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Abstract

Decision tree learning is an important field of machine learning. In this studywe examine
both formal and practical aspects of decision tree learning. We aim at answering to two
important needs: The need for better motivated decision tree learners and anenvironment
facilitating experimentation with inductive learning algorithms. As results we obtain new
practical tools and useful techniques for decision tree learning.

First, we derive the practical decision tree learnerRankbased on theFindminpro-
tocol of Ehrenfeucht and Haussler. The motivation for the changes introduced to the
method comes from empirical experience, but we prove the correctness of the modi-
fications in the probably approximately correct learning framework. The algorithmis
enhanced by extending it to operate in the multiclass situations, making it capable of
working within the incremental setting, and providing noise tolerance into it. Together
these modifications entail practicability through a formal development process,which
constitutes an important technique for decision tree learner design.

The other tool that comes out of this work isTELA, a general testbed for all inductive
learners using attribute representation of data, not only for decision tree learners. This
system guides and assists its user in taking new algoritms to his disposal, operating them
in an easy fashion, designing and executing useful tests with the algorithms, and in inter-
preting the outcome of the tests. We present the design rationale, current composition,
and future development directions ofTELA. Moreover, we reflect on the experiences
that have been gathered in the initial usage of the system.

The tools that come about are evaluated and validated in empirical tests over many
real-world application domains. Several successful inductive algorithms are contrasted
with theRankalgorithm in experiments that are carried out usingTELA. These exper-
iments let us evaluate the success of the new decision tree learner with respect to its
established equivalents and validate the utility of the developed testbed. Thetests prove
successful in both respects:Rankattains the same overall level of prediction accuracy as
C4.5, which is generally considered to be one of the best empirical decision tree learners,
andTELA eases the execution of the experiments substantially.
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Chapter 1

Introduction

The study ofartificial intelligenceexplores possibilities of making computers exhibit
behavior that could be seen to be intelligent. The ability to learn is a characteristic
feature of intelligent behavior. Hence, it is not surprising thatmachine learninghas been
a topic on the agenda from the very early days of artificial intelligence and computer
science (e.g., [Wiener 1948, Turing 1950]).

Machine learning research is blooming once again mainly because of the follow-
ing (almost) coinciding impetuses. First, building expert systems was commercially the
most important application of artificial intelligence. However, the difficulty of eliciting
knowledge from domain experts, or theknowledge acquisition bottleneck[Feigenbaum
1977], proved to make the construction of expert systems complicated, expensive, and
time-consuming. Machine learning techniques were considered to be able to help to
circumvent the problem. Second,neural networks[Rumelhart & McClelland 1986],
or connectionist computational devices, reemerged as an important research topic after
having once falsely been doomed computationally insufficient [Minsky & Papert 1969].
Learning is an important method of “programming” neural networks. Third, the intro-
duction of theprobably approximately correct learning model[Valiant 1984] made the
theoretical questions of machine learning a popular research topic.

In machine learning research, as in studies of natural learning processes, there are
many approaches and subfields. This thesis examines a simple, but demanding, learning
model: Inductive inferencefrom examples. In this model thelearner is supplied with a
sampleof the target concept. Hence, this subfield is also known asconcept learning. In
machine learning the learner is a computer program that is called alearning algorithm.
A concept is any subset of a domain known as theinstance space. The elements of
this domain areinstancesand, hence, a concept is simply a collection of instances. The
sample consists ofpreclassified instances, or (training) examples. Thus, the learning
scheme issupervised; i.e., we can consider that there exists ateachersupplying the class
labels of instances. In the basic model the teacher is omniscient—it does not err on
deciding the class labels. Aclassificationis any finite partitioning of the instance space.

1



2 INTRODUCTION
It is the learner’s task to construct and output itshypothesisof the target concept. Here
we are interested in situations where the hypothesis takes the form of aclassifier—a total
function assigning any element of the instance space into one of the classes.

In attribute-basedmachine learning [Kalkanis & Conroy 1991] the examples are
vectors of attribute values. Anattribute is any measurable relevant characteristic of
the application domain; it can typically only have one of three types: Its value range
may benominal(unordered),discrete(ordered), orcontinuous. The classification of an
example is given as aclass label—a distinguished attribute. In the majority of cases
the class attribute is only allowed to be nominal; however, it is also possible to have a
numerical class attribute (e.g., [Boswell 1990b]). The task is to induce a classification
procedure that can be used to predict the class label of further instances on the basis
of their attribute values. For this to succeed, the learner must be able togeneralizethe
information contained in the examples. Usually the prediction given by the classifier is
categorical—a single class is definitely nominated—butprobabilisticprediction is also
feasible [Quinlan 1987a, 1990c].

Example. Let us think of a mail order company that wants to intensify its marketing
efforts by identifying more refined customer profiles than those it has used hitherto. For
that purpose alearning algorithmis employed. (Classical statistical techniques have,
of course, long been used in marketing analysis and other similar tasks involving corre-
lation determination, but several studies [Carter & Catlett 1987, Shepherdet al. 1988,
Weiss & Kapouleas 1989, Fenget al. 1994, Michieet al. 1994] have indicated machine
learning techniques to be superior even in these tasks.) Thetarget conceptsin this task
are the different types of customers and the aim is to induce a description of a potential
customer for a given product (the hypothesis). As thesamplethe company can use its
records of customers and those people that have, in previous marketing campaigns, been
identified as potential customers, but have not come through with an order (records ofthe
latter constitute a set ofnegative examples). Theinstance spacein this case ranges from
the population of the World to, say, the male owners of British cars in Finland. The clas-
sification of an instance already exists in the records: Did the potential customer place an
order (for a specific product) or not. Hence, theclass attributespecifies which merchan-
dise, if any, was purchased by the customer. Strict laws prohibit our enterprise from ac-
quiring all the customer details it would desire. Something, though, can be gathered from
the existing records—the gender of the customer, the method of payment, the character-
istics of the customer’s living surroundings, etc. Thus, as instance-describingattributes
we can use, e.g., the binary attributesex, the discrete-valued attributepopulation,
which gives the size category of the customer candidate’s place of residence, and the
continuous-valued attributedistance, measuring the journey to the retail store closest
to the customer’s address. 2

In supervised learning a faultlessly classifying teacher (natural classifier) is present.
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Why, then, would we want to replace it with a mechanical classification procedure that
is even liable to make mistakes? The possible reasons include, for example,the follow-
ing. Speedof classification may be essential; a computer program is often much fasterin
its processing than a human or some other natural classifier.Objectivitymay be at risk
when a person processes (sensitive) data; computer programs do not inherently contain
moral or other biases. Even if an omniscient natural classifier exists, itdoes not neces-
sarily mean that the law governing the classification of instances is articulated. Machine
learning techniques can be used for extracting a representation for the underlying natu-
ral law. This may involve simplyenhancement of comprehensibility, since even human
experts may have trouble expressing their knowledge intelligibly,knowledge simplifica-
tion, which may bring new insight to the observed world, or, at the most ambitious level,
discovery of knowledgethat was previously unknown.Processing massive amounts of
datais task often better entrusted to computers. There are many applications where large
amounts of data are constantly generated and there are many existing collections of such
data masses. Even if speed is not a primary objective the teacher may still collapse under
the multitude of data.

In many potential application areas of machine learning a classification is naturally
associated to instances. Consider, for example, any monitoring system in a production
plant, say, which constantly produces instances (the state of the monitored system at a
given time) together with an associated classification (e.g., ‘operational’ or the type of
malfunction). As another example, consider a learning task where previously treated
patients’ records are given to the learner as the sample with the intent to come up with a
classifier that can be used to decide the treatment of future patients. Nevertheless, in gen-
eral the assumption of an omniscient teacher is a very restrictive one; ifmachine learning
was only applicable in cases where a real-world error-free classification procedure ex-
ists, its utility would be severely impaired. In fact, one of the underlying motivations in
the development of machine learning has always been to “manage the unmanageable.”
Moreover, even if a natural classifier exists, its application costs may be untolerable, so
that in essence the situation is as if no teacher exists. For example, the correct treatment
of some cancer patients can only be determined by surgical operation, which is exactly
the action that one tries to avoid by using machine learning.

In cases, where a natural teacher is missing or is too expensive to use, anunsuper-
visedlearning algorithm, or aclusteringalgorithm [Duda & Hart 1973], can be put into
use. In unsupervised learning it is left to the learning algorithm to discoverthe possi-
ble classes, or clusters, in which the instances might belong. Obviously unsupervised
learning is not as effective as supervised learning. In this thesis we concentrate on su-
pervised learning alone; it can be envisioned to constitute the high-level back-end part
of full-scale learning systems of future.

Learning from examples alone is difficult; there must be some additional guidance
given to the learner about which hypotheses it should prefer and where to search for



4 INTRODUCTION
them. Such underlying assistance is known asinductive bias[Utgoff 1986, Haussler
1988]. The bias of a learning algorithm cannot usually be attributed only to a single
property of it; several details contribute to an algorithm’s bias: The most obvious sources
of bias are therepresentation language of hypotheses(linguistic bias) and theheuristics
employed in the algorithm (algorithmic bias). The former guides the algorithm towards
certain kinds of hypotheses and the latter prompts some search order for the hypotheses.
A more explicit way to guide the induction process is to provide the learner withback-
ground knowledge. Then, in addition to the representation languages of examples and
hypotheses, a third representation language is needed. This study focuses on learning
algorithms that do not have access to background knowledge and use apropositional
(variable-value propositions) hypothesis representation language.

In addition to the problems of missing and expensive teachers we, in practice,en-
counter teachers, that are not omniscient, and the problem of misinformation. In other
words, in most practical classifier learning situations an element of randomerrors, or
noise, is typically present. In theoretical studies one usually makes a distinction between
attribute noiseandclassification noise, which affect the observed attribute values and
the teacher’s decision of an instance’s class label, respectively. Inthe real world, no such
clean cut can be made; in practice an unseparable combination of both noise types is
predominant.

Any learning algorithm that is intended for serious use should provide for the effects
of noise in the sample. Luckily, it is, in most cases, quite easy to take into account
the possible errors in the training examples when designing a learning algorithm. One
just has to adopt a statistical view to the sample: Instead of trusting eachindividual
training example the learner gathers statistical evidence from the sample and trusts only
observations that are backed up by a sufficient number of examples. Of course, this
general principle is not always easy to implement in a learning algorithm. The algorithm
developed in this work provably tolerates noise in the training data.

The most common approach to concept learning examines situations where all train-
ing examples are available from the outset and no further examples can affectthe con-
structed classifier; it is subsequently only used to classification of new instances. This
is known asbatch learning. In the real world, however, it may be that examples are
received (one at a time) over a span of time during which a classifier is already needed.
In principle, one could, of course, store all previously received training examples, add
the new one to the set when received, and rerun the batch learning algorithm for theex-
tended sample. Not only would this waste effort, but it is not necessarily tolerated by the
application. Consider, for example, an autonomous mobile robot with a concept learn-
ing component. If the robot, upon receiving a new example, has to abandon whatever
task it was performing to rerun the—as the sample size grows—increasingly slow batch
learner, it may loose sight of its actual goal.

The study ofincremental, oron-line, learning aims at building learning programs that
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minimize the (average) amount of hypothesis reconstruction and, thus, computation time
that is required for each new example. From the theoretical point of view, there is not
much difference between incremental and batch learning. However, whetherthe training
examples are received all at once or one at a time largely affects the design of a learning
algorithm. The incremental learner is not aware of the ending of its training period, if
ever. Therefore, it has to maintain a suitable hypothesis even at the intermediate stages.
Since hypothesis updates have to be efficient, they must be based on local operations
rather than global ones. This alone, in practice, makes on-line learning much more
complicated than batch learning. We develop an incremental learner with the same time
requirement as its off-line equivalent has.

What are the general evaluation criteria for hypotheses produced by learning algo-
rithms? Obviously the single most important property of a classifier is itsclassification
accuracy, the proportion of correct classifications among its predictions. In this study we
do not consider situations where errors may have different severity.Classification speed
is in many cases a crucial property that is requested from the hypothesis. For example,
all classifiers having to process masses of data, naturally, have to be expedient. Com-
prehensibilityof the resulting classifier is a central feature whenever a human operator
gets to review it; any classifier that is not fully understood by an expert willbe deemed
unreliable and, hence, non-applicable. Lack of trust has had tragic consequences in the
Three-Mile Island and Chernobyl nuclear power plant disasters.1 The final generally
posed requirement to a machine learning technique is a property of the learner rather
than of its hypotheses: The learner must bequick. The time that the learning period
is allowed to take varies relative to the characteristics of the application domain (e.g.,
the numbers of attributes, classes, and examples), but we want the learner to be asymp-
totically efficient—at most polynomial in the dominating parameters; often even more
stringent requirements are posed to the asymptotic efficiency of a learning algorithm.
Our learning algorithm will be only linear in the size of the sample.

The hypothesis has to be expressed in some way. One of the most successful rep-
resentations has been thedecision treeformalism. The success of decision trees can
largely be attributed to the fact that they naturally meet three of the four requirements
posed above—decision trees are very efficient to learn and to use and they are generally
conceived as quite understandable. In addition, the learning process is flexible; itcan
easily be changed to produce different decision tree types (e.g., shallow [Núñez 1988] or
linear [Arbab & Michie 1985]) according to the user’s needs. Also, the comprehensibil-
ity of a decision tree is easily enhanced even more by converting it into a corresponding
set of production rules [Quinlan 1987b, 1987c].

A decision tree is a recursive classification procedure that can be viewedas a tree1Automatic control techniques in general were distrusted here rather than classifiers in particular. In
these catastrophes an automatic control device correctly recommended shutdown, but its advice was ig-
nored by the human operators because they lacked belief into the foundednessof the recommendation
[Michie et al. 1994, p. 7].
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population
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Figure 1.1: A decision tree describing the consumer habits of the clientele of a mail order enter-
prise.

with labeled nodes. A decision tree recursively partitions regions of the instance space
into subregions. Each node corresponds to a region of the instance space. The root of the
tree covers the entire instance space, its children divide the space into mutually exclusive
regions, and the division process continues similarly all the way to the leaf nodes. Each
leaf node has an associated class label, which is assigned by the classifier to any instance
belonging to the corresponding region. Each internal node is associated with a test.In
the simplest form a test only queries the value of one attribute. If a testT hasC possible
outcomes, the node associated withT hasC children and the region covered by the node
is partitioned intoC subregions—one for each child.

Example. The hypothesis obtained by the mail order company of our previous example,
when expressed as a decision tree, could look like that in Fig. 1.1. Note how the deci-
sion tree corresponds to a total function from the instance space (potential customers) to
the set of classes (product groups): First the attributedistance partitions the instance
space into three regions, two of which are partitioned further by the other attributes; any
instance will be directed into one of the leaves by the tree. Interpreting the knowledge
contents of the tree should be self-explanatory; for instance, the tree contains the infor-
mation that (only) women living in small population areas over 200 kilometers away
from the closest retail store tend to purchase clothing by mail order. One can also pay at-
tention to secondary issues arising from this representation. For example, inwhat order
do the attributes appear in the tree. The tree in Fig. 1.1 suggests that the distance from
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the closest retail store would contribute the most to the customers’ consumer habits. 2
This thesis develops tools and techniques for decision tree learning. Even though

it is one of the most widely studied topics of machine learning research and notable
successes have been gained, there are still many open questions to be solved inthe un-
derpinnings and practice of decision tree learning. One of the most salient deficiencies
in the area is that theoretical results on decision tree learning are not up to the standard
of the approach’s practical success. Our first contribution is to take a theoretically sound
decision tree learning algorithm, theFindminof Ehrenfeucht and Haussler [1989], and
evolve it into a practical tool.

The formal results of this thesis answer to the practical demands presented above:
The decision tree learning algorithm that we develop is able tomanage multivalued at-
tribute and class ranges, thus retaining the intelligibility of the resulting decision tree; in
it incremental learning is supported, making the algorithm applicable to wide range of
problems; finally, it is endowed with thecapability to handle noise, which is an unsur-
mountable problem in the real world. Let us emphasize that all these improvements are
developed within the formal learning framework of Valiant [1984]; i.e., all modifications
lead to provably good behavior. In addition to the individual analytical contributions,
the design process in itself is a novelty; hitherto the theoretical design process of learn-
ing algorithms has attracted only some interest fairly recently [Maass1994, Aueret al.
1995].

The developed algorithm’s performance is compared with the best empirical decision
tree learning algorithms in real-world learning tasks. This part of the workcan be seen
as a direct continuation for the empirical work of Michieet al. [1994]. It is of utmost
importance to validate the performance of an algorithm on a wide variety of application
domains in order to obtain a good overview of its general utility. It is the easiest task to
come up with a good learner for a particular task, but a tool that is more generallyuseful
defies solution. Furthermore, we do not content ourselves with simply comparing the
prediction accuracies of the test programs, like Michieet al. [1994] did, but take a wider
perspective by observing differences along the other quality measurements as well.

The other constructive contribution of this work is an environment facilitatingex-
perimentation and comparison of attribute-based learning algorithms. Thereare many
learning methods easily available for the interested user, but substantialeffort has to be
offered to operate them. Therefore, there is a strong demand for a platform that could
assist the user to easily operate many diverse learning tools. Moreover, fair and unbi-
ased algorithm comparisons are impossible without a common control environment. We
present the design rationale and an overview ofTELA—a publicly available environment
that has been implemented for these purposes.

The material is organized as follows. First, Chapter 2 recapitulates the basics of
decision tree learning and computational learning theory, which are preliminaries for the
rest of this dissertation. The first part reviews common practical decisiontree learning
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techniques and presents a brief overview of less often used approaches to decision tree
learning. In the second part Natarajan’s [1991] modification of Valiant’s [1984] formal
learning framework is recapitulated. This modification deals with functionclass learning
situations. The model is developed further by employing Sakakibara’s [1993] ideas of
coping with random errors in this extended model.

Chapter 3 develops a practical learning algorithm out of the decision tree learning
protocol put forward by Ehrenfeucht and Haussler [1989]. Three major conceptual mod-
ifications are presented and several practical improvements are implemented in the new
algorithm namedRank. First, the method is changed to handle multivalued variables
and classes instead of dealing with binary values only, like the original method does.
Next, we show how an efficient incremental variant of the learning algorithm can be
developed. Finally, Ehrenfeucht and Haussler’s method is extended to cope with situa-
tions that are affected by classification noise. At each stage we ensure that the formal
learnability properties of the original algorithm are preserved: Each modification leads
to a polynomial-time algorithm that is guaranteed to produce a decision tree withdesired
properties. Theoretical results play an important part in this chapter.

In Chapter 4 we introduceTELA—a generic platform for testing attribute-based
learning algorithms. Testing and comparing different implementations and techniques
on sample data is an integral part of the design and application of inductive machine
learning programs. It involves many simple, but unavoidable auxiliary tasks that are
usually not supported by the learning tools themselves.TELA has been developed to al-
leviate these in such a manner that the worries and vexations of the user are minimized.
The algorithmRankhas been incorporated into theTELA platform.

Chapter 5 applies the algorithmRankinto many problems arising from real world. A
series of tests, consisting of varying kinds of experiments, is reported and the results are
analyzed meticulously. These tests are intended to empirically evaluate Rank’s utility
with respect to other, more established inductive learners. At the same time we want to
validate theTELA environment by showing how a long series of tests can be run under
it without any complications.

Finally, Chapter 6 concludes the dissertation by summarizing the work and by dis-
cussing some issues raised by the work reported in the earlier chapters. Inparticular, we
consider future research directions that could be taken to carry further the work that is
reported in this dissertation.



Chapter 2

Preliminaries

This chapter surveys decision tree learning and computational learning theory, both of
which are prerequisites for understanding the subsequent chapters. Section 2.1 recapit-
ulates the most frequently used approach to decision tree learning. Alternative ways of
learning decision trees are briefly surveyed in Section 2.2. The basic theoretical model
of concept learning is introduced in Section 2.3 and Section 2.4, then, discusses how it
needs to be changed for modeling noise-affected situations.

2.1 Top-down induction of decision trees

The literature on decision tree classifier learning is voluminous and constantly growing.
We do not try to survey all aspects of it here; the interested reader is referred to consult
one of the extensive survey articles, like the ones by Quinlan [1990a] and Safavianand
Landgrebe [1991]. Also, an excellent survey of current topics on decision tree learning
and closely related areas appears in the manual for the IND system [Buntine & Caru-
ana 1993]. Instead of covering the research trends extensively, we concentrate on the
common core of the approaches: We present the generic tree growing methodology and
discuss only the most important variants of it. For an overview of inductive learning
in general many sources exist (e.g., [Carbonellet al. 1983, Kalkanis & Conroy 1991,
Langley 1996]).

The basic approach to decision tree learning is a heuristic hill-climbing search with-
out backtracking or look-ahead. This is known astop-down induction of decision trees
(TDIDT) [Quinlan 1986b]. TDIDT is typically performed in two steps—growingand
pruning. In the first step a decision tree corresponding as closely as possible to the
training data is constructed greedily, starting from the root, by heuristically selecting at-
tributes to be tested at the nodes of the tree. It has been observed that a decision tree that
fits the training data too closely will be a poor predictor of the class label of further in-
stances. Hence, the tree needs to be pruned back in the second step in order to reduce its

9
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Procedure 2.1StoppingCondition(S;C)
input: a set of examplesS.
output: a truth value. (Out parameter C records a class name.)
begin
(1) if all examples inS have the same classC then return true else return false fi
end.

Procedure 2.2MakeTree(a; T1; : : : ; Tjaj)
input: an attributea and a list ofjaj decision trees, wherejaj is the cardinality ofa’s range.
output: a decision tree.
begin
(1) Construct and return a decision tree such that attributea is the label of its root and
(2) that treesT1; : : : ; Tjaj are its subtrees (Ti is joined to the root by an edge labeled byi)
end.

Procedure 2.3GrowTree(A;S)
input: a set of examplesS on attributesA.
output: a decision tree that is consistent withS.
begin
(1) if StoppingCondition(S;C) then return a leaf node labeled byC

else
(2) Selectan attributea fromA;
(3) PartitionS into subsetsS1; S2; : : : ; Sjaj so that all examples having valuei for
(4) attributea are assigned to subsetSi, wherejaj is the cardinality ofa’s range;
(5) for each i 2 f1; : : : ; jajg do Ti  GrowTree(A n fag; Si) od;
(6) T  MakeTree(a; T1; : : : ; Tjaj);
(7) return T

fi
end.

dependence on the training examples. Also, pruning lets the learning algorithm tolerate
the effects of noise.

The tree growing phase basically takes the form of Procedure 2.3GrowTree. The
procedure chooses an attribute from the set of available ones (Line 2), divides the ex-
amples belonging to the subsample under consideration into subsets according to their
value of the chosen attribute (Lines 3–4), and recursively grows a decision tree for these
sets (Line 5). The division process terminates when all examples belonging to thesubset
under consideration are of the same class (Line 1). The subprogramsStoppingCondition
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andMakeTreehave been segregated from the actual growing procedure for subsequent
purposes.

ProcedureGrowTreeproduces a decision tree that is consistent with the sample. All
consistent decision trees are not considered equally good. It is generally accepted that
simplicity should be favored in the classifiers produced by inductive learning programs.
Reasons for favoring small classifiers are many: According to Occam’s Razor [Blumer
et al. 1987] a simple explanation is more likely to be correct than a complex one, the
average cost of classifying instances by a simple classifier is smallerthan that when us-
ing a complex classifier [Núñez 1988, Tan & Schlimmer 1990], and the relevant things
(attributes, cut points, etc.) will be more clearly visible in a simple rule (comprehensibil-
ity). However, because of the inherent trade-off between simplicity and accuracy [Fisher
& Schlimmer 1988, Ibaet al. 1988, Bohanec & Bratko 1994] one is doomed to balance
between these desired properties. Learning decision trees that are optimal with respect
to many criteria, unfortunately, turns out to be a NP-complete problem [Hyafil &Rivest
1976, Comer & Sethi 1977, Murphy & McCraw 1991, Hancocket al. 1995] and, hence,
intractable in practice.

ProcedureGrowTreestill leaves many details of decision tree growing unspecified.
Most conspicuously it does not fix any method of choosing an attribute from among
the available ones; for that end one commonly employs an information theoretic eval-
uation function to merit the candidate attributes. It is used to assess which division by
a candidate attribute gives the best subsamples for predicting the class labels of train-
ing examples. More precisely, the function is used to approximate, for each candidate
attributea in A, the increase of information�I (about the class labels of training exam-
ples) that would be gained by dividing the subsampleS under consideration into subsetsS1; : : : ; Sjaj according to the value of the attributea when compared to the situation
whereS is left undivided. The heuristic implements some form of inductive bias. The
common goal of these measures is to keep the resulting tree as concise as possible with-
out sacrificing much of its accuracy. The most generally used information theoretic eval-
uation functions belong to the family ofimpurity measures[Breimanet al. 1984]. For a
thorough account of attribute selection criteria and their background see Kononenko and
Bratko [1991] and for empirical comparisons of different heuristics see, e.g., Mingers
[1989a] or Buntine and Niblett [1992].

Example. Quinlan’s [1983, 1986b] ID3 algorithm uses the information theoretic concept
mutual information, or information gainfunction, as its attribute merit function; it can
be formalized as follows.

LetC be a discrete random variable with rangeRC . For anyc 2 RC let p(c) denote
the probabilityPfC = cg. The (Shannon)entropyof C, H(C), measures the infor-
mation provided by an observation ofC or, correspondingly, the amount of uncertainty
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aboutC; it is defined asH(C) = � Xc2RC p(c) � log2 p(c) = Xc2RC p(c) � log2  1p(c)! :
For a pair of random variablesA andC, we measure the uncertainty aboutC after
observingA by conditional entropy:H(CjA) = Xa2RA;c2RC p(a; c) � log2  1p(cja)! ;
wherep(a; c) = PfA = a; C = cg andp(cja) = PfC = cjA = ag. Now, sinceH(C) represents our uncertainty aboutC before observingA, andH(CjA) represents
our uncertainty afterwards, their difference represents the amount of information aboutC given byA. This quantity is themutual information, defined asI(C;A) = H(C)�H(CjA):

In tree growing we, naturally, want to evaluate for each candidate attribute the given
amount of information about the value of the class attribute. The attribute that increases
information the most is then added to a node of the evolving tree. Generally we do
not know theprior probabilities p(c), p(a; c), andp(cja), but have to resort todata
priors p̂(c), p̂(a; c), and p̂(cja) instead. Data priors are simply relative frequencies of
attribute values in the data. For instance,p̂(c) = jScj=jSj, whereS is the (sub)sample
under consideration andSc is the subset ofS, which consists of those elements that haveC = c. (For a full account of data priors in this task see e.g., [Pagallo & Haussler 1990].)2

Another detail in decision tree growing, which deserves some attention, is that usu-
ally decision trees are generated without look-ahead and attributes are evaluated one at
a time in separation, as presented above. In other words, if there is some dependence
between two or more attributes (with respect to the classification of examples) this will
go unnoticed by the evaluation function. It is only after one of the attributes is chosen
(maybe by pure chance) to the tree that such interrelations between attributes may be-
come visible to the evaluation function. A well-known example of functions with such
dependent attributes is the family of multiplexor functions for which size-optimal deci-
sion trees are inherently unlearnable by algorithms utilizing impurity measures [Quinlan
1988a].

This shortcoming of impurity measures has received much attention in the context of
decision tree learning only fairly recently, the obvious solution being to consider some
combination of attributes at a time. In general, this technique is known asconstructive
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induction [Michalski 1983], because new high-level features are constructed from the
original primitive attributes, or asdynamic bias[Utgoff 1986], since the inductive bias
changes dynamically. In decision tree learning constructive induction was first studied
by Matheus and Rendell [1989] and Pagallo and Haussler [1990], both of whom used
conjunctions of (binary) attributes as high-level features. A more traditional way to de-
tect attribute interconnections is, as indicated above, to let the search procedure dolook-
ahead; i.e., instead of evaluating a single attribute at an isolated node of the evolving
tree, evaluate multiple variables and (partial) subtrees at once. Naturally, this approach
can turn out to be computationally quite expensive in comparison with the straightfor-
ward approach. Look-ahead is the approach taken, e.g., in the successful ACLS decision
tree learner [Shepherd 1983, Shepherdet al. 1988], and it is, also, the approach taken in
the development of a learning algorithm in the next chapter.

Similarly as attributes could be grouped together to form new features, using at-
tribute value combinations can prove to be beneficial. To an extent it may prevent the
same subtree from repeating at different branches of the tree and, more importantly, may
retain the good functioning of the attribute selection heuristics—by “normalizing” the
evaluation—when the size of the value range grows [Cestniket al. 1987, Quinlan 1993].
On the downside, the number of candidate partitionings grows exponentially.

As a final point about the procedureGrowTreewe note that it only specifies how
to deal with nominal attributes; what to do with ordered and continuous, ornumerical,
value ranges is left open. Obviously, all values of an infinite range cannot have their
individual edge and subtree in a decision tree, neither is it possible to let a finite but
large number of values to be used. Therefore, numerical ranges need to becategorized
into a small number of intervals. Categorization can be done by the domain expert ina
knowledgeable way, or it can be left for the learning algorithm to do. Traditionally, in au-
tomatic techniques only a singlecut pointhas been searched for and the value range has
been divided into two in one node; this is known as thebinarizationtechnique [Breiman
et al. 1984, Cestniket al. 1987]. A range that is cut into two can, deeper down the tree,
be refined further by binarization of the subranges. Recent studies [Chou 1991, Fayyad
& Irani 1993, Fultonet al. 1995], however, indicate that it would be better to perform a
multi-interval split at once rather than as a sequence of binary splits. Subsequently we
assume that numerical ranges have been categorized beforehand. For more information
on automatic handling of numerical ranges see, e.g., Fayyad and Irani [1992].

In the foregoing it has been presented only that, given a set of examples, a small
decision tree that is consistent with the training set is to be sought for. This can hardly
be termed learning. Anyhow, growing a consistent decision tree tends to produce hy-
potheses that are too specifically oriented to classifying those examples that happen to
be present in the training set, in which case the tree grown will predict poorly the class of
an unseen instance. In other words, the learning algorithm has not succeeded in captur-
ing the underlying law governing the classification of instances and, thus, learninghas
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Procedure 2.4StoppingCondition(S;C)
input: a set of examplesS.
output: a truth value. (Out parameter C records a class name.)
begin

% LetC be the label of the majority of examples inS.
(1) if all but aninsignificantportion of the examples inS belong to the classC or
(2) the cardinality ofS is too smallto calculate reliable significance measures
(3) then return true else return false fi
end;

not taken place. This phenomenon has been termedoverfittingor overgrowing.
In order to avoid fitting the resulting tree too closely to the training set,it has to

be prunedback to reduce the tree’s dependence on the specialities of the training set.
Alternatively, (preliminary) pruning can be performed simultaneously withthe growing
of a tree. Then, at each branch, growing has to be stopped before the tree becomes too
specific. From the basic tree growing method we obtain procedureGrowPrunedTreeby
slightly modifying the stopping condition so that it leaves the tree robust with respect
to the training set, but increases its accuracy in classifying new instances. Note that,
while the basic tree growing procedure requires a consistent sample in order to beable
to operate, the modified program tolerates inconsistencies in the training data. This is a
necessary feature in noisy and incomplete domains of the real world.

The procedureStoppingConditionis changed to returntrue (leave a set of examples
undivided) if the proportion of examples that have different class than the majority of
examples or the absolute number of examples in the set is below a certain limit.Other-
wise there is no change in the tree-growing procedure. A statistical distribution can be
used to determine whether the proportion of examples, whose classification differs from
that of the majority, is significant or not.

Example. LetA be an attribute with the (nominal) rangeRA = fa1; a2; : : : ; amg and letC be the class attribute with the rangeRC = fc1; c2; : : : ; cng. The numbers of observed
occurrences ofA’s values and classes can be cross-tabulated into am � n contingency
table as follows.

The deviation of the example distribution within the sample from the one expected,
under the assumption thatA is irrelevant to the class of an example, can be approximated
from the data as the sum of the squared difference of the observed and expected number
of occurrences of classcj 2 RC among the examples having valueai 2 RA. The
expected values are obtained by considering the whole subsampleS. If A is irrelevant
to the value ofC, the expected number of occurrences withA = ai andC = cj in S is
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Table 2.1: Cross-tabulation of classes and the values of attributeA.a1 a2 ... am TOTALc1 n11 n21 ... nm1 N1c2 n12 n22 ... nm2 N2
...

...
...

...
...cn n1n n2n ... nmn Nn

TOTAL M1 M2 : : : Mm Neij = (Mi � Nj)=N , whereN = jSj. The observed values, here, are the entriesnij in
the table above. Hence, the approximation of deviation isXa2RA Xc2RC (nac � eac)2eac = mXa=1 nXc=1 (nac � eac)2eac :

This statistic is distributed as the�2 distribution with(m � 1)� (n� 1) degrees of
freedom. The�2 test for stochastic independence can now be used to determine, with
desired confidence, whether attributeA is significant to the classification of examples or
not. The difference of the statistic as computed from the data and as tabulateddetermines
the confidence with which one can reject the hypothesis that the class of an example is
independent of the value ofA. If the confidence does not attain a user-specified thresh-
old, attributeA is not accepted to the evolving tree. The�2 test, like most stochastic
methods, looses its reliability when the number of examples becomes small [Quinlan
1991]. The above-described method is used in the ID3 algorithm of Quinlan [1986a]
in significance testing and in a different task in the CN2 decision list learner [Clark &
Niblett 1989]. 2

Post-pruning of the constructed decision tree is performed by considering for each
internal node of the tree whether it is better to leave the subtree rooted at thatnode intact
or to replace it by a leaf node. This decision is based on an estimate of the changein
error introduced by the replacement. Since the tree has been grown to faithfully reflect
the composition of the training set, it cannot usually be pruned using error estimates
arising from that same set of examples (resubstitution errors)—rather, an independent
set of examples, apruning set, is required. The error estimates utilized in pruning tech-
niques are based on a variety of criteria. For instance,cost-complexity pruning[Breiman
et al. 1984] takes into account the topology of the resulting tree in addition to the change
in classification performance,reduced error pruning[Quinlan 1987c] (see the example
below) only considers classification error,pessimistic pruning[Quinlan 1987c] uses bi-
nomial distribution with continuity correction, andminimum error pruning[Niblett &
Bratko 1986] is based on Laplace’s law of succession.
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Example. Reduced error pruningis a method suggested by Quinlan [1987c] for deci-
sion tree simplification; it has recently found success as a pruning technique in rule set
learning [Pagallo & Haussler 1990, Cohen 1993]. The method is straightforward: Given
a decision treeT and a pruning setP , for every nonleaf subtreeQ of T , examine the
change in the number of misclassifications overP that would occur ifQ was replaced
by the best possible leaf. If the pruned tree would give equally many or fewer errors thanT , then replaceQ by the leaf. The process continues until no further replacements occur.2

The advantage post-pruning possesses over on-line pruning is that, when processing
a fully grown decision tree, its global properties can be taken into account; when pro-
cessing an evolving decision tree on the fly we must content ourselves with the local
information available. Even combined pruning techniques exist: Gelfandet al. [1991]
present a tree growing procedure that performs post-pruning on the fly by means of bi-
narization: The training examples falling to the left subtree are used in pruning the right
one, andvice versa. Clearly, harmful dependencies can invalidate this approach. In spite
of post-pruning’s clear advantage over on-line pruning we stick to the latter, because—as
demonstrated in Chapter 3—it can be analytically shown to work. For further informa-
tion and empirical comparisons of post-pruning techniques see, e.g., Mingers [1989b] or
Buntine and Caruana [1993].

2.2 Alternative approaches to decision tree learning

The term “decision tree” is quite heavily overloaded in computer science; several fields
have studied decision tree construction (see e.g., [Moret 1982]) and slightly different
things are referred to as decision trees. There are, however, three (partially) separate
communities that mean more or less the same thing with that term; the study of decision
tree learning has progressed, in part, independently in these communities. Decision trees
were first studied in statistical pattern recognition research. Machine learning borrowed
the initial ideas from this community, but developed the ideas further independently.
The latest recruit is the theory of computing community, which has come up with new
viewpoints to decision tree learning quite recently.

The studies of pattern recognition and machine learning communities have led to
quite similar results, though via different routes. The pattern recognition research is
mainly concerned with numerical data and, since statistical discrimination is the clas-
sical technique for classifying numerical data, it is natural that trees, where the nodes
contain a numerical discriminator,regression trees[Breimanet al. 1984], for instance,
were the starting point of decision tree studies in this field (see e.g., [Henrichon & Fu
1969, Friedman 1977]). On the other hand, machine learning—as a subfield of artificial
intelligence—is more interested in symbolic data and, therefore, a differentapproach
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was first taken [Quinlan 1983]. Later these fields have come closer together; methods
for handling symbolic data have been incorporated into pattern recognition techniques
[Breimanet al. 1984] and numerical databases have gained importance in machine learn-
ing [Van de Merckt 1993, Elomaa & Ukkonen 1994, Murthyet al. 1994].

The research on decision tree learning is totally dominated by the recursive parti-
tioning control strategy of TDIDT in both pattern recognition and empirical machine
learning. Rather than alternative approaches, these fields have studied learning alterna-
tive, but closely related, concept representations. For example, learning algorithms for
production rule sets[Michalski et al. 1986] anddecision lists[Clark & Niblett 1989] use
pretty much the same induction techniques as TDIDT and these concept representations
have a direct correspondence to decision trees. Learning true extensions of decision trees
has also been studied:Decision trellises[Chou 1991] anddecision graphs[Oliver 1993,
Kohavi 1994] have the form of a directed acyclic graph (dag)—a tree is a special case
of a dag. Quinlan [1990b] has even applied basic TDIDT techniques toinductive logic
programming.

Bottom-up control strategy for decision tree construction has been suggested by Lan-
deweerdet al. [1983], but since their approach is unsupervised, it has only little relevance
to other decision tree learning approaches. Another concept learning approach that could
be seen as an alternative to TDIDT is constructingone-level, or one-shot, decision trees
[Landeweerdet al. 1983, Iba & Langley 1992, Holte 1993] and other similar subclasses
defined by extreme syntactic restrictions [Aueret al. 1995]. However, basically they
are just restricted forms of TDIDT and as such do not qualify as true alternatives. Fur-
thermore, the utility and potential of such approaches have serious limitations [Elomaa
1994].

Rissanen’s [1989]minimum description length principle(MDLP) says that the best
explanation of a set of data is the one that minimizes the representation length (in bits) of
the data when represented in terms of a theory and exceptions to it (cf. Occam’s Razor).
This approach has recently gained much ground in machine learning. The first seri-
ous attempt to apply MDLP to decision tree learning was done by Quinlan and Rivest
[1989]; Wallace and Patrick [1993] later continued the work. In this connection the the-
ory, of course, has the form of a decision tree. Hence, efficient encoding of a decision
tree is essential in this approach, and that is what Quinlan and Rivest as well as Wallace
and Patrick consider most. The search control strategy in their decision tree learning
method, though, is the familiar two-stage TDIDT approach, where MDLP determines
the attribute evaluation function. Rissanen’s [1995] own studies on MDLP-baseddeci-
sion tree learning follow closely those of Quinlan and Rivest. Fayyad and Irani [1993]
and Quinlan [1996] have also applied MDLP to decision tree learning. They, too, use
standard TDIDT control strategy and put MDLP into practice only when choosing the
cut points in a continuous-valued attribute’s discrete categorization.

Also in pattern recognition many methods for learning decision trees that fulfill some
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optimality criterion have been studied. For example, Meisel and Michalopoulos [1973]
have studied learning decision trees that minimize the average path length. Payne and
Meisel [1977] have studied generic optimal decision tree construction, where a parti-
tioning of the data and an optimality criterion are given and a decision tree,which is
equivalent with the given partitioning, but minimal with respect to the criterion, is de-
veloped. Because of the known computational intractability of learning optimal decision
trees, these methods, however, fail to fulfill practical efficiency requirements.

Theoretical work on machine learning has, naturally, had an interest in providing
results about the learnability of the concept representations that are applied inpractice
(the formal learning model is introduced in the next section). In the mathematical learn-
ing framework the hypothesis does not necessarily have the same form as the target
concept—it may belong to another (a richer) class of representations. Therefore, many
theoretical studies are not quite along the same line as empirical ones, where the hy-
pothesis representation language—suiting the purpose better or worse—is usually fixed.
Nevertheless, the general learnability of decision trees remains an openproblem even to-
day [Hancocket al. 1995]. However, in the tradition of empirical research Ehrenfeucht
and Haussler [1989] provided a constructive proof of the learnability of a subclass of
decision trees. We consider this subclass and present extensions to the learningmethod
in the next chapter. A closely related result is Rivest’s [1987] proof of the learnability ofk-decision lists—a subset of general decision lists.

Linial et al. [1989] initially showed how learnability under the uniform example dis-
tribution (cf. next section) can be derived by observing the spectrums of the Fourier trans-
forms of a function class. The key idea in this technique is that learning can be achieved
by estimating the dominating Fourier coefficients from randomly chosen inputs. The
first polynomial-time learning results using this technique were provided for decision
trees. First, Aiello and Mihail [1991] proved that�-decision trees are polynomial-time
learnable; a�-decision tree mentions any variable at most once. Soon thereafter Kushile-
vitz and Mansour [1991], using the same technique, obtained the learnability of decision
trees that may have linear operations (features) in each node; the learning algorithm is
permitted—and required—to ask membership queries (cf. [Angluin 1988]). Both proofs
are constructive, i.e., a learning algorithm is presented, but the hypotheses do not have
the form of a decision tree. Furthermore, both results only apply when all examples of
the domain are equally likely, i.e., under the uniform distribution.

Hancock [1990, 1991, 1993] has studied the learnability of decision trees where the
number of variable occurrences is limited—in the simplest form�-decision trees and,
in general,k� decision trees, wherek denotes the variable occurrence restriction. In
these studies membership and equivalence queries are allowed—and needed. This work
has demonstrated, for an arbitrary constantk, the learnability ofk� decision trees over
arbitrary example distributions using richer hypothesis description languages [Hancock
1991] and over the uniform example distribution using only decision trees as hypotheses
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[Hancock 1993].

2.3 Probably approximately correct learning

Valiant’s [1984] attempt to formalize inductive concept learning has drawn attention
to the computational aspects of machine learning. In particular, Valiant’s framework
emphasizes the efficiency of hypothesis building. Learning in the sense of Valiant’s
definition is known asprobably approximately correct(PAC), ordistribution-free, learn-
ing. Despite the evident shortcomings of the PAC learning framework’s underpinnings
and utility [Amsterdam 1988a, 1988b, Buntine 1989, 1990, Dietterich 1989, Saitta &
Bergadano 1993] it has become the standard theoretical model of concept learning.

Several different formulations of PAC learning have appeared in the literature. The
variants, however, turn out to define equal models [Haussleret al. 1991]. In the following
we recapitulate Natarajan’s [1991] formulation of PAC learning of functions on discrete
domains. For an extensive treatment of computational learning theory we refer the reader
to one of the recent textbooks on the topic; e.g., to that by Anthony and Biggs [1992]
or that by Kearns and Vazirani [1994]. For a more concise presentation of the research
issues see Angluin’s [1992] article.

In the following we consider multivalued variables and classes. It is assumed that a fi-
nite discrete domain of multiple values is encoded with a sequence of consecutivenatural
numbers starting from 1. Such an initial segment is denoted[m] = f i 2 IN+ j i � m g.
For example, the domainD = fa; b; c; d; eg, whose cardinality is 5, is encoded as[5] = f1; 2; 3; 4; 5g. We are dealing with nominal attributes only; i.e., the values are
unordered. By[m]n we denote, as usual, then-fold Cartesian product of[m]. A n-ary
function on[m] is a mapping from[m]n to [m].
Notation We denote the symmetric difference of two setsS andT by S4T = (S nT ) [ (T n S). The cardinality of a setS is denoted byjSj. The set of all finite
strings of an alphabet� is denoted by��. If w 2 ��, then the length ofw, de-
noted byjwj, is the number of characters in the stringw. We let�[n] denote the setfw 2 �� j jwj � n g. By BA, whereA andB are sets, we denote the set of functionsf f j f is a function, Dom(f) = B, Rng(f) � A g.

A concept is a subset of theinstance spaceX, whereX is an arbitrary set. Let� be theindicator functionassociated with; this function indicates for eachx 2 X
whether it belongs to or not: �(x) = � 1 if x 2 ,0 if x 62 .

An exampleof a total function�:X ! Y is a pairhx; �(x)i, wherex 2 X. The
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set of all examples for� is graph(�) = f hx; yi j x 2 X; y = �(x) g. We say that� is
consistentwith a set of examplesS if S � graph(�).

A function classis a tripleF = (F;X; Y ), whereX andY are arbitrary sets andF is any collection of total functions fromX to Y . The setX is thedomainof F andY is therangeof F . They will also be called theinstance spaceand theset of classes,
respectively. A class of representations for functions is a five-tuple:R = (�;�;�; R; f).
Sets�, �, and� are finite alphabets. Strings composed of characters in� are used to
describe elements ofX, strings in�� are used to describe elements ofY , and strings in�� describe the functions. The setR � �� is the collection of function representations,
andf :R!�� �� is a mapping from these representations into functions from�� to��.
For any representationr 2 R by f(r) we denote the function represented byr. For
any class of representationsR = (�;�;�; R; f) there is an associated function classF(R) = (f(R);��;��), wheref(R) = f f(r) j r 2 R g. The length of the shortest
representation for a function� is denoted bỳmin(�;R) = minf jrj j r 2 R; f(r) = � g
(or `min(�) for short whenR is clear from the context).

Example. Recall our mail order enterprise from the examples of Chapter 1. The cus-
tomer profile descriptions represented by decision trees are total functions. Hence, the
function class(DT , “customer”,“product group”) is what our company is interested in.
The total functions inDT are defined by decision trees fulfilling some criterion; for
example, our enterprise may only be interested in errorless descriptions, i.e., consistent
trees. Let us assume, for simplicity, that customers are described byn attributes each
havingm possible values and that there arek different product groups that we are in-
terested in. Then, a customer is described by giving, for each attribute, the number in[m] that corresponds to the observed value of the attribute. Thus, instances are strings
in f1; : : : ; mgn and, hence,� = f1; : : : ; mg. Let� be an alphabet for writing attribute
names down; e.g.,� = f ‘sex’, ‘population’, ‘distance’,: : : g. By tabulating the attribute
names it suffices to set� to be the set of table indices, i.e.,� = [n]. Similarly,� is an
alphabet for describing the set of class labels; here it suffices to have� = [k]. � is the
set of characters needed to represent trees, e.g., in thenested parentheses representation
[Knuth 1969]:� = � [ � [ f ‘(’, ‘)’ g. Then the setR consists of legal nested paren-
theses representations of decision trees over� [�, where strings of characters of� are
used to label internal nodes and characters of� are used as leaf labels. Finally, functionf maps each decision tree representationr 2 R to the unique mapping, which is a total
function from�n to � such that it satisfies all paths of the decision tree corresponding
to r. We say that a functiong satisfies a path in a decision tree ifg maps a configuration
corresponding to the edge labels on the path to the label of the leaf node at the end of the
path. 2

If f(r): x 7! y, then we writer(x) = y. We write r in place off(r) when the
meaning is clear from the context. Anexampleof r is a pairhx; r(x)i. Here the learning
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algorithm has at its disposal anexample oracleEX(P; r), which draws examples of the
target functionf(r) according to the fixed, but unknown probability distributionP on��. In other words, when called, the oracle chooses a description of an instancex 2 ��,
according toP , and returns the pairhx; r(x)i.

The error of a hypothesis functionh is the total weight of the unknown, arbitrary
probability distributionP on the instances that are mapped incorrectly byh. In other
words, for the target functiont the error of hypothesish isP (h4 t) =X� P (x);
where� = fx 2 X j h(x) 6= t(x) g. Note that misclassifying rare cases causes less
error than misclassifying commonly occurring cases.

In the formal definition of learning we need to be exact about the lengths of input
and output strings. Therefore, we need to refer to length-bounded subsets of function
classes. In the following we define projections of functions and function classes.

Definition For any functiong 2 f(R) 2 F(R), for someR, and for anyn; k 2 IN, the
projectiongn;k of g on�[n] � �[k] is

1. undefined if there existsx 2 �[n] such thatg(x) 62 �[k];
2. else, the functiongn;k: �[n] ! �[k] such that for allx 2 �[n], gn;k(x) = g(x).

The subclassFn;k(R) of F(R) is the projection ofF(R) on�[n] � �[k]; i.e.,Fn;k(R) =(fn;k(R);�[n];�[k]), wherefn;k(R) = f gn;k j gn;k is defined; g 2 f(R) g :
By fn;k(r) we denote the projection off(r) on�[n] � �[k].

Let us make the following simple observation. Leth be a hypothesis function that
is consistent with a sample of the target functiont 2 Fn;k(R), for somen; k 2 IN,
drawn according to a probability distributionP on �[n]. Now, P is nonzero only on
strings of lengthn or less. All the examples drawn involve strings from�[n], andh is
consistent with these examples if and only ifhn;k is consistent with them. ThereforeP (h4 t) = P (hn;k4 tn;k).

At last we have at our disposal all the necessary notation and concepts that are needed
in formalizing probably approximately correct learning. There are two parts to PAC-
learning: The target concept has to be identified accurately with a high probability and
it has to happen efficiently (in polynomial time). If there exists a learning algorithm that
can attain both requirements for all projectionsFn;k(R) of a function classF(R) under
any probability distribution on the instance space, then we say thatR is polynomially
learnable.
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The success of a learning algorithm is measured by two parameters which aresup-

plied as inputs to the algorithm. The algorithm is expected to produce a hypothe-
sis h, whose error is less than an arbitrary prespecifiedaccuracy parameter", where0 < " � 1. The rate on which the algorithm is to produce these accurate hypotheses
is specified with aconfidence parameter�, where0 < � � 1. Because of “bad luck”
in drawing the examples the algorithm may sometimes produce an answer with error
greater than", but we require that the probability that an accurate answer is produced is
at least1 � �. The tighter the bounds" and� are, the more examples and computation
time the algorithm is expected to consume.

The time complexity of the learning algorithm is further restricted by the length of
the input examples and the length of the shortest name of the target functionf : `min(f).
Polynomial learnability of function class representations is defined as follows.

Definition 1 A class of representationsR = (�;�;�; R; f) is polynomially learnable,
if there exists an algorithmL and a polynomialpL such that for all� n; k � 1,� " and�, where0 < "; � � 1,� r 2 R such thatf(r) 2 Fn;k(R), and� probability distributionsP on�[n],
if L is given as input the parametersn, k, ", and�, and may access the oracleEX(P; r),
thenL halts in timepL(n; k; `min(f(r)); 1="; 1=�) and, with probability at least1 � �,
outputs a representationr0 2 R such thatP (r04 r) � ". Such an algorithmL is a
polynomial-time learning algorithmfor R.

After having made the representation issues formal, we now turn to functions from�� to �� and the learnability of classes of such functions. The underlying idea is that
there is a fixed class of representationsR that we are concerned with. In the following we
write Fn;k instead ofFn;k(R) andF instead ofF(R). We note that the following conse-
quence of the above definition of polynomial learnability carries from concept learning
over to function class learning. The result was originally presented by Blumer et al.
[1987].

Theorem 2 Let F be a function class, and letP be a probability distribution. Given
a functiong 2 F and a sampleS of g of sizem, drawn according to the probability
distributionP , the probability is at mostjF j (1� ")m
that there exists a functionh 2 F such that the error ofh is greater than", andh is
consistent withS.
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Proof If h is a single function inF of error greater than" for the targetg, the chance
thath is consistent with a random sampleS of sizem is less than(1� ")m: SinceF hasjF j members, the chance that there existsanymember ofF that is consistent with the
sample and satisfies the error condition is at mostjF j(1� ")m: 2

For a function classF to be polynomially learnable, the probability of coming across
a function with error greater" may be at most the value of the confidence parameter�.
Hence, from jF j(1� ")m � �
we obtain that m � 1� ln(1� ") �ln jF j+ ln 1�� ;
which certainly holds if m > 1" �ln jF j+ ln 1�� ;
sinceln(1 + �) < �: If m satisfies the above inequality, then the probability is at most�
that a function inF , which is consistent withS, will turn out to have error greater than". Hence, as a corollary we obtain the following result.

Corollary 3 LetF be a function class, and letP be a probability distribution. Consider
any" and� such that0 < "; � � 1, and any target functiong in F , and a sequence of at
least 1" ln jF j�
random examples ofg, each chosen independently according toP . Then with probability
at least1��, every functionh 2 F that is consistent with all of these examples has error
at most" for the targetg. 2

By this result, if there exists an algorithm, which can identify a hypothesis that is
consistent with a sample of(1=") ln(jF j=�) random examples, then that algorithm is a
polynomial learning algorithm forF if only the identification happens in polynomial
time.

This formulation brings out a quite natural measure of the complexity of a function
class: The logarithm of the size of the function class,ln jF j. It may be viewed as the
number of bits needed to write down an arbitrary element ofF using an optimal encoding
[Blumer et al. 1987, Rivest 1987]. Abusing terminology slightly we say that a function
classFn;k is polynomial-sizedif the complexity measureln jFn;kj is bounded by a poly-
nomial inn andk. Natarajan [1991] uses a generalization of the Vapnik-Chervonenkis
(VC) dimension [Blumeret al. 1987, 1989] to express his results. Instead of using this
somewhat abstract measure, we use the more concrete complexity measureln jF j to ex-
press the numbers of required examples. This gives often better approximation results
than using the VC dimension.
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2.4 Coping with random classification noise

Several derivates of the basic PAC-framework for modeling noise-affected learning situ-
ations have been put forward since Valiant’s [1984] original learnability definition (e.g.,
[Angluin & Laird 1988, Boucheron & Sallantin 1988, Kearns & Li 1988, Laird 1988,
Shackelford & Volper 1988, Sloan 1988, Valiant 1985]). In this section we show how
one of these models can be extended to deal with function classes.

In Angluin and Laird’s [1988] random classification noise model the learning al-
gorithm requests examples of the target conceptf from a sampling oracleEX�(P; f),
whereP is the unknown probability distribution on the instance space and� < 1=2 is
the unknownnoise rateaffecting the oracle. The oracleEX�(P; f), when called, draws
an instancex according toP and, with probability1� �, returns the pairhx; f(x)i and,
with probability�, the pairhx; 1� f(x)i. Learnability in the presence of random clas-
sification noise is defined equivalently to polynomial-time learnability [Valiant 1984],
except that now an additional parameter—an upper bound�b for the noise rate—has to
be taken into account in a learning algorithm’s time complexity. The noise rateis taken
notice of by bounding the value of(1=2� �b)�1 by a polynomial.

To extend the classification noise model into multiconcept learning situations we
let the oracleEX�(P; f) return, with probability�, an erroneous classification for the
selected instance. For our considerations it is immaterial how the erroneous value is
determined; for the sake of completeness, let us, however, agree that allk � 1 incorrect
classes have the same probability�=(k � 1) of being chosen. The noise rate� must
be restricted below value1=2 as in Angluin and Laird’s original model in order for an
identification procedure to be able to work (cf. [Angluin & Laird 1988, p. 348]).

Note that we are still effectively dealing with binary functions here: Either the ex-
ample returned by the oracle has the correct label or it has a label that is incorrect,
be it of any class. Thus, most results on noise-tolerant learning—in particular, those
by Sakakibara [1991, 1993]—apply in this situation too. Furthermore, even the proofs
are essentially the same and, hence, will be omitted here (see Appendix A for relevant
proofs).

The meaningfulness of this noise model and its relation to real life may well be
questioned but, nevertheless, this type of corruption of values has widely been usedto
test practical learning algorithms (e.g., [Clark & Niblett 1989, Quinlan 1986a, 1986b])
and it provides a proper extension of Angluin and Laird’s model. Here is the definition
of learnability in the presence of random classification noise.

Definition 4 The class of representationsR = (�;�;�; R; f) is polynomially learnable
in the presence of classification noiseif there exists an algorithmL and a polynomialpL
such that for all� n; k � 1 and� < 1=2,
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if L is given as input the parametersn, k, ", �, and�b, such that� � �b < 1=2, and may
access the oracleEX�(P; r), thenL halts in timepL  n; k; `min (f(r)) ; 1"; 1� ; 11=2� �b!
and, with probability at least1��, outputs a representationr0 2 R such thatP (r04 r) �".

In noise-affected domains examples drawn from the oracle all have to be taken
into account. We cannot treat the sample as aset of examples. Instead, the multi-
ple occurrences of examples in the sequence of examples drawn from the oracle have
to be dealt with. However, the order of examples is not important here and, thus,
we can treat the sample as a multiset. We letjSj denote the total number of exam-
ples (including multiple occurrences) in the sampleS. In addition, we letD(f; S) de-
note the number of disagreements between the functionf and the sampleS, i.e., ifS = hx1; l1i ; hx2; l2i ; : : : ; hxq; lqi, thenD(f; S) is the number of indicesj for whichf(xj) 6= lj.

Starting directly from the definition of learnability in the presence of classification
noise, it can be very difficult to obtain positive results (cf. [Angluin & Laird 1988]). A
helpful vehicle in proving the learnability of decision trees in the presence ofclassifica-
tion noise arenoise-tolerant Occam algorithms—Sakakibara’s [1993] generalization of
Occam algorithms [Blumeret al. 1987, 1989, Board & Pitt 1992]. Informally, from a
noise-tolerant Occam algorithm we require that the average disagreement in classifying
an instance using its hypothesis is, with high probability, at most only slightly above the
upper bound�b for the noise rate. The average disagreement may climb over the noise
rate only by an additive factor that is relative to the allowed error and the noise rate. A
straightforward generalization of these algorithms to function class learning situations
follows.

Definition 5 A noise-tolerant Occam algorithmO for a function classF is an algo-
rithm that, when given as input a sufficiently large sampleS of q examples drawn fromEX�(P; f), wheref 2 Fn;k, and parameters", �, and�b,

1. produces a representationr of a functionh 2 F, such thatD(h; S)q � �b + "(1� 2�b)4 ;
with probability at least1� �=2, and
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2. runs in time that is polynomial inn, k, q, 1=", 1=�, and1=(1� 2�b).

This definition is identical to Sakakibara’s [1993] original formulation of noise-tolerant
Occam algorithms, except that now we are dealing with function classes and the space[m]n rather than concept classes and the Boolean space.

Now the main result of Sakakibara [1993], namely that the existence of a noise-
tolerant Occam algorithm implies learnability in the presence of classification noise, can
be proved in the extended model also. The sample size that is required to guarantee,
with high probability, a low error for the resulting classifier is only four times that which
is required by an algorithm that works by minimizing disagreement [Angluin & Laird
1988].

Theorem 6 LetF be a polynomial-sized function class and let�b be such that� � �b �� + "(1 � 2�)=2. If there exists a noise-tolerant Occam algorithm forF, thenF is
polynomially learnable in the presence of classification noise. The sample size required
is at least 8"2(1=2� �b)2 ln 2jFn;kj� :
Proof Simple modification of Sakakibara’s [1993] proof (see appendix A for full proof).
The key idea in the proof is that if the noise-tolerant Occam algorithm is providedwith
a close-enough approximation of the noise rate� and a large-enough sample, then the
hypothesis returned by the algorithm fulfills the conditions of Definition 4. The sample
can be queried from the oracle and a good approximation for� can be found by iterating
the algorithm with carefully chosen, successively smaller values of�b. 2



Chapter 3

The Design of a Learning Algorithm

Ehrenfeucht and Haussler [1989] have shown that a subset of decision trees can be
learned in the PAC learning framework. The concept representations within this sub-
set are decision trees whoserank is bounded. Ehrenfeucht and Haussler also exhibit a
learning algorithm for these decision trees in the binary, noise-free setting. In this chap-
ter we demonstrate how their algorithm can be developed into a practical learning tool
without losing its provable properties. First, in Sections 3.1 and 3.2, we generalize the
concept of rank and modify the algorithm to deal with multivalued variables and classes.
Then, in Section 3.3, we demonstrate how decision trees of minimum rank can be con-
structed efficiently in the incremental setting. In Section 3.4 we modify the algorithm
to cope with random classification errors in the training examples. Finally, we present a
new decision tree learning algorithm—calledRank—incorporating all these properties.

3.1 The rank of a decision tree

We formalize first decision trees, their rank, and the functions they represent. Then a key
lemma, on which the proof of the learnability of decision trees is essentially based on, is
presented.

Definition Let Vn;m = fv1; : : : ; vng be a set ofn m-ary variables. The classDTm(n) ofm-ary decision trees(overVn;m) is defined recursively as follows:

1. If T is them-ary tree consisting of a single node labeled withk 2 [m] thenT 2DTm(n). We denote this caseT = k.

2. If T1; T2; : : : ; Tm 2 DTm(n) andv 2 Vn;m, then them-ary tree with root labeledv
and withi-th subtreeTi, for all i 2 [m], is inDTm(n). We refer to thei-th subtree
as thei-subtree.

27
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We say that a decision tree isreducedif each variable name appears at most once on

any path from the root to a leaf.
A decision treeT 2 DTm(n) defines a total functionfT : [m]n ! [m] in a natural

manner. Routing an example through a tree maps a set of variables inVn;m (the ones
tested at the nodes en route from the root to a leaf) with certain values (theturns taken
on the path) to a value for the function represented by the tree (the label of the leaf
reached). More formally, we definefT as follows:

1. If T = k, thenfT is the constant functionk.

2. Else ifvi is the label of the root ofT andTj the j-subtree for allj 2 [m], then
for any pointx = (x1; : : : ; xn) 2 [m]n we have: Ifxi = k (k 2 [m]), thenfT (x) = fTk(x).

The following definition is the feasible one out of the natural ways of generalizing
Ehrenfeucht and Haussler’s [1989] definition of rank for binary decision trees (cf.[Elo-
maa 1992]). It states that a tree of rankr can have at most one subtree with rankr. The
other subtrees may have rank at mostr � 1.

Definition Therankof a reduced decision treeT , denotedr(T ), is defined as follows:

1. If T consists of a single leaf, thenr(T ) = 0.

2. Else ifTmax is a subtree ofT with the maximum rankrmax, thenr(T ) = � rmax if Tmax is unique,rmax + 1 otherwise.

We letDTrm(n) denote the set of allm-ary decision trees inDTm(n) of rank at mostr and we letFm(n; r) denote the set ofn-ary functions on[m] that are represented by
the trees inDTrm(n).
Example. Delimiting the rank of a decision tree to valuer (together with the valuem)
determines the tree structures inDTrm(n): DT0m(n) only contains the single-leaf tree
structure, independent of the value ofm. The number of possible labelings of that only
leaf, n, then determines the number of functionally different equal-structured decision
trees. In particular, DT0m(n) always containsn separate one-leaf decision trees. For
valuesr > 0 there exists more than just one possible tree structure (assumingn > 1).
For instance, the following picture illustrates all (reduced) tree structures contained in
DT13(2).
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The actual decision trees are obtained from these structures by assigning each node with
a label; the labeling must be legal, i.e., it has to keep the tree reduced. The function
represented by a decision tree is not necessarily unique. For example, the two left-most
decision trees in the following picture represent the same function.
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If we increase the number of available variables, the one nontrivial subtree maygrow
further in size but not in rank. For instance, the right-most tree structure in the previous
picture belongs to DT13(3).

For higher values of rank the allowed tree structures are obtained by the same re-
cursive definition: At most one subtree may have the same rank as the whole tree, but
its position may vary. As the parametersm, n, andr grow, the number of legal tree
structures and their possible labelings goes up quickly. The following tree structures are
examples of those belonging to DT23(3).

Clearly, for any reduced decision treeT of arity m on n variables there existsr �0 such thatT 2 DTrm(n). In other words,
Sr�0DTrm(n) contains all legal reduced

decision trees, but for anyr there exists trees not enclosed inDTrm(n). 2
It is easily verified that

Sr�0 Fm(n; r) is the set of all functions from[m]n to [m].
However, for every fixedr, the setFm(n; r) is a proper subset of them. The follow-
ing counting argument demonstrates this by giving an upper bound for the number of
functionsFm(n; r) whenr < n.
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Lemma 7
(i) Let k be the number of nodes in a reducedm-ary decision tree overVn;m of rank r,

wheren � r � 1 andm � 2. Then2rm�m + 1 � k � (m� 1)�1  m rXi=0  ni!(m� 1)i!� 1! < 2�emnr �r ;
wheree is the base of the natural logarithm.

(ii) If r = 0 then jFm(n; r)j = m, elsejFm(n; r)j � (mmn
if n � r,(4mmn)(emn=r)r if n > r.

Proof

(i) Sincen � r, the number of variables allows constructing all trees of heightr + 1,
which include the smallest decision tree of rankr. Thus, in this case, the size of
the tree depends only on the values ofr andm, not onn. LetN(r;m) denote the
number of nodes in the smallestm-ary decision tree of rankr. From the definition
of rank, we haveN(1; m) = m+ 1 for allm � 2; andN(r;m) = 2N(r � 1; m) +m� 2 + 1= 2N(r � 1; m) +m� 1 for allm � 2 and r > 1:
The solution to this recurrence isN(r;m) = 2r�1(m+ 1) + r�2Xi=0 2i(m� 1) = 2rm�m + 1:
Hence we have the first inequality.

Now let L(n; r) denote the maximum number of leaves in any reducedm-ary
decision tree overVn;m of rank r. Observing that the largestt-ary decision tree
overn variables of rankn is the completet-ary tree of heightn + 1 and that such
a tree hastn leaves, we clearly have, from the definition of rank, the recurrence
system L(n; 0) = 1 for all n � 0;L(n; n) = mn for all n � 1; andL(n; r) = L(n� 1; r) + (m� 1)L(n� 1; r � 1) for all n > r � 1;
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since the variable that appears in the root of a reduced tree does not appear in any
subtree of the root. It is verified that the solution of this recurrence forn � r isL(n; r) = rXi=0   ni!(m� 1)i! ;
which has the strict upper bound(en=r)r(m� 1)r < (emn=r)r for all n � r � 1
(see [Blumeret al. 1989]). A fullm-ary tree has exactly(L� 1)=(m� 1) internal
nodes, whereL is the number of leaves in the tree. Hence, the total number of
nodes isL + (L � 1)=(m � 1) = (mL � 1)=(m � 1). This yields the second
inequality. Noting thatm � 2, we have that the number of nodes is bounded
above by2L < 2(emn=r)r yielding thus the third inequality.

(ii) If r = 0 thenFm(n; r) includes only the constant functions1, 2, : : :, m. HencejFm(n; r)j = m in this case. Ifn � r thenDTrm(n) includes every fullm-ary
decision tree of depthn. HenceFm(n; r) includes all functionsf : [m]n ! [m],
and thusjFm(n; r)j = mmn

. If n > r � 1 then each function inFm(n; r) is
represented by anm-ary tree with at mostk = (emn=r)r leaves, as shown above.
Let p = m=(m � 1), and note thatp � 2 whenm � 2. The number of distinct
unlabeledt-ary trees withz nodes is [Knuth 1969, Exercise 2.3.4.4-11]1(t� 1)z + 1 tzz ! = 1(t� 1)z + 1 tz(t� 1)z!:
Substitutingt = m andz = (mi�1)=(m�1), we have that the number of distinct
unlabeled trees withi leaves is1(m� 1)(mi� 1)=(m� 1) + 1 m(mi� 1)=(m� 1)(m� 1)(mi� 1)=(m� 1)! = 1mi p(mi� 1)mi� 1 !:
In a labeledm-ary tree overn variables, each leaf node is labeled with one of them classes, and each internal node is assigned one of then variables. Since an
unlabeledm-ary tree onn variables withi leaves has(i � 1)=(m � 1) internal
nodes, it can be assigned at mostmin(i�1)=(m�1) labelings. Hence, the number of
distinctm-ary decision trees onn variables with at mostk leaves is at mostkXi=1 min(i�1)=(m�1)mi  p(mi� 1)mi� 1 ! < (mn)k kXi=1  p(mi� 1)mi� 1 !� (mn)k2p(mk�1)� (mn)k22(mk�1)< (4mmn)k:
HencejFm(n; r)j � (4mmn)(emn=r)r in this case. 2
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Note that Lemma 7 proves that in the interesting case—whenn > r—the (logarithm

of the size of the) setFm(n; r) is polynomial-sized inn for fixedm andr, and that the
number of nodes in any decision tree of rankr is at most polynomial in the number of
nodes in the smallest decision tree of rankr. The latter result implies that the representa-
tion length of any decision tree of rankr, using a suitable representation (e.g., the nested
parentheses representation [Knuth 1969]), is polynomial in the representation length of
the smallest decision tree of rankr.

Let us briefly consider the intuition behind the definition of rank and the motivation
of learning decision trees of minimum rank. As already stated, learning decision trees
that are optimal with respect to several characteristic measurements has turned out to be
unfeasible in practice [Hyafil & Rivest 1976, Comer & Sethi 1977, Murphy & McCraw
1991] and it is generally believed that learning decision trees that fulfill any stringent
optimality criterion is a NP-complete problem [Hancocket al. 1995]. The main motiva-
tion of Ehrenfeucht and Haussler [1989] in defining the rank of a decision tree has been
to loosen the requirements of learning, but still retain some guarantees for theresulting
classifier. According to the definition of rank, as demonstrated by the previous lemma,
a tree of minimum rank is guaranteed to be within polynomial in size from the optimal
one.

What does it mean in practice that a tree is of minimum rank? What is its relation
to other possible representations of the underlying function? Blum [1992] has given one
characterization while proving that decision trees with rank at mostr are a subset of the
concept classr-decision lists [Rivest 1987]. Clearly a decision tree of rank 1 is a special
case of a decision list, which has single attribute tests in the conditions of rules. Blum
went on to show that, for anyr, a decision tree of rankr can be embedded into a decision
list with at mostr conjuncts in its condition terms. A side product of this construction
is the following characterization for a decision tree of rankr: There always exists a path
of length at mostr from any internal node of the tree to a leaf. In particular, this holds
for the root as well. More technical characterizations for decision trees ofrankr can be
found in Simon’s [1991] paper.

We concentrate, next, on examining the learnability of decision trees that areof the
smallest possible rankr for the given sample. Hence, the hypothesis is selected from
among decision trees of rankr. With the implications of Lemma 7 at hand—agreeing
on, say, the nested parentheses representation of decision trees—we put the decision tree
representation issues aside for the remainder of this chapter.

3.2 Finding consistent decision trees of minimum rank

In this section we give a method for identifying a decision tree that is consistent with the
given sample, prove its correctness, and analyze its computational complexity. Then, the
procedure is used to construct an identification algorithm for decision trees of minimum
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rank.

Notation Let S be a sample of ann-ary functionf on [m] andv be a variable inVn;m.
Assumev = vi, for some1 � i � n. ThenSvk , wherek 2 [m], denotes the set of
exampleshx; f(x)i in S such thatx = (x1; : : : ; xn) andxi = k. We sayv is informative
(onS) if there exist distincti; j 2 [m] such that bothSvi andSvj are nonempty. Therank
of a sampleS, denoted byr(S), is the minimum rank of any decision tree consistent
with S.

The construction algorithm for decision trees of rank at mostr follows the same
recursive divide-and-conquer control structure as Procedure 2.3GrowTree. However,
since we this time need to ascertain the minimum rank of the resulting tree, we cannot
do without backtracking. Given a sampleS of a function and a rank boundr, Procedure
3.1, which is a strict generalization of Ehrenfeucht and Haussler’s [1989] procedure
Find, returns a decision tree of rank at mostr consistent with the sampleS, if one exists.
Otherwise failure is reported.

The subprograms evoked byFind are as follows. It is simplest to considerExit to
be a macro, such that code “return T ; terminate” will be expanded in place of the call
Exit(T ). In particular, it is the procedureFind that returnsT and then terminates its
execution. Similarly as in Section 2.1,StoppingConditionis a Boolean-valued function,
which, here, returnstrue if all examples inS have the same classk 2 [m], otherwise
false is returned (k is an out parameter). FunctionMakeTree, again, puts together a
decision tree from its arguments so that the variable in its first parameter position will be
the label of the tree’s root and the following arguments will be the tree’s subtrees.

First procedureFind evokesStoppingConditionto check whether all examples be-
long to the same class (Line 1); if successful, macroExit is used to return an one-leaf
decision tree and terminate the execution ofFind. Otherwise, if the rank bound has value
0, failure has to be reported (Line 2). For larger rank bounds, an informative variable is
attempted as the label of the root of the evolving tree (Line 3). If necessary, all informa-
tive variables are attempted in their turn. For all subsets of the sample determined by the
chosen variable, the tree construction continues by recursively calling procedureFind
(Line 4). In order to ascertain that the final tree has rank at mostr, the recursive calls
are evoked with reduced rank boundr � 1. Furthermore, the chosen variable becomes
uninformative with respect to the subsets and can, therefore, be deleted fromthe set of
available variables in the recursive calls. If all recursive calls are successful—i.e., return
a consistent decision tree of rank at most(r � 1)—the final decision tree can be put
together (Line 5). On the other hand, if a single call proves unsuccessful, then the defi-
nition of rank gives us the possibility to repeat that one recursive call with ahigher rank
bound,r, and still obtain a final tree of rankr (Lines 6–8). If the rerun call, however, is
unsuccessful, then there cannot exist a decision tree of rankr for the given sample and
failure has to be reported (Line 8). Finally, if all permutations of informative variables
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Procedure 3.1Find(S; r; V )
input: a nonempty sampleS of somen-ary functionf on [m], an integerr � 0,

and a set of variablesV � Vn;m.
output: a decision treeT of rank at mostr that is consistent withS if one exists, else none.
begin
(1) if StoppingCondition(S; k) then Exit(T = k) fi ;
(2) if r = 0 then Exit(none) fi ;
(3) for each informative variablev 2 V do
(4) for eachk 2 [m] do T vk  Find(Svk ; r � 1; V n fvg) od;
(5) if 8k 2 [m] : T vk 6= none then T  MakeTree(v; T v1 ; : : : ; T vm); Exit(T ) fi ;
(6) if T vk = none for a single valuek = ` 2 [m] then
(7) T v̀  Find(Sv̀ ; r; V n fvg);
(8) if T v̀ 6= none then T  MakeTree(v; T v1 ; : : : ; T vm) elseT  none fi ;
(9) Exit(T )

fi
od;

(10) Exit(none)
end.

have been attempted without success, failure has to be reported (Line 10).
There is a slight oversimplification in Ehrenfeucht and Haussler’s [1989, p. 237]

proof of their algorithm’s correctness, when they state that: “If we stop in [Step] 3(c)
[Line 9 in Procedure 3.1] returning “none,” by the inductive hypothesis we must have
either r(Sv0 ) > r or r(Sv1) > r for some variablev, and hence, sinceSv0 ; Sv1 � S,r(S) > r.” Even though this deduction is valid, it is not immediate. The decision trees
for the samplesSv0 andSv1 depend on different attributes than the sampleS: The variablev is uninformative for samplesSv0 andSv1 , and can, thus, not appear in their decision
trees, whereas a decision tree for sampleS may contain tests for the variablev. If the
sampleS was first split by some other variablew (w would be assigned to the root of the
tree), then maybe we could find eligible subtrees forSw0 andSw1 . That this, however, is
not the case is shown explicitly in the following lemma:

Lemma 8 Let S be a sample onn Boolean variablesVn. Let r(S) = r. Then each
informative variablev 2 Vn that splitsS so that eitherr(Sv0) � r� 1 or r(Sv1) � r� 1,
has alsor(Sv1) � r or r(Sv0) � r, respectively.

Proof Let v be the label of the root of a decision treeT of rankr that is consistent withS. ThenT has subtrees of rank at mostr � 1 andr, by the definition of rank. Assume
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Figure 3.1: The pull-up operation in the case of binary attributes.

without loss of generality that the 0-subtreeT v0 has rankr � 1 and that the 1-subtreeT v1
has rankr.

Now, letw be another variable such that it is informative forS and splitsS to subsets
so that the rank of the other is at mostr � 1. Assume without loss of generality thatr(Sw0 ) � r � 1. We can now construct the 1-subtree for sampleSw1 from the decision
treeT . There are two cases:

1. w is tested in treeT . Then deleting fromT the nodes that are labeled withw and
those nodes’ 0-subtrees clearly results in a valid decision treeT 0 of rank at mostr(T ) = r consistent withSw1 . The 1-subtrees of the deleted nodes are pulled up to
replace the removed parts (see Fig. 3.1).

2. w does not appear inT . In this caseT can be used as such as the 1-subtree of the
tree.

In both cases a 1-subtree of rank at mostr could be constructed fromT . Hence,r(Sw1 ) �r. 2
The above lemma is presented for the binary case for simplicity. It generalizes to

multivalued attributes in a straightforward way: If am-valued root nodev hasm � 1
subtrees of rank at mostr � 1 for a sampleS of rank r, then the remaining subtree,
denotedk-subtree, has rank at mostr. In the proof of the lemma, the remaining subtree,k-subtree, can be constructed by deleting fromT all nodes labeled withv and all their
subtrees, exceptk-subtrees, similarly as in the Boolean case.

The proofs of the correctness and the running time of the procedure are simple vari-
ations of those for the Boolean case [Ehrenfeucht & Haussler 1989].

Lemma 9 The procedure Find is correct.
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Proof The correctness is established by induction onjSj andr.

If jSj = 1 or r = 0 then it is clear that the procedureFind(S; r; Vn;m) is correct.
Now assumeS is a sample withjSj = h � 2 andr � 1. Assume that the procedure

is correct forr � 1 whenS has arbitrary size, and forr whenS has size less thanh.
For any informative variablev, jSvk j < jSj for all k 2 [m]. Thus, it is clear that if

Find(S; r; Vn;m) does return a tree then by the inductive hypothesis and the definition of
rank it will be a tree of rank at mostr that is consistent withS.

If, on the other hand, none is reported, then, sincer � 1, execution must stop either
on Line 9 or Line 10. If we stop on Line 9 returning none, by the inductive hypothesis
we must haver(Svk) > r for somek 2 [m] andr(Svi ) � r � 1 for all i 6= k for some
informative variablev, and hence, by the generalization of Lemma 8,r(S) > r. If we
stop on Line 10, by the inductive hypothesis, we must have, for at least two distinct
valuesi; j 2 [m], r(Svi ); r(Svj ) � r for every informative variablev. Now, let T be
a decision tree of rankr(S) that is consistent withS and has a minimal number of
nodes. The root ofT must be labeled with a variablev that is informative forS, for
otherwise we can find a smaller decision tree of rankr(S) consistent withS. Now
assume thati; j 2 [m] are the two distinct values for whichr(Svi ); r(Svj ) � r. The i-
subtree ofT must be consistent withSvi and thej-subtree withSvj . Hence at least these
two subtrees must have rank at leastr, and thereforer(T ) > r by the definition of rank.
Thusr(S) > r. Hence in any case the procedureFind is correct. 2

In the following we prove that Procedure 3.1Find is efficient in the sense that its
running time is only linear with respect to the size of the sample and polynomial with
respect to the number of variables,n, and their arity,m, for fixed rank boundr.
Lemma 10 For any nonempty sampleS of ann-ary functionf on [m] andr � 0, the
time of Find(S; r) isO(jSj(m=2)r(n+ 1)2r).
Proof Fix n � 0 andk � 1, and letT (i; r) be the maximum time needed forFind(S; r; Vn;m)
whenS is a sample of a functionf : [m]n ! [m] with 1 � jSj � k and at mosti variables
are informative onS.

If i = 0 thenT (i; r) is O(1), sincejSj = 1 in this case. Ifr = 0 thenT (i; r) is
clearlyO(k). If r � 1 then the time required to test if all examples are of the same
class (functionStoppingCondition), and to determine which variables are informative
(Line 3), and to perform other miscellaneous tests in the procedure isO(kn). Each
recursive call on Line 4 takes time at mostT (i � 1; r � 1) since the variablev is no
longer informative inSvj for any j 2 [m]. These calls are made at mosti times in the
course of the loop on Lines 3–9, yielding thus a total time for all executions on Line 4 of
at mostmiT (i�1; r�1). The only remaining action is on Line 7, where a recursive call
is made toFind(Svj ; r; V n fvg) for somej 2 [m] for some informative variablev. This
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takes time at mostT (i� 1; r). Since the conditional statement on Lines 6–9 terminates
the loop, this call is made at most once. It follows that forr � 1,T (i; r) � O(kn) +miT (i� 1; r � 1) + T (i� 1; r):
Thus we have the following recurrence forT (i; r):T (0; r) � c1 for all r � 0;T (i; 0) � c1 for all i � 0; andT (i; r) � c2 +miT (i� 1; r � 1) + T (i� 1; r) for all i; r � 1;
wherec1 andc2 are positive constants that areO(k) andO(kn), respectively. Solving
the last term, it follows thatT (i; r) � c2 +miT (i� 1; r � 1) + i�1Xj=1 (c2 +mjT (j � 1; r � 1)) + T (0; r)� c2i+m iXj=1 jT (j � 1; r � 1) + c1� c1 + c2i +mi(i + 1)2 T (i; r � 1);
sinceT (i; r) is clearly an increasing function in the range ofi. HenceT (i; r) < c1 + c2(i+ 1) + 12m(i+ 1)2T (i; r � 1):
Solving, it follows thatT (i; r) � c2 r�1Xj=0�m2 �j (i + 1)2j+1 + c1 rXj=0�m2 �j (i + 1)2j� O kn�m2 �r�1 (i+ 1)2r�1 + k �m2 �r (i + 1)2r! :
Sincei � n andk = jSj, this implies that the time forFind(S; r; Vn;m) isO(jSj(m=2)r(n+ 1)2r): 2

Given the procedureFind, we can now construct an algorithmFindmin(S) to find
a minimum rank decision tree for a sampleS by simply executingFind(S; r; Vn;m) for
consecutive rank candidatesr = 0; 1; 2; : : : until a decision tree is returned. By Lemma
10, the time forFindmin(S) isO0@r(S)Xr=0O(jSj(m=2)r(n+ 1)2r)1A = O(jSjmr(S)(n+ 1)2r(S)):
Hence we have
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Theorem 11 Given a sampleS of ann-ary functionf on [m], using Findmin(S)we can
produce a decision tree that is consistent withS and has rankr(S) in timeO(jSjmr(S)(n+ 1)2r(S)): 2

Lemma 7 and Theorem 11 have already given us the results that would be needed
to conclude the learnability of decision trees of bounded rank if the function classesFm(n; r) were representation length bounded projections (cf. [Natarajan 1991]). As it
happens, there is some overlap between these function classes, as can be observed from
Lemma 7. That is, the minimum rank decision tree for a functionf is not necessarily
the smallest (and shortest) representation off . Therefore, we use Corollary 3 explicitly
to conclude the learnability of decision trees of at most a fixed rank.

Theorem 12 For anyn � r � 1 andm � 2, any target functionf 2 Fm(n; r), any
probability distribution P on[m]n and any0 < ", � < 1, given a sampleS derived from
a sequence of at least 1" ��emnr �r ln(4mmn) + ln 1��
random examples of f chosen independently according to P, with probability at least1� �, Find(S; r; Vn;m) (resp. Findmin(S)) produces a hypothesisg 2 Fm(n; r) that has
error at most".
Proof By Lemma 7,jFm(n; r)j � (4mmn)(emn=r)r for n � r � 1. Hence by Corollary
3, with probability at least1� �, every hypothesisg 2 Fm(n; r) that is consistent with a
sequence of 1" ln jFm(n; r)j� � 1" ln (4mmn)(emn=r)r�= 1" ��emnr �r ln(4mmn) + ln 1��� jSj
random examples off has error at most". SinceFind(S; r; Vn;m) andFindmin(S) both
produce one of these hypotheses, the result follows. 2

The preceding results show thatm-ary decision trees of rank at mostr onn variables
can be learned with accuracy1� " and confidence1� � in timeO((nO(r)=") log(1=�)).
Since this is polynomial in1=", 1=�, andn for fixed r, and since the nested parentheses
representation length of a decision tree of rankr is at most polynomial in the length of
the nested parentheses representation of any other decision tree of rankr, this implies
thatm-ary decision trees of rank at mostr are polynomially learnable.

Theorem 13 The class ofn-ary functions represented bym-ary decision trees of rank
at mostr, wherem;n; r 2 IN, n > r � 1 andm � 2, is polynomially learnable. 2



3.3 INCREMENTAL CONSTRUCTION OF MINIMUM RANK DECISION TREES 39

3.3 Incremental construction of minimum rank decision
trees

In this section we show how a decision tree of minimum rank can be constructed in the
incremental setting, where the examples are received one at a time and the objective is
to maintain a consistent decision tree of minimum rank by doing as few modifications
to the existing hypothesis as possible. For a sequenceS of examples the method that we
develop is shown to require (asymptotically) at most the same total amount of time as
Findmin, which is presented with the whole sampleS at once.

3.3.1 Updating a hypothesis efficiently

Before motivating the incremental version ofFindmin, it is worth taking notice of the
following simple observation, which, together with Lemma 8, plays an important role in
the subsequent results.

Lemma 14 r(S) � r(S[feg) � r(S)+1 for all example setsS and examplese, whereS [ feg is consistent.

Proof First, assume that, on the contrary,r(S [ feg) < r(S). Then there exists a
decision treeT of rank strictly less thanr(S) that is consistent withS[feg. ButT is also
consistent with any subset ofS [ feg, in particular withS too. We have a contradiction
with the assumption. Hence, the first inequality holds.

For the second inequality, we show that from a decision treeT of rankr(S), which
is consistent withS, we can always construct a decision tree of rank at mostr(S) + 1
that is consistent withS [ feg. There are two cases:

1. The examplee is consistent withT . In this case there is no need to update the
hypothesis;T is a consistent decision tree of the minimum rankr(S).

2. The examplee is inconsistent withT . Then we can prove the claim by induction
overjSj.
For the casejSj = 0 the valuer(S) is undefined. WhenjSj = 1 the rank ofS is
invariably 0 and the rank ofS [ feg is invariably 1. Thus, the second inequality
holds in this case.

Let us now make the inductive hypothesis that the claim holds for all valuesjSj <k and let us then consider the situationjSj = k.

Since all examples are not of the same class, it has to be that the decision treeQ
of minimum rank that is consistent withS [ feg has a root node labeled with an
informative attribute; i.e., the root node partitionsS [feg into at least two disjoint
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nonempty subsetsS1 andS2. Let us assume, without loss of generality, thate 2S1. Since, bothS1 andS2 are nonempty, it must be that1 � jS1j � jSj. Nowr(S1) = r(S 01 [ feg), wherejS 01j < jSj = k, hence, by the inductive hypothesis,r(S1) � r(S) + 1. Furthermore,r(Si) � r(S) for all other valuesi 6= 1 by the
first inequality, becauseSi � S. Hence, by the definition of rank, the rank of the
treeQ is at mostr(S) + 1. 2

Now we give the rationale for the incremental version of theFindminalgorithm. For
clarity, we present the reasoning in the binary setting; its generalizationto multivalued
case should be clear.

In the following letS be the sample of sizeq observed thus far and letT be a decision
tree of rankr(S) that is consistent withS. In addition, lete be a new observation that
is consistent withS. Our objective here is to updateT to classify correctlye together
with S. We want only few, if any, changes to the treeT to happen and require that the
modified tree is of minimum rank for the extended sampleS[feg, i.e., its rank increases
(by one) only ifr(S [ feg) = r(S) + 1. If N is a node in a decision treeQ, then byQN
we denote the subtree ofQ that is rooted atN . Sometimes we talk about the rank of a
nodeN , formally we mean the rank ofQN . By SN � S we denote the examples that are
associated with (the leaves of) the subtreeQN .

Directing e down the treeT will result in e at one of the leaf nodes ofT . Let us
denote that leaf byL. Only if the label inL differs from that ofe, doesT need to be
modified. Note that, by Lemma 14, there always exists a decision treeT1 of rank 1 that
is consistent withSL [ feg. In some cases substituting the subtreeT1 for L in T will
not increase the rank of the treeT . Then we know that the modified decision tree is
consistent with and, by Lemma 14, of minimum rank forS [ feg. Let us now review
these cases.

Let P be the parent node (if any) ofL and letK be the sibling ofL (see Fig. 3.2).
The subtreeTP rooted atP has rank at least 1. Ifr(TP ) > 1, then, by the definition of
rank, it must be thatr(TK) = r(TP ) > 1, and increasing the rank of the subtree rooted
atL from 0 to 1 will not change the rank ofTP and, thus, will not affect the rank of the
whole treeT . In this case, the subtreeT1 may safely be substituted for the leafL.

The remaining possibility is thatr(TP ) = 1 and it has two subcases:r(TK) can
now be either 0 or 1. Ifr(TK) = 0, we can still increase the rank of the subtree rooted
atL freely, sincer(TP ) will not change in this case. If, on the other hand,r(TK) = 1,
increasing the value ofr(TL) to 1 would now increaser(TP ) and potentially propagate to
affect the rank ofT . However, that is not necessarily the case; there may be an ancestor
nodeA of L (on the path to the root) such that its rank may safely be incremented by one
without affecting the rank of the whole treeT . If such asafeancestor exists, all nodes
in the (sub)treeTA inherit the property. Therefore, it suffices to test the property for the
nodeL.
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Figure 3.2: When directed down the decision tree, examplee ends up in leaf nodeL. NodeP is
the parent ofL andK is the sibling ofL.

Finally, it may be thatL is neither safe in its own right nor because of a safe ancestor.
Even then there still is a possibility of finding a consistent tree of rankr(S) for the sampleS [ feg. We do not have to start to search for such a tree from the scratch; we can reap
reward of the work already done in constructingT . Note that if a decision tree was
not consistent withS, neither will it be withS [ feg; the same holds for subsamples.
Therefore, if a (sub)tree was rejected as the hypothesis of (a subset of)S, we do not have
to reconsider it in connection ofS [ feg.

Starting from the parentP of L we do a bottom-up traversal on the path from the
root toL. At each node en route we search for a decision tree of the same rank that the
node currently has. The search begins from the first (informative) attribute that has not
been considered previously. Attributes, which were previously uninformative,have to be
reconsidered in order to determine whether the addition of examplee has changed their
status.

The traversal terminates when a consistent subtree of the current rank is foundat
some level or when the root has been processed without success. In case of the first
termination condition we substitute the newly found subtree for the old one and, thus,
create a consistent tree of rankr(S) for S [ feg. In the latter case, all trees of rankr(S)
have been considered and none of them has proven to be consistent withS [ feg (or
[previously] with a subset of it). Therefore, it must be thatr(S [ feg) = r(S) + 1. We
are already aware of one consistent decision tree of minimum rank forS [ feg, viz., the
initial treeT with subtreeT1 substituted forTL is such a hypothesis.

In some nodes there is no need to continue the search for the uncovered variables.
Consider the situation where the left subtree, in which the examplee falls into, of ances-
tor nodeA in Fig. 3.2 has rankr(TA) (in that case the right subtree has rankr(TA)�1 or
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Table 3.1: Possible situations and the corresponding update actions taken when a new example is

directed to the leafL in the left subtree of the current hypothesis of rankr.
SITUATION SUBTREES UPDATE

TYPE left right ACTION

1: SAFE r � 1 r � 1 SubstituteT1 for TL
2: SAFE < r � 1 r
3 r � 1 r If none of the nodes on the path from the

root to the leafL is of type 1 or 2, then
4: EXHAUSTED r � r � 1 start to search for a tree of the current rank

from the parent ofL. Skip the exhausted
nodes en route.

less). Then, by Lemma 8, if the current variable in the node leads to a left subtree of rankr(TA) + 1, the example setSA [ feg has rankr(TA) + 1. Therefore, there is no point in
continuing the search for a tree of lesser rank for that example set. The search continues
at the parent node ofA for a larger example set. In this case we say thatA is exhausted
(with respect toe). In particular, at the root level this means that if the hypothesis has
subtrees of different rank and the disagreeing example is directed to the one with larger
rank, then if the search returns unsuccessfully to the root, there does not exist a decision
tree of the same rank such that it is consistent with the extended sample.

Let us reiterate and consider the required update operations at the root level (cf. Table
3.1).

1. If the root node is safe, i.e.,

(a) if the subtrees have equal ranks or

(b) there is a difference of more than 1 in their ranks and the example falls into
the one with lesser rank, then

it suffices to construct a decision treeT1 of rank 1 for the subsampleSL [ feg and
substitute it for the leafL in the tree.

2. Otherwise, a bottom-up traversal on the path from the root to the leafL needs to
be performed. At each node a search for a subtree of the current rank is carried out
for those variables that have not been tried yet. When the search reaches the root
without success, then

(a) if the example fell into the subtree that has rank smaller by one than that of
the other subtree (Situation 3), a new root variable has to be searched for
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from among those not considered yet. If none of them yields the result, the
rank of the sample has increased, and it is enough to substituteT1 for L in
the tree.

(b) If, on the other hand, the example fell to the subtree that has the higher (by
one) rank, the root is exhausted with respect to the example and the trivial
subtree substitution suffices.

Note in particular that only one out of the four situations above can lead to changing the
variable at the root, i.e., discarding the current hypothesis completely. In the safe cases a
trivial replacement of a leaf needs to be performed and in the potentially exhausted case,
at worst, one of the subtrees is rebuilt from the scratch. From Table 3.1 we can clearly
see that the number of tree structures that may lead to updates that discard theexisting
hypothesis (Situation 3) is small compared to the total number of tree structures, since
they only comprise a part of the exhausted ones, which together with the safe structures
do not require total reconstruction.

The method described above meets the requirements that were initially presented to a
successful incremental learner: It modifies the existing decision tree aslittle as possible
only when necessary and increases the rank of the hypothesis only if the rank of the
sample grows because of the addition of a new instance. Next we present the method in
more algorithmic form.

3.3.2 The incremental algorithm

In order to realize the incremental version ofFindmin, as motivated above, we need to
attach some bookkeeping information to the hypothesis. Each nodeN (subtreeTN ) of
the hypothesis treeT will have two sets associated with it:Exs(N) is the set of examples
that fall into (the leaves of) subtreeTN and the setVars(N) consists of the informative
variables that have not been evaluated in this node (since the last change in an ancestor
node) and of the uninformative variables (which may become informative later).

ProcedureFind is modified in this task only to include some added bookkeeping
operations and a changedExit macro. The procedureStoppingConditionremains as it is.
The bookkeeping operations are embedded in the auxiliary subprograms:Initialize sets
the global variableW to valueV (Line 20) and procedureUpdatedeletes the selected
variablev from setW on Line 30 of Find, i.e.,W  W n fvg. Most of the bookkeeping
is carried out when exiting the procedureFind. Macro 3.3Exit updates the values of
the sets associated with a node: The setExsassociated with the root of the returned tree
always contains the whole sampleS; the update of the setVarsdepends on the number of
the call, which now is the second parameter of the macro. When a leaf node (callnumber
1) is returned or if a tree is found without having to build a subtree of rankr (call number
3), the unevaluated variables can be obtained from the setW . When the search proves
unsuccessful (call numbers 2 and 5), updatingVars is rendered superfluous. If a subtree



44 THE DESIGN OF A LEARNING ALGORITHM
Procedure 3.2Find(S; r; V )
input: a nonempty sampleS of somen-ary functionf on [m], an integerr � 0,

and a set of variablesV � Vn;m.
output: a decision treeT of rank at mostr that is consistent withS if one exists, else none.
begin
(1) if StoppingCondition(S; k) then Exit(1; T = k) fi ;
(2) if r = 0 then Exit(2;none) fi ;
(20) Initialize;
(3) for each informative variablev 2 V do
(30) Update;
(4) for eachk 2 [m] do T vk  Find(Svk ; r � 1; V n fvg) od;
(5) if 8k 2 [m] : T vk 6= none then T  MakeTree(v; T v1 ; : : : ; T vm); Exit(3; T ) fi ;
(6) if T vk = none for a single valuek = ` 2 [m] then
(7) T v̀  Find(Sv̀ ; r; V n fvg);
(8) if T v̀ 6= none then T  MakeTree(v; T v1 ; : : : ; T vm) elseT  none fi ;
(9) Exit(4; T )

fi
od;

(10) Exit(5;none)
end.

of rankr has been successfully built (call number 4), then all variables can be marked
evaluated, since, because of Lemma 8, there is no point in maintaining any variables as
possible continuation points of the search.

The higher level search control in the incremental algorithm has to emulate that of
Findminby maintaining, between examples, the intermediate states thatFindmincomes
across during its search procedure. The incremental main program is calledIFM. It uses
a stack to control path traversal. Standard stack operations are evoked byIFM: Function
Popreturns the top element of the stack if one exists; functionToptells whether the stack
is empty or not. CallSubstitute(T1; T2) replaces the (sub)treeT2 by the treeT1.

The algorithmIFM first uses the existing hypothesisT to classify the new examplee (Lines 1–4). The example sets associated with the nodes on the path are updated
simultaneously. Once the leafL, wheree ends up in, has been found,IFM evokesFind
to construct a treeTH of rank at most 1 for the sampleSL [ feg (Line 5) and makes a
copyT 0 of T in which leafL is replaced by subtreeTH (Line 6). If e is consistent withT ,
thenFind returns another leaf and the rank ofT 0 remains unchanged. Even ife disagrees
with T , butL is a safe node, the rank of the modified copyT 0 remains unchanged, and it
can be returned as the updated hypothesis (Line 12). Otherwise, we continue the search
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Macro 3.3 Exit(n; T )
input: an integern 2 [5] and a decision treeT .
begin
(1) Exs(T ) S;
(2) casen is
(3) 1, 3:Vars(T ) W ;
(4) 2, 5:null ; % do nothing
(5) 4:Vars(T ) ;

end;
(6) return T ; terminate % the execution of the calling procedure
end.

from the parent ofL (Lines 8–11): A new subtree of the current rank is searched for
using the variables that have not been tried before. The loop terminates when successful
or when the root has been processed without success, in which case the new hypothesis
constructed on Line 6 will be returned even though it has increased rank. In both cases
the variable sets associated with the nodes of the tree need to be updated. Notice that
unnecessary searching in case of exhausted nodes is avoided through careful control of
the variable sets associated with the nodes of the tree.

The correctness ofIFM should be clear from the rationale presented above.

Theorem 15 Let T be a decision tree of rankr(S) that is consistent with sampleS of
an n-ary function on[m] and lete be an example of the same function. Then the callIFM (T; e) returns a decision tree that is consistent withS[feg and has rankr(S[feg).
Proof Follows almost directly from the correctness ofFind (Lemma 9). There is no
elegant way to proveIFM’s correctness. The proof proceeds in a similar fashion as the
rationale of the algorithm. Since rigorous motivation and verbal analysis of the situation
was already presented, we pass over the formal presentation of the proof. 2

To denote repeating application ofIFM to the members of an example sequenceS
we write IFM(S) = IFM(IFM( : : : (IFM(?; s1) : : :); sq�1); sq), whereS = hs1; : : : ; sqi
and? denotes the empty hypothesis. Incidentally, note that the result of callIFM(S)
is not uniquely determined; i.e.,IFM is not invariant to the permutation of an example
sequence, but the result depends on the order of examples in that sequence. Clearly, for
instance, different attributes are retained in the variable sets associated with the nodes of
the evolving tree depending on the examples seen. This, then, means also that the trees
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Algorithm 3.4 IFM(T; e)
input: a decision treeT of rankr(S) that is consistent with a sampleS of somen-ary function

on [m] and an examplee of the same function.
output: a decision treeT 0 of rankr(S [ feg) that is consistent withS [ feg.
begin
(1) Directe down the treeT ;
(2) for each nodeN en routedo
(3) Exs(N) Exs(N) [ feg;
(4) Push(N)

od;
(5) L Pop; TH  Find(Exs(L); 1;Vars(TL));
(6) T 0  T ; Substitute(TH ; T 0L);
(7) if r(T ) 6= r(T 0) then % r(TH) > 0 andL was not a safe node
(8) TH  none;
(9) while Topand TH = none do
(10) L Pop; TH  Find(Exs(L); r(TL);Vars(TL));
(11) if TH 6= none then Substitute(TH ; T 0L) fi

od
fi ;

(12) return T 0
end.

produced byFindminandIFM are not necessarily the same. What remains invariant to
the permutation is the rank of the resulting tree.

IFM explicitly simulates the functioning of the nested recursive calls toFind evoked
by Findminand, hence, does exactly the same amount of work in searching for a con-
sistent concept for a sequence of examples that would be carried out byFindminfor the
set consisting of the elements of that sequence. Therefore, we have the same asymptotic
time complexities forIFM(S) andFindmin(S). (In additionIFM does some bookkeep-
ing, which does not affect the asymptotic time requirement.)

Theorem 16 Given an sampleS of ann-ary function on[m], using IFM(S) we can pro-
duce a decision tree that is consistent withS and has rankr(S) in timeO(jSjmr(S)(n+1)2r(S)).
Proof The proof is essentially based on the time requirement ofFind and on the fact
that no more recursive calls ofFind will be made byIFM over a sequenceS of examples
than would happen during the execution of callFindmin(S). For the details of the proof
see Appendix A. 2
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In the worst case a single callIFM(T; e) will take timeO((jST j + 1)mr(T )n2r(T )).
In other words, the time of an update grows as the length of the example sequence and
the size of the hypothesis grow. However, as our earlier discussion shows, only few
mistakes lead to time-consuming updates; updates where a simple subtree replacement
is performed are carried out in linear time. Furthermore, even though timeproportional
to n2r(T ) has to be spent on updates while the hypothesis has rankr(T ), before the rank
of the hypothesis is incremented, that time is usually divided between several updates.

If Findminwas trivially used to generate a new hypothesis from the scratch after each
disagreeing example then, in the worst case, total timeqXi=1 �jSijmr(Si)(n+ 1)2r(Si)� = O �jSj2mr(S)+1(n+ 1)2r(S)+1�
would be needed for a sequence ofq examples. Hence, usingIFM instead of simply
repeatingFindmin for all the examples after each new example received over a span of
time proves profitable.

Because of Theorems 15 and 16 all the PAC learning results and their consequences
[Ehrenfeucht & Haussler 1989] hold forIFM as well as forFindmin.

3.3.3 On the number of erroneous predictions

Let us conclude this section by taking a little detour from our main theme—development
of a practical decision tree learner—and briefly consider howIFM relates to the on-line
learning model [Littlestone 1988] by giving an upper bound for the number of false
predictions it will make on a sequence of examples. We continue to work within the
Boolean world.

How often doesIFM have to update its hypothesis? First, recall that only disagreeing
examples initiate any changes to the hypothesis. On the other hand, they necessitate
some changes. Hence, every disagreeing example causes an update of some severity.
From the point of view of the on-line prediction a disagreeing example is a mistake
made by the decision tree. Littlestone [1988] has studied absolute mistake bounds of on-
line learning, i.e., what is the minimum number of unavoidable erroneous predictions in
learning some concept class. In the following we apply that line of analysis to learning
rank-bounded decision trees, even though the situation there is slightly differentfrom
that studied by Littlestone. The aim to maintain a consistent tree of the minimum rank
at each stage requires that the target concept class changes dynamically.

The following lemma shows thatIFM is a “halving algorithm” [Littlestone 1988] for
DTr2(n). This follows from the fact that rank is a structure delimiting property with no
stand to the semantics of the tree; i.e., it does not consider the function represented by
the decision tree in any other respect except that it has to be consistent withthe sample.
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Lemma 17 Let S be a sample of some Boolean function onVn;2 such thatr(S) = r.
Then, IFM(S) makes at mostlog2 jF2(n; r)jmistakes.

Proof Observe that for allT 2 DTr2(n), whereT is consistent with the examplee, the
setDTr2(n) also contains the inconsistent treeTf that is equal toT in its structure but has
the label of one leaf (the one thate ends in) flipped. Because of this duality each mistake
at least halves the number of candidate functions that could be chosen as the hypothesis
and the claim follows. 2

Simon [1995] has studied learning rank bounded decision trees with equivalence
queries [Angluin 1988] which is (more or less) equivalent to learning in the on-line
setting: Instances are received one at a time andreinforcement(information regarding
whether the instance was classified correctly or not) is provided concerning each instance
[Littlestone 1988]. Simon presents an algorithm for learning decision trees of bounded
rank efficiently with equivalence queries. The algorithm is similar toIFM in the sense
that it, too, represents its hypotheses as decision trees. However, Simon’salgorithm is
far more general thanIFM and does not attain the same efficiency.

It is easy to see that a decision tree of rankr has at least2r leaves. In other words,
a sample that has rankr must contain at least2r examples. Hence, when the length of
the example sequence is in between2r and2r+1, not even a disagreeing example can
cause the rank of the hypothesis to increase fromr to r + 1. Over a sequenceS, sincejSj � 2r(S), it must be thatr(S) � blog2 jSjc.
3.4 Learning decision trees in the presence of noise

Elomaa and Kivinen [1991] and Sakakibara [1993] have independently demonstrated
how the (binary)Find procedure is made robust against random classification noise. The
technique they use is essentially the one used to derive procedureGrowPrunedTreefrom
GrowTreein Section 2.1. This way they are able to prove the learnability of decision
trees of bounded rank in the presence of random classification noise. In this section we
show how the same techniques can be used in the extended learning model.

Before going any further we point out that, as our discussion in Section 2.1 would
suggest, pruning lets the learning method in practice tolerate, not only random classi-
fication noise, but other types of noise too. The basic results of Elomaa and Kivinen
[1991] and Sakakibara [1993] deal with the noise model of Angluin and Laird [1988].
Sakakibara further discusses how these results relate to learnability inValiant’s [1985]
malicious error model. Bearing this in mind we only discuss random classification noise
in the following.

The main theme of this section is to show the learnability of multiconcept classifiers
in the presence of random classification noise. It suffices to show that Algorithm 3.5
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Algorithm 3.5 Rodt(S; r; n; �b; "; �)
input: a nonempty noisy sampleS of somen-ary function on[m], integersr � 0 andn > 0,

and positive reals�b, ", and�, such that� � �b < 1=2 and0 < "; � � 1.
output: a decision tree of rank at mostr.
begin
(1) � j "(1�2�b)jSj8L(n;r) k ;   �b + "(1�2�b)8 ;

(2) T  Find(S; r; Vn;m);
(3) if T 6= none then return T else return an arbitrary decision tree of rankr fi
end.

Procedure 3.5StoppingCondition(S)
input: a nonempty noisy sampleS of somen-ary function on[m].
output: a truth value.
begin

% LetMi, i = 1; : : : ;m, be the number of examples inS labeled byi.
(1) if Mk � jSj or Mj � � for all j 6= k (andMk > �) then return true else return false fi
end.

Rodt—yet another variant of Ehrenfeucht and Haussler’s method—is a noise-tolerant
Occam algorithm for decision trees of bounded rank.

The main modification to procedureFind is to relax the fitting of the hypothesis to the
sample as explained in Section 2.1. In growing the tree, we do not split the exampleset,
if the number of examples in the set is less than a threshold� or if at least a proportion of the examples already have the same label. Thus the candidate variable is pruned.

Now, in addition to the procedureFind, we need a main program that calculates the
appropriate values of� and, and callsFind with these values. The functionL(n; r)
in the following is the maximum number of leaves in a decision tree from the proof of
Lemma 7.

We prove thatRodtis a noise-tolerant Occam algorithm form-ary decision trees of
fixed rank by modifying the corresponding proof of Elomaa and Kivinen [1991]. They
go about the task by considering rules induced by a decision tree.

A rule over the variablesv1; : : : ; vn 2 Vn;m is a pairhc; li, wherec is true, false, or
a conjunction over assertions on the values of variablesvi, andl belongs to[m]. A rulehc0; l0i is arefinementof the rulehc; li if l0 = l andc0 logically impliesc. We say that an
examplehx; li matchesa rulehc; l0i if x satisfiesc. If the example matches the rule andl 6= l0, we say that the exampledisagreeswith the rule.

For a decision treeT we define the set%(T ) of rulesinduced byT . Informally, each
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path leading from the root of the tree to a leaf induces one rulehc; li. The labell is
obtained from the leaf. The conjunctionc concerns exactly the variables appearing at
the nodes on the path. The assertion concerning variablev in c is (v = k) if the path
leads to thek-th son of the node labeled byv. Thus we have the following recursive
definition:

1. If T is a leaf labeled byl, then%(T ) = fhtrue; lig.
2. If the root ofT is labeled byv andTi for i = 1; : : : ; m are the subtrees ofT , then%(T ) = m[i=1 f h(v = i) ^ c; li j hc; li 2 %(Ti) g :

Clearly, for each assignmentx 2 [m]n there is a unique rulehc; li 2 %(T ) such thatx
satisfiesc, and for this rule we havefT (x) = l.

In the presence of classification noise each assignment on[m]n has the same prob-
ability � of being misclassified. Hence, ifR = hc; li is a rule induced by the target
decision tree and the number of examples matchingR is sufficiently large, with a high
probability approximately a proportion� of these examples disagrees withR. This led
Elomaa and Kivinen [1991] to define the notion of(�; )-accuracyfor � 2 IN and0 �  � 1, where� gives a bound for the absolute and for the relative number of
misclassifications made by a rule.

Definition For a ruleR and a sampleS, letM(R; S) be the number of examples inS
that matchR, and letD(R; S) be the number of examples inS that disagree withR.

The ruleR is (�; )-accuratewith respect toS if D(R; S) � maxf �; M(R; S) g.
A decision treeT is (�; )-accurate with respect toS if all the rules induced byT are(�; )-accurate with respect toS, andstrongly(�; )-accurate with respect toS if all the
refinements of the rules induced byT are(�; )-accurate with respect toS.

The property of having a strongly(�; )-accurate decision tree is preserved when a
sampleS is split into the subsamplesSvi , i = 1; : : : ; m, as demonstrated below. ByT vi
we denote the decision tree that is obtained fromT by replacing each subtreeT 0 that has
the labelv at the root with thei-subtree ofT 0. If v is the label of the root ofT , the treeT vi is simply thei-subtree ofT .

Lemma 18 If T is strongly(�; )-accurate with respect toS, then for all variablesv
and for all indicesi, i = 1; : : : ; m, the treeT vi is strongly(�; )-accurate with respect toSvi .

Proof If a ruleR = hc; li is induced byT v1 , then eitherR or the ruleh(v = 1) ^ c; li
is induced byT . In either case, ifR1 = hc0 ^ c; li is a refinement ofR, thenR2 =
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with respect toS. SinceM(R2; S) = M(R1; Sv1 ) andD(R2; S) = D(R1; Sv1), the ruleR1 is (�; )-accurate with respect toSv1 . Thus, the treeT v1 is strongly(�; )-accurate
with respect toSv1 . In a similar way we see that the treesT vi , i = 2; : : : ; m, are strongly(�; )-accurate with respect toSvi , i = 2; : : : ; m, respectively. 2

Next we sketch a proof for the first part of the correctness ofFind. That is, if there
exists a decision treeT that is strongly(�; )-accurate with respect toS and has rank
at mostr, then the callFind(S; r; �; ) returns a decision treeT 0 that is(�; )-accurate
with respect toS and has rank at mostr.
Lemma 19 If there exists a tree that is strongly(�; )-accurate with respect toS and
has rank at mostr, then the call Find(S; r; �; ) returns a tree that is(�; )-accurate
with respect toS and has rank at mostr.
Proof It is clear from the definitions thatFind never returns a tree that exceeds the rank
boundr. It is also obvious that a treeT with the root labeled byv is (�; )-accurate with
respect toS if the subtrees ofT are(�; )-accurate with respect to the subsamplesSvi ,i = 1; : : : ; m, respectively. Hence, a simple induction shows thatFind always returns
either none or a(�; )-accurate decision tree. It remains to show that the call cannot
return none if the assumptions of the lemma are satisfied. This is done by a similar
induction as in the proof of Lemma 9; we omit the details. 2

We show next that it suffices to find(�; )-accurate trees with suitable values of�
and. Recall, from the proof of Lemma 7, that byL(n; r) we denote the maximum
number of leaves in any reducedm-ary decision tree overVn;m of rankr. For the rest of
this section, letT� be a decision tree of rankr overn variables of aritym, and letP be
a probability distribution on[m]n. Let � � �b < 1=2, 0 < " � 1, and0 < � � 1. LetS
be a noisy sample ofq examples ofT� drawn fromEX�(P; fT�), whereq � 256L(n; r)"3(1� 2�b)3 �mn ln 2 + ln 2�� :
Finally, let � = $"(1� 2�b)q8L(n; r) %
and  = �b + "(1� 2�b)8 :

The following lemma shows that the functionfT represented by an(�; )-accurate
decision treeT of rank r fulfills the average disagreement condition required from a
noise-tolerant Occam algorithm (Definition 5).
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Lemma 20 If a decision treeT has rank at mostr and is(�; )-accurate with respect
to S, then D(fT ; S)q � �b + "(1� 2�b)4 :
Proof SinceT is (�; )-accurate with respect toS, we have%(T ) = A [ B, whereD(R; S) � � for all R 2 A andD(R; S) � M(R; S) for all R 2 B. Sincej%(T )j �L(n; r), we have XR2AD(R; S) � �L(n; r) � q "(1� 2�b)8
and XR2BD(R; S) �  XR2BM(R; S) � q = q  �b + "(1� 2�b)8 ! :
For all assignmentsx there exists the unique rulehc; li in %(T ) such thatx satisfiesc andl = fT (x). Therefore,D(fT ; S) = XR2%(T )D(R; S) = XR2AD(R; S) + XR2BD(R; S);
and the claim follows. 2

It remains to show that with a high probabilityFind returns a(�; )-accurate tree.
Because of Lemma 19, we can show this by proving that the treeT� is with a high
probability strongly(�; )-accurate with respect toS. In the proof we need the following
result of probability theory by Hoeffding [1963]. LetGE(p; t; r) be the probability ofat
leastandLE(p; t; r) the probability ofat mostrt successes int independent trials each
with probabilityp of success.

Lemma 21 If 0 � p; s � 1, andt is a positive integer, thenGE(p; t; p+ s) � e�2s2t andLE(p; t; p� s) � e�2s2t: 2
Lemma 22 With probability at least1� �=2, the treeT� is strongly(�; )-accurate with
respect toS.

Proof If R = hc; li is a refinement of a rule induced byT�, thenfT�(x) = l for all x
that satisfyc. Hence, examples inS that disagree withR have been misclassified. IfR
is not(�; )-accurate with respect toS, then a proportion greater than of the examples
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matchingR have been misclassified, and there are more than� such examples. Lets =  � �b andu =M(R; S). Lemma 21 gives an upper boundGE(�; u; ) � GE(�; u; � + s)� e�2s2u� e�2s2(�+1)< e�2s3q=L(n;r)� e�mn ln 2�ln(2=�)= �=2mn+1
for the probability that the ruleR is not (�; )-accurate with respect toS. The number
of refinements of rules induced byT� cannot exceed the number of conjunctions over
single value assertions on variablesv1; : : : ; vn. The number of such assertions is certainly
bounded by2mn, since there arem single value assertions on each of then variables and
each of them can be either present in or missing from the conjunction. By summing these
probabilities over all the rulesR we therefore see that with probability at least1 � �=2
all the refinements of the rules induced byT� are(�; )-accurate with respect toS. 2

We are now ready to prove thatRodtis a noise-tolerant Occam algorithm:

Theorem 23 Rodt is a noise-tolerant Occam algorithm for decision tree of rankr.
Proof The run time ofFind isO(qmr(n + 1)2r); the analysis is almost identical to that
carried out in Lemma 10.

By Lemma 22, with probability1 � �=2 there is at least one decision tree of rankr that is strongly(�; )-accurate with respect toS, namelyT�. By Lemma 19,Find
returns a(�; )-accurate tree of rank at mostr, and by Lemma 20 this makesRodta
noise-tolerant Occam algorithm. 2
Corollary 24 Decision trees of rankr are polynomially learnable in the presence of
classification noise.

Proof Immediate from Theorems 6 and 23, since by Lemma 7 the class of decision trees
of bounded rank is of polynomial size. 2

In noise-free domains the iterative algorithmFindmin learns decision trees of fixed
rank without receiving an explicit rank bound as input. The same technique can be
employed in the noisy setting: the correctness ofRodtguarantees that, with probability1 � �=2, the first returned tree is a(�; )-accurate decision tree such that its rank does
not exceed the rank of the target tree (assuming the sample size is large enough).
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3.5 The algorithm Rank

In this section we gather the preceding refinements and improvements into a decision tree
learning algorithm that combines ideas from theoretical studies and practicalexperience.
We refer to the algorithm asRank.

A practical learning algorithm has to be efficient in order to be generally applicable.
Therefore, we, for instance, do not have time to iterate the learning processin order to
find a good approximation of the noise rate affecting the learning situation as proposed
in the previous section. Instead, we expect the user to supply appropriate values for�
and. It is typical in inductive learning methods to expect the user to supply a value for
a confidence level or a threshold parameter (“”). For instance, ID3 [Quinlan 1986b],
CN2 [Clark & Niblett 1989], and C4.5 [Quinlan 1993] are all examples of such pro-
grams. Furthermore, in C4.5 the user is allowed to tune the value of a parameter that
corresponds to�. Resorting to the user’s choice of parameter values, naturally, loses the
general provability of the method, but still, if appropriate values, as given in the pre-
ceding theorems, are supplied, the guaranteed learnability properties of the following
method are preserved.

We have to deviate from the formal considerations, also, in what concerns the sample
size. The algorithm is expected to produce a sensible hypothesis even with the smallest
samples. Therefore, we apply the following heuristics in the learning algorithm. If no
tree is found, then we resort to predicting the most common class; i.e., we return a
single leaf tree that is labeled with the most common class. The situationmay arise, for
instance, if strict match is required for an inconsistent sample.

The main program of our method is presented as Algorithm 3.7. We have given de-
fault values to the input parameters of the algorithm; they do not fit all learning domains.
The given values suit perfect domains, where heavy pruning is not needed.

The following small trick inRank’s high level control structure makes the algorithm
in practice much quicker thanFindmin. There is no need to seek to examine the rank
candidates in order starting from value 0. The search can be started from any candidate
value (in between 0 andn).2 The program divides into two separate parts: In one part
(Lines 2–4) the case, where no tree was recovered using the initial rank candidate, is han-
dled and the other part (Lines 5–8) takes care of the situation where a tree was returned.
The former part entails increasing the rank candidate until a decision tree isreturned by
Find. Even though the final part of the algorithm works in the same manner as inFind-
min, something has been gained by this little trick; viz., rank candidates smallerthan
the initial value, which would not have been successful, have been passed overwithout
unnecessary inspection. In the second part, where a tree was already recovered with the2If the typical rank values had a wide range,binary searchcould be utilized here. However, real-
world domains tend to have a relatively low rank (see Chapter 5). Therefore, it is not worth the effort to
incorporate a sophisticated search technique here.
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Algorithm 3.7 Rank(S;R = 2; � = 1;  = 0:95)
input: a nonempty (possibly noisy) sampleS of some functionf : R1 �R2 � : : :�Rn ! RC .

The algorithm may optionally be supplied with the followingadditional parameters:
Nonnegative integersR and�, and a real, such that0 �  � 1.

output: a decision tree.
begin
(1) r  R; T  Find(S;R; Vn;m);
(2) if T = none then
(3) repeat r  r + 1; T  Find(S; r; Vn;m) until T 6= none or r = n;

% letk be the most common label among the examples inS.
(4) if T = none then T  T = k fi

else
(5) r  r(T );
(6) while r > 0 do
(7) Q Find(S; r � 1; Vn;m);
(8) if Q 6= none then r r(Q); T  Q fi

od
fi ;

(9) return T
end.

initial rank candidate, it remains to check whether it is of minimum rank. Again, we
do not have to runFind for all consecutive rank candidates, but it suffices to check the
values that are smaller by one than the smallest rank of a decision tree found thusfar.

The only remaining major modification to the control ofFindmin in Rank is the
most common class prediction in case that no classifier with required properties is found
(Line 4). Also, upward search can be terminated if no hypothesis is found before the
rank candidate exceeds the number of attributes (Line 3). No classifier onn attributes
can have rank beyond the limitn. This stopping condition was not needed in the earlier
Findminvariants, since a consistent sample always has a classifier with rank less or equal
to the number of attributes in the domain.

This method’s time requirement is only linear in the number of training examples
and thus it fulfills even the strictest efficiency requirements posed to practical learning
programs [Clark & Niblett 1989].

One practical aspect of this program that has not been made explicit is its missing
value management. We simply apply Clark and Niblett’s [1989] technique of filling in
a missing value with the most common value of that attribute. We choose this method
because it is quite simple and relatively competitive [Quinlan 1989] and, hence,suffices
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to us in this study, where we do not emphasize this aspect of learning.

The incremental method is not incorporated into the above described algorithm. The
same control optimizations that can be used in batch learning are not applicable in incre-
mental learning. Therefore, it is not possible to intertwineIFM totally toRank. Instead,
we run IFM separately whenever incremental learning is needed. Of course, the algo-
rithms have been implemented together, and the same subprograms are utilized byboth
high-level control procedures. It should be clear that the simulation scheme ofIFM can
be applied in the noisy setting as well. In that case we just call the version ofFind, which
provides for noise, fromIFM as well.



Chapter 4

TELA—a Tool for Attribute-Based
Induction

Testing and comparing different implementations and techniques on sample data isan
integral part of the design and application of inductive machine learning programs. It
involves many simple but tedious auxiliary tasks that are usually not supported bythe
learning tools themselves. Hence, there is a strong need for an environment that facili-
tates testing and comparing different inductive learning programs. Most of the facilities
that are needed in such an environment have to do with data set manipulation.

This chapter describesTELA (Testing Environment for Learning Algorithms), an
integrated environment that has been developed to alleviate the troubles causedby the
unavoidable subsidiary tasks when experimenting with inductive learning programs.It is
distributed freely to all interested parties.3 TELA incorporates facilities and support for
data transformation, format conversion, experiment design and execution, and statistics
collection. It has been designed to accommodate, in principle, any program using an
attribute-based representation formalism. The initial development ofTELA is described
by Beckset al. [1992] and Elomaaet al. [1995]. We present the design rationale of
the system, describe its current state, and consider future enhancement of it: In Section
4.1 we concentrate on the design principles ofTELA. Section 4.2 contains a detailed
description of the current system. Future development directions ofTELA are outlined
in Section 4.3. Related systems are surveyed in Section 4.4. Finally, Section 4.5 reviews
some practical experiences gained aboutTELA.3TELA system together with a comprehensive documentation is available from the URL-address
http://www.cs.helsinki.fi/research/pmdm/ml/tela.html. Alternatively, it can be
obtained by anonymousftp access fromftp.cs.helsinki.fi/pub/Software/Local/TELA.
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4.1 Design rationale of TELA

Consider the following situation: Data has been acquired from the application domain,
it has been classified for use as a training set for a learning algorithm, and the data
has been prepared into the format required by the algorithm. Instead of simply leaving
the assessment of an acquired classifier to the domain expert, we can assist the process
by testing and evaluating the rule in several ways. We might assist the assessment by
empirically testing the classifier by repeatedly dividing the training setinto (random)
training and test sets, we might also experiment with modified versions of thedata, e.g.,
leaving some attributes out, or we might try different induction tools on the same task.
All the data transformations and format conversions needed in the tasks mentioned above
can surely be accomplished with the help of standardUNIX, say, tools and a text editor.
However, these secondary subtasks require much more effort than the primary objective
of experimenting with the algorithms and data sets and, hence, easily drown the sight of
what really is important.

Since experimentation is an integral part of the design process of new learning al-
gorithms [Langley 1988] as well as application of inductive programs, as exemplified
above, it is essential that experiments can be carried out without unnecessary compli-
cations. TELA is a system that has been designed to facilitate experimentation with
attribute-based inductive learning programs. In the following we motivatethe design of
the system.

There are two general goals that have been pursued in the development ofTELA—
independenceanduniformity. Both goals have manifold aims and manifestations in the
system.� Independence of particular learning algorithms, classifier representations, and vi-

sualization tools produces an environment that is as general and versatile as pos-
sible. Commitment to particular algorithms or classifier types (e.g., to TDIDT
learners) always rules out related algorithms or relevant approaches (e.g., deci-
sion list learners). Binding the system’s interface to a particular visualization tool
mainly hampers its portability, but may also bias against new types of learning
algorithms.� Uniformity of the appearance of the system and its facilities gives the user better
control over the system and lets him, thus, concentrate on his main duties: Exper-
imentation with and comparison of learning algorithms. Controlling a too diverse
environment is an unnecessary and interfering task.

In addition to the general goals, specific operational objectives have been put to
TELA. Today a number of different inductive algorithms are easily available (by anony-
mousftp, for example). Even though many algorithm implementations come with the
source code, one would like to retain the black-box-view of them, but still be able to
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compare them with other algorithms or implementations. In other words, it should be
enough to familiarize oneself only with the input/output of a given algorithm before ex-
perimenting with it. Hence, a system is needed that can easily accommodate (almost)
any learning algorithm that uses attribute data. Such a platform should support thefol-
lowing activities, which are all featured inTELA.

Data preparation and manipulation� Extracting basic statistical information of the data sets involved. In addition to
data carefully designed by the domain expert, the learning algorithms typically
have to deal with data acquired from some sensors or a database. In order to be
able to reliably assess the performance of an algorithm, the user has to be aware
of the basic statistical facts (representativeness) of the training andtest data.� Easy declarative definition of the data formats used by the learning algorithms
and automatic conversions between these data formats are required to lighten the
addition of new learning algorithms and for executing unbiased comparison of
different algorithms on exactly the same data.� Dynamic data manipulation by changing the sets of attributes and examples con-
sidered and the possibility to transform data by redefining attribute types and by
adding random noise to the examples. This allows the user to vary the applica-
tion domain characteristics as he pleases. For example, noise-tolerance may be of
prime importance when the learning algorithm is put to actual use.

Execution control� Efficient communication between the environment and an enclosed learning algo-
rithm. Even though the platform and learning algorithms are independent of each
other, the user has to be able to operate the algorithms from within the environment
and receive feedback from them.� Experiment planning and incremental execution of tests are central vehiclesof
a successful environment. Without adequate support for higher level experiment
compilation the operation of such an environment reduces merely to run time sup-
port for learning algorithms. Incremental execution of tests is a desirable property
because experimentation, by nature, requires re-evaluating (and rerunning) tests
once (partial) results are reflected upon.� Support for multiple users is required in any program that endeavors to be a
general-purpose tool. Control and monitoring of users must ensure that different
users will not get tangled into each others experiments.
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Analysis support� Standard ways of testing the algorithms and standard ways of relating their perfor-

mance by measuring suitable execution statistics. Commonly accepted test strate-
gies (e.g., repeated random partitioning and cross-validation) should be available
for all algorithms. Furthermore, the same performance measures (e.g., average
accuracy, size, and learning time) should be measurable for the classifiers of all
algorithms.� Benchmark methods for validating the results produced by the learning algorithms.
The user can achieve an understanding of the general usefulness of the machine
learning algorithms on an application by relating their performance to that of a
simple well-established method (e.g., Bayes-rule [Breimanet al. 1984] or one-
level decision trees [Holte 1993]).

In the next section we describe in detail howTELA meets all these demands. In
addition to the visible functionality listed above, the platform needs a number of internal
supporting functions. The overall architecture should offer the user a coherent view
of the many diverse functions that are available. Coherence is achieved inTELA by
including most of the above functions into a single command language.

One of the larger issues that we had to resolve when designingTELA was to decide
on the extent of the system’s internal knowledge representation language (KRL). A com-
mon KRL is required to communicate data between algorithms. It cannot simply beleft
to the user to define the translation from the data format of the new algorithm to those
of all previously incorporated ones, since there may be tens of such algorithms already
present. Hence, an internal representation language, acting as an intermediator in all
these translations, is required. Even though we are operating within the restricted world
of attribute-based representation languages, there is plenty of room for variation. One
could aim at developing a universal KRL for learning algorithms that use the attribute
representation. Such a language ought to be able to express all inputs, outputs, back-
ground knowledge, and, even, intermediate results of all algorithms within its scope.
But that makes the representation language extremely vulnerable: Any change in the
data representation of a single algorithm requires changing the KRL and propagating
the changes to all other algorithms. Instead of providing a universal KRL,TELA imple-
ments the common core of the data representation languages of attribute-based induction
algorithms. The same arguments have guided the KRL design in theMachine Learning
Toolboxproject [Causseet al. 1990, Sleeman 1994].

Communicating the induced classifiers between two algorithms makes sense seldom—
for example, a neural network cannot usually be interpreted as a decision tree. Moreover,
management of the multitude of output formats of inductive algorithms would lead to
close intertwining of the system and the algorithms. Hence, we have not tried torep-
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resent the output classifiers in the internal KRL ofTELA. It is left to each individual
learning algorithm to represent and interpret its own classifiers.

4.2 An overview of the system

This section describesTELA at its current composition (version1:995). We demon-
strate howTELA implements the requirements stated in the previous section. First we
describe the general architecture of the system. Next we introduce the high-levelexper-
iment specification language that is the main distinction betweenTELA and its closest
equals; detailed discussion is left to Section 4.4. Finally, we describe thefacilities for
semiautomatic accommodation of new learning algorithms. More detailed description
of the technical aspects can be found in the user manual [Elomaa & Rousu 1996a].

4.2.1 System architecture

A general view of the architecture ofTELA is presented in Figure 4.1. The user interacts
with the system chiefly in terms of the languageTESLA (TELA Experiment Specifi-
cation Language). The language contains facilities for accomplishing the operations
demanded in the previous section. Only seldom—when enclosing new algorithms to
the system—is there need to use the other language ofTELA, the data format definition
language (Section 4.2.3). Hence, the appearance of the system to its user is coherent.

The three modules ofTELA that are visible to the user are Data Logging Module, Ex-
periment Specification Module, and Data Format Definition Module. A brief description
of these components follows.

Data Logging Moduleassists the user in defining the data. Most learning algorithms
require the user to supply attribute declarations in addition to the actual example vec-
tors. Now, if a large database of examples is received from the applicationdomain with-
out attribute declarations, a skeleton attribute declaration file can begenerated with this
module for any learning algorithm, whose data format has been defined, instead of going
through the voluminous data and manually recording the values appearing in the data for
each of the attributes. The skeleton file lists the attributes (with dummy names) and the
values (or the subrange of values) that appear in the example vectors for that attribute.
The domain expert can then give correct names for the attributes and extend their ranges,
if required. If the domain expert carefully designs the example set, not much assistance
is usually needed. Moreover, the example volumes tend to remain low in thesecases.

Experiment Specification Moduleis the main method of interaction between the sys-
tem and its user. This module contains the languageTESLA that is used to specify the
test sequence. Execution ofTESLA specifications is interactive and incremental. This
is accomplished with the SEED session editor interface [Holsti 1989]. At any given mo-
ment, usually as a consequence of a response given by the system, the user can go back in
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Figure 4.1: The general architecture ofTELA.

theTESLA code and change the specification given; parts of the specification are auto-
matically retracted and re-executed to update the state of the system to correspond to the
changed specification. The final specification can be saved as a record of the experiment.

Data Format Definition Moduleis invoked when a new learning algorithm is added
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to TELA. This module automates the generation of parsers and scanners for the attribute
declarations and example descriptions of the new machine learning program. It also
introduces new terms to the languageTESLA. The user only has to provide a simple
description (fill in a template provided) of the syntax used in the attribute declarations
and example descriptions. Algorithm parameters are also introduced in this description
for TESLA; however, they are not processed automatically, but need the user to provide
an external processor to interpret them in terms of the learning algorithm. Similarly,
management of the output of the algorithm has to be done manually. This includes
classification, display, and accuracy recording.

The internal modules ofTELA which are not directly manipulated by the user are
theTESLA Command Server, two Databases, the Algorithm Execution Machinery, and
the I/O Server.� TheTESLA Command Servertransforms the specification provided by the user

into calls of the internal functions and services of other modules.� The Algorithm Databaserecords and maintains information about the learning
algorithms. The data format definitions for learning algorithms are maintained in
the database; they are queried by the other internal modules.� The Working Set Databasecontains information about the active attributes and
examples, and the active classifier, if any.� The algorithm Execution Machinerycalls external learning algorithms and con-
trols their execution in cooperation with the I/O Server. It is responsiblefor gath-
ering the requested statistics from the external algorithms. Algorithm dependent
particularities are queried from the Algorithm Database.� The I/O Serverpasses information between the system and the learning algorithms;
it takes care of the data conversions that are needed in the process. The attribute
declarations and example vectors are communicated through files.

There are two standard benchmarks in the system. The results obtained by a learning
algorithm can always be contrasted with the results that would be obtained using any
of theRankvariants or Rousu’s [1996] MDLP-based learners. No other algorithms are
distributed with the system (because the proprietorship of the algorithms belongs to their
developers). However, the I/O interfaces for the algorithms NewID [Boswell 1990b],
CN2 version 4.1 [Boswell 1990a, Clark & Boswell 1991], C4.5 [Quinlan 1993], and ITI
[Utgoff 1994], Naive Bayes [Kononenko 1993], and T2 [Aueret al. 1995] are part of the
current system.
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4.2.2 Experiment specification language

A central feature ofTELA is its high-level procedural experiment specification language
TESLA that lets the user define complicated test sequences and comparisons with the
learning algorithms and data he chooses. The language allows recording intermediate
results and saving classifiers for further inspection. Incremental execution and manipu-
lation ofTESLA specifications is supported by the SEED session editor interface [Holsti
1989].

TESLA is a procedural language that contains statements for accomplishing most of
the effects listed in Section 4.1. There is only one control statement inTESLA: Repeated
execution of test sequences is enabled by thedo statement. The other statements of
TESLA are simple statements that do not change the control of execution. A typical
TESLA specification contains operations from each of the three categories mentioned in
Section 4.1. The statements ofTESLA can be assigned to these categories as follows.� Data preparation and manipulation operations dominate the language. There are

eleven statements for these purposes:read, write, stat, exclude, include, select,
map, class, randomize, noise, anddivide.� The only execution controlling facility inTESLA is therun statement.� Three statements for (directly) supporting classifier analysis are includedin TESLA:
test andcv allow empirical testing of a classifier;do implements iteration. Some
of the aforementioned statements also support empirical analysis, but less directly.

In Table 4.1 an exampleTESLA specification is given, in which, first, a set of active
attributes is declared and the active example set is defined with theread statement.
The attribute declarations and the example vectors must conform to the predefineddata
formats, here they follow that of the C4.5 algorithm [Quinlan 1993]. A classifier saved
in a file could also be activated with this statement. Algorithm dependent default file
name extensions are automatically expanded to the file names given.

After loading the data, the range of attribute “date” is dynamically redefined using
themap statement. Using this command a set of values or a subrange can be mapped to
a new value; the redefined attribute will always be of nominal type. Note that we imple-
ment implicit value hierarchies using this statement by mapping an existing attribute’s
values (the months) to those on a higher level of abstraction (seasons of the year).After
changes the new distribution of the attribute’s values is queried with thestat statement

Commandselect is used to choose from the active set of examples those ones that
have “summer” as the value of attribute “date”. This renders the attributesuperfluous
and, hence, it isexcluded from the experiment.

Two irrelevant attributes are dynamically declared using theinclude statement, which
replicates each example in the data as many times as the new attribute has possible val-
ues. Hence, the number of examples becomes multiplied by four in our example spec-
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Table 4.1: Example of aTESLA specification. In this actual interaction user commands are
marked with bold font.TELA’s replies have been, in part, abbreviated for better legi-
bility.

Welcome to TELA version 1.995 !
read C45 atts soy exs soy;
Attribute description read from file soy.names.
290 examples read from file soy.data.
map date as [april may]: spring [june july august]: summer else fall others winter;
Mapping complete.
stat date;
Attribute Type Values ... Unknown Don’t Care
name (* = class) (Nom.) count count
date DISCR 0 0

fall 101
spring 43
summer 146
winter 0

Total example count: 290
select date in [summer];
146 example(s) selected.
exclude date;
Specified attributes excluded.
include irrel1: a b, irrel2: c d;
Working set contains now 37 attributes and 584 examples.
set randseed 0;
Random number generator initialized with seed 0.
randomize class: 0 others 5;
class: 0 out of 584 values changed.
areadama: 24 out of 584 values changed.
cankerle: 19 out of 584 values changed.
cankers: 26 out of 584 values changed.
...
do 10 record time size rank accuracy;

divide training: 67 others testing;
run Rank (initrank=2, gini, level=4, kappa=1, gamma=0.905);
read TELA both testing;
test Rank;

end;
RUN Rank rounds: 10 AVG.RANK =2.000 (+/-0.000) AVG.SIZE =134.300

(+/-6.870) AVG.TIME =10.034 (+/-0.403)
TEST Rank rounds: 10 AVG.ACCURACY =81.255 (+/-0.287)
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ification. Assigning each of the values to a replicated example ensures that the new
attribute will not be relevant to the class label of the examples.

Before the random number generator is applied we initialize its seed to a constant
value as to obtain a test sequence that can better be repeated. Random noise rateof 5%
is added to all attributes’ values usingrandomize statement. It allots, with probability
0.05, a new value for an attribute in any example vector. All values in a (discrete) range
have an equal probability of being chosen. In particular, the command may also leave an
attribute’s value intact. The other randomization command ofTESLA, noise, does not
include the attribute’s original value in the set from which a new value is allotted.

Any legal sequence of legalTESLA statements can be repeated any number of times
using thedo statement. The repetitions are independent; i.e., the starting configuration
of the system’s internal state is the same for each repetition. Nested repetitions are not
allowed. In this example thedo statement records average values over 10 repetitions for
the construction time, size, accuracy, and rank of the resulting decision tree.

Within thedo statement the active set of examples is split, using thedivide statement,
into two mutually exclusive portions, containing 67% and 33% of the data. The first
portion remains active. All designated portions are written (in TELA format) into files
from where they can later be reactivated.

After desired manipulations and transformations have been performed on the data,
theRankalgorithm is run on the modified data. Therun statement invokesRankwith
the given parameter values. The active sets of attributes and examples are communicated
to the algorithm. The returned classifier will become the active one. Afteractivating the
test data, the classifier is tried using thetest statement, which simply checks the accuracy
of the active classifier on the set of active examples.

The remaining statements, which were not included in the above example, are as
follows. At any time, the user can save (modified) attribute declarations, examples, or
the active classifier into a file by thewrite statement. The statement does not change the
activation situation of the system: All sets that are active when the statement is invoked
will remain active after its execution. New class attribute can bechosen using theclass
statement. The new class, naturally, has to be of nominal type.

Cross-validation testing [Breimanet al. 1984] can be accomplished inTESLA by the
cv statement. In cross-validation the data is split inton disjoint subsets of (nearly) equal
size, then, for each subset a classifier is constructed leaving the one subset outof the
training set and using it as the test set. The average of then independent error estimates
is a very good approximator of the true misclassification rate of the classifier.

4.2.3 Enclosing new algorithms in TELA

The first duty ofTELA is easy accommodation of new attribute-based learning algo-
rithms without having to know the particularities of them apart from their I/O formats.
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Table 4.2: Data format definition for theRankalgorithm.

BEGIN DESCRIPTION Rank % Inherits unspecified values from
DEFAULTS = TELA % the description of TELA
RULETYPE = ’Decision Tree’

[ATTRIBUTES]
ATTSEP = ’;’ % Separator of consecutive defs
VALSEP = ’,’ % Terminates a value’s name
ATTSEXSSEP =
NOMINAL =
INT =
CONT = ’CONT’ % Required by TELA
UNKNOWN = ’x’ % Symbol for unknown value
DONTCARE =
ATTSFOOTER = ’end’ % List terminator
EXSFOOTER = ’end’

[INTERFACE]
EXENAME = ’algorithms/rank/rank.run’ % Parameter processor
ATTSEXSFILES = SEPARATE % (see Appendix C)
ATTSEXT = ’.att’ % Default extensions
EXSEXT = ’.exs’

[OPTIONS]
GINI % Legal parameters
IFM
PREVHYPO
INITRANK
LEVEL
KAPPA
GAMMA

[RUNSTATS]
SIZE % Quality measures
RANK % TIME is present for all algorithms

[TESTSTATS]
ACCURACY

END DESCRIPTION

For that purposeTELA offers a declarative data format definition language. The input to
a (non-incremental) learning algorithm can be divided into two parts:Staticinput con-
sists of the attribute declarations and of the data vectors conforming to the declarations;
thedynamicpart of the input of an algorithm consists of its commands or parameters and
the values subscribed to them. The definition language ofTELA follows this division:
Definitions have a static and a dynamic part. However, not all data formats have a dy-
namic part: The internal knowledge representation language ofTELA can only be used
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in describing the attributes and the examples, but it has no executable correspondence.

TELA provides the user with a template to be filled in for the data format definition.
This template has slots for a few simple declarations (e.g., different separators used in the
input files) defining the specifics of the new algorithm’s attribute declaration and exam-
ple description syntax. Default values to this definition are inherited from theTELA data
format, but the user is free to any other existing data format as the superclass of the new
definition. Hence, only those slots that differ from a predefined data format need tobe
filled in. In Table 4.2Rank’s data format definition is given. The declarations are stored
into the Algorithm Database from which they subsequently queried by the other internal
modules ofTELA. Predefined standard declarations belonging to the current version of
TELA areTELA (the internal KRL, static only),NewID, CN2, C4.5, MDLTree, MDL-
List, Rank, Findmin, ITI, T2, andNaive Bayes. The dynamic control cannot easily be
automated inTELA. Therefore, it expects to receive the name of an executable external
program that can process and pass, e.g., parameter values to the learning algorithm (cf.
Table 4.2). The external C shell program ofRankis presented in Appendix C.

As already explained, the outputs of different learning algorithms cannot be handled
as smoothly. The user must provideTELA with procedures for saving and visualizing
the produced classifier, for classifying a set of examples with it, and for recording the
accuracy of a classifier on a given example set. In the simplest case (e.g.,for NewID),
the user can implement these with the help of the learning algorithm itself: The classifier
can be written into a file and can be offered for user inspection (in ASCII format) with
a command of the learning algorithm, subsequently the classifier can be reread bythe
algorithm and used to classify a set of examples. Only recording the accuracyof a
classifier on a given data causes some troubles, but typically that information is easily
extracted from the output of the learning algorithm. In a more difficult case (e.g., for
C4.5), the algorithm neither supports saving the classifier in user-readable format nor
allows classifying a set of (unseen) examples with it. In such a case the user has to
implement these features (e.g., in C code).

4.3 Future development of TELA

Even thoughTELA has been implemented and used to execute the experiments reported
in the next chapter and in experiments of other studies [Lamminjoki 1995, Rousu 1996,
Elomaa & Rousu 1996b], it is still a subject to future improvements. This section briefly
takes up the most urgent development needs ofTELA.

At its present compositionTELA lacks a graphical user interface, which might be
useful in some situations. The main reason for this omission is that we have wanted
to be able to distribute the system with few environment restrictions. Furthermore, our
experience of decision tree learning has demonstrated that in practice the induced trees
often are of such magnitude that there is no good way of visualizing them (and decision
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lists do not really need graphical representation). However, extendingTELA with a
graphical user interface has been taken into account in the system’s design; itshould be
quite easy to extendTELA with an independent graphical user interface.

Even more than graphical extensionsTELA needs support for theTESLA language,
which is a sizable programming language. A programming environment or, at least, a
syntax editor would facilitate test sequence specification.

CurrentlyTELA can only support a single set of attributes and examples and a sin-
gle classifier. Together these three components are called aworking set[Tsatsarakis &
Sleeman 1993]. If the user wants to manipulate several working sets inTELA, he has to
manage them (save and load, as required) himself. It is quite typical that slightly differ-
ent working sets are manipulated during a test sequence. Therefore, automatic control
over working sets should be added toTELA. Implementing such a property inTELA is
straightforward: The languageTESLA just needs tools for naming and accessing differ-
ent working sets. The Working Set Database can maintain the information regarding the
working sets.

In inductive learning tasks it often is the case that the attributes suppliedare not
definitely the ones that should be used. If, however, we have a fixed set of data from
the application domain at our disposal, we cannot expect to find new information about
the data, but we have to content ourselves with that at our disposal. Nevertheless, in
many cases reorganizing the fixed set of data by constructing new attributes from the
existing ones can turn out beneficial either in classification accuracy or intelligibility of
the resulting classifier. There are learning algorithms that automatically construct new
attributes from the primitive ones [Matheus & Rendell 1989, Pagallo & Haussler1990],
but that is not the case for all learning algorithms. A facility that would givethe domain
expert some tools for constructing new attributes from the existing ones, e.g., as algebraic
combinations of numerical attributes, could be added to the system. At the moment the
map statement ofTESLA is the only tool inTELA for doing anything of this kind.

More sophisticated measurements of data characteristics [Michieet al. 1994] could
be presented to the user for him to better be able to relate his results and assess the utility
of an algorithm. In principle, nothing prevents including such into the system. Taking
the idea even further, tools for automatic parameter value adaptation or evenlearning
method selection (multistrategy learning) would suitTELA’s framework well. However,
these would extend the system far beyond its original target functionality.

There are many further extensions that could be considered toTELA (e.g., automatic
comparison of working sets) and extensive use will surely bring out many more. Instead
of trying to list all of them, let us just note that the strict discipline exercised inTELA
concerning the independence of the system turns out to be valuable in this respect. It
is easy to extendTELA with new facilities. Of course, some desirable properties are
fundamentally hard to implement; they will not be any easier in connection ofTELA.
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4.4 Related systems

There are other systems for supporting the execution of inductive learning algorithms.
WILA [Sleeman 1994, Tsatsarakis & Sleeman 1993] is closest to our system in its de-
sign rationale and functionality, even though its aims are in part different from those of
TELA. WILA is a prototype system for helping both the domain expert and the knowl-
edge engineer to use attribute-based inductive algorithms. WILA shares our platform
approach in that it, too, is intended to be an easily extensible environment for indepen-
dent learning algorithms (as published, WILA only incorporates the NewID algorithm).
Facilities for preprocessing the data to be fed in are provided for the domain expert and
the knowledge engineer. They can also postprocess the output of the learning algorithm.

WILA differs from our system most dramatically in that it offers only minimal sup-
port for experiment planning, execution, and analysis. No special facilities forsup-
porting test sequence design or execution are provided. WILA only gives the user the
opportunity to do some pre- and post-processing for single runs of NewID.TELA offers
many facilities for relating the performance of different algorithms on thesame task or a
single algorithm on different tasks, but WILA mainly relies on the graphical presentation
of the induced decision tree and the domain expert’s understanding of it. Furthermore,
the view offered to the user is quite dispersed in WILA : A separate tool is provided for
each task. Finally, WILA lacks many of the data manipulation opportunities that are part
of our system. On the other hand, WILA is able to manage multiple working sets, it has
a limited facility for building new attributes from existing ones, and it has a graphical
user interface.

IND [Buntine & Caruana 1993] is a comprehensive system implementing the most
popular approaches to decision tree learning as variations of a common learning algo-
rithm. For example, IND implements C4.5 by executing the appropriate splitting rule
selection and pruning methods when constructing a decision tree. IND has many ad-
vanced features and it is quite a versatile tool for decision tree induction. Its approach,
however, is fundamentally different from that ofTELA and WILA . First, IND is a closed
system that is not intended for the user to extend. If a new decision tree learning method,
nevertheless, was to be added to IND, then, in the simple case, one could add a new style
to IND’s repertoire by running precoded programs with suitable options. In the more dif-
ficult scenario, the new algorithm cannot be implemented directly by IND, but requires
adding new programs or options to the system. In both cases the user has to have in-
depth knowledge of the new method. Furthermore, implementing decision list learning
algorithms—CN2, for instance—is not supported by IND, even though the algorithms
principally use the same techniques as decision tree learners.

GENCOL of De Raedt and Bruynooghe [1992] is a very general implementation of a
concept learning framework. Most approaches to concept learning can be implemented
in GENCOL by instantiating its many generic parts. The generality of the system makes
it more a tool for the design of new concept learning approaches than a tool for practical
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induction tasks.

4.5 Practical experiences on using TELA

This section reflects lessons learned usingTELA. Both personal experiences and those
of other users are offered. Up to these daysTELA has been used solely by the members
of the development group. It is only quite recently thatTELA has been adopted into use
by other teams. It is time to review the first feedback onTELA’s design and utility.

Inclusion of new learning algorithms

Several learning algorithms have been incorporated withTELA since the completion of
the system. For this work algorithmsRankand ITI [Utgoff 1994] have been added,
Rousu [1996] has incorporated two MDLP-based algorithms, and the T2 algorithm
[Auer et al. 1995] has been made part of the system’s repertoire.

The current implementation ofRankwas modified, especially withTELA in mind,
from an older version of the algorithm [Elomaa 1992]. Therefore, it was the easiest task
to incorporateRankinto TELA; all the potential pitfalls could be avoided by taking them
into account already in the implementation. As an example, the algorithm counts and
outputs (in the desired format) all the required statistics, and is able toinput and output
its decision trees. Hence, inclusion ofRankinto TELA only required us to give the data
format definition (Table 4.2) and to modify a suitable dynamic control program forRank
(Appendix C) from that of C4.5. The latter duty was clearly the more demanding one,
and even it could be handled quite smoothly.

Lamminjoki [1995] enclosed the incremental decision tree learner ITI [Utgoff 1994]
into TELA’s repertoire. He was not familiar with the algorithm or the environment in
advance, but had ample knowledge on inductive learning. According to Lamminjoki’s
experience it was relatively easy to handle the dynamic control of ITI. Size ofthe re-
sulting tree was easily extracted from among the output of the algorithm, the decision
tree could be saved into a file for later use, classifying a set of test examples with a tree
grown was readily available in ITI, and its accuracy, again, was easyto extract. What
turned out to be more complicated, was the measurement of the rank of a tree produced
by ITI. Naturally, it was not featured in ITI itself, but because of the experiments in the
next chapter we, however, wanted that measure at our disposal. In order to savetime
and effort, it was elected to use a shortcut in obtaining this measurement: Rather than
implement a parser and a scanner for ITI’s decision trees (which has been done,e.g., for
C4.5) we simply added a rank-counting function to the source code of ITI. In general,
it seems to be the biggest shortcoming of the current version ofTELA, that often one
would need to manipulate the hypothesis generated by an algorithm, but no support for
that is provided. In summary, it is Lamminjoki’s view that it is not hard to embed an
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unfamiliar algorithm intoTELA (as long as it is not too peculiar) as regards the basic
functionality and measurements; all additional requests take much more effort.

The experiences of Rousu [1996] on enhancing the repertoire ofTELA are parallel
with those of the author: It is easy to make ones own algorithms to conform to the
requirements of the system. Similarly, the problems encountered with T2 arethe same
as those met when incorporating ITI.

In summary, it is very easy to incorporate algorithms withTELA in what concerns
static input and measurements that are in advance available in a learning algorithm. What
requires more thought, is the measurement of characteristics not supported by the new
algorithm. That tends to require programming an interpreter for the output classifier.

Extensive experiments

So far, three major test series constitute the system’s main validation test: Those run
for this work and reported in the following chapter, those run by Rousu [1996] for his
thesis, and those by Elomaa and Rousu [1996b]. Two first test series were run partly
simultaneously. Thus, they constitute a test for the multi-user facilitiesof the system.

TELA has turned out to be just the right tool for executing all these experiments. (Of
course that was to be expected, since we had a similar test setup in mind whendesigning
TELA.) Nonetheless, there were some minor complications encountered during the ex-
periments. At first it proved a little hard to adopt to the very strict correctable computing
methodology of SEED [Holsti 1989] that now also appears as a part ofTELA through
its current interface. For instance, if data was saved into a file usingTESLA command
write and, subsequently, that command was retracted in an attempt to reuse the existing
code, then the file written previously as the result of this command would be deleted and
a new one would replace it. This is so different from the usual functioning of computer
programs that, at first, it will undoubtedly surprise any unfamiliar user. Once we got
used to the correctable computing paradigm, things started to work with ease.

There are some things inTELA that could and probably should be changed. For
example, more versatile file name extension facility inTESLA would make the sys-
tem appear much more user friendly, and the often-appearingdivide-run-test command
sequences inTESLA specifications (see Table 4.1) could easily be abbreviated. Further-
more, a more extensive help facility is required.



Chapter 5

Empirical Evaluation and Validation

This chapter reports on a series of comparative experiments on learning algorithms ex-
ecuted underTELA. The experiments were carried out in order to empirically validate
theRankalgorithm elaborated in Chapter 3. Furthermore, these experiments act as yet
another test case for the correct functioning ofTELA. First we outline the general guide-
lines for the tests: What kind of measurements are taken, and in which domains?What
are particular tests designed to reveal? Then we describe briefly the domains, where the
comparative measurements are taken. After listing and commenting on the empirical
measurements in Section 5.2, the final two sections summarize, analyze, and discuss the
results obtained in these common benchmark data sets.

5.1 Experiment setting

In this section we introduce the setting for the empirical experiments. First we sketch
a general outline for the tests that are taken. Then we introduce briefly the realizations
of the algorithms that are included in the comparison, and describe the most important
aspects of the test domains.

5.1.1 Experiment outline

Experimental study is an important and often used method of evaluating learning sys-
tems. There is a collection of principles and standard experiment types that have come
to be generally accepted goals, means, and methods of evaluating learning systems [Ki-
bler & Langley 1988, Michieet al. 1994]. Our experiments conform to these guidelines
as far and as completely as the limitations imposed by the wider purpose of this study
allow.

There are three different sets of tests reported in the following section.The first
one tries to putRankinto perspective with respect to other inductive learning programs
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according to the single most important property of a learning program, the classification
accuracy on unseen instances. For this end we runRankon data taken from StatLog
project [Michieet al. 1994]—a recent comprehensive comparison on inductive learning
methods—and evaluateRank’s performance with respect to the reported results. This set
of tests consists of three independent experiments.

Once a general impression ofRank’s utility is obtained, we want to get a more de-
tailed understanding of howRankmanages in comparison with the more established,
but similar learning methods. Also, we do not want to observe the algorithms’ behavior
along one dimension only, but intend to record other characteristic measurements, such
as hypothesis size and training time, in addition to prediction accuracy. Furthermore, a
good account of the effects of noise on learning is still missing after the first set of tests.

The second set of tests consists of further experiments with uncorrupted data. This
time the main emphasis is on measures other than prediction accuracy. Anotherobjective
of these experiments is to discover the shape ofRank’s learning curve and compare it
with the curves of other learning methods. This set of tests consists of five separate
experiments.

The last set of tests examinesRankand four other programs in the presence of ran-
dom noise. We try to find out how different noise types affect learning of a hypothesis.
The types are attribute and classification noise, and a combination of the two. A“noise
curve,” recording the degradation pace of an algorithm’s prediction accuracy asthe noise
rate gradually increases, is also registered for the test programs.

Let us already at this point lay down the general guidelines for the experiments and
explain how the quality measurements are taken.

Two generally accepted test schemes—both implemented inTESLA—are the basis
of these experiments: In cross-validation [Breimanet al. 1984, Michieet al. 1994] the
data is randomly partitioned into a user-specified number of mutually exclusive subsets;
one subset is retained for testing and the others are used in training; this procedure is
repeated successively for each subset. Thus one is able to utilize the whole available
sample as unseen instances in testing as well as in training. The measuredvalues are av-
erages over all subexperiments. The second test scheme partitions the data onlyinto two
subsets containing user-specified random portions of the data; one of the subsets is used
in training and the other—consisting of instances unseen to the learning algorithm—in
testing. We choose the test strategy of each experiment on the basis of literature; i.e., we
try to follow the same strategy that was used in earlier studies in orderto obtain compa-
rable results. For example, the StatLog experiments were meticulously recorded and the
same procedures can be repeated.

Corruption of domains is accomplished usingTESLA commandrandomize, which
implements the following strategy [Elomaa & Rousu 1996a]. An attribute is corrupted
to noise leveln percent by replacing, with probabilityn=100, its original value with a
new value drawn randomly from the attribute’s range (including the value to be replaced)



5.1 EXPERIMENT SETTING 75

in all the instances. The probability distribution is uniform: All values in an attribute’s
range have an equal chance to be selected.

The reported results are always averages over ten repetitions with the same experi-
ment setting. In most cases there is a random element either in the learning program or in
the example manipulation. Rerandomization is applied in every repetition. For example,
if a random sample is required, then a new sample is drawn randomly at each repetition.
The randomization naturally causes variation in the results. Ten repetitions is maybe
not enough to guarantee totally reliable results, but it suffices to show the correct level
and direction of the results. Moreover, we compensate the low number of repetitions by
executing a large number of independent experiments.

Rankonly manipulates categorized attribute ranges; it can not handle numerical value
ranges. At first this might appear to be a major shortcoming, but that, however, isnot
the case. Feature manipulation prior to induction is a standard technique that often has
to be utilized in practice (see e.g., [Langley 1996]). In these experiments we choose
the categorization of numerical attribute value ranges using a separate feature processor
before we submit the data toRank. In order to ensure unbiased comparisons with C4.5
we use C4.5 itself as the attribute-categorizing preprocessor. In practice we first run C4.5
on uncategorized data and let it induce some quantization for the attribute value ranges.
Then, by usingTESLA commandmap we redefine the data forRankand run it with
quantized data.

There are four quality measures monitored in the tests. The first one is theprediction
accuracyof the classifier produced by a learning program, or more loosely, the prediction
accuracy of a program. This refers to the proportion of those instances that are correctly
classified by the hypothesis and were not included in the training set. Thetimetaken by
a program to construct a classifier is the second measure. It does not include the time
spent doing basic data set manipulation. Construction times are measured byTELA and
expressed in seconds. The third measure is therank of a decision tree as defined in
Section 3.1. Thesizeof a classifier is the fourth and final measure that is monitored.
There are two cases: The size of a decision tree is the total number of (internal and
external) nodes in it; the size of a rule set is the sum of the total number of rules init
and the total number of conjuncts in them. Over the years there has been some debate
about the correct way to measure these complexities. We have found the above described
measures to be at least informative, if not directly comparable.

The results that are reported are always the best ones obtained except for StatLog
experiments, where input parameter values for the algorithms were fixed. That is, we
vary each algorithm’s input parameter values registering only results fromthe best run.
The measure that determines the best result is the prediction accuracy. I.e.,the results
reported are always results from the run on which the highest classification accuracy was
obtained. This causes some additional difficulties in executing the experiments and in
interpreting the results, but it is the only fair way to carry out the comparison.
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5.1.2 The algorithm implementations

In most of the tests reported below we compare five different induction algorithms;
NewID [Boswell 1990b, Tsatsarakis & Sleeman 1993], CN2 [Clark & Niblett 1989,
Clark & Boswell 1991], C4.5 [Quinlan 1993], ITI [Utgoff 1994, 1995], andRank. Under
the common nameRankwe actually have three different algorithms: The basicFindmin,
Rank, and its incremental variantIFM. Results for these three will be recorded sepa-
rately. The standard reference of this comparison is a classification heuristic that always
predicts the most frequent class among the training examples. We refer to it as thede-
fault (class) method. Clearly, in no situation should the inductive programs decline to
do worse than the default class heuristic, if we want to claim that somethingis gained by
using these methods.

NewID is a slight modification of the basic TDIDT method of ID3. The main differ-
ence is that no pruning is done while growing the hypothesis tree. Post-pruning of the
tree is available upon the user’s wish. The split attribute selection method of NewID is
not the entropy-based information gain of ID3, but a new method that is based on the
Laplacian error estimate [Niblett & Bratko 1986].

We use implementation version 4.1 of the CN2 algorithm [Boswell 1990a], which
is a substantially improved variant of the original CN2 rule induction method [Clark &
Niblett 1989]. The main difference to the original algorithm is, again, using the Lapla-
cian error estimate instead of entropy-based heuristics. The modificationsare explained
in detail by Clark and Boswell [1991].

C4.5 is a product that has evolved from Quinlan’s studies on decision tree learning
over several years. The starting point in the development of C4.5 has been the straight-
forward TDIDT approach of ID3, but it has progressed a long way. The improvements
are explained in detail by Quinlan [1993]. Note that we only use the decision tree pro-
ducing variant of the algorithm, the possibility to convert trees into rule sets [Quinlan
1987c] is not utilized.

ITI is a modern incremental decision tree learner whose foundation is in the ID5 algo-
rithm [Utgoff 1989], which, in a way, was the incremental equivalent of ID3. Similarly,
ITI is intended to be the incremental equivalent of C4.5: It handles continuous attributes
more or less the same way as C4.5 does, whereas ID5 is unable to manage them at all.
We have incorporated ITI into these experiments mainly to act as a counterpartof IFM.

TheFindminalgorithm in these experiments is the one described in Section 3.2, i.e.,
the basicFindmin extended to handle multivalued variables. (In fact, the extension to
handle variables of varying arity from Section 3.5 has also been included.)

The implementation language ofFindmin, Rank, andIFM is Ada. The rest of the
algorithms have been obtained from their developers; they have all been implemented in
C. All algorithms and theTELA environment run on a Sun SPARC workstation environ-
ment underUNIX operating system.
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Table 5.1: Main characteristics of the experiment data. Domains are characterized by the number
of attributes (not including the class), average number of values per attribute, number
of classes, and total number of examples.

DOMAIN ATTRIBUTES VALUES CLASSES EXAMPLES

CR.AUST 14 6.1 2 690
VEHICLE 18 7.0 4 846
DIABETES 8 12.5 2 768
SHUTTLE 9 2.9 7 58,000

DNA 60 2.0 3 3,186
MPLX6 11 2.0 2 2,048

LED 7 2.0 10 200
CHESS 36 2.0 2 3,196
TUMOR 17 2.2 22 339

SOYBEAN 35 2.9 15 290
MUSHROOM 22 5.6 2 2,065

5.1.3 Experiment domains

The latest broad interest in machine learning has now lasted just under two decades ever
since Feigenbaum’s notion of the “knowledge acquisition bottleneck” in expert systems
[Feigenbaum 1977] and Michalski’s famous soybean disease identification results [Mi-
halski & Chilausky 1980]. During this time a collection of standard reference data for
evaluating the behavior of induction algorithms has accumulated. The literature includes
several reports on empirical tests on different algorithms within these standard domains.
Hence, to achieve comparable results, we also run tests in some of these domains. It is
of utmost importance to experiment with many domains, since the algorithms’ behavior
tends to depend on the domain characteristics. (For a detailed study on the correlation
between algorithms and domain characteristics see Michieet al. [1994].) We have se-
lected data sets with varying characteristics in order to evaluate the effects caused by
these characteristics. The test data in our experiments comes from two sources: The
StatLog project [Michieet al. 1994] and the University of California at Irvine repository
of machine learning databases [Murphy & Aha 1994].

We now describe briefly the test domains of the experiments. Table 5.1 summarizes
the main characteristics of the data sets. A comprehensive description of the data can be
found in Appendix B.

CR.AUST: This is one of the most commonly used machine learning databases; it in-
volves assessing credit card applications. The data was introduced to machine
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learning community by Quinlan [1987c].

VEHICLE: An image data set for testing how 3-dimensional objects can be identified
from a 2-dimensional image. Here the images are silhouettes of different types of
cars. The data set comes from the StatLog project.

DIABETES: This medical data originates from National Institute of Diabetes and Diges-
tive and Kidney Diseases. It records data gathered from 846 patients. The problem
is to predict whether a patient would test positive for diabetes (according to WHO
criteria). After categorization the 8 attributes have on average 12.5 values in their
range.

SHUTTLE: Data set originating from NASA and concerning the position of radiators
within the Space Shuttle. Relatively easy problem that also was one of the Stat-
Log domains. Comes partitioned to training (43,500 examples) and test (14,500
instances) sets. We use this data to test how the test programs scale up with respect
to the number of examples.

DNA: Also this data comes partitioned into prespecified training (2,000 examples) and
test (1,186 instances) sets. Our version, even though it has 60 attributes, is not
the original nucleotide representation [Noordewieret al. 1991], but a modification
of the binarized version from the StatLog project [Michieet al. 1994]. We have
modified it by excluding 120 binary attributes, leaving only 60 as the basis of
classification. This simplification was suggested by the StatLog group in orderto
make the problem easier.

MPLX6: This is the six-bit multiplexor function with five irrelevant bits. Multiplexor
functions are known to be difficult concepts for standard learning programs to
master [Quinlan 1988a]. The data consists of 2048 instances.

LED: The LED display digit identification domain presented by Breimanet al. [1984].
The data consists of 200 seven-LED display images representing the decimal dig-
its. There is a 10% attribute noise affecting the examples. The noise makes the
data appear inconsistent.

CHESS: A data set describing king and rook versus king and pawn (on a7) chess endgame
board positions. This data comes originally from Shapiro’s [1983] Ph.D. thesis,
where the endgame is analyzed with extreme detail. There are over 3000 examples
described by 36 attributes.

TUMOR: Database concerning the location of primary cancer tumor gathered at the Uni-
versity Medical Center, Institute of Oncology, Ljubljana, Slovenia. This is one of
the medical domains that has repeatedly appeared in machine learning literature
(e.g., [Cestniket al. 1987, Clark & Niblett 1989, Michalskiet al. 1986, Mingers
1989a]). It is known that four internists (non-specialists) determined a correct lo-
cation of primary tumor in 32% of cases and four oncologists (specialists) in 42%
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of test cases in this domain [Cestniket al. 1987, Michalskiet al. 1986]. There are
22 classes in this domain.

SOYBEAN: This is the famous database of soybean infection diseases of Michalski and
Chilausky [1980]. The examples consist of 35 attributes. There were 19 classes, 4
of which are omitted as suggested by Michalski and Chilausky because they have
only few instances. Diagnostic decision rules of 96.2% accuracy for the 15 class
case have been acquired from approximately 20 hours of discussions with a plant
pathologist [Michalski & Chilausky 1980].

MUSHROOM: This database is another famous and widely applied standard test case
for induction algorithms. The data describes mushrooms in terms of their phys-
ical characteristics, and classifies them as poisonous or edible. The data set was
gathered from books by Fisher [1987] for his Ph.D. work. We use only a random
excerpt of 2065 instances of this domain in our experiments.

Of the above listed domains MPLX6 is a special one, since it is extensive, including
all the possible value assignments for the attributes, whereas the others areempirically
gathered or randomly generated data sets that cover only a part of all the possiblein-
stances of the domain. MPLX6 is a Boolean function, LED and CHESSfollow man-made
exact rules, while the others are governed by the laws of nature.

5.2 Empirical results

This section reports and discusses the empirical results obtained in the experiments out-
lined in the previous section.

5.2.1 Three StatLog problems

Michie et al. [1994] report the prediction accuracies of several learning programs on
many different learning problems. We have tabulated part of their results into Table 5.2.
For detailed information on the learning programs, the experiments, and the results we
refer the reader to the book of Michieet al. [1994].

We have results on the StatLog domains for a good collection of contemporary in-
ductive learning methods readily at hand. Thus, we can obtain an overview ofRank’s
utility by performing the same experiments with it. Learning algorithms thatare used in
the subsequent experiments are marked with boldface font in Table 5.2. In addition to
Rankvariants, we have added a row for ITI into the table. The programs were originally
sorted into relative order in each experiment; the last row records theseplacings. For
the new algorithms would-be placings are given. In the StatLog project the data sets
were categorized into groups according to domain types. We have included one data
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Table 5.2: Prediction accuracies of twenty-eight learningprograms on three of StatLog project’s

experiments. Column TIME sums the training times over these three experiments and
column PLACINGS gives the relative accuracy order of the algorithms in thesedo-
mains. The test methods are 10-, 9-, and 12-fold cross validation, respectively. The
algorithm types are: Stat = statistical method, DT = decision tree learner, R = rule set
induction, and NN = neural method.

METHOD TYPE CR.AUST VEHICLE DIABETES TIME PLACINGS

Discrim Stat 85.9 78.4 77.5 75.5 3, 6, 3
Quadisc Stat 79.3 85.0 73.8 305.8 21, 1, 11
Logdisc Stat 85.9 80.8 77.7 809.7 3, 4, 1
SMART Stat 84.2 78.3 76.8 83,234.2 13, 7, 4
ALLOC80 Stat 79.9 82.7 69.9 2,281.0 19, 3, 21
k-NN Stat 81.9 72.5 67.6 167.8 15, 11, 22
CASTLE Stat 85.2 49.5 74.2 95.2 8, 22, 10
CART DT 85.5 76.5 74.5 122.4 6, 8, 9
IndCART DT 84.8 70.2 72.9 363.1 10, 16, 14
NewID DT 81.9 70.2 71.1 42.8 15, 16, 19
AC DT 81.9 70.4 72.4 7,912.0 15, 15, 18
Baytree DT 82.9 72.9 72.9 44.7 14, 10, 14
NaiveBay DT 84.9 44.2 73.8 34.1 9, 23, 11
CN2 R 79.6 68.6 71.1 180.4 20, 19, 19
C4.5 DT 84.5 73.4 73.0 191.5 12, 9, 13
ITrule R 86.3 67.6 75.5 1,190.1 2, 20, 6
Cal5 DT 86.9 72.1 75.0 284.0 1, 12, 8
Kohonen NN – 66.0 72.7 7,928.4 –, 21, 17
DIPOL92 NN 85.9 84.9 77.6 242.0 3, 2, 2
Backprop NN 84.6 79.3 75.2 22,952.0 11, 5, 7
RBF NN 85.5 69.3 75.7 1,752.9 6, 18, 5
LVQ NN 80.3 71.3 72.8 629.4 18, 14, 16
Cascade NN – 72.0 – 289.0 –, 13, –
Default – 66.0 25.0 65.0 – 22, 24, 23
ITI DT 82.0 74.0 68.3 4,295.2 15, 9, 22
Findmin DT 72.2 58.7 69.0 66.4 22, 22, 22
Rank DT 85.4 70.0 75.6 69.5 8, 18, 6
IFM DT 84.1 65.3 71.3 79.0 14, 22, 19
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set from each (prediction task) group into this experiment. The test scheme inall these
experiments is cross-validation, but each data set has its own folding factor: CR.AUST is
tested using 10-fold cross-validation, VEHICLE using 9-fold, and DIABETES using 12-
fold. Let us examine these problems in detail one at a time and then present the overall
summary.

Cr.Aust domain does not discriminate clearly between different types of prediction
methods: Among the best methods there are symbolic and subsymbolic learners as well
as statistical discriminators. Furthermore, most methods achieve prediction accuracy that
is within seven percentage points. In other words, all methods do more or less equally
well on this domain.

None of our test programs belongs to the very peek of best performers in this domain.
Indeed,Rankturns out to be the best predictor among them. It achieves average accuracy
85.4% using 10-fold cross-validation. That is only 1.5 points less than the best method
has recorded in the StatLog experiments and 0.9 points more than C4.5 has scored.Rank
would have been the eighth best predictor in this task; i.e., it would have belonged to
the top third among these algorithms.IFM scores slightly less, but is still within the
same region. It would have been the number 14 predictor. The basicFindmin, which
by definition overfits, does substantially worse than its heuristic variantsand all other
learners. Still it achieves clearly better performance than the default class heuristic does.

Vehicle domain elicits more dispersion into the prediction accuracies of the algorithms.
This time statistical and neural methods do on average clearly better thansymbolic learn-
ers do. One might guess that it is the increased number of classes that causes the con-
fusion; we examine the impact of increased number of classes in detail subsequently.
There are a couple of programs that fail even worse thanFindmin in this domain.Rank
is slightly better than CN2, about equal with NewID, and somewhat less accurate than
C4.5 in this task. It would have placed only as the eighteenth best algorithm. More-
over,Rankis now full 15 points behind the best predictor, while the difference was only
1.5 points in the previous experiment.IFM falls even further back, but remains clearly
more accurate than the basicFindmin. ITI now climbs to the top position among our test
programs, passing even its original inspiration C4.5.

Diabetes domain, again, does not bring out great variation in prediction accuracies.
Findmin is almost competitive with the heuristic methods in this task; its accuracy, even
though last but one, is only 8.7 percentage units less than that of the best method. Re-
spectively, its heuristic variants—RankandIFM—are unable to increase their accuracy
much from the base case ofFindmin. Rank, nevertheless, again scores better than C4.5,
and is among the best algorithms in this test, placing as the sixth best predictor. IFM
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again does somewhat worse, but remains competitive, surpassing, for instance,NewID
and CN2 algorithms.

Overall one cannot draw unambiguous conclusions on what type of predictor should
be used in these domains. If we cumulate the prediction accuracies obtained in these
three experiments, we see that the best predictor is a neural method, DIPOL92 (248.4%),
followed closely by a statistical discriminator, Logdisc (244.4%), and that the best sym-
bolic method, CART (236.5%), is not far behind.Rankfalls on average 5.8 points behind
in prediction accuracy from the best method and most of the difference is due to one do-
main (VEHICLE). When contrasted with C4.5,Rankturns out to be equal on average.
If the algorithms were placed in order according to the cumulated accuracies, our test
programs would obtain the following placings out of 26:Rank—9, C4.5—10, ITI—17,
NewID—19,IFM—21, CN2—22,Findmin—25, and Default—26. This would suggest
that our test programs are divided into two groups,Rankand C4.5 being clearly more
accurate than the rest of the programs. In general, the division is not so clear-cut, as
demonstrated by the subsequent experiments.

Column TIME in Table 5.2 shows the cumulated training times as reported by Michie
et al. [1994]. The training times ofRankvariants and ITI have been transformed into
the same scale according to the times measured for NewID in our own tests. In general,
symbolic learners are expedient, the time consumption of statistical methods varies, and
neural techniques are slow to train.Findminand its variants belong to the very fastest
learners while ITI together with AC turn out to be the slowest symbolic learners in these
experiments. The latter two are special algorithms: ITI processes examples one at a time
and AC uses look-ahead [Shepherd 1983]. The variants ofRankalso use look-ahead and
IFM even processes the examples one at a time. Nonetheless, they still are significantly
more expedient on these domains than ITI and AC.

These StatLog problems give us a spectrum of reference for ordering learning pro-
grams along one dimension. At the top of the spectrum there are the heavy neural net-
work methods and statistical discriminators with somewhat better performance on aver-
age than symbolic learning methods—decision tree and rule learners—have.Rankis one
of the best members of the latter category. Important differences along other dimensions,
such as intelligibility of the resulting classifier, go unnoticed here. Thesetests hint that
increase in the number of classes—the main distinction in the domain characteristics of
VEHICLE when opposed to CR.AUST and DIABETES—would be a strongly dispersive
factor. Whether that really is the case will be examined subsequently in detail.

Having now positioned the variants ofRankinto their place in this spectrum, we turn
to examine their behavior in more detail. The above comparisons should have made it
clear that already at its present compositionRankis able to compete with the élite of
learning programs in many respects. We restrict ourselves to comparisonsof Rankand a
couple of its equals in the remaining experiments. The exact placement of the following
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results into the wide spectrum of learning programs is not known, but the above results
give us a pretty good idea.

5.2.2 Experiments in noise-free domains

We carry out five more experiments in domains that have no (explicit) noise present.
All domains are, though, not error-free; the real-world domains have more or less at-
tribute value recordings missing. This time only seven inductive methods are contrasted
with each other. Our first experiment repeats the StatLog problems. We focus onthe
other quality measurements than prediction accuracy. In the second experimentwe test
the seven programs on the MPLX6 domain. Quinlan [1988a] has shown that the ba-
sic TDIDT approach is inherently unable to come up with the optimal decision tree in
this domain. We briefly review howRankand other methods do. The third experiment
evaluates the effect of the number of classes, attributes, and attributevalues on the dif-
ferent methods. The fourth experiment registers the learning curves of the programs on
the VEHICLE domain. We record the prediction accuracies of the programs when the
hypothesis is induced from training sets of varying size. Finally we test the algorithms
capability to scale up by executing them on the substantially larger SHUTTLE domain.

Subsequently we follow the convention of marking by boldface font, in each sepa-
rate run, the measurement, which is considered the best among those obtained by the
heuristic algorithms (shortest time, lowest rank, smallest hypothesis, andhighest accu-
racy). Emphasizing these values is not intended to disclose anything about the overall
performance of the algorithms, but just indicate the best recording.

StatLog domains revisited

Before going into results in other domains, we inspect the values of quality measures
other than prediction accuracy recorded by our test programs in the three StatLogdo-
mains. Table 5.3 presents the measured values.

From Table 5.3 we can see that C4.5 always prunes the heaviest and, hence, produces
the smallest decision trees. Still,Rank’s trees are slightly more accurate than those
produced by C4.5 on two experiments out of three. Even NewID’s trees are smaller than
those ofRank, in spite that they have higher rank on average.Findmindoes not prune at
all and, therefore, produces trees of excessive complexity. Moreover, its hypotheses have
the correct rank, whereas its heuristic variants relax the criterion andalways manage to
find trees of lower rank.IFM comes up with trees that are only slightly more complex
than those produced byRank. A further observation is that in the VEHICLE domain
the relaxation ofRankand IFM, even though it reduces the size of their hypotheses to
a fourth of that ofFindmin’s trees, is not enough: They still come up with trees that
are much larger than those produced by other algorithms; in tandem, they turn out poor
predictors.
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Table 5.3: Values of the quality measurements other than accuracy for the seven test programs in

the three StatLog domains. Column RK records the average rank of the decision trees
produced.

CR.AUST VEHICLE DIABETES

TIME RK SIZE TIME RK SIZE TIME RK SIZE

Rank 3.6 2.0 128.8 20.9 3.0 463.7 1.8 2.0 188.8
C4.5 4.6 1.8 32.6 18.2 3.1 144.8 5.9 2.4 72.2
NewID 4.0 2.9 118.7 10.6 4.0 190.8 3.7 3.9 142.0
CN2 15.1 – 52.6 42.9 – 219.4 6.8 – 39.8
IFM 4.8 2.0 173.5 25.5 2.5 390.8 3.3 2.0 241.0
ITI 236.2 3.3 176.0 1,469.7 3.8 309.5 1,118.1 3.2 311.9
Findmin 10.1 3.0 937.5 15.4 3.0 1737.4 2.9 3.0 1,673.4

The learning times show some variation. WhenRanksucceeds in coming up with
a good predictor, it is also the fastest learner among our test programs. However, in
the VEHICLE domain in whichRankfails, it increases its relative time consumption.
As demonstrated analytically,IFM has asymptotically the same time requirement as
Rank; in practice it turns out to be only slightly slower—because of the additional
bookkeeping—even though the examples are processed one at a time. A clear contrast
to ITI, which uses abundantly more time than its inspiration C4.5. NewID is a bit more
expedient than C4.5, and CN2 is relatively slow in all of these experiments.Findmin’s
time consumption varies, but in general it is surprisingly efficient in comparison with he
other methods, considering it uses look-ahead in attribute selection. The real surprise in
these domains, however, comes from ITI: It uses orders of magnitude more time than
the other methods do. Subsequent experiments demonstrate that this is not always the
case: ITI—being an incremental algorithm—is commonly slower than our other test pro-
grams, but not that much slower. Let us already at this point offer our view of the reason
for ITI’s peculiar behavior in this respect. We submit it to the reader that itis continuous
attribute value range discretization that hampers ITI’s efficiency on these domains. In
incremental learning the heavy basic operations (cf. [Fayyad & Irani 1992]) need tobe
performed over and over again every time a new instance is received. Furthermore, ITI
does not use the most modern efficient solutions to the splitting problem [Fultonet al.
1995].
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Table 5.4: Training times, ranks, and sizes of the hypotheses induced by the seven test programs
from three random samples of different size in the six-bit multiplexor function domain.
All generated classifiers were 100% accurate. Test strategyis cross-validation.

2-FOLD 5-FOLD 10-FOLD

TIME RANK SIZE TIME RANK SIZE TIME RANK SIZE

Rank 14.9 3.0 37.0 27.8 3.0 36.2 28.4 3.0 36.8
C4.5 1.8 3.5 49.0 1.9 3.2 41.8 1.7 3.3 45.6
NewID 3.1 3.5 48.0 3.7 3.6 48.6 3.8 3.3 43.2
CN2 6.2 – 32.7 7.7 – 34.6 9.5 – 32.5
IFM 4.4 3.0 40.0 7.4 3.0 47.4 8.3 3.0 49.6
ITI 20.2 3.5 47.0 45.5 3.4 46.6 52.4 3.3 45.2
Findmin 10.7 3.0 15.0 16.3 3.0 15.0 18.6 3.0 15.0

The multiplexor function

The basic top-down approach of decision tree learning always fails in finding the most
concise representation for the multiplexor functions, since the data bits (cf. Appendix B)
appear to be more relevant to an instance’s classification than the addressbits [Quinlan
1988a]. Hence, all pure TDIDT approaches, independent of their split attribute selec-
tion heuristics, will produce trees of excessive complexity. Nonetheless, the trees may
still be 100% accurate classifiers. Furthermore, the basic TDIDT approach is unable to
make any distinction between address bits and irrelevant attributes inthe multiplexor
function domains [Quinlan 1988a]. This follows from the fact that none of the address
bits alone bears any relevance to the classification of an instance. Only combination of
address and data bits makes up a feature conveying information about the classification
of an instance. In this experiment we examine how our test programs manage the six-bit
multiplexor function domain into which we have added five irrelevant attributes.

The experiment consists of three independent runs: The function is induced from
three samples of different size. We use 2-, 5-, and 10-fold cross-validation; i.e., the
sample sizes are 50%, 80%, and 90% of the total examples of the domain, respec-
tively. Training times, ranks, and sizes of the classifiers thus obtained are listed in Table
5.4. Prediction accuracies are not presented, since all programs, except the default class
heuristic, find a 100% accurate classifier at each run. The size of the optimal decision
tree for the six-bit multiplexor has 15 nodes. Hence, our first general observation isthat
none of the heuristic programs comes very close to the most compact representation; the
best results are over twice the size of the optimal decision tree.

Findmindoes not use any heuristic attribute selection and, thus, avoids choosing data
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bits near to the root of the tree, even though they appear relevant. Therefore, itis always
able to find the size-optimal trees.Rankand CN2 find the smallest hypotheses of heuris-
tic methods at each run. The former’s rank criterion, which is preferred over all other
criteria, prohibits it from including any of the irrelevant attributes in the trees produced.
The excess with respect to an optimal tree is caused by the fallacious ordering of bits.
CN2’s success in this respect is due to the better flexibility of rule representation for this
task.IFM is the only algorithm whose hypothesis size is clearly affected by the increase
in sample size. However, considering how it operates, that is to be expected: The ad-
ditional instances are included into the existing tree, if possible, without increasing its
rank, but regardless of the increase in its size. The sample size has no significance to the
size of any other algorithm’s classifiers.

The time requirement of all test programs, except C4.5, is affected by the increase in
sample size. Note that on this domain consisting of only nominal attributes ITI’s time
consumption reduces to the same order with the other algorithms; though, it remains the
slowest learner of them all. An interesting detail is that the incremental approach inRank
turns out very profitable in time saving:IFM is substantially quicker on this domain than
Rank. EvenFindmincan operate faster thanRank.

The conclusion of this experiment is thatrank criterion helps Rank to produce more
concise decision trees than other algorithms, but even its results are quite far from the
optimal result. However, sinceRankincorporates the basicFindminas its core, we could
obtain the optimal tree by turning all heuristics off. Finally we note that eventhough the
heuristic algorithmsper seare unable to come up with the most compact representation,
quite simple restructuring techniques, like those introduced in IDL by Van de Velde
[1990] and applied by Elomaa and Kivinen [1990], can be used to post-process decision
trees to reduce their size considerably.

Impact of the number of attribute values

As Rankhas been developed based on a learning algorithm that can handle only binary
classification tasks, it seems quite natural to test how multicategory classifications are
managed. The impact of two vs. several classes on an algorithm’s success hasbeen a
topic of concern with other methods too [Quinlan 1988b]. Also, the number of attributes
and the number of values per attribute may have an impact on the return. Absolute
figures measuring these effects are hard to come to. Therefore, we explore therelative
differences of the learning programs.

Number of classes The first experiment intends to shed some light on the impact of
increased number of classes. We execute experiments in the LED, SOYBEAN, and TU-
MOR domains, which have as many as 10, 15, and 22 classes, respectively. Table 5.5
tabulates the results for these experiments. Our first observation is thatFindmincannot
tolerate inconsistencies appearing in the data sets LED and TUMOR. The former domain
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Table 5.5: Values of the quality measures on the LED, SOYBEAN, and TUMOR domains, which
have 10, 15, and 22 classes, respectively. ColumnsTM and RK contain the average
training times and ranks of produced classifiers, respectively. The test strategy in these
experiments is 10-fold cross-validation.

LED, 10 classes SOYBEAN, 15 classes TUMOR, 22 classes
TM RK SIZE ACC. TM RK SIZE ACC. TM RK SIZE ACC.

Rank 1.1 2.0 18.4 63.0 9.4 2.0 150.6 85.4 3.5 2.0 42.9 43.5
C4.5 1.1 3.0 30.6 69.0 1.7 2.9 59.2 83.8 2.4 2.9 59.3 41.3
NewID 1.4 3.1 43.6 73.1 2.2 3.0 130.8 77.8 3.2 4.0 163.4 37.7
CN2 1.9 – 57.6 66.2 12.2 – 54.5 83.7 9.2 – 90.2 42.0
IFM 1.3 2.0 21.0 61.3 17.9 2.0 175.0 83.6 4.7 2.0 46.9 39.9
ITI 3.7 4.0 92.0 68.2 43.9 3.0 79.8 89.2 – – – –
Findmin – – – – 10.3 2.0 208.6 81.4 – – – –
Default – 0.0 1.0 12.3 – 0.0 1.0 10.6 – 0.0 1.0 26.0

has noise added into it [Breimanet al. 1984] and the latter is known to be an inconsistent
one because of insufficient attributes. Incidentally, note that the default class heuristic is
not necessarily a very good performance reference in this type of multicategoryclassi-
fication task whenever the instances are divided evenly among the classes (cf. the LED

domain).
The results lend themselves to many interpretations: Different algorithm scores the

best accuracy on each separate domain. Only NewID, whose relative performance de-
teriorates as the number of classes increases, suffers in a constant mannerfrom the in-
creased number of classes. Anyhow, it is evident thatneither Rank nor IFM suffer from
the increased number of classesmore than other heuristic methods do.

On the LED domainRankand IFM are fast and construct clearly the smallest hy-
potheses. Unfortunately they are not very accurate in class prediction. Bestaccuracy
is obtained by NewID. C4.5 and ITI record approximately equal accuracies. The latter,
though, using more time and constructing quite large decision trees.

On the SOYBEAN data set ITI, surprisingly, comes up with distinctly the best classi-
fiers, which are both compact and accurate. Of course, the incremental procedure takes
more time than batch procedures do. NewID’s performance notably deteriorates from the
previous experiment: Its hypotheses are considerably less accurate than those of other
algorithms. Rank does well, being the second most accurate program, using relatively
much time. IFM competes head to head with C4.5 and CN2 in prediction accuracy.
Again, the look-ahead inRankandIFM makes them consume more time than is needed
by C4.5 and NewID.
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On the last domain of this experiment, TUMOR—an infamous database,Rankis able

to construct classifiers that are more accurate and concise than those of othermethods.
The time consumed is a bit more than it does take C4.5 to find its hypothesis. AlsoIFM
comes up with smaller decision trees than other methods do; though, they are not quite
as accurate as those produced byRank. Even CN2 surpasses C4.5 in accuracy, being the
other algorithm, in addition toRank, that is able to obtain the prediction level of medical
specialists [Cestniket al. 1987]. NewID continues its decline: The trees produced are
neither accurate nor compact. Also ITI stumbles badly; because of some error(s)in the
program it is unable to produce a legal decision tree in this task.

All in all, these experiments give evidence contrary to our initial fear thatRank’s
performance would suffer from the increased number of classes. Indeed, they givethe
impression thatRankrather improves its relative performance than loses any of its ad-
vantage when the number of decision categories goes up. However, the evidence is too
limited to justify making any far-reaching conclusions.

Number of attributes Similarly as it is hard to manufacture a problem that would
watertightly demonstrate the impact of increased number of classes, it is hard to generate
a domain for measuring the effects of the number of attributes. Note that we do not
mean a case where irrelevant attributes are added to the domain. Such a case produces
results that are quite predictable and will hence be disregarded here. We have already
run experiments in domains with up to 35 attributes and largely varying average number
of values per attribute. We run another experiment to evaluate the effect of the number
of attributes, but analyze the meaning of the average number of values on the basis of
results that have already been gathered.

Table 5.6 records results from our experiment observing the effect of the number of
attributes. Whenever variation is absent from the recorded values, decimals have been
omitted from the figures in the table.Findmin’s strict matching does not work in the
DNA domain, there is some inconsistent element included, which would require relaxed
fitting.

In this experiment the domains happened to be relatively easy; in particular, the
CHESSand the MUSHROOMdomains are mastered almost perfectly by all the programs.
On the DNA domain, too, almost equal accuracies are obtained by all the programs.
Findmin’s and its heuristic variants’ time consumption grows considerably when the
number of attributes goes up. A result that is consistent with the theory:Findmin’s
time requirement is polynomially dependent on the number of attributes (Theorem 11).
On the other hand, all algorithms increase their training time notably as the numberof
attributes grows; even those algorithms, which record the least relative increase, double
their time consumption when going from domain to another. Classifier sizes tend to grow
roughly in the same proportion. The peculiarity of this experiment is that on the DNA

domainIFM comes up with trees of equal size to those thatRankconstructs. It does it
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Table 5.6: Values of the quality measures on the MUSHROOM, CHESS, and DNA domains, which
have 22, 36, and 60 attributes, respectively. ColumnsTM and R contain the aver-
age training times and ranks of produced classifiers, respectively. Test strategy in
MUSHROOM and CHESS is 10-fold cross-validation and in DNA 10-time repetition
with prespecified training and test sets.

MUSHROOM, 22 attrs CHESS, 36 attributes DNA, 60 attributes
TM R SIZE ACC. TM R SIZE ACC. TM R SIZE ACC.

Rank 4.7 1 10.0 99.7 89.8 2.0 119.9 98.8 181.5 2 255 91.4
C4.5 2.3 2 25.2 100 3.9 2.5 51.2 99.2 7.5 3 103 93.9
NewID 6.6 10.0 99.8 7.6 2.8 65.0 98.7 11.2 3 129 93.0
CN2 19.0 – 10.0 100 63.6 – 73.5 98.4 91.8 – 258 91.5
IFM 6.2 1 10.0 99.7 149.9 2.0 187.1 97.9 44.7 2 255 91.9
ITI 26.8 1 9.0 100 129.1 3.0 90.6 99.7 457.8 4 285 91.9
Findmin 5.1 1 20.0 100 146.2 2.0 327.7 98.7 – – – –
Default – 0 1.0 66.6 – 0.0 1.0 52.2 – 0 1 50.8

considerably faster and, furthermore, the trees are even slightly more accurate than those
of Rank.

By these results and those recorded earlier it is obvious thatthe increased number
of attributes in a domain does not automatically mean complications to the learning
programs.

Average number of values Finally, in light of the experiments carried out above, we
can conclude thatthe number of values per attribute in a domain, as such, has no sig-
nificance to our test programs. Naturally, even the largest average number of values per
attribute in our test domains is quite small. In real-world applications there might be
data available with tens if not hundreds of possible values per an attribute. It is evident
that in such a domain most of our test programs would suffer heavily. However, itis as
evident that either such data should be preprocessed to better suit the algorithms orslight
modifications of the algorithms should be developed to better manage such situations.

All in all the conclusion of these experiments has to be thatRank and IFM tolerate
large numbers of classes, attributes, and values per attribute at least as well as other
empirical learners, in what concerns classification accuracy. However, their trees tend
to be somewhat larger than those of other methods and it usually also takes more time
to construct them. The latter observation could be expected because of the backtracking
control procedure of the algorithms. Our objective in the development ofRankwas to
bring it closer to empirical methods, without sacrificing its provable properties, rather
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Figure 5.1: Learning curves of the algorithms on a domain concerning prediction of vehicle cat-
egory.

than to devise yet another purely heuristic algorithm. Therefore, it would be idle specu-
lation to aspire after equivalent results forRankin every respect.

Learning curves

Fig. 5.1 depicts the algorithms’ learning curves on the VEHICLE domain. This domain
was chosen for this experiment, because it seemed to cause variation to theprediction
accuracies; similarly one could expect it to lead to different shaped learning curves.
With the clarity of the figure in mind, we have decided to excludeFindmin from this
experiment. Default class heuristic’s accuracy is the horizontal line around25% accuracy
level.

The general appearance of all the learning curves is very similar: Most algorithms
reach their final level of accuracy quite rapidly and then settle down. Only small random
fluctuation exists in the tail of the curve. Of course, since the programs do not have
equal predictive power, the accuracy levels, where the curves settle down, vary. CN2
picks up its final accuracy a little slower than the other programs. Thus its curve is
more gently sloping than that of the other algorithms. The curves ofRankandIFM have
more amplified fluctuation in the beginning than those of other algorithms. The reason
for their behavior is the rank criterion: The programs resist increasing the rankof their
hypotheses and, with small samples, are often able to find acceptable hypothesis trees
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Table 5.7: Values of the quality measurements for the seven test programs in the SHUTTLE do-
main. Test strategy is 10-time repetition with prespecifiedtraining and test sets.

TIME RANK SIZE ACC.
Rank� 42.3 1 9 98.93
C4.5� 13.8 2 14 99.10
NewID 3,186.3 1 7 99.00
NewID� 41.8 1 9 99.00
CN2 6,670.7 – 39 100
IFM� 55.7 1 9 99.04
ITI 15,990.7 2 75 99.98
Findmin – – – –
Default – 0 1 79.16

with a (too) small rank. Unfortunately, these prove poor predictors. Otherwisenone of
our test programs exhibits behavior, which differs significantly from that of the others.
To our surprise NewID turns out to constantly have the highest prediction accuracy—a
phenomenon that has not presented itself in earlier experiments. Though, the curves of
C4.5 and ITI are so entangled to that of NewID that one can hardly tell them apart.

As a final note we may draw the reader’s attention to the fact that the smallest training
set size for which results are recorded, 1% of the domain (8–9 examples), already yields
better classifiers than the default class heuristic.

Scaling-up capabilities

The last experiment in this test series examines the algorithms’ capability to scale up
by running them with a very large database, again, taken from the StatLog project: The
SHUTTLE domain contains altogether 58,000 examples. They are divided into a training
set of 43,500 examples and a test set of 14,500 examples. The test strategy, of course, is
10-time repetition with these prespecified example sets.

This is a very simple experiment, which only attempts to verify that the test programs
can tolerate substantially larger amounts of data than has been used up to this point. The
problem itself is pretty easy; almost perfect accuracy for the full data isobtained by a
9-node decision tree [Michieet al. 1994, p. 155]. The large domain causes problems to
some of our test programs: We were not able to come up with comparable results for all
the algorithms. Therefore, we restrain from marking down the best recordings in Table
5.7, which tabulates the measured values obtained in this experiment.

In Table 5.7 the results that have been obtained using categorized data have been
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marked with an asterisk. For NewID results using categorized and numerical data are
given. C4.5 was unable to handle uncategorized numerical data4; as usual, theRank
variants cannot tolerate numerical attributes. Oddly, CN2 and ITI, for their part, were
unable to process the discretized version of the data. Therefore, we cannot present results
that are comparable.Findmin’s exact fitting, again, fails on this domain, the algorithm is
unable to produce a decision tree.

This extreme experiment underlines the importance of expedient handling of numer-
ical attribute value ranges: Time consumptions of the algorithms are on totallydifferent
levels depending on whether original or preprocessed data was presented to them; it takes
ITI on average almost five hours to come up with a classifier, when C4.5 requires only
under 14 seconds on average. For NewID the numerical data requires approximately 80
times the training time of discretized data. On the part of the other quality measurements
the results ought to be more comparable. We observe that CN2 is the only algorithm that
is able to come up with a perfect classifier. The hypothesis size, however,grows quite
large. The other algorithm operating on the numerical data, ITI, also comes up with
accurate but large classifier. The rest of the algorithms are within 0.2 percentage points
in accuracy. Furthermore, they produce more concise concept representations thanCN2
and ITI.

This large domain turns out to be one of the rare cases whereIFM is able to surpass
Rankin accuracy. The conclusion of this experiment is ambiguous. We were able to
produce a classifier with all our heuristic test programs, but only after modifying the
data for some of the algorithms. NewID was the only program capable of handling both
versions of the data. However, the size of this domain is already so large, that we find
it only reasonable, that the algorithms do not provide for such an amount of examples.
The study ofdata mining[Piatetsky-Shapiro 1991] is concerned with discovering general
laws from among massive amounts of data.

5.2.3 Experiments in noisy domains

Noise is always a factor in real-world learning situations. We need to conduct further
experiments on the impact of unsystematic errors on the algorithms in order to obtain the
correct picture and gain proper understanding ofRank’s success in this respect. There-
fore we carry out this set of tests, which consists of three independent experiments. The
first experiment, again, deals with a StatLog problem. This time we artificially corrupt
the data of the DIABETES problem to contain 25% random attribute and classification
noise. Thus we obtain an initial view of noise’s harmfulness to each of the algorithms.
The second experiment studies the effect of different types of data corruption on the
algorithms. We corrupt the MUSHROOM domain artificially with different types and
combinations of noise. The third experiment elicits the algorithms’ “noise curves” by4Categorized version of the data has been produced based on the classifier learned by CN2.
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Table 5.8: Values of three quality measures on the DIABETES domain with, first, attributes and,
then, the class corrupted to noise level 25%. The average ranks of decision trees are
not reported, because only minor variations appear in them.Earlier results are repeated
for better legibility. Test strategy is 12-fold cross-validation.

ORIGINAL ATTRIBUTE NOISE CLASSIFICATION NOISE

TIME SIZE ACC. TIME SIZE ACC. TIME SIZE ACC.
Rank 1.8 188.8 75.6 1.9 175.3 70.2 1.9 173.5 66.3
C4.5 5.9 72.2 73.0 5.5 51.8 73.1 10.4 93.3 61.7
NewID 3.7 142.0 71.1 5.1 176.3 68.9 5.7 244.5 61.3
CN2 6.8 39.8 71.1 7.2 31.8 69.4 6.3 29.7 64.8
IFM 3.3 241.0 71.3 2.8 263.7 70.1 3.4 239.4 64.3
ITI 1,118.1 311.9 68.3 1,031.6 303.9 68.0 3,723.5 416.2 57.7
Default – 1.0 65.0 – 1.0 65.0 – 1.0 63.0

gradually increasing the noise rate of the SOYBEAN domain.

A StatLog problem corrupted

Our first experiment with noise-affected data explores the general impact of noise on the
classifiers produced. For this end we re-execute twice the DIABETES problem with the
exceptions that this time, first, all attributes and, then, the class labelsof instances have
been corrupted to the noise level of 25%; i.e., one fourth of values are drawn at random.
That should certainly not be a negligible level of noise and should not go unnoticed
without having an impact on the measures. This domain’s usual test strategy, 12-fold
cross-validation, is employed again.

Table 5.8 presents the results obtained in this experiment.Findmin is excluded from
this and the following experiments, because it is unable to tolerate inconsistencies ap-
pearing in the data due to the noise. Therefore it cannot do better than the default class
heuristic, into which it ultimately resorts after having tried all rankcandidates out.

Table 5.8 shows that attribute noise is handled gracefully by all our test programs:
Classifiers remain approximately equal-sized, if not reduce in size, to those learned when
no explicit noise was present, training times do not increase significantly, andonly re-
ductions of 0–7% in classification accuracy appear. Inconveniently, it isRankthat loses
the most in accuracy. C4.5 shows excellent capability to tolerate attribute noise: It can
even increase its accuracy when noise is introduced into the data.

Further reductions in accuracy come about when attribute noise is changed to classifi-
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cation noise. Moreover, some algorithms increase the size of their classifiers abundantly.
C4.5, in particular appears to be sensitive to classification noise: It doublesits training
time, increases the hypothesis size, and decreases its accuracy by over 15%from that of
the noise-free setting. However, the reason for C4.5 appearing so vulnerable may well
be its exceptionally good behavior when dealing with attribute noise on this domain.
CN2, on the other hand, accepts classification noise without complications. Also,Rank
andIFM tolerate classification noise well;Rankregains its position as the most accurate
algorithm among our test programs.

RankandIFM retain their performance throughout the experiment in the sense that
they use approximately the same amount of time, the rank of their trees stays intact, and
the sizes of these trees are more or less the same independent of whether noise is present
or not; only the prediction accuracies vary. This experiment seems to indicatethatRank’s
andIFM’s pruning works better for classification noise than for attribute noise. If this
is ascertained in the subsequent experiments, it will not surprise us much, sincethe
algorithms have been designed to take classification noise rather than attribute noise into
account. Nevertheless, it would be a minor disappointment, since we have argued that
their pruning mechanism ought to be able to take care of other types of noise, too. Let
us suspend passing the final judgement until we have the results of the next experiment
at hand.

Altogether, this initial experiment would suggest that none of the learning programs
is particularly vulnerable neither to attribute nor to classification noise. Because of the
straightforward corruption scheme, there are different amounts of randomly drawn val-
ues involved in these two experiments. In the former experiment 25% of the values of
the eighth attributes of the 768 examples in the test set were randomly drawn. That is,
over 1,500 allotted values. In the latter experiment only 25% of the labels of the 768
examples in the test set were drawn at random, i.e., approximately 200 allottedlabels.
Despite this, consistently with our earlier discussion (Chapter 2), attribute noise is toler-
ated better than classification noise by all our test programs.

Different types of noise

We have discussed attribute and classification noise and their inseparablecombination
already on several occasions. Now we test whether our test programs,Rankin particular,
exhibit different kinds of behavior when facing these noise types. Recall thatRank
has only been analyzed with classification noise, but is also expected to manage the
other noise types. There are two parts in this experiment as well: In the firstpart the
MUSHROOM domain is corrupted with a 20% noise rate using all three noise types. The
second part, then, repeats the same experiment with 35% noise rate, this time.Test
strategy is 10-fold cross-validation. The bar charts in Fig. 5.2 depict the results of this
experiment (for the exact measured figures see Appendix D).

The basis for this experiment was that all the test programs recorded accuracy100%,
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Figure 5.2: The quality measurements on the MUSHROOM domain subjected to noise. For each
algorithm three pairs of bars are shown: The first pair depicts measurements under
attribute noise, the second one under classification noise,and the third one when both
the class label and attribute values are affected by random errors. Black bar presents
noise level 20% and the white one noise level 35%. The wide grey bar is the recording
obtained for the measurement in question in the noise-free setting.
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or slightly less, when no noise was present in the domain (cf. Table 5.6). Furthermore,
the small hypotheses were built relatively quickly. The equal original performance of
the algorithms lets us observe absolute differences in the algorithms’ noise tolerance.

The bars in Fig. 5.2 tell, more or less, the same tale for all of the algorithms:Attribute
noise is less damaging for prediction accuracy than classification noise, which in turn
proves to be less impairing than the combination of both noise types. Furthermore, the
disturbance caused by noise gains power as the noise rate increases; the higher the noise
rate, the less accurate the result. The general appearance of the accuracy bars is very
similar for all the algorithms. Only ITI is conspicuously more severely hit bynoise than
other algorithms.

There is more variation present in the bars corresponding to the classifier sizes, but
still a common pattern appears: For most algorithms the presence of classification noise
alone lets them prune heavier than when attribute noise is prevailing. Otherwise, the
algorithms have their individual characteristics as to whether heavier pruning succeeds
to keep the resulting classifiers concise as noise rate goes up.

As to the learning times, there seem to be two main lines: In C4.5 and NewID the
heavier (post-) pruning, when only classification noise is present, makes them usemore
time than in the presence of attribute noise. The rest of the algorithms are search in-
tensive (prune on the fly) and require less time when classification noise prevails. In
general, there is a natural correspondence between the size of the hypothesis and time
spent on constructing it. Finally, ITI again uses untolerable amounts of time and builds
trees of excessive size under all types of corruption.

The performance ofRankandIFM on noisy data accepts the challenge issued by the
successful contemporary empirical learners.Rank, in particular, is at the same level with
the best methods in every respect.IFM has been designed to sacrifice compactness on
behalf of efficiency. The fact that it also looses somewhat in accuracy is unfortunate,
but seems to be inevitable for incremental learners. This experiment does not support
the view thatRank’s and IFM’s pruning would not tolerate other types of noise than
classification noise; on the contrary, the two algorithms obtain comparable results with
all three corruption schemes. The next experiment should make it clear, whetherattribute
noise is managed by theRankvariants, or not.

Noise curves

Similarly as increasing sample size improves an algorithm’s prediction rate steadily, giv-
ing thus a “learning curve,” increasing the noise rate yields a steadily decreasing predic-
tion accuracy and a “noise curve” for the method can be drawn. This experiment records
the noise curves of the test programs in the SOYBEAN domain. Both attribute noise
and classification noise values are depicted in Fig. 5.3. Test strategy in this experiment
is 10-time repetition: Random portion of 67% of examples is used in training and the
remaining 33% is reserved for testing.
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Let us analyze these two curves separately. When subjected to attributenoise, the

algorithms very rapidly loose their accuracy; already noise level of 1–30%, in general,
suffices to halve an algorithm’s prediction accuracy on this domain. The declinecontin-
ues until the accuracy level of the default class is attained. Ultimatelyall methods resort
to predicting the most common class. Hence their accuracy cannot fall significantly
below that of the default class heuristic.

The curves of the algorithms get pretty badly tangled together. The only observations
that can be safely made is that NewID, as usual, tolerates noise poorly, and that also
IFM’s prediction accuracy declines faster than that of the other programs; with high
noise ratesIFM catches the other algorithms’ degradation pace.

Somewhat surprisingly, when exposed to classification noise, the algorithms seem to
do better on this domain. This time most algorithms have a curve that is almost linear; it
takes large amounts of noise before the accuracy declines substantially. Again,NewID is
discerned as the worst noise handler among our test programs. Also, ITI’s poor handling
of classification noise, which was already taken notice of in the previous experiment,
sets it apart from the other algorithms. The curves of the rest of the algorithms come
down head to head.

These curves do not give evidence for the fear ofRank’s inferior handling of attribute
noise. Rather, these curves demonstrate thatRank fights both noise types as effectively
as other methods do.

5.3 Summary and analysis of the results

As the first general observation, let us draw the reader’s attention to the fact that only
ITI ever constructed decision trees with rank beyond value 4 on these experiments con-
cerning several real-world databases. Indeed, the rank of decision trees produced by
Findmin, Rank, andIFM never exceeded value 3. We may conclude that typical real-
world learning tasks have an accurate decision tree within the smallestrank categories.
This ascertains the measurement’s utility and supports the idea of learning minimum
rank decision trees as a practical approach. Furthermore, it might open up possibilities
for developing an even faster and simpler method of learning rank-bounded decision
trees for practical purposes.

Incremental methods are, naturally, slower than their off-line equivalents. Processing
the examples one at a time, of course, has an overhead. However, as demonstrated by
our experiments above, in many real-world domains the difference in practice is quite
small. A small increase in running time is gladly accepted in applicationsdemanding
on-line learning capability, so long as it stays below times needed by, e.g., the most
popular neural methods. Incremental algorithms also tend to produce somewhat larger
trees than their batch equivalents. Moreover, their accuracies are on average slightly
below those recorded for the trees of batch algorithms. These observations are based on
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both our pairs of batch and incremental equivalents: C4.5 and ITI as well asRankand
IFM. Altogether, one has to pay a price for using an incremental algorithm, but since
they are special-purpose tools intended to be used only when no alternative exists, that
is, in no way, an untolerable tradeoff for the improved applicability.

However, these experiments have clearly shown that ITI does not constitute acom-
petitive incremental alternative to modern inductive learners, mainlybecause of its slow-
ness, which will invalidate it from many practical tasks. Indeed,IFM clearly presents a
more serious challenge to batch learners, being only slightly less accurate but efficient
in most cases.

There is ample evidence in the above experiments to support the claim thatthe overall
performance of Rank bears the comparison with its different empirical rivalries. None
of the algorithms, however, is quite modern in the sense that they do not make use of
the latest and most advanced general techniques and means developed to aid inductive
learning (constructive induction, in particular). All the algorithms are basic experimental
methods that could be enhanced with such means, and their performance would improve
even substantially.

It is evident that the most important aspect of a learning algorithm is its classification
accuracy on unseen instances [Langley 1988, Michieet al. 1994]; i.e., its capability to
learn the rule governing the classification of instances, if any. However, an important
motivation and aim behind the introduction of these tools has been to develop assistants
and explanation generators for human experts to use, e.g., in expert system engineering.
It is this goal that sets standards to the size and intelligibility of the classifiers produced
(in addition to Occam’s Razor). If there was not that much difference between some of
the algorithms’ accuracy, greater gaps in the classifier sizes are detected.

Findmin emphasizes clearly the importance of relaxed fitting in coping with real-
world problems. Real-world data is hardly ever perfect. Therefore relaxation in the form
of pruning is required even if no significant amounts of noise are present. Of course,
this has been taken into account in Valiant’s learning framework by allowing"-error and�-uncertainty.

The feeling concerning the relative performance of the programs obtained from these
experiments is that C4.5,Rank, and CN2 are pretty equal in prediction accuracy. C4.5,
however, is on average clearly faster than the two, and constructs more concise hypothe-
ses. NewID is distinctly poorer learner than the three.IFM can compete with it in every
respect. ITI still has many deficiencies, which make it unable to competewith the other
algorithms. Nevertheless, all heuristic algorithms give clear advantageover choosing the
simple default class heuristic.

Let us conclude this section with the following piece of information. Summing over
all different tabulated results, the average accuracies of the test programs are:
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C4.5 81.11%
Rank 80.95%
CN2 80.55%
NewID 79.43%
IFM 79.42%
ITI 79.12%
Default 53.79%

This result does not necessarily give a fair picture of the programs’ actual utility, since
the test domains are not representative of those encountered in practice. On thecontrary,
the test domains are often such that they are expected to cause difficulties to our test
programs. All in all, even though clear differences in the algorithms’ utility can be
observed in particular experiments, only fairly small differences existwhen taking the
average over all test domains (cf. [Elomaa 1994]).

5.4 Discussion

Our empirical tests have succeeded in verifying thatRankis a highly competitive deci-
sion tree learning technique and thatTELA is a valuable tool for experiment design and
execution. However, bothTELA andRankhave many natural development opportunities
that would enhance their utility and user-friendliness.

The most obvious deficiency inRankis its time consumption’s dependence on the
number of variables in the domain, which makes the algorithm unstable in this respect.
Even thoughRanknever loses its grip similarly as ITI does, it would be desirable to attain
a better efficiency. To relax the dependency of the number of variables would require
changing the learning approach profoundly. However, there exists an implementation
technique that would enhanceRank’s speed substantially: Because of the multirecursive
operation of the algorithm, dynamic programming would bring substantial savings into
its time consumption. Furthermore, tabulating intermediate results would openup pos-
sibilities to similar optimizations that are implemented inIFM: Avoiding unnecessary
recursive calls toFind.

We have evaluatedFindmin, Rank, andIFM in separation, even though they are im-
plemented all together. Only seldom were there situations where usingFindminor IFM
would have proved more profitable than usingRank, but still a couple of occasions exist.
Combined these three variants ofFindminwould have been an even more successful de-
cision tree learner thanRankalone. However, we do not have a way of knowing when to
use which variant. Improving the adaptivity ofRankremains a topic for future research.



Chapter 6

Conclusion

We conclude this dissertation by, first, summarizing the work that was reported and,
then, presenting some remarks about the work: What could be done to continue the
work? Which topics were omitted and how important are they? What are the practical
and principal implications of this work? How does it relate to current trends in machine
learning research?

6.1 Summary

After the introductory chapters, in Chapter 3, the first original contribution of this disser-
tation was presented. Based on the decision tree learning algorithmFindminof Ehren-
feucht and Haussler [1989] a new empirical decision tree learner,Rank, with firm the-
oretical underpinnings was developed. All results concerning the algorithm’s function-
ality were demonstrated in the framework of multivalued variables and classes, which
is the normal state of affairs in the application domains of learning algorithms. (It can
be argued that multivalued nominal attributes can be quite easily convertedinto Boolean
ones, but since intelligibility is one of the strongest advantages of decision trees, all such
changes are damaging in practice.) In order to cope with dynamic changes in the ap-
plication domains, results of incremental learning of rank-bounded decision treeswere
demonstrated. Lastly, the unclinical nature of real world was taken into account by pro-
viding for random errors in the classification of training examples. Together these three
modifications to the original algorithm entail practicability.

In Chapter 4 the need of an integrated testbed for learning algorithms was demon-
strated and the design of such an environment,TELA, was presented.TELA has many
advanced features: It incorporates an experiment specification language that forces the
user to follow strict rules in experiment design, it has an interactive user interface with in-
cremental execution facility, semiautomatic algorithm inclusion is supported, automatic
collection of results is the quintessence of the platform.TELA has been designed so that
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minimum amount of knowledge of a learning program is required before it can be used
with TELA. It also tries to provide as much assistance as possible for the actual inclusion
of a learning algorithm. The system relieves its user from many simple but tedious duties
that are unavoidable in testing learning algorithms.

A central feature ofTELA is the support provided for experiment design and incre-
mental execution of specifications. Being able to design test sequences on a higher level
is essential for the reliability of the tests and comparisons. Moreover, experiments de-
signed with a carefully elaborated specification language likeTESLA are more likely to
turn out to be useful thanad hocexperiments. Finally, experimentation is unavoidably
iterative by nature: The results determine whether a test sequence has been successful or
whether it has to be re-executed. InTELA incremental execution ofTESLA specifica-
tions is supported by the SEED interface.

TELA is still a prototype system, an initial attempt towards a more ambitious envi-
ronment. In order to gather as much feedback as possibleTELA is distributed freely to
all interested parties. Even thoughTELA has been tested extensively, it is yet to con-
front the real challenge: Application in a real-world development process. Moreover,
numerous extension possibilities exist; only experience gathered from different projects
and users will tell what should be the final form of the system.

In Chapter 5 the algorithmRankand the environmentTELA were compared together
with several contemporary inductive algorithms on a large number of real-worldlearning
domains. Several different aspects of the algorithms and their hypothesis classifiers were
examined in these experiments. Initially we provided a framework for the subsequent
experiments by running all our test programs in three data sets from the StatLog project
[Michie et al. 1994], which has related the performance of empirical learning algorithms
with respect to statistical discriminators and neural networks. The second group of ex-
periments was run on domains with varying characteristics, but with no noisepresent.
In these experiments we emphasized other quality measurements in addition tothe pre-
diction accuracy. We explored the algorithms’ capability to tend towards anoptimal de-
cision tree; their capability to tolerate increases in the number of classes and attributes,
and in the average number of values per attribute. Learning curves were recorded in one
domain. Finally, the algorithms’ capability to scale up was examined by running them
in a substantially larger domain than those that had been used up to that point. The final
set of experiments concentrated on the effects of noise. Different combinationsof noise
and their impact on the classifiers produced was examined in three experiments. All in
all, Rankis successful in these tests: It attains the overall performance of C4.5, which is
considered one of the best decision tree learners of today.

The results of this thesis include several individual technical contributions. Two ma-
jor constructive contributions come out of this research: The successful decisiontree
learnerRankand the uniquely useful testing environmentTELA. Our empirical eval-
uation constitutes an important addition to the ever-increasing volume of knowledge
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obtained by empirical experimentation. The main contribution of this thesis, however,
lies in the development process ofRank: The work comprises a successful and extensive
case study of the theoretical design rationale in the development of an empirical learning
algorithm.

6.2 Remarks

Now that learning decision trees has proven to be intractable in practice[Hancocket
al. 1995], there is no other alternative than to tighten the syntactic restrictions posed to
the resulting hypothesis tree somehow. Delimiting the rank of a decision tree,naturally,
is not the only way, but as demonstrated in our empirical work, it is one that has high
relevance in real-world domains.

There are many routes that could be followed to continue this work. It is the eas-
iest task to come up with further theoretical results that could be proved and practical
improvements that could be implemented.

On the theoretical side many basic results could be worked on. As an example, many
other noise models than that which was used in this work could be considered. We
touched briefly the on-line learning model of Littlestone [1988]; the analysis ofIFM
under this model ought to be carried through so that comparison with Simon’s [1995]
work can be made. Analysis ofRankcould be carried out in a more realistic learning
model than the PAC model. For instance, theAgnosticPAC model [Kearnset al. 1992]
might be a better alternative as advocated by Maass [1994].

The theoretical underpinnings of our work have attracted mild criticism [Aueret
al. 1995]: It has been claimed that the classification noise model does not conform to
those situations that are encountered in the real world, which then would lead toinferior
performance in practice. However, the noise handling technique that we end up with
is exactly the same that was originally present in the ID3 algorithm [Quinlan1983].
Furthermore, our empirical tests verify that the pruning incorporated intoRankworks
without complications in all of the real-world domains tried.

The practical improvement possibilities ofRankinclude, among others, the following
details. The fact thatRankis not able to handle numerical attribute ranges is the factor
that most clearly sets it apart from the rest of our test programs. However, the general
solution to this problem [Fayyad & Irani 1993, Fultonet al. 1995] could easily be in-
corporated intoRank. Furthermore, we are aware of the optimal solution to the problem
[Elomaa & Rousu 1996b]; it would enhance the method’s efficiency substantially. How
to reconcile the method elegantly with the minimum rank criterion, of course, remains
a problem. EnhancingRank’s parameter independence is a topic for future research. At
its present composition the algorithm is quite sensitive to the selection of inputparam-
eter values. Furthermore, we would like it to be automatic that the correct(best for the
task at hand)Findminvariant is chosen. ForTELA several improvement proposals were
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given already in Chapter 4. Work for implementing some of these ideas has already
commenced.

Of course, further tests with bothRankandTELA are always welcome. Even though
both programs have been tested extensively, new empirical experiments are liable to ex-
pose further strengths and weaknesses inRankandTELA. Moreover,TELA still lacks
application in a real-world development process, which only will give the ultimate vali-
dation to the system’s utility.
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incremental learning system AQ15 and its testing application to three medical do-
mains.” In Proc. Fifth National Conference on Artificial Intelligence(pp. 1041–5).
Morgan Kaufmann, Los Altos, CA.

M ICHIE, D. [1986]. On Machine Intelligence. Ellis Horwood, London.

M ICHIE, D., SPIEGELHALTER, D. & TAYLOR , C. (EDS.) [1994]. Machine Learning,
Neural and Statistical Classification. Ellis Horwood, London.

M INGERS, J.[1989a]. “An empirical comparison of selection measures for decision-tree
induction.” Mach. Learn.3, 319–42.

[1989b]. “An empirical comparison of pruning methods for decision tree induc-
tion.” Mach. Learn.4, 227–43.

M INSKY, M. & PAPERT, S. [1969]. Perceptrons. MIT Press, Cambridge, MA.



112 REFERENCES
MORET, B. [1982]. “Decision trees and diagrams.”ACM Comput. Surv.14, 593–623.

MURPHY, O. & MCCRAW, R. [1991]. “Designing storage efficient decision trees.”IEEE
Trans. Comput.40, 315–20.

MURPHY, P. & AHA , D. [1994]. UCI repository of machine learning databases (http://www.
ics.uci.edu/�mlearn/MLRepository.html). Department of Information and Com-
puter Science, University of California at Irvine.

MURTHY, S., KASIF, S. & SALZBERG, S. [1994]. “A system for induction of oblique
decision trees.”J. Artif. Intell. Res.2, 1–32.

NATARAJAN , B. [1991]. “Probably approximate learning of sets and functions.”SIAM
J. Comput.20, 328–51.

NIBLETT, T. & BRATKO, I. [1986]. “Learning decision rules in noisy domains.” In
M. Bramer (ed.),Proc. Research and Development in Expert Systems III(pp. 25–
34). Cambridge University Press, Cambridge.

NOORDEWIER, M., TOWELL, G. & SHAVLIK , J. [1991]. “Training knowledge-based neu-
ral networks to recognize genes in DNA sequences.” In R. Lippmann, J. Moody
& D. Touretzky (eds.),Advances in Neural Information Processing Systems3 (pp.
530–6). Morgan Kaufmann, San Mateo, CA.
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Appendix A

Proofs of Lemmas and Theorems

This appendix gives rigorous proofs for those lemmas and theorems for which full proofs
were omitted in the text. All important proofs are included in the text; those presented
here are mostly simple variations of proofs presented earlier in the text or elsewhere. We
proceed in the order of the text chapters.

Chapter 2

First, Theorem 6 is proved by modifying the corresponding proof of Sakakibara [1993]
only slightly. For the proof we need Hoeffding’s [1963] inequalities (Lemma 21) and
the following lemma.

Lemma 25 Let F be a polynomial-sized function class and let�b be such that� � �b �� + "(1 � 2�)=2. Let Occam(S; "; �; �b) be a noise-tolerant Occam algorithm forF.
When given a sampleS ofm examples drawn from the oracleEX�(P; f) the algorithm
outputs a hypothesisg such thatP (f4 g) � " with probability at least1 � �. The
sample sizem required is at least 8"2(1=2� �b)2 ln 2jFn;kj� :
Proof Let us consider the disagreements of the hypothesisg and the sampleS; i.e.,
exampleshx; li 2 S such thatg(x) 6= l. The probability that an examplehx; li drawn
fromEX�(P; f) disagrees withg is� the probability thatx 2 f y 2 [m]n j f(y) 6= g(y) g andl is not corrupted by the

oracle, which isP (f 4 g) � (1� �), plus
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118 PROOFS OF LEMMAS AND THEOREMS� the probability thatx 2 f y 2 [m]n j f(y) = g(y) g andl is corrupted by the ora-
cle, which is(1� P (f4 g))�.

Summing these together, we have that the probability, that an example inS disagrees
with the hypothesisg, isP (f 4 g) � (1� �) + (1� P (f 4 g))� = � + P (f4 g) � (1� 2�):

For the target functionf we haveD(f; S) = �jSj and for any functiong, such thatP (f4 g) = ", we haveD(g; S) = (�+"(1�2�))jSj. Thus, any suchg has an expected
rate of disagreement that is greater by at leasts = "(1 � 2�) than that of the target
function.

By the assumption� � �b and the first Hoeffding’s inequality, the probability that
the target functionf has more than(�b + s=4)m disagreements with a sampleS of m
examples drawn fromEX�(P; f) isGE(�;m; �b + s=4) � GE(�b; m; �b + s=4)� e�2(s=4)2m� e�2(1=16)8 ln 2jFj�� e� ln 2jFj�= �2jFj :
Hence, with probability at least1��=2, Occam(S; "; �; �b) can find and output a functiong 2 F, such that D(g; S)m � �b + s4 :
The probability that a function with error greater than" has at most(�b + s=4)m dis-
agreements is, by the assumption�b � � + "(1 � 2�)=2 = � + s=2 and by using the
second Hoeffding’s inequality, at mostLE(� + "(1� 2�); m; �b + s=4) � LE(�b + s=2; m; �b + s=4)� e�2(s=4)2m= �2jFj :

Since there are at mostjFj functions inF, the probability of producing a function
with error greater than" is less thanjFj � e�2(s=4)2m = �=2:
Therefore, with probability at least1 � �, Occam(S; "; �; �b) outputs a functiong such
thatP (f 4 g) � ". 2
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Algorithm A.1 OccamLearn(S; "; �; �b)
input: a nonempty noisy sampleS of somen-ary function on[m], and positive reals�b, ",

and�, such that� � �b < 1=2 and0 < "; � � 1.
output: a functiong.
begin
(1) �e  �b;
(2) Q ;;
(3) while �e > 0 do
(4) Q Q [Occam(S; "; �; �e);
(5) �e  �e � "(1� 2�b)=2

od;
(6) return a functiong 2 Q such that it minimizesD(g; S), the number of disagreements

with the sampleS
end

Now we can prove the actual theorem.

Theorem 6Let F be a polynomial-sized function class and let�b be such that� � �b �� + "(1 � 2�)=2. If there exists a noise-tolerant Occam algorithm forF, thenF is
polynomially learnable in the presence of classification noise. The sample size required
is at least 8"2(1=2� �b)2 ln 2jFn;kj� :
Proof Let Occam(S; "; �; �b) be the noise-tolerant Occam algorithm forF. Using the
algorithmOccam, we can construct a learning algorithmOccamLearnfor F that, with
probability1��, outputs a hypothesisg, such thatP (f4 g) � ", for the target functionf
from the oracleEX�(P; f), wheref 2 Fn;k andP is an arbitrary probability distribution
onF.

In the sequence of successively smaller values�e examined byOccamLearnthere
will be one such that� � �e � �+"(1�2�)=2 because�e is decreasing by"(1�2�b)=2
and, by assumption,"(1 � 2�b) � "(1 � 2�). Then, because of Lemma 25, the lower
bound onm implies that, with probability at least1� �=2, OccamLearnwill produce at
least one functiong 2 Q such thatD(g; S)m � �e + "(1� 2�e)=4� � + 34"(1� 2�):
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The probability that a functionh 2 F with error greater than" hasD(h; S)=m �� + 3=4 � "(1� 2�) is at mostLE �� + "(1� 2�); m; � + 34"(1� 2�)� � e�2("(1�2�)=4)2m:

Since there arejFj functions inF, the probability of producing a function with error
greater than" is less than jFj � e�2("(1�2�)=4)2m < �=2:
Hence with probability at least1�� OccamLearnoutputs a functiong such thatP (f 4 g) �". 2
Chapter 3

Detailed proof for the time requirement ofIFM (Theorem 16) was not given in the text.
We prove the result in the following by a verbal argumentation, rather than givinga rig-
orous mathematical proof, which would require long and obscure presentation. The fol-
lowing argumentation—together with the empirical evidence—ought to suffice for our
current needs. The following lemma simplifies the proof of the main result substantially.

Lemma 26 Let FFM(S) denote the time spent by Findmin, in the worst case, on the
calls to Find when given the sampleS as input. Respectively, letFIFM(S) denote the
time spent by IFM, in the worst case, on the calls to Find when processing the sequenceS of examples. Then,FIFM(S) � FFM(S).
Proof First, observe that, due to the incremental processing of examples, a variable
can only change from uninformative to informative. In other words, the addition of an
instance to the sample can change some uninformative attributes into informative ones,
but never the other way round. Therefore, any attribute that is informative (ona subset)
from the outset will remain such for (a subset of) the full sample. Because of this, inIFM
variables are never needlessly examined; i.e., every attribute that is attempted, really is an
informative one w.r.t. (a subset of) the final sampleS, and ought to have been examined.

Now, consider the calls toFind made byFindmin for a sampleS of rank r. First,
it must determine that the sample does not have rank0; : : : ; r � 1 by ascertaining that
none of the trees with lower rank thanr is consistent with the sample. In the worst case
that involves examining all permutations of informative variables for all rank candidates.
Only if an exhausted node appears in the evolving tree, doesFindminavoid examining
some candidate trees. However, in the worst-case time consumption ofFindmin(Theo-
rem 11) this optimization cannot be taken into account. Thereafter,Findminstill has to
come up with the tree of correct rank by continuing the recursive search procedure.
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It is easy to see that at most the same time as spent byFindminon the calls toFind is
required byIFM, since it does not waste any effort by examining false variables. All calls
to Find that are made byIFM also have been made, in the worst case, duringFindmin’s
execution. The bookkeeping in the incremental algorithm ensures that an attributeis
never examined more than once in a given permutation of variables in the evolvingtree.
Thus, the time spent byIFM on the calls toFind, in the worst case, cannot exceed that
of Findmin. Therefore,FIFM(S) � FFM(S). 2
Theorem 16Given a sampleS of an-ary function on[m], using IFM(S)we can produce
a decision tree that is consistent withS and has rankr(S) in timeO(jSjmr(S)(n +1)2r(S)).
Proof It is easy to see that the additional bookkeeping inIFM does not raise its asymp-
totic time requirement beyond that ofFindmin. In IFM every example in the sequenceS
has to be directed down the tree, which, in the worst case, requires examiningthe value
of the i informative variables. Only constant time operations are performed for the ex-
amples. Thus, the bookkeeping may require, in the worst case, timeO(jSji) � O(jSjn),
which is dominated by the time required for calls toFind and, therefore, does not affect
the algorithm’s asymptotic time requirement. The remaining operations (stackmanage-
ment and subtree substitutions) are also constant time operations and, therefore,do not
change the asymptotic time requirement. Hence, because of Lemma 26, the claim fol-
lows. 2
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Appendix B

Description of the Test Domains

This appendix presents the test domains used in the empirical experiments in Chapter 5 in
more detail than has been applied earlier. For each data set we give a general description
of the real-world domain it represents, if any, the attributes that are used to comprise the
real-world information, and the classification task at hand. The past usage of each data
set and the special characteristics reported in the literature are also reviewed.

B.1 Assessing credit card applications

Background This is a database containing confidential information taken from credit
card applications. Therefore, all attribute names and values have been changed to mean-
ingless symbols to protect confidentiality of the data. Nevertheless, the domainconcerns
approval of credit card applications on the basis of simple financial facts.

Attributes and examples There are 14 attributes, 8 of which are categorical and 6
continuous. The discretized version of the data offered toRankhas on average 6.1 values
per attribute. There are 690 examples in the domain.

Noise and missing values In this version of the data set, which comes from the Stat-
Log group [Michieet al. 1994], there are no missing values. Originally there were a few
missing values, but they were replaced by the overall median (mode of the attribute for
a nominal attribute and mean of the attribute for a numerical attribute).

Class distribution Of the total 690 examples 307 (44.5%) belong to category approved
and the remaining 383 (55.5%) examples are disapproved applications.
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B.2 Vehicle type identification

Background Image recognition is often thought to constitute an unsurmountable ob-
stacle to empirical learning algorithms. Neural networks are usually offered for the job.
Unfortunately in an autonomous mobile robot, for example, one does not have the lux-
ury of iterating the learning period indefinitely until the network converges [Shavlik et
al. 1991], but one has to be able to make prompt decisions. Therefore, empirical learners,
too, have to be considered for these tasks [Tan 1993, Sillitoe & Elomaa 1994].

This data was originally gathered at the Turing Institute [Michieet al. 1994]. Images
of four model vehicles were used: A double decker bus, Chevrolet van, Saab 9000, and
Opel Manta. It was anticipated to be easy to distinguish the bus and the van from the
cars, but that it would be harder to make a distinction between the two cars.18 features
were extracted from the 128� 128 grey scale pictures.

Attributes and examples The 18 features attempt to characterize shape of the object
in the image. They include typical attributes in wave-based recognition, for instance:
Circularity, radius ratio, compactness, scaled variance along major andminor axes, etc.
After categorization, the attributes have on average 7 values in their range. There are
846 examples in this data set.

Noise and missing values There is no explicit noise in the data, only that which is
inherent due to the measuring apparatus. All values are known.

Class distribution The images are distributed pretty evenly between the different ve-
hicles: There are 218 (25.8%) examples of buses, 199 (23.5%) vans, 217 (25.7%) Saabs,
and 212 (25.1%) Opels in the data.



B.3 DIABETES PREDICTION 125

B.3 Diabetes prediction

Background Application of machine learning techniques, and artificial intelligence
techniques more generally, to medical domains has been studied a lot over the years.
The main reason for this being the availability of suitable data and proper classification
tasks. Furthermore, medical decision making is in part so clearly based onheuristic
methods that parallels with artificial intelligence techniques are easy to draw.

The data in hand comes from the National Institute of Diabetes and Digestive and
Kidney Diseases. The diagnostic, binary-valued variable investigated iswhether the
patient shows signs of diabetes according to World Health Organization criteria; i.e., if
the two-hour post-load plasma glucose was at least 200 mg/dl at any survey examination
or if found during routine medical care. The population lives near Phoenix, Arizona,
USA. Several constraints were placed on the selection of these instancesfrom a larger
database. In particular, all patients here are females at least 21 years old of Pima Indian
heritage.

Attributes and examples The attributes constitute of eight medical measurements
taken at a routine examination. They are:

number of times pregnant,
plasma glucose concentration (a 2 hours in an oral glucose tolerance test),
diastolic blood pressure (mm Hg),
triceps skin fold thickness (mm),
two-hour serum insulin (�U/ml),
body mass index (weight in kg/(height in m)2),
diabetes pedigree function, and
age (years).

Discretization yields, on average, 12.5 values for each attribute. The domain consists of
768 examples.

Noise and missing values There is no explicit noise present nor any recordings miss-
ing.

Class distribution There are 500 (65.1%) patients that have tested positive and 268
(34.9%) ones that tested negative.
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B.4 Space shuttle radiator positioning

Background This is a large database concerning actual NASA Space Shuttle problem:
The position of space radiators in the shuttle [Catlett 1991]. The seven classes represent
the possible states of the radiators. Data has been gathered during two separate flights.
Very small prediction error (far below 1%) is obtained by a decision tree of seven nodes
[Michie et al. 1994]. The original data contains hundreds of thousands of examples, but
in the StatLog version of the domain there are 58,000 examples.

Attributes and examples There are only 9 attributes describing instances. They com-
prise measurements of three sensors that are monitored at one second intervals. All
attributes were originally numerical, but in our tests we have also used adiscretized ver-
sion of the data (see Chapter 5 for a more thorough account of this). In the discretized
version attributes have on average 2.9 values in their range. The total number ofexam-
ples in this domain is 58,000. It has been divided into a training set of 43,500 examples
and a test set of 14,500 examples.

Noise and missing values The data appears to be noise free, since arbitrarily small
error rates can be attained given sufficient data. There are no missing values in the data.

Class distribution Approximately 80% of the data belongs to class “radiator flow”.
The class distribution is relatively skewed otherwise also: For instance, class “bpv close”
has only 10 instances, which do not count as even a per mill of the full data. The follow-
ing table gives the exact numbers of examples per class.

CLASS DISTRIBUTION

FULL DATA TEST DATA

rad flow 45,586 (78.6%) 11,478 (79.2%)
fpv close 50 (0.1%) 13 (0.1%)
fpv open 171 (0.3%) 39 (0.3%)
high 8,903 (15.4%) 2,155 (14.9%)
bypass 3,267 (5.6%) 809 (5.6%)
bpv close 10 (0.0%) 4 (0.0%)
bpv open 13 (0.0%) 2 (0.0%)

TOTAL 58,000 14,500
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B.5 DNA sequence boundaries

Background Biological data has gained importance recently. In particular, the massive
exploration into the human genome has brought much attention to these applications of
machine learning. Especially, DNA manipulation and interpretation is of prime interest.

Splice junctions are points on a DNA sequence at which “superfluous” DNA is re-
moved during the process of protein creation in higher organisms. The problem posed in
this data set is to recognize, given a sequence of DNA, the boundaries betweenexons—
the parts of the DNA sequence retained after splicing—andintrons—the parts that are
spliced out.

Here the primary decision to make is whether the center point in the DNA se-
quence window presented is a splice junction or not. This problem consists of two
subtasks: Recognizing exon/intron boundaries (referred to as EI sites), and recognizing
intron/exon boundaries (IE sites). In the biological community, IE borders are referred
to asacceptorswhile EI borders are referred to asdonors.

Attributes and examples The StaLog DNA data set [Michieet al. 1994] is a processed
version of the University of California at Irvine repository data set [Murphy &Aha
1994]. The main difference is that the symbolic variables representing the nucleotides
(only A, G, T, C) were replaced by 3 binary indicator variables. Thus the original 60
symbolic attributes were changed into 180 binary attributes. The names of the examples
were removed. The examples with ambiguities were removed (there was only four of
them). According to the suggestion of the StatLog group, we chose to use a further
processed version of this data: 120 more or less irrelevant attributes were deleted, and
only the remaining 60 binary attributes were utilized. Training set consistsof 2,000
examples and the test set contains 1,186 examples.

Noise and missing values The examples are not affected by noise and neither are any
values missing from the data.

Class distribution The examples in the training and test sets are divided into the three
classes as described in the following table.

CLASS DISTRIBUTION

TRAINING DATA TEST DATA

ei 464 (23.2%) 303 (25.6%)
ie 485 (24.3%) 280 (23.6%)
neither 1,051 (52.6%) 603 (50.8%)

TOTAL 2,000 1,186
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B.6 The six-bit multiplexor function

Background The family of multiplexor functions contains, for each positive integerk, a Boolean function defined onk + 2k attributes, orbits. A multiplexor function is a
simple Boolean function that can be considered consisting ofk address bitsand2k data
bits. Thek address bits are capable of indexing the space of2k data bits. The value
of the multiplexor function is defined to be the value of the data bit determined by the
values of thek address bits together (see the picture below).
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The domain in hand is the six-bit multiplexor function (k = 2), which has two
address bits and four data bits. In addition, five further bits that are neither address
nor data bits are used to define the function. The latter five bits are calledirrelevant
bits, since their values have no effect on the outcome of the multiplexor function. An
irrelevant bit has both Boolean values in the sample for each configuration of the other
bits’ values.

Ever since Quinlan [1988a] showed that the straightforward top-down approach of
decision tree learning is inherently incapable of learning the most natural (andminimal
at the same time) tree representations for these functions, the multiplexor functions have
appeared repeatedly in machine learning literature (e.g., [Pagallo & Haussler 1990, Ut-
goff 1989, Van de Velde 1990]). In fact, one could say that multiplexor functions have
been adopted as one of the first simple standard test cases to manage by all new learning
techniques. Overcoming problems related to multiplexor functions have even inspired
novel techniques [Van de Velde 1990].

Attributes and examples Each attribute in this domain is a Boolean one. Thus they
all have two values:true and false. The address bits are calledAddr0 andAddr1,
data bits are namedData0,..., Data3, and the irrelevant bits are namedIrrel1,...,
Irrel5.

Noise and missing valuesThere are no missing value recordings for any of the ten
attributes or the class information among the 2048 instances of the sample.

Class distribution The examples, naturally, are divided evenly among the two classes.
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B.7 LED digit identification

Background Simple displays put together from light-emitting diodes (LEDs) are com-
mon, for instance, in modern-day household appliances and similar apparatus. The
diodes in such displays have two states: They are eitheron (lit) or off (put out). Thus
the LEDs can be modeled by Boolean variables.

x5x2 x6x3x7x4
x1

The domain in hand concerns the identification of digits in an ordinary pocket calcu-
lator display. The display has 7 LEDs per character (see the picture above).The classes
are the ten decimal digits. However, the calculator is a broken one and givesfaulty im-
ages at times: Each LED has a 10% error rate. This noisy domain of seven-LED display
digit categorization was used as an example in the seminal book on decision treelearn-
ing by Breimanet al. [1984], and the domain has been one of the standard initial testing
grounds for learning tools ever since (e.g., [Buntine & Niblett 1992, Quinlan 1987b,
Quinlan & Rivest 1989]).

Attributes and examples The data consists of 200 such noisy images and their correct
interpretations. Each example is described by 7 Boolean attributes.

Noise and missing values A 10% noise rate affects the attributes, the classification of
an instance is noise-free. There are no values missing from this data.

Class distribution The class distribution of the 200 examples is described in the fol-
lowing table.

CLASS DISTRIBUTION

1 18 (9.0%) 6 28 (14.0%)
2 24 (12.0%) 7 19 (9.5%)
3 20 (10.0%) 8 22 (11.0%)
4 12 (6.0%) 9 24 (12.0%)
5 13 (6.5%) 0 20 (10.0%)

TOTAL 200
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B.8 Chess endgame result

Background The game of chess and other board games have traditionally attracted
attention as a testing ground for artificial intelligence ideas. These gamesare consid-
ered to require enough mental skills in a restricted setting to give reliable evidence of
the techniques’ capabilities [Michie 1986]. Inasmuch as chess is considered, it is an
extremely complicated game difficult even for humans to master. Artificial intelligence
approaches to chess have had to create specialized hardware to narrow the gap to human
performance. When simpler and easier managed chess domains are desired, the number
of pieces can be reduced. Thus, one comes around to consider chess endgames, where
all but some pieces have already been captured.

The domain CHESSconcerns endgames where, in addition to the King, White has a
Pawn on square a7 and Black has a Rook. All other pieces, except the Pawn, may be
situated anywhere on the board. The next move is to be made by White. The decision
classes are “won” and “not-won” for White. Even this seemingly simple domain has
proven to be too complex to be solved by conventional programming techniques [Shapiro
1983].

This particular chess domain [Shapiro 1983] and other similar endgame domains
[Michie 1986, Quinlan 1986a, Quinlan 1986b] have been used extensively to test the
performance of symbolic learning techniques throughout the years.

Attributes and examples The 36 attributes are result of a detailed analysis of the
endgame in hand, and they all comprise an answer to a relevant question like “Does
one or more Black pieces control the queening square?” or “Is there a potential skewer
as opposed to fork?”. Hence, much more chess knowledge than just the basic board
configuration is encoded into the attribute values. A detailed analysis of the task and
complete account of the attributes is given by Shapiro [1983, Chapter 7].

The entire set of 3,196 instances results from the 209,718 legal King and Pawn on a7
versus King and Rook positions with White to move [Shapiro 1983].

Noise and missing values There are no missing values in the data nor noise prevailing.

Class distribution There are 1,669 examples (50.2%) in the class won and the rest
(1,527 examples, 49.8%) belong to class “not-won”.
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B.9 Primary tumor location

Background The second medical domain concerns cancer. This time the focus is on
predicting the location of a primary tumor. Physicians distinguish between 22 possible
locations, which are the classes of this domain. The location of primary tumor isone of
the important sources of evidence used in selecting cancer treatment.

The instances of this domain have been shown to 4 internists (non-specialists)and
to 4 oncologists (specialists) at the Institute of Oncology, University Medical Center in
Ljubljana, Slovenia, where the data was originally compiled. The internists and oncolo-
gists were asked to classify the instances, and their accuracy was checked. They obtained
32% and 42% correct classification rate, respectively [Michalskiet al. 1986].

Attributes and examples The description data here is straightforward: 13 of the total
17 attributes answer whether metastases have been detected at a given location (liver
and brain, for example). The remaining attributes give, e.g., the age and the sex ofthe
patient and the histologic type of carsinoma. The data set is inconsistent; i.e., there are
examples with identical attribute values, but different classification. Since the data has
been verified after collection (by operation or X-ray), it must be that the set of attributes is
incomplete [Clark & Niblett 1989, Michalskiet al. 1986]. The total number of examples
is 339.

Noise and missing values Two attributes have several values missing: For attribute
“histologic type” the value is not known in 67 examples and for “degree of diffe” in 155
examples. In addition, attributes “sex,” “skin,” and “axillar” lack the recording in one
example.

Class distribution The following table makes the classification of examples explicit
by listing the number of instances in the domain for each class. The relative portion of
the examples per a class is also given.

CLASS DISTRIBUTION

salivary glands 2 (0.6%) gallblader 16 (4.7%) ovary 29 (8.6%)
head & neck 20 (5.9%) thyroid 14 (4.1%) vagina 1 (0.3%)
esophasus 9 (2.7%) kidney 24 (7.1%) anus 0 (0.0%)
corpus uteri 6 (1.8%) bladder 2 (0.6%) colon 14 (4.1%)
stomach 39 (11.5%) pancreas 28 (8.3%) rectum 6 (1.8%)
duoden & sm.int 1 (0.3%) prostate 10 (2.9%) liver 7 (2.1%)
cervix uteri 2 (0.6%) lung 84 (24.8%) breast 24 (7.1%)

testis 1 (0.3%)

TOTAL 339
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B.10 Soybean disease identification

Background The extremely famous data set of Michalski and Chilausky [1980] con-
cerns the identification of diseases of soybeans in terms of macro-symptoms, which can
be observed without sophisticated mechanical assistance. The intent being thata farmer,
or even a layman should be able to make reliable observations [Michalski & Chilausky
1980].

Attributes and examples The 35 categorical attributes of this domain describe the
growth environment (attributes 1–7), the plant in general (attributes 8–11), and local
plant condition (attributes 12–35). The plant local descriptors are further refined to at-
tributes describing the condition of leaves (12–18), stem (19–27), fruits or pods (28–29),
seed (30–34), and root (35). The attributes are explained in more detail by Michalski
and Chilausky [1980].

There are 15 classes; 4 categories have been eliminated from this task. The reason
given is that the last four classes are unjustified by the data since they have so few
examples.

Noise and missing values The following table lists those attributes that have missing
value recordings and the number of such failings for each attribute.

ATTRIBUTE M ISSING ATTRIBUTE M ISSING

2. plant stand 1 20. lodging 1
3. precip 8 21. stem cankers 41
4. temp 11 22. canker lesion 11
5. hail 7 23. fruiting bodies 11
6. crop hist 41 24. external decay 35
7. area damaged 1 25. mycelium 11
8. severity 1 26. int discolor 11
9. seed tmt 41 27. sclerotia 11

10. germination 41 28. fruit pods 11
11. plant growth 36 29. fruit spots 25
12. leaves 1 30. seed 35
14. leafspots marg 25 31. mold growth 29
15. leafspot size 25 32. seed discolor 29
16. leaf shread 25 33. seed size 35
17. leaf malf 26 34. shriveling 29
18. leaf mild 25 35. roots 35
19. stem 30

TOTAL 705
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Class distribution The last table makes the classification of examples explicit by list-
ing the number of instances in the domain for each class. The relative portion of the
examples per a class is also given.

CLASS DISTRIBUTION

diaporthe stem canker10 (3.3%) bacterial blight 10 (3.3%)
charcoal rot 10 (3.3%) bacterial pustule 10 (3.3%)
rhizoctonia root rot 10 (3.3%) purple seed stain 10 (3.3%)
phytophthora rot 40 (13.0%) anthracnose 20 (6.5%)
brown stem rot 20 (6.5%) phyllosticta leaf spot 10 (3.3%)
powdery mildew 10 (3.3%) alternarialeaf spot 40 (13.0%)
downy mildew 10 (3.3%) frog-eye leaf spot 40 (13.0%)
brown spot 40 (13.0%)

TOTAL 290



134 DESCRIPTION OF THE TESTDOMAINS
B.11 Mushroom species classification

Background This data set includes descriptions of hypothetical samples correspond-
ing to 23 species of gilled mushrooms in the Agaricus and Lepiota families belonging
to the North American flora. There is no simple rule for determining the edibility of a
mushroom; no rule like “leaflets three, let it be” for Poisonous Oak and Ivy. However,
the following rule happens to hold in the random excerpt that is used in the experiments.
It states that the edibility of the fungus can be determined by its odor and if it has no
odor, then by the cap’s color.

if odor = almond OR anise OR creosote
THEN mushroom is Edible

if odor = fishy OR foul OR musty OR pungent OR spicy
THEN mushroom is Poisonous

if the mushroom has no odor
THEN
if its cap has color yellow

THEN mushroom is Poisonous
OTHERWISE mushroom is Edible.

This domain was first used in Fisher’s [1987] Ph.D. thesis and has ever since been
used in several published studies (e.g., [Buntine & Niblett 1992, Holte 1993])

Attributes and examples The gillfungi are described in terms of their physical ap-
pearance, e.g., characters of the cap, the gill, and the stalk, their population type,and
their habitats. Each agaric species is identified as definitely edible, definitely poisonous,
or of unknown edibility and not recommended. This latter class has been combined with
the poisonous one. We use a random excerpt of 2,065 examples of the full data, which
contains over 8,000 examples.

Noise and missing values Only the attribute “stalk-root” has missing value recordings.
Its value is not known for 935 instances.

Class distribution In the excerpt of 2,065 examples that is used in the experiments
1,375 (66.6%) examples are classified as edible and the remaining 690 (33.3%) examples
are either definitely poisonous or of unknown edibility and have, thus, been classifiedas
poisonous.



Appendix C

Dynamic Interface for Rank

This appendix lists the C shell script that acts as the dynamic interface betweenTELA
andRank. It has three parts: First the required variables are declared, then values com-
municated byTELA are assigned to them, and finally, the learning algorithm is evoked
with the given parameters.

##############################################################
## VARIABLES ##
##############################################################
set echo
set callpath = ’/home/fs/group/tela/bin/algorithms’
cd $callpath

set filename # Attribute declaration file
set exsfilename # Example vector file
set heuristics = ’no’ # Use Gini-index?
set incremental = ’no’ # Incremental mode?
set prevhypo
set initrank = 2 # Initial rank candidate
set level = 1
set kappa = 0
set gamma = 9000
set outfile
set mode # Induction or testing
set statsfile
set treefile
set accuracy
set rank
set size

135



136 DYNAMIC INTERFACE FOR RANK
##############################################################
## ASSIGN PARAMETER VALUES ##
##############################################################

while ($#argv)
switch ($1)

case ’STATSFILE=’:
set statsfile = $2
shift
breaksw

case ’STATS=’
while ($#argv > 1)

shift
switch ($1)

case ’SIZE’:
set size = ’SIZE’
breaksw

case ’RANK’:
set rank = ’RANK’;
breaksw

case ’ACCURACY’:
set accuracy = ’ACCURACY’
breaksw

default:
goto next_param

endsw
end
breaksw

case ’ATTSFILE=’:
set filename = $2
shift
breaksw

case ’EXSFILE=’:
set exsfilename = $2
shift
breaksw

case ’CLASSIFIER=’:
set treefile = $2
shift
breaksw

case ’GINI’
set heuristics = ’yes’
breaksw
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case ’IFM’:
set incremental = ’yes’
breaksw

case ’PREVHYPO=’:
set prevhypo = $2
shift
breaksw

case ’INITRANK=’:
set initrank = $2
shift
breaksw

case ’LEVEL=’:
set level = $2
shift
breaksw

case ’KAPPA=’:
set kappa = $2
shift
breaksw

case ’GAMMA=’:
set gamma = $2
shift
breaksw

case ’MODE=’:
if ($2 == ’TRAIN’) then

set mode = ’i’
else

set mode = ’x’
endif
shift
breaksw

endsw
shift
next_param:

end

\rm -f $callpath’/’rank.script
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##############################################################
## CALL ALGORITHM FOR INDUCTION OR TESTING ##
##############################################################

if ($mode == ’x’) then
goto testing

endif

echo \"$filename\" > $callpath’/’rank.script
echo \"$exsfilename\" >> $callpath’/’rank.script
echo ’rank’ >> $callpath’/’rank.script # INDUCE !

echo $heuristics >> $callpath’/’rank.script
if ($heuristics == ’yes’) then

echo $level >> $callpath’/’rank.script
endif

echo $incremental >> $callpath’/’rank.script
if ($incremental == ’no’) then

echo $initrank >> $callpath’/’rank.script
endif

echo $kappa >> $callpath’/’rank.script
echo $gamma >> $callpath’/’rank.script
echo \"$statsfile\" >> $callpath’/’rank.script # Statistics
echo \"$treefile\" >> $callpath’/’rank.script # Resulting tree

$callpath’/’rank < $callpath’/’rank.script

exit 0

testing:

echo \"$filename\" > $callpath’/’rank.script
echo \"$exsfilename\" >> $callpath’/’rank.script
echo ’test’ >> $callpath’/’rank.script # TEST !
echo \"$treefile\" >> $callpath’/’rank.script # Which tree?
echo \"$statsfile\" >> $callpath’/’rank.script # Statistics

$callpath’/’rank < $callpath’/’rank.script

exit



Appendix D

Exact Measurements Under Different
Noise Types

Table D.1: Exact values corresponding to the bar charts depicted in Fig. 5.2.

ATTRIBUTE NOISE

20% 35%
TIME RANK SIZE ACC. TIME RANK SIZE ACC.

Rank 9.8 2.0 140.9 94.6 7.7 2.0 94.9 85.8
C4.5 2.2 2.9 63.8 93.1 2.7 2.7 68.2 86.7
NewID 5.1 3.0 179.3 91.7 5.3 2.9 150.7 83.9
CN2 28.3 – 80.5 95.8 36.6 – 126.7 90.8
IFM 7.7 2.0 152.4 92.2 10.9 2.0 182.8 86.5
ITI 130.4 3.1 132.2 94.1 222.7 3.7 208.0 74.3

CLASSIFICATION NOISE

20% 35%
TIME RANK SIZE ACC. TIME RANK SIZE ACC.

Rank 4.5 1.1 20.2 89.3 5.3 1.0 10.0 83.9
C4.5 3.6 2.0 22.4 91.2 4.3 2.0 24.3 81.6
NewID 7.0 1.0 10.0 89.8 8.9 1.0 10.0 80.8
CN2 22.6 – 56.7 89.7 18.0 – 34.6 81.7
IFM 7.1 1.0 38.3 88.5 6.4 1.0 47.4 81.0
ITI 987.2 5.0 779.4 79.5 1,363.4 5.4 1,074.2 67.8
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M IXED NOISE

20% 35%
TIME RANK SIZE ACC. TIME RANK SIZE ACC.

Rank 8.4 2.0 97.0 83.0 11.2 2.0 109.5 72.2
C4.5 3.1 1.6 29.8 82.4 3.0 2.1 33.0 73.0
NewID 7.3 3.0 190.9 81.5 6.3 3.0 340.3 69.6
CN2 42.9 – 96.0 83.4 20.8 – 23.4 73.2
IFM 15.9 2.0 141.4 83.1 18.8 2.0 212.4 69.8
ITI 1,337.6 3.2 426.7 70.9 1,436.6 3.7 545.6 58.5
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