for i = 1, ..., n, Σ is the input alphabet, δ : Q×(Σ∪{[, ]}) →
2Q is the transition function, I ⊆ Q is the set of initial states and F ⊆ Q is
the set of final states. If for some q1, q2 ∈ Q and a ∈ Σ∪{[, ]}, q2 ∈ δ(q1, a),
then we say that there is a transition from q1 to q2 with label a. As in the
one-tape case, an automaton is deterministic if |I| = 1 and if for all q ∈ Q
and a ∈ Σ ∪ {[, ]}, |δ(q, a)| ≤ 1.

In the following we consider a multitape automaton as a directed graph
in the usual way. In an automaton graph we define an accepting path to be
a path that leads from an initial state into a final state. Given a transition
from a state q1 with a label a, we define the indexed label of that transi-
tion to be atape(q1). We usually use indexed labels for labelling transitions
when drawing automata graphs. We define an accepting computation of
an automaton to be a string formed by concatenating the indexed labels
of all transitions that appear on an accepting path. We denote the set of
all accepting computations of an automaton A by C(A). We say that an
n-tuple (w1, ..., wn), where wi ∈ Σ∗ for i = 1, ..., n, is accepted by A if there
exists an accepting computation u of A such that for all i ∈ {1, ..., n}, wi is
a string obtained from u by removing from u the symbols [i, ]i and all such
symbols aj where i 6= j, a ∈ Σ∪{[, ]}, and replacing the remaining indexed
label symbols in u by their corresponding labels (without indexes). The set
of all n-tuples accepted by A is the language of A, denoted by L(A). As
in the one-tape case, two automata are equivalent if they accept the same
language.

Actually, the left endmarker is not necessary in this model, since it is
a one-way model. The role of the right endmarker is important, however,
illustrated by the following example from [12, Section 3.1]. Consider the
language {(a, ε), (ε, b)} accepted by a two-tape automaton with the alpha-
bet Σ = {a, b}. It is easy to see that there are no deterministic Rabin-Scott
two-tape automata without the right endmarker which accept this lan-
guage, whereas this language is accepted by such an automaton with the
right endmarker, as shown in Figure 2.1.

role of the right endmarker is discussed at the end of this section.



2.2. Multitape automata 11

[ 2

[ 1

] 1

] 2

] 1
a1

] 2

2b

Figure 2.1: A two-tape automaton accepting the language {(a, ε), (ε, b)}.
The indexes of the labels at the transitions indicate the tapes that are
read.
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2.2.2 Mixed-state model

In the Rabin-Scott model every state of an automaton is associated with a
certain tape of that automaton and all transitions that leave the state con-
cern the same tape. In the following we consider another automaton model
which may be viewed as a modified version of the Rabin-Scott model. In
this model, no state of an automaton is associated with any tape, therefore
different transitions leaving any state may concern different tapes. Every
transition label also indicates the tape which is involved in that transition,
in addition to the symbol read on that tape. Also, the endmarkers are not
used in this model. We call this model a mixed-state model and describe it
more formally in the following. A similar, but more restricted automaton
model was considered in [36].

An n-tape automaton in the mixed-state model is given by a quintuple
(Q,Σ, δ, I, F ) where Q is a finite set of states, Σ is the input alphabet,
δ : Q× Σ{1,...,n} → 2Q is the transition function where Σ{1,...,n} = {ai | a ∈
Σ, i ∈ {1, ..., n}}, I ⊆ Q is the set of initial states and F ⊆ Q is the set of
final states. If for some q1, q2 ∈ Q and ai ∈ Σ{1,...,n}, q2 ∈ δ(q1, ai), then we
say that there is a transition from q1 to q2 with label ai, that is, with symbol
a involving tape i. This transition is denoted by (q1, ai, q2) or q1

ai−→ q2.
In case we need to use indexes to denote an alphabet symbol itself, we
put the symbol in brackets like, for example, in (ak)i where ak ∈ Σ and
i ∈ {1, ..., n}. The number of outgoing and incoming transitions of a state q
is denoted by outdegree(q) and indegree(q), respectively. Transition labels
in this model are closely related to the indexed labels of transitions in the
Rabin-Scott model as presented in Section 2.2.1.

Similarly to Section 2.2.1, an accepting computation of an automaton
in the mixed-state model is a string formed by concatenating the labels
of all transitions that appear on some path in the automaton graph that
goes from an initial state to a final state. Also, we denote the set of all
accepting computations of an automaton A by C(A). And similarly, an
n-tuple (w1, ..., wn) where wi ∈ Σ∗ for i = 1, ..., n, is accepted by A if there
exists an accepting computation u of A such that for all i ∈ {1, ..., n}, wi

is a string obtained from u by removing from u all symbols aj such that
i 6= j, a ∈ Σ, and discarding the tape indexes of all remaining symbols
in u. We may say that the accepting computation u produces the n-tuple
(w1, ..., wn). As before, the set of all n-tuples accepted by A is the language
of A, denoted by L(A).

Similarly to the one-tape automaton model, sometimes a multitape au-
tomaton in the mixed-state model can have transitions on the empty string
ε. Then the transition function of the automaton is δ : Q×(Σ{1,...,n}∪{ε}) →
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2Q.

2.2.3 Two-way mixed-state model

In the application part of this thesis, in Chapter 6, we deal with multitape
automata in a mixed-state two-way model, that is, a model in which the
automaton tapes can be scanned in two directions: from the left to the
right as well as from the right to the left. Also, these automata can have
endmarkers [ and ] as well as ε-transitions.

We can see this n-tape automaton model in the following way. There
is a window whose width is one symbol and height is n symbols, so that
exactly one symbol of each tape shows through that window at any given
time. We call the position of the showing symbol the current position
for the corresponding tape, the symbol itself is called the current symbol.
Initially, the current symbols for all tapes are their left endmarkers. If we
want to read the next symbol from any tape, we move that tape left with
respect to the window. And if we want to read the previous symbol from
a tape, we move that tape right. These tape movements are indicated in
the automaton as transitions with the labels Li and Ri where L and R are
special symbols not belonging to the alphabet of the automaton, and i is
the tape involved.

An n-tape automaton in the two-way mixed-state model is given by a
quintuple (Q,Σ, δ, I, F ) where Q is a finite set of states, Σ is the input
alphabet, δ : Q × (Σ′{1,...,n} ∪ {ε}) → 2Q is the transition function where
Σ′ = Σ ∪ {[, ]} ∪ {L,R} and Σ′{1,...,n} = {ai | a ∈ Σ′, i ∈ {1, ..., n}}, I ⊆ Q is
the set of initial states and F ⊆ Q is the set of final states.

Let u be a string formed by concatenating the labels of all transitions
that appear on some path in the automaton graph that goes from an initial
state to a final state. We consider u to be an accepting computation if
there exists an n-tuple (w1, ..., wn) where wi ∈ Σ∗ for i = 1, ..., n, such that
for all i ∈ {1, ..., n}, wi is in compliance with u in the sense that if we read
u from the left to the right one symbol at a time then, on seeing Li we read
the next symbol on wi, and on seeing Ri we read the previous symbol on
wi, and on seeing any ci where c ∈ Σ∪{[, ]} the symbol currently read from
wi is c. In this case, the n-tuple (w1, ..., wn) is accepted by the automaton.

As before, the set of all n-tuples accepted by A is the language of A,
denoted by L(A).



14 Chapter 2. One-tape and multitape finite automata

2.3 Interpreting automata in other models

Later in this thesis we will find it useful to interpret a two-way multitape
automaton as if it were a one-way multitape automaton that accepts a
superset of the computations of the original automaton. More specifically,
we expand the alphabet of the one-way automaton so that it also includes
the special symbols that denote the tape movements in the transitions of
the two-way automaton. Then we can apply the techniques developed for
one-way multitape automata to this automaton.

Furthermore, we can interpret a one-way multitape automaton as a
(one-way) one-tape automaton by a similar expansion of the tape alphabet,
and apply one-tape automata methods to this automaton. In this section
we show how these kinds of interpretations can be done.

Let A = (Q,Σ, δ, I, F ) be an n-tape automaton in the two-way mixed-
state model. The corresponding one-way mixed-state n-tape automaton
A′ = (Q,Σ ∪ {L,R, [, ]}, δ, I, F ) is obtained from A by interpreting the
symbols L, R, [ and ] in the transition labels of A as if they were just
symbols from the input alphabet.

And conversely, having a one-way mixed-state n-tape automaton A′

with an input alphabet Σ∪{L,R, [, ]}, its two-way counterpart A is obtained
by interpreting transitions labelled by Li, Ri, [i and ]i where i ∈ {1, ..., n}
in the way they are interpreted in the two-way mixed-state model.

Proposition 2.1 Let A be a two-way n-tape automaton and let A′ be the
corresponding one-way automaton as defined above. Let A′1 be a one-way n-
tape automaton equivalent to A′, with A1 as its two-way counterpart. Then
L(A) = L(A1).

Proof. Assume any tuple (w1, ..., wn) ∈ L(A). Then there exists an
accepting computation u of A such that for all i ∈ {1, ..., n}, wi is in
compliance with u in the sense described at the end of Section 2.2.3. Ob-
viously, there exists an accepting computation u′ of A′ that is equal to
u. Let (w′1, ..., w

′
n) be produced by u′. As L(A′) = L(A′1) then there ex-

ists an accepting computation u′1 of A′1 that produces the same n-tuple
(w′1, ..., w

′
n). From this we infer that there exists an accepting computation

u1 = u′1 of A1 such that for all i ∈ {1, ..., n}, wi is in compliance with
u1. That means (w1, ..., wn) ∈ L(A1). Similarly, it can be reasoned that if
(w1, ..., wn) ∈ L(A1) then (w1, ..., wn) ∈ L(A). Thus, L(A) = L(A1). 2

By Proposition 2.1, if we first interpret a two-way multitape automaton
A as a one-way multitape automaton A′, and then apply any language-
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preserving transformation on A′, and interpret the resulting automaton
back as a two-way automaton, then the final automaton accepts the same
language as the original automaton.

Note, however, that the sets of accepting computations C(A) and C(A′)
may be different. The reason is that in a two-way automaton not neces-
sarily every path from an initial state to a final state defines an accepting
computation, differently from the one-way case. This is due to the property
of the two-way automaton that its tapes can be read in both directions.
When reading a tape first forwards and then backwards, the choice of tran-
sitions included in the path of an accepting computation is limited by the
tape symbols already read forwards. Thus, C(A) ⊆ C(A′).

Now, let A′ = (Q,Σ, δ, I, F ) be an n-tape automaton in the one-way
mixed-state model. We obtain the corresponding one-tape automaton A′′ =
(Q,Σ{1,...,n}, δ, I, F ) from A′ by interpreting the transition labels of A′ as if
they were just symbols from the input alphabet Σ{1,...,n} that are read from
a single tape. And conversely, having a one-tape automaton A′′ with an
input alphabet Σ{1,...,n}, its n-tape counterpart is obtained by interpreting
each of its transitions labelled by any ai ∈ Σ{1,...,n} where a ∈ Σ and
i ∈ {1, ..., n} as a transition with a symbol a involving a tape i.

Proposition 2.2 Let A′ be an n-tape automaton and A′′ be the correspond-
ing one-tape automaton as defined above. Let A′′1 be a one-tape automaton
equivalent to A′′, with A′1 as its n-tape counterpart. Then L(A′) = L(A′1).

Proof. The accepting computations of a one-way n-tape automaton
and its corresponding one-tape automaton coincide, so C(A′) = C(A′′).
Furthermore, for a one-tape automaton, the set of accepting computations
is equal to the language of that automaton, so C(A′′) = L(A′′). In the same
way, L(A′′1) = C(A′′1) = C(A′1). As L(A′′) = L(A′′1), we get C(A′) = C(A′1)
which implies L(A′) = L(A′1). 2

By Proposition 2.2, if we interpret a one-way multitape automaton A′

as a one-tape automaton A′′, apply any algorithm on A′′ that maintains the
language accepted by it (for example, determinization or DFA minimiza-
tion), and interpret the resulting automaton back as a multitape automa-
ton, then the final automaton accepts the same language as the original
automaton. Here, the sets of accepting computations C(A′) and C(A′′) of
corresponding multitape and one-tape automata are the same.

Propositions 2.1 and 2.2 allow us to interpret a two-way multitape au-
tomaton either as a one-way multitape automaton or a one-tape automaton
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and apply a combination of language-preserving algorithms that are devel-
oped for either one-way multitape automata or one-tape automata without
changing the language accepted by the original automaton. This kind of
approach seems to be useful for reducing the size of the two-way automata
considered in Chapter 6. On these automata we will apply the one-way
multitape automata size reduction algorithm developed in Chapter 5 along
with the one-tape DFA minimization procedure, with apparently good re-
sults.



Chapter 3

Minimality of one-tape automata

In this chapter we present some sufficient conditions for an automaton to
be a minimal NFA. Our results are based on an NFA minimization theory
developed by Kameda and Weiner [24]. After a brief overview of their
results, we first show that any bideterministic automaton is the unique
minimal automaton accepting its language. We also present a more general
theorem, specifying a set of conditions under which the minimal DFA of a
given language or the reversal of the minimal DFA of the reversal language
is a minimal NFA accepting the given language. In fact, the minimality
of a bideterministic automaton can be concluded from that result as well.
Most of the results presented in this chapter have appeared in [34].

3.1 NFA minimization of Kameda and Weiner

Kameda and Weiner [24] have developed a theory for attacking the problem
of minimization of nondeterministic automata. In the following, we present
some definitions and results from this theory that we will need to prove our
results.

Let A = (Q,Σ, δ, I, F ) be an automaton, let B be the determinized au-
tomaton D(A) = (Q′,Σ, δ′, q′, F ′) and let C be the determinized automaton
D(AR) = (Q′′,Σ, δ′′, q′′, F ′′). As B and C are results of the subset construc-
tion applied on the set of states Q of A, both Q′ and Q′′ consist of subsets
of Q.

Definition 3.1 (Kameda and Weiner [24, Definition 7]). The states map
(SM) of A is a matrix which contains a row for each nonempty state of
B, and a column for each nonempty state of C. The (i, j) entry contains
q′i ∩ q′′j (or is blank if q′i ∩ q′′j = ∅) where q′i is the i-th element of Q′ and q′′j

17
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is the j-th element of Q′′. The elementary automaton matrix (EAM) of A
is obtained from the SM of A by replacing each nonblank entry by a 1. Its
(i, j) element is denoted by eij.

Theorem 3.1 (Kameda and Weiner [24, Theorem 3]).
L((Q′, Σ, δ′, q′i, F

′)) =
⋃

j|eij=1

{xR | x ∈ L((Q′′,Σ, δ′′, q′′, q′′j ))}.

It is observed in [24] that, according to Theorem 3.1, any states of B
that have an identical pattern of 1s and blanks in the corresponding rows
of the EAM of A, can be merged (by union, as the equivalent states). Also,
because the definitions of B and C are symmetric, any states of C that
have the same pattern of 1s and blanks in the corresponding columns, can
be merged. These observations imply that two states of B (C) having the
same pattern of blank entries in the corresponding rows (columns) of the
SM of A can be merged. Rows (columns) of the SM with the same pattern
of blank entries are called equivalent.

Definition 3.2 (Kameda and Weiner [24, Definitions 8 and 10]). The
reduced states map (RSM) of A is obtained from the SM of A by merging
all equivalent rows and columns. The merging of two rows (columns) means
that they are replaced by a new row (column), the entries of which are the
unions of the entries of the corresponding columns (rows). The reduced
automaton matrix (RAM) of A is formed from the RSM of A by replacing
each nonblank entry with a 1.

Let B̂ be the minimal DFA for L(A), obtained from B by merging
by union the equivalent states, and let Ĉ be the minimal DFA, similarly
obtained from C, for L(C) = L(A)R.

Lemma 3.1 (Kameda and Weiner [24, Lemma 3]). The RSM of A can be
obtained from B̂ and Ĉ in the same manner as the SM of A is obtained
from B and C.

Theorem 3.2 (Kameda and Weiner [24, Theorem 4]). Equivalent au-
tomata have a RAM that is unique up to permutation of the rows and
columns.

Definition 3.3 (Kameda and Weiner [24, Definitions 11–13]). Given an
EAM or RAM, if all the entries at the intersections of a set of rows
{q′i1 , ..., q′ia} and a set of columns {q′′j1 , ..., q′′jb

} are 1s then this set of 1s
forms a grid. The grid is represented by g = (q′i1 , ..., q

′
ia

; q′′j1 , ..., q
′′
jb

). The
grid g contains the pair (q′i, q

′′
j ) if i ∈ {i1, ..., ia} and j ∈ {j1, ..., jb}. A set of
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Figure 3.1: Automata A (left), B = D(A) (center) and C = D(AR) (right)

grids forms a cover if every 1 in the EAM (or RAM) belongs to at least one
grid in the set. A minimum cover is a cover that consists of the minimum
number of grids. Given a cover of an EAM (or RAM), the corresponding
cover map is obtained by replacing each 1 in the EAM (or RAM) by the
names of all the grids (in the given cover) it belongs to.

Theorem 3.3 (Kameda and Weiner [24, Theorem 5]). The SM (RSM) of
an automaton A is a cover map, namely, the states of A appear as a cover
of the EAM (RAM) of A.

Example 3.1 This example illustrates the concepts of this section. Fig-
ure 3.1 presents an automaton A and the corresponding automata B =
D(A) and C = D(AR). In Figure 3.2, the matrixes associated with the
automaton A, namely, the SM, the EAM, the RSM and the RAM of A
are shown. There is one minimum cover of the RAM of A consisting of
two grids g1 and g2, such that g1 = ({1}, {1, 2}; {1}, {1, 2, 3}) and g2 =
({1, 2}, {2, 3}; {1, 2, 3}, {2, 3}). The cover map associated with the mini-
mum cover is shown in Figure 3.3 (left).

By a special rule, an NFA can be associated with any cover of the RAM
of A. The rule is as follows. Let B̂ = (Q̂′, Σ, δ̂′, q̂′, F̂ ′), let Z be a cover
of the RAM and let f : Q̂′ → 2Z \ {∅} be a function associated with Z
which assigns to each state p̂ of B̂ the set of grids that intersect the row
of the RAM that corresponds to p̂. Then the NFA that is associated with
the cover Z is given as M = (Z, Σ, γ, Z0, G) where for all z ∈ Z, z′ ∈ Z,
p̂ ∈ Q̂′, and a ∈ Σ,

Z0 = f(q̂′),
z ∈ G ⇔ (z ∈ f(p̂) ⇒ p̂ ∈ F̂ ′), and
z′ ∈ γ(z, a) ⇔ (z ∈ f(p̂) ⇒ z′ ∈ f(δ̂′(p̂, a))).
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Figure 3.2: Matrixes associated with the automaton A: (a) the SM, (b) the
EAM, (c) the RSM, (d) the RAM of A
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However, it may be the case that M is not equivalent to the original
automaton A. To find a minimal NFA equivalent to A, [24] shows that an
algorithm can be used that tests the covers of the RAM in increasing order
of the size to find whether the NFA for the cover is equivalent to the original
automaton. The first equivalent NFA found in this way is a minimal one.
To check the equivalence of two automata, one may construct D(M), find
a minimal DFA equivalent to it and check if the resulting automaton is the
same as B̂, although [24] also proposes another procedure to accomplish
the equivalence test.

Example 3.2 Consider again the automaton A presented in Figure 3.1
and the minimum cover {g1, g2} of the RAM of A as shown in Figure 3.3
(left). The NFA that is obtained from the cover {g1, g2} by the special rule
as discussed above is presented in Figure 3.3 (right). It can be easily verified
that this automaton is equivalent to A, and therefore it is a minimal NFA
equivalent to A.

3.2 Bideterministic automata are minimal

An automaton is called bideterministic if both the automaton itself and its
reversal automaton are deterministic. This means that a bideterministic
automaton has a unique initial state and a unique final state, and there is
at most one incoming and one outgoing transition with any label associated
with any automaton state.

Bideterministic automata or bideterministic languages have been con-
sidered, for example, in the context of machine learning [2], as a special
case of reversible automata and languages [29], and in coding theory [32].
It has been observed that a bideterministic automaton is a minimal DFA
for the language [2, 29]. In coding theory bideterministic trellises — which
are a very restricted class of bideterministic automata — are known to
be minimal. This kind of trellises appear to correspond to certain codes
(linear codes). It is well-known that a minimal deterministic trellis is a
minimal trellis for such codes [28]. Here, the general case of bideterministic
automata is considered.

It is known that a bideterministic automaton is minimal among the
DFAs. This is very easy to show by using, for example, Brzozowski’s min-
imization algorithm, which involves reversing, determinizing, again revers-
ing and determinizing the automaton [4, 35]. As this algorithm, when
applied to a bideterministic automaton, does not change it, it can be con-
cluded that the automaton is the minimal DFA of its language. In the
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following we show, using the theory in Section 3.1, that a bideterministic
automaton is also minimal in the class of the NFAs.

Let A = (Q,Σ, δ, {q0}, {qf}) be a bideterministic automaton. Its rever-
sal automaton is AR = (Q,Σ, δR, {qf}, {q0}) where δR(p, a) = {q} if and
only if δ(q, a) = {p} for all p ∈ Q, q ∈ Q, and a ∈ Σ. Then the automata B
and C from Section 3.1 are simply B = D(A) = A and C = D(AR) = AR.

Let Q = {q0, ..., qN−1}. According to Definition 3.1, the SM of A
consists of N rows and N columns, with exactly N non-blank entries
{q0}, ..., {qN−1} in the matrix which are positioned so that there is ex-
actly one such entry in every row and every column. The corresponding
EAM is basically the same as SM, only these non-blank entries are replaced
with 1s. As there are no two equivalent rows nor columns in SM, it follows
from Definition 3.2 that the RSM and RAM of A are the same as SM and
EAM, respectively. Since there is exactly one 1 in every row and in every
column of the RAM of A, we see by Definition 3.3 that every grid in the
RAM contains just one row-column pair. Altogether there are N such grids
in the RAM, and moreover, this set of grids is the only cover of the RAM.
Because the RAM is unique for all automata accepting L(A) (Theorem 3.2)
and any automaton accepting L(A) has to have at least as many states as
is the number of grids in the minimum cover of RAM (Theorem 3.3), we
conclude that A is a minimal automaton. We have proved the following
theorem:

Theorem 3.4 A bideterministic automaton is minimal among all finite
automata accepting the same language.

Next, we show that a bideterministic automaton is uniquely minimal,
that is, there does not exist any other automaton with the same number
of states that accepts the same language. For this, we first note that, as
we discussed above, a bideterministic automaton is a minimal DFA which
is known to be unique. Therefore, if any other automaton with the same
number of states exists, it has to be non-deterministic. But this kind of
automata do not exist, as the following lemma shows.

Lemma 3.2 Any non-deterministic automaton equivalent to a bidetermin-
istic automaton A has more states than A does.

Proof. Let A be a bideterministic automaton with N states. Consider
any non-deterministic automaton A′ that accepts the same language as A
does. This means that either A′ has multiple initial states or there is a state
in A′ from which there are transitions with the same label to more than one
state. In any case, the determinized automaton D(A′) must have a state p
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— a subset of states of A′ — of cardinality more than one. Let p1, ..., pm

be the states of A′ comprising that subset, m > 1. Now, the row p̂ in the
states map SM of A′ corresponding to state p has to be such that every
pj , j = 1, ..., m, belongs to at least one entry in that row (because every
state of A′ belongs to some state of D((A′)R)). But, as we know that the
RAM of A′ is the same as the RAM of A (Theorem 3.2), then, according to
the properties of the RAM of a bideterministic automaton as shown above,
the RAM of A′ has N rows and N columns with exactly one 1 in each
row and each column. Hence the RSM of A′ has exactly one non-blank
entry in each row and each column. As an RSM is formed by merging the
equivalent rows and columns of a SM (Definition 3.2), the RSM of A′ must
have a row — namely the row that contains the row p̂ of the SM of A′ —
whose only non-blank entry contains all pj , j = 1, ..., m (and possibly some
other states of A′). It also has to be the case that the intersection of any
two entries of the RSM of A′ is empty, or otherwise the RSM of A′ could
not have just one non-blank entry in each row and column. Because there
are N rows and N columns and thus N non-blank entries in the RSM of
A′, it follows that A′ has at least N − 1 + m states. As we had m > 1, we
get that A′ must have more than N states. 2

As a conclusion we may state the following theorem:

Theorem 3.5 A bideterministic automaton is uniquely minimal.

Proof. Follows from Lemma 3.2 and from the fact that a bideterministic
automaton is the minimal DFA which is unique. 2

Remark 3.1 The proof of Theorem 3.5 is independent from the result of
Theorem 3.4. So, Theorem 3.4 follows from Theorem 3.5.

Example 3.3 Let Lk = {wwR|w ∈ {0, 1}k} where k ≥ 0, be a set of strings
consisting of concatenations of any binary string of length k and its reversal
string. Let L∗k be the set that consists of strings obtained by concatenating
zero or more times the elements of Lk. Then for every k ≥ 0, L∗k is
accepted by a bideterministic automaton having 3×2k−3 states; the leftmost
automaton in Figure 3.4 is such an automaton with 9 states accepting L∗2.
By Theorem 3.4 we know that this is a minimal automaton recognizing this
language and we cannot find a smaller automaton representation for it.

Example 3.4 The language L((0 + 1)((0 + 1)(0 + 1))∗) consisting of all
odd-length binary strings is accepted by the bideterministic automaton shown
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Figure 3.4: Minimal automaton of the language L∗2 of Example 3.3 (left) and
minimal automaton of the language L((0 + 1)((0 + 1)(0 + 1))∗) (right)

as the rightmost automaton in Figure 3.4. By Theorem 3.4, this is a min-
imal automaton accepting this language.

We showed above that, given a bideterministic automaton A, any other
automaton equivalent to A has more states than A does. Let A′ be an
automaton, different from A, with L(A′) = L(A). Then A′ has more states
than A. In the following we show that A has at most as many transitions
as A′ does. Consider the RSM of A′. It must have exactly one nonblank
entry in every row and column because the RAM of A (and A′) has this
property. Also, it must be the case that the intersection of any two entries
of the RSM of A′ is empty. The non-blank entries of the RSM correspond to
the states of the automaton B̂′ that is obtained by merging the equivalent
states of B′ = D(A′). As the sets corresponding to any two states of B̂′
do not intersect, then any state of A′ appears only in one state of B̂′. As
B̂′ is deterministic then the number of transitions leaving any state of B̂′
is at most the sum of the numbers of outgoing transitions of the states of
A′ belonging to this state. Thus, the overall number of transitions in B̂′ is
at most the same as the number of transitions in A′. As B̂′ = A, we have
obtained the following result:

Theorem 3.6 A bideterministic automaton has the minimum number of
transitions.
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3.3 More minimality results

From Theorem 3.4 we know that bideterminism is a sufficient condition for
a language to have the property that the size of its minimal determinis-
tic automaton is also the smallest possible size of any (nondeterministic)
automaton accepting the same language. It is of interest to find other con-
ditions that imply similar minimalities. In this section, we present another,
more general minimality result. Actually, Theorem 3.4 follows from this
result as a special case.

The discussion below is based on two automata defined as follows. First,
let A = (Q,Σ, δ, {q}, F ) be a minimal deterministic automaton, and second,
let A1 = D(AR) = (Q′′, Σ, δ′′, {q′′}, F ′′) be the automaton obtained from
the reversal of A by the subset construction. Every state q′′i of A1 is a
subset of the state set Q of A.

Consider the partitions of the state sets of A and A1, defined in the
following way. Let {Q′′

1, ..., Q
′′
k} be the partition of the state set Q′′ of A1

into disjoint subsets (equivalence classes) such that any pair of states q′′1
and q′′2 of A1 belongs to the same Q′′

i , i ∈ {1, ..., k}, if and only if there
exist states q′′i1 , ..., q

′′
il

of A1 such that q′′i1 = q′′1 , q′′il = q′′2 and q′′ij ∩ q′′ij+1
6= ∅

for all j = 1, ..., l− 1. And let {Q1, ..., Qk} be the partition of the state set
Q of A into disjoint subsets such that Qi =

⋃
q′′j ∈Q′′i

q′′j for i = 1, ..., k. More

intuitively, we divide the state set Q′′ of A1 into disjoint subsets in a way
which ensures that the states of A1 (as subsets of Q) belonging to different
subsets of the partition do not intersect. Such partition of the states of A1

accordingly induces a partition of the state set Q of A as well if we divide
Q into subsets so that each subset is a union of the states belonging to the
corresponding partition subset of Q′′. These partitions divide the RAM of
A into disjoint submatrixes, and in order to find a minimum cover of the
RAM one can find a minimum cover for each such submatrix and take the
union of those covers as it will be shown shortly below.

Consider the theory of Section 3.1 in the case where the automaton A
of that section is the automaton A given above. Then the automata B
and C of Section 3.1 are equal to the automata A and A1, respectively,
as B = D(A) = A and C = D(AR) = A1. As B is equal to A, B is the
minimal DFA accepting L(A). According to the Brzozowski’s minimization
algorithm, C is the minimal DFA accepting L(AR) as we can write C =
D(AR) = D(D(A)R) = D(D((AR)R)R). Hence the SM of A is also the
RSM of A (Definitions 3.1 and 3.2, Lemma 3.1). The number of rows and
columns in the RSM (and the RAM) of A equals the number of states of
A and A1, respectively. There is a one-to-one correspondence between the
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Figure 3.5: Minimal DFA A of the language L(00∗1 + 11∗0) and A1 =
D(AR)

states of A and the rows of the RAM of A, as well as between the states
of A1 and the columns of the RAM of A. We denote by RAMi, where
i ∈ {1, ..., k}, the submatrix of the RAM of A, which is formed from the
rows corresponding to the states belonging to Qi and from the columns
corresponding to the states in Q′′

i .
Similarly to Definition 3.3, we say that a set of grids covers some RAMi

if every 1 in that RAMi belongs to at least one grid in the set. Also, we say
that a set of grids covers a set of rows and columns of the RAM if every 1
in these rows and columns belongs to at least some grid in that grid set.

Before we start to develop a theory based on the concepts introduced
above, we present the following example to illustrate these concepts.

Example 3.5 In Figure 3.5, the leftmost automaton is the minimal DFA A
accepting the language L(00∗1+ 11∗0) and the rightmost automaton A1 =
D(AR) is obtained from the reversal of A by the subset construction. The
state set Q of A is the set {1, 2, 3, 4}, and the state set Q′′ of A1 is the set
{{1, 2}, {1, 3}, {2}, {3}, {4}}. The partitions of Q and Q′′ divide both sets
into two subsets: Q1 = {1, 2, 3}, Q2 = {4}, Q′′

1 = {{1, 2}, {1, 3}, {2}, {3}},
Q′′

2 = {{4}}. The RAM of A is shown in Figure 3.6.

Lemma 3.3 Let Gi, where i = 1, ..., k, be any minimal set of grids covering
the RAMi. Then Gi ∩Gj = ∅ for i 6= j, i, j = 1, ..., k, and G1 ∪ ... ∪Gk is
a minimum cover of the RAM of A.

Proof. It is clear that any set of grids covers the RAMi if and only if it
covers the set of rows and columns corresponding to Qi and Q′′

i . According
to the definition of the partition of Q′′, any two states taken from Q′′

i and
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Figure 3.6: The RAM of A

Q′′
j , where i 6= j, have an empty intersection. Therefore, any two 1s in

the RAM of A, where the first 1 is in a column that corresponds to some
state of Q′′

i and the second 1 is in a column corresponding to some state of
Q′′

j , cannot belong to the same grid. It follows that Gi ∩Gj = ∅. In order
to find a minimum cover of the RAM, one can find a minimal set of grids
covering the columns of Q′′

i (this set automatically also covers the rows of
Qi) for every i ∈ {1, ..., k}, and take the union of these sets. 2

Definition 3.4 A grid is elementary if it consists of just one 1, that is,
one row and one column. A grid with two or more 1s in it, that is, two
or more rows or columns, is non-elementary. A non-elementary grid is
horizontal ( vertical) if all of its 1s are in the same row (column), that is,
if it consists of one row (column).

Lemma 3.4 Consider the following three conditions:
(a) Every state of A1 consists of at most two states of A.
(b) Each state of A occurs in at most two states of A1.
(c) Any two states of A1 have at most one state of A in common.
If any of the conditions (a), (b) and (c) holds then every non-elementary
grid in the RAM of A is either horizontal or vertical.

Proof. Suppose that there is a non-elementary grid in the RAM of
A that is not horizontal nor vertical. This means that there is a grid
g = (qi1 , ..., qia ; q′′j1 , ..., q

′′
jb

) such that a ≥ 2 and b ≥ 2. This implies that
there are at least two states q′′j1 and q′′j2 of A1, both of which contain the
states qi1 and qi2 of A. If (a) holds then the columns of the RAM of
A corresponding to q′′j1 and q′′j2 must be equivalent. This is not possible,
thus we have a contradiction. If (b) holds then the rows corresponding
to qi1 and qi2 must be equivalent. This is not possible either, thus we
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have a contradiction in this case, too. If (c) holds then we have a direct
contradiction. 2

Lemma 3.5 If a RAMi, i ∈ {1, ..., k}, has more than one row or column
and if every non-elementary grid in that RAMi is either horizontal or ver-
tical then there is a minimal set of grids covering the RAMi, consisting of
only horizontal and vertical grids, such that every horizontal grid in that
set covers the corresponding row and every vertical grid in that set covers
the corresponding column.

Proof. Let the assumption of the lemma hold and let Gi be any minimal
set of grids covering the RAMi. We modify Gi as follows. First, we observe
that if Gi contains an elementary grid then there has to be two or more
1s in the row or the column involved by such a grid, otherwise the RAMi

would be a 1× 1 matrix. Therefore we can and do replace any elementary
grid in Gi either with a horizontal grid covering the corresponding row or
with a vertical grid covering the corresponding column. Also, we replace
any horizontal grid in Gi, which does not cover its corresponding row, with
the horizontal grid covering that row entirely, and we replace any vertical
grid in Gi, which does not cover its corresponding column, with the vertical
grid covering that column entirely. After these replacements Gi still covers
the RAMi and since the number of grids in Gi does not increase in the
process (neither can it decrease because Gi was minimal in the beginning),
Gi stays minimal. Thus, the modified Gi is as claimed in the lemma. 2

Before we present our main lemma of this section — Lemma 3.7 —, we
present a simple Lemma 3.6 that is used by the main lemma. The result
of Lemma 3.6 is presented with proof in [34].

Lemma 3.6 (Tamm and Ukkonen [34, Lemma 24(c)]). Let K be a collec-
tion of non-empty subsets of {1, 2, . . . , n}. If any two different members of
K have at most one element in common, then |K| ≤ n(n + 1)/2.

Lemma 3.7 Consider Qi and Q′′
i , i ∈ {1, ..., k}, and assume that at least

one of the following three conditions holds:
(a) Every state of A1 consists of at most two states of A.
(b) Each state of A occurs in at most two states of A1.
(c+) Any two states of A1 have at most one state of A in common, and one
of the next three conditions is true: (i) |Qi| ≤ 4 or |Q′′

i | ≤ 4, (ii) |Qi| ≥ 5
and |Q′′

i | > |Qi|(|Qi|−5)/2+5, (iii) |Q′′
i | ≥ 5 and |Qi| > |Q′′

i |(|Q′′
i |−5)/2+5.

Then the minimum number of grids that cover the RAMi is the minimum
of |Qi| and |Q′′

i |.
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Proof. Let at least one of the above conditions (a), (b), (c+) hold.
If the RAMi is a 1 × 1 matrix then it is clear that the statement of the
lemma holds. Now consider the case where the RAMi has more than one
row or column. According to Lemma 3.4, any grid in the RAMi is either
horizontal, vertical or an elementary grid. Let Gi be a minimal set of grids
covering RAMi, which has the properties specified in Lemma 3.5. Then we
may see Gi as the union of two non-intersecting sets of grids, denoted by
Gh

i and Gv
i where the set Gh

i consists of horizontal grids where every grid
covers its corresponding row and Gv

i consists of vertical grids with every
grid covering the corresponding column. One of these two sets may be
empty.

Obviously, the number of grids in Gi cannot be larger than the minimum
of |Qi| and |Q′′

i |. Neither can it be smaller, as we show in the following by
contradiction.

Suppose that |Gi| < |Qi| and |Gi| < |Q′′
i |. This implies that both Gh

i

and Gv
i must be non-empty. As |Gh

i |+ |Gv
i | < |Qi|, then from the fact that

Gh
i covers |Gh

i | rows it follows that Gv
i must cover the remaining of the |Qi|

rows, i.e., at least |Qi| − |Gh
i | > |Gv

i | rows. Also, from |Gh
i | + |Gv

i | < |Q′′
i |

and from the fact that Gv
i covers |Gv

i | columns it follows that Gh
i must cover

at least |Q′′
i |− |Gv

i | > |Gh
i | columns. Due to the fact that the RAMi cannot

have equivalent columns nor rows, one horizontal grid can cover at most
one column and one vertical grid can cover at most one row. Therefore,
both Gh

i and Gv
i have to consist of at least two grids. Thus |Gh

i | ≥ 2 and
|Gv

i | ≥ 2 which implies |Gi| ≥ 4.
If (a) holds then there are exactly two 1s in every grid of Gv

i . This
way, the grids in Gv

i can involve at most |Gv
i |+ 1 rows. We had above that

Gv
i must cover more than |Gv

i | rows thus we conclude that the grids in Gv
i

cover all the rows that they involve. But this implies Gv
i = Gi, so we have

obtained a contradiction.
If (b) holds then there are exactly two 1s in every grid of Gh

i . This way,
the grids in Gh

i can involve at most |Gh
i | + 1 columns. As we had above

that Gh
i must cover more than |Gh

i | columns then the grids in Gh
i cover all

the columns that they involve. But this implies Gh
i = Gi, a contradiction.

If (c+) holds then in case (i) |Qi| ≤ 4 or |Q′′
i | ≤ 4 the hypothesis that

|Gi| < |Qi| and |Gi| < |Q′′
i | leads to a contradiction since we showed above

that |Gi| ≥ 4. Now consider the case (ii) |Qi| ≥ 5 and |Q′′
i | > |Qi|(|Qi| −

5)/2 + 5. Then we have |Q′′
i | > |Qi| which means that |Gi| ≤ |Qi| − 1.

Therefore |Gh
i | + |Gv

i | ≤ |Qi| − 1, which can also be written as |Qi| ≥
|Gh

i |+ |Gv
i |+ 1. Using this last inequality with |Q′′

i | > |Qi|(|Qi| − 5)/2 + 5,
we get that |Q′′

i | > (|Gh
i |+|Gv

i |+1)(|Gh
i |+|Gv

i |−4)/2+5. By Lemma 3.6 we
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know that |Gh
i | horizontal grids can cover at most |Gh

i |(|Gh
i |+1)/2 columns.

Vertical grids in Gv
i cover |Gv

i | columns. Therefore |Q′′
i | ≤ |Gh

i |(|Gh
i | +

1)/2 + |Gv
i |. Putting two last inequalities together, we get |Gh

i |(|Gh
i | +

1)/2 + |Gv
i | > (|Gh

i |+ |Gv
i |+ 1)(|Gh

i |+ |Gv
i | − 4)/2 + 5 from which it follows

(|Gv
i |−2)(2|Gh

i |+ |Gv
i |−3) < 0. But this cannot hold, since neither |Gv

i |−2
nor 2|Gh

i |+|Gv
i |−3 can be negative. Thus we have obtained a contradiction.

The proof for the case (iii) |Q′′
i | ≥ 5 and |Qi| > |Q′′

i |(|Q′′
i | − 5)/2 + 5 is

symmetric and similar to the case (ii). 2

The main result of this section is in the form of the following theorem:

Theorem 3.7 Consider a minimal DFA A and A1 = D(AR) with the par-
titions of their state sets {Q1, ..., Qk} and {Q′′

1, ..., Q
′′
k} as described above.

Assume that at least one of the following three conditions holds:
(a) Every state of A1 consists of at most two states of A.
(b) Each state of A occurs in at most two states of A1.
(c+) Any two states of A1 have at most one state of A in common, and for
every i = 1, ..., k one of the next three conditions is true: (i) |Qi| ≤ 4 or
|Q′′

i | ≤ 4, (ii) |Qi| ≥ 5 and |Q′′
i | > |Qi|(|Qi| − 5)/2 + 5, (iii) |Q′′

i | ≥ 5 and
|Qi| > |Q′′

i |(|Q′′
i | − 5)/2 + 5.

If |Qi| ≤ |Q′′
i | for all i = 1, ..., k, then A is a minimal automaton ac-

cepting L(A). If |Q′′
i | ≤ |Qi| for all i = 1, ..., k, then AR

1 is a minimal
automaton accepting L(A).

Proof. According to the assumptions of this theorem and Lemma 3.7,
the minimum number of grids to cover the RAMi, for i = 1, ..., k, is the
minimum of |Qi| and |Q′′

i |. By Lemma 3.3, if |Qi| ≤ |Q′′
i | for all i = 1, ..., k,

then a minimum cover of the RAM of A consists of |Q1|+ ... + |Qk| = |Q|
grids. Similarly, if |Q′′

i | ≤ |Qi| for all i = 1, ..., k, then a minimum cover
of the RAM of A consists of |Q′′

1| + ... + |Q′′
k| = |Q′′| grids. We know that

any automaton equivalent to A cannot have less states than is the number
of grids in a minimum cover of the RAM of A (Theorems 3.2 and 3.3).
We know that A and AR

1 both accept L(A) and their sizes are |Q| and
|Q′′|, respectively. Therefore, if |Qi| ≤ |Q′′

i | for all i = 1, ..., k, then A is a
minimal automaton accepting L(A). Also, if |Q′′

i | ≤ |Qi| for all i = 1, ..., k,
then AR

1 is a minimal automaton accepting L(A). 2

Example 3.6 Consider the automata A and A1, presented in Figure 3.5.
The partitions of the state sets of A and A1 were shown in Example 3.5. It
can be easily verified that for these automata, all three conditions (a), (b)
and (c+) of Theorem 3.7 hold. As |Q1| = 3 < 4 = |Q′′

1| and |Q2| = 1 = |Q′′
2|

then by Theorem 3.7, A is a minimal automaton.
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Corollary 3.1 Theorem 3.4 follows from Theorem 3.7.

Proof. Let A be a bideterministic automaton. Then A is a minimal
DFA. The automaton A1 of Theorem 3.7 is A1 = AR. Since the state
sets of A and A1 coincide and |Qi| = |Q′′

i | = 1 for all i = 1, ..., k, it is
clear that all three conditions (a), (b) and (c+) of Theorem 3.7 hold. As
both |Qi| ≤ |Q′′

i | and |Q′′
i | ≤ |Qi| are true for all i = 1, ..., k, then we may

conclude that both A and (AR)R are minimal automata accepting L(A).
But these two automata are the same, so Theorem 3.4 follows. 2

In certain cases Theorem 3.7 gives two different minimal automata:

Corollary 3.2 Let A and A1 be automata meeting the assumptions of The-
orem 3.7. If |Qi| = |Q′′

i | for all i = 1, ..., k, and A is not bideterministic
then A and AR

1 are two different minimal automata accepting L(A).

Proof. As |Qi| ≤ |Q′′
i | and |Q′′

i | ≤ |Qi| for all i = 1, ..., k, then, according
to Theorem 3.7, both A and AR

1 are minimal. If A is not bideterministic
then AR

1 has to be nondeterministic. So, A and AR
1 must be different. 2

Example 3.7 Figure 3.7 presents two automata given by [3] as examples of
two different minimal automata accepting the language {ab, ac, ba, bc, ca, cb}.
In terms of our theory, the leftmost automaton is the minimal DFA A
accepting that language and the rightmost one is AR

1 = (D(AR))R. The
partitions of the state sets of A and A1 are the following: Q1 = {1},
Q2 = {2, 3, 4}, Q3 = {5}, Q′′

1 = {{1}}, Q′′
2 = {{2, 3}, {2, 4}, {3, 4}},

Q′′
3 = {{5}}. As the assumptions of Theorem 3.7 hold, |Qi| = |Q′′

i | for
all i = 1, 2, 3, and A is not bideterministic then by Corollary 3.2 both A
and AR

1 are minimal, indeed.

The sufficiency conditions of Theorem 3.7 can be checked in polynomial
time. These matters are discussed in [34] which presents the following
result:

Theorem 3.8 (Tamm and Ukkonen [34, Theorem 25]). For a minimal
DFA A with n states, one can test in time O(n4 log n) whether or not A
satisfies the sufficiency conditions of Theorem 3.7 for minimality.
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Chapter 4

Bideterministic multitape
automata

In Chapter 3 we proved that a (one-tape) bideterministic automaton is
minimal. Here we consider the Rabin-Scott one-way multitape automaton
model and show that the minimality property does not hold for bideter-
ministic multitape automata. Still, a bideterministic multitape automaton
is a unique minimal automaton among the automata which have the same
set of accepting computations.

4.1 Reversal of a multitape automaton

In this section we define the notion of a reversal of an automaton in our
given multitape model.

Let A be a one-way n-tape automaton (Q, tape,Σ, δ, I, F ) with a parti-
tion of Q into Q1, ..., Qn in the Rabin-Scott model. That is, every state is
associated with a tape to be read when the control is in that state. To get
a reversal automaton AR of the automaton A, it is not enough if we just
reverse the transition function and swap the sets of initial and final states
of A, as in the definition of a reversal for a one-tape automaton in Section
2.1. In addition to these, we possibly also have to change the state-tape
associations in AR because given a transition in A leading from a state q1

to a state q2 it is possible that the tape t1 assigned to q1 differs from the
tape t2 assigned to q2. In this case we have to associate (in AR) q2 with
the tape t1 instead. Furthermore, it is possible that there are transitions
in A both from q1 and q2 to a state q3 while the tapes associated with q1

and q2 are not the same. If this is the case then we consider the reversal
of A to be undefined. Otherwise, one more thing to be done is to change

33
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the labels of the transitions in AR that involve endmarkers; specifically, all
transitions labelled with the left endmarker have to be labelled with the
right endmarker and vice versa.

Now, more formally, if there are states q1 ∈ Q and q2 ∈ Q such that
tape(q1) 6= tape(q2) and δ(q1, a) ∩ δ(q2, b) 6= ∅ for some a, b ∈ Σ ∪ {[, ]}
then the reversal of A is undefined. Otherwise, let us define a function
tapeR : Q → {1, ..., n} as follows. Let q ∈ Q. If there is some q1 ∈ Q such
that δ(q1, a) = q for some a ∈ Σ∪{[, ]} then tapeR(q) = tape(q1), otherwise
let tapeR(q) = tape(q).

The reversal of A is the automaton AR given by (Q, tapeR, Σ, δR, F, I)
with a partition of Q into QR

1 , ..., QR
n so that QR

i = {q ∈ Q | tapeR(q) = i}
for i = 1, ..., n, where for all q1 ∈ Q and a ∈ Σ, δR(q1, a) = {q |q1 ∈ δ(q, a)},
δR(q1, [) = {q | q1 ∈ δ(q, ])} and δR(q1, ]) = {q | q1 ∈ δ(q, [)}.

4.2 Bideterministic multitape automata

In Chapter 3 we discussed bideterministic one-tape automata. In this sec-
tion we extend the notion of bideterminism to one-way multitape automata
and show two simple properties of bideterministic multitape automata.

We call a multitape automaton A bideterministic if its reversal AR is
defined and both A and AR are deterministic.

In Section 3.2 it was proved that a one-tape bideterministic automaton
is a minimal automaton accepting its language. But for multitape automata
this result does not necessarily hold in the general case. We show this by
a counterexample. In Figure 4.1 two equivalent bideterministic multitape
automata accepting the language {(ab, a), (bc, a)} are presented. The labels
shown at the transitions are indexed labels, that is, an index of a symbol
indicates the tape which is read. As the leftmost automaton has more
states than the other one then it clearly cannot be a minimal automaton.
Therefore in the multitape case bideterminism is not a sufficient condition
for minimality. The following statement holds:

Proposition 4.1 A bideterministic multitape automaton is not necessarily
minimal.

The second property of a bideterministic multitape automaton which
we present here is as follows:

Proposition 4.2 A bideterministic multitape automaton A is the unique
minimal automaton with accepting computations C(A).
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Figure 4.1: Two different bideterministic two-tape automata accepting the
language {(ab, a), (bc, a)} showing that the leftmost automaton is not min-
imal. The indexes of the labels at the transitions indicate the tapes that
are read.
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Proof. Let A be a bideterministic multitape automaton. Let us consider
the one-tape automaton A′ that is obtained from A by replacing the tran-
sition labels of A with their corresponding indexed labels and discarding
the state-tape associations. As an accepting computation of a one-tape
automaton is just a string obtained by concatenating the transition labels
on an accepting path, then C(A′) = C(A). Because A′ has only one tape,
it holds that L(A′) = C(A′). Also, A′ is bideterministic.

Suppose now that there is another multitape automaton A1 different
from A with C(A1) = C(A) so that the size of A1 is less than or equal
to the size of A. Let A′1 be its one-tape counterpart obtained from A1 as
described above. Then again L(A′1) = C(A′1) = C(A1). But we have that
C(A1) = C(A) = C(A′) = L(A′) and so the equality L(A′1) = L(A′) holds.
As A′1 is different from A′ and |A′1| = |A1| ≤ |A| = |A′| then A′ cannot
be the unique minimal automaton accepting its language. But this is a
contradiction to what we have shown in Section 3.2 that a bideterministic
one-tape automaton is uniquely minimal.

We may conclude that A is the unique minimal automaton having the
set of accepting computations C(A). 2



Chapter 5

Size reduction of multitape
automata

In this chapter we consider a size reduction algorithm for multitape au-
tomata. It is assumed that an automaton is in the mixed-state model and
does not have ε-transitions. This algorithm tries to reduce the automaton
size by changing the order in which some transitions concerning different
tapes are performed, and combining some suitable states into a single state.
First, in Section 5.1 we describe the four main operations we use to trans-
form an automaton, and then in Section 5.2 we present an algorithm that
uses these operations to reduce the size of the automaton. In Section 5.3
we analyze the time and space requirements of the algorithm. Finally we
present an example of a family of automata for which the algorithm works
nicely.

5.1 Simple automata transformations

In this section we describe four simple transformations on multitape au-
tomata that we find useful in our reduction algorithm. These transforma-
tions will be seen to be correct in the sense that they do not change the
language an automaton accepts.

Let A be an n-tape automaton (Q,Σ, δ, I, F ). We start with the follow-
ing observation:

Observation 5.1 If there are transitions q1
ai−→ q2 and q2

bj−→ q3 in A,
where q1, q2, q3 ∈ Q, a, b ∈ Σ and i, j ∈ {1, ..., n}, such that i 6= j and
q2 is not an initial nor an accepting state and has exactly one incoming
and one outgoing transition, then the labels of these two transitions can be
interchanged without changing the language of A.
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To see the correctness of Observation 5.1, we note that any accepting

path in A either takes both transitions q1
ai−→ q2 and q2

bj−→ q3 or takes none
of them. This is because these two transitions are the only ones involving
q2, and q2 is not an initial nor an accepting state. Also, these transitions
involve different automata tapes i and j reading of which is independent
from one another. Based on this, it is clear that if in q1, instead of these

transitions, an accepting path would take a transition q1
bj−→ q2 followed

by q2
ai−→ q3 then the contents of accepted strings would not change.

The transformation in Observation 5.1 has a limited applicability be-
cause of the restrictions it has. If we drop the requirement that q2 has only
one incoming transition but instead allow several transitions each of which
involves some tape other than j to enter q2 then we can have another, more
general transformation which we call Swap Upwards, described as follows.

Swap Upwards. Let q, q′, q1, ..., qk ∈ Q. Let there be transitions q1
(a1)i1−→

q′, ..., qk

(ak)ik−→ q′ and q′
bj−→ q in A, such that j refers to a tape that is

different from all tapes il, l ∈ {1, ..., k}. Let q′ be a non-initial and non-
final state with outdegree(q′) = 1 and indegree(q′) = k. Then q′ and its
incoming and outgoing transitions can be removed and replaced with new

non-initial and non-final states q′1, ..., q
′
k and transitions q1

bj−→ q′1, ..., qk
bj−→

q′k, and q′1
(a1)i1−→ q, ..., q′k

(ak)ik−→ q.

To show the correctness of the Swap Upwards transformation, we can
consider this transformation as a sequence of the following transforma-
tions. First, q′ with its incoming and outgoing transitions is removed

and replaced with q′1, ..., q
′
k and transitions q1

(a1)i1−→ q′1, ..., qk

(ak)ik−→ q′k, and

q′1
bj−→ q, ..., q′k

bj−→ q. Second, for all l = 1, ..., k, the transformation de-

scribed in Observation 5.1 is applied for transitions ql

(al)il−→ q′l and q′l
bj−→ q.

The correctness of the first transformation is obvious if we consider its re-
verse transformation: it is clear that the states q′1, ..., q

′
k (as after the first

transformation) are equivalent and can be replaced by a new single state
thus giving us the original automaton back again. The correctness of the
other transformations is clear from the correctness of Observation 5.1.

Intuitively, the Swap Upwards transformation “moves” a transition up-
wards in the automaton graph. Next we define a similar transformation
called Swap Downwards which acts in the opposite direction.
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Swap Downwards. Let q, q′, q1, ..., qk ∈ Q. Let there be transitions

q
bj−→ q′, q′

(a1)i1−→ q1, ..., q
′ (ak)ik−→ qk in A such that j 6= il where l ∈ {1, ..., k}.

Let q′ be a non-initial and non-final state with indegree(q′) = 1 and
outdegree(q′) = k. Then q′ and its incoming and outgoing transitions can
be removed and replaced with new non-initial and non-final states q′1, ..., q

′
k

and transitions q
(a1)i1−→ q′1, ..., q

(ak)ik−→ q′k, and q′1
bj−→ q1, ..., q

′
k

bj−→ qk.

The correctness of the Swap Downwards transformation can be shown
similarly to the Swap Upwards operation.

The transformations Swap Upwards and Swap Downwards can be used
to “move” transitions in the automaton graph, thus making it possible to
“combine” some states of the automaton into one state, as described by
the following two transformations.

Sink Combine. Let q1, ..., qk be some non-initial states of A, all having
exactly one incoming transition with the same label ai from a state q of
A where q is different from all ql, l ∈ {1, ..., k}. Then q1, ..., qk can be
combined into one state q′, meaning that q1, ..., qk and their incoming and
outgoing transitions are removed and replaced by a new non-initial state q′

which is a final state if and only if any of q1, ..., qk is final, with all outgoing
transitions of q1, ..., qk now leaving q′, and the transition q

ai−→ q′.

The correctness of Sink Combine transformation is easy to see: the
states q1, ..., qk can be replaced by a single state because they all are non-
initial and have one incoming transition originating from the same state
bearing the same label.

Source Combine. Let q1, ..., qk be some non-final states of A, all having
exactly one outgoing transition with the same label ai to a state q of A
where q is different from all ql, l ∈ {1, ..., k}. Then q1, ..., qk can be combined
into one state q′, meaning that q1, ..., qk and their incoming and outgoing
transitions are removed and replaced by a new non-final state q′ which is an
initial state if and only if any of q1, ..., qk is an initial state, with all incoming
transitions of q1, ..., qk now entering q′, and the transition q′ ai−→ q.

The correctness of Source Combine transformation is obvious by the
equivalence of the states q1, ..., qk.

These four transformations are schematically presented in Figure 5.1.
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Figure 5.1: Automaton transformations: (a) Swap Upwards; (b) Swap
Downwards; (c) Sink Combine; (d) Source Combine.
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procedure MoveTransitionUp(A, (q1, ai, q2), q)
1. if transition (q1, ai, q2) exists in A then
2. use the Sink Combine transformation to merge all such states

that are reachable from q1 by a transition labelled by ai

and suitable for this transformation;
3. if q 6= q1 and outdegree(q1) = 1 then
4. use the Swap Upwards transformation on the outgoing

transition of q1 and let T be the set of transitions
with the label ai created by this transformation;

5. for all (q′1, ai, q
′
2) ∈ T where q′1, q

′
2 ∈ Q do

6. MoveTransitionUp((q′1, ai, q
′
2), q);

Figure 5.2: Procedure MoveTransitionUp()

5.2 Reduction algorithm

Based on the four automaton transformations presented in Section 5.1,
we have designed an algorithm to reduce the size of an n-tape automaton
A = (Q,Σ, δ, I, F ).

Let us first present a central part of the algorithm which is the procedure
MoveTransitionUp() shown in Figure 5.2, and the conditions to apply this
procedure.

The procedure MoveTransitionUp() gets the automaton A, a transition
(q1, ai, q2) and some state q of A as its input parameters. The goal of
this procedure is to decrease the number of states and transitions of A by
“moving” the transition (q1, ai, q2) in the automaton graph “up”, applying
Swap Upwards and Sink Combine transformations on the way, until this
transition, along with one or more other transitions which have the same
label, will be replaced by a transition out of q (instead of q1).

Below, we will specify a set of conditions which guarantee that applying
the procedure MoveTransitionUp() is possible and leads to the reduction
of the number of states and transitions of the automaton.

Definition 5.1 Let q ∈ Q and i ∈ {1, ..., n}. A transition is called a future
transition of a state q concerning tape i if it is the first transition involving
this tape on some path in A that starts from q.

Let us fix some q ∈ Q, a ∈ Σ and i ∈ {1, ..., n}. We want to find a
set of future transitions of q concerning tape i, with the label ai, such that
by calling the procedure MoveTransitionUp() for each of these transitions
and the state q, we can reduce the number of states of A by a certain
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amount.
If we denote a set of future transitions of q concerning tape i bearing

the label ai, by ftq,i,a, then let us denote the set of all paths in A, which
start from q and end by any transition in ftq,i,a, by Pftq,i,a . Consider the
following conditions imposed on the path set Pftq,i,a . Let p be a path in the
set Pftq,i,a

and let the two last states on p be denoted by q′ and q′′. Then
the conditions are as follows:

(i) there are no loops in p, except that q′′ may be equal to q;
(ii) every state on p that appears after q and before q′′ is non-initial

and non-final, all of its incoming and outgoing transitions are traversed by
some path in Pftq,i,a , and all of its incoming transitions involve a tape that
is different from i;

(iii) if q′ has more than one outgoing transition then q′′ is non-initial
and has only one incoming transition.

Proposition 5.1 Let q ∈ Q, a ∈ Σ and i ∈ {1, ..., n}. Then there is
a unique maximal set FTq,i,a of future transitions of q concerning tape i,
with the label ai, such that the conditions (i) – (iii) hold for the set PFTq,i,a.

Proof. Consider the set ftall
q,i,a of all future transitions of q concerning

tape i, with the label ai. If ftall
q,i,a is an empty set then the proposition is

trivially true, with FTq,i,a being empty as well. Now, let us assume that the
set ftall

q,i,a is not empty. Then we partition ftall
q,i,a into non-intersecting non-

empty subsets ft1, ..., ftk in the following way. Consider any two transitions
t and u in ftall

q,i,a with the corresponding path sets P{t} and P{u} consisting
of paths starting from q and ending by t and u, respectively. Let t and u
belong to the same subset ftj , j ∈ {1, ..., k}, if and only if there exists a
pair of paths pt ∈ P{t} and pu ∈ P{u} such that pt and pu have a common
state that is different from the starting and the ending states of both pt

and pu.
For every j ∈ {1, ..., k}, let us consider the set of paths Pftj that start

from q and end by any transition belonging to ftj . It is easy to see by the
definition of the sets ftj , j ∈ {1, ..., k}, that if the conditions (i) – (iii) hold
for some path sets Pftj1

, ..., Pftjl
where jm ∈ {1, ..., k}, m ∈ {1, ..., l}, then

these conditions are also true for the union of these path sets.
But for a set of future transitions that, for some j ∈ {1, ..., k}, contains

as a subset a non-empty proper subset ft′j of ftj but not the whole ftj ,
the corresponding set of paths, beginning from q and ending by such a
transition, does not satisfy the condition (ii). This is because then there
must be a state r on a path starting from q and ending by some transition
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in ft′j such that some outgoing transition of r does not belong to this path
whereas it belongs to some path from q ending by some transition in ftj .

To summarize, a maximal subset of ftall
q,i,a such that the conditions (i)–

(iii) hold for all paths starting from q and ending by any transition in this
subset, is a union of all those ftj , j ∈ {1, ..., k}, such that the conditions
(i)–(iii) hold for Pftj . This set is uniquely defined. 2

Let FTq,i,a be the maximal set of future transitions of q concerning tape
i, with the label ai, such that the conditions (i) – (iii) hold for the set of
all paths in A which start from q and end by any transition belonging to
FTq,i,a. Then the following proposition holds.

Proposition 5.2 The series of calls to the procedure MoveTransitionUp()
shown in Figure 5.2 where it is called with every transition in FTq,i,a and
q, results in size reduction of A by |FTq,i,a| − 1 states. Also, at least the
same number of transitions are eliminated from A by this process.

Proof. Consider the series of calls to the procedure MoveTransitionUp()
as specified in the proposition. Let us denote by FT ′q,i,a the set of tran-
sitions, which initially consists of all transitions in FTq,i,a, and which is
modified according to the changes that the above-mentioned calls to the
procedure MoveTransitionUp() produce in the automaton. That is, those
transitions in FT ′q,i,a that are removed from the automaton by Sink Com-
bine and Swap Upwards transformations are also removed from FT ′q,i,a, and
all new transitions bearing the label ai that are created by the same trans-
formations to replace the removed transitions, are added to the set FT ′q,i,a.
Using the same notation as above, let PFT ′q,i,a

be the set of all paths in A

which start from q and end by any transition belonging to FT ′q,i,a. Based
on changes that the Sink Combine and Swap Upwards transformations
can make in the automaton, it is not difficult to see that the conditions
(i)–(iii) hold for all paths in PFT ′q,i,a

after any number of Sink Combine
and/or Swap Upwards transformations have been performed during the
MoveTransitionUp() calls under consideration.

When the procedure MoveTransitionUp() is called for a given transi-
tion (q1, ai, q2) ∈ FT ′q,i,a and the state q, it first checks if the transition still
exists, and if yes, then it uses the Sink Combine transformation to merge
such states reachable from q1 by a transition labelled by ai that satisfy the
conditions for this operation. If there are at least two such states to merge
then, by (iii), this merging concerns every state that is reachable from q1

by any transition in FT ′q,i,a.
If q1 is different from q and if there is only one transition leaving q1 then



44 Chapter 5. Size reduction of multitape automata

by (ii), the Swap Upwards transformation can be applied to this transition,
followed by a set of recursive calls to MoveTransitionUp() for transitions
labelled by ai that were created by the Swap Upwards transformation. In
case q1 6= q and q1 has more than one outgoing transition, all of these transi-
tions belong to (one or more) paths in PFT ′q,i,a

each of which end by a transi-
tion belonging to FT ′q,i,a. When considering these transitions forming a sub-
set of FT ′q,i,a, we claim that when MoveTransitionUp() is called for each
of the transitions in this subset, then these calls to MoveTransitionUp()
finally eliminate all outgoing transitions of q1 and replace them by a sin-
gle transition for which the Swap Upwards transformation can be applied.
This is because, during this process, there is always some transition in the
above-mentioned subset of FT ′q,i,a, for which either Sink Combine or Swap
Upwards transformation can be applied, or otherwise some of the conditions
(i)–(iii) cannot hold.

The conditions (i)-(iii) guarantee that the process involving the series
of calls to MoveTransitionUp() as stated in the proposition concerns only
the states that are on some path of PFT ′q,i,a

, terminates and replaces the
transitions in FTq,i,a by a single transition originating from q with the label
ai (although q can still have other outgoing transitions with this label that
do not belong to FTq,i,a).

During this process, |FTq,i,a|−1 states and at least as many transitions
are eliminated, as shown next. When the Sink Combine transformation is
applied to merge some states reachable from q1 by a transition labelled by
ai then along with the mergeable states it eliminates the same number of
transitions originating from q1. Also, as the merged state (as well as any
other state) may have at most one transition with any label to any state,
those outgoing transitions of the merged state that would otherwise be-
come duplicates are eliminated as well. The Swap Upwards transformation
creates the equal number of new states and transitions with the label ai

going to these states, thus increasing the number of states and transitions
by the same amount. Therefore, as totally |FTq,i,a| transitions are replaced
by a single transition, |FTq,i,a| − 1 states and at least as many transitions
are eliminated by the process. 2

Let us suppose that we find the maximal sets of future transitions for
a state q and tape i, for all possible labels, such that the corresponding
path set of each of these transition sets satisfies the conditions (i)–(iii).
The next proposition ensures that the number of states eliminated from
the automaton by applying the series of MoveTransitionUp() calls as in
Proposition 5.2, for each of these sets, is independent of the order in which
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the sets are handled.

Proposition 5.3 Let q ∈ Q, a, b ∈ Σ and i ∈ {1, ..., n}. Let FTq,i,a and
FTq,i,b be the maximal sets of future transitions of q concerning tape i,
labelled ai and bi, respectively, with their corresponding path sets PFTq,i,a

and PFTq,i,b
which satisfy the conditions (i)–(iii) as in Proposition 5.1. Let

us first apply the transformations described in Proposition 5.2 for the set
FTq,i,a. After that, Proposition 5.2 still holds for the set FTq,i,b.

Proof. First, we claim that for any path pair pt ∈ PFTq,i,a and pu ∈
PFTq,i,b

, if pt and pu have a common state other than q then it is the ending
state of both pt and pu. Indeed, if we suppose that there is a common state
r on paths pt and pu such that r 6= q and r is not the ending state of pt or
pu, then the condition (ii) must be violated. Therefore, such state cannot
exist.

Based on this observation, the transformations performed for the set
FTq,i,a as described in Proposition 5.2 do not interfere with the transfor-
mations for the set FTq,i,b. Therefore, the proposition holds. 2

Similarly to the conditions (i)–(iii), symmetric conditions can be speci-
fied that allow to eliminate states from the automaton by a procedure that
uses the Source Combine and Swap Downwards transformations.

The algorithm for reducing the size of A is presented in Figure 5.3. The
algorithm uses a variable m to indicate the number of states eliminated from
A. First, the algorithm calls a procedure CombineInitialStates() which
merges those initial states of A that do not have any incoming transitions,
into one single state, analogously to the Sink Combine transformation,
and returns the number of states eliminated this way. Then, a similar
procedure named CombineFinalStates(), combining into a single state
those accepting states of A that have no outgoing transitions, and analogous
to the Source Combine transformation, is called. The value of m is updated
on return of both of these procedures. Then, a copy of A is made, denoted
by A1.

Next, the idea is that for each tape of A, as many states as possible are
eliminated from A using a procedure Upwards() (presented in Figure 5.4),
and from A1 using a similar procedure Downwards(). Given the automaton
tape tape, the procedure Upwards() finds for each state q a set FTq,tape that
is the union of all maximal sets FTq,tape,a of future transitions of the state
q concerning the tape tape and some symbol a, such that the conditions
(i)–(iii) are satisfied for the path set PFTq,tape,a . For all FTq,tape,a that
consist of at least two transitions, a state q′ is found which has the same
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Reduce A
1. m := 0;
2. m := m+ CombineInitialStates(A);
3. m := m+ CombineFinalStates(A);
4. A1 := CopyOf(A);
5. reduced := true;
6. while reduced = true do
7. reduced := false;
8. for tape := 1 to n do
9. mup := Upwards(A, tape);
10. mdown := Downwards(A1, tape);
11. if mup > 0 or mdown > 0 then
12. if mup ≥ mdown then
13. A1 := CopyOf(A);
14. m := m + mup;
15. else
16. A := CopyOf(A1);
17. m := m + mdown;
18. reduced := true;
19. return A,m;

Figure 5.3: Reduction algorithm

set of future transitions for this tape and symbol, FTq′,tape,a = FTq,tape,a,
such that the conditions (i)–(iii) are satisfied for PFTq′,tape,a

, and which is
as close to the transitions in FTq,tape,a as possible. Then the procedure
MoveTransitionUp() is called for all of the transitions in FTq′,tape,a and
q′, and by Proposition 5.2 the value of m is decreased by |FTq′,tape,a| −
1. After considering every such set FTq,tape,a, the loop over all states is
started again. This process continues until no further reductions of A can
be achieved using this approach for any state of A. The return value of
Upwards() indicates the number of states eliminated by it. The procedure
Downwards() acts similarly in a symmetric fashion.

In case any states were eliminated from either A or A1, a smaller one of
these automata is retained and the next round with a next tape is performed
using two copies of that automaton. Also, the value of m is updated ac-
cordingly. This process is continued until no more states are eliminated for
any tape. Finally, the algorithm outputs the (possibly) reduced automaton
A, and the total number of eliminated states m.
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procedure Upwards(A, tape)
1. m := 0;
2. reduced := true;
3. while reduced = true do
4. reduced := false;
5. for all q ∈ Q as long as reduced = false do
6. find a set FTq,tape =

⋃
a∈Σ′⊆Σ

FTq,tape,a such that for

each a ∈ Σ′, FTq,tape,a is as in Proposition 5.1;
7. for all a ∈ Σ′ where |FTq,tape,a| > 1 do
8. find a state q′ such that FTq′,tape,a = FTq,tape,a,

FTq′,tape,a is as in Proposition 5.1,
and the longest path from q′ to the originating state
of any transition in FTq,tape,a is of minimal length;

9. for all t ∈ FTq′,tape,a do
10. MoveTransitionUp(A, t, q′);
11. m := m + |FTq′,tape,a| − 1;
12. reduced := true;
13. return m;

Figure 5.4: Procedure Upwards()

5.3 Analysis of the reduction algorithm

Let A be an n-tape automaton with N states over an alphabet Σ. In the
following sections we show the correctness of the reduction algorithm and
analyze its time and space complexity. We also show that the algorithm
does not increase the number of transitions in the automaton.

5.3.1 Correctness of the algorithm

Let us denote the automaton produced by the reduction algorithm applied
to A by Ared.

We consider the reduction algorithm to be correct if, when applied to an
automaton A, it produces Ared such that |Ared| < |A| and L(Ared) = L(A)
or Ared = A. That is, the correct reduction algorithm either modifies the
automaton so that the number of states of the automaton decreases without
changing the language accepted by the automaton, or alternatively, does
not change the automaton at all.

The procedures CombineInitialStates() and CombineFinalStates()
obviously either reduce the size of the automaton by combining some of
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its states together, or do not produce any changes to the automaton. The
transformations performed by these procedures do not change the language
accepted by the automaton. These facts along with Propositions 5.2 and
5.3 guarantee that the reduction algorithm is correct.

5.3.2 Time complexity

In this section we show that the reduction algorithm when applied to A
with n tapes, N states and alphabet Σ takes time O(n3|Σ|3N4).

Let us denote S = |Σ|. First, CombineInitialStates() takes time
O(n2S2N3) as there can be O(N) initial states to eliminate, each of which
having O(nSN) outgoing transitions and each of these transitions will be
checked against the O(nSN) outgoing transitions of the “combined” initial
state before adding into its transition list, or deleting from A in additional
O(nSN) time. Similarly, CombineFinalStates() takes time O(n2S2N3),
too.

Copying A into another automaton can be done in O(nSN2) time as
there are at most N states and nSN2 transitions in A.

In the procedure Upwards(), finding a set FTq,tape (line 6) involves
traversing each transition of A at most a constant number of times, thus
takes totally O(nSN2) time. Finding a state q′ (line 8) can be achieved
in O(N)O(nSN2) = O(nSN3) time. A series of MoveTransitionUp()
calls with all transitions in FTq′,tape,a takes O(n2S2N3) time, as at most
O(nSN) work is done with each of the O(nSN2) transitions of A by the
Sink Combine and Swap Upwards transformations. Thus, the for loop of
Upwards() of lines 5–13 takes time O(N)O(nSN2) + O(S)O(n2S2N3) =
O(n2S3N3). Totally, this loop is run for O(nN) times because there can
be O(N) such loop runs that reduce the size of the automaton and for each
such run there can be O(n) runs that do not result in reduction.

As a similar reasoning can be applied to the procedure Downwards(),
and as the total time to run the if command on lines 11–18 of the reduction
algorithm is O(N)O(n)O(nSN2) = O(n2SN3), the total time taken by the
reduction algorithm is O(n3S3N4).

5.3.3 Space complexity

In the following we show that a space requirement of the reduction algo-
rithm when applied to A is O(n|Σ|N2).

As in the previous section, let us denote S = |Σ|. First, as there are
N states and O(nSN2) transitions in A then a space needed to store A
is O(nSN2). In addition to A, the algorithm maintains a copy A1 of A
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which takes O(nSN2) space, too. No additional space is needed to run the
procedures CombineInitialStates() and CombineFinalStates().

Next, let us discuss a space requirement of the procedure Upwards().
Computing the set FTq,tape and the state q′ may involve O(N) space for
active recursive procedure calls. To store the set FTq,tape, O(SN2) space
is needed. During a series of MoveTransitionUp() calls initiated with the
transitions of FTq′,tape,a, not more than O(nSN) new states and transi-
tions per each state of A may be created and thus a space requirement of
A remains O(nSN2) at any time during the series. There are O(nSN2)
MoveTransitionUp() calls in this series, but only O(N) calls are active
at the same time. As each active call needs O(nSN) space to store a set
of transitions T created by SwapUpwards() then the amount of space this
series of MoveTransitionUp() calls requires is O(nSN2).

Therefore, the space requirement for Upwards() is O(nSN2). The same
space limit holds for the procedure Downwards(). Thus the total space
requirement of the reduction algorithm is O(nSN2).

Corollary 5.1 For a fixed number of tapes and fixed alphabet, the time
and space complexities of the reduction algorithm are O(N4) and O(N2),
respectively.

5.3.4 The effect of the algorithm on the number of transi-
tions

Proposition 5.4 As a result of applying the reduction algorithm on an
automaton, the number of transitions in the automaton either decreases or
remains the same.

Proof. Neither the procedure CombineInitialStates() nor the pro-
cedure CombineFinalStates() increases the number of transitions in the
automaton. By Proposition 5.2, the procedure Upwards() does not do
this either, and the same applies for Downwards(). Therefore, the above
statement holds. 2

5.4 Example

In this section, we present an example of automata on which the reduction
algorithm works nicely.

Let Lk = {wwR |w ∈ {0, 1}k} where k ≥ 1 be a set of strings consisting
of concatenations of any binary string of length k and its reversal string.
Let L∗k be the set that consists of strings obtained by concatenating zero



50 Chapter 5. Size reduction of multitape automata

20 20

20 20 20

20 20 20

20

20

01

01 01

01

11

11

11 01 11

20

11

20

01 11

Figure 5.5: 2-tape automaton A2 constructed from the leftmost automaton
of Figure 3.4

or more times the elements of Lk. For any k ≥ 1, let Ak be the 2-tape
automaton constructed in the following way. We start with a minimal 1-
tape automaton A1

k accepting the language L∗k (as shown in Figure 3.4 (at
left) for k = 2), and modify it to a 2-tape automaton Ak by creating for
every transition q1

a−→ q2 of A1
k, where q1 and q2 are some states of A1

k and

a ∈ {0, 1}, a new state q′1 and a new transition q′1
02−→ q2, and replacing the

transition q1
a−→ q2 with the transition q1

a1−→ q′1. The resulting automaton
for k = 2 is shown in Figure 5.5. The automaton Ak accepts all such tuples
(w1, w2) where w1 is a string belonging to the set L∗k and w2 is a string of
the same length as w1, consisting of only 0s.

The automaton Ak constructed in this way is not a minimal automaton
accepting its language. The size of Ak can be reduced by applying the
reduction algorithm to this automaton. In the following we discuss how
the reduction algorithm works on the automaton A2.
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First, we notice that neither the procedure CombineInitialStates()
nor CombineFinalStates() changes the given automaton which has only
one initial and one final state. Then consider the procedure Upwards()
called for the first tape. By this procedure, the automaton states are con-
sidered one after another, and future transition sets of each state concerning
the first tape as specified in Proposition 5.1 are computed. As there is no
state q and symbol a ∈ {0, 1} such that the maximal future transition set
for q, concerning the first tape and symbol a, would consist of more than
one transition, no calls to the procedure MoveTransitionUp() are issued.
So, the return value of Upwards() is 0, and similarly for Downwards().
Now, let us consider the call to Upwards() for the second tape. As every
transition in A2 concerning the second tape is labelled 02, we only find
the future transitions bearing this label for the second tape. The algorithm
does not specify in which order the automaton states are considered, but let
us start with the initial state which we denote by q0. Then the set of future
transitions FTq0,2,0 consists of two outgoing transitions of these two states
into which q0 has transitions. The corresponding path set PFTq0,2,0 consists
of two paths, both of which satisfy the conditions (i)–(iii) as can be easily
verified. The state q′ as specified on line 8 of Upwards() is the same as q0.
By calling the procedure MoveTransitionUp() for one of the transitions in
FTq0,2,0, this transition will be “moved up” by Swap Upwards transforma-
tion, but no more transformations are induced by the recursive call to the
procedure. Then, MoveTransitionUp() is called for the other transition
in FTq0,2,0, which means that the Swap Upwards transformation is applied
to this transition followed by the Sink Combine transformation applied to
the resulting transition by the recursive call to MoveTransitionUp(). The
automaton after these transformations is depicted in Figure 5.6.

Next in Upwards(), the loop over the automaton states, where their
future transitions involving the second tape are computed, starts all over
again. The automaton after the procedure Upwards() stops is also the re-
sulting automaton of the whole reduction algorithm because by applying
Downwards() instead of Upwards(), the same number of states are elimi-
nated.

When we apply the reduction algorithm on Ak, the result is an automa-
ton Akred of a smaller size as shown in Figure 5.7 for the case k = 2. Obvi-
ously, Akred is a minimal automaton. However, it is not the only minimal
automaton accepting its language. Actually, if we prefer the “downward”
swaps to the “upward” swaps in a situation where the number of elimi-
nated states both ways is the same, that is, if we modify the reduction
algorithm so that line 12 would be “if mup > mdown then” instead of “if
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Figure 5.6: Intermediate step in the application of the reduction algorithm
to A2
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Figure 5.7: The automaton A2red obtained by applying the reduction algo-
rithm on A2

mup ≥ mdown then”, then the reduced automaton would be different as
shown in Figure 5.8 for the case k = 2, but (in this example) still have the
same number of states.

In the general case, though, the reduction algorithm does not necessarily
produce a minimal automaton. An example of this kind of automaton is
presented in Section 6.3.

For any k ≥ 1, the automaton Ak has 7× 2k − 7 states and 8× 2k − 8
transitions. In the reduced automaton Akred there are 3×2k +2k−3 states
and 4× 2k + 2k− 4 transitions. Thus, 4× 2k − 2k− 4 states and the same
number of transitions are eliminated from Ak by the reduction algorithm.

We have performed experiments with the reduction algorithm on the
automata Ak where k = 1, ..., 7. The experiments have been carried out on
an Intel Pentium 4 1.8GHz server computer. The results of these experi-
ments are presented as a table in Figure 5.9. The table shows the size of Ak,
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Figure 5.8: The automaton obtained by applying the modified reduction
algorithm on A2
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k |Ak| |Ak| − |Akred| time
1 7 2 0.000
2 21 8 0.001
3 49 22 0.003
4 105 52 0.021
5 217 114 0.147
6 441 240 1.121
7 889 494 8.542

Figure 5.9: A table presenting the sizes of Ak, the numbers of eliminated
states and the average times taken by the reduction algorithm

the number of eliminated states from Ak, and the user CPU time in sec-
onds averaged over 100 calls to the procedure implementing the reduction
algorithm, for k = 1, ..., 7.
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Chapter 6

Application of the reduction
algorithm

In this chapter we apply the multitape-automata size-reduction algorithm
of Chapter 5 in the string database system described in [9]. In fact, the
first motivation to develop the reduction algorithm was given by the de-
velopment of this system. This database system has been discussed in
several earlier papers as well, such as [13]–[15]. However, the most recent
and most complete overview of the system is given in [9]. In Section 6.1
we present the basis of the system called Alignment Declaration language
and in Section 6.2 we describe how expressions in this language can be
compiled to and viewed as multitape automata. An example of a string
operation expressed in the Alignment Declaration language with the cor-
responding automata is presented in Section 6.3. In Section 6.4 we discuss
the application of the reduction algorithm combined with the one-tape DFA
minimization procedure on this kind of automata. Finally, in Section 6.5
we present experimental results of applying this approach on a set of string
operations.

6.1 Alignment Declaration language

In this section we describe the Alignment Declaration language that is the
basis of our string database system. This language is based on Alignment
Calculus [10]. The Alignment Declaration language is designed to describe
string comparison and manipulation operations. A string operation ex-
pressed in this language is called an alignment declaration. We give a def-
inition of an expression in the Alignment Declaration language recursively
as follows.

57
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First, a basic statement of this language is an on-statement. It consists
of the word on, which is possibly preceded by a scan part and possibly
followed by a condition part. A scan part starts with the word scan or
rightscan followed by a list of string variables corresponding to strings this
scan part has an effect on. Depending on whether the scan part starts with
a scan or a rightscan, the effect of the scan part is to move the position of a
currently considered character of the corresponding string to the next or the
previous position. A condition part is a Boolean combination of character
comparisons written as x=’a’, x=y, x=[ or x=]. These comparisons evaluate
true if, respectively, the currently considered character of a string denoted
by variable x is ’a’, the same as the currently considered character of a
string denoted by variable y, the left endmarker, or the right endmarker.
The left and right endmarkers, respectively, denote the positions before the
first and after the last character of a string. Initially, the current position for
any string considered is the left endmarker. An on-statement holds if and
only if, after taking into account possible changes of currently considered
characters of the strings pointed out by the scan part, the condition part
evaluates true.

An on-statement is an expression in the Alignment Declaration lan-
guage. Other expressions are defined recursively as follows. If Φ1 and Φ2

are expressions then their concatenation Φ1Φ2 is an expression, repeat *
times Φ1 end is an expression, and choose Φ1|Φ2 end is an expression. The
expression Φ1Φ2 holds if and only if Φ1 holds and Φ2 holds when evaluated
starting from the same currently considered character positions where the
evaluation of Φ1 ends. The expression repeat * times Φ1 end holds if and
only if a k-fold concatenation of Φ1 with itself holds for some k ≥ 0. The
expression choose Φ1|Φ2 end holds if and only if Φ1 holds or Φ2 holds.

Some additional constructs are defined in the Alignment Declaration
language to make the expressions shorter. For example, repeat * times
scan x on x=’a’ end can be written as scan* x on x=’a’, and similarly
for rightscan. Also, successive on-statements with their scan part starting
with scan and involving a single variable like scan x on x=’a’ scan x
on x=’c’ scan x on x=’a’ can be replaced by a statement read x on
’aca’. In a similar way, on-statements with their scan part starting with
rightscan can be replaced by a rightread statement.

By default, it is assumed that all characters in all strings belong to
the 8-bit ASCII character set. However, subsets of the ASCII alphabet
can be defined using an alphabet declaration, for example, like alphabet
DNA : ’A’, ’C’, ’G’, ’T’, which defines an alphabet named DNA with
the four specified symbols. This kind of named alphabets can be used, for
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example, in keep-statements like keep x in DNA ... end where in place
of the dots there is a list of statements that form a scope in which one
wants to limit the content of the string corresponding to x to the DNA
characters. This is equivalent to adding to the condition part of every on-
statement in that scope involving x an extra condition of the form (x=’A’
or x=’C’ or x=’G’ or x=’T’ or x=[ or x=]). It is assumed that each
alignment declaration is surrounded by implicit keep-statements for every
variable used in the declaration, which limit the content of all strings to the
ASCII characters. The condition part of each on-statement that involves
some variable is affected by both implicit and explicit keep-statements for
that variable in whose scope the on-statement is.

All alignment declarations start with a name of the string operation,
followed by a parenthesized list of the string variables that this string op-
eration uses, separated by commas.

There is also a macro call facility in the language and a possibility of
adding extra annotations to the query result which we will not discuss here.
The complete syntax of the Alignment Declaration language can be found
in [9].

6.2 Alignment declarations as multitape automata

Let Φ be an alignment declaration with string variables x1, ..., xn. In the
following we describe how Φ can be translated into an n-tape automaton
A with ε-transitions in the two-way mixed-state model.

First, every Boolean formula in all on-statements of Φ is transformed
so that it consists of only and and or operations combining character
comparisons in the forms x=’a’, x=[ or x=]. For this reason, first rules
such as not (Φ1 and Φ2) ≡ not Φ1 or not Φ2 and not (Φ1 or Φ2)
≡ not Φ1 and not Φ2 as well as not not Φ1 ≡ Φ1 are applied when
possible. After this, not operations and character comparisons in the
form x=y are eliminated, using string alphabets that are valid for the on-
statements under consideration.

To create A, we use a function Compile() described below which takes
either an alignment declaration or a part of it as its first input argument
and the automaton state as its second input argument, possibly creates
new states and transitions into the automaton and calls itself recursively,
and finally outputs an automaton state.

At the beginning, let A consist of a single final state qF . Then, a call to
the function Compile(Φ, qF) builds up A and yields the initial state qI of
A. Let Φ1 and Φ2 denote either expressions in the Alignment Declaration
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language or parts of such Boolean formulas described above. Let q be
an automaton state. In addition to the special symbols [ and ] denoting
the left and right endmarkers, the symbol @ is used to denote any ASCII
character or the right endmarker, L is used to denote a tape movement to
the left by one position, and R is used to denote a tape movement to the
right by one position. Then we define the function Compile() by induction
over the structure of the alignment declaration as follows:

1) Compile(Φ1Φ2, q) = Compile(Φ1 and Φ2, q) =
Compile(Φ1, Compile(Φ2, q));

2) Compile(choose Φ1|Φ2 end, q) = Compile(Φ1 or Φ2, q) = q1

where q1 is a new state that has ε-transitions to Compile(Φ1, q) and
Compile(Φ2, q);

3) Compile(repeat * times Φ1 end, q) = q1 where q1 is a new state
that has ε-transitions to q and Compile(Φ1, q1);

4) Compile(on Φ1, q) = Compile(Φ1, q);
5) Compile(scan xi1 , ..., xik on Φ1, q)= q1 where ij ∈ {1, ..., n} and

q1, ..., qk are new states with transitions qj

Lij−→ qj+1 for j = 1, ..., k,
with qk+1 = Compile(Φ1, q);

6) Compile(rightscan xi1 , ..., xik on Φ1, q) = q1 where ij ∈ {1, ..., n}
and q1, ..., q2k are new states with transitions q2j−1

@ij−→ q2j ,

q2j

Rij−→ q2j+1, and q2j−1

[ij−→ q2j+1 for j = 1, ..., k, where
q2k+1 = Compile(Φ1, q);

7) Compile(xi = σ, q) = q1 where i ∈ {1, ..., n}, σ is either an ASCII
character or the left or right endmarker, and q1 is a new state with
a transition q1

σi−→ q;
8) Compile(true, q) = q1 where q1 is a new state with an ε-transition

to q;
9) Compile(false, q) = q1 where q1 is a new state with no transitions.

Note that the compilation of an on-statement depends on whether
its scan part starts with the word scan or rightscan. If it starts with
rightscan, the tape movement to the right is preceded by a check whether
the current character on the given tape is any ASCII character or the right
endmarker, in which case the tape move will take place; in case the current
character is the left endmarker, the tape move will not occur. These checks
are explicitly put into the automaton by means of corresponding transi-
tions. If an on-statement starts with the word scan, then, in principle,
we could use similar reasoning and put similar extra transitions into the
automaton. However, this is not necessary because, initially, the current
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character of each tape is the left endmarker in which case the tape move-
ment to the left is possible, and such transitions in the automaton implying
moving the tape to the left in the situation where the current tape charac-
ter is the right endmarker, are replaced by ε-transitions by a later analysis
of the automaton as discussed below.

As a result of the function call Compile(Φ, qF) a two-way multitape
automaton A with one initial and one final state is created. This automaton
can be considered as another representation of the alignment declaration
Φ. Besides the ε-transitions, there are two kinds of transitions in A: those
that represent the character checks of the input strings, and those that
represent the tape movements to the left and right.

The ε-transitions can be eliminated from the automaton, using Propo-
sitions 2.1 and 2.2 in Section 2.3 and known methods from the one-tape
automata theory.

Next, the automaton A can be modified to eliminate redundant checks
and tape movements from it. For this reason, the automaton is expanded so
that in each state it remembers the last transition labels for all tapes which
appeared on any path from the initial state to the given state. Based on
this information, the redundant transitions are replaced with ε-transitions,
and such transitions that obviously cannot be applied are eliminated from
the automaton. For example, if the last transition concerning tape i was
labelled by ai where a is some ASCII character, and the current transition
is labelled with @i then the current transition can be considered redundant
and is therefore replaced by an ε-transition. Also, a transition labelled
Li after a transition with the label ]i is replaced by an ε-transition, and
similarly for a transition labelled Ri after a transition with the label [i. Or,
if the last transition was labelled Li and the current transition is labelled
[i then it is obvious that the current transition is not possible to take and
it can be eliminated.

After the expansion, the ε-transitions are eliminated from the automa-
ton. Also, the states that are not on any path from an initial state to a
final state are eliminated from the automaton.

6.3 An example

This section presents an example of an alignment declaration describing a
property involving two strings x and y from the alphabet {a, b} where y is
the reversal of x.

The alignment declaration is as follows:
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reversal(x, y)
keep x in ’a’, ’b’
keep y in ’a’, ’b’

scan* x on
scan x on x=]
repeat * times

rightscan x on
scan y on x=y

end
rightscan x on x=[
scan y on y=]

end
end

The corresponding 2-tape automaton, obtained as the result of apply-
ing the function Compile() on this alignment declaration where the ε-
transitions are eliminated, is shown in Figure 6.1. Here, the first tape
corresponds to variable x and the second one to y.

The expanded version of the automaton where ε-transitions and non-
useful states are eliminated, is shown in Figure 6.2. Let us denote this
automaton Areversal.

6.4 Reducing the size of a multitape automaton

Our first motivation to develop the multitape automata size reduction al-
gorithm of Section 5.2 was to apply it to the multitape automata corre-
sponding to the alignment declarations as described above. Applying this
algorithm to two-way multitape automata is possible, based on the discus-
sion in Section 2.3. To continue with the example of the previous section, if
we apply the reduction algorithm to the automaton Areversal in Figure 6.2,
the size of the automaton is reduced from 23 states to 16 states. The
resulting automaton denoted by RED(Areversal) is shown in Figure 6.3.

Interestingly, another method to try to reduce the size of a multitape
automaton is to interpret it as a one-tape automaton as discussed in Sec-
tion 2.3, find a minimal DFA equivalent to this one-tape automaton, and
then interprete the resulting automaton again as a multitape automaton.
Although, generally, finding an equivalent minimal DFA for a given one-
tape nondeterministic automaton can result in a larger automaton instead
of a smaller one, this approach is worth trying on the automata produced
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Figure 6.1: The automaton corresponding to the alignment declaration
reversal(x, y) after eliminating ε-transitions
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Figure 6.4: The automaton MIN(Areversal)

from the alignment declarations as the test results presented in the next
section indicate.

If we apply this method to the automaton Areversal of our example, the
result is the automaton MIN(Areversal) with only 11 states as shown in
Figure 6.4.

Now, applying the reduction algorithm after the one-tape DFA mini-
mization can lead to a further size reduction of the multitape automaton. In
the current example, if we apply the reduction algorithm to MIN(Areversal)
then the result is even smaller automaton RED(MIN(Areversal)) with 9
states as shown in Figure 6.5. Further application of the one-tape DFA
minimization on this automaton does not change the automaton.

Similarly, we can apply the one-tape DFA minimization procedure on
the automaton RED(Areversal). The resulting automaton is the same as
the automaton MIN(Areversal). Applying the reduction algorithm again on
this automaton, we obtain the same automaton as RED(MIN(Areversal)).

Concerning this example, we can notice two things. First, the one-
tape DFA minimization reduces the size of the automaton of this example.
Second, the end result of applying the reduction algorithm and the one-tape
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Figure 6.5: The automaton RED(MIN(Areversal))
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DFA minimization procedure one after another until no more size reduction
of the automaton can be achieved, does not depend on which of these two
procedures was applied first.

However, in general, the DFA minimization does not necessarily reduce
the size of the automaton. Also, generally, the end result of applying the
aforementioned two algorithms one after another does depend on which one
is applied first, as the results of the experiments show in the next section.

Finally, we propose the following algorithm to reduce the size of a multi-
tape automaton A that alternatingly applies two size-reducing algorithms.
Apply two sequences of algorithms consisting of the one-tape DFA mini-
mization procedure and our reduction algorithm of Chapter 5 by turn on
A, at one time starting with the DFA minimization algorithm and the other
time starting with our reduction algorithm, and stopping whenever no more
changes happen in A, or alternatively, the size of A is increased by the DFA
minimization procedure. Output the smaller of the resulting two automata.

6.5 Experimental results

To test our reduction algorithm as presented at the end of the previous sec-
tion, we have considered a set of alignment declarations expressing different
string properties, and made experiments with the corresponding multitape
automata. Besides the reversal operation discussed in Section 6.3, we have
considered the following string predicates.

The substring, subsequence, prefix and suffix operations applied on some
strings x and y as written below respectively express the property that x
is a substring, a subsequence, a prefix or a suffix of y. As the declarations
indicate, both strings belong to the alphabet {a, b}.

substring(x, y)
keep x in ’a’, ’b’
keep y in ’a’, ’b’

scan* y on not y=]
scan* x,y on x=y
scan x on x=]

end
end
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subsequence(x, y)
keep x in ’a’, ’b’
keep y in ’a’, ’b’

repeat* times
choose

scan x,y on x=y and not y=] |
scan y on not y=]

end
end
scan x on x=]

end
end

prefix(x, y)
keep x in ’a’, ’b’
keep y in ’a’, ’b’

scan* x, y on x=y
scan x on x=]

end
end

suffix(x, y)
keep x in ’a’, ’b’
keep y in ’a’, ’b’

scan* x on
scan x on x=]
scan* y on
scan y on y=]
rightscan* x, y on x=y
rightscan x on x=[

end
end
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The concatenation and shuffle operations applied on strings x, y and z
as written below correspondingly express the property that x is a concate-
nation or a shuffle of y and z. As above, the strings belong to the alphabet
{a, b}.

concatenation(x, y, z)
keep x in ’a’, ’b’
keep y in ’a’, ’b’
keep z in ’a’, ’b’

scan* x,y on x=y and not y=]
scan y on y=]
scan* x,z on x=z and not x=]
scan x,z on x=] and z=]

end
end
end

shuffle(x, y, z)
keep x in ’a’,’b’
keep y in ’a’,’b’
keep z in ’a’,’b’

repeat* times
choose

scan x, y on x=y and not x=] |
scan x, z on x=z and not x=]

end
end
scan x, y, z on x=] and y=] and z=]

end
end
end
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The overlap operation applied on strings x, y and z expresses the prop-
erty that the suffix of x is the same that the prefix of y for |z| or more
characters. Again, the alphabet of the strings is {a, b}.

overlap(x, y, z)
keep x in ’a’, ’b’
keep y in ’a’, ’b’
keep z in ’a’, ’b’

scan* x on not x=]
scan* x,y,z on x=y
scan x,z on x=] and z=]

end
end
end

The operation edit distance applied on strings x, y and z expresses the
property that the edit distance of x and y is not greater than |z|. Here the
strings belong to the DNA alphabet {a, c, g, t}.

edit distance(x, y, z)
keep x in ’a’,’c’,’g’,’t’
keep y in ’a’,’c’,’g’,’t’
keep z in ’a’,’c’,’g’,’t’

repeat* times
choose

scan x, y on x=y |
scan x, y, z on not z=] |
scan x, z on not z=] |
scan y, z on not z=]

end
end
scan x, y on x=] and y=]

end
end
end

We have made experiments by applying the reduction algorithm de-
scribed at the end of Section 6.4 on the multitape automata generated
from the alignment declarations described above. The algorithm is applied
to the expanded automata. The results of the experiments are presented
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in the form of a table in Figure 6.6. For each string predicate considered,
the table shows the number of tapes n and the alphabet size |Σ| of the
corresponding automaton, the size of the original automaton |Aorig| (the
result of applying the function Compile() on the corresponding alignment
declaration) after eliminating ε-transitions from it, the size of the expanded
automaton |Aexp| after ε-transition elimination. The reduction algorithm
is applied on the ε-transition-free expanded automaton Aexp of each string
operation. The table shows the size of the automaton during the reduction
process, given in two rows: the upper row shows the automaton size in
the reduction sequence where the one-tape DFA minimization procedure is
applied first, and the lower row shows the automaton size in the sequence
where the reduction algorithm of Chapter 5 is applied first. The numbers
in the columns with the word MIN and RED indicate the size of the au-
tomaton in the reduction process, after applying the DFA minimization
procedure or the reduction algorithm of Chapter 5, respectively.

In many cases, both of these reduction sequences end up with the au-
tomata of the same size, although the resulting automata are not neces-
sarily identical. However, sometimes one or the other of these approaches
produces a smaller automaton, as is the case with the suffix and overlap
operations.

Interestingly, in all of these examples, applying the DFA minimization
algorithm never increases the size of the automaton. On the contrary,
applying this algorithm seems to achieve most of the reduction of the au-
tomaton size.

For most of the string predicates considered in our experiments, the
size of the reduced automaton is smaller than the size of the corresponding
original automaton. However, this is not always the case, as indicated by
the automata of the overlap and edit distance predicates. Based on this, one
may question the usefulness of the whole expansion and reduction process.
However, if one has in mind the efficiency of simulating the computations
of automata, then avoiding redundant checks of tape symbols and those
paths that are not possible to follow, seem to be important. Fortunately,
most of the size growth in the expanded automata seems to disappear as a
result of the reduction process.
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String n |Σ| |Aorig| |Aexp| Automaton size during
predicate the reduction process

MIN RED MIN
reversal 2 2 17 23 11 9 9

RED MIN RED MIN
16 11 9 9

MIN RED
substring 2 2 11 18 9 9

RED MIN RED
11 9 9

MIN RED
subsequence 2 2 11 17 7 7

RED MIN RED
12 7 7

MIN RED
prefix 2 2 9 16 7 7

RED MIN RED
9 7 7

MIN RED
suffix 2 2 18 25 11 11

RED MIN RED
17 13 13

MIN RED MIN
concatenation 3 2 21 20 13 12 12

RED MIN RED MIN
19 13 12 12

MIN RED MIN
shuffle 3 2 21 51 12 10 10

RED MIN RED MIN
45 12 10 10

MIN RED MIN
overlap 3 2 15 48 21 20 20

RED MIN RED
29 19 19

MIN RED
edit distance 3 4 24 168 27 27

RED MIN RED MIN RED
134 30 28 27 27

Figure 6.6: Automaton sizes before and during the reduction process
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Chapter 7

Conclusions

In this thesis we have considered some issues related to minimization of
one-tape automata and size reduction of multitape automata.

Concerning the much-researched topic of minimization of one-tape au-
tomata, it is a well-known fact that a minimal NFA can be exponentially
smaller than the equivalent minimal DFA. However, quite often, the sizes of
a minimal NFA and DFA of a given language do not differ that much or are
even the same. Here, our interest has been to find conditions under which
a minimal DFA is also a minimal NFA of its language. We have shown that
in addition to the earlier known fact of bideterministic automata being
minimal among DFAs, these automata are uniquely minimal among NFAs
as well. We have also shown that bideterministic automata have a minimal
number of transitions. Also, we have specified a set of sufficient conditions
guaranteeing that a minimal DFA of a given language or the reversal of
a minimal DFA of the reversal language is a minimal NFA accepting that
language. The latter result is more general and, in fact, the minimality
of bideterministic automata can be obtained from that result as a special
case.

Interesting future research topics in this area could be to find other
automata classes besides bideterministic automata with unique minimal
NFAs (if they exist), and to specify other classes of automata with a mini-
mal number of transitions. More generally, minimality issues in respect to
the number of transitions seem to be not so well studied so far.

Concerning multitape automata, we have shown that bideterminism
in multitape automata does not guarantee minimality of these automata.
Still, a bideterministic multitape automaton is a unique minimal automaton
among all automata with the same set of accepting computations.

We have developed a polynomial-time size reduction algorithm for one-
way multitape automata and shown its good size-reduction effect on an

75



76 Chapter 7. Conclusions

example automata family. We have applied this algorithm along with the
one-tape DFA minimization procedure to two-way multitape automata cor-
responding to example string predicates defined in the string-manipulating
database system of [9], with good results.

However, there may be ways to improve the reduction algorithm. For
example, applying an approach similar to that described in [20] and [21]
where the states of an NFA are merged according to their largest left and
right invariant equivalences, could be useful for the size reduction of mul-
titape automata as well.
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[25] Karhumäki, J. Applications of finite automata. In Proceedings of
MFCS 2002, Lecture Notes in Computer Science 2420, Springer, 2002,
40–58.

[26] Khachatryan, V.E. Complete system of equivalent transformations
for multitape automata. Programming and Computer Software 29, 1,
(2003), 43–54.

[27] Matz, O., and Potthoff, A. Computing small nondeterministic finite
automata. In Proceedings of the Workshop on Tools and Algorithms
for the Construction and Analysis of Systems, BRICS Notes Series,
May 1995, 74–88.

[28] Muder, D.J. Minimal trellises for block codes. IEEE Trans. Inform.
Theory 34, 5 (1988), 1049–1053.

[29] Pin, J.-E. On reversible automata. In Proceedings of the first LATIN
conference, Lecture Notes in Computer Science 583, Springer, 1992,
401–416.

[30] Rabin, M.O., and Scott, D. Finite automata and their decision prob-
lems. IBM J. Res. Develop. 3, (1959), 114–125.

[31] Sengoku, H. Minimization of nondeterministic finite automata. Mas-
ter’s thesis, Kyoto University, 1992.

[32] Shankar, P., Dasgupta, A., Deshmukh K., and Rajan B.S. On viewing
block codes as finite automata. Theoretical Computer Science, 290, 3
(2003), 1775–1797.

[33] Tamm, H., and Ukkonen, E. Bideterministic automata and minimal
representations of regular languages. In Proceedings of the CIAA 2003,
Lecture Notes in Computer Science 2759, Springer, 2003, 61–71.

[34] Tamm, H., and Ukkonen, E. Bideterministic automata and minimal
representations of regular languages. Theoretical Computer Science,
328, 1–2 (2004), 135–149.



80 References

[35] Watson, B.W. Taxonomies and toolkits of regular language algorithms.
PhD dissertation, Faculty of Mathematics and Computing Science,
Eindhoven University of Technology, Eindhoven, The Netherlands,
1995.

[36] Yamasaki, H. On multitape automata. In Proceedings of MFCS’79,
Lecture Notes in Computer Science 74, Springer, 1979, 533–541.
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