
DEPARTMENT OF COMPUTER SCIENCE

SERIES OF PUBLICATIONS A
REPORT A-2002-1

Object-Oriented Engineering of
Visual Languages

Antti-Pekka Tuovinen

To be presented, with the permission of the Faculty of Science of the
University of Helsinki, for public critcism in Auditorium III, Portha-
nia, on March 2nd, 2002, at 10 o’clock.

UNIVERSITY OF HELSINKI

FINLAND

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14916897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contact Information
Postal address:

Department of Computer Science
P.O.Box 26 (Teollisuuskatu 23)
FIN-00014 University of Helsinki
Finland

Email address: antti-pekka.tuovinen@
�
cs.helsinki.fi, nokia.com �

URL: http://www.cs.Helsinki.FI/

Telephone: +358 9 1911

Telefax: +358 9 191 44441

Copyright c
�

2002 by Antti-Pekka Tuovinen
ISSN 1238-8645
ISBN 952-10-0375-8 (bound)
ISBN 952-10-0376-6 (PDF)
Computing Reviews (1998) Classification: D. 3. 4, F. 4 .2, D. 1. 7
Helsinki 2002
Helsinki University Printing House

Object-Oriented Engineering of Visual Languages

Antti-Pekka Tuovinen

Department of Computer Science
P.O.Box 26, FIN-00014 University of Helsinki, Finland
antti-pekka.tuovinen@

�
cs.helsinki.fi, nokia.com �

http://www.cs.helsinki.fi/antti-pekka.tuovinen/

PhD Thesis, Series of Publications A, Report A-2002-1
Helsinki, February 2002, 185 pages
ISSN 1238-8645, ISBN 952-10-0375-8 (bound)
ISBN 952-10-0376-6 (PDF)

Abstract

Visual languages are notations that employ graphics (icons, diagrams) to present
information in a two or more dimensional space. This work focuses on diagram-
matic visual languages, as found in software engineering, and their computer im-
plementations. Implementation means the development of processors to automat-
ically analyze diagrams and the development of graphical editors for constructing
the diagrams. We propose a rigorous implementation technique that uses a for-
mal grammar to specify the syntax of a visual language and that uses parsing to
automatically analyze the visual sentences generated by the grammar.

The theoretical contributions of our work are an original treatment of error han-
dling (error detection, reporting, and recovery) in off-line visual language parsing,
and the source-to-source translation of visual languages. We have also substan-
tially extended an existing grammatical model for multidimensional languages,
called atomic relational grammars. We have added support for meta-language ex-
pressions that denote optional and repetitive right-hand-side elements. We have
extended what basically is a context-free grammatical model to take into account
a limited amount of contextual information in order to better represent general
graphs. Futhermore, we have made the parsing algorithm of the grammatical
model more deterministic to facilitate effective error handling.

The main product of the constructive part of our research is the VILPERT (VIsual
Language exPERT) system. It is an object-oriented Java framework for imple-
menting visual languages. Implementing a visual language with VILPERT means
generating a language analyzer based on a formal syntactic specification and im-
plementing a graphical editor for manipulating the visual programs. The frame-
work has a language specification sub-framework that is based on our extended
version of atomic relational grammars. The language specification framework
providers a parser for recognizing the languages specificed by extended atomic
relational grammars. The parser produces a parse tree from a correct input, and
the semantics of the source program is defined operationally by operations on the
parse tree.

In our system, the graphical editor of a visual language is derived from an open-
source Java framework. In the editor framework, we have added support for the
notion of composite figure containers that facilitate the drag-and-drop style of
moving figures into and out of containers and the construction of deeply nested
graphical structures.

Our system provides a clean separation of the concerns of the graphical editing
and the interpretation of diagrams both from the architectural and the usability
point of view. The user draws the diagram in free order (not dictated by a syntax
directed editor) and then invokes the language analyzer to interpret the drawing.
The analyzer informs the user about any errors it finds during parsing and semantic
processing. This approach to visual language implementation makes it possible to
combine the sketching and the checking of diagrams into an explorative style of
constructing visual programs.

Separating the two concerns of editing and analyzing reduces the software com-
plexity of the implementation. For example, the correctness of a diagram does
not have to be constantly enforced during editing, syntactic rules do not have to
be enforced by hand-coded checks, and it is natural to maintain a clear separa-
tion between representation (graphical objects) and meaning (semantic or domain
objects).

We have validated our solution by implementing three visual languages that rep-
resent typical notations used in software engineering (UML structural diagrams,
UML statecharts, and flowcharts) and other small experimental languages. Be-
cause VILPERT is a framework, tools produced from it can be open for extensions,
modifications, and they can share a common pool of reusable software compo-
nents. Our implementations of visual languages show a high degree of reuse: the
language (application) specific parts of the implementations is less than 20% of
the total size of the applications.

Computing Reviews (1998) Categories and Subject Descriptors:

D. 3. 4 [Programming Languages]: Processors—parsing, translator writing
systems and compiler generators

F. 4 .2 [Mathematical Logic and Formal Languages]: Grammars and Other
Rewriting Systems—grammar types, parsing

D. 1. 7 [Programming Techniques]: Visual Programming

General Terms:

Languages, Algorithms

Additional Key Words and Phrases:

Grammatical modeling, visual language parsing, visual language translation, object-
oriented frameworks, graphical editors, diagrammatic languages

Acknowledgements

I am grateful to my supervisor, Professor Jukka Paakki for guiding me through
the long process of post-graduate studies and my thesis research. He has given me
good advice on many aspects related to my studies, research, publications, and
academic life in general. He always carefully read and commented my writings.
We have also published papers together and I have very much enjoyed working
with him.

I have carried out most of this research while working at the Department of Com-
puter Science at the University of Helsinki. The department, headed by Professors
Martti Tienari, Esko Ukkonen, Timo Alanko, and currently Jukka Paakki, has pro-
vided excellent working conditions and a supportive and friendly atmosphere. For
example, the library of the department has been a very important source of infor-
mation for my studies and my research work.

I have had the privilege to work with many colleagues during my years at the de-
partment. My thesis research was mostly solitaire work but I highly appreciate the
co-operation with the colleagues in teaching and when working on other research
topics. I have learnt a lot during the years from many people and I want to thank
all the people of the department for this.

The National Technology Agency of Finland (TEKES), Helsinki Graduate School
in Computer Science and Engineering (HeCSE), and the Academy of Finland have
financially supported this work. Thanks to their support, I was able to concentrate
on my thesis research almost full time during the first five years of my doctoral
studies. I also thank my current employer Nokia for providing me the time needed
to finish my thesis and for financing the publication of the thesis.

Espoo, January 27, 2002

Antti-Pekka Tuovinen

Contents

1 Introduction 1

1.1 Visual Languages . 1

1.1.1 Characteristics of Graphical Notations 3

1.1.2 Visual Languages in Software Engineering 4

1.1.3 Specifying Visual Languages 6

1.1.4 Implementing Visual Languages 9

1.2 Research Problem and Contributions 11

1.2.1 Motivation . 11

1.2.2 Hypothesis and Rationale 12

1.2.3 Contributions . 15

1.3 Thesis Outline . 17

2 Atomic Relational Grammars 19

2.1 The Grammatical Formalism . 19

2.1.1 Relational Languages . 19

2.1.2 Atomic Relational Grammars and Languages 20

2.2 Earley-style Parsing for ARGs 27

2.2.1 Earley’s Basic Algorithm 27

2.2.2 Wittenburg’s Extensions to Earley’s Algorithm 29

3 Problems in Using ARGs 35

3.1 Grammatical Problems . 35

3.1.1 Structured Graphs . 36

3.1.2 Unstructured Graphs . 38

3.2 Parsing Problems . 43

3.2.1 Parsing Structural Variants 44

i

ii CONTENTS

3.2.2 Any-Start . 47

3.2.3 Semantics and Evaluation of Predicates 48

3.3 Complexity of Parsing . 50

3.3.1 Analysis . 50

3.3.2 The Causes of the High Complexity 52

3.4 Discussion . 52

4 Extended ARGs 55

4.1 Extended ARGs . 55

4.2 Predictive Lookahead . 62

4.3 Parsing Extended ARGs . 67

4.3.1 Parsing Iterative Symbols 68

4.3.2 Implementation of Predictive Lookahead 73

4.3.3 Building a Parse Tree . 74

4.4 Additional Remarks . 77

5 Error Handling 81

5.1 Defining Syntax Errors . 82

5.2 Parsing Failures . 85

5.3 Error Recovery . 89

5.3.1 Local Recovery . 89

5.3.2 Global Recovery . 91

5.3.3 Error Recovery in EARG Parsing 93

5.4 Integration to the Parser . 96

5.5 The EARG Parsing Algorithm 97

5.6 Discussion . 100

6 The VILPERT Framework 103

6.1 Object-Oriented Application Frameworks 103

6.2 HotDraw and JHotDraw . 105

6.3 Introduction to VILPERT . 107

6.3.1 General . 107

6.3.2 Object-Oriented representation of EARGs 108

6.4 Architecture of VILPERT . 113

6.4.1 The Relap Package . 113

CONTENTS iii

6.4.2 The Draw Package . 114

6.4.3 An Example – The UML Statechart Language 115

6.5 User Interaction . 120

6.5.1 General . 120

6.5.2 Error Handling . 120

6.6 Experiences with VILPERT . 127

6.6.1 About the Implementation 127

6.6.2 Visual Languages Implemented with VILPERT 128

6.6.3 Further Remarks . 132

7 Source-to-Source Translation 133

7.1 The Structured Flowchart Language 133

7.2 Syntax-Directed Source-to-Source Translation 135

7.2.1 Flow of Syntax-Directed Translation 135

7.2.2 Relational Tree Transformation Grammars 139

7.2.3 Example – From Flowcharts to Box Diagrams 144

7.3 Integration to VILPERT . 151

8 Related Work 153

8.1 Specification and Implementation 153

8.1.1 Grammar-based Approaches 153

8.1.2 Object-Oriented Language Engineering 164

8.1.3 Meta-Modeling Approach 165

8.2 Error Handling in Visual Languages 166

8.3 Source-to-Source Translation . 168

9 Conclusions 171

A Statechart Grammar 181

iv CONTENTS

Chapter 1

Introduction

Graphical notations are important tools in a software engineer’s toolbox. For in-
stance, UML [RJB99][Obj99] diagrams are a common visual form of express-
ing and communicating design information; they are used for modeling, testing,
specifying, and programming of software systems. This thesis proposes practi-
cal means for specifying and implementing diagrammatic graphical notations, or,
visual languages, for software engineering.

In this chapter, we first introduce the concept of visual language. Then, we formu-
late the research problem, present our solution, and enumerate the contributions
of this work to the field of visual language research. After that, we survey related
work. Finally, we describe the structure of the rest of this thesis.

1.1 Visual Languages

With ‘visual languages’ we mean notations that employ graphics (icons, diagrams)
to present information in a two or more dimensional space. The term ‘textual lan-
guage’ is reserved for languages characterized as linear, one-dimensional streams
of symbols. Of course, practical visual languages have both graphical and textual
elements.

Visual languages are used in human-human and human-computer communication
and interaction. In a broad sense, these languages include [NH98]:

– programming languages whose syntax is based on visual representations
(visual programming),

– computer visual languages designed to convey aspects of underlying com-
putation or its declarative specification (software visualization and algo-
rithm animation), and

1

2 CHAPTER 1. INTRODUCTION

– human visual languages that seem amenable to formalization and computer
implementation (diagrammatic representation and reasoning).

Several taxonomies have been developed to characterize and classify visual lan-
guages. For instance, Marriott & al. build a Chomsky-style grammar hierarchy
of visual languages based on the expressiveness and the parsing complexity of the
languages [MM98a]. Following the classical approach of language theory, they
develop a hierarchy of progressively more expressive classes of constraint multiset
grammars (CMGs) and show how other grammar formalisms for visual languages
can be reduced to CMG grammars. Here the presumption is that the essential and
distinctive characteristics of visual languages can be described grammatically and
particularly by CMGs. The grammar-based classification emphasizes the compu-
tational properties of visual languages.

Narayanan & al. focus on the human-computer interaction perspective of visual
languages [NH98]. They propose a conceptual framework for analyzing and de-
veloping visual languages usable by both computers and humans. The framework
includes a model of visual languages and a taxonomy based on the different is-
sues expressed in the model. Figure 1.1 shows the model that has three objects
of interest: a computational system, a cognitive system, and the visual language.
The language may have a formal specification and it is materialized in the visual
representations used for communication. The visual display is the interface where
the information encoded in visual representations appear. For communication to
happen, three things are required: comprehension, inference, and feedback. On
the computational side, communication implies processes like visual parsing, in-
terpretation or compilation, and program execution. On the cognitive side, this
means visual perception, comprehension, and reasoning with the information.
Both systems construct and manipulate visual representations on the visual dis-
play to convey the results of their processing to each other. In this model, the
success of a visual language depends on two things: the computational tractabil-
ity and cognitive effectiveness of the language.

Based on the model, Narayanan & al. derive a taxonomy that has three major cat-
egories: (1) representation of information, (2) cycle of interaction, and (3) evalu-
ation. The first category deals with the contents of the visual display. The central
issues are what is to be represented, how to represent it, and how to associate the
representation with the represented things (the application domain). The second
category models the usage of a visual language by considering the cognitive and
computational processes that take place in one cycle of activity during an episode
of human-computer interaction. The third category addresses the issues of evalu-
ating visual languages for their computational efficiency and cognitive effective-
ness. Each major category has further subdivisions that can be used to elicitate a
detailed characterization of a visual language. This human-computer interaction
perspective gives a more holistic view of a visual language as a communication
system than the grammar hierarchy -based taxonomy. It also acknowledges the
usability aspects of visual languages and not just their computational properties.

1.1. VISUAL LANGUAGES 3

creation
manipulation

creation
manipulation

interpretation
parsing

Visual Display ComputationCognition

perception

Figure 1.1: Model of Visual Language (from � NH98 �).

Our work focuses on diagrammatic visual languages, as found in software engi-
neering, and their computer implementations. With implementation we mean the
development of processors to automatically analyze diagrams and the develop-
ment of graphical editors for constructing the diagrams. In this section, we first
describe the characteristics of graphical notation in more detail. Next, we discuss
the role of visual languages in software engineering. Then, we survey the work
done in the fields of specifying and implementing visual languages.

1.1.1 Characteristics of Graphical Notations

The power of graphical presentation lies in the ability to use two (or three) dimen-
sional space for arranging graphical symbols to show relationships between the
domain objects denoted by the symbols. For instance, in an engineering diagram,
the symbols representing closely related domain objects may appear close to each
other, contained within one or the other, or visually linked to each other by lines.
The different ways of representing relationships can be used simultaneously in the
same diagram so that each geometric or topological relation maps to a different
semantic relation in the application domain. Also, other visual aids can be used:
icons that appear as such in the application domain, color, lines in different styles,
animation, and so on. In comparison with graphical notations, textual specifi-
cations are basically linear descriptions of the domain of interest. They rely on
hierarchical structure, repetition, and symbolic linking (reference by name) of the
domain objects for specifying the interesting relationships between them.

The effectiveness of graphical notations is based on the remarkable image process-
ing and pattern recognition capabilities of the human brain. However, graphical

4 CHAPTER 1. INTRODUCTION

notations have also their limitations. Graphical representations generally suffer
from low density of information content when compared to semantically equiva-
lent textual presentations [Nic94, Whi97]. On the other hand, the complexity of
the relationships that are displayed in a graphical presentation increases the den-
sity [Nic94] and effectiveness [Whi97, p. 124] of the presentation. Also, hybrid
presentations that combine text and graphics can reach the density levels of pure
textual presentations [Nic94].

Graphical representations seem to be the most effective when there is a direct
mapping from the graphical symbols and the layout to the application domain
[Ray91]. For instance, consider a tourist map of a city. The map is an example of
a graphical presentation with a direct and a semantically dense mapping [Ray91]
from the graphics to the application domain (the city). In the map, the domain
objects (hotels, shopping areas, museums etc.) are represented by iconic sym-
bols and the distances between the places on the map are directly related to the
geographical distance of the actual places in the city.

The city map is an example of an analog language. The distances on the map
translate into a continuous real-world metric. On the other hand, visual software
engineering languages are largely notational: they deal with discrete values, they
do not have the dense semantic mapping of analog languages, and the domain
objects themselves are non-visual and therefore have no natural graphical repre-
sentation. Notational languages are also called diagrammatic languages [NH98,
p. 90]. Of course, a visual language can have both notational and analog features.

The analog—notational dimension cannot be used as the only factor when eval-
uating the effectiveness and suitability of a visual language for certain practical
purposes [Ray91]. The classification framework by Narayanan & al. described
above gives a more comprehensive basis for the evaluations of visual languages.

1.1.2 Visual Languages in Software Engineering

The two main categories of visual languages used in software engineering are
visual programming languages and visual languages for specifying and designing
software. Visual programming means constructing graphical representations that
can be executed by a computer either directly (interpretation) or indirectly by
a translation to a non-visual (textual) program. Visual specification languages
are used to document the requirements and/or the design of a software system.
The construction (drawing) of the visual specification can be an active part of the
design process or it can take place as a reverse engineering activity after the design
is stable.

Visual programming is a controversial issue. The following statement on the
prospects of visual programming made over a decade ago by the distinguished
software engineering authority Fred Brooks is often quoted:

“A favorite subject for PhD dissertations in software engineering is
graphical, or visual, programming—the application of computer graph-

1.1. VISUAL LANGUAGES 5

ics to software design � � � � � Nothing even convincing, much less excit-
ing, has yet emerged from such efforts. I am persuaded that nothing
will.” [Bro87, p. 15]

Indeed, fully visual general purpose programming languages have not been very
successful. Experimental studies show that the benefits of visual programming
languages over textual languages are limited at the best [Whi97]. On the other
hand, visual tools for building GUI applications, like Visual Basic � � , are used
everywhere. An example of a truly visual and successful programming language
is LabVIEW � � which is a visual data-flow programming language for building
graphical applications for controlling laboratory and manufacturing equipment
[Nat99]. The common thing about the successful visual programming tools is
that they have a rich graphical vocabulary that maps directly to a specific domain.
The tools also employ the powerful metaphor of assembling a system from com-
ponents. Furthermore, the transition from programming to running a system is
smooth and quick which gives immediate feedback to the programmer.

The traditional data and algorithms -oriented programming does not lend itself
naturally to graphical form [Bro87, p. 12]. After all, most of the computation is
sequential and there are no natural graphical representations for symbolic com-
putations (except mathematical and logical formulas). Also, the low density of a
graphical representation is an issue. However, as argued above, domain specific
visual languages can show complex semantic content concisely by representing
domain specific high-level concepts in a visually compact form. For instance,
Roberts & al. see a visual builder tool as the final state in the evolution of an
object-oriented framework [RJ97]. The visual builder tool addresses one specific
task: the configuration of an application derived from a black-box framework by
instantiating and connecting the components that make up the application.

Brooks’ skepticism on large scale visual programming is justified. However, vi-
sual representations are useful in conveying information on the design of software
systems. It is rare to see software documentation without any pictures. Usually,
figures are used to show structural relationships and interaction patterns between
the components of a software system.

A prime example of a visual software engineering language is the Unified Mod-
eling Language (UML) [RJB99, Obj99] which is a visual language for modeling
and specifying software intensive systems. UML comprises eight different kinds
of diagram notations, or, sublanguages. For instance, UML package diagrams
are used to specify the decomposition of a software system into modules, and
class diagrams are used to specify the structural relationships between the com-
ponents in the modules. There are also notations for modeling the interactions
of components and the physical deployment of the system into computing nodes.
In addition to static structural diagrams, UML has sublanguages for specifying
the dynamic properties of systems. For instance, statechart diagrams are used
for specifying the event-driven behavior of system components and activity dia-
grams can describe the process flows in a system. Also, class diagram elements

6 CHAPTER 1. INTRODUCTION

can be adorned with textual constraints written in OCL (Object Constraint Lan-
guage). The constraints specify restrictions on the attributes of classes, and the
relationships between them. In the UML specification, OCL is used to express the
well-formedness rules of UML models.

In addition to modeling software systems, UML is advocated as a visual language
for constructing systems. The idea is that CASE tools can automatically generate
software from UML models. In practice, however, UML is mainly used as an
analysis and design tool during the development of software systems and/or for
the post-development documentation of the design. Studies on general CASE
tool usage [LC98, PC98, MI99] support this view of the role of visual software
engineering languages.

Although UML is promoted as a general purpose modeling language, it still has a
specific domain: modeling the architectural design of software systems. UML has
a large graphical vocabulary for representing different aspects of software systems
and it allows textual OCL expressions in addition to the graphics. Furthermore, it
can express complex relationships between graphical elements. Hence, the pop-
ularity of UML is not surprising. However, the language does not impose rules
on the layout of diagrams nor on the partitioning of large UML models into sepa-
rate diagrams. In addition to the UML language reference, guidelines are needed
on how to partition large diagrams, how to draw diagrams on different levels of
abstractions, and how to order and organize diagrams according to the flow of
the development process and according to the information needs of the different
stakeholders of the system under development [BRJ99, McG99].

The UML language specification gives freedom for users and tool vendors con-
cerning the visual representation of UML diagrams. The standard has rules for
the general appearance of the diagram elements and even rules for font sizes and
typefaces but the use of visual effects is mostly left to the discretion of users. The
standard warns against overexploiting special visual effects and stereotyping (cus-
tomization) in order to prevent users from inventing new languages on their own.
However, in the light of the discussion above, users of UML should be encouraged
to use semantically meaningful layout and other graphical effects for conveying
domain specific information more effectively. For instance, Coad [CLL99] has
suggested using color in the modeling of business systems in order to make the
system-wide roles of the model elements clearly visible. Consequently, if layout
and color are considered semantically meaningful properties of UML diagrams,
the graphical properties in question should be part of the meta-model of UML.

1.1.3 Specifying Visual Languages

Graphical notations are languages in the same sense as textual notations. They
have primitive graphical symbols, conventions for combining instances of the
primitive symbols into more complex graphical constructs, and commonly ac-
cepted interpretations of the meaning of the pictures thus formed.

1.1. VISUAL LANGUAGES 7

The bulk of the work done in visual language theory approaches the problem
of specifying visual languages from the viewpoint of general language theory.
The following classical definition of a visual language underlies most of the ap-
proaches:

“ � � � � � we will regard a visual language as some set of diagrams which
are valid “sentences” in that language. Such a diagram is a collection
of “symbols” in a two or three dimensional space. Which sentences
are valid depends on spatial relationships between the symbols. The
meaning of a sentence is, in general, constituted by the graphical sym-
bols used in the sentence and by their spatial arrangement.” [MM98b,
p. 2]

When considering the model of a visual language depicted in Figure 1.1, the clas-
sical viewpoint concentrates mainly on the computational aspects of visual lan-
guages in order to develop methods for the automatic processing of visual lan-
guages. Here, the main problem is recognizing and parsing pictures efficiently.
However, there are also approaches for specifying visual languages that try to
formalize the interaction aspects of visual languages [BCLM98].

Marriott & al. provide an extensive survey of visual language specification and
recognition in [MMW98]. They identify three main approaches to the specifica-
tion of visual languages: the grammatical approach, the logical approach, and the
algebraic approach. The grammatical approach extends one-dimensional string
language grammars to multidimensional languages with spatial relations between
primitive tokens. When compared to string languages, the generative methods
of the grammatical formalisms for visual languages rewrite sets of objects rather
than sequences of symbols; they also rewrite geometric and topological relation-
ships between the objects. Consequently, parsing languages specified by such
grammars has been a very active field of research. The grammatical approach has
the longest history in visual language specification and covers now a variety of
formalisms.

The logical approach uses first-order logic or other forms of mathematical logic
with roots in artificial intelligence. The logical approaches are usually based on
spatial logic which axiomatize the different possible topological and geometric
relationships between objects. The logical approaches have the advantage that the
same formalism can be used to specify both the syntax and the semantics of a
diagram.

The third major approach to visual language specification is to use algebraic spec-
ifications. They consist of composition functions which construct complex pic-
tures from more simple picture elements. The process of parsing means finding a
function sequence that constructs the picture. Semantics are handled by defining
algebraic specifications for both the diagrams and the application domain and by
providing morphisms between the two algebras.

The number of visual language specification formalisms is surprising. As noted
by Wittenburg, it is almost as every new researcher entering the field comes up

8 CHAPTER 1. INTRODUCTION

with a new specification formalism [Wit95]. Several reasons can be identified to
understand this.

First, the field of visual communications is very broad and there are many different
kinds of visual languages. Therefore, it seems to be very difficult to find a single
formalism, a unified theory that would cover the vast range of visual languages.
Also, until recently [MM98a], it has been difficult to compare the expressiveness
of the existing specification formalisms.

Second, parsing pictures is computationally expensive; the ‘naturally occurring’
visual languages display a high degree of ambiguity and context-sensitivity as
parsing is concerned [MM98a]. This has led to the development of many specifi-
cation formalisms that are suitable for just a limited range of visual languages but
that have practical parsing algorithms.

A third aspect (related to the second point) is that the distinction between the syn-
tax and semantics in visual language specification is not as clear as with textual
languages. For example, in a language for specifying object-oriented class hierar-
chies, the inheritance graph should be acyclic. In textual programming languages,
constraints like this are typically semantic and not syntactic properties. On the
other hand, in the specifications of visual languages, there is a tendency to ex-
press such rules on the syntactic level of the specification. The reason for this
may be that the relationhips constrained by the rules have an explicit graphical
representation (a connection line, for instance). Hence, the syntactic formalisms
tend to be based on powerful declarative models of computation like constraint
satisfaction and logic programming.

The focus of our work is on specifying and implementing artificial, or formal (as
opposed to natural) diagramming languages. For example, a formal specification
of a visual software engineering language is useful in two ways. First, it gives
rules that help engineers to correctly map the diagrams made by others to the
domain of the language. This reduces the need for textual explanations accom-
panying the graphics. Second, if the specification formalism includes practical
methods for analyzing the expressions of the language, it helps the construction
of computerized tools for creating correct diagrams and tools for automatically
processing the information contained in the diagrams. When developing the lan-
guage processing tools, it is easier to reuse declarative, high-level specifications
(even in copy-paste -style) than program code. Additional argumentation for using
formal specifications can be found in [MMW98, pp. 62–63].

Although several specification formalisms have been developed for visual lan-
guages, they have not found use outside of the visual language research commu-
nity. In practice, most visual specification and programming languages lack any
formal syntactic or semantic definitions [MMW98, p. 58]. The only exceptions
are standardized industry-level visual languages like UML. The official specifica-
tion document of UML [Obj99] describes the conceptual structure and meaning
of models1 that can be expressed in UML (semantics) and the graphical notations

1In UML parlance, model means a system description. A model can comprise several different
kinds of diagrams on different levels of abstraction.

1.1. VISUAL LANGUAGES 9

(diagram types) used to express the models (syntax). UML is not a simple nor a
small language which can be seen from the size of the eight-hundred-page speci-
fication document.

The core of the UML specification is the semantic description of the sublanguages
of UML. The semantic description of a sublanguage consists of three parts: the
abstract syntax showing the conceptual structure (meta-model) of the language
(expressed in the class-diagram notation of UML), a set of well-formedness rules
(in OCL) to supplement the meta-model, and an explanation of the meaning (in-
terpretation) of the meta-model in English prose.

The notational guide (syntactic specification) of the UML sublanguages relies on
English prose and graphical examples that describe the primitive graphical ele-
ments of the diagrams and explains the rules for composing primitive elements.
An important part of the syntactic specification is the mapping from the notation
(graphics) to the meta-model (semantics) of the language.

The UML specification does not use any grammatical or other formalisms for the
syntactic definitions of the notations. Because syntactic descriptions are given in
prose and by graphical examples, they are often incomplete. Hence, the semantic
specification must be consulted in order to understand the incomplete and confus-
ing parts of the notational guide. For a person implementing the language, this
means tedious mapping between the semantics expressed in UML and the graph-
ics.

A more rigorous syntactic specification would make it easier to approach the UML
standard when trying to implement the language. Like in the development of
textual languages, having separate lexical, syntactic, and semantic specifications
helps to divide the implementation work of a visual language into well-defined
subtasks. Using this approach, the lexical and syntactic specification would define
the graphical appearance completely and the semantic specification would add
the well-formedness rules that cannot be conveniently expressed in the graphical
syntax.

1.1.4 Implementing Visual Languages

The implementation of a visual language can mean a variety of things. A graphical
drawing tool (editor) may support a visual language by providing the possibility
to create, manipulate, and compose the primitive objects of the language on a
drawing screen. This kind of tool is merely a dedicated editor for the visual lan-
guage. For instance, most UML tools in the market belong to this category. More
advanced tools provide ways to enforce the syntactic and semantic correctness of
diagrams. For example, the Visio � � drawing tool for business and engineering
diagrams [Vis99] supports some of the sublanguages of UML and provides the
possibility to check the semantics of UML drawings. Finally, there are true CASE
tools that provide simulation and code generation based on the graphical mod-
els drawn by the user. Of course, visual programming tools must perform a full
semantic analysis and interpretation of their graphical input.

10 CHAPTER 1. INTRODUCTION

As noted above, implementations of visual languages are usually not based on
rigorous syntactic or semantic modeling. They do not use parsing techniques
to analyze their input. Instead, the usual way to implement a visual language
is to construct a dedicated graphical editor that enforces a syntax-directed way to
construct diagrams. This means that the tool maintains an internal semantic model
of a diagram being edited and at every editing step checks the consistency of the
model. Editing actions leading to inconsistent states are rejected. In this way, the
user of the tool cannot draw incorrect diagrams. For instance, the Rational Rose
-tool prohibits the user from drawing generalization relationships between other
than same kinds of generalizable types (syntactic rule). In class diagrams, the tool
does not allow the user to enter two attributes with the same name in the same
class (semantic rule).

The syntax-directed style of interaction is good for beginners who are learning a
visual language and learning how to use a drawing tool for the language. Also,
syntax-directed editing is acceptable for documenting a stable design because the
order of entering the graphical input does not really matter. The problem is that
syntax-directed editing is awkward when the user wants to radically restructure a
diagram. This need occurs frequently during the actual design phase of the model
represented by the diagram. As noted by Jarzabek & al., experienced users feel
frustrated about design tools that push their own ways of doing things instead of
providing an unconstrained environment for creative design work [JH98]. Hence,
pen and paper are still favorite tools for many.

In unconstrained, free-order editing modes, error handling becomes of prime im-
portance. If a tool allows incomplete sketches to be drawn, it should have the
ability to detect and report any errors it finds when later checking the drawing. If
a parsing-based approach is used to check diagrams, the parser should report as
many errors as possible at one parse. Also, the design of the graphical interaction
of error handling is important. The graphical environment of a visual language
should provide possibilities for informative and highly interactive error reporting.
Incremental parsing and analysis is one possible way to address error handling
issues [CM95].

The lack of formal syntactic and semantic specifications has also other effects
on tools. For instance, there has traditionally been great variation among UML
tools in what they actually consider to be a “correct” UML diagram. Also, the
completeness and depth of semantic checking varies considerably. The OMG
standard of UML will hopefully help tool vendors to make their products to agree
on the properties of the language.

Of course, a major reason for formally specifying visual languages is to facil-
itate the automatic generation of at least part of an implementation of a visual
language. Currently, implementations of commercial products are based on ad-
hoc solutions. More general techniques do exist, however. There are several
object-oriented frameworks that address the issue of implementing graphical edi-
tors [Jin90, VL90, Bra95], and research prototypes of visual language generation
systems have been developed. We will review existing visual language generation
systems in Chapter 8 where we discuss the work most closely related to ours.

1.2. RESEARCH PROBLEM AND CONTRIBUTIONS 11

1.2 Research Problem and Contributions

The general goal of this research is to develop a practical specification and im-
plementation technology for diagrammatic visual languages used in software en-
gineering. The specific requirements of the technique are:

– the technology should support the development of diagramming languages
(e.g. UML),

– it should be based on formal grammar,

– it should make unconstrained editing of diagrams possible, and,

– it should make language implementations open, extensible, and reusable.

In order to achieve the goal, several problems had to be solved. The main research
problems have been:

– representing visual language grammars as object-oriented frameworks,

– choosing and adapting a grammatical model in order to represent the graph-
ical syntax of typical diagramming languages, and

– error handling in visual language parsing.

Research has also been done on automatic source-to-source translation of visual
languages, which is a closely related subject. In the following, we motivate the re-
search, describe the research hypothesis and rationale, and summarize the results
of the research.

1.2.1 Motivation

The initiative for this research came from the development of the communication
protocol engineering language KANNEL [GHLP95] which has a visual syntax as
an alternative for a purely textual representation. The early work by Järvinen
[Jär92] on the implementation of visual languages had shown the field to be rather
immature. Consequently, the implementation of the visual version of KANNEL

was based on ad-hoc techniques. The development of visual KANNEL was in
sharp contrast to the implementation of textual KANNEL which was based on the
well-established compiler construction techniques. Clearly, the development of
visual languages could benefit from a more scientific approach.

A study of the literature soon revealed the plethora of formal methods for the
specification of visual languages. On the other hand, as noted in Section 1.1.3,
the existing formal techniques have had little impact on engineering practices. In
[Wit95] and [MMW98, p. 69], the authors identify possible reasons for this. First,

12 CHAPTER 1. INTRODUCTION

there is a mismatch between real-world problems and the proposed technology.
That is, there is no empirical evidence of the suitability of the formal techniques to
the implementation of real-world visual languages. Second, the literature suffers
from high fragmentation which makes the field hard to approach for practition-
ers. Third, basic research does not pay enough attention to real-world engineering
problems in implementing visual languages. So, it seemed as an interesting and
a challenging task to try to apply one of the existing grammatical specification
methods and the related parsing technique for the specification and implementa-
tion of large, widely used visual languages, e.g. UML. The work would have a
clear focus on the engineering aspects. Indeed, there seemed to be no point in
inventing yet another specification formalism.

Given the success of formal grammars in the implementation of textual program-
ming languages and our experience in compiler construction, it seemed natural to
concentrate on the grammatical approach for the specification and implementation
of visual languages. Here, the technical challenge was in presenting a grammati-
cal model as an object-oriented framework.

Recently, the visual language research community has also recognized the need
for practically significant applications of formal visual language theory [CBL � 99,
MS99, p. 58]. Also, visual software engineering languages have been pointed out
as a potential new application area for visual language research [MS99]. Our work
is well in line with these directions.

1.2.2 Hypothesis and Rationale

Formal Specification of Visual Languages

In Section 1.1.3, we already elaborated on the reasons for formally specifying
visual software engineering languages. In summary, the purpose of a formal
specification of a visual language is to give an unambiguous syntactic/semantic
description of the language which can be used to automate (at least part of) the
implementation of the language. An implementation technique that is based on
a formal grammar and parsing will add rigour and structure to the development
of visual languages. It will help in keeping separate the concerns of editing a
diagram and analyzing it. Also, free-order editing of visual programs (not dic-
tated by some syntax-directed editor) is one of the main motivations for the use of
grammars and parsing in implementing visual languages.

Free-order Editing by Visual Language Parsing

From the start of our research it was clear to aim at supporting free-order editing of
diagrams. That is, an implementation of a visual language consists of a dedicated
editor and an analyzer/parser. The editor supports the basic vocabulary of the
language and it supports the construction of more complex expressions in any
order the user wants; the analyzer then checks the drawing transforming it into an

1.2. RESEARCH PROBLEM AND CONTRIBUTIONS 13

internal representation (parse tree or graph) for additional processing. The idea
was to do the parsing off-line (not incrementally) in order to limit the technical
challenges involved.

The free-order approach is motivated by practical experience in implementing
and using graphical diagramming tools. For instance, the general graphical edi-
tor Visio � � [Vis99] is cheap and extensible, it has very good editing capabilities,
and it supports a wide variety of diagramming notations. Dedicated CASE tools
cannot provide the same level of flexibility in editing visual language expressions
(programs). Paradoxically, in many organizations, object-oriented CASE tools are
often used as mere drawing tools. The study by Lending and Chervany [LC98] in-
dicates that the more advanced features of CASE tools like model analysis (check-
ing) and model transformations (code generation) are seldom used. Hence, it
seems reasonable to separate model construction (drawing) from model analysis
and model transformation. This makes it possible to combine the flexible editing
and the rigorous analysis of diagrams into an explorative design style which does
not constrain the editing of diagrams but still offers a way to validate the diagrams
according to the syntax and semantics of the modeling language. Also other re-
searchers have recognized the value of free-order editing, see e.g. [RS97, p. 29],
[Ser95], and [MV95, Min97].

Error Handling in Visual Language Parsing

An effective error handling technique is absolutely necessary for any visual lan-
guage parser that is used to facilitate edit-and-compile style visual programming.
Our early survey of visual language theory showed that little was known about er-
ror handling in visual language parsing (see also [MMW98, p. 66]). The parsing
algorithms suggested for visual languages were mostly recognizers. The problem
with recognizers is that if an input fails to satisfy the rules of the language, the
algorithm cannot tell why it failed. For our application of visual language parsing,
this is unacceptable. As a minimum requirement, the parser should be able to in-
dicate the piece of input that caused the failure. Further, the parser must be able to
recover from syntactic parse errors in order to process as much input as possible
during one parse. Error handling is, or should be, one of the major concerns of
any practical programming environment, visual or textual.

The work on error detection and recovery in parsing string (textual) languages
has shown that general mechanisms that apply to all kinds of languages and error
situations are hard, if not impossible, to develop. The problem of automatically
correcting errors is even more difficult. Consequently, corrective error recovery
techniques are heavily heuristic and language dependent. In practice, however,
the techniques used by compilers are less ambitious. Our goal was to achieve a
level of error recovery comparable to the standard compilers of the main-stream
textual programming languages. Accordingly, we expect a typical programmer
to be an experienced user rather than a newcomer. In our opinion, it is not the
task of an error handling mechanism to teach software developers how to use

14 CHAPTER 1. INTRODUCTION

a language—it is the task of (human) trainers and (machine) wizards or other
embedded mentoring agents.

Framework Technology

Object-oriented application frameworks are promoted as a technology that pro-
vides a high degree of reusability and extensibility of software assets [FSJ99a].
A framework captures the commonalities of a set of applications that belong to a
certain domain in the form of an implementation skeleton. It embodies the most
significant architectural design decisions that the perceived applications in the do-
main must conform to.

In many cases, the skeleton provides the main control of the application and pro-
vides extension points for configuring and adding the variable features of the ap-
plications. The user of the framework provides the configuration information and
concrete implementations for the underspecified or missing parts in order to derive
a working application from the framework.

From the engineering point of view, the grammar-based approach for specify-
ing the syntax of a visual language and automatically producing (by a compiler-
compiler) a language analyzer (parser) offers obvious benefits. Object-oriented
frameworks have been successfully developed and used for implementing graph-
ical editors for diagramming tools. Using these frameworks offers the chance to
tap into the state-of-the-art in the implementation of graphical editors. Ideally, we
would like to combine the benefits of both the framework- and grammar-based
approaches in the development of visual languages.

The coupling of the editor part and the analyzer part is a central architectural
issue in implementing a visual language. The (white-box) framework-based im-
plementation of the editor means that the internal object structures of the editor
that comprise the visual data (program) to be analyzed can be made directly ac-
cessible to the analyzer part. This makes it straightforward for the analyzer to get
its input data and to provide feedback of the results of the analysis.

Source-to-Source Translation

The problem we address in this part of our research is the transformation between
graphical diagrams. Current diagram editors for software engineering notations
are usually implemented with ad hoc solutions on a weak methodological founda-
tion. This makes it hard to develop sophisticated diagram manipulators, such as
meaning-preserving transformators between two different styles of diagrams. For
instance, consider transformations between class diagrams in UML [Obj99] and
corresponding class diagrams in OMT [RBP � 91].

We consider diagram transformation as a translation process between two visual
languages. By this interpretation, we can adopt the powerful toolset developed for

1.2. RESEARCH PROBLEM AND CONTRIBUTIONS 15

(source-to-source) translation of textual languages into use for the processing of
visual languages.

Now, a transformation from a diagram given in a visual notation into a (cor-
responding) diagram in another visual notation can be considered as a syntax-
directed translation, provided that both the source diagram and the target diagram
can be represented as a tree over a source grammar and a target grammar, respec-
tively.

To address this problem, we wanted to develop a solid method for the transfor-
mation between diagrams, or more generally, for the source-to-source translation
between two visual languages. The main ingredients of our method are a mapping
between grammars for the two languages, and considering translation as a parse
tree transformation process. These are well-known techniques in the domain of
textual languages.

1.2.3 Contributions

Our work has a theoretical and a constructive part. From the viewpoint of visual
language theory, our work has two main contributions: an original treatment of
error handling (error detection, reporting, and recovery) in off-line visual language
parsing, and the source-to-source translation of visual languages. The latter is
joint work with prof. Jukka Paakki, who is the designer of the actual translation
algorithm.

We have substantially extended the powerful grammatical model for multidimen-
sional languages called atomic relational grammars [Wit96]. We have added sup-
port for meta-language expressions that denote optional and repetitive right-hand-
side elements. Also, we have extended what basically is a context-free grammati-
cal model to take into account a limited amount of contextual information in order
to better represent general graph structures at the syntactic level.

In [MM98a, p. 167] Marriott and Meyer argue that the use of specification meth-
ods that have efficient parsing methods rules out context-sensitive visual lan-
guages. In the case of diagrammatic languages, this means that general graphs
cannot be specified at the syntactic level. However, our work shows that these
kinds of properties of diagrammatic languages are not a major issue and they can
easily be dealt as semantic checks after the parsing phase. There are typically
many kinds of semantic checks that have to be performed after parsing, anyway.

The main product of the constructive part of our research is the VILPERT (VIsual
Language exPERT) system. It is an object-oriented Java framework for imple-
menting visual languages. Implementing a visual language with VILPERT means
generating a language analyzer based on a formal syntactic specification and im-
plementing a graphical editor for manipulating the visual programs. The frame-
work has a language specification sub-framework that is based on our extended
version of atomic relational grammars. The model has a parsing algorithm for rec-
ognizing the sentences of a visual language according to its grammar. The parser

16 CHAPTER 1. INTRODUCTION

produces a parse tree from a correct input, and the semantics of the source pro-
gram is defined operationally by operations on the parse tree. The graphical editor
is derived from a Java version of the HotDraw framework [Bra95] [GE96][jho00]
for general graphical editors.

In the editor side, we have added support for the notion of composite figure con-
tainers that facilitate the drag-and-drop style of moving figures into and out of
containers and the construction of deeply nested graphical structures.

The VILPERT framework provides a clean separation of the concerns of the graph-
ical editing and the interpretation of diagrams both from the architectural and the
usability point of view. The user draws the diagram in free order (not dictated
by a syntax directed editor) and then invokes the language analyzer to interpret
the drawing. The analyzer informs the user about any errors it finds during pars-
ing and semantic processing. This approach to visual language implementation
makes it possible to combine the sketching and the checking of diagrams into an
explorative style of constructing visual programs.

Separating the two concerns of editing and analyzing reduces the software com-
plexity of a tool that implements a visual language. For example, the correctness
of a diagram does not have to be constantly enforced during editing, syntactic
rules do not have to be enforced by hand-coded checks, and it is natural to main-
tain a clear separation between representation (graphical objects) and meaning
(semantic or domain objects). Also, the usability aspects of the editor are not
compromised by the need of maintaining a consistent model during editing: the
editor can provide all the freedom of graphical editing that users want. Further-
more, because VILPERT is a framework, tools produced from it can be open for
extensions, modifications, and they can share a common pool of reusable software
components.

We have validated our solution by implementing three visual languages that rep-
resent typical notations used in software engineering (UML structural diagrams,
UML statecharts, and flowcharts) and other (toy) languages. The syntaxes of the
languages have been specified by extended atomic relational grammars using the
grammar framework of VILPERT and the editors for the languages have been de-
rived from the editor framework of VILPERT. The editors provide syntax-free
editing of diagrams that are analyzed by parsers produced automatically from the
grammars of the languages. The implementations of the visual languages show a
high degree of reuse: the language (application) specific parts of the implementa-
tions is less than 20% of the total size of the applications.

Publication of the Results

The initial design of the visual language analysis framework of VILPERT was
published in [Tuo98b] and an overview of the whole system in [Tuo99]. Error
handling was addressed first in [Tuo98a] and then in revised and deepened form
in [Tuo00]. The work on source-to-source translation was published in [PT98],

1.3. THESIS OUTLINE 17

where Jukka Paakki was the main author. All the other papers are single-author
work by Antti-Pekka Tuovinen.

1.3 Thesis Outline

In Chapter 2, we introduce the formalism of atomic relational grammars for the
purpose of reference. Then, in Chapter 3, we discuss the use of atomic rela-
tional grammars for specifying visual languages. We identify the limitations of
the grammatical formalism and the parsing algorithm and propose several en-
hancements to both.

In Chapter 4, we describe our solution to the problems discussed in Chapter 2.
We define the formalism of extended atomic relational grammars (EARG) and
describe our changes to the parsing method. We continue the presentation of
the extensions in Chapter 5, where we describe our technique of handling syntax
errors in parsing visual languages that are specified by EARG grammars.

In Chapter 6 we present the VILPERT framework. We describe the design of the
framework, explain how it is used, and report our experiences in using VILPERT

in implementing visual languages.

Source-to-source translation is discussed in Chapter 7. In Chapter 8, we review
the related work. Finally, in Chapter 9 we present our closing remarks and discuss
further directions for the research. Readers who are not familiar with the imple-
mentation of visual languages may find it helpful to glance over Chapter 8 before
reading Chapters 2– 5.

18 CHAPTER 1. INTRODUCTION

Chapter 2

Atomic Relational Grammars

Atomic relational grammars (ARG) provide a good compromise between the ex-
pressiveness of the specification formalism and the simplicity of the grammar
formalism and the associated parsing algorithm. Therefore, we have chosen ARG
as the grammar formalism used in VILPERT.

In this chapter, we describe ARGs as a reference to the reader. First, in Sec-
tion 2.1, we present the grammatical formalism of atomic relational grammars.
Then, in Section 2.2, we describe Wittenburg’s parsing algorithm for ARGs. Our
description of ARGs and the parsing algorithm are based on [Wit96].

2.1 The Grammatical Formalism

2.1.1 Relational Languages

Relational grammars (RG), a superclass of atomic relational grammars, belong to
a family of constraint-based grammatical models for multidimensional, e.g. vi-
sual, languages. In [MMW98], the family is called attributed multiset grammars.
In these approaches, grammar productions rewrite sets or multisets of symbols
which have geometric and sometimes semantic attributes associated with them.
Productions have constraints over the attributes of the symbols in the right-hand
side and the constraints control rewriting of the symbol sets, that is, application of
the productions.

The sets of expressions that can be generated (or recognized) by RGs are charac-
terized as sets of relation tuples comprising references to a set of objects, accord-
ing to the normal mathematical notion of relation. In the case of visual languages,
the objects are graphical objects (terminals, icons) without discernible structure
or composite objects (nonterminals) consisting of other objects. The relations de-
note geometric relationships (such as above, left-of) or some other basic form of
relationship in the graphical language, for instance that two objects are associated

19

20 CHAPTER 2. ATOMIC RELATIONAL GRAMMARS

by a connecting line. The (infinite) set of the (finite) expressions generated by a
relational grammar forms a relational language.

For example, the production

Block � rectangle text
inside(text,rectangle)

specifies that a Block nonterminal consists of the terminals rectangle and text that
satisfy the relational constraint inside(text,rectangle). In other words, a text and a
rectangle form a Block only if they are in the relation inside.

The relational constraints in the productions drive the generation (and parsing) of
relational languages. The generating relations (like inside in the example above)
are called expander relations and the relations must be binary1.

In other words, expander relations are syntactic relations. In contrast to string-
based grammars, where string adjacency is an implicitly assumed relation between
the right-hand side elements of a grammar production, RG productions must ex-
plicitly state the syntactic relations between the right-hand side elements in the
form of relational constraints.

The parsers for relational languages can be divided into two groups: bottom-up
enumeration and predictive top-down parsing. A bottom-up parsing algorithm
has the advantage that input objects can be composed into composite objects (and
further) by the parser in any order [Wit92]. In other words, the parser is not
directed to process (scan) the input objects in any specific order. With predictive
parsing, however, some ordering over the input is needed to drive the scanning.
The advantages of predictive parsing are that it is more efficient and it makes early
error detection possible [Wit92, Wit96]. Also, the proposed predictive parsing
schemes are conceptually and technically simpler than the bottom-up methods.

The characterization above of relational grammars and languages is very general
and imposes no restrictions on the relations. In practice, however, some restric-
tions must be placed on the mathematical properties of the relations to develop
a practical parsing strategy. For instance, in [Wit92], the relations over the input
objects are required to be partial orders.

2.1.2 Atomic Relational Grammars and Languages

Atomic relational grammars form one of the less restrictive subclasses of rela-
tional grammars. For example, the syntactic (expander) relations can be symmet-
ric, cyclic or nontransitive.

1Expander relations of greater arity would complicate parsing but there is no fundamental
reason for having only binary expander relations.

2.1. THE GRAMMATICAL FORMALISM 21

ARGs are used to specify the syntactic structure of a visual language as composi-
tions of graphical objects (terminals) in terms of syntactic relations. The formal-
ism does not have a predefined set of graphical primitives and it does not provide
facilities for specifying the structure of terminal symbols in terms of the primi-
tives. That is, there is no concept of an alphabet (like in string grammars) and
no concept of regular expressions (or other pattern matching rules) that could be
used to specify terminals. So, ARG specifications do not deal with the low-level
recognition of graphical primitives. Hence, the word ‘icon’ could be used in place
of ‘terminal’, as well. On the other hand, this means that ARGs are not restricted
to specifying only graphical languages.

ARGs do not provide any means for specifying the semantics of a visual language.
That is, ARGs do not enforce any particular interpretation for the sentences of
atomic relational languages (the languages generated by ARGs), and they don’t
have any specific way to attach semantic content to grammar symbols. In [Wit96],
Wittenburg mentions the possibility of using semantic attributes with nonterminal
symbols, but he does not state how the semantic attributes should be specified and
used in the ARG model.

A fundamental issue in relational grammars is whether to allow nonterminals to
appear as direct arguments to relational constraints. When using bottom-up
parsing, including relational constraints directly on composites is reasonable, but
it complicates the definition of RGs as generative systems since the composition-
of relation must in principle be reversible. That is, there must be rules for rewriting
constraints on nonterminals as constraints on the components. However, what
constraints are produced may depend on the context, i.e. the production where
the nonterminal appears on the right-hand side (see [TVC94] for examples of
such rules). Further, significant problems are introduced for predictive parsing
[Wit92]. The alternative is to write grammars that state relational constraints only
on terminals in the input set and use syntactic attributes of nonterminals to pass
up references to terminal objects in derivations. This is the approach adopted in
atomic relational grammars.

Definition 2.1 The class of atomic relational grammars is characterized by the
restriction that the arguments of relational constraints must be atomic, i.e. non-
composite (terminal) input objects.

Consider Example 2.1, the productions of a flowchart ARG fragment. Here, non-
terminals begin with an upper-case letter and terminals with a lower-case letter.

Example 2.1
Flowchart � oval � ProcBlock oval �

connects(oval � ,ProcBlock.in)
connects(ProcBlock.out,oval �)
Flowchart.in = oval �

Flowchart.out = oval �

22 CHAPTER 2. ATOMIC RELATIONAL GRAMMARS

ProcBlock � � choice ProcBlock � joint
yesConnects(choice,ProcBlock � .in)
connects(ProcBlock � .out,joint)
connects(choice,joint)
ProcBlock � .in = choice
ProcBlock � .out = joint

ProcBlock � rectangle
ProcBlock.in = rectangle
ProcBlock.out = rectangle

The right-hand side elements of ARG productions are unordered; that is, the order
in which the right-hand side elements are written in Example 2.1 is not significant.
The right-hand side of a production can be thought as a graph with the symbols
as nodes and the relations as edges between the nodes. An ordering of a pro-
duction is a permutation of its right-hand side elements for which the following
connectedness constraint holds.

Restriction 2.1 For an ordering of the rhs elements � � � � � � � in a production� � � � � � � � � , there must exist at least one relational constraint, � 	
 � � � � � or
� 	
 � � � � � for each element � , � � � , such that � � � .

That is, the right-hand side of a production must be connected. Also, when or-
dered with respect to parsing, each element must be connected to some other ele-
ment earlier in the ordering (not necessarily the previous element). This require-
ment implies that ARGs can recognize only connected relation graphs since, for
every production, there must be at least one ordering that meets Restriction 2.1.

Figure 2.1 depicts the grammar productions of Example 2.1. Nonterminals are
represented by rectangles with rounded corners. The composition of nontermi-
nals is represented by enclosing the constituents inside the rectangles. The arrows
represent the spatial relations in the productions. For example, the Flowchart
production in Figure 2.1 comprises three objects: two terminals of terminal type
oval and a ProcBlock nonterminal. Note that the arrows appear as relations in
the grammar and not as terminal objects. All relations in this example are con-
straints on individual members of the input set (the relation arcs connect only
terminal objects). Consider, for example, the relational constraint connects(oval � ,
ProcBlock.in) appearing in the Flowchart production. The first argument, oval � ,
is a direct reference to a terminal object. The second argument, ProcBlock.in, is
an indirect reference to the value of the in attribute of an object of (nonterminal)
type ProcBlock. This indirect reference will eventually be replaced by a terminal
object in a successful derivation; in other words, the attribute will be ‘grounded’.

Definition 2.2 The attributes appearing in any of the arguments of relational con-
straints in a grammar are called expander attributes.

2.1. THE GRAMMATICAL FORMALISM 23

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �� � � �

� � �� �
� � �� �

Flowchart

ProcBlock

	 	 	 	 	 		 	 	 	 	 		 	 	 	 	 		 	 	 	 	 	

ProcBlock

rectangle

choice oval

joint
connects

yesConnects

� � �� � �
� � �
� � �

� �� �
in out

� �� �
� �
� �

� � � �� � � �� � � �
� � � �
� � � �� � � �

� � �� �
� � �� � �

ProcBlock

ProcBlock

Figure 2.1: Graphical view of the flowchart grammar (from [Wit96]).

24 CHAPTER 2. ATOMIC RELATIONAL GRAMMARS

In contrast to normal attribute grammars [Knu68] where all the attributes usually
have a semantic role, expander attributes are syntactic attributes. In relational
grammars, the role of the expander attributes is to drive the scanning of the input,
that is they are used to determine the order in which the input is examined during
parsing. In the grammar of Example 2.1 in and out are both expander attributes.

To ensure that expander attributes eventually ‘ground out’, the productions must
pass direct or indirect references to individual members of the input through as-
sigments between the right-hand side elements and the expander attributes of the
nonterminal on the left-hand side. Thus, similar to attribute value synthesis in
normal attribute grammars, references to actual input objects are passed through
chains of indirect references during parsing. In Figure 2.1, for each production,
the graphical representation indicates (by fill patterns) which objects are bound to
the attributes of the left-hand side nonterminal. For the nonterminals appearing on
the right-hand side, the representation indicates the expander attributes referenced
by the relational constraints.

The forms � � � � � � � � � � � � � � 	 and � � � � � � � �
 are used to represent attribute
assignments in relational grammars. Here, � � � � � and � � � � 	 denote attributes, �
and � denote nonterminals, and
 denotes a terminal. � is the nonterminal on the
left-hand side of a production. These assignment expressions are intended to be
operationally equivalent to attribute assignment functions in attribute grammars.
Unlike general attribute passing, however, arbitrary functions are not allowed on
the right-hand side of the assignment operator. This is to ensure the context-free
parsing of productions.

As an example of how (references to) terminal objects are passed as attribute
values, consider the production ProcBlock � rectangle in Example 2.1. In the
production the attributes in and out of ProcBlock are assigned (a reference to) an
individual terminal input object; in this case, the terminal object is of lexical type
rectangle.

Restriction 2.2 In each ARG production, for every expander attribute used in the
grammar, a value must be assigned from the right-hand side to the left-hand side.

In the grammar of Example 2.1 this condition is met since in and out are the only
expander attributes used in the grammar and every production associates the value
of each of these attributes in its left-hand side with a value on its right-hand side.

A visual representation of a derivation of a sentence is shown in Figure 2.2. In
Figure 2.2, rounded boxes depict nonterminal instances. The cover of a nontermi-
nal instance includes all the terminal objects within the rounded box. For example,
the cover of the innermost ProcBlock comprises of the single rectangle whereas
the cover of the enclosing ProcBlock includes the rectangle, the diamond and the
circle.

In addition to relational constraints, the productions of an atomic relational gram-
mar may also include constraints called predicates. Predicates represent additional
conditions that the right-hand side symbols of productions must satisfy. However,

2.1. THE GRAMMATICAL FORMALISM 25

Flowchart

ProcBlock

ProcBlock

Figure 2.2: A derivation (from [Wit96]).

Wittenburg has not included predicates in the formal definition of ARGs. We also
ignore predicates in this chapter, but we discuss them later in Section 3.2.3.

The expressions generable or recognizable by atomic relational grammars are de-
fined as follows.

Definition 2.3 An indexed multidimensional multiset (indexed md-set) � is an n-
tuple � � � � � � � � � � 	 �
 such that � � � � � � � 	 � are binary relations on the indexed
multiset of symbols � .

Here, an index is a (partial) function from integers to members of the set. When
writing indexed md-sets, the relations � � � � � � � 	 � are usually written as a single
set

� � � � � �
 � � � relation identifier (name) and � � � � � � .

Definition 2.4 An atomic relational grammar (ARG) is a 6-tuple� � � � � � � � � � � � � � �
 , where

1. � is a finite set of nonterminal symbols.

2. � is a finite set of terminal symbols disjoint from � .

3. � is a distinguished symbol in � called the start symbol.

4. � � is a finite set of relation symbols called the expander relation symbols.

26 CHAPTER 2. ATOMIC RELATIONAL GRAMMARS

5. � is a finite set of expander attribute symbols.

6. � is a finite set of productions of the form � � � � � , where

� � 	 ;

� �
 	 � � � ;

� is a set of relational constraints of the form � �
 � � � where � � � � �
and � � � are either terminal members of � or expressions of the form

� � � where � � � and � is a nonterminal member � � of � , � �
� � � � � � � � � � � � (� � �). Furthermore, Restriction 2.1 must hold for
� .

� is a set of attribute assignment statements of the form � � � � � where
� � � and � is either a terminal member of � or an expression of
the form � � � as above. Further, there must be exactly one attribute
assignment statement � � � � � � � � for each � � � � .

Definition 2.5 The immediately derives relation “ � ” is defined over indexed md-
sets:
 � � � � � � � � � � � � �
 � � � � � � � � � � � � �� if there is a production � � � � � such
that � is a member of � � , � � is equal to � � except for the replacement of a single
occurrence of � with the elements of � , and � � � � � � � � � �� is equal to � � � � � � � � �
except for the addition of tuples in � and the replacement of all arguments of
tuples � �
 � � � as directed by the attribute assignments in � .

The replacement of arguments in tuples � �
 � � � above means that each reference
� � � � to an expander attribute of � , � � � � , is replaced by the value assigned
to � � � � in � . Of course, the assigned values may be indirect references to the
expander attributes of the nonterminals in � (to be further resolved in subsequent
derivations).

Definition 2.6 Given an atomic relational grammar

,
 � � � � � � � � � � � �� is a sen-
tence of

if there exists a derivation
 ! " # � � � � � � � � � � � � � � �
 � � � � � � � � � � � ��

such that � � � $ � % � & ' � � � � � () , and * + � � , + � � .

As an example, the derivation depicted in Figure 2.2 is presented in Example 2.2.
In the example, the nonterminal to be rewritten in the next derivation step is under-
lined. The symbols of the same category are subscripted to distinguish between
them in the sentential forms.

Example 2.2

 !
Flowchart # � $ �

 !
oval � ,ProcBlock � ,oval � # ,!
connects(oval � ,ProcBlock � .in),
connects(ProcBlock � .out,oval � # �

2.2. EARLEY-STYLE PARSING FOR ARGS 27

� �
oval � ,choice,ProcBlock � ,joint,oval � � ,�
connects(oval � ,choice),
yesConnects(choice,ProcBlock � .in)
connects(choice,joint)
connects(ProcBlock � .out,joint)
connects(joint,oval � � � � �

� �
oval � ,choice,rectangle,joint,oval � � ,�
connects(oval � ,choice),
yesConnects(choice,rectangle)
connects(choice,joint)
connects(rectangle,joint)
connects(joint,oval � � � �

2.2 Earley-style Parsing for ARGs

The predictive parsing algorithm presented in [Wit96] is an extension of the orig-
inal Earley’s algorithm [Ear70]. First, we present Earley’s basic algorithm and
then, we describe Wittenburg’s extensions to it for parsing relational languages.

2.2.1 Earley’s Basic Algorithm

Earley’s algorithm is a general parsing and recognition method for context-free
languages. Earley’s algorithm is in effect a top-down parser in which all possible
parses are carried along simultaneously in such a way that common subparses can
be combined. Thus, the algorithm can parse ambiguous grammars.

An informal description of Earley’s algorithm as a recognizer is as follows [Ear70]:
It scans an input string

� � 	 	 	 �
 from left to right looking ahead some fixed num-
ber � of symbols. As each symbol

� � is scanned, a set of states � is constructed
which represents the condition (overall state) of the recognition process at that
point of the scan. Each state in the state � represents

1. a production such that a portion of the input string which is derived from its
right side is currently being scanned,

2. a point in that production (the ‘dot’) which shows how much of the produc-
tion’s right side has been recognized so far,

3. a pointer back to the position in the input string2 at which we began to look
for that instance of the production, and

4. a � -symbol string which is a syntactically allowed successor to that instance
of the production.

2The pointer is an index of a symbol in the input, say � � , and hence, also a pointer to the
corresponding state set � � .

28 CHAPTER 2. ATOMIC RELATIONAL GRAMMARS

In general, the algorithm operates on a state set � � as follows: the states in the set
are processed in order, performing one of three operations on each one depending
on the form of the state. The operations may add more states to � � and may also
put new states in a new state set � � � � . The three operations are described next.

The predictor operation is applicable to a state when there is a nonterminal to
the right of the dot. It causes the recognizer to add one new state to � � for each
alternative production for that nonterminal. The dot is put at the beginning of the
production in each new state, since none of its symbols has been scanned yet. The
pointer is set to � , since the state was created in � � . Thus the predictor adds to � �
all productions which might generate substrings beginning at

� � � � .

The scanner is applicable just in case there is a terminal to the right of the dot.
The scanner compares that symbol with

� � � � and if they match, it adds the state
to � � � � with the dot moved over the one in the state to indicate that that terminal
symbol has been scanned.

The third operation, the completer, is applicable to a state if its dot is at the end
of its production. For instance, when the completer is applied to a state set � �
having a subset of states representing a production � with the dot at the end of it,
the completer compares the look-ahead string with

� � � � � � � � � � 	 . If they match,
the completer goes back to the state set indicated by the pointer, say �
 where

� � � , and collects all the states from �
 which have � to the right of the dot and
adds them to � � . Before the addition, the completer moves the dot over � in (the
productions of) the states. Intuitively, �
 is the state set where the search for �
was initiated. It has now been found, and the dot is moved over the � in these
states to show that it has been successfully recognized.

The recognition process is initiated with the single state � � � � � � � �
in � � . Here,

� � � � � is a ‘dotted’ production where � is the start symbol of the
grammar, � is an end-of-input marker and

�
is an artificial nonterminal symbol

not used in the grammar. The production is followed by the lookahead string “ � ”
(for � � � in this case) and the pointer 0. A correct sentence of the language has
been recognized if the algorithm ever produces a state set � � � � consisting of the
single state

 � � � � � � � � �
Note, that the states are stored in sets. Thus, any state will be added only once to
a state set.

The algorithm as presented in [Ear70] requires no restrictions of any kind on the
context free grammar to be successful. In the general case, the time requirement
of the algorithm is � � , where � is the size of the input (the number of terminals in
a sentence). For unambiguous grammars and grammars with bounded ambiguity,
the time requirement of the algorithm is � � . Linear time is achieved for gram-
mars which have a fixed bound on the size of the state sets, and using a proper
lookahead, all � � � � � grammars can be processed in time � .

2.2. EARLEY-STYLE PARSING FOR ARGS 29

connects

yesConnects

Figure 2.3: An input graph of terminal objects and relations.

2.2.2 Wittenburg’s Extensions to Earley’s Algorithm

The goal of Wittenburg’s work was to develop a predictive Earley-style algorithm
for parsing ARGs which can initiate a parse from an arbitrary input symbol. Like
Earley’s algorithm, the parser will build up state sets by applying the (extended)
predict, scan and complete operations in order to match productions against the
input. Wittenburg’s algorithm employs also a fourth operation called inverse-
complete. As opposed to complete, inverse-complete tries to extend an active
state3 with inactive states that already exist in the parse table.

As preliminaries to the parsing algorithm, Wittenburg makes the following obser-
vations. The existence of an Earley predictive state (an active state that covers no
input) for a nonterminal � in a parse table, which holds the state sets � � � � � � � � � ,
at position � implies that a derivation of an � may ‘begin’ at the input symbol
denoted by � . That is, the input symbol may be part of the cover of an � .

To satisfy the any-start requirement, ordering variants of the right-hand sides of
every production are required so that every right-hand side element appears first
in at least one variant. After the starting point has been given, the parsing process
is directed to scan the remaining input in orders (not necessarily all orders) con-
sistent with Restriction 2.1. The requirement does not state that once the parser
has chosen its first element, the next choice for scanning may arbitrarily be any of
the remaining input elements. Instead, the remaining input will be scanned in the
order determined by the relational constraints in the production variants.

3A state is active if its dot is not at the end of the production.

30 CHAPTER 2. ATOMIC RELATIONAL GRAMMARS

During the prediction operation, predictive states are created only for the appropri-
ately ordered variants of the productions that expand the nonterminal in question.
Appropriately ordered means that a production variant can provide a possible at-
tribute assigment path (for attribute value synthesis) such that as the left-branch of
an eventual derivation subtree bottoms out, the terminal elements scanned at that
position can ground (give) the value of the expander attribute used in the predic-
tion. For instance, consider the ARG in Example 2.1 with the input in Figure 2.3.
Assume that an Earley-style parser has scanned the topmost oval. This implies the
existence of a state with the dotted production:

Flowchart � oval � . ProcBlock oval �
connects(oval � ,ProcBlock.in)
connects(ProcBlock.out,oval �)
Flowchart.in = oval �
Flowchart.out = oval �

The expander constraint connects(oval � ,ProcBlock.in) determines the next input
objects to be scanned and the ordering variants of ProcBlock that may begin at
those input objects. That is, the ordering variants of ProcBlock productions in
which the first right-hand side element cannot serve to bind the in attribute need
not to be considered.

Wittenburg uses a precompiled prediction table for storing for each nonterminal
and for each expander attribute � � the production variants where the first right-
hand side element serves to bind the expander attribute � � . As a first step, a pro-
duction ordering algorithm generates for each production one ordering variant per
right-hand side element such that the element appears first in the right-hand side.
From these variants, the prediction table can easily be constructed. To facilitate
the any-start requirement, the special attribute ‘start’ is added to prediction table
for each nonterminal. For the ‘start’ attribute, the table entry includes one variant
of all the productions expanding that nonterminal such that each right-hand side
element of the productions appears first regardless of expander attribute bindings.

The starts-by-binding relation associates a nonterminal, an expander attribute, and
a production variant as follows:

Definition 2.7 A triple � � � � � 	
 , where � is a nonterminal, � is an expander
attribute, and 	 � � � � � � � � is an ordered production variant of an atomic
relational grammar

�
, is in the starts-by-binding relation, if and only if there is

an attribute assignment of the form � � � � � or � � � � � � � in 	 .

The Parsing Algorithm

To store the state sets � � that represent the condition (state) of the parsing process,
Wittenburg’s algorithm uses a parse table. Like in Earley’s algorithm, the parse

2.2. EARLEY-STYLE PARSING FOR ARGS 31

table is indexed with the input objects (terminal symbols). However, Wittenburg
makes a distinction between two kinds of states: inactive and active states.

Definition 2.8 An inactive state relative to an indexed md-set � � � � � � � � � � � 	

is a triple � � � � � � � � where � � is a nonterminal or terminal symbol type4, � is the
set of expander (and possibly other) attribute-value pairs, and � is a subset of �
representing the state’s terminal yield.

Inactive states represent completely parsed productions (nonterminal instances).
They are indexed in the parse table by the values of the expander attributes in � .
Intuitively, we consider inactive states to begin as well as end at every terminal
that is assigned to an expander attribute.

Active states represent partially parsed or predicted productions. As in Earley’s
algorithm, dotted productions are used with the dot representing a position in the
ordered right-hand side elements.

Definition 2.9 An active state is a triple � � � � � � � � � � � � 	 � � where � is a production;
� , the ‘dot’, is an integer ranging from 1 to the length of the right-hand side of �
representing the next element to parse; and � � � � � � � 	 � is an ordered list of pointers
to inactive states of right-hand side elements parsed so far.

The cover, or terminal yield, of an active state is derived from the covers of the
inactive states that have already been recognized. The cover is computed as the
union of the covers of the elements that have been parsed so far (the right-hand
side elements of a production are called ‘daughters’ in [Wit96] like the descen-
dants of a node in a derivation tree).

Like inactive states, active states are indexed by individual members of the set of
input objects � . The intuition is, however, that active states are indexed by individ-
uals in the input that are candidates to be used in the next advancement (parsing
action) of that active state. For any other right-hand side elements except the first
one, the relational constraint at the dot position is used to find such candidates.
For active states that don’t yet have any parsed daughter productions, the input
indices are derived from higher predictions in the chain of predictions.

Wittenburg employs an Agenda as an intermediate storage for states that are to
be potentially added to the parse table. The Agenda items are pairs consisting of
a state and a set of keys. The keys are state indices identifying the state sets to
which the state will be added. Note that on the Agenda, there are possibly several
indices for a state. There are two reasons for this: (1) depending on the ‘topology’
of the relations, there may be multiple choices for extending an active state, and
(2) the expander attributes of an inactive state may have different values.

To ‘move the dot over’ in a production, scan, complete and inverse-complete use
the Advance procedure. The procedure receives as parameters an active state

4The instances of nonterminals and terminals are represented by inactive states and by indexes
of the md-set, respectively.

32 CHAPTER 2. ATOMIC RELATIONAL GRAMMARS

and an inactive state � and extends � with � , i.e. � is the right-hand side element of
� expected next and the dot can be moved one step forward.

Procedure 2.1 Advance (� , �)

Input: An active state � � � � � � � � 	
 � � � 	 � � and an inactive state � � � � � � � � � � � .
Output: A new agenda item or null.

Method:

If � � the length of the right-hand side of � then

� is the last right-hand-side element of � and a new inactive state � � is created.
The cover of � � is computed as union of the cover of � and the covers of the
parsed right-hand side elements of � , and the expander attribute values of
the nonterminal � in question (the left-hand side of �) are determined.

Return a new agenda item � � � � � � � � � where � � � � is the list of inactive state
indices of � � (the values of the expander attributes � � �).

else

A new active state � � is created. The inactive state � is added with the parsed
right-hand side elements of � as the daughters, � � � � � � � � � � � 	
 � � � 	 � � � ,
and a query is executed to find the input object candidates to drive the next
expansion of the production. To launch the query, the expander constraint at
the new dot position is resolved and, based on the expander attribute values
of the right-hand side elements parsed so far, a subroutine identifies the
already-bound value of the constraint used in the query over the expander
relations

� �
 � � � � � � � � . As a result of the query, new keys to be used as
state indices are obtained for � � .
Return a new agenda item � � � � � � � � � where � � � � is the non-emptylist of
input objects returned by the query, or null if the result of the query was .

end if

Note that an active state is created (and, eventually, added to the parse table) only
if there exists some tuple in the required relation in the input, i.e. the result of the
query is not . Note that there can be many expander constraints applicable at the
dot. The Advance procedure does not explicitly state how this situation is handled
and we assume that one constraint is just randomly chosen.

Algorithm 2.1 is the main parsing algorithm. The parser is initialized with a re-
cursively constructed set, init-states, consisting of the predictive states expanding
the root symbol of the grammar at the given (arbitrarily chosen) input symbol.
The set of initial states is added to Agenda, and the main loop of the algorithm is
entered.

2.2. EARLEY-STYLE PARSING FOR ARGS 33

Algorithm 2.1 Membership in L(ARG)

Input: An atomic relational grammar
� � � � � � � � � � 	 �
 � � � , a set � � � � � � � � � � � � � �

to be parsed, and an object � � � from which to start parsing.

Output: A parse table � of state sets � � .

Auxiliary data structures:

Agenda: A FIFO list of states to process, initally empty.

Init-states: The set of starting predictive states created as follows: for ev-
ery production ordering variant � in starts-by-binding(� ,start,�), add a
state � � � � � � � to init-states. For every state � � � � � � � � � in init-states, if
the right-hand side symbol � at position 1 of � is a nonterminal, then
let

init-states � init-states � � � � � � � � ! starts-by-binding(� ,start,) "
Parse table: A hash table � of state sets � � where # � � .

Algorithm:$
% begin main loop %

$
Add init-states to Agenda
While Agenda is not empty do

Remove one item � state,keys � from Agenda (assume FIFO management).

For each & in keys

If an equivalent state is not already at � ' then
add state to � ' ; Then do one of the following:
Scanner: If state is active and the right-hand side symbol at the dot
in the production is terminal and the input symbol (at & matches
the terminal and does not intersect the cover of the state, then add
all the items returned by Advance(state,y) to Agenda.
Predictor: If state is active and the right-hand side symbol � at the
dot in the production is nonterminal, then for all attributes that are
to be bound in the expander constraint at the dot, add to Agenda
items with all the production variants that expand � and provide
bindings for the attributes. The dot is positioned at the beginning
of each variant and the key for the Agenda items is & .
Completer: If state is inactive, then for every active state) * � � ' �
init-states, if cat of state matches the right-hand side symbol at the
dot of) * and the covers of the states do not intersect, add all the
items returned by Advance() * ,state) to Agenda.
Inverse-Completer: If state is active, then for every inactive state+ at � ' , if ,) of + matches the symbol at the dot in state, and

34 CHAPTER 2. ATOMIC RELATIONAL GRAMMARS

the covers of state and � do not intersect, and the input symbol � ,
which is one of the indices of � because (a reference to) � is found
at � � , satisfies the expander constraint at the dot of state, then add
all the items returned by Advance(state, �) to Agenda.

end if

end for

end do

�
� end main loop �

�
If there is an inactive state of the form � � 	
 	 � � in the parse table � and � �
then

SUCCEED

else

FAIL

end if

Complexity of the Parser

Wittenburg has not given any results of the theorethical complexity of the parsing
algorithm. Our analysis of the worst case complexity of the algorithm is presented
in Section 3.3 in the next chapter.

Chapter 3

Problems in Using Atomic
Relational Grammars

In this chapter, we discuss the problems in using ARGs for specifying and parsing
visual languages. In Section 3.1, we discuss how to model the constructs of typical
diagramming languages with ARGs. We point out the limitations of the original
model and propose extensions. Then, in Section 3.2, we analyze the behavior of
Wittenburg’s parsing algorithm and suggest areas for improvement with respect
to our needs. In Section 3.3, we analyze the worst-case time requirement of the
algorithm. In Section 3.4, we summarize our findings.

3.1 Grammatical Problems

Visual diagramming languages have common, reoccurring syntactic constructs.
The most typical ones are:

– Connections shown as lines or arrows starting from (inside or on the border)
of one graphical object and ending to another; for instance, state transition
arrows in finite state machines.

– Topology induced by connections; graph properties convey semantically
significant information, for instance, the flow of execution control in flowcharts.

– Hierarchical containment of graphical objects; for instance, in the static
structural diagrams of UML, classes have compartments that hold text items
and packages can hold hierarchies of packages.

– Labels as text items attached to other graphical objects; for instance, condi-
tions and actions associated with state transitions in Harel statecharts.

– Other spatial relations; for instance, left-to-right or top-to-bottom ordering
of graphical objects such as the ordering of subtrees in yes-no decision tree
diagrams.

35

36 CHAPTER 3. PROBLEMS IN USING ARGS

In this section, the expressive power of atomic relational grammars is studied by
presenting grammars that capture these basic constructs. Problems pertaining to
the specification mechanism are pointed out and possible solutions are discussed.

The following discussion concentrates on the issues of representing graphs and
hierarchical structures. We consider first structured graphs which can be specified
with context-free syntactic rules. Then, we discuss how to specify general un-
structured graphs. We use trees as examples of visual languages with hierarchical
constructs.

3.1.1 Structured Graphs

In Example 2.1, an ARG for (a fragment of) the language of structured flowcharts
was presented. When considered as a graph structure, the sentences of the flowchart
language are directed graphs of bounded degree: the number of arcs leaving and
entering each kind of node is fixed. Furthermore, in a well formed flowchart, each
node is connected to some other node.

In the flowchart grammar, the arcs between nodes are modeled directly as rela-
tions. For example, consider the following production from the flowchart gram-
mar in Example 2.1:

Flowchart � oval � ProcBlock oval �

connects(oval � ,ProcBlock.in)
connects(ProcBlock.out,oval �)
Flowchart.in = oval �

Flowchart.out = oval �

The production defines a Flowchart to be a directed graph of two ovals connected
to (some elements of a) subgraph defined by a ProcBlock. Note that the two
expander attributes in and out of the ProcBlock provide the only possible con-
nection points for the arcs starting from oval � and entering oval � . According to
this grammar, unstructured transfers of execution control (gotos) are prohibited,
as demonstrated by the example flowchart in Figure 2.2.

As another example of structured graphs and as an example of hierarchical struc-
tures, consider the grammar of binary trees in Example 3.1. In the basic grammar,
the nonterminal Node represents a labelled node of the tree and there are three
productions for the nonterminal Tree to allow internal nodes to have zero, one, or
two subtrees.

Example 3.1
Tree � Node

Tree.root = Node.root

3.1. GRAMMATICAL PROBLEMS 37

Tree � � Node Tree �
connected(Node.root,Tree � .root)
Tree � .root = Node.root

Tree � � Node Tree � Tree
�

connected(Node.root,Tree � .root)
connected(Node.root,Tree

�
.root)

Tree � .root = Node.root

Node � circle text
inside(text,circle)
Node.root = circle

In the flowchart and binary tree grammars, the (sub)graphs have uniquely defined
access nodes which link the subgraphs to their surroundings (e.g. the root of a
Tree). That is, arbitrary nodes may not be connected with arcs. Thus, the parsing
of a subgraph is independent of the context of the subgraph. In other words, such
grammars are context free, which makes it simple to use the arc-relation as the
relation that drives the parsing and determines the scanning order of the input.

Spatial Relations

The binary tree grammar in Example 3.1 makes no distinction between the left and
right subtrees of the internal nodes. If the left-to-right spatial relation has semantic
meaning and we want the order of the subtrees in a Tree (nonterminal instance)
to reflect that, we can add a predicate (left-of) to the grammar. Further, we may
want to enforce the condition that an internal node is above its descendants:

Tree � � Node Tree �
connected(Node.root,Tree � .root)
above(Node.root,Tree � .root)
Tree.root � = Node.root

Tree � � Node Tree � Tree
�

connected(Node.root,Tree � .root)
connected(Node.root,Tree

�
.root)

left-of(Tree � .root,Tree
�
.root)

above(Node.root,Tree � .root)
above(Node.root,Tree

�
.root)

Tree.root � = Node.root

In this case, the evaluation of the predicates could be based on the graphical prop-
erties of the input objects (the relative location in a co-ordinate space). If the

38 CHAPTER 3. PROBLEMS IN USING ARGS

location property of the input objects can be accessed at parse time, the indexed
md-set � used as input does not have to include relations above and left-of. That
is, the predicates map to some external functions that are not part of the grammar
specification.

3.1.2 Unstructured Graphs

If the underlying graph structure of a visual language has no upper bound on the
degree of the nodes or the topological constructs are not context-free, it is not so
easy to specify the language with an ARG as in previous examples. In order to
support the specification of general graph languages, the ARG model needs to be
extended.

In the following, we examine first how to specify general trees, a subclass of gen-
eral (directed) graphs. Second, we discuss the modeling of the arcs of a graph.
Third, we consider the representation of general graphs. Finally, we discuss how
to extend the ARG model with context dependent remote references in produc-
tions.

General Trees

Consider a visual language of general labelled trees where the internal nodes may
have any number of children. It would be convenient to be able to write the gram-
mar in the following compact form:

Example 3.2
Tree � � Node Tree � �

connected(Node.root,Tree � .root)
Tree � .root = Node.root

Node � circle text
inside(text,circle)
Node.root = circle

Here, Tree � denotes a sequence of zero or more Trees. The production defines a
tree to consist of a labelled root node with zero or more subtrees connected to it
by their roots. The order of the subtrees is arbitrary in this example. However,
for some applications, it may be desirable to enforce an ordering of the sequential
elements. For instance, an expression like:

order Tree � .root by left

3.1. GRAMMATICAL PROBLEMS 39

could be interpreted to enforce the parser to pre-sort the sequence of terminal
symbols in relation connected with Node.root in the first production according to
the ordering predicate left.

The introduction of sequential right-hand side elements allows a natural gram-
matical representation of languages that have nodes with an unlimited number
of connections. Without iterative symbols, the iteration must be substituted with
recursion as in the following tree grammar:

Example 3.3
Tree � Node

Tree.root = Node.root

Tree � Node SubTrees
connected(Node.root,SubTrees.root)
Tree.root = Node.root

SubTrees � � Tree SubTrees �

sibling(Tree.root,SubTrees � .root)
SubTrees � .root = Tree.root

SubTrees � Tree
SubTrees.root = Tree.root

Node � circle text
inside(text,circle)
Node.root = circle

The grammar in Example 3.3 introduces a new relation, sibling, which is needed
to link (sub)trees having the same parent (immediate ancestor). The nonterminal
SubTrees is used to recursively collect the list of the descendants of an internal
node of a tree. The iterative grammar in Example 3.2 is a much more concise and
natural specification of the tree language than this grammar.

Modelling Arcs

In the grammars presented so far, the arcs (or connections) between nodes were
represented directly by relations. This straightforward syntactic representation
introduces two problems.

The first problem concerns the semantics of arcs. If the arcs have structure them-
selves, it is necessary to model arcs as nonterminal objects as well. For instance,
the transition arrows of finite state machines have text objects attached as labels.

The second problem is less obvious, because it stems from the inherent tolerance
for relation-based ambiguity of the Earley-style parsing algorithm. Consider the
input graph describing a general tree in Figure 3.1. The tree is malformed because

40 CHAPTER 3. PROBLEMS IN USING ARGS

connected

A:

B:

Figure 3.1: An ambiguous input graph.

there is a cycle in the connected relation. Also, the input is ambiguous because
either the node labelled A or B may be interpreted as the root and the other as
a child. In fact, this is exactly what Wittenburg’s parsing algorithm does in this
particular case: it creates both possible interpretations and accepts the input.

As another example of handling of ambiguous input, consider the flowchart in
Figure 3.2. Although there are two relations connecting the topmost oval with
the rectangle, Wittenburg’s algorithm accepts the input simply because when the
expander relation between the oval and the P-block is queried for, only one in-
put object is returned (either the rectangle or the oval depending on the scanning
order). So, in this case, the extra relation is automatically ignored.

The ARG model regards relations as second-class objects when compared to the
actual input symbols. Thus, the ambiguity problem can be partly solved by mod-
elling the connection lines or arrows as syntactic objects. This prevents the parser
from accepting ambiguous inputs that contain extra connections. For instance
with the input in Figure 3.2, the parser would recognize two flowcharts that both
include one of the (duplicated) connections but neither will include both of the
connections.

General Graphs

With tree structures it is easy to use the visible connections directly as the relations
driving the parsing. As the grammar in Example 3.3 shows, even general trees can
be modelled. This is due to the context-free topology of trees: they are connected,
acyclic graph structures, where each subgraph has a unique access point, the root,
which is a representative of the whole subgraph. What makes the description
of general graphs different is that the arcs between nodes cannot be used as the
relation that drives parsing. For instance, a graph may contain unconnected nodes.

3.1. GRAMMATICAL PROBLEMS 41

connects-to

Figure 3.2: An erroneous flowchart.

To define general graphs with unbounded degree, the arcs or connections must
be modeled as syntactic objects instead of relations. Consider the grammar in
Example 3.4 that defines undirected general graphs. We use iterative constructs
in the productions to achieve a compact specification: the expression

� � denotes
zero or more symbols and

�
� denotes one or more symbols.

Example 3.4
S � graph Node+

belongsTo(Node.connector,graph)
S.connector = graph

Node � circle text arc*
startsFrom(arc,circle)
inside(text,circle)
Node.connector = circle

In the grammar of Example 3.4, the terminal graph represents a container (or
drawing) that holds the nodes of the graph. The relation belongsTo associates the
nodes of the graph with the container. Note that the container terminal may not
have a graphical representation in the language. The grammar models arcs explic-
itly as terminal symbols (arc). The arcs are related to the Nodes by the relation
startsFrom which connects each arc to exactly one Node. The arcs can be attached
to Nodes arbitrarily via the startsFrom relation since the arcs are undirected. The
relation inside denotes spatial inclusion. The expander attribute connector holds
the terminal that provides access to a Node from outside.

42 CHAPTER 3. PROBLEMS IN USING ARGS

In the grammar, an arc cannot be attached to both of its end-point Nodes. The
reason for this lies in the parsing algorithm: if an arc would be allowed to belong
to the covers of both of the productions generating the connected nodes, it would
be scanned twice in two different subparses. This would prevent the parser from
merging the covers of the subparses.

The grammar in Example 3.4 gives a rather simplistic definition of undirected
general graphs: a graph is defined to be a collection of circles including text with
attached arcs. Nothing is said about the topology defined by the arcs connecting
the nodes to each other. In fact, based on the syntactical definition, it is not even
known which Node instances really are connected to each other.

However, in many visual languages, the topology is not very constrained. For
example in the class diagrams of UML, the only topological restriction concerning
the relations between classes depicted as (undirected and directed) arcs is that
the inheritance relation is acyclic. Further, in the statecharts language of UML
there are only few topological restrictions, for instance that final states cannot
have outgoing arcs and initial pseudostates cannot have incoming arcs. The rules
concern more about what kinds of objects can be connected by which kinds of
arcs and what are the allowed labels on arcs.

On the other hand, languages like structured flowcharts or trees have topological
rules which can be expressed by context free grammatical structures as have been
illustrated by the earlier grammar examples. For example, in the statecharts lan-
guage of UML, the inclusion hierarchy of superstates and substates can be used
as a context-free driving relation of the grammar. If the transitions between states
were used to direct the order of parsing, the transition arrows would have to be
scanned in an order yielding a correct state hierarchy. That is, the transitions be-
tween the substates in a composite state (XOR, AND) are scanned first and the
other transitions leaving or entering the composite state afterwards. As demon-
strated by Tucci & al. in [TVC94], this approach may lead to an exponential
search time for a correct parse.

Remote References

In [Gol91], Golin introduced the concept of remote objects in context-free produc-
tions. A remote object is a terminal object that is part of some other nonterminal
instance outside the nonterminal instance currently being parsed. In productions,
remote objects are used in constraints to give additional, context dependent con-
ditions for recognizing nonterminals.

It is straightforward to add support for remote objects into the ARG model. For
example, we can augment the Node production from the grammar in Example 3.4
with a predicate that uses a remote reference as shown in Example 3.5:

3.2. PARSING PROBLEMS 43

Example 3.5
Node � circle � text arc �

inside(text,circle �)
startsFrom(arc,circle �)
endsTo(arc,circle �)

Node.connector = circle �

The remote reference is underlined. The expression endsTo(arc,circle �) means
that in a correct instance of Node, every arc starting from circle � must also end to
a circle somewhere in the input. The expression endsTo(...) must be evaluated as a
predicate and not as an expander relation because the remote object is not usually
one of the right-hand side symbols of the production. Note that this formulation
does not forbid a remote object to actually be a part of the production: the object
is only ‘logically’ remote (the same node may be both the source and the target
of an arc). Also, there might be several types of lexical objects that can be the
targets of an arc. The grammar notation should provide the means for expressing
this kind of rule.

The remote reference provides a way to add expressive power to ARGs in the
sense that it can further restrict the inputs that the parser will accept. For instance
with the grammar in Example 3.4, the parsing algorithm will accept graphs where
each arc is connected to a Node only by one of its ends. The production above
ensures that an arc is connected by both of its ends with terminal symbols of
correct types.

Looking from the semantic point of view, the arcs of a graph language usually
denote relationships between instances of nonterminals rather than instances of
terminals. A terminal symbol used in a remote reference is then a required part of
some nonterminal instance. If a predicate on a remote reference fails, it implies
that such a nonterminal cannot be parsed in the input because a required part of
the nonterminal is missing. However, if the predicate evaluates to true, it does not
imply that such a nonterminal has been or will be parsed. So, also when using
remote references, the validity of arcs must be checked after parsing during a
semantic processing phase.

3.2 Parsing Problems

In this section, we describe problems in the original parsing algorithm for ARGs.
To set the following discussion in perspective, we recall that our aim is to support
the implementation of off-line parsers for edit-compile style of visual program-
ming. In such a setting, the goal of the parser is to produce an unambiguous
interpretation of a visual program. This is different from the original goal of the

44 CHAPTER 3. PROBLEMS IN USING ARGS

B C

A

Input

A

C

A

B

BA C

B C

A

TreesRecognized

11 3523

18 36

37

Figure 3.3: The parses (on the right) of the binary tree on the left, produced by
Wittenburg’s parser.

ARG model which was to support incremental parsing of possibly ambiguous vi-
sual languages.

We concentrate first on the problem of pruning redundant structural variants of
nonterminals during parsing. Then, we discuss the effects of the any-start property
on parsing, and finally, we briefly discuss the role of predicates in parsing.

3.2.1 Parsing Structural Variants

With the grammar in Example 3.1, Wittenburg’s algorithm will produce many
partial parses that cover only a section of the input. This is illustrated in Figure 3.3
that shows the Trees recognized by the parsing algorithm from the binary tree on
the left-hand side of the figure. The Trees on the shaded background are the ones
that are necessary for a parse that covers the whole input, that is they correspond
to the instances of Tree in the derivation of the binary-tree used as input. The other
Trees represent partial parses, or unnecessary reductions of grammar productions
into nonterminal instances.

The numbers associated with the trees in Figure 3.3 refer to the (inactive) parse

3.2. PARSING PROBLEMS 45

states in Figure 3.4 that shows the corresponding parse table. The left-hand side
column of the table shows the index symbol (input object) for a particular slot
(the circle objects in the tree have been numbered in the breadth-first order). The
right-hand side column shows the states in the parse table slots. Active states are
depicted with dotted productions in brackets. The dot shows how much of the
right-hand side of a production has been parsed so far. Inactive states are depicted
as #(nonterminal). In front of each state there is a number that shows the order in
which the states have been inserted into the table during parsing. In this case, the
parsing has been started from the text object ‘B’, as indicated by the ordinals of
the states in that slot.

In the binary tree grammar, the three productions for Tree represent structural
variants that are in an inclusion relationship. This means that whenever the parser
recognizes a Tree defined by production Tree � Node Tree Tree, the parser will
also recognize the instances defined by Tree � Node Tree and Tree � Node. This
is illustrated by the parse states 18, 23, 36, and 37 in the parse table in Figure 3.4
(Figure 3.3 shows the corresponding trees).

This behavior is analogous to the behavior of Earley’s parser with a zero length
lookahead. Because of the lack of a linear ordering of the input, Earley’s looka-
head mechanism cannot be applied to parsing visual languages.

However, the predicate mechanism can be used to achieve a form of lookahead (or
lookaround) to distinguish between the structural variants during parsing. Con-
sider the following productions:

Example 3.6
Tree � Node

Tree.root = Node.root
notConnected(Node.root)

Tree � � Node Tree �
connected(Node.root,Tree � .root)
onlyOneConnected(Node.root)
Tree � .root = Node.root

Tree � � Node Tree � Tree
�

connected(Node.root,Tree � .root)
connected(Node.root,Tree

�
.root)

Tree � .root = Node.root

Now, the interpretation of predicates notConnected(Node.root) and onlyOneCon-
nected(Node.root) is that they evaluate to true if there are no input objects or there
is just one object, respectively, in the connected relation with the input object
bound to Node.root. In [WW98], Wittenburg and Weitzman use predicates like
this to cut down unnecessary parsing in a flowchart grammar. Likewise, Chok and
Marriott use non-existence constraints in CMGs [CM95] to distinguish structural

46 CHAPTER 3. PROBLEMS IN USING ARGS

1

2
#(Node)

[Node -> text . circle]

#(Tree)

[Tree -> Tree Node . Tree]

[Tree -> Tree Node . Tree]

[Tree -> Node . Tree]

[Tree -> Node . Tree Tree]

3 22

27
28
29
30
31

34
35

20

25

32
#(Node)

#(Tree)

[Tree -> Node Tree . Tree]

[Tree -> . Node]

[Tree -> . Node Tree]

[Tree -> . Node Tree Tree]

[Node -> . circle text]

[Tree -> Node . Tree]

[Tree -> Node . Tree Tree]

[Tree -> Tree Node . Tree]

[Tree -> Tree Node . Tree]
B

A

C

[Node -> . circle text]

[Tree -> . Node]

[Node -> . text circle]

[Tree -> . Tree Node]

[Tree -> . Node Tree]

[Tree -> . Node Tree Tree]

[Tree -> . Tree Node Tree]

[Tree -> . Tree Node Tree]

[Tree -> Tree . Node Tree]

[Tree -> Tree . Node Tree]

[Tree -> Tree . Node]

[Node -> . circle text]

#(Node)

#(Tree)

[Node -> circle . text]

[Node -> circle . text]

#(Tree)

#(Tree)

#(Tree)

1

3
4
5

6
7
8

9

12
13
14
15
17
18

19
21
24

36

33

2

23

37

10
11

16

26

Figure 3.4: Parse table after parsing a binary tree.

3.2. PARSING PROBLEMS 47

1

3

2
[Node -> text . circle]

#(Node)

B

A

C

B

A
1

2 3
C

init-states}
[Node -> . circle text]

[Tree -> . Node]

[Node -> . text circle]

[Tree -> . Tree Node]

[Tree -> . Node Tree]

[Tree -> . Node Tree Tree]

[Tree -> . Tree Node Tree]

[Tree -> . Tree Node Tree]

1
2
3
4
5

1.

6
7
8

9 2.

10

Figure 3.5: Parsing a binary tree starting from one of the leaves.

variants from each other; their main concern is to make parsing deterministic. The
writer of a grammar has to add the lookahead rules manually when using CMGs
and ARGs.

3.2.2 Any-Start

In Wittenburg’s parser (Algorithm 2.1), the any-start property is achieved by using
the set init-states in the completion operation. Init-states contains predictions for
every nonterminal in the grammar to provide missing predictions of nonterminals
when starting parsing from somewhere in the ‘middle’ of the input (with respect
to the derivation that created the input). The role of init-states is illustrated by the
follwing example.

Consider the situation in Figure 3.5 where parsing of the binary tree on the right
has been started from the object ‘B’. In the parse table shown on the left, the
slot indexed by ‘B’ has been initialized with the init-states (the two active states

� � � � � � � � � � � � � 	 � � � � �
 are ordering variants of the same production). The
figure shows a snapshot of a parse where after the successful scanning of ‘B’
(arrow 1) and circle � (arrow 2) a Node has been recognized. This is indicated
with the inactive state #(Node) in the slot indexed by circle � . However, this slot
contains no states that would be waiting for a Node to be parsed. That is, there is

48 CHAPTER 3. PROBLEMS IN USING ARGS

no prediction for the Node. Therefore, the complete operation in Algorithm 2.1
takes a union of the states in the slot and init-states to advance the parse. As result
of the complete, the states 11, 12, 13, and 14 are created (see Figure 3.4) and the
parsing continues.

Any-start is a powerful property of the parsing algorithm which is important in
incremental parsing applications. However, in an offline parsing setting it is not
necessary. The combined effect of any-start and the lack of lookahead is clearly
shown when comparing the parse tables in Figures 3.4 and 3.6. Figure 3.6 shows a
parse table for a complete parse of the input in Figure 3.3 with a minimum number
of parse states. By giving up the any-start property and by pruning structural
variants during parsing it is possible to achieve an unambiguous parse like in
Figure 3.6. Note that in Figure 3.6, the parsing has been started from the circle of
the root node of the tree instead of the text object ‘B’, as in the parse in Figure 3.4.

Giving up the any-start property means that the grammar of the visual language
has to be written so that it is possible to define an auxiliary function that can decide
from which input object (terminal) to start parsing. For the binary tree language,
this function would just search (one of) the smallest input object in the connected
relation. For the languages that we have been studying in our work, it has been a
simple matter to define such a function.

3.2.3 Semantics and Evaluation of Predicates

Predicates can be used to enforce local conditions between the right-hand side el-
ements of productions. For instance, recall the binary tree example form page 37,
where the predicates left-of and above were used to enforce the conditions that
the subtrees of an internal node are below it and that they are ordered from left to
right. If the location property of the input objects can be accessed at parse time,
the indexed md-set � used as input does not even have to include the relations
above and left-of because the relations do not drive the scanning of the input.

However, predicates open the possibility to perform context-sensitive checks. For
instance, in Example 3.6 above, predicates were used to prune structural variants
by checking the presence of input objects outside the current parse context in
a relation with a local object. Also, in Example 3.5, a predicate was used to
implement a reference to a remote object outside the current parsing context.

Wittenburg and Weitzman have used even more powerful predicates: in [WW98]
a predicate searches the parse table to find similar kinds of states that have a larger
cover than the one being parsed. Their idea is to suppress parses that eventually
lead to the creation of the same states over and over again (like in the binary tree
parsing example above).

If predicates can be arbitrarily complex, the expressive power of the grammati-
cal model is increased significantly. On the other hand, formal reasoning about
the expressive power and the complexity of the parsing becomes more difficult.
The difficulties created by allowing arbitrarily complex computations in addition

3.2. PARSING PROBLEMS 49

B C

A

1

3

2

B

A

[Node -> circle . text]

[Node -> circle . text]

C

[Tree -> . Node]

[Tree -> . Node Tree]

[Node -> . circle text]

#(Tree)

#(Node)

[Node -> circle . text]

[Tree -> Node . Tree Tree]

[Tree -> Node Tree . Tree]

[Tree -> . Node]

[Tree -> . Node Tree]

[Tree -> . Node Tree Tree]

[Node -> . circle text]

#(Tree)

#(Node)

[Tree -> . Node]

[Tree -> . Node Tree]

[Tree -> . Node Tree Tree]

[Node -> . circle text]

#(Node)

#(Tree)

[Tree -> . Node Tree Tree]

1

3

5

6

8
9

12

14

16
17
18

20

21

23

2

4

7

10
11
13

15

22

19

Figure 3.6: A parse of the binary tree on the right-hand side with the minimum
number of parse states.

50 CHAPTER 3. PROBLEMS IN USING ARGS

to normal parsing actions are illustrated in [MM98a] where Marriott and Meyer
use a restricted form of constraint multiset grammars as the basis of the CCMG
hierarchy of visual languages. The restriction is that attribute values can only be
copied from the right-hand side elements to the attributes of left-hand side ele-
ments. That is, complex computations on attributes are not allowed. Marriott and
Meyer argue that a formal treatment of the complexity of parsing is possible only
with this restriction.

3.3 Complexity of Parsing

Wittenburg has not given any analysis of the complexity of Algorithm 2.1. In
the following, we analyze the theorethical worst case time requirement of the
algorithm and show that it is � � � � � where � is the number of symbols in the
indexed md-set � used as input. The analysis follows the reasoning by Earley on
the complexity of the original algorithm [Ear70].

We have analyzed the worst case complexity as a function of the number of the
input objects and not as a function of the number of the relation tuples. We did
this because it is a necessary condition of a successful parse that all the input
objects have been processed (see the success condition of Algorithm 2.1 on page
34). However, Algorithm 2.1 does not require that all the relation tuples have been
used in a successful parse.

For the analysis, we first recall that parse states are stored in sets in the parse
table. The equality between parse states is based on comparing the equality of the
parts of the states. Two active states are equal if they have the same production
variant, the same dot position and equal sets of parsed daughters. The equality of
inactive states is based on nonterminal type, the values of expander attributes, and
the equality of the cover sets.

In the analysis, we first determine how the size of the parse state sets � 	 in the
slots of the parse table � depend on the number of input objects. Then, we can
analyze the number of steps executed by the parsing operations of the algorithm.
The analysis follows the worst case scenario.

3.3.1 Analysis

The Number of Parse States in � 	

In Earley’s algorithm, the number of states in any state set � 	 in the parse table �
for the input symbol
 	 is proportional to � (� �) because only the value of the
back pointer depends on � ; the ranges of the other elements of a state tuple are
bounded (see Section 2.2.1). For Algorithm 2.1, we state:

Lemma 3.1 In the worst case, the number of states in any set � 	 is proportional
to � � � , where � is the number of symbols in the indexed md-set � used as input.

3.3. COMPLEXITY OF PARSING 51

Proof: The covers of inactive states (and the covers of the parsed daughters of
active states) represent selections of symbols from � . With certain grammars and
inputs (see below), it is possible that the parser generates for each symbol � � the
set � � � of nonterminal instances that has the following properties:

– The states in � � � cover together all possible selections of input symbols
that include � � (the order of the symbols in the selection is not significant).
The size of the set is �

� � �
� � 	
 �� � �

� � � �� � � � 	
 � �
– Each state in � � � has � � as the value of one of the expander attributes.

– Because of the second property above, � � � � � � .
It can be thought that the nonterminal instances in � � � represent all the possible
paths through the input symbols that ‘begin’ at � � and that follow the expander
relations in the input.

It is possible that the same symbol appears as the expander attribute value of non-
terminal instances that represent different types. However, the number of nonter-
minal types is bounded by the (constant) number of nonterminals in the grammar.
Therefore, the number of inactive states in � � is � � 	
 � . The set � � may also
contain active states that represent parse paths through the input that include � � at
some point. The number of such paths is subject to the same combinatorial con-
straint as the number of paths that begin at � � . So, we conclude that the number
of parse states in � � is � � 	
 � .

For example, in Section 3.2 we parsed binary trees with the ambiguous grammar
of Example 3.1. Figure 3.3 and the corresponding parse table in Figure 3.4 show
that the parser creates all the Trees that begin from circle � and that have only this
symbol in common. If the circles in the input were completely connected by the
connected relation so that each circle would be connected to every other circle, the
parse table would contain also all the possible trees rooted at circle � and circle � in
the parse table slots for circle � and circle � , respectively.

The Number of Steps per � �
The predict operation executes a bounded number of steps per state in any state set.
The complete, inverse-complete, and scan operations execute � � � � 	
 � steps for
each state they process in the worst case because they may have to add new states
into every other table slot (in case of a completely connected input). Adding new
states into a set involves testing that an equal state is not already in the set. In the
case of inactive states, this requires testing if the covers of the states are the same,
which may take up to � � steps. In each parsing operation, there is also the test that
the intersection of the covers of two parse states is empty and this may take up to� � steps per test. So, these operations take up to � � � � 	
 � � � � � � � � � 	
 � � � � � � � 	
 �
steps in � � .

52 CHAPTER 3. PROBLEMS IN USING ARGS

The Number of Steps per �

For all the sets � �
� � � � � � � , the number of steps executed by the algorithm is �

� � �
�

� 	
 � �
 � � 	 � � . So, we get the result in Lemma 3.2:

Lemma 3.2 The worst case time requirement of Algorithm 2.1 is � 	 � � .

3.3.2 The Causes of the High Complexity

In the worst case, Algorithm 2.1 is very inefficient. Also, Earley’s original algo-
rithm has a relatively high time requirement, � � � � , in the general case. How-
ever, for unambiguous grammars and grammars with bounded ambiguity (every
sentence has only

� �
derivation trees for some fixed

�
), the time requirement of

Earley’s algorithm is � �
 � . Further, linear time can be achieved for grammars
that have a fixed bound on the size of the state sets, and using a proper lookahead,
all � � �

�
� grammars can be processed in time � � � .

The ambiguity of a grammar and the ambiguity in the input are the causes of the
high worst case complexity of Wittenburg’s algorithm. The main issue here is the
number of states in the slots (state sets) of the parse table. If the size of the state
sets is bounded by some constant (or even a polynomial function over �), it is
possible to have a polynomial time requirement.

Figure 3.6 suggests that by pruning structural variants during parsing and with an
unambiguous input, it is possible to have a bounded number of states in the state
sets. This would remove the exponential term from the complexity calculation. In
practice, this is what has happened with the grammars that we have implemented
with VILPERT.

There are other factors than ambiguity that contribute to the high polynomial terms
in the overall complexity. Computing the set intersection of the covers of inactive
states and computing the equality of the covers can be expensive operations if
naı̈ve implementations are used. For example, Wittenburg suggests using a bit
vector representation for the cover sets to reduce the cost of these set operations
at runtime. This solution saves time with the expense of space since for an input
set of size � , an � -bit vector is required to represent a cover set.

The representation of the input relations and the cost of executing expander queries
has been ignored so far. Many kinds of underlying data strcuctures or database
technologies can be used to achieve an optimized solution for the representation
and the querying problems.

3.4 Discussion

Atomic relational grammars provide a good compromise between the expressive-
ness of the specification formalism and the simplicity of the grammar formalism

3.4. DISCUSSION 53

and the associated parsing algorithm. One nice feature is that the grammar formal-
ism does not require the productions to be in any kind of normal form because of
the Earley-style parsing algorithm. With the extensions suggested in Section 3.1,
ARGs can be used to specify and implement syntax analyzers for a large class of
diagramming languages.

The worst-case time requirement of the parsing algorithm seems prohibitive. In
practice, however, it is possible to achieve much better behavior with unambigu-
ous grammars and inputs.

The any-start property makes Wittenburg’s original model suitable for specifying
incremental parsing interfaces to visual language applications. However, edit-
compile style interfaces to visual languages do not benefit much from this feature.
In fact, the any-start property introduces unnecessary complexity to syntax anal-
ysis. Fortunately, the context-free backbone of the grammar formalism and the
parsing method make it possible to achieve more deterministic parsing behavior.
Predicates can be used to disambiguate the parsing of structural variants of non-
terminals that are in an inclusion relationship.

Wittenburg’s algorithm is a recognizer rather than a parser. This means that the al-
gorithm can decide whether a relational sentence belongs to a relational language
but it does not impose any phrase structure on the sentence. The parsing table does
contain enough information for constructing a parse tree for the sentence but the
presence of many unnecessary states in the table makes the construction difficult.
However, for visual programming applications like CASE-tools, it is necessary to
obtain a parse tree for recognized sentences.

There is also another consequence due to the nature of the recognizer. In case
of erroneous input, Wittenburg’s algorithm just fails giving no information about
the error. When considering the edit-compile style of visual programming, this
is a serious weakness. As a minimum requirement, the parser should be able to
indicate the piece of input that caused the failure. Further, the parser must be
able to recover from syntactic errors in order to process as much input as possible
during one parse.

54 CHAPTER 3. PROBLEMS IN USING ARGS

Chapter 4

Extended Atomic Relational
Grammars

In this chapter, we present our additions and changes to atomic relational gram-
mars. The changes address the problems presented in Chapter 3 and they concern
both the form of the productions and the parsing algorithm. The changes to the
form of productions make it easier to express typical syntactic structures in vi-
sual diagramming languages. The changes to the parser make parsing determin-
istic which enables the effective handling of syntax errors. The changes limit the
set of languages that can be recognized by the parser. However, the limitations
are minor. We call the modified formalism extended atomic relational grammars
(EARG).

First, in Section 4.1, we present the specification of extended atomic relational
grammars. Next, in Section 4.2, we describe our predictive lookahead method
that makes parsing EARG languages more deterministic than parsing ARG lan-
guages. Then, in Section 4.3, we discuss the changes to the parser: we describe
how to handle the parsing of iterative symbols in productions, discuss the imple-
mentation of the predictive lookahead method, and show how to construct a parse
tree. Finally, in Section 4.4, we make remarks of the complexity of parsing and
the expressive power of extended ARGs.

4.1 Specification of Extended ARGs

Definition 4.1 A extended atomic relational grammar (EARG) is a 7-tuple� � � � � � � � � � � � � � 	 �
 � , where

1. � is a finite set of nonterminal symbols.

2. � is a finite set of terminal symbols disjoint from � .

3. � is a distinguished symbol in � called the start symbol.

55

56 CHAPTER 4. EXTENDED ARGS

4. � � is a finite set of relation symbols called the expander relation symbols.

5. � is a finite set of predicate symbols.

6. � is a finite set of expander attribute symbols such that each nonterminal� � � is associated with a subset � � � � of expander attributes, � � � � � � .

7. � is a finite set of productions of the form � 	
 � � � � , where

� � � ;

 � � � � � � � � �

�
�

�
�

�
� � � � where

� � means that � is optional (zero or one),
� �

means one or more, and
� � means zero or more.

There must be at least one non-optional symbol in
 (� or � �
, where� � � � �).

� is a set of relational constraints of the form � � � � � � � where � � � � �
and � � � are either terminal members of
 or expressions of the form� � � where � � � � � � and

�
is a nonterminal member � � of
 ,
 �

� 	 � � � � � � � � �
 (� � � �). Furthermore, Restriction 2.1 must hold for
� .

� is a set of predicates of the form

(a) � � � 	 � � � � � �
 � , or
(b) not exists � � � � � � � � � � or not exists � � � � � � � � � � , or
(c) exists some � � � � � � � � � � or exists some � � � � � � � � � � , or
(d) exists

! � � � � � � � � � � or exists
! � � � � � � � � � �

where � � � , " � , � � � � � , � and � � are references to
 as in
� , and � � ! # . The predicates of type (b), (c), and (d) are remote
references.

 is a set of disambiguation constraints of the form

(a) not exists � � � � � � � � � � or not exists � � � � � � � � � � , or
(b) exists

! � � � � � � � � � � or exists
! � � � � � � � � � �

where " � , � � � � � , � is a reference to
 as in � , and
! # .

� is a set of ordering expressions of the form $ % & ' % � 	 � � � � � �
 () *
where� # and � � are references to
 as in � such that:

(a) if � � , the symbol referenced by � is iterative, and
(b) if � + , all the symbols referenced by � � are non-iterative and

non-optional.
* � , � � � is a function

* � - . - 	 / 0 % 1 ' � 2 3 4 5 ' 6 , where - " � , � is an
indexed multiset of input symbols, and

*
implies a total order on - .

4.1. EXTENDED ARGS 57

� is a set of attribute assignment statements of the form � � � � � where
� � � and � is either a terminal member of � or an expression of
the form

� � � as in 	 . Further, there must be exactly one attribute
assignment statement � � � � � � � � for each � � � � � � � .

When compared with the original definition of ARGs (Definition 2.4), Defini-
tion 4.1 above introduces several differences. The definition distinguishes pred-
icates from expander constraints and introduces iterative right-hand symbols, re-
mote references, disambiguation constraints, and ordering expressions. In the
following, we discuss the changes.

Iterative Right-Hand Side Symbols

The first change in the definition of the productions
 is the addition of standard
iteration markers in � . A right-hand side symbol can be followed by exactly one
of the markers ‘ � ’, ‘ � ’, or ‘

’. The marker ‘ � ’ means that the symbol is optional

(zero or one), the marker ‘ � ’ means a sequence of zero or more, and the marker
‘

’ denotes a sequence of one or more. The introduction of iterative symbols has

several consequences.

Relational constraints in productions may refer to symbols followed by an itera-
tion marker. These constraints are interpreted as follows. Let

�
be an EARG and

let � be a production of
�

, � �
 � , Let � � � � � � � be a relational constraint of � ,
� � � � � � � � � � , such that either � or � (or both) refers to an iterative symbol. In the
context of � , let � � be the set of input objects represented by � and let � � be the set
of input objects represented by � . Then, � � � � � � � is evaluated as true if and only if

� � � � � � � for each � � � � � � � � � � � .

The iteration markers ‘ � ’ and ‘ � ’ mean that the marked symbol is optional. That
is, the symbol may not be present in some instance of � . However, Restriction 2.1
(p. 22) states the connectedness constraint that must hold also when there are
optional symbols in a production. So, even if an optional right-hand side symbol� � � � � of some ordering variant of � is not present, the next unprocessed symbol� � � � must be ‘connected’ by some relational constraint to a non-optional symbol� � ,

	 �
 , in the already processed part �
� � � � � � � � of � � .

Predicates

The second addition to the definition of productions is the set of predicates, � . In
addition to the constraints 	 , also the predicates represent necessary conditions
that must hold for the parser to recognize a nonterminal.

The definition includes the set � of predicate symbols that are distinct from the
relation symbols � � . A predicate � � can be of any arity greater than 0;
denotes an external function that can be invoked with a list of arguments and that
returns either true or false. The predicates of type (a) in the definition of � are
these kind of predicates.

58 CHAPTER 4. EXTENDED ARGS

The predicates of types (b), (c), and (d) are remote references (see Section 3.1.2).
They are used to enforce the existence of some or a fixed number of terminal
symbols in the given relations with the terminals that can be referenced within the
production. That is, given

– production � ,

– remote reference � � � � � � � (� � � � � � �),

– finite indexed multiset � with an index set � � � � � � � � �
�

�
�

	 that is input to
the parser, and

– object (constant)
 � � that is bound to the right-hand side reference � in� � � � � � � (� � � � � � �)

the following formulas determine the Boolean value of � � � � � � � (� � � � � � �),:

– case (b) �
� � � � � � � � � � � � �
 �

� �
� � � � � � � � � � �
 � � � �

– case (c)
� � � � � � � � � � � � �
 �

�
� � � � � � � � � � �
 � � � �

– case (d)
� 	 � � � � � � � 	 � � � � � � � 	 � � � � � � � � � 	 � � � �

� � � 	 �
�� � 	 � � � � � � � 	 � � �

�� � 	 � � � � � � � � 	 � �
 � � � � � � � � � � 	 � �
 � �
� � �
 � � � � � � � � � �
 � � � � � � � 	 � � � � � � � � � � 	 � � � �

�
� 	 � � � � � � � 	 � � � � � � � 	 � � � � � � � � � 	 � � � �

� � � 	 �
�� � 	 � � � � � � � 	 � � �

�� � 	 � � � � � � �
 � � 	 � � � � � � � � � �
 � � 	 � � �
� � �
 � � � � � � �
 � � � � � � � � � � 	 � � � � � � � � � � 	 � � � � �

4.1. EXTENDED ARGS 59

Disambiguation Constraints

The third addition is the set of disambiguation constraints, � . These constraints
are used to prune out structural variants during parsing (see Section 3.2.1). Let
productions � � and � � be in an inclusion relationship. That is, there is an injec-
tive, one-to-one mapping from the symbols, constraints, predicates, and attribute
assignments of � � to � � . In other words, � � is parsed whenever � � is parsed (see
the grammar in Example 3.1). Then, � � should be annotated with disambiguation
constraints to ensure that if � � is parsed, then � � will not be parsed. Given � , � , � ,
and � as above, the following formulas determine the value of a disambiguation
constraint in � :

– case (b) � �
� � � � � � 	
 � � � � � �

�
� �

� � � � � � 	
 � � � � � � �

– case (c) �
� � � � � � � � � � � � � � � � � � 	
 � � �
 � � � � 	 �

 � � � �
�

	 � � �
 � � �
 � � � � �
�

	 � � � �
 � � � � � � � � �
 � � �
 � � � � � � � � �

 � �
 � � � � � � � � � � � � � � � 	 � � � � � � � � � � 	 � � � � � �� �

� � � � � � � � � � � � � � � � � � 	
 � � �
 � � � � 	 �

 � � � �

�
	 � � �
 � � �
 � � � � �

�
	 � � � �
 � � � � � � � � �
 � � �
 � � � � � � � � �

 � �
 � � � � � � � � � � � � � � � 	 � � � � � � � � � � 	 � � � � � � �
For example, we can now write the binary tree grammar from Example 3.1 as
follows:

Example 4.1
Tree � Node

not exists � � � � � � � � � � � � � � � � � � ! � " � ! � � # � � � �
Tree.root = Node.root

Tree � � Node Tree �
connected(Node.root,Tree � .root)
exists 1 � � � � � � � � � � � � � � � � � � ! � " � ! � � # � � � �
Tree � .root = Node.root

Tree � � Node Tree � Tree
connected(Node.root,Tree � .root)
connected(Node.root,Tree .root)
order Tree � .root,Tree .root by left
Tree � .root = Node.root

60 CHAPTER 4. EXTENDED ARGS

Node � circle text
inside(text,circle)
Node.root = circle

The predicates of types (b) and (d) and the disambiguation constraints of types (a)
and (b) have the same form. However, there is an important difference between
predicates and disambiguation constraints. The predicates (and remote references)
are required conditions for recognizing valid syntactic structures. The disam-
biguation constraints are used to make parsing deterministic in order to avoid
partial parses that cannot cover the whole input. Therefore, it is a potential syntax
error if a predicate fails in production � . On the other hand, an unsatisfied disam-
biguation constraint in � indicates that parsing can continue normally although �
must be discarded because some production � , which includes � , should be parsed
instead.

Ordering Expressions

The fourth addition is the set of ordering expressions, � . These expressions have
two distinct but related purposes. Basically, they provide the parser a mechanism
to unambiguously choose the next input object to scan in situations where an
expander query returns multiple input objects.

We recognize two situations where we need ordering expressions. In the first
case, there is an iterative symbol on the right-hand side of a production as shown
by the example below. In this example, an ordering expression is used to obtain a
left-to-right ordering of subtrees in a general tree:

Tree
�

� Node Tree � �
connected(Node.root,Tree � .root)
order Tree � .root by left
Tree

�
.root = Node.root

That is, when querying input symbols (see Procedure 2.1, Advance) to start pars-
ing the iterative terminal or nonterminal, the parser sorts the input objects returned
by the query using the sorting function

�
as declared by the ordering expression.

The parser will then process the objects in this order (see Section 4.3.1). There-
fore, the sorting function must imply a total order on those input objects that may
be returned by the query (this could mean all of the input objects but not neces-
sarily).

The second case does not involve iterative symbols. The syntax of the ordering
expressions makes it possible to declare the same ordering functions for many
non-iterative right-hand side symbols. For instance, in the following production

4.1. EXTENDED ARGS 61

from the grammar in Example 4.1, an ordering expression is used to enforce a
left-to-right ordering of the subtrees in a binary tree:

Tree
�

� Node Tree � Tree �
connected(Node.root,Tree � .root)
connected(Node.root,Tree � .root)
order Tree � .root,Tree � .root by left
Tree

�
.root = Node.root

In the example above, there are two symbols in the connected relation with the
symbol Node. For instance, let us assume that the parser is processing input that
represents a binary tree such as in Figure 3.3 (page 44) according to the produc-
tion above. After parsing the topmost Node (consisting of circle

�
and the text

object ‘A’) and when starting to parse Tree � , the next expander query, say � , will
return two input objects (circle � and circle �) that represent the root nodes of the
two subtrees. Without the ordering expression, the parser could not determine
which circle should be associated with Tree � and which one with Tree � . So, the
parser would, in this case, start two separate subparses for Tree � from both circle �
and circle � . A similar sequence of events would then occur when starting to parse
Tree � . Eventually, this would lead to the situation where the parser would have
produced two different parses for the same input. However, if the ordering ex-
pression is specified for the production (as above), the parser is able to associate
the input objects returned by � with the right subtrees: the parser sorts first circle �
and circle � using function left and then it associates the ordered input objects with
the symbols in the order in which the symbols appear in the expression. That is,
the first object is associated with Tree � and the second object with Tree � . So, the
order of the (references to) symbols in the ordering expression is also significant.

Predicates can also be used to enforce certain orderings of right-hand side symbols
as shown by the example in Section 3.2.3 (page 48). However, this adds overhead
to the parsing and makes error recovery more difficult because the parser may cre-
ate ambiguous and redundant subparses that represent all the possible orderings
of the multiplicated right-hand side symbols, and when the parser finally can eval-
uate the predicates, it only then discards the redundant subparses. But if ordering
expressions are used, the parser will not create the redundant subparses, in the first
place.

In the definition of � (in Defintion 4.1), we stated that the form of ordering ex-
pressions with a list of references to right-hand side symbols can be used only for
non-iterative symbols. The reason for this will be explained below in Section 4.2,
where we give also some additional restrictions for the ordering expressions in a
production.

62 CHAPTER 4. EXTENDED ARGS

Attribute Assignments

The form of the attribute assignments � has not been changed. However, to guar-
antee that attributes are always assigned a value and that the value is unambiguous,
we give Restriction 4.1.

Restriction 4.1 Repetitive or optional right-hand side symbols cannot be used in
the attribute assignments in � .

4.2 Predictive Lookahead

One of our goals in extending atomic relational grammars was to make parsing
more deterministic. With deterministic parsing we mean:

– pruning redundant structural variants of nonterminals (see Section 3.2.1)
with the help of disambiguation constraints,

– using filtering based on the terminal type of input objects to avoid starting
parsing nonterminals from input objects that cannot possibly ‘begin’ such
nonterminals, and

– using the ordering expressions to deterministically select the next input ob-
ject to be scanned from a set of candidate objects.

The last two items in the list above comprise our predictive lookahead method.
The method uses three properties of an EARG grammar

�
to filter and order the

input objects returned by an expander query � for an active state � . Let active state
� � � � � � � � � �

� � � � � � � � � � � � 	 , where
 is the expander constraint used as the basis
of � and � 	 is the symbol at the dot � in � . In the method, we use the following
information :

1. the expected types of terminals returned by the query,

2. the number of terminals expected to be returned by the query in the context
of � , and

3. the ordering expression � � for � 	 in � (if specified).

In the following, we explain how the lookahead method uses this information; the
actual implementation of the method is described later in Procedure 4.6. First, we
describe how we filter input objects returned by the query � based on the expected
(terminal) types of the objects. Then, we describe how we use the ordering ex-
pressions to deterministically select the next input object to be scanned from a set
of candidates.

4.2. PREDICTIVE LOOKAHEAD 63

Expected Types of Terminals

Let � be a reference to a symbol � in a constraint, a predicate, a remote reference,
or an ordering expression. We define � � � � � � � 	
 � � � as the set of the (types of)
terminals that � can possibly represent:

� � � � � � � 	
 � � � � � � � � � is of form � � � � �� � �
 � � � � � � � � is of form � � � � � � � � � � � � � �

First � � � � � is the set of terminals that can be bound to the expander attribute � of
the nonterminal � . We construct the set for each pair � � � � � � � � � based on
the attribute assignments for � � � in the productions by:

1. For each � � � and each � � � � � � , let First � � � � � � � .

2. For each assignment � � � � � in
�

, where � � � , add � to First � � � � � .

3. For each assignment � � � � � in
�

, where � � � � � and � � � , add
First � � � � � to First � � � � � .

4. Repeat step 3 until no more new items are added to any of the sets First � � � � � .

This algorithm is a modification of the method presented in [ASU86, p. 189]
for computing the FIRST sets for string grammars. The differences are that we
have to compute the sets for nonterminal-attribute pairs and that there are no � -
productions in EARGs.

In our lookahead method, we use the terminals sets as follows. Let � be an ex-
pander query, let � be the relational constraint used as the basis of the query, and
let � be the reference to the next object to be parsed in � . Now, when examining
the set � of objects returned by � , we can discard all the objects in � that do not
belong to � � � � � � � 	
 � � � because those objects cannot possibly ‘begin’ the symbol
referenced by � . So, we get a new query result

� � � � � � � � � � � � 	
 � � � �

Note that with the help of the First sets, we can also check that each nonterminal
reference actually ‘grounds out’ in an EARG grammar. That is, � ! " # � � � � �

$
� �

for all � � � and all � � � � � � .

Using Ordering Expressions

We mentioned earlier on page 60 two situations where an expander query might
return multiple input objects. In the following, we analyze these situations in more
detail. In the analysis, we consider only the local context of one production (see
the discussion below on page 66 about this restriction).

64 CHAPTER 4. EXTENDED ARGS

Let � � � � � � � � � (or � � � � � � � � �) be the constraint used in the expander query� , as above. Let � be the reference to � � (the symbol to be parsed next) and let� be a reference to a symbol � � ,
� 	 � (a symbol that has already been parsed).

We call � � the anchor of � in � . Let
 � be the expander relation in the constraint� . The result set � returned by � will initially hold all the input objects that are in
relation
 � with the anchor object.

The first thing to do is to remove from � all the objects that have a wrong terminal
type: � � � �

�
� �

where the function term returns the terminal type of an input object. Then, if
�

�
�

� 	 , we have two possibilities. First, if � � is iterative and there is an ordering
expression � specified for � � , we sort � with

�
, and continue as explained in

Section 4.3.1. If there is no ordering expression for � � , an arbitrary order is
assumed.

Second, the situation may be as shown by the binary tree example on page 61.
That is, there are other constraints in the procution, �
 � � � � � � , such that they have
a reference to � � (the anchor object) at the same position as in � and they have
the same expander relation,
 ! " �
 � for all � � . Now, if the production # has an
ordering expression � specified for exactly those symbols that are referenced by
the constraints � � � �
 � � � � � � � , the lookahead method can unambiguosly choose
an object from � that corresponds to � � iff the additional restrictions, which are
given below, hold. First, the input objects are sorted with the ordering function

�
.

Then, if $ is the index of the reference to � � in the list of references in � , let the
final result be: � � � � % � �
where the � % is the $ & ' object in the sorted sequence of input objects, or

� � (
if

�
�

�
	 $ (incorrect input for #).

Let) be the set of right-hand side symbols that are referenced by the constraints� � � �
 � � � � � � � , excluding � � . The selection of � % is unambiguous only if all
the symbols in) are non-iterative and non-optional because the method expects
there to be a one-to-one mapping between the input objects in � and the list of
references in � . Otherwise If

�
�

� *�
�

)
�
, there is no way to know, by looking at

the input objects in � , which optional symbols in) might be missing or which
iterative symbols map to some subset in � .
Furthermore, in the second case above, the number of (distinct) symbols in)
gives directly an upper limit to the number of expected objects in � in the context
of # . If only the local parsing context of # needs to be taken into consideration
(see Restriction 4.5 below), it can be regarded as a syntax error if

�
�

�
�

�
)

�
.

If there is no ordering expression, there is no way to construct a consistent one-to-
one mapping between the input objects in � and the right-hand side symbols of# . If the objects in � are ordered arbitrarily, the ordering may change every time

4.2. PREDICTIVE LOOKAHEAD 65

the objects are ordered (
�

�
� � � � � � � � � � � � �

�
times). In this case, one possibility

would be to first remove from � 	 those objects that already belong to the cover of
 (the active state that represent the part of the production that has already been
parsed, see page 62); then, if all the other symbols except � � that are referenced by� � � � � � � � � � � � � are non-iterative and non-optional, any one of the remaining objects
in � 	 could be returned as the result. However, in the current implementation of
EARG grammars, we fall back to the default mode of the original ARG parser and
return � 	 as the final result of the query � .

Additional Restrictions for Ordering Expressions

In addition to the restriction given in the specification of in Definition 4.1, the
ordering and selection scheme described above works only under the following
restrictions for an EARG grammar

�
.

To make the selection of the ordering expression unambiguous, we give the fol-
lowing restriction:

Restriction 4.2 Let � be a right-hand side symbol in a production � . There can
be only one ordering expression in for � , � � � , or for � � � , � � � � � � and� � � .

Given an ordering expression � and the references � � � � � � � � � to the right-hand
side symbols of the production � , the following must hold:

Restriction 4.3

� 	 � �

 �
Restriction 4.3 makes sure that the filtering based on just one of the references � �
is valid for all � � � � � � � � � .

In the following, we assume for simplicity that � , , and are terminals:

Restriction 4.4 Let � and � � � � � � � , be distinct right-hand side symbols of
production � such that � ! � and that there exist in � a constraint " # � � � � �
(" # � � � � �) for all � � $ � � � � � � � % where " # � & . If ' �� � � � � � � � � � � � � � � (�) ,
there must be an ordering expression � � � such that all � appear in the list of
references of � .

Note that the restriction in the specification of implies that in the case above, � have to be non-iterative symbols. Furthermore, Restriction 4.3 actually implies
that:

� � � � � � � � � � � � � � � � � � � � � � � 	 � �

 � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
Also, Restrictions 4.2 and 4.4 together imply that all the symbols � (or symbol-
attribute pairs � � , � � and � � � � �) that fulfill the criterion in Restric-
tion 4.4 must appear in exactly one ordering expression of � .

All the restrictions above can be checked statically.

66 CHAPTER 4. EXTENDED ARGS

Lookahead Context

The predictive lookahead method described above depends on the property of
�

that only the local context in a production � needs to be considered when comput-
ing the expected size of a query result � and when mapping multiple query objects
to right-hand side symbols. That is, we need to consider only the constraints in the
current production to map query objects to right-hand side symbols. For example,
the following grammar does not have this property. In production � � � � , if
we look at the local context only, a query over � with � as the bound argument
is expected to return exactly one object, a � . However, because the same � is as-
signed to �

� 	 , it is also constrained to be in relation � with another � in production

 � � � � . Therefore, the query will return two � terminals.

S � A b c
r(A. 	 ,b)
r(b,c)
S. 	 = A. 	

A � d b
r(d,b)
A. 	 = d

Of course, it would be possible to compute the closure of the contexts to be used in
determining the size of � by following the propagation of references to terminals
through the attribute assignments in G. However, in the example above, it would
still be impossible to decide which one of the two � objects in the result set belongs
to the context of � without more information; the decision is context-dependent.

For enabling lookahead, we therefore give the following contextual restriction to
EARG grammars:

Restriction 4.5 For each production � � of an EARG grammar
�

, it must be
possible to determine the mapping of input objects returned by an expander query
to right-hand side symbols by considering only the local context.

It is possible to make a static check to enforce this condition. This is because
nonterminals can be referenced only through their syntactic expander attributes in
the right-hand side of production. Therefore, it is possible to analyze the prop-
agation of references to terminals via the expander attributes (i.e. to build a data
flow graph) to check all the contexts where a terminal may be constrained by a
relational constraint.

4.3. PARSING EXTENDED ARGS 67

Disambiguation Constraints and Ordering Expressions

When multiple input objects returned by expander queries are processed by the
predictive lookahead method, disambiguation constraints are not needed in certain
situations to make parsing deterministic. This is because we can now set a limit
for the number of expected objects in a query result in the local context (current
production) of parsing. For example, compare the following binary tree grammar
with the grammar in Example 4.1 on page 59.

Example 4.2
Tree � Node

not exists � � � � � � � � � � � 	
 � � � 	 � � � �
 � � � �

 � � �
Tree.root = Node.root

Tree � � Node Tree �
connected(Node.root,Tree � .root)
Tree � .root = Node.root

Tree � � Node Tree � Tree �
connected(Node.root,Tree � .root)
connected(Node.root,Tree � .root)
order Tree � .root,Tree � .root by left
Tree � .root = Node.root

Node � circle text
inside(text,circle)
Node.root = circle

The difference is in production Tree � � Node Tree � . In the grammar in Exam-
ple 4.2 above, there is no disambiguation constraint to distinguish it from pro-
duction Tree � � Node Tree � Tree � . The constraint is not needed because after
parsing the Node, result of the query connected(Node.root,?) is expected to hold
only one input object of terminal type circle. If there are more objects in the re-
sult, this is considered as a syntax error and the parsing of this production is not
continued. However, the disambiguation constraint in production Tree � Node is
still necessary.

The grammars in Examples 4.1 and 4.2 fulfill Restrictions 4.2, 4.3, 4.4, and 4.5.

4.3 Parsing Extended ARGs

The new features in extended ARGs imply changes to the parsing algorithm.
However, the changes are extensions to the parser rather than changes to its fun-
damentals. The extensions are:

68 CHAPTER 4. EXTENDED ARGS

1. support for parsing iterative right-hand side symbols,

2. the use of predictive lookahead,

3. the use of disambiguation constraints,

4. the construction of a parse graph and a parse tree, and

5. the recovery from syntax errors.

Iterative right-hand side symbols make it easy to write compact productions that
include list-like substructures. The second and the third extension make parsing
more deterministic than in the original algorithm (Algorithm 2.1). The predictive
lookahead method (described above in Section 4.2) uses lexical filtering (based
on terminal types), the local parse context (production), and the ordering expres-
sions of a production to associate unambiguously multiple input objects (returned
by a single expander query) with the right-hand side symbols of the production.
This removes many unnecessary steps from parses. The usage of disambiguation
constraints reduces the number of steps even further.

Deterministic parsing is more efficient in terms of the steps taken by the parser
when compared with the original parsing method. It is also an enabling property
for the effective handling of syntax errors. The construction of a parse graph is
also fundamental for error recovery whereas the construction of a parse tree as an
intermediate representation of a visual program makes it possible to apply many
kinds of conventional post-parse transformations (translation, code generation) to
the program.

In this section, we describe how the extensions are integrated into Algorithm 2.1.
However, because of the complexity of error handling and recovery, we will treat
it separately in Chapter 5 where we present the complete EARG parsing algorithm
(Algorithm 5.1, p. 98).

As a general observation, we have been able to retain the overall design of the orig-
inal algorithm; the extensions are isolated in a few procedures and data structures.
The support for iterative right-hand side symbols and the predictive lookahead
method imply the biggest changes.

4.3.1 Parsing Iterative Symbols

The parsing of iterative right-hand side symbols imply extensions to the Advance
procedure (Procedure 2.1) of the parsing algorithm. Iterative symbols require also
changes in the representation of the active states.

Iterative right-hand symbols are supported in active states by a queue that holds
the input objects that can be bound to an iterative symbol at the dot. The idea is
that when the dot is first moved to an iterative symbol, a query is launched to find
all the input objects that can be bound to the iterative symbol and the objects are
placed in the queue. If an ordering expression is given for the iterative symbol, the

4.3. PARSING EXTENDED ARGS 69

objects will be ordered with the first object at the head of the queue; otherwise,
the order is arbitrary. Then, subsequent steps to advance the parse (to move the
dot over to the next symbol) will consume an object from the head of the queue
instead of launching an expander query. Based on the type of the symbol, either
a terminal is scanned or a parse for a new nonterminal instance is started. Only
when the queue of pending objects is exhausted, the Advance procedure will move
the dot over to the next symbol.

An active state also holds a list of those optional symbols that are not present in
the current parse. With the list, the constraints and predicates that refer to the
missing optional symbols can be excluded from the evaluation of constraints and
predicates.

Our new definition of active state is:

Definition 4.2 An active state is a quintuple

� �

where � is a production; � is the ‘dot’, � 	 � � � � � � �

	
right-hand side of �

	
� , that

represents the next element to parse; � � � � � � � � � ,

	
right-hand side of �

	
, is

an ordered list of pointers to inactive states or sets of pointers to inactive states
(for repetitive symbols) of right-hand side elements parsed so far; � � � � � � � � � � � is
an ordered list of pending input objects that can be bound to the iterative symbol
at � ; and � � � � � � � � � � � , � �

	
right-hand side of �

	
, is a list of those optional

right-hand side symbols of � that are not present in the parse represented by the
state.

The semantics of Advance has not been changed: it either creates an inactive state
representing a parsed nonterminal instance or it advances a current sub-parse to
consume new input objects. The extensions are the handling of iterative symbols
and the evaluation of predicates and constraints.

The idea is to evalutate predicates and disambiguation constraints as soon as all
their arguments (references to the right-hand side symbols) can be resolved. This
means that we evaluate the predicates and the constraints immediately when all
the symbols in their arguments have been parsed. In the following procedures,
‘constraints’ mean both expander and disambiguation constraints.

Procedure 4.1 Advance (, �)
Input: An active state � and an

inactive state � � � � � � � � � � � .

Output: A new agenda item or null.

70 CHAPTER 4. EXTENDED ARGS

Method:

If
� �

�
right-hand side of �

�
and the queue of pending input objects of � is empty

then
Return � � � � � � 	
 � � � � � � �

else

Create a new unitialized active state � � .
If the symbol at the dot in � is repetitive and there are objects in the queue
of pending input objects of � then

let �
else

let � � � �
 � � �
 � � � � � � � � � � � � � .
end if
Return .

end if� � end Advance � �

Procedure closeParse creates a new inactive state that represents a recognized non-
terminal instance. It also checks that the predicates and constraints that refer to
the last right-hand side symbol of � (represented by �) evaluate to true.

Procedure 4.2 closeParse (� , �)
Input: An active state � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � �
 � � � � � �
 � ! and an

inactive state � � � � 	 � � " � # !
Output: A new agenda item or null.

Method:

� is the last right-hand side element of � and a new inactive state � � is created. If the
symbol at

�
is repetitive, the daughters of � � , $ � % , is determined by the following

rule: if � is the first instance of the repetitive nonterminal, $ � % � � � � � � � � � � 	 � & � ' � ;
else $ � % � � � � � � � � � � 	 (& � ' � . The cover of � � is computed as union of the cover
of � and the covers of the parsed right-hand side elements of � , and the expander
attribute values of the nonterminal) in question (the left-hand side of �) are
determined.

If all the predicates and constraints in � � that refer to the symbol at
�

evaluate to
�
 � � then

Return a new agenda item � � � � * � � � ! where * � � � is the list of inac-
tive state indices of � � (the values of the expander attributes + �) �).

else

Return � � � �
end if� � end closeParse � �

4.3. PARSING EXTENDED ARGS 71

Procedure consumePendingInput consumes the object from the head of the queue
of pending input of active state � . It initializes the new active state � � and evaluates
the predicates and constraints of � � pertaining to the right-hand side symbol of �
at position

�
that � represents. The procedure returns a new agenda item or null if

the predicates and constraints are not satisfied.

Procedure 4.3 consumePendingInput (� , � , � �)

Input: An active state � 	 � � � � � � 	 	 �
 , an in-
active state � � � � � � � � �
 , and a new unitialized active state � � .

Output: A new agenda item or null.

Method:

Set the dot position of � � to
�

(the same position as �). The inactive state � is
merged with the parsed right-hand side elements of � as the daughters of � � ; repet-
itive daughters are represented as an ordered set of pointers. If � is the first in-
stance of the repetitive nonterminal, the daughters of � ;
else � � � � � � � � � � � � � � � � � � � . The input object � � is removed from the head of
the queue and the remaining queue is assigned to � � ,

� � � � � � � � � � � � � �
 � � � � � � � � � � 	 � � � � � � 	 	 �
 �

If all the predicates and constraints in � � that refer to the symbol at
�

and that can
be evaluated are � � � then

Return a new agenda item � � � � � � � �

else

Return � � � �
end if� � end consumePendingInput � �

Procedure queryForInput finds the next input object to be scanned. The main
issue is the handling of iterative symbols and missing optional symbols. The
procedure uses the predictive lookahead function filter (page 73) to reduce the
number and the types of terminals returned by an expander query. If there is an
ordering expression for the symbol at

� � � , filter will also order the reduced set
accordingly.

Procedure 4.4 queryForInput (� , � , � �)

Input: An active state � 	 � � � � � � 	 	 �
 , an in-
active state � � � � � � � � �
 , and a new unitialized active state � � .

Output: A new agenda item or null.

72 CHAPTER 4. EXTENDED ARGS

Method:

Initialize � � ; the inactive state � is added with the parsed right-hand side elements
of � as the daughters of � � , � 	 � � � � � .
If all the predicates and constraints in � � that refer to the symbol at

�
and that can

be evaluated are 	
 � � then

Execute a query to find the set of input objects to be parsed next by using
any one of the expander constraints at the new dot position and the right-hand
side elements parsed so far. Let � � � � 	 �
 � � � � � � � � 	 .
If �

�
� � then

Return a new agenda item � � � � � �
else

If the symbol at the dot of � � is optional then
Return � � � � � � 	 � � � � � � � � � � � � � � 	

end if
end if

else
Return � � � �

end if� � end queryForInput � �

Procedure skipOptionalSymbols parses a sequence of missing optional symbols
in a production. It creates intermediate active states for each advancement and
adds the missing symbol to the list of missing optional symbols in each state.
The procedure terminates when the next symbol in the production is not optional,
an input object is found that may begin the next optional symbol, or when the
production ends.

4.3. PARSING EXTENDED ARGS 73

Procedure 4.5 skipOptionalSymbols (�)

Input: An active state � 	 .
Output: A new agenda item or null.

Method:

Let
 � � �
loop

Let � � � � � � � � � 	 � 	 ,
where � is the symbol at the dot (position

� �) in � ;
Let � � a dummy inactive state that represents a missing optional
symbol.
If

� � � �

right-hand side of �

then

Return � � � � � � � � � � � � � � �
end if
Launch a query to find the input objects � to be parsed next by us-
ing one of the expander constraints at the new dot position and the
right-hand side elements parsed so far. Let � � � � � � � � � � � � � � � � � .
If � �

�� � then
let
 � � � � � � � 	

end if
Let � � � �

until

�� � � or the symbol at the dot of � is not optional

Return
 ! end skipOptionalSymbols !

4.3.2 Implementation of Predictive Lookahead

The filter procedure, called by queryForInput and skipOptionalSymbol, integrates
the processing techniques described above in Section 4.2 into one lookahead func-
tion. In the procedure, function term returns the terminal type of an input object,
and function cover returns the input objects that belong to the cover of an active
state (the objects that have already been parsed).

Procedure 4.6 filter (� , � , � � , �)

Input: An active state � 	 , an in-
active state � � � � � � � " � # 	 used to advance � , the next active state � � ad-
vanced from � , and a set � of input objects.

Output: An ordered subset of � .

74 CHAPTER 4. EXTENDED ARGS

Method:

Let � be the constraint used in the expander query that returned the set � and let �
be the reference in � to the symbol � � � � at the dot

� � � in � � .
If � � � � is iterative then

Let � � � 	

�

 � � � � � � �
 � � � � � � � � � � � � � �

�

� � � � � � � � � � � .
If � � � � then

Return � �
else

If � � � � has an ordering expression � , then sort the objects of � � into
list � � 	
 � � 	 	 	 �
 � � using the sorting function

in � . Else, insert

the objects of � � into � in an arbitrary order. Let � � � � 	
 � � and let	

 � 	 	 	 �
 � � as the pending input of � � .
Return � � �

end if
else

Let � � � 	

�

 � � � � � � �
 � � � � � � � � � � � � � � .
If

�
� �

�
! � then

If � � � � has an ordering expression � then
Sort the objects of � � into list � � 	
 � � 	 	 	 �
 � � using the sorting
function

in � . Let " be the ordinal position of � � � � in � . If " # $

,
let � � � � 	
 % � .

else
Let � � � � � �

end if
Let � � � � � 	

�

 � � � � �

�
� �
 & ' (� � � � �

Return � � � �
else

Let � � � � 	

�

 � � � �

�

� �
 & ' (� � � � �
Return � � �

end if
end if) * end filter *)

In the procedure above, we remove from the result set those input objects that
are already part of the cover of the active state � . This is because such input
objects would eventually be discarded anyway in subsequent parse actions (see
Algorithm 2.1 on page 33).

4.3.3 Building a Parse Tree

Wittenburg’s parser is a recognizer rather than a “real” parser in the sense that
it does not impose any explicit phrase structure on relational sentences. In other
words, it does not produce a parse tree. Also in general, the concepts of parse trees
and parse traces are somewhat unclear in the context of visual languages, and their
central role as universal intermediate representations of language processing has
not been fully recognized.

4.3. PARSING EXTENDED ARGS 75

However, as shown in [Tuo98a], an explicit parse graph can be constructed by
linking the parse states in the parse table to each other to represent the creational
relationships induced by parse actions. Further, as described in [Tuo98b], inac-
tive states can be linked to each other to form a parse tree that imposes a phrase
structure on the parsed input. In the following, we summarize these techniques.

In the parse table, we recognize two kinds of relationships between parse states.
States � � and � � are in the succession relationship, � � � � � � � � � � � � � � � , if � � was cre-
ated from � � as a result of a scan, complete, or inverse-complete operation applied
to � � . States � � and � � are in the prediction relationship, 	
 � � � � � � � � � � � � � , if � � was
created from � � as a result of the prediction operation. That is, the prediction re-
lation links the state(s) where a prediction for a nonterminal instance was made
to the predictive states that begin the parses of the instance according to all the
alternative productions. The states that are linked by the Succeeds and Predicts
relationships form a parse graph that captures the trace of the parsing process.

An active state � has a collection of pointers to daughters that are inactive states
representing the instances of the nonterminals to the left of the dot. A predictive
state has no daughters whereas a state with the dot at the end has all its constituents
as daughters. It is straightforward to store the daughters also by the inactive states
to create a parse tree that captures explicitly the implicit phrase structure imposed
on the input by the parser.

Parse Graph

In Figure 4.1, the parse states are explicitly linked to form a directed parse graph
with multiple roots (states 1, 2, and 3). The solid edges between states represent
the succession relationship, advancing a parse for a nonterminal instance as a re-
sult of a scan, complete, or inverse-complete operation. Dashed edges depict the
prediction relationship, i.e. they link the state where a prediction for a nonter-
minal was made to the predictive states that begin the parses of the nonterminal
instance according to all the alternative productions. Inactive states are indicated
by a frame around the state number. Active states with no outgoing edges rep-
resent “dead-ends”, that is, they terminate an unsuccessful parse path for some
nonterminal instance.

The parse graph makes it possible to trace the parsing process a posteriori. For
example, it can be seen from the parse graph that the parses starting from states 1
and 2 have failed completely. The parse path starting from 3, on the other hand,
leads to a successful parse of the input: the scanning of the circle object creates
the successor link from 3 to 4, completing 3 with 6 (a Node) leads to state 7,
completing 7 with 14 (a Tree) leads to state 15, and, finally completing 15 with 22
(a Tree) leads to state 23 that covers the whole input. Note that during the traversal
of the parse graph, if a state has successors, the possible prediction links can be
ignored because the successors indicate the advancement of parsing.

The parse graph clearly shows how different parse paths converge. For instance,
state 4 has three originators, 1, 2, and 3, so it was predicted by all three states.

76 CHAPTER 4. EXTENDED ARGS

11 12 13

19 20 21

1 2 3

7

8 9 10

14

15

16 17 18

22

23
complete with 22

complete with 14

complete with 13

complete with 6

complete with 21

4 5 6

scan scan

scanscan

scan scan

Figure 4.1: The parse graph for the parse table and input in Fig. 3.6.

4.4. ADDITIONAL REMARKS 77

B C

A 6

23

2221
1413

Figure 4.2: The parse tree extracted from the parse graph in Fig. 4.1.

Parse Tree

Figure 4.2 depicts a parse tree extracted from the parse graph. The parse tree
represents the phrase structure imposed on the input by the parser, or, the im-
mediate dominance relationships between the nonterminal instances recognized
during parsing. We pick as the root of the parse tree state 23 which is the Tree
covering the whole input. We can determine the constituents of 23 by following
the parse graph backwards from 23 along the path of successor links to state 3
where the Tree was predicted. During the traversal of the path, we collect all the
input objects and inactive states used in advancing the parse by either the scan
or the complete operations. So, we conclude that the Tree represented by 23 is
composed of (6,14,22) which is depicted in Figure 4.2 by arrows starting from 23
and leading to those objects. In similar fashion, we can build the parse tree for the
whole input.

4.4 Additional Remarks

Complexity of Parsing

The disambiguation constraints, the support for iterative right-hand symbols, and
the predictive lookahead method with ordering expressions make parsing more
deterministic than with the original parser. The determinism can also reduce the
number of steps taken by the parser.

For example, with the new features, the parser will produce the parse shown in
Figure 3.6 (page 49) for the input in that figure. So, in this case, the parser will
perform only the minimum number of steps that are necessary to obtain a correct
parse of the input.

If the new features are not used in a grammar and if the input contains ambigu-
ous relations, the parser still has the high worst-case complexity analysed in Sec-
tion 3.3. However, the new features ensure efficient parsing of context-free pro-
ductions with support for context-dependent syntactic structures (via remote ref-
erences).

78 CHAPTER 4. EXTENDED ARGS

The Expressive Power of Extended ARGs

In general, the changes we have introduced to atomic relational grammars aim at
making parsing deterministic and they discourage the use of ambiguous syntactic
structures. This is reflected clearly in the introduction of the disambiguation con-
straints and ordering expressions. Furthermore, Restriction 4.5 reflects the strong
context-free nature of EARG grammars when compared to ARGs.

From the grammatical point of view, iterative and optional right-hand side sym-
bols and remote references increase the expressive power of the formalism. They
give a grammar writer strong tools to express complex syntactic relations in a
concise manner. They are also important because they make it possible to write
grammars where the relational constraints reflect the ‘natural’ topological struc-
ture of many visual languages.

In terms of the languages generated by EARG grammars, the usage of disam-
biguation constraints has one clear limitation: cyclic relations cannot be used as
the relation that drives parsing. Instead, some other driving relation must be used
that yields a cycle-free order of parsing. The cyclic dependencies can be expressed
through remote references, but the cyclic structure of the dependencies cannot be
enforced on the level of syntax. It is therefore likely that the languages defined by
EARG grammars form a proper subset of the languages defined by ARGs. How-
ever, we have not verified that formally. On the other hand, this has not been a
problem with the visual languages that we have implemented with EARG gram-
mars.

Any-Start

The any-start property makes it difficult to perform error diagnosis and to con-
struct an unambiguous parse tree (see Section 3.2.2). Therefore, we give the fol-
lowing restriction:

Restriction 4.6 We limit the parser to begin parsing a start nonterminal instance
of an EARG grammar only from an input object (terminal symbol) that will be
eventually bound to one of the expander attributes of an inactive state representing
the recognized start nonterminal instance.

This restriction affects only the selection of the starting point in the input: parsing
must be started from an input object that will be bound to one of the expander
attributes of an inactive state representing an instance of the start nonterminal of
the grammar (if the input is correct). After the starting point has been established,
the scanning order of input objects is determined by the relations.

Consequently, the grammar of the visual language has to be written so that it is
possible to write an auxiliary function that can decide from which input object
(terminal) to start parsing. For the binary tree language in Example 4.2, this func-
tion would just search an input object in the connected relation that has no other

4.4. ADDITIONAL REMARKS 79

object connected to it (the least object in the relation). The flowchart language in
Example 2.1 (page 21) has a distinct terminal type for the start and stop symbols
in the language, which makes it simple to find the starting point for parsing. For
general graphs, the problem of finding the starting point can be solved by intro-
ducing to the grammar a container terminal that holds the nodes of the graph (see
Example 3.4 on page 41). This container terminal represents the whole visual
program (diagram), then.

For parsing, Restriction 4.6 implies that we do not have to use the set init-states in
the initialization of parsing nor in subsequent completions. Instead, we initialize
parsing by putting on the agenda all the predictive states for the start nonterminal
such that the first right-hand-side symbol binds (gives a value) to some syntactic
expander attribute. Consequently, we only need ordering variants of each produc-
tion such that every right-hand symbol that binds an expander attribute appears
first. Thus, all the ‘clutter’ caused by the non-determinism of the original parsing
method is removed from the parse trace. As the following Lemma shows, this
does not affect the correctness of parsing if parsing begins from an input object
that meets Restriction 4.6.

Lemma 4.1 An inactive state � � representing an instance of nonterminal � and
having the expander attribute values � � � � � � � � � � � �

� �
� will always have a

corresponding prediction in parse table T.

Proof: Let us assume that the parser has created the inactive state � � that repre-
sents an instance of � . Then, there must be a predictive active state � � for a nonter-
minal instance of � in some slot � � � � such that the parse initiated from � � has lead
to the creation of � � . By the definition of the predict operation [Wit96], there must
be an active state � � in � � � � such that Predicts 	 � � � � �
 , i.e. � � 	 �
 � � � � � � � �
(the only exception are the predictive states for the start nonterminal inserted first
into the table). Because � � is in slot � and because of Restriction 4.6, the input
object denoted by � gives a binding to some expander attribute of the nonterminal
instance � � . Hence, there will be an attribute � � such that � � � � in � � . Thus,
state � � will be inserted also into the slot � � � � and parsing may be continued by
completing � � with � � fulfilling the prediction for an instance of � . If � � was one
of the first predictive states created in the initialization phase, � � does not need to
have a prediction.

80 CHAPTER 4. EXTENDED ARGS

Chapter 5

Error Handling in Parsing
Relational Languages

In this chapter, we describe our error handling strategy for the parsing algorithm
for extended atomic relational grammars (EARG). With error handling, we mean
the detection of syntax errors, reporting them, and the ability of the parser to
recover from syntax errors to continue parsing the rest of the input.

First, in Section 5.1, we present a definition of parser-defined syntax errors for the
parser by analyzing the possible parsing action failures and by showing how an
explicit parse trace can be constructed to locate the errors. Next, in Section 5.2, we
explain how different parsing failures occur and how they are detected. Then, in
Section 5.3, we present two error recovery techniques. In Section 5.4, we describe
how the error recovery techniques are integrated to the parser and, in Section 5.5,
we present the EARG parsing algorithm. Finally, we end the chapter by discussing
the effectiveness of our error recovery techniques in Section 5.6.

The error handling techniques were originally developed for atomic relational
grammars [Tuo98a, Tuo00] without all the new features introduced in Chapter 4.
However, the technical challenges in creating an effective error handling strat-
egy were also driving the development of extended ARGs. Therefore, the error
handling techniques described in this chapter have been integrated into the imple-
mentation of EARGs in the VILPERT framework with only small changes.

An Example Language

In the following, we use examples based on Grammar 5.1 that defines a lan-
guage of lists with a branching structure. The grammar has the terminals � circle,
text, switch, junction � , the nonterminals � List, Node � , the relations � next, inside,
branch � , and the expander attributes � in, out � . Figure 5.1 shows a sentence of
this language. Solid arrows represent the relation next, dashed arrows represent
the relation branch, and the relation inside is represented by spatial enclosure.

81

82 CHAPTER 5. ERROR HANDLING

2 3

4

label

label

label

label

1

2 3

4

next = � (circle
�
,switch),(circle � ,circle �),(circle � ,junction)

(switch,junction),(junction,circle �) �
inside = � (label

�
,circle

�
),(label � ,circle �),(label � ,circle �),

(label � ,circle �) �
branch = � (switch,circle �) �

Figure 5.1: A List in graphical form and the corresponding relations

Grammar 5.1
List

�
� Node List � (1)
next(Node.out,List � .in)
List

�
.in = Node.in

List
�
.out = List � .out

List � Node (2)
not exists � � � � � 	
 � � � 	 � � � � � � next(Node.out, �)
List.in = Node.in
List.out = Node.out

Node � circle text (3)
inside(text,circle)
Node.in = circle
Node.out = circle

Node � switch List junction (4)
branch(switch,List.in)
next(switch,junction)
next(List.out,junction)
Node.in = switch
Node.out = junction

Note that this is a toy visual language that serves the purpose of illustrating the
error handling techniques.

5.1 Defining Syntax Errors

The syntax errors in relational languages are anomalies in the object-relation
graph constituting the input. As with string languages [SSS90, Chap. 9], we could

5.1. DEFINING SYNTAX ERRORS 83

1

2

3

[List -> . Node List]
[List -> . Node]
[Node -> . circle text]
[Node -> . switch List junction]

8.
9.

10.
11.

[List -> Node . List] 7.

1

1label

2

[List -> . Node List]
[List -> . Node]

#(Node)

1 [Node -> circle . text]

[Node -> circle . text]

-

-

label

label

1.
2.
3.
4.
6.

5.

12.

[Node -> . switch List junction]
[Node -> . circle text]

3

label3

3

Figure 5.2: The parse table for the invalid list shown on the top.

give a definition of actual syntax errors based on the shortest editing distance be-
tween indexed md-sets by defining that what was really meant with an erroneous
sentence are the nearest (correct) sentences of the language. The editing oper-
ations needed to correct an incorrect sentence would then determine what was
wrong in it.

The definition of actual syntax errors is not very practical. Instead, we must be
contented with reporting parser-defined syntax errors that reflect how the parser
might fail with certain inputs. With Wittenburg’s parser, the definition of parser-
defined errors involves analyzing the conditions that cause parsing operations to
fail. Error situations can then be described in terms of the failed conditions and
the input involved.

However, parsing operations may also fail in the normal course of action because
the parser runs the alternative parses for a predicted nonterminal in parallel and
independent of each other. If the grammar and the input are unambiguous, only
one of the parallel parses will succeed and the others will fail. For instance, in
Grammar 5.1 there are two alternative productions for Node but they cannot both
match against the same piece of input.

A global parsing failure means that (1) all the parallel parses initiated by the first

84 CHAPTER 5. ERROR HANDLING

scan

label

1

1

(6)

scan

(5)

scan
2

(12)

complete with6

(7)

(8) (9)

(10) (11)

(4)

(2)

(3)

(1)

Figure 5.3: A parse graph.

predictive states for the start nonterminal failed, or that (2) at least one of the
parses succeeded but there is unprocessed input left. In case (1), the actual causes
of failure are found by examining the reasons why each parallel parse failed. This
means that parse states must be linked to form an explicit parse graph that can be
traversed during error diagnosis. A successful parse path for a nonterminal leads
from a predictive state to an inactive state whereas a failed path is terminated by
(one or more) errors. Furthermore, it is natural to use the number of input objects
scanned along a parse path as a measure of the relative success of the path.

Definition 5.1 In the case of global failure (1), the parser-defined error is the set
of input objects causing the parse action failures at the end of the most successful
parse paths starting from the first predictive states. In the case of failure (2), the
parser-defined error is the set of extra input objects.

Note that there can be several equally successful parse paths. Also, ambiguities
detected by the parser are usually considered errors. For instance, every sentence
of UML should have an unambiguous interpretation [BRJ99, p. 15].

Example

An invalid List and the corresponding parse table are shown in Figure 5.2. The
leftmost column of the table shows the index symbol for a particular slot, the states
in the slot are in the center column, and the rightmost column numbers the states
in the order they were inserted. Active states are depicted with dotted productions
in brackets. The dot shows how much of the right-hand-side of a production has
been parsed so far. Inactive states are denoted by #(nonterminal). In Figure 5.3,
the parse states are explicitly linked to form a directed parse graph with two roots:
states 1 and 2 (see Section 4.3.3 about constructing a parse graph).

5.2. PARSING FAILURES 85

The parse was started by inserting into the parse table the predictive states 1 and 2
at circle � . Then, states 3 and 4 were created by prediction from 1 and 2. In 4,
the scanning of a switch against circle � failed but in 3 the scanning of a circle
succeeds. Then, because there is an object inside circle � , the parse according to
the production of state 3 was advanced. In 5, which is the successor of state 3, a
text was scanned leading to the recognition of a Node (state 6). The path � � � � � � �
represents thus a successful parse of a Node instance.

Next, states 1 and 2 were completed with state 6. No successor was created for
2 because the predicate in production (2) of the grammar prevents it (there is a
circle next to circle �). However, state 7 was created as a successor for 1. This
initiated a parse for a new list at circle � (states 8 and 9). Now, both of the parses
for a Node at circle � (started from 10 and 11) failed. In 11, circle � is seen when
a switch was expected. In 10, circle � was scanned leading to state 12 but there,
a switch-triangle is seen when a text was expected. Now, there is no state in
the parse table where parsing could be continued (the parsing agenda is empty).
Because the most successful parse path led to state 12, we report as the parser-
defined error the switch (�) object that caused the scanning failure at state 12. The
complete paths that start from a root and lead to the error are � � � � � � � � � � � � � and

� � � � � 	 � � � � � � � .

The example above is for atomic relational grammars. When parsing extended
atomic relational grammars, as described in Section 4.3, the only difference to the
example above is that the parser would not create state 12 at all. The reason is that
when querying for the next input object after scanning circle � in state 10, the filter
procedure (Procedure 4.6 on page 73) would return an empty set because the ter-
minal type of the object (�) inside circle � is wrong (
 � � � � �

�
�
 � � � � � � � �
 � �
 �).

Therefore, in this case, the paths leading to the error would be � � � � � � � � � � and
� � � � � 	 � � � � . However, as will be explained below, the parser will attach to state 10
an error descriptor that identifies the direct cause of the failure and the input ob-
jects involved.

5.2 Parsing Failures

In the following, we describe how different parsing failures occur and how they are
detected. We make a distinction between failures that occur during parsing (parse
action failures) and failures that can be detected only after parsing (ambiguities
and extra input). The idea is to represent failures as error descriptor objects that
can be associated directly with the states in the parse graph or kept in global lists
depending on their type.

Parse Action Failures

The actions of Wittenburg’s parser (Algrorithm 2.1, p. 33) and the EARG parser
(Algrorithm 5.1, p. 98) consist of the scan, predict, complete, and inverse-complete

86 CHAPTER 5. ERROR HANDLING

operations. Scan, complete, and inverse-complete call the Advance procedure
(Procedure 2.1, p. 32, for ARGs and Procedure 4.1 , p. 69, for EARGs) to ad-
vance a parse for a nonterminal. Errors cannot occur during prediction because
no input is involved. In the following we list the causes of failure for the other
actions. In the listing, we declare the version of atomic relational grammars to
which the causes apply.

Scan

1. (ARG only) The lexical classes of the symbol at the dot and the current
input object are different (Figure 5.4 a) (this was the reason for parsing
failure in the previous example).

2. There are missing relation tuples, which can be detected in two ways:

– (ARG and EARG) there are unsatisfied relational constraints be-
tween the symbol at the dot (current input object) and the recog-
nized right-hand-side elements to the left of the dot (Figure 5.4 b),
or,

– (EARG only) there are unsatisfied remote references for the sym-
bol at the dot.

3. (ARG and EARG) There are failed predicates for the symbol (current
input object) at the dot and the recognized right-hand-side elements to
the left of the dot.

4. (ARG only) The current input object is already part of the cover of the
active state.

Complete/Inverse-Complete

1. There are unsatisfied relational constraints (ARG and EARG) or re-
mote references (EARG only) like in scan.

2. (ARG and EARG) There are failed predicates.

3. (ARG and EARG) The covers of two states overlap, i.e. the intersec-
tion of the covers is not empty (Figure 5.4 c).

Advance

The procedure is responsible for querying the input for the next symbol to
be scanned, based on the constraints at the dot position of a newly created
active state. The error that can occur is manifested by

1. (ARG and EARG) missing relation tuples (Figure 5.4 d), i.e. an empty
query result.

2. (EARG only) There are more than the exptected number of objects in
the result set of the query (see the discussion on page 64).

5.2. PARSING FAILURES 87

label
1

1

label
2

label
2

2

[Node -> switch List . junction]

1

b)

a) [Node -> . circle text]

[List -> Node . List]

[Node -> circle . text]

label

2

c)

d)

Figure 5.4: Examples of syntax errors detected by the parser. The location of
the error is shown by a dotted box in the input and the position of the dot in the
corresponding parse state.

Note that a query may return several candidate objects either by design of
the (ARG) grammar or due to an error (ambiguity) in the input (EARG).

The list of parse action failures above reflects the principle that we test all the
(relational and disambiguation) constraints, predicates, and remote references as
soon as it is possible during parsing. Note that failed disambiguation constraints
are not considered as errors (see the discussion about the difference of predicates
and disambiguation constraints on page 60).

The predictive lookahead method introduced for extended ARGs in Section 4.3.2
prevents scanning errors of type 1 and 4 to actually happen. Instead, the parser
will detect a missing relation error while executing the Advance procedure.

88 CHAPTER 5. ERROR HANDLING

Ambiguities

Like Earley’s parser, Wittenburg’s parser can process ambiguous grammars. How-
ever, in many applications of parsing ambiguities are considered as errors.

Ambiguities can come from two sources. Grammar-induced ambiguities depend
only on the properties of the grammar whereas input-induced ambiguities can
arise even with unambiguous grammars. Figure 5.5 shows an example of the
latter (with respect to Grammar 5.1): two different Lists are recognized because
of the two distinct objects next to circle

�
.

Ambiguities can be detected from the parse graph in the following situations:

1. more than one of the alternative parses for a nonterminal instance has suc-
ceeded, or

2. there is a state with more than one successor, or

3. there is a state with more than one predecessor.

There is one exception to rule 2: left-recursive productions cause multiple succes-
sors for some active states. However, left-recursive structures can be detected to
prevent the creation of wrong ambiguity-error descriptors. In our implementation
of extended atomic relational grammars, each active state in the parse table (with
a nonterminal at the dot) keeps a list of (references to) the inactive states that the
completion parse action has used to advance the parse represented by that active
state. Then, upon a completion, the parser checks that all the inactive states used
in previous completions are part of the inactive state (or the parse tree represented
by the inactive state, see page 77) used in the current completion. This condition
holds only for left-recursive syntactic structures. Otherwise, the grammar reports
an ambiguity error.

Extra Input Objects and Relation Tuples

The union of the terminal covers of all the inactive states in the parse table forms
the set of successfully scanned objects, that is, objects that are part of some non-
terminal instance. The set of extra objects is then the set difference of all input
objects and the covered input.

Extra relation tuples must be considered as errors when they are represented by
explicit graphical objects in the visual language, such as relation next in our list
language. This means considering the tuples of at least some relations as first
class objects similar to the terminals. In our implementation of atomic relational
grammars [Tuo99], we have a mechanism for marking relations to be treated as
graphical objects in the parser.

The verification of constraints when recognizing nonterminal instances provides
a way to distinguish between expected and extraneous relation tuples. By tagging
the relation tuples that are used to verify constraints, all untagged relations can be
declared as extras after parsing.

5.3. ERROR RECOVERY 89

label
2

2
label

1

1

3
3

label

Figure 5.5: An ambiguous List.

5.3 Error Recovery

In this section, we describe an error recovery strategy to be embedded in the parser
for atomic relational grammars. The strategy aims at enabling the parser to con-
tinue processing the input in spite of syntactic errors rather than by actually cor-
recting the errors.

In the following, we first present two state-level error recovery techniques that can
be applied locally. Second, we describe a backtracking strategy that employs the
two local techniques to perform global recovery. Then, we describe the integration
of the recovery strategy to the parser and present the resulting parsing algorithm.
Finally, we discuss ideas about more effective recovery.

5.3.1 Local Recovery

The following two techniques provide the basic mechanisms for creating new
parse items (states) from the states representing the dead-ends on a parse path.
That is, the scope of recovery is the parse of the last predicted nonterminal in-
stance on the parse path terminated by a dead-end. Because of the limited scope,
we call these techniques local. The techniques are conservative in the sense that
there is no heuristic guessing involved.

Attribute Patching

This technique is based on the fact that the expander attributes determine the only
possible ‘connection points’ of nonterminal instances in derivations. Simply, the
idea is that an inactive state representing a completely parsed nonterminal � can
be safely created from a partial parse of production � , � � � � � � � � � 	 , if
the right-hand-side symbols in � that have already been parsed provide bindings

90 CHAPTER 5. ERROR HANDLING

label

3

[List -> . Node List]
[List -> . Node]
[Node -> . circle text]
[Node -> . switch List junction]

8.
9.

10.
11.

[List -> Node . List] 7.

12.

14.

13.

2

complete with 13

......

......

(1)

scan
2

patch 12

(12)

(13)

[Node -> circle . text]

[List -> Node . List]

-

#(Node)

(11)(10)

(8) (14)(9)

(7)
6

3

complete with

Figure 5.6: Patching state 12.

for all the expander attributes in � � � � . That is, all the assignments in � can be
made. Then, it is guaranteed that subsequent parsing actions operating on the
state won’t fail because of undefined expander attribute values of the instance of

� . Of course, all the constraints (in � and �) and predicates (in �) that can be
evaluated in the partially parsed � must be evaluated when creating the instance
of � (inactive state).

For instance, consider the input in Figure 5.2 and state 12 in the parsing table.
According to Grammar 5.1 (production 3), the circle on the right-hand-side of
the production provides the value for both of the expander attributes of Node, in
and out. So, we can create state 13 (Figure 5.6) representing a Node that covers
only circle � . In this case, the incorrect input symbol (the triangle) is completely
discarded. Then, state 8 would be completed with state 13, move to state 14, and
finally lead to successful parsing of the rest of the input.

5.3. ERROR RECOVERY 91

label
1

1

label

2
2

label

Figure 5.7: Bypassing a fault.

Finding a Detour

Figure 5.7 shows a situation where attribute patching is not possible. Consider
the branching Node; assuming that the parsing of the node has reached the point

� � � � � � � � 	
 � � � 	 �
 � � � �
 	 � � � , the parse of the List fails. Attribute patch-
ing cannot be done because the unseen portion of the production (the junction)
binds one of the expander attributes (out) of Node (see production 4 in Gram-
mar 5.1). However, when looking at the constraint topology of the production,
we see that the junction can be reached also from the switch bypassing the List.
Parsing may be resumed by putting on the agenda the active state � � � � � �

� � 	
 � � 	 �
 � � � � �
 	 � � � with junction as the key. However, the unparsed por-
tion of the production (the List) and the constraints concerning it must be masked
out from constraint verification in the subsequent parsing steps.

In the general case, finding a detour is a little more complicated. For instance,
more than one right-hand-side element may have to be bypassed to find a detour.
Also, only symbols that do not provide values for the expander attributes of the
left-hand-side nonterminal in the production may be bypassed.

5.3.2 Global Recovery

When developing a global recovery strategy based on the local techniques, two
questions arise. First, given a parse state representing a dead-end, which local
recovery action (attribute patching or detour) should be chosen? Second, the scope
of local recovery actions is limited to the parse of the last nonterminal instance on
the parse path leading to a dead-end. What can be done if both local actions fail
on the dead-end?

Choosing the Local Action

If both actions are applicable to the (active) state associated with an error, we
prefer attribute patching over detour finding. The reason for this is that we try to
avoid introducing additional ambiguities by recovery actions in situations where
there are multiple errors, and with attribute patching it is easier to achieve. Be-
cause patching produces inactive states with fixed expander attribute values, we
can check that all inactive states created from the parses for the same nonterminal

92 CHAPTER 5. ERROR HANDLING

label
2

2

1

1

label

Node
k

List
j

i
Node

1

1

2

2

Figure 5.8: Backtracking error recovery over an invalid list.

instance have the same attribute values. Detouring, on the other hand, creates ac-
tive states and, if the bypassed parts of productions used in the parses provide the
only way to distinguish between alternative parses, ambiguities may arise.

Backtracking Recovery

The focus of recovery can be extended by following the parse path backwards
from the parse of the last predicted nonterminal to the parse of the previous pre-
dicted nonterminal. Then, the local recovery actions can be reapplied in a new
context with, hopefully, better results. This process may be repeated until a re-
covery action succeeds or the roots of the graph are reached in which case error
recovery fails.

For example, with the input in Figure 5.8, neither of the local recovery actions
are applicable to the parse of Node � (see production 4 in Grammar 5.1) starting
from the switch � triangle. Because there are no arrows standing for the relations
next and branch starting from the switch, the parser cannot determine the next
symbol to be scanned and, for the same reason, no detour can be found by just
skipping the erroneous part (the List of production 4). Expander attributes cannot
be patched because only the symbol giving the value for the attribute in of Node �

has been scanned so far. Accordingly, no recovery actions can be applied to the
parse of List� . However, a detour can be found in the parse of Node � where the
parse of List� was predicted. Parsing can then be resumed from Node � and the rest

5.3. ERROR RECOVERY 93

of the input is successfully parsed; the parser will finally recognize three Nodes
at circle � , switch � and junction � , and circle � , respectively. The remaining input
symbols and relations are ignored.

In some sense, our backtracking technique is analogous to the error recovery
mechanism for recursive descent string language parsers presented by Welsh and
McKeag [WM80]. The actual mechanisms are of course different but the idea of
unwinding the parse stack or path until synchronization between the input and the
state of parsing is achieved is the same.

5.3.3 Error Recovery in EARG Parsing

The local and global error recovery techniques described above can be applied al-
most as such in the parsing of EARG languages. Attribute pathcing is not affected
by the extensions of the grammatical formalism in EARGs in any way. However,
iterative right-hand side symbols need special handling in the recovery procedure
that implements detour finding.

The detour finding procedure for EARGS constructs relational (expander) queries
like Advance (Procedure 4.1) and uses the Filter procedure (Procedure 4.6) for
predictive lookahead. Optional right-hand side symbols of productions do not
provide any additional complexity because detour finding treats, by default, every
right-hand side symbol as potentially missing. However, if the error happens in
the middle of parsing an iterative sequence of symbols, the next input object in
the queue of pending input is always a viable starting point for parsing the next
instance of the iterative symbol. So, in this case, finding a detour means just
removing the next pending input object from the queue and using that as the key
of a new parse state to be put on Agenda.

Figure 5.9 shows a snapshot of an implementation of the binary tree language
in Example 4.1 (p. 59) that was done with VILPERT. The upper window is the
graphical editor and the lower window shows the syntax errors reported by the
parser after parsing the binary tree in the editor. We can see that the parser has
found three errors in the binary tree:

– a missing text symbol inside the left child of the node labelled with ‘A’,

– two text symbols instead of one in the node labelled with ‘B’ and ‘C’, and

– three circles instead of two connected to the node ‘B C’.

However, because of the last error, the parser has not been able to analyze the three
nodes below the node ‘B C’. Therefore, it has missed the error (missing text) in
the last node of the three.

Figure 5.10 shows the same input as in Figure 5.9 parsed with the following gen-
eral tree grammar:

94 CHAPTER 5. ERROR HANDLING

Figure 5.9: An incorrect binary tree (above) and the syntax errors reported by the
EARG parser (below).

5.3. ERROR RECOVERY 95

Figure 5.10: An incorrect general tree (above) and the syntax errors reported by
the EARG parser (below).

96 CHAPTER 5. ERROR HANDLING

init parse

recover

report

no recovery item
created

new errors detected

Agenda
is empty errors

no new

pushed on Agenda
recovery item

diagnose

too many errors

Figure 5.11: Parsing with error handling.

Tree � � Node Tree � *
connected(Node.root,Tree � .root)
order Tree � .root by left
Tree � .root = Node.root

Node � circle text
inside(text,circle)
Node.root = circle

In this case, the parser is able to report also the error in the node on lower right.
That is, the parser processes all of the input unlike in Figure 5.9.

5.4 Integration to the Parser

The basic parsing cycle of Wittenburg’s parser needs only small changes to ac-
commodate our error handling procedures. The main modification is to separate
the initialization of parsing from the actual parsing process. Parsing is initialized
by putting on agenda the predictive states for each production expanding the start
nonterminal, with a given input symbol as the table index key. Then, the actual
parsing procedure is invoked and continues until the agenda is empty.

After the parsing procedure halts, an error diagnosis procedure examines the parse
table to determine the result of the parse. If there are errors, a recovery procedure
is launched to create new parse states by applying recovery actions. If new states
are created, they are put on the agenda and the parsing procedure can be restarted.
This cycle is continued until no new errors are detected or some predefined error
limit is exceeded. Then, all the detected errors are reported. Figure 5.11 shows
the modified parse process. In the following we present it in more detail.

5.5. THE EARG PARSING ALGORITHM 97

Error Diagnosis

The error diagnosis routine analyzes the success of a parse according to Defini-
tion 1. In the case of global parse failure (case 1 in Definition 1), the routine
traverses the parse graph by going through all paths starting from the roots and
collecting all relevant dead-ends. Otherwise, the set of extra objects is computed.
Also, the absence of ambiguities in the parse graph must be checked.

If a state has successors, the traversal ignores any possible prediction links and
follows the successor links in a depth-first search. There is no need to examine
the predicted parses, because the successors indicate the advancement of parsing.

There are four ways for a path to terminate at a state:

1. the state is an inactive state representing a recognized nonterminal, or,

2. an error descriptor is attached to an active state meaning that a parse action
failed, or,

3. the path contains a cycle.

Only the second case stands for a dead-end. Note that the same dead-end can ap-
pear on many paths like on those leading to state 12 in Figure 5.3. However, cyclic
relations cause cycles in the parse path and the graph traversal routine must notice
them. Whether or not this is an error depends on the language that is being parsed.
Cycles may be caused by circularities in the nonterminal references between the
productions of the grammar, as well, but these can be detected statically.

The idea is to collect the error descriptors of all dead-ends and rank them ac-
cording to the number of input objects scanned along the paths leading to the
dead-ends. After the traversal is complete, the first-ranking error descriptors are
reported as the parser-detected syntax errors.

Ambiguities are detected during parsing when parse states are inserted to the parse
table and the parse graph is constructed. The parser collects the ambiguity de-
scriptors in a global list during parsing. Then, during the post-parse diagnosis, the
parser checks whether there are ambiguity descriptors on the list.

5.5 The EARG Parsing Algorithm

We present here the main routine of the modified parsing algorithm for extended
atomic relational grammars that implements also the global error recovery strat-
egy. On the surface, the major modification is separating the initialization of pars-
ing from the actual parsing process. This is done to support the integration of the
error recovery strategy as explained above.

The other changes are the following:

98 CHAPTER 5. ERROR HANDLING

– Because the any-start property of Algorithm 2.1 is not used, we do not need
the special syntactic attribute start neither all the possible ordering variants
of productions (see Restriction 4.6 and the related discussion on page 78).

– The parse actions scan, complete, and inverse-complete use Procedure 4.1
Advance instead of Wittenburg’s Procedure 2.1. Advance uses Procedure 4.6
Filter that implements the predictive lookahead method of EARGs described
in Section 4.2.

– Whenever the parse of some production is advanced (by scan, complete,
or inverse-complete), all the relational constraints, predicates, remote refer-
ences, and disambiguation constraints that can be evaluated are evaluated at
that point.

– The parser links the inactive states representing recognized nonterminals
into a parse tree (see Section 4.3.3). The parse tree is built incrementally
during the Advance operation as part of Procedure 4.2 closeParse. The or-
dering of the subtrees in the internal nodes of the parse tree reflects the order
of the right-hand side symbols in the corresponding productions.

Parsing is initialized by putting on agenda the predictive states for each production
expanding the start nonterminal, with a given input symbol as the table index key.

In the algorithm, the constant MAX defines an upper limit for the number of er-
rors to be reported and, thus, for the number of times that error recovery is to be
attempted.

Algorithm 5.1 Parsing with error recovery

Input: An extended atomic relational grammar
�

, a set � � � � � � � � 	 	 	 � �
 � to
be parsed, and an object � � from which to start parsing.

Output: A set of error descriptors (errors) representing the syntax errors found
by the parser. An empty set indicates a successful parse.

Auxiliary data structures:

Agenda: A FIFO list of states to process, initally empty.

Init-states: The set of predictive states for the start nonterminal � �

obtained by generating only the ordering variants of the productions� � � � � � � � � � � � � 	 	 	 � such that for all � � � , every
right-hand-side symbol of � that binds an expander attribute � � � � �
appears first in some ordering of the right-hand-side symbols of � .

Parse table: A hash table � of state sets � � where � � .

5.5. THE EARG PARSING ALGORITHM 99

Algorithm:

1. for each � � Init-states do
2. add an item � � � � � � � to Agenda
3. end do
4. 	

 �
 � � �
5. � � � � � � � � � � � � �
6. � � � � � � � � � false
7. while Agenda is not empty do
8. remove an item � � � � � � � � � � � � from Agenda
9. For each � � � � � � do
10. if � � does not contain state then
11. Add state to � � , perform the applicable pars-

ing actions (scan, complete, inverse-complete
and Procedure 4.1 Advance, or predict) on it
like in Algorithm 2.1, and put the resulting

� � � � � � � � � � � � � � items on Agenda.
12. end if
13. end do
14. end do
15. if � contains an inactive state � that is an instance of � and � covers

the whole input and ambiguities � then
16. � � � � � � � � � true
17. else
18. Perform the error diagnosis routine by travers-

ing the parse graph and collecting the highest
ranking dead-ends. Add the error descriptors
associated with the dead-ends to errors. If no
dead-ends are found, check for ambiguities and
extra input and add the correspondig descriptors
to errors.

19. for each new error � � 	

 �
 � do
20. if � is not an ambiguity error or an extra input error then
21. Apply the recovery strategy to the parse state

associated with � and add all resulting recovery
items to Agenda.

22. end if
23. end do
24. end if
25. if success � false and � 	

 �
 � � MAX and Agenda is not empty

then
26. goto 6
27. end if
28. return errors

For a discussion about the theoretical complexity of parsing in terms of the !
notation, see Section 4.4.

100 CHAPTER 5. ERROR HANDLING

5.6 Discussion

Patching and detouring do not actually perform error correction. They both just
ignore some erroneous part of input like the panic mode error recovery techniques
that are common in string language parsers [ASU86, p. 164]. For instance, in
Figure 5.2 (p. 83) the switch is not interpreted as a text but simply discarded. In
general, detouring attempts to minimize the number of discarded input objects at
the cost of introducing ambiguities.

However, both patching and detouring depend on the connectedness of the input:
missing relations can cause both methods to fail. For instance, with the input
in Figure 5.12, only one of the four nodes would be parsed according to Gram-
mar 5.1 no matter from where the parsing starts, and the three other nodes would
be considered as extra.

To increase the effectiveness of recovery in case of missing relations, the follow-
ing scheme (adapted from the strategy suggested in [SSS90, Chap. 9] for LL(1)-
parsers) could be quite easily implemented to deal with extra input. The idea
is that the parser initiates new parses from some unprocessed input symbol that
could be bound (based on their terminal/lexical type) to an expander attribute of
some nonterminal instance in the parse table and repeats the process until no more
input is consumed. Nonterminals could be ranked by their grammatical distance
from the start symbol of the grammar, which would have the highest rank. The
amount of input to be parsed could then be maximized by selecting always the
highest ranking nonterminal that could possibly be parsed. The selection of the
input symbol could be simply based on the lexical type of the object. However, a
more sophisticated scheme that takes into account even the immediate neighbor-
hood of the candidate object in the input graph could yield still better results.

In order to deal with extra relations like in Figure 5.9 (p. 94), the grammar of the
visual language can be extended with productions that actually allow erroneous
syntactic structures. This grammatical trick is well-known in string language pars-
ing [ASU86, p. 165]. For example, the binary tree grammar in Example 4.1 (p. 59)
could be extended with the following two productions that are recognized when
there are three or four subtrees, respectively, for a Node:

Tree � � Node Tree � Tree � Tree �

connected(Node.root,Tree � .root)
connected(Node.root,Tree � .root)
connected(Node.root,Tree � .root)
order Tree � .root,Tree � .root,Tree � .root by left
Tree � .root = Node.root

Tree � � Node Tree � Tree � Tree � Tree �

connected(Node.root,Tree � .root)
connected(Node.root,Tree � .root)

5.6. DISCUSSION 101

4 label

3

3
label 1

label 2

2

1

4

label

Figure 5.12: Unrecoverable errors.

connected(Node.root,Tree � .root)
connected(Node.root,Tree � .root)
order Tree � .root,Tree � .root,Tree � .root,Tree � .root by left
Tree � .root = Node.root

Adding these productions would make the parser to process the whole input in
Figure 5.9. That is, the parser would also notice the error shown in Figure 5.10.
The drawback of this trick is that the parser would not report as a syntax error the
fact that there are three subtrees for one internal node of a binary tree. This prob-
lem could be solved, for instance, by marking the productions (or the recognized
nonterminal instances) as error productions and by changing the error recovery
strategy to be able to handle also this kind of errors.

102 CHAPTER 5. ERROR HANDLING

Chapter 6

The VILPERT Framework

In this chapter, we present VILPERT, an object-oriented application framework for
implementing visual languages. The framework implements the extended atomic
relational grammatical formalism presented in Chapter 4 and the error recovery
techniques presented in Chapter 5.

First, we present the concept of object-oriented application frameworks in Sec-
tion 6.1. In Section 6.2, we describe the JHotDraw framework that we have used
in VILPERT. Then, we introduce VILPERT in Section 6.3. In Section 6.4, we
present an overview of the architecture of the framework and explain through an
example how to derive an application from the framework. In Section 6.5, we
describe the user interaction of editing and analyzing visual programs with a tool
produced by VILPERT. Finally, in Section 6.6, we characterize the visual lan-
guages that we have implemented and discuss areas of improvement and future
work.

6.1 Object-Oriented Application Frameworks

Object-oriented application frameworks are promoted as a technology that pro-
vides a high degree of reusability and extensibility of software assets [FSJ99b].
According to [JF88],

a framework is a set of classes that embodies an abstract design for
solutions to a family of related problems.

A framework captures the commonalities of a set of applications that belong to a
certain domain in the form of an implementation skeleton. It embodies the most
significant architectural design decisions that the perceived applications in the do-
main must conform to. The skeleton captures the most stable concepts (structure)

103

104 CHAPTER 6. THE VILPERT FRAMEWORK

and collaborations (behavior) of the perceived applications as a mixture of ab-
stract and concrete implementation elements (e.g. classes). Usually, the skeleton
provides the main control of the application (inversion of control)1.

In addition to the common properties of applications and the main control (i.e. the
event loop), a framework provides extension points for configuring and adding
the variable features of the applications. The user of the framework provides the
configuration information and concrete implementations for the underspecified or
missing parts (i.e. callbacks to user implemented components) in order to derive
a working application from the framework.

A framework may cover only a subsystem in the application domain instead of a
skeleton of a complete application. Fayad & al. give the following classification
of frameworks by their scope [FSJ99a]:

System infrastructure frameworks These include system infrastructure frame-
works (operating systems), communication frameworks, and frameworks
for user interfaces and language processing tools.

Middleware integration frameworks These frameworks are used to integrate
distributed applications or componets. Examples are ORB frameworks,
message-oriented middleware, and transactional databases.

Enterprise application frameworks These frameworks address broad applica-
tion domains (telecom, avionics, manufacturing, financing etc.). They cap-
ture extensive domain knowledge and are the cornerstone of enterprise busi-
ness activities. Therefore, they can provide substantial return on investment.
They are also expensive to develop and are usually developed in-house com-
pared to infrastructure and middleware frameworks that are often purchased.

Frameworks can also be classified by the extension technique used to derive ap-
plications from a framework:

White-box The framework relies heavily on object-oriented language features
(inheritance, dynamic binding) in order to facilitate the extension and reuse
of existining functionality. The framework exposes its internal structure in
a transparent manner for the application developer.

Black-box The framework supports extensibility by defining interfaces for com-
ponents that can be plugged into it. The framework is opaque in the sense
that the application developer can not see the internals of the framework.

Gray-box This kind of frameworks try to provide a reasonable compromise be-
tween the flexibility and complexity of white-box frameworks and the ease
of use of black-box frameworks.

1Also known as The Hollywood Principle: “Don’t call us—we’ll call you.”

6.2. HOTDRAW AND JHOTDRAW 105

Roberts & al. describe the typical life-cycle of an object-oriented framework as
gradual evolution from a white-box framework towards a black-box framework
by an iterative process where applications are derived from the framework and
the framework is extended to support faster derivation and more features [RJ97].
They see a visual (sic.) builder tool as the final state in the evolution of a frame-
work. The visual tool addresses one specific task: the configuration of an appli-
cation derived from a black-box framework by instantiating and connecting the
components that make up the application.

There has been strong belief in the potential of object-oriented frameworks in
terms of reuse. Intuitively it is clear that implementing the common parts of ap-
plications only once and the variable parts per each application should lead to
savings in development effort for a family of related products. Frameworks do not
facilitate only code reuse—they facilitate also the reuse of the domain knowledge
(analysis) and the design incorporated into the architecture and the provisional
components of the framework.

On the other hand, developing a framework is more expensive than developing a
single application: it is difficult to estimate the needs of future applications and to
find the right abstractions to support the expected variability [Mat00]. Hard facts
about the economical benefits of using the framework technology have not been
published until recently. The study by Mattsson [Mat99] shows clear economic
gain from using frameworks, however.

6.2 HotDraw and JHotDraw

There exists a few object-oriented frameworks for the implementation of graph-
ical editors [Jin90, VL90, Bra95]. One of them is HotDraw, which dates back
to late 1980’s. Originally developed by Kent Beck and Ward Cunningham in
the Smalltalk language, the framework has been further developed as a Smalltalk
framework [Joh92, Bra95] and as two different Java implementations by Erich
Gamma (JHotDraw [GE96]) and Ken Auer (Drawlets [Rol00]). Currently, JHot-
Draw is being developed as an open source project [jho00].

With JHotDraw, users can implement simple graphical editors for ‘node-and-
arrow’ kind of visual languages. Figure 6.1 shows the main concepts of JHotDraw.
A JHotDraw document is a Drawing composed of Figures which can themselves
be composite. A drawing is composed in a DrawingView through Tools that ma-
nipulate figures through Handles owned by the figures. Specialized interactions
can be realized by implementing special tools and handles. DrawWindow is the
base class of the editor application and it is derived from the Frame class of the
host GUI framework (Java AWT in this case). The JHotDraw features include:

– Animated manipulation of figures. That is, when moving or resizing a fig-
ure, the changes are immediately reflected in the drawing.

106 CHAPTER 6. THE VILPERT FRAMEWORK

Frame

DrawWindow DrawingView

Panel

DrawingTool

Handle Figure

*
* *

current tool

selection

1..*
1..*

Figure 6.1: The main framework classes of JHotDraw.

– Connecting figures with lines. Figures provide locator objects that decide
where and how the connection line intersects the boundary of the figure.
The connections are maintained during manipulation (i.e. moving) of the
connected figures. Connections and figures can have text objects attached
to them.

– Grouping/ungrouping of figures into flat (one-level) composite objects.

– Multiple views on the same drawing.

JHotDraw provides a base editor class for both standalone applications and web
applets. From the technical point of view, the distinctive property is the exten-
sive use of design patterns [GHJV95] in the design and implementation of the
framework (see the documentation in the JHotDraw package [GE96]).

The derivation of an application from JHotDraw entails writing the classes for
any particular figures not provided by the framework (only basic shapes included).
Special tools may also be needed (the basic selection and creation tools are usually
enough). The semantics of the drawings are implemented by adding semantic at-
tibutes and methods to figures, and the dialogs for accessing them (if needed). Fi-
nally, the application is configured by specifying the tools and figures provided the
editor, and by defining the additional menus (and corresponding actions) needed
by the applications.

According to the classification above, JHotDraw is a white-box system infras-
tructure framework. Despite the lack of some common features (no undo and no
zooming) and despite the limited features of the underlying Java AWT graphics
(e.g. AWT supports only one line style), JHotDraw is a good base framework for
the graphical editor part of VILPERT. However, we have made extensions to the
framework itself to better support some typical syntactic structures of the visual
languages used in software engineering (see Section 6.4.2).

6.3. INTRODUCTION TO VILPERT 107

6.3 Introduction to VILPERT

6.3.1 General

VILPERT combines an implementation of the EARG formalism and the JHotDraw
framework into an object-oriented framework for implementing visual languages.
VILPERT comprises two separate frameworks for specifying the syntax of a visual
language and for deriving a graphical editor for the language. The main benefits
of the approach are a separation of the concerns of editing and automatically an-
alyzing visual programs, and a rigorous implementation methodology based on a
powerful syntactic model which does not compromise the usability of the result-
ing tools.

From the engineering point of view, the grammar-based approach for specify-
ing the syntax of a visual language and automatically producing (by a compiler-
compiler) a language analyzer offers obvious benefits when compared with an
ad-hoc implementation of syntax checking. Compiler-compilers are established
tools in the implementation of textual languages, and hand-coding of parsers is
rarely done, except in the case of very simple language processors. However, in
the case of visual languages, which are usually special purpose high-level lan-
guages, there is a much closer relationship between the language environment (e.
g. editor) and the language analyzer than in the case of textual languages. Of-
ten, the editor and the language are inseparable. For instance, UML CASE tools
support typically syntax directed editing of UML diagrams where the tool checks
constantly the validity of the diagrams during editing. State-of-the-art UML tools
support also the division of large models into many separate diagrams in different
sublanguages and the sharing of models between individual developers in collabo-
rative mode. It is naive to think that such complex language environments could be
generated based on a grammatical description of the target language. On the other
hand, object-oriented frameworks have been successfully developed and used for
implementing graphical editors for diagramming tools. Using these frameworks
offers the chance to tap into the state-of-the-art in the implementation of graphical
editors. In VILPERT, we aim at combining the benefits of both the framework-
and grammar-based approaches in the development of visual languages.

The VILPERT framework provides a clean separation of the concerns of the graph-
ical editing and the interpretation of diagrams both from the architectural and the
usability point of view. The user draws the diagram in free order (not dictated
by a syntax directed editor) and then invokes the language analyzer to interpret
the drawing. The analyzer informs the user about any errors it finds during pars-
ing and semantic processing. This approach to visual language implementation
makes it possible to combine the sketching and the checking of diagrams into an
explorative design style.

Separating the two concerns of editing and analyzing reduces the software com-
plexity of a tool that implements a visual language because the correctness of a
diagram does not have to be constantly enforced during editing. Also, the us-

108 CHAPTER 6. THE VILPERT FRAMEWORK

ability aspects of the editor are not compromised by the need of maintaining a
consistent model during editing: the editor can provide all the freedom of graphi-
cal editing that users want. Furthermore, because VILPERT is a framework, tools
produced with it are open for extensions and modifications. Also, the (white-
box) framework-based implementation of the editor means that the internal object
structures of the editor, which comprise the visual data (program) to be analyzed,
can be made directly accessible to the analyzer part.

6.3.2 Object-Oriented representation of EARGs

In the following, we present the main concepts of our implementation of EARGs.
In VILPERT, an EARG grammar is represented as an explicit object structure. The
UML class diagram in Figure 6.2 shows a conceptual view of the main classes
of the grammar framework and the associations between them.2 The specializa-
tion interface of the framework consists of two extendable (but not fully abstract)
classes, RelationalGrammar and SyntaxTreeNode, and a concrete class, Produc-
tion, which is the main vehicle for specifying the grammar of the target language.

The interface of RelationalGrammar consists of methods for defining the ele-
ments of the grammar. To build a grammar, the method buildGrammar in Re-
lationalGrammar calls user-defined methods in concrete subclasses for particular
languages to first build the symbol sets and then to build the productions of the
language. This is an instance of the Template Method design pattern [GHJV95].

The methods for specifying the symbol sets (nonterminals, terminals, relation
names, and attributes) return a list of the symbols of the category (see the example
below). However, the bulk of the grammar is in specifying the productions. For
each production of the grammar, a method specifying the structure of the produc-
tion must be defined in a concrete grammar class. Then, the grammar object must
know which methods to call to actually create the productions. This could be
implemented by overriding the buildProductions method in RelationalGrammar
to call each named method in succession. However, in the Java implementation
of VILPERT, we use the reflection mechanism of the language to automate the
creation of productions. The grammar writer names each method that defines a
production with B � where � � � is the left-hand side nonterminal and � is an
arbitrary string such that all the methods for the same nonterminal have a differ-
ent name. Furthermore, the signature of the methods is restricted so that each
method receives one instance of Production as an argument and returns a Pro-
duction. Then, the buildProductions method simply checks for each nonterminal
whether methods for that nonterminal are defined in the grammar class and calls
them.

2The diagram has been simplified and some details have been left out. For instance, the sets
of nonterminal, terminal, attribute, and relation symbols are also part of the grammar but this is
not shown in the diagram. Also, the different types of constraints form a class hierarchy under the
Constraint class.

6.3. INTRODUCTION TO VILPERT 109

recognizes sentences of

Sym
bol

N
onterm

inal
T

erm
inal

represents

Input O
bject

Input O
bject

belongs to
cover of

indexed
by is

represents an (partly or com
pletely m

atched) instance of

*

C
onstraint

relation: nam
e

R
eference

Indirect

attribute: nam
e

Production

Parser

Parse T
able

Parse State

Inactive State

A
ssignm

ent
A

ttribute

*

*

attribute: nam
e

assigned value

2

*

R
eference
to rhs

index: integer

C
lass

*

*

instance of

*

*
*

holds

*
A

ctive State

dot: integer

subparse

{ordered}

{ordered} rhs

lhs

R
hs-E

lem
ent

isR
epetitive:

boolean

boolean
isO

ptional:

G
ram

m
ar

R
elational-

SyntaxT
ree-

N
ode

Predicate

*

argum
ent

1..*

1..*

1..*

predicate: nam
e

represents

*

descendants

descendants

*

*

creates

*

Figure 6.2: The EARG grammar framework.

110 CHAPTER 6. THE VILPERT FRAMEWORK

The interface of Production consists of methods for defining the parts of a pro-
duction: the left-hand side nonterminal, the right-hand side symbols, constraints,
predicates, ordering expressions, expander attribute assignments, and the class of
parse tree node that represents the production. The parts are defined simply as
string arguments to the methods. Production objects delegate the parsing of the
strings to a GrammarReader (class) object that then fills the slots in the produc-
tions by creating all necessary parts. The GrammarReader checks the lexical and
syntactic validity of the strings that define the parts of a production and raises ex-
ceptions if the strings are not valid. Furthermore, each grammatical object has a
method for checking the semantic validity of themselves. For instance, a produc-
tion object checks that all the right-hand side symbols have been defined, and a
constraint object checks that the references to the right-hand side symbols of its
production are correct.

A predicate � of type (a) in � in Definition 4.1 (page 55) is specified by declaring a
method with the name � , the return type java.lang.Boolean, and exactly the same
number of arguments of type java.lang.Object as in all usages of that predicate
in the productions. Note that it is possible to have many methods with the same
profile except that the number of arguments may vary. In a similar fashion, the or-
dering function � in an ordering expression � � � (see Definition 4.1) is specified
by declaring a method with the same name, java.lang.Boolean as the return type,
and an argument list of two objects of type java.lang.Object. These methods are
declared in an analyzer class associated with a grammar and not in the grammar
class itself (see the example in Section 6.4.3).

All the grammar building operations involve checking to verify the validity of
the declarations. That is, when building a grammar, the framework executes the
actions of a typical metacompiler and raises exceptions if it encounters invalid
constructs.

To define the (operational) semantics of the language, the grammar writer can sub-
class SyntaxTreeNode and define additional (semantic) methods and attributes.
The semantics method of Production is then used to set the actual class of Syn-
taxTreeNode to be created when complete productions have been parsed (see Sec-
tion 4.3.3). Then, these methods can be invoked on the parse tree after parsing.

The interface of Parser is simple. The parser receives as parameters of the analyze
method the grammar object and an object representing the input object-relation
network. If the parse is successful, the SyntaxTreeNode representing the root of
the resulting parse tree is returned.

An Example The following grammar fragment is part of the specification of
the UML statechart language. Figure 6.7 shows an example of this language.
Appendix A contains the full Java code for this grammar.

In VILPERT, a grammar is defined by deriving a concrete class from Relational-
GrammarImplementation (derived from RelationaGrammar) that is the base class
for all grammars. The Java code in Grammar 6.1 below defines first the symbols

6.3. INTRODUCTION TO VILPERT 111

of the language (terminals, nonterminals, relation names, and attributes) as Java
strings. Then, the productions of the grammar are specified by definining methods
that construct the productions when invoked (the fragment shows only the decla-
ration of the first production). The actual construction processs is explained in
Section 6.4.3.

Grammar 6.1

package CH.ifa.draw.samples.statechart;
import relap.LanguageModel.*;
import java.io.*;
import com.objectspace.jgl.*;

public class StateChart extends RelationalGrammarImplementation {

public String terminalDeclarations () {
return "rrect text arrow initial final statePanel namePanel "+

"itPanel pseudoPanel labelPanel";
}
public String nonTerminalDeclarations () {
return "StateChart Initial Final State StateSymbol Trans "+

"NameCompartment StateCompartment ITCompartment Label";
}
public String startSymbolDeclaration () {
return "StateChart";

}
public String relationDeclarations () {
return "inside enters exits attached ";

}
public String attributeDeclarations () {
return "root ";

}

public GrammarProduction StateChart_(GrammarProduction p)
throws InvalidGrammarException {

p.description(
"State machine"

);
p.rightHandSide(
"pseudoPanel Initial State+ Final?"

);
p.constraints(
"inside(2:root,1) inside(3:root,1) inside(4:root,1)"

);
p.assignments(
"0:root = 1"

);
p.semantics(

112 CHAPTER 6. THE VILPERT FRAMEWORK

"CH.ifa.draw.samples.statechart.StateChartRep"
);
return p;
}
...

}

The production shown in the grammar above declares a StateChart to consist of
a pseudoPanel (an implicit object representing the whole drawing) containing an
Initial pseudo state, one or more States, and an optional Final pseudo state. The
right-hand side symbols are referenced by their position (starting from 1) in the
constraint expressions. The constraints declare that the input objects bound to
the root attribute of the nonterminal instances are inside of the pseudoPanel. The
attribute assignment expression assigns the pseudoPanel object as the value of
the root attribute of the left-hand side nonterminal (index 0). The last expression
defines the class of the parse tree node to be created when a nonterminal instance
matching this production has been recognized.

Reuse of Grammar Specifications

Because grammars are represented as Java classes, the framework presented above
allows for incremental language develompent. That is, when developing a dif-
ferent version of a language, the methods defining parts of the grammar can be
overridden in subclasses.

The smallest practical unit of reuse of EARG grammars is a production, however.
That is, a new grammar � � derived from an grammar � would typically only add
new symbols (terminals, nonterminals, and relations) and productions for existing
and new nonterminals. One reason for this is that in the case of EARGs, there
are many elements in the grammar productions and many interrelationships and
restrictions within and between productions (e.g. disambiguation constraints).

The only reason for overriding a part of a production in a subclass is to change the
(operational) semantics of the language by defining a different parse tree class
for the production. Consider, for instance, developing different versions of a
Flowchart language: we could define the syntactic structure of the language in
a superclass and then subclass it to define the semantics of the language. One
subclass could translate the flowchart into a textual programming language while
another subclass could define the operational semantics for interactive, animated
execution of the visual program.

So, in our framework, reuse is confined rather within a language family than be-
tween languages of different ancestry. That is, reuse and incremental language
development is a planned process rather than ad hoc reuse of implementation. As
an example, Figure 6.3 shows a family of grammars for trees. The root gram-
mar of the hierarchy is TreeBase that specifies the structure of a Node of a tree
and specifies a Tree to consist of one Node only (i.e. a leaf with no subtrees).

6.4. ARCHITECTURE OF VILPERT 113

TreeBase

+Tree_leaf(p:Production): Production
+Node_(p:Production): Production

GeneralTree

+Tree_many(p:Production): Production

BinaryTree

+Tree_one(p:Production): Production
+Tree_two(p:Production): Production

Figure 6.3: A family of tree grammars.

Then, the subclass GeneralTree adds a production for internal nodes with one or
more subtrees, and class BinaryTree adds two productions for internal nodes with
one and two subtrees. Further possible variations would be to add new types of
nodes, for instance. This would require redefinition of the terminalDeclarations
and nonTerminalDeclarations methods in a subclass. Note, that Java does not
allow multiple inheritance, so there is not complete freedom in mixing different
base grammars.

6.4 Architecture of VILPERT

As shown in Figure 6.4, the framework consists of two subpackages, Relap and
Draw. The former provides the language specification and analysis framework
(grammar and parsing) and the latter the graphical editor framework. In the fol-
lowing, we take a brief look at each of the packages. The example in Sect. 6.4.3
provides a more detailed view of using the framework.

6.4.1 The Relap Package

The three main subpackages of the Relap (RElational LAnguage Processor) pack-
age are shown in Figure 6.4. The Language Model package provides an object-
oriented model of atomic relational grammars. The model includes abstractions
for all the basic concepts of a grammar, such as RelationalGrammar, Gram-
marProduction, Constraint, AttributeAssignment, Predicate, etc. The package
(subframework) relies on the reflective properties of the Java language in the con-
struction of grammar instances. For the user of the VILPERT framework, the class
RelationalGrammarImplementation provides the access point to the framework.
That is, this is the one and only (abstract) class that needs to be subclassed when
deriving a new grammar.

The Analyzer package contains the classes needed in parsing. The framework user
needs not to be concerned with them.

114 CHAPTER 6. THE VILPERT FRAMEWORK

Vilpert

Relap

Language
Model

Analyzer Editor
Draw

Figure 6.4: The package organization.

However, the Editor package provides the mechanisms for glueing the grammar
and parser part of a visual language implementation to the graphical editor (de-
rived from the Draw framework). This is represented by the dependencies be-
tween the packages in Figure 6.4. The package has abstractions for binding the
graphical objects manipulated by the editor of a visual language to the terminal
symbol instances and relations of the grammar of the language. Other features of
the package address the issues of displaying errors and translating the parser de-
fined errors into comprehensible messages. So, the framework user needs rather
detailed knowledge of the features and abstractions contained in this package.

6.4.2 The Draw Package

This package provides an extended version of the JHotDraw framework intro-
duced in Section 6.2. In addition to connecting figures with lines, semantically
meaningful containment is a prevalent feature in visual modeling languages. How-
ever, we found that the management of deep figure containment hierarchies was
only partially implemented in JHotDraw.

We introduced to the framework the concept of structured graphics with truly
hierarchical composite figures and Java AWT-style layout managers. This makes
it possible to construct panel-like figures onto which other figures can be dragged
and dropped. Each panel class or object is free to implement its own layout policy
for arranging the subfigures. Also, panels can be nested to an arbitrary depth just
like AWT GUI-components (see also Composite design pattern [GHJV95]).

Panels can have a frame figure (FrameComposite) that gives them a tangible form
or they can be rectangular areas with no visible borders (FigurePanel). Fig-
urePanels are used, for instance, to create compartments with specific layout poli-
cies within a FrameComposite. This is analogous to windows and panels in GUI
frameworks. Combined with drag and drop, hierarchical composites provide a
powerful and highly usable interaction paradigm. The popularity of GUI building
tools is clear testimony of this.

With the features described above, the Draw package provides a good base for
the implementation of UML-like modeling languages used in software engineer-

6.4. ARCHITECTURE OF VILPERT 115

ing. The structural abstractions of the package are already close to the syntactic
constructs of the intended target languages.

6.4.3 An Example – The UML Statechart Language

Structural View

Figure 6.5 shows an UML class diagram of the implemententation of the statechar-
ter tool shown in Figure 6.7. The diagram presents the classes of the statechart
language and their relationships to each other and to the VILPERT framework.
The classes belonging to the statechart implementation are shown grayed in the
figure. These are the classes that the user has written when specializing the state-
chart language from the framework. Note that Figure 6.5 shows an abstract view
of the static system architecture concentrating on the user view of the system.

The top half of Figure 6.5 shows the classes of the editor. The main component
is StateChartEditor where the tools, figures, and views of the editor are defined
and the application is configured. StateChartAnalysisView is a separate window
that shows the interface of the analyzer of the language. The view has controls for
performing analysis and synthesis (i. e. code generation) and for displaying error
messages.

The lower half of Figure 6.5 is concerned with the parsing and the semantic pro-
cessing of statecharts. The central component is StateChartAnalyzer that controls
the analysis process. The (concrete) analyzer component defines methods that

– return the name of the grammar class of the visual language (as a string),

– return an instance of the semantic processor of the language,

– return instances of classes that translate the graphical objects into grammat-
ical objects (see below),

– create and initialize the relations that hold (part of) the input to the parser,

– find the start object of parsing, and

– define the predicates and the ordering functions that are part of the EARG
grammar of the language.

The analyzer is the glue and mediator object between the editor, parser, semantic
processor, and the analysis view. The analyzer defines also methods related to
generation of error messages from the errors reported by the parser and the se-
mantic processor. Furthermore, it is possible to define pre- and post-parse actions
that take effect immediately before and after a parse is launched.

The classes StateChartInputGeneratorMap and StateChartEditorMap define trans-
lation mappings and actions that convert the Drawing and the Figures it holds to

116 CHAPTER 6. THE VILPERT FRAMEWORK

D
raw

::D
raw

A
pp

R
elap::E

ditor::R
elapA

pp

R
elap::E

ditor::
A

bstractO
bjectT

oSym
bolM

ap

R
elap::E

ditor::
D

efaultInputG
enerator

R
elapA

nalysisV
iew

R
elap::E

ditor::

A
bstractA

nalyzer
R

elap::E
ditor::

Parser
R

elap::A
nalyzer::

R
elationalG

ram
m

arIm
plem

entation
R

elap::L
anguageM

odel::

E
ndD

ot

StateR
ep

creates
invokes

uses

uses

builds

creates
invokes

D
raw

::D
raw

ing

invokes

R
elap::A

nalyzer::

uses

StateC
hartV

isitor
<

<
interface>

>

<
<

interface>
>

D
raw

::T
ool

T
ransitionT

ool

D
raw

::T
extT

ool

D
raw

::C
reationT

ool

SpecialSelectionT
ool

creates

builds

visits

SyntaxT
reeN

ode

<
<

interface>
>

StateC
hartN

ode

accepts

FinalR
ep

Sem
antics

StateC
hartE

ditor

StateC
hartInputG

eneratorM
ap

StateC
hartE

ditorM
ap

StateM
achine

StateC
hartB

uilder

StateC
hartA

nalyzer

StateC
hartA

nalysisV
iew

StateC
hart

<
<

interface>
>

D
raw

::Figure

*

1..*

SuperState
...

...

represents

Figure 6.5: The classes of the statechart implementation and their relationships to
the framework.

6.4. ARCHITECTURE OF VILPERT 117

the relational form of input that the parser requires. StateChart defines the rela-
tional grammar of the language and it is used by the parser.

The parser builds a parse tree from a correct input. The tree is processed by a
StateChartBuilder that constructs a StateMachine from the tree. In the construc-
tion process, the mapping from the semantic objects to the graphical objects (the
figures in the drawing) is maintained making the representation relationship be-
tween the Drawing and the StateMachine concrete. The contents of the Semantics
package specifying the structure of StateMachines is not shown. The structure is
essentially the same as the semantic model of state machines given in the UML
reference documentation.

Behavioral View

Figure 6.6 shows as a UML activity diagram the process of constructing a state
machine from a drawing. The drawing is first edited as a collection of figures
contained by the Drawing d. Then, the analyzer is invoked to process d.

The first phase of processing converts the diagram into the set of relations speci-
fied in Grammar 6.1. StateChartEditorMap defines a mapping from figure classes
to strings representing the terminals. StateChartInputGenerator is a dynamic vis-
itor that visits the drawing and converts the figure containment hierarchy and the
connections between figures to relation tuples and stores them into the Indexed-
MDSet i that is the result of the conversion. Because extended atomic relational
grammars support the notion of iterative right-hand side symbols in productions,
it is straightforward to transform the containment (parent-child) relationship of
the figures into tuples of the inside relations of the Statechart grammar (Gram-
mar 6.1). It is also straightforward to generate the tuples of the attached relation
because the text objects know which connection figures they adorn. Furthermore,
the connection figures know the figures that they connect.

The dynamic visitor holds a map (configured by the grammar writer) from the
classes (types) of input object to visitor objects. So, the concrete visitor that han-
dles a certain kind of object is determined at run time instead of compile time
like in the basic Visitor design pattern [GHJV95]. StateChartInputGenerator also
stores the terminal symbol class of each figure within i. The input objects in i are
references to the figure objects in d.

Then, the grammar object g is constructed. The grammar class relies on reflec-
tion to call the methods in its body that specify the grammar. First, it calls the
methods that define the symbol sets and then, for each nonterminal, it calls all
the methods that have that nonterminal (plus the underscore character) as a suffix
of the method name. The production building methods receive as an argument a
skeleton production with empty slots that are filled in the method body as shown
in Grammar 6.1.

As explained above in Section 6.3, grammars are classes and, therefore, inheri-
tance and polymorphism can be used to extend and modify existing grammars.

118 CHAPTER 6. THE VILPERT FRAMEWORK

Edit drawing

d:Drawing

Generate parser input i:IndexedMDSet

Construct grammar g:StateChart

Build state machine

Check state machine

m:StateMachine

[unchecked]

m:StateMachine

[checked]

Generate code / Simulate / etc.

Parse

Display errors

t:SyntaxTree

Editor

[else]

[else]

[else]

[errors]

[errors]

[errors]

Analyzer

Figure 6.6: An activity diagram showing the construction of a state machine from
a statechart drawing.

6.4. ARCHITECTURE OF VILPERT 119

Also, during the construction, checks are made to ensure that a valid grammar is
being constructed. The checks are the same as a metacompiler would do. If there
are any errors, they are reported in the analysis view and the analysis process
terminates.

The parser receives the grammar g and the input i and produces the parse tree t as
the result. Again, if there were any syntax errors, the error messages are displayed
and the process terminates.

The last phase of the analysis process is to transform the concrete syntax tree into
the abstract semantic representation of a state machine (depicted as the instance
m in Figure 6.6). That is, the parser hands the parse tree over to StateChart-
Builder (see Figure 6.5) that visits (Visitor design pattern [GHJV95]) the parse
tree and transforms it into a state machine (like a Builder [GHJV95]). The parse
tree nodes (e.g. StateRep in Figure 6.5) created by the parser are simple exten-
sion objects of generic parse tree node classes (Relap.Analyzer.MiddleNode and
Relap.Analyzer.LeafNode) provided by the Relap framework. These base classes
provide methods for traversing the nodes and accessing the parts of nodes. The
extended parse tree nodes of the Statechart implementation specify convenience
methods for accessing the parts of nodes and the methods required by StateChart-
Builder to visit the parse tree.

The main tasks in building the state machine is (1) creating the object structure
that is compliant with the OMG metamodel of UML Statecharts and (2) link-
ing the states according to the transitions in the input. The parse tree created by
the parser does not contain expicit links between nodes that would represent the
topological structure induced by the transitions between states (see the discussion
about remote references on p. 42). During the linking phase, StateChartBuilder
builds a map that associates the created state objects with the graphical input ob-
jects representing the figures physically connected by the transition arrows (fig-
ures). Then, when visiting a transition, the builder can connect the state objects
because a transition figure knows the figures it connects. The builder also as-
signs the text objects associated with states and transitions as the attributes of the
corresponding objects of the state machine.

After the transformation, the state machine then performs a self check ensuring
that it is well formed and valid. The transformation routines and the checks are
coded by hand.

After the analysis, other actions can be performed on the constructed state ma-
chine. These can include code generation or interactive animated simulation, for
instance.

120 CHAPTER 6. THE VILPERT FRAMEWORK

Figure 6.7: A nested statechart.

6.5 User Interaction

6.5.1 General

Figure 6.7 shows an UML statechart editor implemented with VILPERT. The win-
dow titled VILPERT - Statecharter is the editing view that provides the basic tools
for creating and manipulating the graphical objects (terminals) of the statechart
language (arbitrary shapes cannot be drawn). As explained above, the editor is a
structured drawing tool in the sense that it supports features like persistently con-
necting figures with lines and managing hierarchies of figures. Also, moving and
resizing of figures is animated in real time which provides immediate feedback of
the editing actions.

In the statechart editor shown in Figure 6.7, nested substates can be individually
selected, moved, and resized and the containing state adjusts its shape accordingly.
Moving a superstate moves all its substates. There is no limit on the level of
nesting.

Text figures can be edited in place, which removes the need for clumsy dialogs
for filling in the textual properties of diagram elements. Also, text objects can
be dragged and dropped between states and transitions. A transition has drop
zones (FigurePanels) near both of its end-points and the mid-points of each of its
segments. A region is highlighted when the center point of a text object enters
the region to indicate that the text object can be dropped there. The layout man-
agers within each FigurePanel take care of the automatic alignment of the figures
dropped onto them.

6.5.2 Error Handling

We illustrate the practicality of our error handling technique described in Chap-
ter 5 by using the statechart diagrams of UML as an example. In Figure 6.8, the

6.5. USER INTERACTION 121

lower window titled Statechart Analyzer shows the interface of the language an-
alyzer (combined parser and semantic analyzer). The figure shows the situation,
where the user has a moment ago analyzed the drawing by pressing the Analyze
button. The errors found by the analyzer are listed in the window. The ‘locations’
of the detected errors are shown by a numbering superimposed on the actual screen
shot of the editor window—the ordinal numbers are not part of the drawing.

When the user selects an error message from the list in the analyzer window, the
input objects involved in the error are highlighted in the drawing by a thick frame.
In Figure 6.8, the user has selected the first error from the list. The corresponding
input object, a filled dot representing an intial state, is automatically highlighted
in the editor window. The statechart grammar requires that an initial pseudo state
must have exactly one transition exiting the state and no transitions entering the
state (see production Initial_ in Appendix A).

Pressing the Clear button empties the list and restores highlighted objects in the
editor window to their normal state. The Context button launches a dialog where
the user can set the source for event and action signatures of the statechart. Be-
cause there are errors, the Simulate and Generate buttons are disabled.

The analyzer provides also facilities for debugging the grammar of the visual lan-
guage. The Show parse button activates a parse graph browser. With the browser
the user can inspect the parse paths leading to errors. The browser view shows
one parse state at a time and the user navigates in the parse graph by following the
(bi-directional) links between the parse states that correspond to the succession
and prediction relationships between parse states (see Section 4.3.3 on page 74).
The button is enabled only if errors occur during parsing. If the Write log box is
checked, the parser writes a log file that contains the full parse table of each parse.

For example, Figure 6.9 shows the parse graph browser launched from the third er-
ror shown in Figure 6.8 (missing text symbol in the name compartment of a state).
The browser displays in the center of the dialog the parse state that holds the de-
scriptor for the error. In this case, the error is a missing relation (see Section 5.2).
The @ symbol in the right-hand side of the production shows the position of the
dot. The parse action that created the current parse state is shown under the state.

The parse states are numbered in the order they are inserted into the parse table.
The numbered buttons move the focus of the browser to the parse states that are
adjacent to the current parse state. The states on the left and on the right are in
the succession relationship (black arrowhead) with the current state and the states
above and below are in the prediction relationship (white arrowhead) with the
current state.

Figure 6.10 shows the inactive state 10 (an instance of NameCompartment) that
has been created by the error recovery routine patch from state 9 (see attribute
patching in Section 5.3). Figure 6.11 shows state 8 where the NameCompartment
instance represented by state 10 was predicted.

The parse graph browser and the logging feature are designed to aid the devel-
opment of a visual language rather than to help using its implementation. These

122 CHAPTER 6. THE VILPERT FRAMEWORK

Figure 6.8: Reporting the errors that the parser has found in a statechart.

6.5. USER INTERACTION 123

Figure 6.9: Parse graph browser indicating the error at the parse state correspond-
ing to the third error in Figure 6.8.

Figure 6.10: The inactive parse state produced by the error recovery mechanism
of the parser from state 9 in Figure 6.9.

124 CHAPTER 6. THE VILPERT FRAMEWORK

Figure 6.11: The parse state where state 9 in Figure 6.9 was predicted.

kinds of features would probably just confuse the end user of a visual language.
When browsing large parse graphs, it is easy to get lost. Therefore, the browser
could be extended to show also a map view of the parse graph to aid navigation.

The statechart in Figure 6.8 contains also semantic errors undetected by the parser.
After the parser has successfully checked the syntax, the errors are caught in the
semantic processing phase. That is, the self-check of the StateMachine created by
the StateChartBuilder fails and the analyzer catches the failures reported by the
StateMachine (see Figures 6.5 and 6.6).

The interaction of reporting syntax errors, as described above, is used to report
semantic errors, also. Figure 6.12 shows the semantic errors reported by the an-
alyzer after the syntax errors in Figure 6.8 have been corrected. The highlighted
error message refers to the entry action of state ‘stopping’: the action ‘reset()’ is
not specified in the action signatures of this statechart that are defined in the dialog
launched from the ‘Context’ button.

Finally, as an example of the interpretation of the input diagram, Figure 6.13
shows the textual description of a state machine produced by the analyzer from
the corrected input. The text panel in the lower part of the screen has been scrolled
down to show the first lines of the description of the state labelled Active in the
input.

The default semantic processor used by AbstractAnalyzer (see Figure 6.5) is a
graphical browser that makes it possible to interactively traverse the parse tree
created by the parser. Figure 6.14 shows a correct general tree (grammar Gener-
alTree in Figure 6.3) and the corresponding parse tree browser view.

Creating Error Messages

One requirement of an effective error handling strategy is that the parser can is-
sue informative error messages. In the VILPERT framework, this is achieved by
adding descriptive comment strings to the classes of graphical objects, grammati-
cal objects (terminals and nonterminals), and relations. The strings are part of the

6.5. USER INTERACTION 125

Figure 6.12: Semantic errors detected during the post-parse self-check by the state
machine.

126 CHAPTER 6. THE VILPERT FRAMEWORK

Figure 6.13: A textual representation of the statemachine generated from a correct
input.

6.6. EXPERIENCES WITH VILPERT 127

Figure 6.14: The parse tree browser view for a general tree.

map derived from AbstractObjectToSymbolMap (see Figure 6.5) that maps editor
objects to grammatical objects. Also, the Production class allows a descriptive
string to be attached to each production.

From these strings, the error handling system is able to compose meaningful mes-
sages as shown in Figure 6.8. Of course, being able to directly indicate the input
involved in errors is a powerful way to draw the immediate attention of the user
to the problems in the input.

6.6 Experiences with VILPERT

6.6.1 About the Implementation

The first version of the EARG framework was implemented in Smalltalk [Tuo98b].
The framework was then rewritten in VILPERT that has been implemented in Java
using the Java Development Kit version 1.1.8 and JHotDraw version 5.1.

The Relap package comprises 166 package-level classes and about 13 000 lines
of code. The extended JHotDraw package contains 185 package-level classes and
a total of about 22 000 lines of code. Our extensions to JHotDraw comprise about
45 classes and about 5000 lines of code (included in the previous figure). The
sizes of the implementations of our sample visual languages are listed below.

The implementation has not been optimized for performance. On the development
machine (PIII 350 MHz processor, 64 MB of memory) and with the JIT compiler
by IBM (part of IBM’s JDK 1.1.8 distribution), the real-time editing performance

128 CHAPTER 6. THE VILPERT FRAMEWORK

is usually adequate. However, when moving tens of objects simultaneously, the
update of the display becomes too slow for comfortable editing, especially with
the UML structural diagramming tool (see below). The bottleneck seems to be
the drawing of association lines that have a lot of (invisible) panels for holding
the decorations attached to them (name, roles, arity, etc.). Also, because the 1.1.8
Java graphics supports only the solid line style, the drawing of dashed lines had to
be separately implemented in a suboptimal way.

The VILPERT distribution is available for free3. The author has programmed
himself the Relap package, the JHotDraw extensions, and the sample visual lan-
guages.

6.6.2 Visual Languages Implemented with VILPERT

We have implemented with VILPERT the following visual languages (included in
the VILPERT distribution)

– (a subset of) UML statecharts

– UML static structural diagrams (object diagrams excluded)

– Structured flowcharts

– Binary trees and general trees

We have already described above the statecharter tool. The implementation of the
statechart language does not include forks and joins of transitions, history states,
or synch states [Obj99]. However, there is no technical reason why these features
could not also be implemented.

Figure 6.15 shows the UML static structural diagramming tool in action. The
only features not included in the implementation are the template class construct
and qualified associations. Again, there is no technical reason why these features
could not be implemented. The tool uses the default semantic processor, the parse
tree browser; the tool does not generate any external representation from a static
structural diagram.

Figure 6.16 shows the flowcharter tool (Grammar 7.1 on page 134). The flowchar-
ter tool translates the structured flowchart into a Java program (as Java source
code). The procedure boxes and the branching diamonds can hold several text
objects that the tool concatenates in top-down order. The texts should be Java
expressions, if the generated Java source is to be compiled and run.

Table 6.1 shows statistical figures about the implementations of the languages.
The table lists the number of nonterminals, terminals, productions, expander re-
lations, predicates, and syntactic (expander) attributes in the grammars. The last

3http://www.cs.helsinki.fi/antti-pekka.tuovinen/vilpert

6.6. EXPERIENCES WITH VILPERT 129

Figure 6.15: The tool for creating UML structural diagrams produced with
VILPERT.

130 CHAPTER 6. THE VILPERT FRAMEWORK

Figure 6.16: The flowcharter tool produced with VILPERT.

6.6. EXPERIENCES WITH VILPERT 131

Table 6.1: Implementations of Sample Languages

UML Statechart UML Structural Flowchart Binary tree� � �
10 13 3 2� � �
10 24 8 2� � �
12 18 9 4� � � �

4 7 3 2� � �
0 1 0 0� � �
1 1 2 1

	 LOC 3700 3700 1900 700

row reports the lines of Java code in each implementation. The figure covers all
the code that was spefically written for each language implementation as exten-
sions to the code in the two (sub-) frameworks. However, most of the framework
classes of VILPERT are used by the implementations. This implies a reuse ratio
of at least 8:2 even for the two largest implementations.

Although the UML Structural diagrams is the largest language, it comprises the
same amount of code as the UML Statechart language. This is because the UML
Statechart language has a more elaborate semantic processing phase that includes
generation of a UML compliant semantic model (state machine) from the input
and the generation of a textual representation from the input state machine.

A striking property of the language implementations described in Table 6.1 is the
small size of each grammar specification. For instance, the UML statechart gram-
mar comprises 12 productions only and the size of the grammar specification class
StateChart is about 200 LOC. In addition to this, the classes that translate a draw-
ing as the input to the parser and the parse tree node classes comprise about 400
LOC. The rest of the 3700 lines written by the implementor are divided between
the editor part and the semantic analysis part of the implementation. Table 6.2 lists
the relative sizes of the three main parts of the UML statechart implementation.
Indeed, in our experience, writing the grammar specification of a visual language
is the smallest of the subtasks in implementing the language with VILPERT. So,
the figures in Table 6.2 correspond to the actual development effort.

132 CHAPTER 6. THE VILPERT FRAMEWORK

Table 6.2: Relative Sizes of Main Parts
Editor 32%
Syntax analysis 17%
Semantic analysis and code generation 51%

6.6.3 Further Remarks

The graphics support in Java 1.1 is relatively poor. Porting the JHotDraw frame-
work to Java 1.3 would make it possible to use the powerful features of the Java2D
graphics package.

In the framework, the role of the analyzer object (see Section 6.4.3) could be made
more clear. Also, the generation of the input for the parser from the graphical
objects (the drawing) in the editor is tedious. Better abstractions are needed there.

Chapter 7

Source-to-Source Translation of
Visual Languages

In this chapter we study the problem of translation between visual languages. We
present a solid method for the transformation between diagrams, or more gen-
erally, for the source-to-source translation between two visual languages. The
method is based on a mapping between grammars for the two languages, and on
considering translation as a parse tree transformation process.

The method was originally developed for atomic relational grammars augmented
with disambiguation constraints only. We have not yet adapted the method to
cover the full formalism of extended atomic relational grammars.

We proceed as follows. In Section 7.1, we introduce the language of structured
flowcharts that we use in our examples. In Section 7.2, a syntax-directed tree-
transformation scheme for visual languages is presented. We give a definition
of relational tree transformation grammars that are used as a formal mapping
between the atomic relational grammars for the involved languages, and an algo-
rithm for the transformation between parse trees over the source and target pro-
gram. Our technique is illustrated by an example where structured flowcharts are
translated into corresponding box diagrams (Nassi-Shneiderman charts). Finally,
in Section 7.3, we discuss the issues in extending the method for full extended
atomic relational grammars.

7.1 The Structured Flowchart Language

In the translation examples of this chapter, we use Grammar 7.1 that defines a
language of structured flowcharts. Structured flowcharts have no “go-tos” which
means that every language structure has well defined entry and exit points for di-
rected lines depicting control flow. Figure 7.1 shows the productions in graphical
form, and Figure 7.2 shows a flowchart for computing the absolute value of an
integer.

133

134 CHAPTER 7. SOURCE-TO-SOURCE TRANSLATION

Grammar 7.1� � �
Flowchart � ProcBlock � RestBlock �� � �
start � stop � text � joint � choice � rect � begin � end �� �

Flowchart� 	 � �
connects � yesConnects � inside �
 � �

in � out �� �

Flowchart start ProcBlock stop (1)
connects(start,ProcBlock.in)
connects(ProcBlock.out,stop)
Flowchart.in = start
Flowchart.out = stop

ProcBlock begin RestBlock end (2)
connects(begin,RestBlock.in)
connects(RestBlock.out,end)
ProcBlock.in = begin
ProcBlock.out = end

RestBlock � ProcBlock RestBlock � (3)
connects(ProcBlock.out,RestBlock � .in)
RestBlock � .in = ProcBlock.in
RestBlock � .out = RestBlock � .out

RestBlock ProcBlock (4)
not exists � � �

joint � choice � rect � begin � �
connects(ProcBlock.out,�)

RestBlock.in = ProcBlock.in
RestBlock.out = ProcBlock.out

ProcBlock rect text (5)
inside(text,rect)
ProcBlock.in = rect
ProcBlock.out = rect

ProcBlock � choice text ProcBlock � joint (6)
inside(text,choice)
yesConnects(choice,ProcBlock � .in)
connects(ProcBlock� .out,joint)
connects(choice,joint)
ProcBlock � .in = choice
ProcBlock � .out = joint

ProcBlock � choice text ProcBlock � ProcBlock � joint (7)
inside(text,choice)
yesConnects(choice,ProcBlock � .in)
connects(choice,ProcBlock � .in)
connects(ProcBlock� .out,joint)
connects(ProcBlock� .out,joint)
ProcBlock � .in = choice
ProcBlock � .out = joint

ProcBlock � joint choice text ProcBlock � (8)
inside(text,choice)
yesConnects(choice,ProcBlock � .in)
connects(ProcBlock� .out,joint)

7.2. SYNTAX-DIRECTED SOURCE-TO-SOURCE TRANSLATION 135

connects(joint,choice)
ProcBlock � .in = joint
ProcBlock � .out = choice

ProcBlock � � joint ProcBlock � choice text (9)
inside(text,choice)
yesConnects(choice,joint)
connects(ProcBlock� .out,choice)
connects(joint,ProcBlock� .in)
ProcBlock � .in = joint
ProcBlock � .out = choice

Grammar 7.1 has the relation yesConnects but not the complementary relation
noConnects. Instead, we use the relation connects in its place. This is due to the
fact that the no or false branch out of the choice of the looping constructs (while-
do, do-while) appears in other contexts, i.e. not inside the loops. The noConnects
relation could be used if there were two alternate productions for each context
referring a ProcBlock (or a RestBlock): one with connects and the other with
noConnects on the out expander attribute of the ProcBlock (or the RestBlock)
instance. Remote references introduced in Chapter 4 could then be used to enforce
the restriction that the noConnects relation exists only between a choice and some
other terminal. However, this would increase the size of the grammar and, for the
sake of simplicity, we therefore use Grammar 7.1 instead.

7.2 Syntax-Directed Source-to-Source Translation

In Section 4.3.3 (p. 74), we have shown how a parse tree can be constructed for a
visual program, as specified by an atomic relational grammar for the language. In
this section we formulate a syntax-directed tree transformation method between
two visual languages that are both specified by an atomic relational grammar. The
general core of our method is based on techniques originally developed for tex-
tual programming languages and structured documents, such as those described
in [KPPM84] and [Lin97]. However, while the original idea of syntax-directed
translation has been retained in our work, the special characteristics of visual lan-
guages have made it necessary to significantly revise the original formalisms and
techniques.

7.2.1 Flow of Syntax-Directed Translation

Syntax-directed translation involves two grammars, � � � � for the source language
� and � � � � for the target language � , and a mapping 	 � � � � �
 � � � � � from � � � �
to � � � � . In our case both � � � � and � � � � are atomic relational grammars. The
transformation is made on the level of trees, from the parse tree � � � � for the
source program to the parse tree � � � � for the target program. � � � � captures the

136 CHAPTER 7. SOURCE-TO-SOURCE TRANSLATION

stop

ProcBlock

begin

end

(2) Compound procedure

RestBlock

ProcBlock

(4) End of procedure
 sequence

ProcBlock ProcBlock

text

ProcBlock

ProcBlock ProcBlock

text
no yes

(9) Do-while

text

start

ProcBlock

(1) Flowchart (3) Procedure sequence

RestBlock

no yes

no yes
text

text
no yes

(5) Simple procedure (6) If

(8) While-do(7) If-else

Figure 7.1: The productions of the structured flowchart grammar.

7.2. SYNTAX-DIRECTED SOURCE-TO-SOURCE TRANSLATION 137

read(x)

x<0

x := -x

no yes

print(x)

1

3

2

Figure 7.2: A visual program for computing the absolute value of an integer.

138 CHAPTER 7. SOURCE-TO-SOURCE TRANSLATION

management
Layout

mapping

 ation
Transform-

m(G(S),G(T))

parse tree T(T)

internal representation

target program

T-unparsing

grammar
 G(T)

grammar
 G(S)

source program

parse tree T(S)

internal representation

parse graph

 S-parsing

Figure 7.3: Program translation process.

syntactic structure of the source program in terms of grammar � � � � , and � � � �
captures the syntactic structure of the target program in terms of grammar � � � � .
The actual program layouts, as visually seen by the user, are not directly involved
in the transformation but instead hidden behind parsing and unparsing processes.
The complete flow of the translation from a visual source program into a visual
target program is depicted in Figure 7.3.

The left-hand side in the figure stands for the processing of the source program,
transforming the visual layout of the program into a parse tree which is consistent
with the grammar of the source language. The right-hand side illustrates the pro-
cessing of the target side according to the grammar � � � � of the target language.
The task of this phase is to transform the parse tree into the actual concrete pro-
gram. Since the flow of processing is reverse when compared to the source side,
the syntactic structure of the target program with respect to the grammar � � � �
has already been coded in the parse tree � � � � and no complementary parse graph
is needed.

The source and target processes are integrated by a tree transformation specified
by the grammar mapping � � � � � � � � � � � � . This phase transforms the source parse
tree � � � � , produced by the source parser, into the target parse tree � � � � which
is then given as input to the target unparser. The grammar mapping is the cen-
tral component in our source-to-source translation scheme and will be formally
defined below.

We concentrate on the S-parsing and Transformation phases of the translation (see
Figure 7.3). Most notably, the immediate handling of a program’s visual layout
is not addressed, mainly because it falls beyond formal grammatical modeling

7.2. SYNTAX-DIRECTED SOURCE-TO-SOURCE TRANSLATION 139

and parsing of visual languages. Of course, in practical systems the program
layout is most important. On the source side the layout is typically managed by a
(syntax-directed) visual program editor, such as provided by VILPERT, and on the
target side by a pretty-printer that generates an optimal spatial representation for
a program from its logical description (the parse tree � � � � in our scheme). There
exists a number of applicable algorithms and tools for generating graphical layout
of diagrams; see, e.g., [DBT88] [GKNV93] [PSTS91].

7.2.2 Relational Tree Transformation Grammars

The task of the transformation phase is to convert a parse tree (with respect to
an atomic relational grammar) into another parse tree (with respect to another
relational grammar). Recall from Section 4.3.3, that the parse tree of a visual
program with respect to an atomic relational grammar represents the grammatical
phrase structure imposed on the program. Figure 7.4 shows the parse tree of
the input flowchart in Figure 7.2; the framed numbers in Figure 7.4 refer to the
corresponding parse states in a parse table that is not shown here.

As usual, each level in the parse tree with � as the root node and � � � � � � � � � as its
children corresponds to the syntactic part 	 � � �
 	 � � � � � � � 	 � � � � of a production
in the grammar, where 	 � � � denotes the nonterminal or terminal symbol of the
grammar that labels node � in the tree. Moreover, the leaf nodes of the parse
tree (standing for terminal symbols) are connected by relations that are consistent
with the expander constraints in the grammar and reflect the spatial layout of
the program. Finally, each interior node in the tree (standing for a nonterminal
symbol) is associated with a set of references to leaf nodes in its terminal cover,
standing for the values of the nonterminal’s expander attribute instances.

Several tree transformation techniques have been developed for textual program-
ming languages. Some of the techniques are rather restricted by just providing re-
moval and insertion of terminal symbols or reordering of subtrees. More powerful
methods make it possible to transform the tree quite extensively, for instance by
removing and inserting complete subtrees, by moving subtrees into a completely
new context, or by removing and adding intermediate levels in the tree. Since our
aim is to support transformations between diagrams that may be radically different
in their syntax, the transformational grammar class defined below, relational tree
transformation grammars or RTT-grammars, is rather general. RTT-grammars are
based on the notion of TT-grammars [KPPM84] that were originally introduced
for the specification of syntactic tree transformations over context-free grammars.
RTT-grammars extend TT-grammars in several ways, most notably by including
relational constraints that are irrelevant for textual languages but essential for the
modeling and processing of visual languages.

An RTT-grammar describes a relationship between a parse tree over an atomic
relational grammar � and a parse tree over another atomic relational grammar

� � . In principle the relationship is purely declarative and could be constructively
utilized in both directions, either from trees over � to trees over � � or vice versa,

140 CHAPTER 7. SOURCE-TO-SOURCE TRANSLATION

read(x)

x<0

x := -x

20

66

63
no yes

print(x)

1

3

2

64

747168

5041

P
rocB

lock

P
rocB

lock

F
low

chart

P
rocB

lock

R
estB

lock

R
estB

lock

P
rocB

lock

R
estB

lock

P
rocB

lock

Figure 7.4: The parse tree of the input flowchart in Fig. 7.2

7.2. SYNTAX-DIRECTED SOURCE-TO-SOURCE TRANSLATION 141

thus being suitable for applications where two-way transformations are common.
However, here we just concentrate on one-way transformations by considering
one of the grammars (� �) as the source grammar (standing for the source trees)
and the other grammar (� �) as the target grammar (spanning the target trees).
The relationship is described by associating groups of productions in � � with
groups of productions in � � . In addition, occurrences of nonterminal and terminal
symbols in � � are group-wise associated with those in � � .

Definition 7.1 A relational tree transformation grammar (RTT-grammar) is a 5-
tuple � � � � � � � � � � � � � � � � � � � , where

1. � � is an atomic relational grammar (the source grammar).

2. � � is an atomic relational grammar (the target grammar).

3. � � � is a set of source subgrammars where each subgrammar is a group
of productions in � � . One of the nonterminals on the left-hand side of
productions is designated as the start symbol in each source subgrammar.
Every symbol occurrence in a subgrammar must be derivable from its start
symbol (i.e., each source subgrammar spans a connected region in a source
parse tree). Different occurrences of the same nonterminal symbol in a
subgrammar can be distinguished by specifying each of them separately
with (different) productions of � � (i.e., different occurrences of the same
symbol may span different source subtrees).

4. � � � is a set of target subgrammars where each subgrammar is a group of
productions in � � .

5. � � � is a set of subgrammar mappings. Each mapping is a 4-tuple
� � � � � � � � 	
 � � � � , where

(a) � � is a source subgrammar, � � � � � � .

(b) � � is a target subgrammar, � � � � � � .

(c) � 	

is a set of symbol occurrence associations, each of them map-

ping a grammar symbol occurrence � � in � � with a grammar symbol
occurrence � � in � � . A symbol occurrence in � � may appear at
most once in an association (i.e., the transformation mappings must be
unique).

(d) � � is an optional context guard, that is, a Boolean expression over
expander attribute and terminal symbol occurrences in � � .

The subgrammar mappings specify the transformation from a syntactic parse tree
skeleton over � � into the corresponding tree skeleton over � � . The relational
expander linkage is induced on the target tree in the usual manner by relational
constraints and attribute assignments over the atomic relational grammar � � . No-
tice that the same source or target production can appear in several subgrammars

142 CHAPTER 7. SOURCE-TO-SOURCE TRANSLATION

and mappings, each time with a distinct composition of symbol associations. By
this, the same source tree pattern can be transformed differently in different con-
texts.

Since the spatial structure of the target program is usually quite different from
that of the source program, it is not sensible to directly associate the expander
constraints or attribute assignments in � � with those in � � . However, in many
cases the expander information available in the source tree can be conveniently
utilized as contextual information when selecting the applicable production group
for the transformation. (Recall that the expander attribute instances in a valid
parse tree are completely evaluated and refer to leaf terminal symbols.)

As suggested, e.g., in [Shi84], semantic information (attribute values) embedded
in the source tree can be used to control its mapping into a target tree. In RTT-
grammars semantic transformation conditions are expressed with context guards
that shall yield true in order for the associated subgrammar mapping to be ap-
plicable. Another way of expressing contextual conditions is to include several
productions in a source subgrammar, which in that case spans a more extensive
region over the source tree than just a single one-production level. Examples of
contextual conditions are given in the transformation grammar of Section 7.2.3.

The target subgrammar in a mapping may introduce new symbols that are not as-
sociated with any symbol in the source subgrammar. This makes it possible to
generate additional subtrees and levels to the target tree. However, such extrane-
ous parts must be connected regions so as to preserve the validity requirements on
parse trees. Therefore each non-associated symbol occurrence in the target sub-
grammar must derive a unique sentence (tree cover) whose symbols (leaf nodes)
are either terminals or source-associated nonterminal occurrences. The unique-
ness requirement implies that no alternative or recursive productions can be given
for the new target nonterminals.

The transformation from source parse trees to target parse trees is defined by the
following algorithm, adapted and extended from [Lin97].

Algorithm 7.1 (TREE TRANSFORMATION VIA AN RTT-GRAMMAR)
Input. An RTT-grammar � � � � � � � � � � � � � � � � � � � , and a parse tree 	 � with
respect to the source grammar � � .
Output. A parse tree 	 � with respect to the target grammar � � .

1. Apply step 2 to all nonterminal nodes in 	 � , in an arbitrary order. When
done, go to step 3.

2. Let the step be applied to node
 labeled with nonterminal symbol � of � � .

(a) Choose a subgrammar mapping � � � � � � � � � � � � � in � � � such
that the source subgrammar � � has � as its start symbol, the tree
structure spanned by � � matches the subtree in 	 � with
 as root, and
the context guard � (if any) generates to true. If there is no such
mapping, return to step 1 (in which case the whole subtree at
 will be
discarded in the transformation).

7.2. SYNTAX-DIRECTED SOURCE-TO-SOURCE TRANSLATION 143

(b) For every production � � � � � � � � � in the target subgrammar � � ,
construct a separate target subtree with the root node labeled by �
and its children labeled by � � � � � � � � � .

(c) For every symbol occurrence association 	
 � � �
 � � in � � � , asso-
ciate the corresponding nodes in the parse trees. That is, introduce an
association between the instance of the occurrence
 � � in the source
tree � � and the instance of the occurrence
 � � in the target subtree
for a production � � � � � � � � � (where
 � � is one of the symbols

� � � � � � � � � � �).

(d) For each leaf node � in a target subtree that is not associated with any
source tree node, induce the target-specific syntactical cover. That is:
Let the label of � be � � . Generate the unique parse tree with � � as
root by applying the productions in � � , and replace � with the root of
the obtained tree. (As stated above, the leafs of the embedded subtree
must be either final terminals or source-associated nonterminals to be
expanded further.)

3. Apply step 4 to all root nodes of separate target subtrees created in step 2.
When no more subtrees can be merged, go to step 5.

4. Let the step be applied to the root node � of a target subtree. Let � have
the label � and a symbol association to node � in the source parse tree
� � . Find a leaf node � in another target subtree with the label � and an
association to the same source node � . Merge the target subtrees at node � ,
i.e., replace the leaf node � with the root node � (and, consequently, with
the whole subtree for �).

5. If the result is a connected tree and all its leaves are terminals, complete
it into the target parse tree � � with respect to grammar � � (a) by asso-
ciating the interior nodes in the tree with terminal references, obtained by
evaluating the attribute instances according to the assignments in � � ; and
(b) by inducing the set of expander constraints in � � as relations over the
terminal leaf nodes. Otherwise, the transformation fails.

Notice that our tree transformation algorithm may fail, in which case the source
program cannot be translated into a corresponding target program. This happens if
some source subtree is not matched by any grammar mapping, or if the symbol as-
sociations are incomplete in the sense that they leave unmerged subtrees hanging
on the target side. It would be possible to rule out transformation failures com-
pletely by imposing more restrictions on the formal definition of relational tree
transformation grammars, but then they would become less powerful and proba-
bly too inflexible for practical applications.

Also the final layout of the target program may fail, in case the relational con-
straints to be solved are in conflict (for instance, requiring that symbol � is spa-
tially both above and below of symbol �). The grammatical formalism cannot
exclude such conflicts without stating severe conditions on the form of constraints

144 CHAPTER 7. SOURCE-TO-SOURCE TRANSLATION

used, and therefore the checking of their satisfiability is postponed to the layout
manager.

7.2.3 Example – From Flowcharts to Box Diagrams

Let us return to the language of structured flowcharts defined in Section 7.1. A
flowchart visualizes the algorithmic aspects of a program by describing the flow
of control within it in terms of conditional statements (if, if-else), iterative state-
ments (while-do, do-while), and compound procedures (statement / procedure se-
quences). Flow of control can be described by a number of other alternative rep-
resentations as well, one of the classical ones being structured box diagrams (also
known as Nassi-Shneiderman charts).

While structured flowcharts syntactically consist of procedure blocks connected
by control-flow arrows, the principle in box diagrams is to describe an algorithm
as a stack of nested statement boxes with control flowing sequentially from top
to bottom. Therefore a flowchart and a box diagram for the same algorithm look
quite different, making a translation between them a non-trivial task.

Let us specify the translation from flowcharts to box diagrams as a relational tree
transformation grammar. The source part of the translation has been given in
Grammar 7.1. The target grammar is implicitly embedded in the RTT-grammar
developed below. The expressions of the form

source symbol occurrence.target symbol occurrence

denote the symbol associations in the target subgrammars. The expander con-
straints and attribute assignments are given in the target subgrammars in terms
of the target symbol occurrences. Since the constraints and assignments of the
source grammar are not used in the transformation, they are not repeated in the
specification. The left-hand side of the first production in a source subgrammar
denotes its start symbol.

The first subgrammar mapping applies to the root of a source tree and states that
whenever we find a source subtree that matches the pattern specified by the source
subgrammar, we shall construct the corresponding subtree(s) as specified by the
target subgrammar.

Mapping 1
Source subgrammar:

Flowchart � start ProcBlock stop (1)
ProcBlock � begin RestBlock end (2)

Target subgrammar:
Flowchart.BlockDiagram � RestBlock.Block

BlockDiagram.top = Block.top

7.2. SYNTAX-DIRECTED SOURCE-TO-SOURCE TRANSLATION 145

Flowchart

ProcBlock

RestBlock

BlockDiagram

Block

Figure 7.5: Top-level transformation.

According to this mapping, the (root) node of the target tree with label BlockDi-
agram is associated with the root node Flowchart in the source tree. The target
root has one child, with label Block, associated with the nearest RestBlock descen-
dant of the source root, as shown in Figure 7.5 (the matched source tree region
is enclosed within a dashed rectangle, and symbol associations are denoted by
curved dual arrows). Notice the flexibility of transformation provided by having
two source productions in the mapping: the ProcBlock level in the source sub-
tree can be completely discarded in the target subtree. Note also that the terminal
flowchart symbols (start, stop, begin, end) are thrown out, since they do not appear
in box diagrams.

The following mapping specifies how the transformation continues at the next
level in the source tree.

Mapping 2
Source subgrammar:

RestBlock � � ProcBlock RestBlock � (3)

Target subgrammar:
RestBlock � .Block � � ProcBlock.Stat RestBlock � .Block �

onTop(Stat.frame,Block � .top)
equalWidth(Stat.frame,Block � .top)
Block � .top = Stat.frame
Block � .bottom = Block � .bottom

This subgrammar mapping specifies how structured blocks in box diagrams log-
ically match the recursive pattern of procedure sequences in flowcharts. The
expander relation onTop in the target grammar states that successive statement
blocks are placed in a stack, with the first statement on top. The predicate equal-
Width serves as an instruction for the layout manager to draw the statement blocks
(boxes) equally wide in the target diagram.

The following mapping closes the recursion and specifies how the last statement
in a procedure sequence shall be moved into a box diagram. Notice a similar
disambiguation constraint as used in production (4) of Grammar 7.1.

146 CHAPTER 7. SOURCE-TO-SOURCE TRANSLATION

ProcBlock

read(X) read(X)

Stat

Figure 7.6: Bottom-level transformation.

Mapping 3
Source subgrammar:

RestBlock � ProcBlock (4)

Target subgrammar:
RestBlock.Block � ProcBlock.Stat

not exists � � � rect � : onTop(Stat.frame, �)
Block.top = Stat.frame
Block.bottom = Stat.frame

The next subgrammar mapping transforms a single procedure of a flowchart into
a statement block in a box diagram:

Mapping 4
Source subgrammar:

ProcBlock � rect text (5)

Target subgrammar:
ProcBlock.Stat � rect text.text

inside(text,rect)
Stat.frame = rect

The visual shape of a single procedure in a flowchart and a single block in a
box diagram is the same, a rectangle containing algorithmic text. The text is
the same in both diagrams, as specified by the symbol association text.text: in
an RTT-grammar the association between terminal symbols implicitly also copies
the contents of the source terminal to the target terminal. Notice that we must not
copy the source rectangle in the same way, since the rectangles enclosing the text
may be of different size in the diagrams. The mapping results in the tree match
illustrated in Figure 7.6.

The RTT-grammar mappings given so far specify how the upper region of a parse
tree for a flowchart shall be piece-wise transformed into that for the correspond-
ing box diagram. Figure 7.7 shows how these mappings are merged by our tree
transformation algorithm into a connected target tree pattern. The source program

7.2. SYNTAX-DIRECTED SOURCE-TO-SOURCE TRANSLATION 147

BlockDiagram

Block

Stat

read(X)

Block

Flowchart

ProcBlock

RestBlock

ProcBlock RestBlock

read(X)

Figure 7.7: Merged transformation.

underlying the transformation has been shown in Figure 7.2 with its complete
parse tree in Figure 7.4.

The next mapping specifies the transformation of an if-statement in a flowchart.
In case the operational part embedded in the yes-branch is a single procedure,
there will be a single statement block for it in the box diagram, whereas a com-
pound procedure (a sequence of procedures) will be transformed into a stack of
successive blocks.

This principle calls for the use of context information in the RTT-grammar. In this
mapping the selective transformation is stated as a context guard that yields true if
the operational part is a single procedure, that is, something else than a compound
procedure.

Mapping 5
Source subgrammar:

ProcBlock � � choice text ProcBlock � joint (6)

Context guard:
ProcBlock � .in �� begin

Target subgrammar:
ProcBlock � .Stat � � rect Condition Empty ProcBlock � .Stat �

inside(Condition.frame,rect)
inside(Empty.frame,rect)
inside(Stat � .frame,rect)
onTop(Condition.frame,Empty.frame)
onTop(Condition.frame,Stat � .frame)

148 CHAPTER 7. SOURCE-TO-SOURCE TRANSLATION

ProcBlock

x<0 ProcBlock Condition Stat

Stat

Empty

x<0

Figure 7.8: Transformation of simple if-statements.

toTheLeft(Empty.frame,Stat � .frame)
equalWidth(Empty.frame,Stat � .frame)
Stat � .frame = rect

Condition � choiceRect text.text
inside(text,choiceRect)
Condition.frame = choiceRect

Empty � rect
Empty.frame = rect

This mapping also demonstrates the introduction of new nonterminals Condition
and Empty and a new terminal choiceRect in the target grammar. Figure 7.8 shows
how the nonterminals generate additional complete subtrees, and how a source
symbol (text) can be moved into a deeper level in the target tree by association.
The context information applied in the guard is depicted as a dashed arrow from
the associated source nonterminal, in a way extending the matched region in the
source tree.

The RTT-grammar mapping 5 above is significantly more complex than the pre-
vious ones, because the structure of an if-statement in a box diagram is quite
different from the structure of the corresponding statement in a flowchart. On the
other hand, this mapping also demonstrates the transformational power of RTT-
grammars. In essence, the specification induces diagram transformations illus-
trated in Figure 7.9.

The transformation of if-else-statements follows the same principles as the trans-
formation of if-statements, except that the box for the no-branch is this time not
empty but consists of a single block or a stack of blocks. For brevity, the RTT-
mappings are omitted.

In box diagrams, while-do-statements are represented as shown in Figure 7.10
where cond stands for the condition and stat for the statement(s) to be iteratively
executed. As an example of the translation of while-do-statements, the grammar

7.2. SYNTAX-DIRECTED SOURCE-TO-SOURCE TRANSLATION 149

s

e
yesno

no yes
e

s

Figure 7.9: From simple if-flowchart to simple if-box.

mapping 6 below specifies the case when iteration entails a simple procedure in
the source flowchart. The compound case is specified accordingly, but the details
are omitted here.

Mapping 6
Source subgrammar:

ProcBlock � � joint choice text ProcBlock � (8)

Context guard:
ProcBlock � .in �� begin

Target subgrammar:
ProcBlock � .Stat � � rect text.text ProcBlock � .Stat �

inside(text,rect)
lowerRight(Stat � .frame,rect)
above(text,Stat � .frame)
Stat � .frame = rect

Do-while-statements (repeat-until) in box diagrams are similar to while-do-state-
ments, except that the spatial position of the condition and the iterative statement
is swapped. The grammatical specification of do-while-transformations follows
the principle of while-do-transformations specified in RTT-mapping 6 and is there-
fore omitted.

Finally, the translation of compound procedures and the special case of a flowchart
with a single procedure block must be specified. These translations are specified
according to the principles in grammar mappings 1–6 and are therefore omitted.

When applying this RTT-grammar and the tree transformation algorithm to the
transformation of the parse tree given in Figure 7.4, the target tree in Figure 7.11
is obtained. The leaf boxes in the tree are connected by arrows reflecting the
relations specified in the target grammar of the transformation, with those with
filled head standing for onTop, those with open head standing for equalWidth, and

150 CHAPTER 7. SOURCE-TO-SOURCE TRANSLATION

cond

stat

Figure 7.10: While-do in box diagrams.

print(x)

BlockDiagram

Block

Stat Block

x:= -xread(x)

Empty Stat

Stat Block

Stat

x<0

Condition

yesno

Figure 7.11: Target parse tree for a box diagram.

7.3. INTEGRATION TO VILPERT 151

print(x)

x<0

read(x)

x:= -x

no yes

Figure 7.12: Target box diagram.

that with hollow head standing for toTheLeft. The relation inside over leaf nodes
is depicted by spatial enclosure.

This parse tree can then be coded into an internal representation that stores the
terminal symbols and their relations (including the logical containment informa-
tion implicit in the tree). Finally a layout manager processes the internal repre-
sentation, interprets the spatial relations, and produces the target program. The
resulting box diagram, corresponding to the source flowchart in Figure 7.2, might
look as that shown in Figure 7.12.

7.3 Integration to VILPERT

This work was originally done for atomic relational grammars and published in
[PT98]. We have not implemented the method yet.

The transformation method described above needs small extensions to cover also
the new features of extended atomic relational grammars: iterative and optional
right-hand side symbols, predicates, and ordering expressions (disambiguation
constraints were already used in the original method). However, fundamental
changes to the method are not necessary in order to support the syntax-directed
translation of visual languages specified by EARG grammars.

VILPERT provides good facilities for the integration of a translation tool based on
our method into the framework. The translator can be handled simply as a se-
mantic processor; the parser produces an explicit parse tree for the translation and
the input relations can be easily made accessible to the translator. Furthermore,
VILPERT maintains a mapping between the terminal symbols (input objects) pro-
cessed by the parser and the graphical objects in the editor. This makes it possible
to access the graphical attributes (location, size, etc.) of the original input objects
when creating a layout for a translated diagram that consists of generated objects.
Of course, implementing the translation algorithm is still a non-trivial task.

152 CHAPTER 7. SOURCE-TO-SOURCE TRANSLATION

Chapter 8

Related Work

In this chapter, we present the work closely related to ours and point out the dif-
ferences to our work. We start in Section 8.1 by describing several representative
approaches to the specification and implementation of diagrammatic visual lan-
guages; we look at grammar-based, object-oriented, and other approaches. Next,
in Section 8.2 we discuss error handling in visual language parsing. Finally, we
discuss source-to-source translation in Section 8.3.

8.1 Specification and Implementation of Visual Lan-
guages

In the literature, several different approaches have been presented to visual lan-
guage specification and recognition (parsing). See [MMW98] for an extensive
survey. In the following, we look at systems that cover the specification as well as
the implementation of visual languages. Most of the following systems employ a
grammatical model for specifying the syntax and (in some cases) the semantics of
a visual language. The grammatical models have associated parsing algorithms for
analyzing visual programs. There are also approaches that rely on object-oriented
frameworks for constructing implementations of visual languages and approaches
where a visual programming environment is created automatically from a meta-
model specified by the user.

8.1.1 Grammar-based Approaches

VLCC

Costagliola & al. describe in [CTOL95] Visual Language Compiler-Compiler
(VLCC) that is a graphical system for the automatic generation of visual program-
ming environments. VLCC assists a designer to implement a visual language by

153

154 CHAPTER 8. RELATED WORK

providing support for the specification of the syntax, the semantics, and the graph-
ical objects of the language.

VLCC uses positional grammars (PG) [CLOT98] to automatically generate visual
programming environments. Languages specified by positional grammars belong
to the same class in the CCMG hierarchy of visual languages [MM98a] as atomic
relational grammars. This means that the two grammar formalisms have roughly
the same expressive power.

Positional grammars are an extension of context-free grammars [AU71]. Thus,
most results from LR parsing can be extended to PGs. The VLCC system deals
with textual languages as special visual languages so that languages mixing tex-
tual and graphical elements can be specified.

Like conventional grammars for string languages, PGs have nonterminals, termi-
nals, a start symbol, and a set of productions. In addition to these, PGs also have
a set of relation symbols that denote binary relations between grammars symbols.
Each symbol has syntactic attributes that are used by relational expressions in
grammar productions to specify how (nonterminal) symbols are composed.

The productions of PGs have the form

� � � � � � � � � � � � � 	 � � �
 �

where each � � is a compound relation that can refer to more than one binary
relation between the next right-hand-symbol � � � and some previous symbol in
� � � � � � � . The attribute inference rule � defines how the syntactic attributes of �
depend on the attributes of � � where � � � � � .

The parsing algorithm for PGs is an extension of the LR parsing method for string
languages. The main difference to string language parsing is that the relations
between symbols are used to decide which input symbol should be scanned next.
The complexity of parsing is the same as for conventional LR parsing if the lookup
(called spatial query) for the next token to scan is quick.

Figure 8.1 shows the structure of the VLCC system. The system has a graphical
editor for specifying the grammars visually. The parameterized grammar editor
(PGE) allows the user to create the productions of the grammar and all the produc-
tion elements: terminal and nonterminal symbols, (graphical) relations between
the symbols, and syntactic attribute inference rules. It is also possible to associate
semantic attributes with grammar symbols and give semantic actions for evaluat-
ing the semantic attributes. The attribute inference rules and the semantic actions
are given in the C language since VLCC employs YACC [ASU86] to produce the
final compiler. It is possible to store symbols, relations, and attribute inference
rules in libraries. The PGE can be configured to support different classes of visual
languages.

PGE translates the visual grammar into YACC input format and includes the nec-
essary information for producing the editor for the language. The visual program-
ming environment generator (VPEG) uses the input from PGE to generate the C

8.1. SPECIFICATION AND IMPLEMENTATION 155

Library for
class A

Library for
class F

Parametrized
Grammar

Editor
(PGE)

Visual-Programming-
Environment Generator

(VPEG)

VLCC

Visual programming
environment A1

Visual programming
environment A2

Figure 8.1: The VLCC system (from � CTOL95 �).

compiler program and to customize a predefined editor template with the symbols
and relations specified by PGE. With the editor generated by VPEG, the user can
enter a visual program and execute it according to the semantics specified in the
YACC grammar.

The visual languages supported by VLCC are limited to context-free iconic lan-
guages and context-free plex-like languages where the nodes of a (graph-like) di-
agram have a fixed number of connecting points for attaching connectors between
nodes. In [CLOT97a] the authors discuss the possibility to incorporate special
syntactic models for different classes of visual languages (iconic, plex, box-and-
graph) into the VLCC system. In [CDLO94] the authors discuss extensions to the
PG model in order to give better support for flow-graph languages.

Penguins

The Penguins system by Chok and Marriott [CM98] [CM95] supports the devel-
opment of intelligent diagram editors. The intelligent diagram is a metaphor for
diagramming where the underlying graphical editor parses the diagram as it is be-
ing constructed, peforming error correction and collecting geometric constraints
about the relationships between diagram components. A constraint solver uses the
geometric constraints to maintain the diagram’s semantics during diagram manip-
ulation.

156 CHAPTER 8. RELATED WORK

Penguins automates the construction of graphical editors that support the intel-
ligent diagram concept. The system follows the compiler–compiler approach to
the generation of the diagramming editor. The generated editor supports the cre-
ation, manipulation, and interpretation of diagrams in the particular visual lan-
guage whose high-level specification is provided (by the programmer) in a speci-
fication language based on constraint multiset grammars (CMG).

CMGs [Mar94] are a high-level declarative language. They belong to attributed
multiset grammars and use constraints to specify topological, geometric, and se-
mantic relations between subdiagrams or tokens in a diagram. This means that
there is no explicit representation of spatial relations. The expressive power of
CMGs is reflected in the fact the CCMG language hierarchy [MM98a] is based
on a restricted class of full CMGs.

For example, the following CMG production is from a grammar for finite state
automata:

TR:transition ::= A:arrow, T:text
where exists R:state, S:state where
T.midpoint close_to A.midpoint,
R.radius = distance(A.startpoint, R.midpoint),
S.radius = distance(A.endpoint, S.midpoint)
and TR.from=R.name, TR.to=S.name, TR.label=T.string.

The production defines a transition to consist of an arrow object and a text object
that is near to the midpoint of the arrow. Furthermore, the startpoint and endpoint
of the arrow are constrained to reside on the perimeter of a state object. In the pro-
duction above, midpoint, startpoint, endpoint, and radius are geometric attributes
whereas from, name, string and label are semantic attributes.

The recognition algorithm for full CMGs has exponential complexity. How-
ever, cycle-free, stratified, and deterministic CMGs [CM95] have polynomial time
complexity. These restricted CMGs seem to be more expressive than atomic rela-
tional grammars because they can epress context sensitive constraints in grammar
productions.

Figure 8.2 shows the overall structure of the Penguins system. In Penguins, the
parser generator VisualGen generates from a CMG specification an incremental
diagram parser (spatial parser) which is incorporated into the standard diagram-
ming environment VisualEdit. The diagramming editor provides standard graphic
primitives (lines, circles, text, arrows). In order to provide support for free-hand
drawing with a pen (as an alternative input method), the system provides also
a tokenizer that can map input gestures to the graphic primitives. A constraint
solver is used by the editor to provide the constraint solving mechanism needed in
geometric error correction and diagram manipulation (error handling will be dis-
cussed in more detail in Section 8.2). It is also possible to extend certain modules
to cater for application specific computation.

8.1. SPECIFICATION AND IMPLEMENTATION 157

VisualGen

Constraint
Solver

Incremental
Spatial
Parser

Graphic
Editor

Tokenizer

Application
Specific
Routines

VisualEdit

Diagram Editor

Constraint

Multiset

Grammar

Input

Compile into

Generates

Figure 8.2: An overview of the Penguins system (from � CM98 �).

158 CHAPTER 8. RELATED WORK

Spatial Relations Graph (SRG)

Physical Layout

Abstract Syntax Graph (ASG)

represents

constraint
solving

graphical
scanning

represented by

graphics editing
Low level

Representation
oriented editing

Activity supported:

Layout editing

Interpretation

Syntax directed editing

Figure 8.3: The three level representation of visual programs (from � RS96 �).

In addition to error correction, constraints can be used also to help the layout of
visual programs. Constraint based diagram beautification in Penguins is discussed
in [CMP99].

Graph Grammar Approaches

PROGRES

Rekers and Schürr present in [RS96] the infrastructure for a graph-based visual
environment generator. The central concept of their design is a three level repre-
sentation of visual programs (diagrams) shown in Figure 8.3.

The lowest level of the model is the graphical representation of a diagram con-
sisting of graphic primitives (lines, circles, characters etc.) with properties like
size and location. Graphical scanning produces a spatial relations graph (SRG)
that describes the structure of the diagram in terms of higher level spatial relation-
ships that hold between primitive objects (touches, contains, is-a-label-of etc.).
The third level provides the most abstract representation that describes the visual
program in terms of the concepts of the language. That is, the edges and nodes of
the abstract syntax graph (ASG) gives a graph presentation of the meaning of the
visual program.

The authors suggest to use graph grammars for describing the structure of visual

8.1. SPECIFICATION AND IMPLEMENTATION 159

The axiom production

λ ::= Entity

Entity ::= Entity Relationship Entity

Introduction of an entity so that the diagram remains connected

Relationship ::= Relationship Entity

N-ary relationships

Introduction of a relationship between two already existing entities

relates relates

relates

Entity Entity ::= Entity Relationship Entity
relates relates

2)

4)

3)

1)

Figure 8.4: A part of the graph grammar for the ASG of E-R diagrams (from
� RS97 �).

sentences and for describing all kinds of operations (graph transformations) on
the sentences. In [BS99] Blostein and Schürr discuss in more detail the issues
involved in (visual) programming with graph transformations. The strong point of
graph grammars is that they can have context-sensitive grammar productions. In
unrestricted context-sensitive productions the left hand side is a subgraph instead
of just a single nonterminal. When the production is applied, the left hand side
graph is replaced with the graph on the right hand side. In order to support syntax-
directed graph transformations, also deletions can be modelled with productions
where the right hand side contains less graph elements than the left hand side.
Figure 8.4 shows a graph grammar fragment of the ASG for Entity-Relationship
(ER) diagrams.

The complexity of graph parsing arises from the context-sensitivity of productions
and the need to perform graph matching. Another technical issue is the embedding
of the right hand side production elements into the context (surrounding graph) of
its application. In [RS97] the authors discuss the class of layered graph grammars
that allow for context sensitive productions but restrict the right hand side of a pro-
duction to be lexicographically smaller than the left hand side. The lexicographic
order of graphs is based on the decomposition of node and edge labels into a set of
layers. Further, the right hand side graphs must be connected and they must add
new graph elements when applied. The authors also present a parsing algorithm
for this class of graph grammars. The authors claim that layered graph grammars
are expressive enough and that the related parsing algorithm is efficient enough to
be practical.

160 CHAPTER 8. RELATED WORK

The PROGRES tool [SWZ95] employs the graph grammar approach described
above to deliver a graph grammar engineering environment. PROGRES is a vi-
sual language and a tool where users can edit and execute graph grammar pro-
ductions. The idea of the PROGRES language is to support the design of graph
structures and the implementation of graph manipulation tools. The PROGRES
tool provides a standard editor environment. It is not clear, whether the editor can
be customized to support application specific graphics.

DiaGen

Various versions of the DiaGen system for generating editors for diagramming
tools are decribed by Minas and Viehataedt in [MV95], by Minas in [Min97],
and by Hoffmann and Minas in [HM00]. In their approach, diagrams are inter-
nally represented by hypergraphs. A visual language, which they call a diagram
class, is specified by a hypergraph language and a mapping from hypergraphs to
their visual representation as diagrams. The hypergraph language is specified by
a context-free hypergraph grammar. Special hypergraph transformations can be
specified to cater for context-sensitive properties of diagrams.

The nodes and edges of hypergraphs have attributes and the productions of a hy-
pergraph grammar are adorned with constraints on the attributes. The constraints
direct the layout of a diagram derived by applying the production. A constraint
solver is employed to provide automatic layout of diagrams where the user can
adjust layout.

A diagramming tool derived with DiaGen maintains the hypergraph presentation
of a diagram during editing. The specification of the diagram language can be
augmented with transformation rules which make it possible to provide syntax-
directed manipulation of diagrams. The transformation specifications define edit-
ing actions that transform a diagram from one valid state to another.

In the version of DiaGen described in [MV95], the use of graph transformations
was the only way to provide support for non-syntax-directed editing actions. As
noted in [Min97] the transformation rules could make up 90% of the grammar
specification and the rules could still miss some frequently used transformations.
As a solution to this problem, the version of the system described in [Min97]
has been extended to support free-order drawing tool behavior by a employing a
hypergraph parser that can distinguish between correct and incorrect parts of dia-
grams. Now, specifications of complex diagram transformations can be omitted.
Some basic transformations can still be included for convenience.

Figure 8.5 shows the productions of a hypergraph grammar for Nassi-Schneider-
man diagrams. Each edge of a hypergraph has a type (label) and a number of
connection points that determine how many nodes the edges visit. The nodes
stand for points (in the plane) and the hyperedges represent diagram elements.
The nodes that a hyperedge visit determine the position of the diagram element
represented by the hyperedge.

8.1. SPECIFICATION AND IMPLEMENTATION 161

::=

a c

Stmt

::= cond

a c

NSD

b

a c

d

Stmt

a c

db

a c

db

Stmt

b

NSD

NSD

d

a c

while

b

NSD

d

NSD

until

d

a

NSD

db

text

a

b

c

d

c

b

Figure 8.5: A hypergraph grammar for Nassi-Schneiderman diagrams (from
� Min97 �).

162 CHAPTER 8. RELATED WORK

Visualization

Modifications &
Transformations

Animation

Parser

Detection of (in)correct
(sub)diagrams

Layout
Algorithm

Syntactic
Information

Intercation Control

Hypergraph
Groups

Selection

Diagram Blocks

User

Figure 8.6: The DiaGen system (from � Min97 �).

In Figure 8.5 nonterminal hyperedges are depicted as ovals and terminal hyper-
edges as gray polygons. The nodes are labelled to show how the hypergraph on
the right hand side of a production is embedded into the graph on the left hand
side. The productions are context-free since the left hand side of every produc-
tion consists of a single nonterminal and the right hand sides does not contain any
other nodes except those already present in the left hand side graph and the nodes
added by the production.

With the hypergraph grammar of a diagram class (a visual language), the hyper-
graph parser employed by DiaGen constructs a representation of the syntax of the
language. Using this information, the parser searches from an input diagram for
maximal subgraphs that are syntactically correct and creates syntax trees for the
subgraphs. The parser can work also incrementally by building the syntax trees
while the user is editing the input diagram. Figure 8.6 shows the overall view of
DiaGen.

The implementation of a diagram type (a visual language) and the corresponding
editor in DiaGen requires four different specifications [Dia00]:

1. the visual appearance of the diagram, i.e. the visible diagram components
and the spatial relations between them that are important,

8.1. SPECIFICATION AND IMPLEMENTATION 163

2. the logical diagram structure, which is described by hypergraph transforma-
tion rules and a hypergraph grammar,

3. constraints on the diagram layout that help to maintain this structure, and

4. syntax-directed editing operations (similar to macros) that provide a way to
implement frequently needed complex manipulations of the diagram.

The hypergraph parser used in DiaGen is based on the CYK algorithm [You67] for
parsing context-free string grammars. The complexity of the hypergraph parser is
not given, but some concrete time figures are given for parsing context-free input
(the complexity of the CYK algorithm is � � � � �). In [Min97] Minas describes
an extension to the hypergraph grammar model that allows for restricted use of
context-sensitive elements in the right hand sides of productions. This makes it
possible to model general graph structures. The impact of this extension to the
parsing algorithm is not reported.

In [HM00] Hoffman and Minas discuss recent extensions to the DiaGen approach
by elaborating on the relationship of the visual representation of diagram syntax
and semantics. Following the three-layer approach described above in the case
of PROGRES, they separate between an explicit description of the graphical syn-
tax of a diagram and the abstract syntax in terms of semantic constructs of the
language.

In the model, scanning creates a spatial relationship graph that captures the lexical
structure of diagrams. As before, the edges of the SRG represent diagram com-
ponents and the nodes represent the attachment areas that provide the connections
between components. However, connected attachment areas are now represented
by spatial relationship edges that can denote any (semantically) important spa-
tial relation. Previously, there was no explicit notion of spatial relationships like
inclusion or touching.

The scanning process also entails a reduction phase where subgraphs representing
graphical relationships are reduced to more simple terminal edges that denote a
syntactic relationship between diagram components. Then, the hypergraph parser
processes the reduced graph (called a hypergraph model, HGM) and produces an
abstract syntax graph (ASG) that gives an even higher level representation of the
diagram.

The authors claim that context-free and restricted context-sensitive hypergraph
grammars are suitable for modeling any kind of diagrammatic visual language.
The examples they provide include strucuted flowcharts, Nassi-Schneiderman di-
agrams, Petri-nets, message sequence charts etc.

Comparison with VILPERT

It is difficult to draw definitive conclusions about the relative expressive power
of different grammatical models. However, the notion of iterative and optional

164 CHAPTER 8. RELATED WORK

right-hand side elements that we have introduced to atomic relational grammars
are significant extensions to the original ARG formalism [Wit96]. These features
make it possible to write concise grammars that reflect naturally the graphical
structure of diagramming languages. Of course, the context-free nature of EARGs
limit what kind of rules can be expressed in the syntactic specification of the lan-
guage. However, the remote references that we have introduced make it possible
to express constraints on the immediate lexical context of nonterminal instances.

The problem with graph grammar -based approaches is that all the syntactic con-
structs of a visual language must be expressed in terms of graphs and graph trans-
formations. That is, all syntactic relations between the symbols of a language must
be reduced to edges between the symbols. This can lead to unnatural represen-
tations for non-graph like properties of visual languages. We feel that relational
grammars provide a more flexible and more general grammatical model for spec-
ifying the syntax of visual languages.

The central goal of our work was to make the implementations of visual lan-
guages open for modifications, extensions, and reuse. Therefore, we chose the
object-oriented framework-based approach for VILPERT. The other approaches
described above do not provide this kind of openness. Also, our work demon-
strates that with careful design, it is possible to retain the benefits of the meta-
compiler approach; that is, automatic checking of grammar specifications and the
automatic generation of parsers.

The main novel contribution of our work is the handling of syntax errors that
makes the edit-compile style of user interaction feasible. We will discuss this in
more depth below in Section 8.2.

8.1.2 Object-Oriented Language Engineering

Visual Languages

There exists a few object-oriented frameworks for the implementation of graphical
editors [Jin90, VL90, Bra95]. See Section 6.2 for an overview of the HotDraw
frameworks.

In these frameworks, the syntax and semantics of a visual language are defined
operationally. That is, the graphical objects that are manipulated by the editor
have also semantic attributes and operations. The semantic attributes are used
to store user data that define part of the the meaning of a drawing. Typically,
the frameworks employ some form of constraints over graphical and semantic
attributes of objects for specifying either layout rules or rules about the values of
the semantic attributes. In many cases, complex rules must be coded by hand as
checks that are executed whenever a drawing is modified. So, the editors derived
from such frameworks are syntax-directed in the sense that a drawing must always
obey the rules of the language.

The Vampire system by McIntyre [McI95] employs a framework for developing
visual programming languages based on transformation rules on iconic graphical

8.1. SPECIFICATION AND IMPLEMENTATION 165

objects. Again, there is no notion of grammar which is noted as a deficiency by
the author.

Our work extends the general JHotDraw editor framework with a rigorous spec-
ification technique for the syntax of visual languages based on extended atomic
relational grammars. This means that most of the rules of the language can be
expressed with declarative and concise expressions as a grammar instead of hand-
coded methods that are part of the implementation of the editor. The grammar-
based approach also enforces the practice of separating the graphical objects (the
drawing) from the semantic objects (the meaning). Furthermore, the generic tech-
nique of handling syntax errors that is part of the parser helps in automatically
creating error messages based on the grammar of the language. Also, the editors
derived from Vilpert need not be syntax-directed.

We have also extended JHotDraw with hierarchical composite figures that facili-
tate the creation of nested figure containers (e.g. UML packages). See the discus-
sion of the Draw package in Section 6.4 for more details.

Textual Languages

When compared to the object-oriented system TaLE for developing processors
for textual languages by Järnvall et al. [JKN95] and to the approach for exten-
sible language processors based on meta-language and delegating compiler ob-
jects (DCO) by Bosch [Bos96], our framework does not concentrate on modelling
language-independent concepts as separate classes. Instead, our approach is closer
to the meta-language-based approaches for generating language processors from
a grammar specification.

However, the Relap framework of VILPERT provides the flexibility needed for in-
cremental language development even if at a more coarse-grained level than TaLE
or DCO. One reason for this is that in the case of EARGs, there are more elements
in the grammar productions than in textual languages and, hence, more interrela-
tionships and restrictions within and between productions. So, in our framework,
reuse is confined rather within a language family than between languages of dif-
ferent ancestry.

8.1.3 Meta-Modeling Approach

MetaEdit

MetaEdit+ [Met01] is a tool for creating CASE tools that comprise a domain spe-
cific visual language. To specify a language, the user specifies (with the method
workbench toolset) the concepts of the domain, the rules for using and composing
the concepts, the graphical notation that corresponds to the concepts, and a set
of generators (specified in a scripting language) that transform models into some
external format (code, documentation, data dictionary, etc.). The goal is to create

166 CHAPTER 8. RELATED WORK

a complete CASE tool tailored for a specific domain and a specific development
process. So, the scope of the MetaEdit approach is broader than in VILPERT and
therefore, we concentrate here only on those aspects of the approach that are re-
lated to our work.

The heart of the approach is the creation of a metamodel that specifies the do-
main specific languages. The elements of the GOPRR metamodeling language
are graph, object, property, relationship, and role. A model is a graph consist-
ing of objects with properties and relationhips to other objects. Objects may
have roles in the relationships that they participate in. The method workbench
of MetaEdit+ provides tools for specifying all these elements of a domain specific
language. The system then derives from the specification a set of (syntactic) well-
formedness rules that the specifier can tailor (choose which rules to include in the
final method). The specifier can also create more complex (e.g. semantic) checks
on the models using the scripting language provided by the tool. The specification
of the generators for the target language is also based on writing processors in the
scripting language for the models created with the target language.

MetaEdit+ can support only those kind of languages that can be expressed using
the GOPRR metamodeling language. Basically, this means graphs of objects. For
example, the current version of the tool cannot support UML message sequence
charts because of the limitations in the underlying metamodeling language that
does not distinguish any kind of physical ordering of the relations of objects. Our
approach is more general because with VILPERT the language designer can spec-
ify also other kind of languages. Furthermore, the resulting editor of a visual
language need not be syntax-directed and dialog-based as with MetaEdit+. Of
course, MetaEdit+ provides strong support for the creation of the kind of lan-
guages that can be specified with it.

8.2 Error Handling in Visual Languages

According to the survey by Marriott & al. [MMW98, pp. 64-67], error handling
in visual language parsing is a mostly unexplored area. However, it is an essential
part of edit-compile style of visual programming that facilitates free-order editing
of visual programs.

Our work concentrates on error handling in off-line parsing of visual languages
specified by atomic relational grammars (relational laguages). Off-line parsing
implies an edit-compile style of visual programming where the syntax of a visual
program is checked after editing the program. We are not aware of any other
work on error handling in parsing relational languages. On the other hand, error
handling strategies have been developed for visual languages specified by other
formalisms.

In the following, we first survey the work on error handling in incremental on-
line approaches to visual language parsing. Then, we look at off-line parsing
techniques.

8.2. ERROR HANDLING IN VISUAL LANGUAGES 167

Incremental On-line Parsing

The importance of free-order editing in diagramming tools has been recognized
by several authors. Most of the free-order editing approaches presented in the
literature apply incremental on-line recognition (parsing) of visual programs (di-
agrams). That is, the syntactic and semantic validity of a visual program is con-
stantly checked while the user is editing the program with a graphical tool. This
makes it possible to give the user immediate feedback about the validity of a visual
program during editing.

In [Ser95], Serrano presents an approach where the semantics of a diagramming
notation is defined by constraints over the visual objects constituting the diagrams.
A diagram is defined to be in a valid, inconsistent, or wrong state depending on
which constraints are satisfied. Constraint satisfaction is continuously tested when
the user is editing a diagram. By allowing a diagram to be in an inconsistent state
during editing, a degree of editing freedom is provided. The freedom is not total
because editing actions that would lead to a wrong state are not allowed.

Minas and Viehstaedt [MV95, Min97] suggest incremental on-line parsing of vi-
sual languages with a possibility to perform error correction. In the DiaGen frame-
work for implementing visual languages, the syntax of a visual language is speci-
fied by a context-free hypergraph grammar. An incremental hypergraph parser is
used to analyze visual programs and the parser has the ability to identify correct
and incorrect subgraphs. Incorrect subgraphs can then be highlighted by an editor
to provide feedback to the user. However, the parser is only able to indicate a part
of the input that is incorrect but cannot provide any feedback about what is wrong
in the incorrect input. In contrast, in our approach, the parser is able to produce
error messages based on the grammar of the visual language in order to provide
more useful feedback.

The most advanced error handling technique in incremental on-line recognition
of visual languages has been presented by Chok and Marriot [CM95, CM98]. As
part of the Penguins system, they have developed an error correction technique
for an incremental parser of constraint multiset grammars. In a parser generated
for a visual language by Penguins, the error handling mechanism of the parser
automatically corrects geometric errors in the input that the user is editing. The
error correction mechanism is based on the concept of the geometric distance be-
tween sentences. A sentence is a set of tokens which have geometric and semantic
attributes. The distance between two sentences can be computed by considering
each mapping between the two token sets and summing the distances between the
tokens (the difference of the values of their geometric attributes) of each pair of
the mapping. The smallest sum is the geometric distance between the sentences.
By computing the geometrically closest sentence that belongs to the language, an
incorrect sentence can be automatically corrected by changing attribute values of
the tokens. The error correction mechanims uses heuristics to quickly find sen-
tences that are reasonably close to the incorrect input to meet the preformance
requirements of on-line parsing. The error correction seems to be limited to the
geometric attributes of graphical tokens.

168 CHAPTER 8. RELATED WORK

It is not feasible to try to adapt the incremental techniques described above to off-
line parsing of relational languages, since the specification formalisms, the repre-
sentation of the input to the parser, and parsing algorithms are different. Also, the
scope and the limitations of the proposed error handling techniques are not clear.
The most obvious difference between our approach and the other approaches is
static parsing and the attempt to find as many errors in the input as possible.

Off-line Parsing

Wittenburg’s parsing algorithm for atomic relational languages is an extension of
Earley’s general parser for context-free string languages. Others have also ex-
tended string language parsing and grammars to visual languages but have not
considered error handling mechanims. For instance, Costagliola & al. [CLOT97b]
describe the VLCC system that extends LR parsing to visual languages. The pLR
parser of VLCC halts at the first syntax error reporting a general ‘parse error’
and does not recover. The paper gives heuristics for solving LR parsing conflicts
caused by ambiguous grammar rules and ambiguous input. The heuristics help
the parser to choose between more than one possible input object to be scanned
next or between the possible parse actions to be taken in the current parse config-
uration. These heuristics enlarge the set of parsable visual languages but seem not
to help in the handling of erroneous input.

In [RS96] Rekers and Schürr discuss the possibility of off-line parsing of lan-
guages specified by graph grammars. The idea is to support free-order editing of
visual programs. However, they do not address error handling issues. In [Sch97]
Schürr states that some kind of error correction is possible “on the fly” when in-
terpreting the textual version of the PROGRES graph language.

The general ideas of error handling in parsing textual languages (e.g. [SSS90,
Chap. 9] and [WM80]) can be adapted to relational languages. The main problem
in this is that the sentences of relational languages lack a predetermined linear
scanning order of input. On the other hand, as our work shows, the graph-like
form of the input provides new opportunities for error recovery.

8.3 Source-to-Source Translation of Visual
Languages

Systematic techniques have been developed for source-to-source translation of
textual languages (see [AU71], [LMW88], [Yel88]), whereas in the context of
visual languages, source-to-source translation is an unexplored area and we are
not aware of any other formal work in the area. This is a reflection of the im-
mature nature of visual language processing in general: no commonly accepted
specification methods or grammatical models have been developed for visual lan-
guages, which implies that the processing (parsing, analysis, translation) of visual
languages is quite hard to automate with current technology.

8.3. SOURCE-TO-SOURCE TRANSLATION 169

While there is a lack of solid methods and tools for the transformation between
two different visual languages, some kind of transformations are common within
the same language, making it possible to automatically tune a diagram flexibly
into another form in a dedicated editor. For instance, DiaGen (see p. 160 above)
provides a number of diagram modifications, such as automatically transforming
a while-loop into an until-loop in a Nassi-Schneiderman chart. However, DiaGen
does not support transforming the chart into a totally different notation, such as a
flowchart.

Source-to-source techniques can as well be applied for the transformation be-
tween other kinds of structured information. For instance, many recent document
transformation systems are grammar-based and syntax-directed [CK95] [KP93]
[LTV96] [MOB94]. While the idea behind syntax-directed (tree) transformation
is quite universal, the formalisms and techniques originally developed for textual
programming languages usually do not directly apply in other contexts but must
be adapted. For instance, the inherent unambiguous and deterministic nature of
textual programming languages has to be relaxed in most other areas, also in the
processing of visual languages due to the lack of a unique “order” of symbols in
visual programs.

170 CHAPTER 8. RELATED WORK

Chapter 9

Conclusions

In this thesis, we have studied the problem of specifying and implementing vi-
sual languages. We have analyzed an existing grammatical model for specifying
and parsing visual languages and presented an extended version of the grammar
formalism. Extended atomic relational grammars provide better support than the
original formalism for specifying graph-like visual languages. Our changes to
the formalism and to the parser make parsing deterministic that enables effective
handling of syntax errors.

Our work shows that it is possible to develop a practical error handling scheme
for the parsing of relational languages. We have introduced the notion of parser-
defined syntax errors, presented two error recovery techniques and showed how
error detection and recovery can be incorporated to the parser for extended atomic
relational grammars.

We have also presented a formal grammatical model for the source-to-source
translation of visual languages. The model is based on the transformation between
parse trees that are spanned by atomic relational grammars for the languages in-
volved. The transformation is formally specified with a mapping between the
grammars.

We have implemented extended atomic relational grammars and the error handling
scheme as part of the VILPERT system that is the product of the constructive
part of our research. VILPERT combines a formal grammar for the underlying
language and a graphical editor framework into an object-oriented framework for
implementing visual languages.

We have validated our solution by implementing three well-known visual lan-
guages that represent typical notations used in software engineering (UML struc-
tural diagrams, UML statecharts, and flowcharts) and other small experimental
languages. The implementations of the visual languages show a high degree of
reuse: the language (application) specific parts of the implementations comprise
less than 20% of the total size of the applications.

The syntaxes of the languages have been specified by extended atomic relational
grammars using the grammar framework of VILPERT and the editors for the lan-

171

172 CHAPTER 9. CONCLUSIONS

guages have been derived from the editor framework of VILPERT. The editors
allow syntax-free editing of visual programs. A visual program (diagram) is ana-
lyzed by a parser automatically produced from the grammar of the language. The
language analyzer is able to form meaningful error messages about syntax errors
in the input, and it can recover from syntax errors to a certain extent to continue
parsing. From a correct input, the analyzer produces a parse tree that can be used
by post-parse processors to perform further analysis and transformations to the
program. The main benefit of our approach is a rigorous implementation method-
ology that does not compromise the usability of the resulting tools.

An interesting future direction is to investigate the theory and the mechanisms of
developing domain specific error handlers for particular kinds of visual languages.
They should try to recognize ‘typical errors’ and automatically perform error cor-
rection. This would require suitable abstractions to be developed for the special-
ization of the error detection and recovery part of the parser. The explicit parse
graph and the ‘openness’ of the interpretive parsing framework seem to provide
good opportunities for implementing more specialized techniques. Also, bench-
marking input sets should be developed for comparing the relative effectiveness
of different error recovery techniques.

Besides the development of more effective error recovery techniques and the de-
velopment of architectural support for domain specific error handling, an impor-
tant issue to be addressed in future work is the further validation of the (graphical)
interaction of error handling by empirical studies. Only practice will tell the user
perceived effectiveness of the techniques.

Implementing the source-to-source translation scheme as an independent part of
VILPERT is an obvious extension to the framework. Also, it would be interesting
to study the usage of the edit-compile style of visual specification (or program-
ming) in a tool that maintains an editable semantic representation (model) in ad-
dition to the graphical representation (diagrams) of the specification. In this kind
of tool, the user can manipulate the model directly through a model browser or
indirectly by editing the graphical representation. Here, the challenge would be
maintaining the consistency between the two representations while allowing the
free editing of both representations.

Finally, we could develop a ‘pure’ metacompiler interface for specifying EARG
grammars. That is, we could define a metalanguage for writing grammar specifi-
cations. Grammar specifications could then be translated into Java class specifi-
cations in a very direct manner. The resulting class could be automatically com-
piled into Java byte code, and the grammar checking facilities of the Relap part
of VILPERT could be used to analyze the grammar. Already, the grammar check-
ing operations issue error messages (as Java exceptions) that include a textual
transcription of the erroneous expression. Also, the metalanguage should support
the extension of grammars through inheritance like the current implementation of
EARG grammars in VILPERT. The metacompiler approach would not help much
in reducing the programming work when implementing a visual language because
the grammars are usually short.

Bibliography

[AK94] A. L. Ambler and T. D. Kimura, editors. Proceedings of the IEEE
Symposium on Visual Languages, St. Louis, Missouri, 1994. IEEE
Computer Society Press.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, tech-
niques, and tools. Addison-Wesley, Reading (MA), USA, 1986.

[AU71] A. V. Aho and J. D. Ullman. Translations of context-free grammars.
Information and Control, 19:439–475, 1971.

[BCLM98] P. Bottoni, M. F. Costabile, S. Levialdi, and P. Mussio. Specification
of visual languages as means for interaction. In Marriott and Meyer
[MM98b], chapter 13, pages 353—375.

[Bos96] J. Bosch. Tool support for language extensibility. In L. Bendix,
K. Nørmark, and K. Østerbye, editors, NWERP’96 Nordic Work-
shop on Programming Environment Research, pages 3—17, Aal-
borg, Denmark, 1996.

[Bra95] J. M. Brant. Hotdraw. Master’s thesis, University of Illinois at Ur-
bana Champaign, 1995.

[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Lan-
guage User Guide. The Addison-Wesley Object Technology Series.
Addison-Wesley, 1999.

[Bro87] F. P. Brooks Jr. No silver bullet: Essence and accidents of software
engineering. IEEE Computer, 20(4):10—19, April 1987.

[BS99] D. Blostein and A. Schürr. Computing with graphs and graph trans-
formations. Software–Practice and Experience, 29(3):197—217,
1999.

[CBL � 99] S. K. Chang, M. M. Burnett, S. Levialdi, K. Marriott, J. J. Pfeiffer,
and S. L. Tanimoto. The future of visual languages. In Proceedings
of 1999 IEEE Symposium on Visual Languages [Pro99].

173

174 BIBLIOGRAPHY

[CDLO94] G. Costagliola, A. De Lucia, and S. Orefice. Towards efficient
parsing of diagrammatic languages. In T. Catarci, M. F. Costabile,
S. Levialdi, and G. Santucci, editors, Proceedings of the Workshop
on Advanced Visual Interfaces, AVI’94, pages 162—171, Bari, Italy,
1994. ACM Press.

[CK95] K. Chiba and M. Kyojima. Document transformation based on
syntax-directed tree translation. Electronic Publishing – Origina-
tion, Dissemination and Design, 8(1):15—29, 1995.

[CLL99] P. Coad, E. Lefebyre, and J. De Luca. Java Modeling in Color with
UML: Enterprise Components and Process. Prentice-Hall, 1999.

[CLOT97a] G. Costagliola, A. De Lucia, S. Orefice, and G. Tortora. A framework
of syntactic models for the implementation of visual languages. In
Storms [Sto97], pages 58—65.

[CLOT97b] G. Costagliola, A. De Lucia, S. Orefice, and G. Tortora. A parsing
methodology for the implementation of visual systems. IEEE Trans-
actions on Software Engineering, 23(12):777—799, 1997.

[CLOT98] G. Costagliola, A. De Lucia, S. Orefice, and G. Tortora. Positional
grammars: A formalism for lr-like parsing of visual languages. In
Marriott and Meyer [MM98b], chapter 5, pages 171—191.

[CM95] S. S. Chok and K. Marriott. Automatic construction of user inter-
faces from constraint multiset grammars. In Haarslev [Haa95], pages
242—249.

[CM98] S. S. Chok and K. Marriott. Automatic construction of intelligent
diagram editors. In Proceedings of the ACM Symposium on User
Interface Software and Technology UIST’98, pages 185—194, San
Francisco, California, 1998. ACM Press.

[CMP99] S. S. Chok, K. Marriott, and T. Paton. Constraint-based diagram
beautification. In Proceedings of 1999 IEEE Symposium on Visual
Languages [Pro99], pages 12—19.

[CTOL95] G. Costagliola, G. Tortora, S. Orefice, and A. De Lucia. Auto-
matic generation of visual programming environments. Computer,
28(3):56—66, 1995.

[DBT88] G. Di Battista and R. Tamassia. Algorithms for plane representations
of acyclic digraphs. Theoretical Computer Science, 61:175—198,
1988.

[Dia00] DiaGen. http://www2.informatik.uni-erlangen.de:80/IMMD-
II/Research/Activities/DiaGen/index.html, 2000.

BIBLIOGRAPHY 175

[Ear70] J. Earley. An efficient context-free parsing algorithm. Communica-
tions of the ACM, 13(2):94—102, February 1970.

[FSJ99a] M. E. Fayad, D. C. Schmidt, and R. E. Johnson. Application frame-
works. In M. E. Fayad, D. C. Schmidt, and R. E. Johnson, editors,
Building Application Frameworks, Object-Oriented Foundations of
Framework Design, chapter 1, pages 3—27. Wiley, 1999.

[FSJ99b] M. E. Fayad, D. C. Schmidt, and R. E. Johnson. Building Applica-
tion Frameworks, Object-Oriented Foundations of Framework De-
sign. Wiley, 1999.

[GE96] E. Gamma and T. Eggenwailer. JHotDraw Java–framework.
members.pingnet.ch/gamma/JHD-5.1.zip, 1996. Copyright by IFA
Informatik and E. Gamma, 1996, 1997.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional Computing Series. Addison-Wesley, 1995.

[GHLP95] K. Granö, J. Harju, T. Larikka, and J. Paakki. Object-oriented proto-
col design and reuse in Kannel. In Proceedings of the 21st Euromicro
Conference on Design of Hardware/Software Systems, pages 465—
472, Como, Italy, 1995. IEEE Computer Society Press.

[GKNV93] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A tech-
nique for drawing directed graphs. IEEE Transactions on Software
Engineering, 19(3):214—230, 1993.

[Gol91] E. J. Golin. A Method for the Specification and Parsing of Visual
Languages. PhD thesis, Brown University, Dept. of Computer Sci-
ence, 1991.

[Haa95] V. Haarslev, editor. Proceedings of the 11th IEEE International
Symposium on Visual Languages, Darmstadt, Germany, 1995. IEEE
Computer Society Press.

[HM00] B. Hoffmann and M. Minas. A generic model for diagram syntax
and semantics. Workshop on Graph Transformation and Visual Mod-
elling Techniques, July 15/16, Genova, Switzerland. In J. D. P. Rolim
et al., editor, ICALP Workshops 2000, Proceedings in Informatics
8, pages 443—450. Carleton Scientific, Waterloo, Ontario, Canada,
2000.

[Jär92] T. Järvinen. Implementing a visual language. Master’s thesis, (in
Finnish) Comp. Sci. University of Helsinki, 1992. Report C-1992-
58.

[JF88] R. E. Johnson and B. Foote. Designing reusable classes. Journal of
Object-Oriented Programming, 1(2):23—35, June 1988.

176 BIBLIOGRAPHY

[JH98] S. Jarzabek and R. Huang. The case for user-centered CASE tools.
Communications of the ACM, 41(8):93—99, 1998.

[jho00] JHotDraw as an open source project. www.jhotdraw.org, 2000.

[Jin90] W. A. Jindrich, Jr. Foible: A framework for visual programming lan-
guages. Master’s thesis, University of Illinois at Urbana Champaign,
1990.

[JKN95] E. Järnvall, K. Koskimies, and M. Niittymäki. Object-oriented lan-
guage engineering with TaLE. Object Oriented Systems, 2(2):77—
98, 1995.

[Joh92] R. E. Johnson. Documenting frameworks using patterns. In Andreas
Paepcke, editor, Proceedings of the Conference on Object-Oriented
Systems, Languages, and Applications, OOPSLA’92, pages 63—76,
Vancouver, Canada, 1992. ACM Press.

[Knu68] D. E. Knuth. Semantics of context-free languages. Mathematical
Systems Theory, 2(2):127—145, 1968. Correction in Mathematical
Systems Theory 5(1): 95—96, 1971.

[KP93] E. Kuikka and M. Penttonen. Transformation of structured docu-
ments with the use of grammar. Electronic Publishing – Origination,
Dissemination and Design, 6(4):373—383, 1993.

[KPPM84] S. E. Keller, J. A. Perkins, T. F. Payton, and S. P. Mardinly. Tree
transformation techniques and experiences. In Proceedings of the
ACM SIGPLAN ‘84 Symposium on Compiler Construction, Mon-
treal, Canada, 1984. ACM SIGPLAN Notices 19(6):190-201.

[LC98] D. Lending and N. L. Chervany. The use of CASE tools. In
R. Agrawal, editor, Proceedings of the 1998 ACM SIGCPR Con-
ference, pages 49—58, Boston, Massachusetts, USA, 1998. ACM
Press.

[Lin97] G. Lindén. Structured document transformations. PhD thesis, De-
partment of Computer Science, University of Helsinki, 1997. Report
A-1997-2.

[LMW88] P. Lipps, U. Möncke, and R. Wilhelm. OPTRAN – A lan-
guage/system for the specification of program transformations: Sys-
tem overview and experiences. In D. Hammer, editor, Proceedings of
the 2nd Workshop on Compiler Compilers and High Speed Compi-
lation, volume 371 of LNCS, pages 52—65, Berlin, 1988. Springer-
Verlag.

[LTV96] G. Lindén, H. Tirri, and A. I. Verkamo. ALCHEMIST: A general
purpose transformation generator. Software – Practice and Experi-
ence, 26(6):653—675, 1996.

BIBLIOGRAPHY 177

[Mar94] K. Marriott. Constraint multiset grammars. In Ambler and Kimura
[AK94], pages 118—125.

[Mat99] M. Mattsson. Effort distribution in a six year industrial application
framework project. In Proceedings of the International Conference
on Software Maintenance ICSM’99, pages 326—333, Oxford, UK,
1999. IEEE Computer Society Press.

[Mat00] M. Mattsson. Evolution and Composition of Object-Oriented Frame-
works. PhD thesis, University of Karlskrona/Ronneby, Department
of Software Engineering and Computer Science, 2000.

[McG99] J. D. McGregor. Making diagrams useful, not archival. Journal of
Object-Oriented Programming, pages 24—28, May 1999.

[McI95] D. W. McIntyre. Design and implemetation with Vampire. In
M. M. Burnett, A. Goldberg, and T. G. Lewis, editors, Visual Object-
Oriented Programming: Concepts and Environments, pages 129—
159. Manning Publications Co., Greenwich, 1995.

[Met01] MetaCase Consulting. Metaedit+. www.metacase.com, 2001.

[MI99] J. Maansaari and J. Iivari. The evolution of CASE usage in Finland
between 1993 and 1996. Information & Management, 36:37—53,
1999.

[Min97] M. Minas. Diagram editing with hypergraph parser support. In
Storms [Sto97], pages 226—233.

[MM98a] K. Marriott and B. Meyer. The CCMG visual language hierarchy. In
Visual Language Theory [MM98b], chapter 4, pages 129—169.

[MM98b] K. Marriott and B. Meyer, editors. Visual language theory. Springer-
Verlag, 1998.

[MMW98] K. Marriott, B. Meyer, and K. Wittenburg. A survey of visual
language specification and recognition. In Marriott and Meyer
[MM98b], chapter 2, pages 5—85.

[MOB94] S. A. Mamrak, C. S. O’Connell, and J. Barnes. Integrated
Chameleon Architecture. Prentice Hall, 1994.

[MS99] M. Münch and A. Schürr. Leaving the visual language ghetto. In Pro-
ceedings of 1999 IEEE Symposium on Visual Languages [Pro99],
pages 148—155.

[MV95] M. Minas and G. Viehstaedt. DiaGen: A generator for diagram ed-
itors providing direct manipulation and execution of diagrams. In
Haarslev [Haa95], pages 203—210.

178 BIBLIOGRAPHY

[Nat99] National Instruments, Inc. LabVIEW. www.ni.com/labview, 1999.

[NH98] N. H. Narayanan and R. Hübscher. Towards a human-computer in-
teraction perspective. In Marriott and Meyer [MM98b], chapter 3,
pages 87—128.

[Nic94] J. V. Nickerson. Visual programming: Limits of graphic representa-
tion. In Ambler and Kimura [AK94], pages 178—179.

[Obj99] Object Management Group. OMG Unified Modeling Language
specification v. 1.3, June 1999.

[PC98] D. C. C. Poo and M. K. Chung. CASE and software maintenance
parctices in Singapore. Journal of Systems and Software, 44:97—
105, 1998.

[Pro99] Proceedings of 1999 IEEE Symposium on Visual Languages, Tokyo,
Japan, 1999. IEEE Computer Society.

[PSTS91] L. B. Protsko, P. G. Sorenson, J. P. Tremblay, and D. A. Schaefer. To-
wards the automatic generation of software diagrams. IEEE Trans-
actions on Software Engineering, 17(1):10—21, 1991.

[PT98] J. Paakki and A.-P. Tuovinen. Source-to-source translation of visual
languages. Nordic Journal of Computing, 5(3):235—264, 1998.

[Ray91] D. R. Raymond. Characterizing visual languages. In L. O’Conner,
editor, Proceedings of the 1991 IEEE Workshop on Visual Lan-
guages, pages 176—182, Kobe, Japan, 1991. IEEE Computer So-
ciety Press.

[RBP � 91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
Object-Oriented Modeling and Design. Prentice-Hall, 1991.

[RJ97] D. Roberts and R. Johnson. Evolving frameworks. In R. C. Martin,
D. Riehle, F. Buschmann, and J. Vlissides, editors, Pattern languages
of program design 3, Software Patterns Series, chapter 26. Addison-
Wesley, 1997.

[RJB99] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Lan-
guage Reference Manual. The Addison-Wesley Object Technology
Series. Addison-Wesley, 1999.

[Rol00] RoleModel Software. Drawlets.
www.rolemodelsoft.com/aboutUs/drawlets.htm, 2000.

[RS96] J. Rekers and A. Schürr. A graph based framework for the implemen-
tation of visual environments. In R. S. Sipple, editor, Proceedings of
1996 IEEE Symposium on Visual Languages, pages 148—155, Boul-
der, Colorado, 1996. IEEE Computer Society Press.

BIBLIOGRAPHY 179

[RS97] J. Rekers and A. Schürr. Defining and parsing visual languages with
layered graph grammars. Journal of Visual Languages and Comput-
ing, 8(1):27—55, 1997.

[Sch97] A. Schürr. Developing graphical (software engineering) tools with
PROGRES. In A. Schäfer and P. Botella, editors, Proceedings of
the 1997 (19th) International Conference on Software Engineering
(ICSE’97), pages 618—619. IEEE Computer Society Press, 1997.

[Ser95] J. A. Serrano. The use of semantic constraints on diagram editors. In
Haarslev [Haa95], pages 211—216.

[Shi84] Q. Y. Shi. Semantic-syntax-directed translation and its application to
image processing. Information Sciences, 32(1):75—90, 1984.

[SSS90] S. Sippu and E. Soisalon-Soininen. LR(k) and LL(k) parsing. In
Parsing Theory, volume 2. Springer-Verlag, 1990.

[Sto97] P. Storms, editor. 1997 IEEE Symposium on Visual Languages, Isle
of Capri, Italy, 1997. IEEE Computer Society.

[SWZ95] A. Schürr, A. Winter, and A. Zündorf. Graph grammar engineering
with PROGRES. In A. Schäfer and P. Botella, editors, Proceedings
of the 5th European Software Engineering Conference (ESEC’95),
pages 219—234. Springer Verlag, LNCS 989, 1995.

[Tuo98a] A.-P. Tuovinen. Error recovery in parsing relational languages. In
K. Kelly, editor, Proceedings of 1998 IEEE Symposium on Visual
Languages, pages 6—13, Halifax, Nova Scotia, Canada, 1998. IEEE
Computer Society.

[Tuo98b] A.-P. Tuovinen. A framework for processors of visual languages.
In J. Bosch and S. Mitchell, editors, Object-Oriented Technology,
ECOOP’97 Workshop Reader, volume 1357 of LNCS, pages 119—
122. Springer-Verlag, 1998.

[Tuo99] A.-P. Tuovinen. Vilpert: Visual language expert. In J. Penjam, ed-
itor, Proceedings of the Sixth Fenno-Ugric Symposium on Software
Technology FUSST’99, Tallinn, Estonia, Aug. 19–21, 1999.

[Tuo00] A.-P. Tuovinen. Practical error handling in parsing relational lan-
guages. Journal of Visual Languages and Computing, 11(5):505—
528, October 2000.

[TVC94] M. Tucci, G. Vitiello, and G. Costagliola. Parsing nonlinear lan-
guages. IEEE Transactions on Software Engineering, 20(9):720—
739, September 1994.

[Vis99] Visio Inc. Visio professional. www.visio.com, 1999.

180 BIBLIOGRAPHY

[VL90] J. M. Vlissides and M. A. Linton. Unidraw: A framework for build-
ing domain-specific graphical editors. ACM Transactions on Infor-
mation Systems, 8(3):237—268, July 1990.

[Whi97] K. N. Whitley. Visual programming languages and the empirical ev-
idence for and against. Journal of Visual Languages and Computing,
8(1):109—142, 1997.

[Wit92] K. Wittenburg. Earley-style parsing for relational grammars. In
C. Harris, editor, Proceedings of the 1992 IEEE Workshop on Vi-
sual Languages, pages 192—199, Seattle, Washington, 1992. IEEE
Computer Society Press.

[Wit95] K. Wittenburg. Visual language parsing: If I had a hammer... In
Proceedings of the International Conference on Cooperative Mul-
timodal Communication, Theory and Applications CMC’95, Eind-
hoven, Netherlands, pages 17—33, 1995.

[Wit96] K. Wittenburg. Predictive parsing for unordered relational lan-
guages. In H. Bunt and M. Tomita, editors, Recent Advances in Pars-
ing Technology, volume 1 of Text, Speech and Language Technology,
chapter 20, pages 385—407. Kluwer Academic Publishers, 1996.

[WM80] J. Welsh and M. McKeag. Structured System Programming.
Prentice-Hall International, 1980.

[WW98] K. Wittenburg and L. Weitzman. Relational grammars: Theory and
practice in a visual language interface for process modeling. In Mar-
riott and Meyer [MM98b], chapter 6, pages 193—217.

[Yel88] D. M. Yellin. Attribute Grammar Inversion and Source-to-Source
Translation, volume 302 of LNCS. Springer-Verlag, 1988.

[You67] D. Younger. Recognition and parsing of context-free languages in
time � � . Information and Control, 10:189—208, 1967.

Appendix A

Statechart Grammar

package CH.ifa.draw.samples.statechart;

import relap.LanguageModel.*;
import java.io.*;
import com.objectspace.jgl.*;

public class StateChart extends RelationalGrammarImplementation {

HashSet fFixedStartAttrs;

public String terminalDeclarations () {
return "rrect text arrow initial final statePanel namePanel "+

"itPanel pseudoPanel labelPanel";
}

public String nonTerminalDeclarations () {

return "StateChart Initial Final State StateSymbol Trans "+
"NameCompartment StateCompartment ITCompartment Label";

}
public String startSymbolDeclaration () {

return "StateChart";

}

public String relationDeclarations () {

return "inside enters exits attached ";

}

181

182 APPENDIX A. STATECHART GRAMMAR

public String attributeDeclarations () {

return "root ";

}

public HashSet fixedStartAttributes() {
if (fFixedStartAttrs == null) {
fFixedStartAttrs = new HashSet();
fFixedStartAttrs.add("root");
}
return fFixedStartAttrs;
}

public GrammarProduction StateChart_(GrammarProduction p)
throws InvalidGrammarException {

p.description("State machine");
p.rightHandSide("pseudoPanel Initial State+ Final*");
p.constraints(

"inside(2:root,1) inside(3:root,1) inside(4:root,1)");
p.assignments("0:root = 1");
p.semantics("CH.ifa.draw.samples.statechart.StateChartRep");
return p;
}

public GrammarProduction Initial_(GrammarProduction p)
throws InvalidGrammarException {

p.description("initial (pseudo) state");
p.rightHandSide("initial");
p.predicates("1 {arrow} exits(_,1) ˜{arrow}enters(_,1)");
p.assignments("0:root = 1");
p.semantics("CH.ifa.draw.samples.statechart.InitialRep");
return p;
}

public GrammarProduction Final_(GrammarProduction p)
throws InvalidGrammarException {

p.description("final (pseudo) state");
p.rightHandSide("final Trans+");
p.constraints("enters(2:root,1)");
p.predicates(

"1 {rrect,initial} exits(2:root,_) ˜{arrow}exits(_,1)");
p.assignments("0:root = 1");
p.semantics("CH.ifa.draw.samples.statechart.FinalRep");
return p;
}

183

public GrammarProduction State_(GrammarProduction p)
throws InvalidGrammarException {

p.description("state with zero or more incoming transitions");
p.rightHandSide("StateSymbol Trans*");
p.constraints("enters(2:root,1:root)");
p.predicates("1 {rrect,initial} exits(2:root,_)");
p.assignments("0:root = 1:root");
p.semantics("CH.ifa.draw.samples.statechart.StateRep");
return p;
}

public GrammarProduction StateSymbol_(GrammarProduction p)
throws InvalidGrammarException {

p.description("state symbol structure");
p.rightHandSide(

"rrect NameCompartment? ITCompartment? StateCompartment*");
p.constraints(

"inside(2:root,1) inside(3:root,1) inside(4:root,1)");
p.assignments("0:root = 1");
p.semantics("CH.ifa.draw.samples.statechart.StateSymbolRep");
return p;
}

public GrammarProduction NameCompartment_(GrammarProduction p)
throws InvalidGrammarException {

p.description("name compartment");
p.rightHandSide("namePanel text+");
p.constraints("inside(2,1)");
p.order("2 above ");
p.assignments("0:root = 1");
p.semantics("CH.ifa.draw.samples.statechart.NameCompartmentRep");
return p;
}

public GrammarProduction ITCompartment_(GrammarProduction p)
throws InvalidGrammarException {

p.description("internal transition compartment");
p.rightHandSide("itPanel text+");
p.constraints("inside(2,1)");
p.order("2 above ");
p.assignments("0:root = 1");

184 APPENDIX A. STATECHART GRAMMAR

p.semantics("CH.ifa.draw.samples.statechart.ITCompartmentRep");
return p;
}

public GrammarProduction
StateCompartment_empty(GrammarProduction p)

throws InvalidGrammarException {

p.description("empty state compartment");
p.rightHandSide("statePanel");
p.disambiguate("˜{rrect,initial,text,final}inside(_,1)");
p.assignments("0:root = 1");
p.semantics(

"CH.ifa.draw.samples.statechart.StateCompartmentRep");
return p;
}

public GrammarProduction
StateCompartment_collapsedTexts(GrammarProduction p)

throws InvalidGrammarException {

p.description(
"state compartment with collapsed text compartments");

p.rightHandSide("statePanel text+");
p.constraints("inside(2,1)");
p.disambiguate("˜{rrect,initial,final}inside(_,1)");
p.order("2 above ");
p.assignments("0:root = 1");
p.semantics(

"CH.ifa.draw.samples.statechart.StateCompartmentRep");
return p;
}

public GrammarProduction
StateCompartment_nestedDiagram(GrammarProduction p)

throws InvalidGrammarException {

p.description(
"state compartment with nested statechart diagram");
p.rightHandSide("statePanel text* Initial? State+ Final*");
p.constraints(
"inside(2,1) inside(3:root,1) inside(4:root,1) inside(5:root,1)");
p.order("2 above ");
p.assignments("0:root = 1");
p.semantics(
"CH.ifa.draw.samples.statechart.CompositeStateCompartmentRep");
return p;
}

185

public GrammarProduction Trans_(GrammarProduction p)
throws InvalidGrammarException {

p.description("transition");
p.rightHandSide("arrow Label?");
p.constraints("attached(2:root,1)");
p.assignments("0:root = 1");
p.semantics("CH.ifa.draw.samples.statechart.TransitionRep");
return p;
}

public GrammarProduction Label_(GrammarProduction p)
throws InvalidGrammarException {

p.description("multi-line transition label");
p.rightHandSide("labelPanel text+");
p.constraints("inside(2,1)");
p.order("2 above");
p.assignments("0:root = 1");
p.semantics("CH.ifa.draw.samples.statechart.LabelRep");
return p;
}

}

TIETOJENKÄSITTELYTIETEEN LAITOS DEPARTMENT OF COMPUTER SCIENCE
PL 26 (Teollisuuskatu 23) P.O. Box 26 (Teollisuuskatu 23)
00014 Helsingin yliopisto FIN-00014 University of Helsinki, FINLAND

JULKAISUSARJA A SERIES OF PUBLICATIONS A

Reports may be ordered from: Department of Computer Science, Library (A 214), P.O. Box 26, FIN-00014 University of
Helsinki, FINLAND.

A-1989-1 G. Grahne: The problem of incomplete information in relational databases. 156 + 3 pp. (Ph.D. thesis).

A-1989-2 H. Tirri (ed.): Interoperability of heterogeneous information systems: final report of the COST 11 � � � project.
110 pp.

A-1989-3 J. Tarhio & M. Tienari (eds.): Computer Science at the University of Helsinki. 57 pp.

A-1989-4 T. Alanko, J. Keskinen, P. Kutvonen, M. Mutka, & M. Tienari: The AHTO project: software technology for
open distributed processing. 53 + 3 pp.

A-1989-5 N. Holsti: Script editing for recovery and reversal in textual user interfaces. 126 pp. (Ph.D. thesis).

A-1989-6 K.E.E. Raatikainen: Modelling and analysis techniques for capacity planning. 162 + 52 pp. (Ph.D. thesis).

A-1990-1 K. Pohjonen & J. Tarhio (toim./eds.): Tietojenkäsittelyopin laitoksen tutkimusraportteja 1988–89 – Research
reports at the Department of Computer Science 1988–89. 27 pp.

A-1990-2 J. Kuittinen, O. Nurmi, S. Sippu & E. Soisalon-Soininen: Efficient implementation of loops in bottom-up
evaluation of logic queries. 14 pp.

A-1990-3 J. Tarhio & E. Ukkonen: Approximate Boyer-Moore string matching. 27 pp.

A-1990-4 E. Ukkonen & D. Wood: Approximate string matching with suffix automata. 14 pp.

A-1990-5 T. Kerola: Qsolver – a modular environment for solving queueing network models. 15 pp.

A-1990-6 Ker-I Ko, P. Orponen, U. Schöning & O. Watanabe: Instance complexity. 24 pp.

A-1991-1 J. Paakki: Paradigms for attribute-grammar-based language implementation. 71 + 146 pp. (Ph.D. thesis).

A-1991-2 O. Nurmi & E. Soisalon-Soininen: Uncoupling updating and rebalancing in chromatic binary search trees.
12 pp.

A-1991-3 T. Elomaa & J. Kivinen: Learning decision trees from noisy examples. 15 pp.

A-1991-4 P. Kilpeläinen & H. Mannila: Ordered and unordered tree inclusion. 22 pp.

A-1991-5 A. Valmari: Compositional state space generation. 30 pp.

A-1991-6 J. Tarhio & M. Tienari (eds.): Computer Science at the University of Helsinki 1991. 66 pp.

A-1991-7 P. Jokinen, J. Tarhio & E. Ukkonen: A comparison of approximate string matching algorithms. 23 pp.

A-1992-1 J. Kivinen: Problems in computational learning theory. 27 + 64 pp. (Ph.D. thesis).

A-1992-2 K. Pohjonen & J. Tarhio (toim./eds.): Tietojenkäsittelyopin laitoksen tutkimusraportteja 1990–91 – Research
reports at the Department of Computer Science 1990–91. 35 pp.

A-1992-3 Th. Eiter, P. Kilpeläinen & H. Mannila: Recognizing renamable generalized propositional Horn formulas is
NP-complete. 11 pp.

A-1992-4 A. Valmari: Alleviating state explosion during verification of behavioural equivalence. 57 pp.

A-1992-5 P. Floréen: Computational complexity problems in neural associative memories. 128 + 8 pp. (Ph.D. thesis).

A-1992-6 P. Kilpeläinen: Tree matching problems with applications to structured text databases. 110 pp. (Ph.D. thesis).

A-1993-1 E. Ukkonen: On-line construction of suffix-trees. 15 pp.

A-1993-2 Alois P. Heinz: Efficient implementation of a neural net � - � -evaluator. 13 pp.

A-1994-1 J. Eloranta: Minimal transition systems with respect to divergence preserving behavioural equivalences.
162 pp. (Ph.D. thesis).

A-1994-2 K. Pohjonen (toim./ed.): Tietojenkäsittelyopin laitoksen julkaisut 1992–93 – Publications from the Depart-
ment of Computer Science 1992–93. 58 s./pp.

A-1994-3 T. Kujala & M. Tienari (eds.): Computer Science at the University of Helsinki 1993. 95 pp.

A-1994-4 P. Floréen & P. Orponen: Complexity issues in discrete Hopfield networks. 54 pp.

A-1995-1 P. Myllymäki: Mapping Bayesian networks to stochastic neural networks: a foundation for hybrid Bayesian-
neural systems. 93 pp. (Ph.D. thesis).

A-1996-1 R. Kaivola: Equivalences, preorders and compositional verification for linear time temporal logic and concur-
rent systems. 185 pp. (Ph.D. thesis).

A-1996-2 T. Elomaa: Tools and techniques for decision tree learning. 140 pp. (Ph.D. thesis).

A-1996-3 J. Tarhio & M. Tienari (eds.): Computer Science at the University of Helsinki 1996. 89 pp.

A-1996-4 H. Ahonen: Generating grammars for structured documents using grammatical inference methods. 107 pp.
(Ph.D. thesis).

A-1996-5 H. Toivonen: Discovery of frequent patterns in large data collections. 116 pp. (Ph.D. thesis).

A-1997-1 H. Tirri: Plausible prediction by Bayesian inference. 158 pp. (Ph.D. thesis).

A-1997-2 G. Lindén: Structured document transformations. 122 pp. (Ph.D. thesis).

A-1997-3 M. Nykänen: Querying string databases with modal logic. 150 pp. (Ph.D. thesis).

A-1997-4 E. Sutinen, J. Tarhio, S.-P. Lahtinen, A.-P. Tuovinen, E. Rautama & V. Meisalo: Eliot – an algorithm animation
environment. 49 pp.

A-1998-1 G. Lindén & M. Tienari (eds.): Computer Science at the University of Helsinki 1998. 112 pp.

A-1998-2 L. Kutvonen: Trading services in open distributed environments. 231 + 6 pp. (Ph.D. thesis).

A-1998-3 E. Sutinen: Approximate pattern matching with the q-gram family. 116 pp. (Ph.D. thesis).

A-1999-1 M. Klemettinen: A knowledge discovery methodology for telecommunication network alarm databases. 137
pp. (Ph.D. thesis).

A-1999-2 J. Puustjärvi: Transactional workflows. 104 pp. (Ph.D. thesis).

A-1999-3 G. Lindén & E. Ukkonen (eds.): Department of Computer Science: annual report 1998. 55 pp.

A-1999-4 J. Kärkkäinen: Repetition-based text indexes. 106 pp. (Ph.D. thesis).

A-2000-1 P. Moen: Attribute, event eequence, and event type similarity notions for data mining. 190+9 pp. (Ph.D.
thesis).

A-2000-2 B. Heikkinen: Generalization of document structures and document assembly. 179 pp. (Ph.D. thesis).

A-2000-3 P. Kähkipuro: Performance modeling framework for CORBA based distributed systems. 151+15 pp. (Ph.D.
thesis).

A-2000-4 K. Lemström: String matching techniques for music retrieval. 56+56 pp. (Ph.D.Thesis).

A-2000-5 T. Karvi: Partially defined Lotos specifications and their refinement relations. 157 pp. (Ph.D.Thesis).

A-2001-1 J. Rousu: Efficient range partitioning in classification learning. 68+74 pp. (Ph.D. thesis)

A-2001-2 M. Salmenkivi: Computational methods for intensity models. 145 pp. (Ph.D. thesis)

A-2001-3 K. Fredriksson: Rotation invariant template matching. 138 pp. (Ph.D. thesis)

	Object-Oriented Engineering of Visual Languages
	Acknowledgements
	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Bibliography
	Appendix A
	SERIES OF PUBLICATIONS A

