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Abstract

Decision tree learning is an important field of machine learning. In this stiedgxamine
both formal and practical aspects of decision tree learning. We aim at angwe two
important needs: The need for better motivated decision tree learners amdr@mmment
facilitating experimentation with inductive learning algorithms. Asifesswe obtain new
practical tools and useful techniques for decision tree learning.

First, we derive the practical decision tree learRankbased on th&indmin pro-
tocol of Ehrenfeucht and Haussler. The motivation for the changes introduced to the
method comes from empirical experience, but we prove the correctness of the modi
fications in the probably approximately correct learning framework. The algoighm
enhanced by extending it to operate in the multiclass situations, making it eapiabl
working within the incremental setting, and providing noise tolerance into it. thege
these modifications entail practicability through a formal development proassh
constitutes an important technique for decision tree learner design.

The other tool that comes out of this workKliELA, a general testbed for all inductive
learners using attribute representation of data, not only for decision tigeels. This
system guides and assists its user in taking new algoritms to his disposatirgptitam
in an easy fashion, designing and executing useful tests with the algorithdis, iater-
preting the outcome of the tests. We present the design rationale, current caonposit
and future development directions ®ELA. Moreover, we reflect on the experiences
that have been gathered in the initial usage of the system.

The tools that come about are evaluated and validated in empirical testenany
real-world application domains. Several successful inductive algoritihenscmtrasted
with the Rankalgorithm in experiments that are carried out usiitgl.A. These exper-
iments let us evaluate the success of the new decision tree learner sp#treo its
established equivalents and validate the utility of the developed testbedeStbg@rove
successful in both respecRankattains the same overall level of prediction accuracy as
C4.5, which is generally considered to be one of the best empirical decisioadreels,
andTELA eases the execution of the experiments substantially.
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Chapter 1

Introduction

The study ofartificial intelligenceexplores possibilities of making computers exhibit
behavior that could be seen to be intelligent. The ability to learn is a cleaistnt
feature of intelligent behavior. Hence, it is not surprising thathine learnindpas been

a topic on the agenda from the very early days of artificial intelligence and compute
science (e.g., [Wiener 1948, Turing 1950]).

Machine learning research is blooming once again mainly because of the follow-
ing (almost) coinciding impetuses. First, building expert systems was coerathethe
most important application of artificial intelligence. However, the diffig of eliciting
knowledge from domain experts, or tkrowledge acquisition bottleneffkeigenbaum
1977], proved to make the construction of expert systems complicated, expensive, a
time-consuming. Machine learning techniques were considered to be able to help to
circumvent the problem. Secondeural network§Rumelhart & McClelland 1986],
or connectionist computational devices, reemerged as an important reseaccifteipi
having once falsely been doomed computationally insufficient [Minsky & Papert 1969].
Learning is an important method of “programming” neural networks. Third, the intro-
duction of theprobably approximately correct learning mod®hliant 1984] made the
theoretical questions of machine learning a popular research topic.

In machine learning research, as in studies of natural learning procdssesate
many approaches and subfields. This thesis examines a simple, but demandingg learni
model: Inductive inferencé&rom examples. In this model tHearneris supplied with a
sampleof thetarget conceptHence, this subfield is also known e@sncept learningin
machine learning the learner is a computer program that is calkaiaing algorithm
A concept is any subset of a domain known as ittetance space The elements of
this domain arenstancesand, hence, a concept is simply a collection of instances. The
sample consists gfreclassified instance®r (training) examples Thus, the learning
scheme isupervisedi.e., we can consider that there existeachersupplying the class
labels of instances. In the basic model the teacher is omniscient—it does not err on
deciding the class labels. dassifications any finite partitioning of the instance space.

1



2 INTRODUCTION

It is the learner’s task to construct and outputhygpothesi®of the target concept. Here
we are interested in situations where the hypothesis takes the forotassafier—a total
function assigning any element of the instance space into one of the classes.

In attribute-basedmachine learning [Kalkanis & Conroy 1991] the examples are
vectors of attribute values. Aattribute is any measurable relevant characteristic of
the application domain; it can typically only have one of three types: Its value range
may benominal(unordered)discrete(ordered), orcontinuous The classification of an
example is given as elass label-a distinguished attribute. In the majority of cases
the class attribute is only allowed to be nominal; however, it is alsoilples® have a
numerical class attribute (e.g., [Boswell 1990b]). The task is to induce sifetasion
procedure that can be used to predict the class label of further instances onighe bas
of their attribute values. For this to succeed, the learner must be apenayalizethe
information contained in the examples. Usually the prediction given by thsiftaigs
categoricat—a single class is definitely nominated—Ipubbabilistic prediction is also
feasible [Quinlan 1987a, 1990c].

Example. Let us think of a mail order company that wants to intensify its marketing
efforts by identifying more refined customer profiles than those it has used bitkert
that purpose dearning algorithmis employed. (Classical statistical techniques have,
of course, long been used in marketing analysis and other similar tasks myactwire-
lation determination, but several studies [Carter & Catlett 1987, Shehexid 1988,
Weiss & Kapouleas 1989, Femg al. 1994, Michieet al. 1994] have indicated machine
learning techniques to be superior even in these tasks.}arpet concepti this task

are the different types of customers and the aim is to induce a description of aigdotent
customer for a given producthe hypothesjs As thesamplethe company can use its
records of customers and those people that have, in previous marketing campaigns, bee
identified as potential customers, but have not come through with an order (rectrds of
latter constitute a set ofegative exampl@sTheinstance space this case ranges from
the population of the World to, say, the male owners of British cars in Finlahe clas-
sification of an instance already exists in the records: Did the potentiaimesplace an
order (for a specific product) or not. Hence, thass attributespecifies which merchan-
dise, if any, was purchased by the customer. Strict laws prohibit our enteffom ac-
quiring all the customer details it would desire. Something, though, can be gatrered f
the existing records—the gender of the customer, the method of payment, the character-
istics of the customer’s living surroundings, etc. Thus, as instance-descaitbiigites

we can use, e.g., the binary attribgtex, the discrete-valued attribupopul at i on,
which gives the size category of the customer candidate’s place of residecthea
continuous-valued attributd st ance, measuring the journey to the retail store closest
to the customer’s address. O

In supervised learning a faultlessly classifying teacher (naturaitkis is present.



Why, then, would we want to replace it with a mechanical classificationgpiwe that

is even liable to make mistakes? The possible reasons include, for examedie!]ow-

ing. Speedf classification may be essential; a computer program is often much ifaster
its processing than a human or some other natural classiflgectivitymay be at risk
when a person processes (sensitive) data; computer programs do not inherenity conta
moral or other biases. Even if an omniscient natural classifier existsg& not neces-
sarily mean that the law governing the classification of instancesdsiated. Machine
learning techniques can be used for extracting a representation for the underlying na
ral law. This may involve simplgnhancement of comprehensibilisince even human
experts may have trouble expressing their knowledge intelligiolgyvledge simplifica-
tion, which may bring new insight to the observed world, or, at the most ambitious level
discovery of knowledgehat was previously unknowrProcessing massive amounts of
datais task often better entrusted to computers. There are many applicatiens karge
amounts of data are constantly generated and there are many existinga@adi@ttsuch
data masses. Even if speed is not a primary objective the teacher theglisgpse under

the multitude of data.

In many potential application areas of machine learning a classificatioaturally
associated to instances. Consider, for example, any monitoring systemaducion
plant, say, which constantly produces instances (the state of the monitoret sysie
given time) together with an associated classification (e.g., ‘operétmmihe type of
malfunction). As another example, consider a learning task where previoudigdrea
patients’ records are given to the learner as the sample with the intesrini® @p with a
classifier that can be used to decide the treatment of future patientsiiNgdess, in gen-
eral the assumption of an omniscient teacher is a very restrictive anegtiine learning
was only applicable in cases where a real-world error-free claggficprocedure ex-
ists, its utility would be severely impaired. In fact, one of the underlyingivations in
the development of machine learning has always been to “manage the unmanageable.”
Moreover, even if a natural classifier exists, its application cosig loe untolerable, so
that in essence the situation is as if no teacher exists. For example, tbet ¢eratment
of some cancer patients can only be determined by surgical operation, whichtly exac
the action that one tries to avoid by using machine learning.

In cases, where a natural teacher is missing or is too expensive to uses\grer-
visedlearning algorithm, or alusteringalgorithm [Duda & Hart 1973], can be put into
use. In unsupervised learning it is left to the learning algorithm to disdbxepossi-
ble classes, or clusters, in which the instances might belong. Obviously unsepervis
learning is not as effective as supervised learning. In this thesis we cogieeoh su-
pervised learning alone; it can be envisioned to constitute the high-level bagsagt
of full-scale learning systems of future.

Learning from examples alone is difficult; there must be some additional guidance
given to the learner about which hypotheses it should prefer and where to search for
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them. Such underlying assistance is knownrakictive bias[Utgoff 1986, Haussler

1988]. The bias of a learning algorithm cannot usually be attributed only to a single
property of it; several details contribute to an algorithm’s bias: The masbob sources

of bias are theepresentation language of hypothegi@sguistic bias) and théaeuristics
employed in the algorithm (algorithmic bias). The former guides the algorithrarttsv
certain kinds of hypotheses and the latter prompts some search order for the hypotheses.
A more explicit way to guide the induction process is to provide the learnerhaitk-

ground knowledgeThen, in addition to the representation languages of examples and
hypotheses, a third representation language is needed. This study focuses on learning
algorithms that do not have access to background knowledge andprseasitional
(variable-value propositions) hypothesis representation language.

In addition to the problems of missing and expensive teachers we, in praatice,
counter teachers, that are not omniscient, and the problem of misinformation. tn othe
words, in most practical classifier learning situations an element of ramdmrs, or
noise is typically present. In theoretical studies one usually makes a distmogitween
attribute noiseand classification noisewhich affect the observed attribute values and
the teacher’s decision of an instance’s class label, respectivehe heal world, no such
clean cut can be made; in practice an unseparable combination of both noise types is
predominant.

Any learning algorithm that is intended for serious use should provide for thesffect
of noise in the sample. Luckily, it is, in most cases, quite easy to takeaictount
the possible errors in the training examples when designing a learning algorithen. O
just has to adopt a statistical view to the sample: Instead of trustingiedsidual
training example the learner gathers statistical evidence from the santpteuats only
observations that are backed up by a sufficient number of examples. Of course, this
general principle is not always easy to implement in a learning algorithm. [fjbatam
developed in this work provably tolerates noise in the training data.

The most common approach to concept learning examines situations where all train-
ing examples are available from the outset and no further examples cantlaéecn-
structed classifier; it is subsequently only used to classification of nstances. This
is known asbatchlearning. In the real world, however, it may be that examples are
received (one at a time) over a span of time during which a classifitnesdy needed.

In principle, one could, of course, store all previously received training examadil

the new one to the set when received, and rerun the batch learning algorithm éar the
tended sample. Not only would this waste effort, but it is not necessarilsatetby the
application. Consider, for example, an autonomous mobile robot with a concept learn-
ing component. If the robot, upon receiving a new example, has to abandon whatever
task it was performing to rerun the—as the sample size grows—increasiogiypatch
learner, it may loose sight of its actual goal.

The study ofncrementaloron-ling, learning aims at building learning programs that



minimize the (average) amount of hypothesis reconstruction and, thus, computagon tim
that is required for each new example. From the theoretical point of view, the i

much difference between incremental and batch learning. However, wiiegtteaining
examples are received all at once or one at a time largely affects tlgnaesi learning
algorithm. The incremental learner is not aware of the ending of its traininggé&fi

ever. Therefore, it has to maintain a suitable hypothesis even at the @utiertien stages.

Since hypothesis updates have to be efficient, they must be based on local operations
rather than global ones. This alone, in practice, makes on-line learning mue& mor
complicated than batch learning. We develop an incremental learnemeigame time
requirement as its off-line equivalent has.

What are the general evaluation criteria for hypotheses produced by learning algo-
rithms? Obviously the single most important property of a classifier datssification
accuracy the proportion of correct classifications among its predictions. In this study we
do not consider situations where errors may have different sev€tdgsification speed
is in many cases a crucial property that is requested from the hypothesisxarople,
all classifiers having to process masses of data, naturally, have to be enxp&bm-
prehensibilityof the resulting classifier is a central feature whenever a human operator
gets to review it; any classifier that is not fully understood by an experteilleemed
unreliable and, hence, non-applicable. Lack of trust has had tragic consequences in the
Three-Mile Island and Chernobyl nuclear power plant disastefée final generally
posed requirement to a machine learning technique is a property of the learner rathe
than of its hypotheses: The learner mustdugck The time that the learning period
is allowed to take varies relative to the characteristics of g@ieation domain (e.g.,
the numbers of attributes, classes, and examples), but we want the |edbeesigymp-
totically efficient—at most polynomial in the dominating parameters; oftem exwore
stringent requirements are posed to the asymptotic efficiency of a learningftaigor
Our learning algorithm will be only linear in the size of the sample.

The hypothesis has to be expressed in some way. One of the most successful rep-
resentations has been tHecision treeformalism. The success of decision trees can
largely be attributed to the fact that they naturally meet three of the sguirements
posed above—decision trees are very efficient to learn and to use anddalggnarally
conceived as quite understandable. In addition, the learning process is flexd#e; it
easily be changed to produce different decision tree types (e.g., shallow119&8] or
linear [Arbab & Michie 1985]) according to the user’s needs. Also, the comprehknsibi
ity of a decision tree is easily enhanced even more by converting it imtorasponding
set of production rules [Quinlan 1987b, 1987c].

A decision tree is a recursive classification procedure that can be viasvadree

! Automatic control techniques in general were distrusted here rather thaifietasin particular. In
these catastrophes an automatic control device correctly recommended shutdbits advice was ig-
nored by the human operators because they lacked belief into the foundefitlessecommendation
[Michie et al. 1994, p. 7].
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distance

<100 km

none

popu@

medjum large female

male

populatio tools

exclusive none

female male small medium large

appliance tools clothes || appliance exclusive

Figure 1.1: A decision tree describing the consumer habitseoclientele of a mail order enter-
prise.

with labeled nodes. A decision tree recursively partitions regions of thenostspace

into subregions. Each node corresponds to a region of the instance space. The root of the
tree covers the entire instance space, its children divide the space intallpekclusive
regions, and the division process continues similarly all the way to the leaf nBedebk

leaf node has an associated class label, which is assigned by the c¢l&ssifig instance
belonging to the corresponding region. Each internal node is associated with la test.

the simplest form a test only queries the value of one attribute. If &teasC possible
outcomes, the node associated WithasC' children and the region covered by the node

Is partitioned inta”' subregions—one for each child.

Example. The hypothesis obtained by the mail order company of our previous example,
when expressed as a decision tree, could look like that in Fig. 1.1. Note how the dec
sion tree corresponds to a total function from the instance space (potential etstton

the set of classes (product groups): First the attridutet ance partitions the instance
space into three regions, two of which are partitioned further by the othdnaési;, any
instance will be directed into one of the leaves by the tree. Interpreting thveldage
contents of the tree should be self-explanatory; for instance, the tree contain®othe i
mation that (only) women living in small population areas over 200 kilometees/aw
from the closest retail store tend to purchase clothing by mail order. Ondstapey at-
tention to secondary issues arising from this representation. For exampleairorder

do the attributes appear in the tree. The tree in Fig. 1.1 suggests that timeelifstan



the closest retail store would contribute the most to the customers’ consuhiis: ha

This thesis develops tools and techniques for decision tree learning. Even though
it is one of the most widely studied topics of machine learning research and notable
successes have been gained, there are still many open questions to be sthleathin
derpinnings and practice of decision tree learning. One of the most salient deéisienc
in the area is that theoretical results on decision tree learning are notthe standard
of the approach’s practical success. Our first contribution is to take a tloadisgesound
decision tree learning algorithm, tik@ndminof Ehrenfeucht and Haussler [1989], and
evolve it into a practical tool.

The formal results of this thesis answer to the practical demands preséoesl a
The decision tree learning algorithm that we develop is ableaoage multivalued at-
tribute and class rangeshus retaining the intelligibility of the resulting decision tree; in
it incremental learning is supportediaking the algorithm applicable to wide range of
problems; finally, it is endowed with theapability to handle noisewhich is an unsur-
mountable problem in the real world. Let us emphasize that all these improwearent
developed within the formal learning framework of Valiant [1984]; i.e., all modiibns
lead to provably good behavior. In addition to the individual analytical contributions,
the design process in itself is a novelty; hitherto the theoretical desigessast learn-
ing algorithms has attracted only some interest fairly recently [M&894, Aueret al.

1995].

The developed algorithm’s performance is compared with the best empiricsilatec
tree learning algorithms in real-world learning tasks. This part of the warkbe seen
as a direct continuation for the empirical work of Mictaeal. [1994]. It is of utmost
importance to validate the performance of an algorithm on a wide variety otcagiph
domains in order to obtain a good overview of its general utility. It is the sa&ask to
come up with a good learner for a particular task, but a tool that is more genesafiyl
defies solution. Furthermore, we do not content ourselves with simply comparing the
prediction accuracies of the test programs, like Mictial. [1994] did, but take a wider
perspective by observing differences along the other quality measurements as we

The other constructive contribution of this work is an environment facilitagixg
perimentation and comparison of attribute-based learning algorithms. &teraany
learning methods easily available for the interested user, but substffaralhas to be
offered to operate them. Therefore, there is a strong demand for a platfaroothd
assist the user to easily operate many diverse learning tools. Moyéaveand unbi-
ased algorithm comparisons are impossible without a common control environment. We
present the design rationale and an overvieWteif A—a publicly available environment
that has been implemented for these purposes.

The material is organized as follows. First, Chapter 2 recapitulaedasics of
decision tree learning and computational learning theory, which are pretigsriar the
rest of this dissertation. The first part reviews common practical dediseeriearning
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techniques and presents a brief overview of less often used approaches tondeessi
learning. In the second part Natarajan’s [1991] modification of Valiant’s [1984]dbrm
learning framework is recapitulated. This modification deals with funatiass learning
situations. The model is developed further by employing Sakakibara’s [1993] ideas of
coping with random errors in this extended model.

Chapter 3 develops a practical learning algorithm out of the decision treergarni
protocol put forward by Ehrenfeucht and Haussler [1989]. Three major conceptual mod-
ifications are presented and several practical improvements arem@pied in the new
algorithm namedRank First, the method is changed to handle multivalued variables
and classes instead of dealing with binary values only, like the origindiodedoes.
Next, we show how an efficient incremental variant of the learning algoritambe
developed. Finally, Ehrenfeucht and Haussler’'s method is extended to copetuwath s
tions that are affected by classification noise. At each stage we emsurthé formal
learnability properties of the original algorithm are preserved: Each matifickeads
to a polynomial-time algorithm that is guaranteed to produce a decision tredesitted
properties. Theoretical results play an important part in this chapter.

In Chapter 4 we introduc8 ELA—a generic platform for testing attribute-based
learning algorithms. Testing and comparing different implementations ahditpes
on sample data is an integral part of the design and application of inductive machine
learning programs. It involves many simple, but unavoidable auxiliary tdsksatre
usually not supported by the learning tools themselV&4d.A has been developed to al-
leviate these in such a manner that the worries and vexations of the user arezeahi
The algorithmRankhas been incorporated into th&LA platform.

Chapter 5 applies the algorithRankinto many problems arising from real world. A
series of tests, consisting of varying kinds of experiments, is reported anesthlésrare
analyzed meticulously. These tests are intended to empirically egdRaaiks utility
with respect to other, more established inductive learners. At the sar@eve want to
validate theTELA environment by showing how a long series of tests can be run under
it without any complications.

Finally, Chapter 6 concludes the dissertation by summarizing the work and by dis-
cussing some issues raised by the work reported in the earlier chaptpastitnlar, we
consider future research directions that could be taken to carry furtheratketinat is
reported in this dissertation.



Chapter 2

Preliminaries

This chapter surveys decision tree learning and computational learning thedryfbot
which are prerequisites for understanding the subsequent chapters. Section@ti reca
ulates the most frequently used approach to decision tree learning. Akernatys of
learning decision trees are briefly surveyed in Section 2.2. The basic lcabrebdel

of concept learning is introduced in Section 2.3 and Section 2.4, then, discusses how it
needs to be changed for modeling noise-affected situations.

2.1 Top-down induction of decision trees

The literature on decision tree classifier learning is voluminous and colysamiving.
We do not try to survey all aspects of it here; the interested readeleisadfto consult
one of the extensive survey articles, like the ones by Quinlan [1990a] and Safanlan
Landgrebe [1991]. Also, an excellent survey of current topics on decision tregngar
and closely related areas appears in the manual fortbesystem [Buntine & Caru-
ana 1993]. Instead of covering the research trends extensively, we corneamtréte
common core of the approaches: We present the generic tree growing methodology and
discuss only the most important variants of it. For an overview of inductiveilegr
in general many sources exist (e.g., [Carboeelal. 1983, Kalkanis & Conroy 1991,
Langley 1996)).

The basic approach to decision tree learning is a heuristic hill-climbiagkeavith-
out backtracking or look-ahead. This is knowntag-down induction of decision trees
(TDIDT) [Quinlan 1986b]. TDIDT is typically performed in two stepgrewingand
pruning In the first step a decision tree corresponding as closely as possible to the
training data is constructed greedily, starting from the root, by heuristiealecting at-
tributes to be tested at the nodes of the tree. It has been observed thatendesgsthat
fits the training data too closely will be a poor predictor of the class label didurh-
stances. Hence, the tree needs to be pruned back in the second step in oxtlerdatse

9
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Procedure 2.1StoppingConditio(S, C')

input: a set of examples.

output: a truth value. (Out parameter C records a class name.)

begin

(1) if all examples inS have the same clagsthen return true else return false fi
end.

Procedure 2.2MakeTrega, T1, ..., T),)

input: an attributen and a list of|a| decision trees, whete| is the cardinality of:’s range.
output: a decision tree.

begin

(1) Construct and return a decision tree such that attribbigehe label of its root and
(2) thattreed,..., T, are its subtreesl{ is joined to the root by an edge labeled®y
end.

Procedure 2.3GrowTred A, S)
input: a set of example§ on attributesA.
output: a decision tree that is consistent wih

begin
(1) if StoppingConditiofS, C) then return a leaf node labeled by
else
(2) Selectan attributes from A;
3) Partitions$ into subsets, S, . . ., S|, so that all examples having valuéor
(4) attributea are assigned to subsgt, where|a| is the cardinality ofs’s range;
(5) foreachi € {1,...,|a|} dOT; + GrowTreé A \ {a}, S;) od;
(6) T + MakeTree(a, T, ..., T);
7 return T
fi
end.

dependence on the training examples. Also, pruning lets the learning algorithnetolera
the effects of noise.

The tree growing phase basically takes the form of Procedur&@®&Tree The
procedure chooses an attribute from the set of available ones (Line 2), divides the e
amples belonging to the subsample under consideration into subsets according to their
value of the chosen attribute (Lines 3—4), and recursively grows a decismfotrthese
sets (Line 5). The division process terminates when all examples belongingstatbet
under consideration are of the same class (Line 1). The subpro§tamsingCondition



2.1 TOP-DOWN INDUCTION OF DECISION TREES 11

andMakeTreehave been segregated from the actual growing procedure for subsequent
purposes.

ProcedurésrowTreeproduces a decision tree that is consistent with the sample. All
consistent decision trees are not considered equally good. It is generallyeattegut
simplicity should be favored in the classifiers produced by inductive learnogyams.
Reasons for favoring small classifiers are many: According to OccaaZsRBlumer
et al. 1987] a simple explanation is more likely to be correct than a complex one, the
average cost of classifying instances by a simple classifier is srtfaleithat when us-
ing a complex classifier [NUfiez 1988, Tan & Schlimmer 1990], and the reldviaggst
(attributes, cut points, etc.) will be more clearly visible in a simple (abmprehensibil-
ity). However, because of the inherent trade-off between simplicity atwtacy [Fisher
& Schlimmer 1988, Ibat al. 1988, Bohanec & Bratko 1994] one is doomed to balance
between these desired properties. Learning decision trees that areloptim@spect
to many criteria, unfortunately, turns out to be a NP-complete problem [HydRilv&st
1976, Comer & Sethi 1977, Murphy & McCraw 1991, Hancetlal 1995] and, hence,
intractable in practice.

ProcedureGrowTreestill leaves many details of decision tree growing unspecified.
Most conspicuously it does not fix any method of choosing an attribute from among
the available ones; for that end one commonly employs an information theoreltic eva
uation function to merit the candidate attributes. It is used to asses$ @ihvision by
a candidate attribute gives the best subsamples for predicting the classdabmlin-
ing examples. More precisely, the function is used to approximate, for eadese
attributea in A, the increase of informatioa/ (about the class labels of training exam-
ples) that would be gained by dividing the subsantplender consideration into subsets
St,...,S)q according to the value of the attributewhen compared to the situation
whereS is left undivided. The heuristic implements some form of inductive bias. The
common goal of these measures is to keep the resulting tree as concise lale paotsi
out sacrificing much of its accuracy. The most generally used informatiorgteeval-
uation functions belong to the family ahpurity measurefBreimanet al. 1984]. For a
thorough account of attribute selection criteria and their background see Kononenko and
Bratko [1991] and for empirical comparisons of different heuristics see, e.ggévs
[1989a] or Buntine and Niblett [1992].

Example. Quinlan’s [1983, 1986b] ID3 algorithm uses the information theoretic concept
mutual information or information gainfunction, as its attribute merit function; it can
be formalized as follows.

Let C' be a discrete random variable with ranBe. For anyc € R let p(c) denote
the probabilityP{C' = c}. The (Shannongntropyof C, H(C'), measures the infor-
mation provided by an observation 6for, correspondingly, the amount of uncertainty
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aboutC; it is defined as

HIC) = = 3 p(e) -logap(e) = 3" p(c) -log, (}%) .

cERc cERc

For a pair of random variabled and C', we measure the uncertainty abdtitafter
observingA by conditional entropy

HOA) = Y plad)-log, (ﬁ) ,

cERc

wherep(a,c) = P{A = a,C = ¢} andp(cla) = P{C = ¢|A = a}. Now, since
H(C) represents our uncertainty abdtitbefore observingd, and H(C|A) represents
our uncertainty afterwards, their difference represents the amount of infomadttout
C' given by A. This quantity is thenutual informationdefined as

1(C, A) = H(C) — H(C|A).

In tree growing we, naturally, want to evaluate for each candidatbéuiitrihe given
amount of information about the value of the class attribute. The attributentraises
information the most is then added to a node of the evolving tree. Generally we do
not know theprior probabilities p(c), p(a, ¢), andp(c|a), but have to resort tdata
priors p(c), p(a, ¢), andp(c|a) instead. Data priors are simply relative frequencies of
attribute values in the data. For instangé;) = |S.|/|S|, whereS is the (sub)sample
under consideration ansj. is the subset af, which consists of those elements that have
C' = c. (For a full account of data priors in this task see e.g., [Pagallo & Haussler 1990].)

O

Another detail in decision tree growing, which deserves some attentionisgha
ally decision trees are generated without look-ahead and attributesadwated one at
a time in separation, as presented above. In other words, if there is somaldepe
between two or more attributes (with respect to the classificatiorarhples) this will
go unnoticed by the evaluation function. It is only after one of the attributes is ghose
(maybe by pure chance) to the tree that such interrelations between astrbayebe-
come visible to the evaluation function. A well-known example of functions witthn suc
dependent attributes is the family of multiplexor functions for which size-opti®aa-
sion trees are inherently unlearnable by algorithms utilizing impurity meagQuinlan
1988al].

This shortcoming of impurity measures has received much attention in thexcohte
decision tree learning only fairly recently, the obvious solution being to consatee
combination of attributes at a time. In general, this technique is knoveomsructive
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induction[Michalski 1983], because new high-level features are constructed from the
original primitive attributes, or adynamic biagUtgoff 1986], since the inductive bias
changes dynamically. In decision tree learning constructive induction wastfidied

by Matheus and Rendell [1989] and Pagallo and Haussler [1990], both of whom used
conjunctions of (binary) attributes as high-level features. A more traditioagltede-

tect attribute interconnections is, as indicated above, to let thetspaocedure déook-
ahead i.e., instead of evaluating a single attribute at an isolated node of the rgolvi
tree, evaluate multiple variables and (partial) subtrees at once. d\gttiis approach

can turn out to be computationally quite expensive in comparison with the stiaightf
ward approach. Look-ahead is the approach taken, e.g., in the successful ACli&decis
tree learner [Shepherd 1983, Shephatrell. 1988], and it is, also, the approach taken in
the development of a learning algorithm in the next chapter.

Similarly as attributes could be grouped together to form new features, using a
tribute value combinations can prove to be beneficial. To an extent it magrmirthe
same subtree from repeating at different branches of the tree and, more impariat
retain the good functioning of the attribute selection heuristics—by “normafizhe
evaluation—when the size of the value range grows [Cestirglk 1987, Quinlan 1993].

On the downside, the number of candidate partitionings grows exponentially.

As a final point about the procedu@rowTreewe note that it only specifies how
to deal with nominal attributes; what to do with ordered and continuousyarerical
value ranges is left open. Obviously, all values of an infinite range cannot have thei
individual edge and subtree in a decision tree, neither is it possible to let e bunit
large number of values to be used. Therefore, numerical ranges needdtegerized
into a small number of intervals. Categorization can be done by the domain expert in
knowledgeable way, or it can be left for the learning algorithm to do. Traditignalau-
tomatic techniques only a singteit pointhas been searched for and the value range has
been divided into two in one node; this is known ashir@rizationtechnique [Breiman
et al. 1984, Cestnilet al. 1987]. A range that is cut into two can, deeper down the tree,
be refined further by binarization of the subranges. Recent studies [Chou 1991, Fayyad
& Irani 1993, Fultonet al. 1995], however, indicate that it would be better to perform a
multi-interval split at once rather than as a sequence of binary splits. Sulbsigque
assume that numerical ranges have been categorized beforehand. For moreimfiormat
on automatic handling of numerical ranges see, e.g., Fayyad and Irani [1992].

In the foregoing it has been presented only that, given a set of examples, a small
decision tree that is consistent with the training set is to be sought for. &hikardly
be termed learning. Anyhow, growing a consistent decision tree tends to produce hy-
potheses that are too specifically oriented to classifying those exampidsafEen to
be present in the training set, in which case the tree grown will predictyti@iclass of
an unseen instance. In other words, the learning algorithm has not succeedediin capt
ing the underlying law governing the classification of instances and, thus, ledrasng
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Procedure 2.4StoppingConditio(S, C')
input: a set of examples.
output: a truth value. (Out parameter C records a class name.)
begin
% LetC be the label of the majority of examples$h
(1) if all but aninsignificantportion of the examples if belong to the clas§’ or

(2 the cardinality ofS is too smallto calculate reliable significance measures
3) then return true else return false fi
end;

not taken place. This phenomenon has been teowedittingor overgrowing

In order to avoid fitting the resulting tree too closely to the training $dtas to
be prunedback to reduce the tree’s dependence on the specialities of the training set.
Alternatively, (preliminary) pruning can be performed simultaneously wighgrowing
of a tree. Then, at each branch, growing has to be stopped before the tree becomes too
specific. From the basic tree growing method we obtain procedowPrunedTredy
slightly modifying the stopping condition so that it leaves the tree robust wipet
to the training set, but increases its accuracy in classifying newniossa Note that,
while the basic tree growing procedure requires a consistent sample in ordealiebe
to operate, the modified program tolerates inconsistencies in the traininglthégas a
necessary feature in noisy and incomplete domains of the real world.

The proceduré&toppingConditioms changed to returtiue (leave a set of examples
undivided) if the proportion of examples that have different class than the majority of
examples or the absolute number of examples in the set is below a certairCObmet -
wise there is no change in the tree-growing procedure. A statisticalbdistmn can be
used to determine whether the proportion of examples, whose classificatios tiifie
that of the majority, is significant or not.

Example. Let A be an attribute with the (nominal) randge, = {ay, as, ..., a,,} and let
C be the class attribute with the ranffle = {¢;, ¢, ..., ¢, }. The numbers of observed
occurrences ofl’s values and classes can be cross-tabulated intaan contingency
table as follows.

The deviation of the example distribution within the sample from the one expected,
under the assumption thatis irrelevant to the class of an example, can be approximated
from the data as the sum of the squared difference of the observed and expected number
of occurrences of class; € R- among the examples having valug € R4. The
expected values are obtained by considering the whole subsamjfied is irrelevant
to the value ofU, the expected number of occurrences with= a; andC' = ¢; in S is
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Table 2.1: Cross-tabulation of classes and the valuesrdfugt A.

a1 Qo a.,, | TOTAL
&1 nyr N2y cee Nypa1 Ny
Co Nz Mgz ... N2 N,
Cn Nin  Nap Nmn Nn
TOTAL | My M, ... M, N

e;j = (M; x N;)/N, whereN = |S|. The observed values, here, are the entrigesn
the table above. Hence, the approximation of deviation is

Z Z (nac - eac) — i i (nac - eac) .

a€ER, cERc €ac a=1c=1 €ac

This statistic is distributed as thg distribution with(m — 1) x (n — 1) degrees of
freedom. They? test for stochastic independence can now be used to determine, with
desired confidence, whether attributes significant to the classification of examples or
not. The difference of the statistic as computed from the data and as taluéstechines
the confidence with which one can reject the hypothesis that the class of an example i
independent of the value of. If the confidence does not attain a user-specified thresh-
old, attributeA is not accepted to the evolving tree. Thétest, like most stochastic
methods, looses its reliability when the number of examples becomes smalld@Quinl
1991]. The above-described method is used in the ID3 algorithm of Quinlan [1986a]
in significance testing and in a different task in the CN2 decision lehler [Clark &
Niblett 1989]. 0

Post-pruning of the constructed decision tree is performed by considering for each
internal node of the tree whether it is better to leave the subtree rooted adbteintact
or to replace it by a leaf node. This decision is based on an estimate of the ghange
error introduced by the replacement. Since the tree has been grown to fgitefidct
the composition of the training set, it cannot usually be pruned using error edimate
arising from that same set of examplessibstitution errors—rather, an independent
set of examples, pruning setis required. The error estimates utilized in pruning tech-
niques are based on a variety of criteria. For instacast-complexity pruninfBreiman
et al. 1984] takes into account the topology of the resulting tree in addition to the change
in classification performancegduced error pruningQuinlan 1987c] (see the example
below) only considers classification errpgssimistic pruningQuinlan 1987c] uses bi-
nomial distribution with continuity correction, andinimum error pruningNiblett &
Bratko 1986] is based on Laplace’s law of succession.



16 PRELIMINARIES

Example. Reduced error prunings a method suggested by Quinlan [1987c] for deci-

sion tree simplification; it has recently found success as a pruning techniquie et

learning [Pagallo & Haussler 1990, Cohen 1993]. The method is straightforward Give

a decision tred” and a pruning seP, for every nonleaf subtre@ of 7', examine the

change in the number of misclassifications o¥ethat would occur ifQ) was replaced

by the best possible leaf. If the pruned tree would give equally many or fevees ¢nian

T, then replacé) by the leaf. The process continues until no further replacements occur.
0

The advantage post-pruning possesses over on-line pruning is that, when processing
a fully grown decision tree, its global properties can be taken into accounan wro-
cessing an evolving decision tree on the fly we must content ourselves withdhle |
information available. Even combined pruning techniques exist: Gekaad [1991]
present a tree growing procedure that performs post-pruning on the fly by means of bi-
narization: The training examples falling to the left subtree are used inrgytiné right
one, andrice versa Clearly, harmful dependencies can invalidate this approach. In spite
of post-pruning’s clear advantage over on-line pruning we stick to the lattejbeeaas
demonstrated in Chapter 3—it can be analytically shown to work. For furthemuafor
tion and empirical comparisons of post-pruning techniques see, e.g., Mingers [1989b] or
Buntine and Caruana [1993].

2.2 Alternative approaches to decision tree learning

The term “decision tree” is quite heavily overloaded in computer sciemseyal fields
have studied decision tree construction (see e.g., [Moret 1982]) and slightlyediffe
things are referred to as decision trees. There are, however, thrtialfpaseparate
communities that mean more or less the same thing with that term; the studyisibde

tree learning has progressed, in part, independently in these communitiesoDé@es
were first studied in statistical pattern recognition research. Madearning borrowed

the initial ideas from this community, but developed the ideas further independently
The latest recruit is the theory of computing community, which has come up with new
viewpoints to decision tree learning quite recently.

The studies of pattern recognition and machine learning communities have led to
quite similar results, though via different routes. The pattern recogniticarels is
mainly concerned with numerical data and, since statistical discrirmaméat the clas-
sical technique for classifying numerical data, it is natural that trebsravthe nodes
contain a numerical discriminataegression tree§Breimanet al. 1984], for instance,
were the starting point of decision tree studies in this field (see e.qg., j¢themri& Fu
1969, Friedman 1977]). On the other hand, machine learning—as a subfield of artificial
intelligence—is more interested in symbolic data and, therefore, a diffapbach
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was first taken [Quinlan 1983]. Later these fields have come closer togetbtroads

for handling symbolic data have been incorporated into pattern recognition techniques
[Breimanet al. 1984] and numerical databases have gained importance in machine learn-
ing [Van de Merckt 1993, Elomaa & Ukkonen 1994, Murttyal. 1994].

The research on decision tree learning is totally dominated by the reeyrait-
tioning control strategy of TDIDT in both pattern recognition and empirical hireec
learning. Rather than alternative approaches, these fields have studieddedierna-
tive, but closely related, concept representations. For example, leatgmglams for
production rule setfMichalski et al. 1986] andlecision list§Clark & Niblett 1989] use
pretty much the same induction techniques as TDIDT and these concept repressntat
have a direct correspondence to decision trees. Learning true extensionsioihdeees
has also been studieBecision trellisegChou 1991] andlecision graph$Oliver 1993,
Kohavi 1994] have the form of a directed acyclic graph (dag)—a tree is a special case
of a dag. Quinlan [1990b] has even applied basic TDIDT techniquexitective logic
programming

Bottom-up control strategy for decision tree construction has been suggesteatby La
deweercet al. [1983], but since their approach is unsupervised, it has only little relevance
to other decision tree learning approaches. Another concept learning approaciuttat c
be seen as an alternative to TDIDT is constructing-level or one-shatdecision trees
[Landeweercet al. 1983, Iba & Langley 1992, Holte 1993] and other similar subclasses
defined by extreme syntactic restrictions [Awgral. 1995]. However, basically they
are just restricted forms of TDIDT and as such do not qualify as true atieesa Fur-
thermore, the utility and potential of such approaches have serious limitaEtorada
1994].

Rissanen’s [1989Mminimum description length principlDLP) says that the best
explanation of a set of data is the one that minimizes the representation lenigitis Y iof
the data when represented in terms of a theory and exceptions to it (cf. @éeanor).
This approach has recently gained much ground in machine learning. The first seri-
ous attempt to apply MDLP to decision tree learning was done by Quinlan and Rives
[1989]; Wallace and Patrick [1993] later continued the work. In this connection the the
ory, of course, has the form of a decision tree. Hence, efficient encoding of &decis
tree is essential in this approach, and that is what Quinlan and RivestlasWeallace
and Patrick consider most. The search control strategy in their decisienearning
method, though, is the familiar two-stage TDIDT approach, where MDLP determines
the attribute evaluation function. Rissanen’s [1995] own studies on MDLP-lubeszd
sion tree learning follow closely those of Quinlan and Rivest. Fayyad and[k893]
and Quinlan [1996] have also applied MDLP to decision tree learning. They, too, use
standard TDIDT control strategy and put MDLP into practice only when choosing the
cut points in a continuous-valued attribute’s discrete categorization.

Also in pattern recognition many methods for learning decision trees ttiditfame
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optimality criterion have been studied. For example, Meisel and Michalopol@dS8]
have studied learning decision trees that minimize the average path leraythe &nd
Meisel [1977] have studied generic optimal decision tree construction, wherdia par
tioning of the data and an optimality criterion are given and a decisionkeeh is
equivalent with the given partitioning, but minimal with respect to theedon, is de-
veloped. Because of the known computational intractability of learning optimalidec
trees, these methods, however, fail to fulfill practical efficiencpuements.

Theoretical work on machine learning has, naturally, had an interest indomgvi
results about the learnability of the concept representations that are applietiice
(the formal learning model is introduced in the next section). In the mathexhkgazn-
ing framework the hypothesis does not necessarily have the same form as the target
concept—it may belong to another (a richer) class of representations. Theratorg
theoretical studies are not quite along the same line as empirical ones, Wwadrg-t
pothesis representation language—suiting the purpose better or worse—is usually fixed.
Nevertheless, the general learnability of decision trees remains ampog@am even to-
day [Hancocket al. 1995]. However, in the tradition of empirical research Ehrenfeucht
and Haussler [1989] provided a constructive proof of the learnability of a subclass of
decision trees. We consider this subclass and present extensions to the |gaatiiad
in the next chapter. A closely related result is Rivest’s [1987] proof of thadmslity of
k-decision lists—a subset of general decision lists.

Linial et al. [1989] initially showed how learnability under the uniform example dis-
tribution (cf. next section) can be derived by observing the spectrums of the Foanis-
forms of a function class. The key idea in this technique is that learning cachimvad
by estimating the dominating Fourier coefficients from randomly chosen inputs. The
first polynomial-time learning results using this technique were provided fosideci
trees. First, Aiello and Mihail [1991] proved thatdecision trees are polynomial-time
learnable; ai-decision tree mentions any variable at most once. Soon thereafter Kushile-
vitz and Mansour [1991], using the same technique, obtained the learnability of decision
trees that may have linear operations (features) in each node; the ledgonthen is
permitted—and required—to ask membership queries (cf. [Angluin 1988]). Both proofs
are constructive, i.e., a learning algorithm is presented, but the hypotheses doeot hav
the form of a decision tree. Furthermore, both results only apply when all exsumiple
the domain are equally likely, i.e., under the uniform distribution.

Hancock [1990, 1991, 1993] has studied the learnability of decision trees where the
number of variable occurrences is limited—in the simplest farthecision trees and,
in general,ku decision trees, wherk denotes the variable occurrence restriction. In
these studies membership and equivalence queries are allowed—and needearK his w
has demonstrated, for an arbitrary constarthe learnability oft, decision trees over
arbitrary example distributions using richer hypothesis description languagesdéia
1991] and over the uniform example distribution using only decision trees as hypotheses
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[Hancock 1993].

2.3 Probably approximately correct learning

Valiant’s [1984] attempt to formalize inductive concept learning has dravemtain
to the computational aspects of machine learning. In particular, Valiaarsework
emphasizes the efficiency of hypothesis building. Learning in the sense of \@aliant’
definition is known agrobably approximately corre€PAC), ordistribution-free learn-
ing. Despite the evident shortcomings of the PAC learning framework’s underpinnings
and utility [Amsterdam 1988a, 1988b, Buntine 1989, 1990, Dietterich 1989, Saitta &
Bergadano 1993] it has become the standard theoretical model of concept learning.
Several different formulations of PAC learning have appeared in thetliteraThe
variants, however, turn out to define equal models [Hausskr1991]. In the following
we recapitulate Natarajan’s [1991] formulation of PAC learning of functions aretis
domains. For an extensive treatment of computational learning theory wehefesider
to one of the recent textbooks on the topic; e.g., to that by Anthony and Biggs [1992]
or that by Kearns and Vazirani [1994]. For a more concise presentation of thectesear
issues see Angluin’s [1992] article.
In the following we consider multivalued variables and classes. Isisrasd that a fi-
nite discrete domain of multiple values is encoded with a sequence of conseaitival
numbers starting from 1. Such an initial segment is denptéd= {i € IN, | i < m }.
For example, the domaid = {a,b,c,d, e}, whose cardinality is 5, is encoded as
[5] = {1,2,3,4,5}. We are dealing with nominal attributes only; i.e., the values are
unordered. Bym|" we denote, as usual, thefold Cartesian product din|. A n-ary
function on[m] is a mapping fromm/|" to [m].

Notation We denote the symmetric difference of two sétand7 by SAT = (S'\
T)uU (T \ S). The cardinality of a set is denoted by|S|. The set of all finite
strings of an alphabeXt is denoted by>*. If w € ¥*, then the length ofv, de-
noted by|w|, is the number of characters in the strimg We let > denote the set
{weX*||w <n}. By BA, whereA and B are sets, we denote the set of functions
{ f | fisafunction, Donif) = B, Rngf) C A }.

A concepty is a subset of thenstance spac&, whereX is an arbitrary set. Let
X~ be theindicator functionassociated withy; this function indicates for each ¢ X
whether it belongs te or not:

(1 ifzeny,
XW(x)_{O if o ¢n.

An exampleof a total functiong: X — Y is a pair(x, ¢(x)), wherez € X. The
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set of all examples fop is graphi¢) = { (z,y) | z € X, y = ¢(x) }. We say thaw is
consistentvith a set of exampleS if S C graph(¢).

A function classs a triple 7 = (F, X,Y’), whereX andY are arbitrary sets and
F is any collection of total functions fromrX’ to Y. The setX is thedomainof F and
Y is therangeof F. They will also be called thenstance spacand theset of classes
respectively. A class of representations for functions is a five-t®le: (X, 11, T, R, f).
SetsY, I1, andT" are finite alphabets. Strings composed of characte¥sane used to
describe elements df, strings inll* are used to describe elementsigfand strings in
['* describe the functions. The sBtC I'* is the collection of function representations,
andf: R —*" II* is a mapping from these representations into functions oo I1*.
For any representation € R by f(r) we denote the function represented by For
any class of representatiols = (3,I1,T', R, f) there is an associated function class
F(R) = (f(R),X*,11*), wheref(R) = { f(r) | » € R}. The length of the shortest
representation for a functiamis denoted by,,i, (¢, R) = min{|r| | r € R, f(r)=¢}
(or £min(¢) for short wherR is clear from the context).

Example. Recall our mail order enterprise from the examples of Chapter 1. The cus-
tomer profile descriptions represented by decision trees are total functiemseHhe
function clasgD7T, “customer”,“product group”) is what our company is interested in.
The total functions infD7 are defined by decision trees fulfilling some criterion; for
example, our enterprise may only be interested in errorless descriptionspnsistent
trees. Let us assume, for simplicity, that customers are describedaktyibutes each
havingm possible values and that there arelifferent product groups that we are in-
terested in. Then, a customer is described by giving, for each attribute, tHeenim

[m] that corresponds to the observed value of the attribute. Thus, instancesrage str
in{1,...,m}" and, hencel = {1,...,m}. LetY be an alphabet for writing attribute
names down; e.gY = { ‘sex’, ‘population’, ‘distance’, . . }. By tabulating the attribute
names it suffices to sét to be the set of table indices, i.&,= [n]. Similarly, IT is an
alphabet for describing the set of class labels; here it suffices tolhavék]. I is the

set of characters needed to represent trees, e.g., neted parentheses representation
[Knuth 1969]:T = YuIlU{‘(,") }. Then the seR consists of legal nested paren-
theses representations of decision trees tverll, where strings of characters Bfare
used to label internal nodes and characterd afe used as leaf labels. Finally, function

f maps each decision tree representatieh R to the unique mapping, which is a total
function fromX" to IT such that it satisfies all paths of the decision tree corresponding
tor. We say that a function satisfies a path in a decision tregifnaps a configuration
corresponding to the edge labels on the path to the label of the leaf node at the end of the
path. O

If f(r):xz — y, then we writer(z) = y. We writer in place of f(r) when the
meaning is clear from the context. Axampleof r is a pair(z, r(z)). Here the learning
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algorithm has at its disposal axample oraclé’ X (P, ), which draws examples of the
target functionf(r) according to the fixed, but unknown probability distributiBron
¥ *. In other words, when called, the oracle chooses a description of an instanke,
according toP, and returns the pair, r(x)).

The error of a hypothesis function is the total weight of the unknown, arbitrary
probability distributionP on the instances that are mapped incorrectly:byin other
words, for the target functionthe error of hypothesis is

P(hAt) =Y P(a)

where® = {z € X | h(z) # t(x) }. Note that misclassifying rare cases causes less
error than misclassifying commonly occurring cases.

In the formal definition of learning we need to be exact about the lengths of input
and output strings. Therefore, we need to refer to length-bounded subsets of function
classes. In the following we define projections of functions and function classes

Definition For any functiory € f(R) € F(R), for someR, and for anyn, & € IN, the
projectiong, ; of g on X" x TIl is

1. undefined if there exists € X[ such thay(z) ¢ T1*;
2. else, the functiop,, ;: X" — T1*! such that for alk: € X, g, x(z) = g(z).

The subclas#), . (R) of F(R) is the projection oF (R) onX" x TT¥; i.e., F, . (R) =
(fox(R), S TIH), where

fok(R) ={ gnk | gn is defined g € f(R) }.
By f..(r) we denote the projection gf(r) on X" x T1*1.

Let us make the following simple observation. lZebe a hypothesis function that
is consistent with a sample of the target functiog F, .(R), for somen,k € IN,
drawn according to a probability distributid® on ="/. Now, P is nonzero only on
strings of length. or less. All the examples drawn involve strings frai¥!, andh is
consistent with these examples if and only:jf;. is consistent with them. Therefore
P(hAt) = Plhyg Dtny).

At last we have at our disposal all the necessary notation and concepts thaded ne
in formalizing probably approximately correct learning. There are two parlAC-
learning: The target concept has to be identified accurately with a high propainitit
it has to happen efficiently (in polynomial time). If there exists a learniggréghm that
can attain both requirements for all projectidfis,(R) of a function clas$(R) under
any probability distribution on the instance space, then we sayRhatpolynomially
learnable.
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The success of a learning algorithm is measured by two parameters whistpare
plied as inputs to the algorithm. The algorithm is expected to produce a hypothe-
sis h, whose error is less than an arbitrary prespecifieduracy parametet, where
0 < ¢ < 1. The rate on which the algorithm is to produce these accurate hypotheses
is specified with aconfidence parameter, where0) < § < 1. Because of “bad luck”
in drawing the examples the algorithm may sometimes produce an answer with err
greater tham, but we require that the probability that an accurate answer is produced is
at leastl — 6. The tighter the boundsands are, the more examples and computation
time the algorithm is expected to consume.

The time complexity of the learning algorithm is further restricted by the rengt
the input examples and the length of the shortest name of the target fufictign (f).
Polynomial learnability of function class representations is defined as m®llow

Definition 1 A class of representatio® = (X, I1,T', R, f) is polynomially learnable
if there exists an algorithmh and a polynomiap;, such that for all

o n,k>1,

e candd, where0 < ¢,0 <1,

e r € Rsuchthatf(r) € F,x(R), and
e probability distributions? on %",

if L is given as input the parametersk, =, andd, and may access the oradleX (P, r),
then L halts in timepy,(n, &, bmin(f(r)), 1/2,1/6) and, with probability at least — ¢,
outputs a representationn € R such thatP (' Ar) < e. Such an algorithnl is a
polynomial-time learning algorithrfor R.

After having made the representation issues formal, we now turn to functioms fr
¥* to IT* and the learnability of classes of such functions. The underlying idea is that
there is a fixed class of representati®hthat we are concerned with. In the following we
write F,, , instead ofF,, ,(R) andF instead off'(R). We note that the following conse-
quence of the above definition of polynomial learnability carries from concept rgarni
over to function class learning. The result was originally presented by Bleinal.
[1987].

Theorem 2 Let F' be a function class, and Ig? be a probability distribution. Given
a functiong € F and a sampleS of ¢ of sizem, drawn according to the probability
distribution P, the probability is at most

[FL(1—2)™

that there exists a functioh € F' such that the error of is greater thane, andh is
consistent witlf.
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Proof If h is a single function inF' of error greater than for the targety, the chance
thath is consistent with a random sam@eof sizem is less thar{l — ¢)™. SinceF' has
|| members, the chance that there ex&tg member ofF' that is consistent with the
sample and satisfies the error condition is at mbstl — ¢)™. O

For a function clas$’ to be polynomially learnable, the probability of coming across
a function with error greater may be at most the value of the confidence paramieter
Hence, from

[Fl(1—g)™ <6
we obtain that . 1
>——— (In|F|+1n=
M= T — o) (“' I+ “5)’
which certainly holds if
m > ! <1nF|+1n1>,
€ o

sinceln(1 + a) < «. If m satisfies the above inequality, then the probability is at most
that a function inF', which is consistent witl$, will turn out to have error greater than
. Hence, as a corollary we obtain the following result.

Corollary 3 Let F' be a function class, and Iét be a probability distribution. Consider
anye andoé such that) < ¢, < 1, and any target function in F', and a sequence of at
least

1 F]

e s
random examples @f each chosen independently accordingtorl hen with probability
at leastl — ¢, every functiorh € F' thatis consistent with all of these examples has error
at most for the targety. O

By this result, if there exists an algorithm, which can identify a hypothésisis
consistent with a sample ¢t /<) In(|F'|/0) random examples, then that algorithm is a
polynomial learning algorithm fof if only the identification happens in polynomial
time.

This formulation brings out a quite natural measure of the complexity of a function
class: The logarithm of the size of the function cldsgF'|. It may be viewed as the
number of bits needed to write down an arbitrary elemet o§ing an optimal encoding
[Blumeret al. 1987, Rivest 1987]. Abusing terminology slightly we say that a function
classF,  is polynomial-sizedf the complexity measurk | F), ;| is bounded by a poly-
nomial inn andk. Natarajan [1991] uses a generalization of the Vapnik-Chervonenkis
(VC) dimension [Blumeeet al. 1987, 1989] to express his results. Instead of using this
somewhat abstract measure, we use the more concrete complexity nieasute ex-
press the numbers of required examples. This gives often better approximatitia res
than using the VC dimension.
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2.4 Coping with random classification noise

Several derivates of the basic PAC-framework for modeling noise-atféeairning situ-
ations have been put forward since Valiant’s [1984] original learnability defm{.g.,
[Angluin & Laird 1988, Boucheron & Sallantin 1988, Kearns & Li 1988, Laird 1988,
Shackelford & Volper 1988, Sloan 1988, Valiant 1985]). In this section we show how
one of these models can be extended to deal with function classes.

In Angluin and Laird’s [1988] random classification noise model the learning al-
gorithm requests examples of the target congefstom a sampling oracl& X, (P, f),
where P is the unknown probability distribution on the instance spacerard1/2 is
the unknowmoise rateaffecting the oracle. The oracleX, (P, f), when called, draws
an instance: according toP and, with probabilityl — n, returns the paifz, f(z)) and,
with probabilityn, the pair(x,1 — f(x)). Learnability in the presence of random clas-
sification noise is defined equivalently to polynomial-time learnabilitylifva 1984],
except that now an additional parameter—an upper bayiior the noise rate—has to
be taken into account in a learning algorithm’s time complexity. The noises#&en
notice of by bounding the value ¢f/2 — n,) ! by a polynomial.

To extend the classification noise model into multiconcept learning situatiens w
let the oracleE X, (P, f) return, with probabilityy, an erroneous classification for the
selected instance. For our considerations it is immaterial how the erronatbuesis
determined; for the sake of completeness, let us, however, agree that alincorrect
classes have the same probabiljty(t — 1) of being chosen. The noise ratemust
be restricted below valug/2 as in Angluin and Laird’s original model in order for an
identification procedure to be able to work (cf. [Angluin & Laird 1988, p. 348]).

Note that we are still effectively dealing with binary functions heregh&i the ex-
ample returned by the oracle has the correct label or it has a label that iseictcorr
be it of any class. Thus, most results on noise-tolerant learning—in partitiutese
by Sakakibara [1991, 1993]—apply in this situation too. Furthermore, even the proofs
are essentially the same and, hence, will be omitted here (see Appendix &efeant
proofs).

The meaningfulness of this noise model and its relation to real life may well be
questioned but, nevertheless, this type of corruption of values has widely beetoused
test practical learning algorithms (e.g., [Clark & Niblett 1989, Quinlan 1986a, 1986b])
and it provides a proper extension of Angluin and Laird’s model. Here is the definition
of learnability in the presence of random classification noise.

Definition 4 The class of representatioRs= (X, I1, T, R, f) is polynomially learnable
in the presence of classification noiéhere exists an algorithm and a polynomiapy,
such that for all

e n,k>1andn < 1/2,
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e = andd, where) < £, < 1,
e 7 € Rsuchthatf(r) € F,x(R), and
e probability distributions? on X",

if L is given as input the parametersk, ¢, 6, andn,, such that) < n, < 1/2, and may
access the oracle X, (P, r), thenL halts in time

11 1
k gmin Y Y Sy
and, with probability at least— ¢, outputs a representatiohe R suchthatP(r’ A r) <
£.

In noise-affected domains examples drawn from the oracle all have to be take
into account. We cannot treat the sample asetof examples. Instead, the multi-
ple occurrences of examples in the sequence of examples drawn from the oracle have
to be dealt with. However, the order of examples is not important here and, thus,
we can treat the sample as a multiset. We|f&tdenote the total number of exam-
ples (including multiple occurrences) in the samgleln addition, we letD(f, S) de-
note the number of disagreements between the fungtiamd the samplé, i.e., if
S = (z1,l1), (T2, ls) , ..., (x4, 1), thenD(f,S) is the number of indiceg for which
flz;) # 1.

Starting directly from the definition of learnability in the presence ofsifastion
noise, it can be very difficult to obtain positive results (cf. [Angluin & icai988]). A
helpful vehicle in proving the learnability of decision trees in the presenckaséifica-
tion noise arenoise-tolerant Occam algorithmsSakakibara’s [1993] generalization of
Occam algorithms [Blumeet al. 1987, 1989, Board & Pitt 1992]. Informally, from a
noise-tolerant Occam algorithm we require that the average disagreemé&ssifying
an instance using its hypothesis is, with high probability, at most only slightlyeathe
upper boundy, for the noise rate. The average disagreement may climb over the noise
rate only by an additive factor that is relative to the allowed error Aechbise rate. A
straightforward generalization of these algorithms to function classileasituations
follows.

Definition 5 A noise-tolerant Occam algorithr® for a function clasg= is an algo-
rithm that, when given as input a sufficiently large samplaf ¢ examples drawn from
EX,(P, f), wheref € F,, and parameters ¢, andn,,

1. produces a representationf a functionh € F, such that
D(h, S 1-2
(n.S) _, , <0=2m)
q 4
with probability at least — §/2, and
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2. runsin time that is polynomial in, &, ¢, 1/, 1/6, and1/(1 — 2n).

This definition is identical to Sakakibara’s [1993] original formulation of noisertoit
Occam algorithms, except that now we are dealing with function classeharspace
[m]™ rather than concept classes and the Boolean space.

Now the main result of Sakakibara [1993], namely that the existence of a noise-
tolerant Occam algorithm implies learnability in the presence of claasidin noise, can
be proved in the extended model also. The sample size that is required to gelarante
with high probability, a low error for the resulting classifier is only foureggrthat which
is required by an algorithm that works by minimizing disagreement [Angluin &d_air
1988].

Theorem 6 LetF be a polynomial-sized function class andrjgbe such that) < n, <
n + e(1 — 2n)/2. If there exists a noise-tolerant Occam algorithm ¥or thenF is
polynomially learnable in the presence of classification noise. The sample size cequire

is at least
8 2| Fou
In L
£2(1/2 — np)? )

Proof Simple modification of Sakakibara’s [1993] proof (see appendix A for full proof).
The key idea in the proof is that if the noise-tolerant Occam algorithm is prowiited

a close-enough approximation of the noise rand a large-enough sample, then the
hypothesis returned by the algorithm fulfills the conditions of Definition 4. The sample
can be queried from the oracle and a good approximation éan be found by iterating
the algorithm with carefully chosen, successively smaller values. of O



Chapter 3

The Design of a Learning Algorithm

Ehrenfeucht and Haussler [1989] have shown that a subset of decision trees can be
learned in the PAC learning framework. The concept representations witkisubk

set are decision trees whossnk is bounded. Ehrenfeucht and Haussler also exhibit a
learning algorithm for these decision trees in the binary, noise-fre@getti this chap-

ter we demonstrate how their algorithm can be developed into a practicaingaool
without losing its provable properties. First, in Sections 3.1 and 3.2, we gerectiad
concept of rank and modify the algorithm to deal with multivalued variables lasges.
Then, in Section 3.3, we demonstrate how decision trees of minimum rank can be con-
structed efficiently in the incremental setting. In Section 3.4 we mod#yalgorithm

to cope with random classification errors in the training examples. Fjwedlyresent a

new decision tree learning algorithm—callednk—incorporating all these properties.

3.1 The rank of a decision tree

We formalize first decision trees, their rank, and the functions they reygireBeen a key
lemma, on which the proof of the learnability of decision trees is essgnaded on, is
presented.

Definition LetV},,, = {vi,...,v,} be a setof m-ary variables. The clad3T,,(n) of
m-ary decision treegoverV,, ;) is defined recursively as follows:

1. If T is them-ary tree consisting of a single node labeled witk [m] thenT €
DT,,(n). We denote this casg = k.

2. 1T, T,,...,T,, € DT,,(n) andv € V,, ,,, then then-ary tree with root labeled

and withi-th subtre€l;, for all i € [m], isinDT,,(n). We refer to the-th subtree
as the-subtree

27
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We say that a decision treersducedf each variable name appears at most once on
any path from the root to a leaf.

A decision treel’ € DT,,(n) defines a total functiotf;: [m]” — [m] in a natural
manner. Routing an example through a tree maps a set of variablgs,irfthe ones
tested at the nodes en route from the root to a leaf) with certain valueti(tisetaken
on the path) to a value for the function represented by the tree (the label of the lea
reached). More formally, we definfg as follows:

1. If T =k, thenfr is the constant functiok.

2. Else ifv; is the label of the root of" andT; the j-subtree for allj € [m], then

for any pointz = (xq,...,z,) € [m|" we have: Ifz; = k (k € [m]), then
fr(x) = fr.(2).

The following definition is the feasible one out of the natural ways of generalizing
Ehrenfeucht and Haussler’s [1989] definition of rank for binary decision treef=(of.
maa 1992)). It states that a tree of rankan have at most one subtree with rank he
other subtrees may have rank at most 1.

Definition Therankof a reduced decision trée, denoted-(7'), is defined as follows:
1. If T consists of a single leaf, thetiT") = 0.

2. ElseifT,,,, is a subtree of" with the maximum rank,,,,.., then

| Timaz if 1,42 IS UNIQUE,
r(T) = {rmm +1 otherwise.

We letDT; (n) denote the set of alh-ary decision trees iDT,,(n) of rank at most
r and we letF,,(n,r) denote the set of-ary functions ornm| that are represented by
the trees iDT;, (n).

Example. Delimiting the rank of a decision tree to valugtogether with the value»)
determines the tree structuresini’, (n): DTY (n) only contains the single-leaf tree
structure, independent of the valuerof The number of possible labelings of that only
leaf, n, then determines the number of functionally different equal-structured decision
trees. In particular, D% (n) always contains: separate one-leaf decision trees. For
valuesr > 0 there exists more than just one possible tree structure (assuming).

For instance the following picture illustrates all (reduced) tree strastcontained in

&5@ i
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The actual decision trees are obtained from these structures by assigringdaavith

a label; the labeling must be legal, i.e., it has to keep the tree reduced. Thi@rfunc
represented by a decision tree is not necessarily unique. For example, tledtimost
decision trees in the following picture represent the same function.

If we increase the number of available variables, the one nontrivial subtregroay
further in size but not in rank. For instance, the right-most tree structuheiprevious
picture belongs to DI(3).

For higher values of rank the allowed tree structures are obtained by the same r
cursive definition: At most one subtree may have the same rank as the wholeutree, b
its position may vary. As the parameters n, andr grow, the number of legal tree
structures and their possible labelings goes up quickly. The following treelsescire
examples of those belonging to BB).

A i
AN NN

Clearly, for any reduced decision tréeof arity m onn variables there exists >
0 such thatl" € DT} (n). In other words,J,-, DT}, (n) contains all legal reduced
decision trees, but for anythere exists trees not enclosedif’, (n). O

VAN X

It is easily verified thatJ,-, F.,(n, r) is the set of all functions fromm/|" to [m].
However, for every fixed, the setF,,(n,r) is a proper subset of them. The follow-
ing counting argument demonstrates this by giving an upper bound for the number of
functionsF,,(n, r) whenr < n.
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Lemma 7
(i) Let k be the number of nodes in a reduceehry decision tree over/, ,,, of rankr,
wheren > r > 1andm > 2. Then

tumersisn s (o (o)) ()

wheree is the base of the natural logarithm.
(i) If r=0then |F,,(n,r)| = m, else

mm" ifn<r
< T
| Fo(n,7)| < { (4™mn)emn/n)" i >

Proof

(i) Sincen > r, the number of variables allows constructing all trees of height,
which include the smallest decision tree of rankThus, in this case, the size of
the tree depends only on the values @ndm, not onn. Let N(r, m) denote the
number of nodes in the smallestary decision tree of rank From the definition
of rank, we have

N(1,m) = m+1lforallm > 2, and
N(r,m) = 2N(r—1,m)+m—2+1
= 2N(r—1,m)+m—1forallm > 2andr > 1.

The solution to this recurrence is

r—2
N(r,m)=2"'m+1)+> 2"(m—-1)=2"m—-m+1.
1=0

Hence we have the first inequality.

Now let L(n,r) denote the maximum number of leaves in any reducedry
decision tree oveV, ,, of rankr. Observing that the largestary decision tree
overn variables of rank: is the complete-ary tree of height: + 1 and that such

a tree hag" leaves, we clearly have, from the definition of rank, the recurrence
system

L(n,0) =1foralln >0,
L(n,n) =m" for alln > 1, and

L(n,r)=Ln—1,7)+ (m—1)L(n—1,r — 1) foralln >r > 1,
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since the variable that appears in the root of a reduced tree does not appear in any
subtree of the root. It is verified that the solution of this recurrence forr is

R )

which has the strict upper boujer/r)"(m — 1)" < (emn/r)" foralln > r > 1

(see [Blumeet al. 1989]). A full m-ary tree has exactlyl. — 1)/(m — 1) internal
nodes, wherd. is the number of leaves in the tree. Hence, the total number of
nodes isL + (L —1)/(m — 1) = (mL — 1)/(m — 1). This yields the second
inequality. Noting thatn > 2, we have that the number of nodes is bounded
above by2L < 2(emn/r)" yielding thus the third inequality.

(i) If r = 0 thenF,,(n,r) includes only the constant functiods?2, ..., m. Hence
|Fn(n, )| = m in this case. Ifn < r thenDT,, (n) includes every fulm-ary
decision tree of depth. HenceF,,(n,r) includes all functions': [m|" — [m)],
and thus|F,,,(n,r)| = m™". If n > r > 1 then each function i}, (n,r) is
represented by am-ary tree with at most = (emn/r)" leaves, as shown above.
Letp = m/(m — 1), and note thap < 2 whenm > 2. The number of distinct
unlabeled-ary trees with: nodes is [Knuth 1969, Exercise 2.3.4.4-11]

i) = el )

Substituting = m andz = (mi—1)/(m— 1), we have that the number of distinct
unlabeled trees withleaves is

1 m(mi —1)/(m — 1) _ 1 (p(mi—1)
(m—1)(mi—-1)/(m—-1)+1\(m—-1)(mi—1)/(m—-1)) mi\ mi—1 )
In a labeledn-ary tree overn variables, each leaf node is labeled with one of the
m classes, and each internal node is assigned one of tlaiables. Since an
unlabeledm-ary tree onn variables withi leaves hagi — 1)/(m — 1) internal

nodes, it can be assigned at mogk(~/(m-1 |abelings. Hence, the number of
distinctm-ary decision trees on variables with at most leaves is at most

Zk: minli-D/(m-1) (p(mi — 1)) < (mn) Zk: (p(mi - 1))
i=1 mi mi — 1 =\ mi—1

< (mn)k2”(mk’1)

< (mm)ko2mk-1)

< (4™mn)*,

Hence|F,,(n, )| < (4™mn)™"/")" in this case. 0
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Note that Lemma 7 proves that in the interesting case—when—the (logarithm
of the size of the) sek,, (n, r) is polynomial-sized im for fixed m andr, and that the
number of nodes in any decision tree of ranis at most polynomial in the number of
nodes in the smallest decision tree of ranK he latter resultimplies that the representa-
tion length of any decision tree of ramkusing a suitable representation (e.g., the nested
parentheses representation [Knuth 1969]), is polynomial in the representatiam ééngt
the smallest decision tree of rank

Let us briefly consider the intuition behind the definition of rank and the motivation
of learning decision trees of minimum rank. As already stated, learningicied¢ises
that are optimal with respect to several characteristic measutsrhas turned out to be
unfeasible in practice [Hyafil & Rivest 1976, Comer & Sethi 1977, Murphy & McCraw
1991] and it is generally believed that learning decision trees that fulfjllstamngent
optimality criterion is a NP-complete problem [Hancaaial. 1995]. The main motiva-
tion of Ehrenfeucht and Haussler [1989] in defining the rank of a decision tree has been
to loosen the requirements of learning, but still retain some guarantees f@stiieng
classifier. According to the definition of rank, as demonstrated by the previousdem
a tree of minimum rank is guaranteed to be within polynomial in size from the optima
one.

What does it mean in practice that a tree is of minimum rank? What is itsorela
to other possible representations of the underlying function? Blum [1992] has given one
characterization while proving that decision trees with rank at mas¢ a subset of the
concept class-decision lists [Rivest 1987]. Clearly a decision tree of rank 1 is a apeci
case of a decision list, which has single attribute tests in the conditiongesf rBlum
went on to show that, for any, a decision tree of rankcan be embedded into a decision
list with at mostr conjuncts in its condition terms. A side product of this construction
is the following characterization for a decision tree of ranKhere always exists a path
of length at most from any internal node of the tree to a leaf. In particular, this holds
for the root as well. More technical characterizations for decision treemnéi- can be
found in Simon’s [1991] paper.

We concentrate, next, on examining the learnability of decision trees that Hre
smallest possible rank for the given sample. Hence, the hypothesis is selected from
among decision trees of rank With the implications of Lemma 7 at hand—agreeing
on, say, the nested parentheses representation of decision trees—we putsibe tlee
representation issues aside for the remainder of this chapter.

3.2 Finding consistent decision trees of minimum rank

In this section we give a method for identifying a decision tree that is cemsigith the
given sample, prove its correctness, and analyze its computational complérah, the
procedure is used to construct an identification algorithm for decision treemiomhom
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rank.

Notation Let S be a sample of an-ary functionf on[m| andv be a variable if, ,,.
Assumev = v;, for somel < i < n. ThenS}, wherek € [m], denotes the set of
examplegz, f(x)) in S such that: = (z4,...,z,) andx; = k. We sayv is informative
(on S) if there exist distinct, j € [m] such that botlb} and S} are nonempty. Theank

of a sampleS, denoted byr(S), is the minimum rank of any decision tree consistent
with S.

The construction algorithm for decision trees of rank at mo&illows the same
recursive divide-and-conquer control structure as Procedur&@&Tree However,
since we this time need to ascertain the minimum rank of the resultingweeeannot
do without backtracking. Given a sameof a function and a rank bound Procedure
3.1, which is a strict generalization of Ehrenfeucht and Haussler’s [1989] procedure
Find, returns a decision tree of rank at mestonsistent with the sample if one exists.
Otherwise failure is reported.

The subprograms evoked IBynd are as follows. It is simplest to considexit to
be a macro, such that codesturn 7'; terminate” will be expanded in place of the call
Exit(7). In particular, it is the procedurgind that returns’” and then terminates its
execution. Similarly as in Section 2.3toppingConditiofis a Boolean-valued function,
which, here, returngrue if all examples inS have the same clagse |[m/|, otherwise
falseis returned £ is an out parameter). FunctidlakeTree again, puts together a
decision tree from its arguments so that the variable in its first paeaupesition will be
the label of the tree’s root and the following arguments will be the tree’s sghtre

First procedurd=ind evokesStoppingConditiorto check whether all examples be-
long to the same class (Line 1); if successful, mdexd is used to return an one-leaf
decision tree and terminate the executiofiold. Otherwise, if the rank bound has value
0, failure has to be reported (Line 2). For larger rank bounds, an informatiablais
attempted as the label of the root of the evolving tree (Line 3). If necesdldanfoama-
tive variables are attempted in their turn. For all subsets of the saniglerdeed by the
chosen variable, the tree construction continues by recursively callingdanedénd
(Line 4). In order to ascertain that the final tree has rank at maste recursive calls
are evoked with reduced rank bound- 1. Furthermore, the chosen variable becomes
uninformative with respect to the subsets and can, therefore, be deletethE@at of
available variables in the recursive calls. If all recursivescaik successful—i.e., return
a consistent decision tree of rank at most- 1)—the final decision tree can be put
together (Line 5). On the other hand, if a single call proves unsuccessful, therfithe de
nition of rank gives us the possibility to repeat that one recursive call whiltzer rank
bound,r, and still obtain a final tree of rank(Lines 6-8). If the rerun call, however, is
unsuccessful, then there cannot exist a decision tree ofirémkthe given sample and
failure has to be reported (Line 8). Finally, if all permutations of inforne&tiariables
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Procedure 3.1Find(S,r, V)
input: a nonempty sampl& of somen-ary functionf on[m], an integer > 0,
and a set of variableg C V,, ,,.
output: a decision tred” of rank at most that is consistent witly' if one exists, else none.
begin
(1) if StoppingConditiofS, k) then Exit(T' = k) fi;
(2) if r = 0 then Exit(none) fi;
(3) for eachinformative variabley € V do
4) foreachk € [m] do T} < Find(Sy,r — 1,V \ {v}) od,

(5) if Yk € [m] : T} # none then T < MakeTre¢v, TV, ..., T} ); Exit(T) fi;
(6) if T} = none for a single valug: = ¢ € [m] then
(7) Ty < Find(S},r,V \ {v});
(8) if T} # none thenT' < MakeTre¢v,T7,...,T}) elseT «+ none fi;
9) Exit(T')
fi

od;
(10) Exit(none)
end.

have been attempted without success, failure has to be reported (Line 10).

There is a slight oversimplification in Ehrenfeucht and Haussler’s [1989, p. 237]
proof of their algorithm’s correctness, when they state that: “If we stofsiad] 3(c)
[Line 9 in Procedure 3.1] returning “none,” by the inductive hypothesis we must have
eitherr(Sy) > r or r(S}) > r for some variables, and hence, sinc8y, S} C S,

r(S) > r.” Even though this deduction is valid, it is not immediate. The decision trees
for the samples§ andS} depend on different attributes than the sanfl&he variable

v is uninformative for sample§; and S}, and can, thus, not appear in their decision
trees, whereas a decision tree for sanfpl@ay contain tests for the variabde If the
sampleS was first split by some other variable(w would be assigned to the root of the
tree), then maybe we could find eligible subtreesSgrand S°. That this, however, is
not the case is shown explicitly in the following lemma:

Lemma 8 Let S be a sample om Boolean variabled/,. Letr(S) = r. Then each
informative variabley € V,, that splitsS so that either(S¢) < r —1orr(S?) <r -1,
has alsor(SY) < rorr(S§) < r, respectively.

Proof Letwv be the label of the root of a decision tréeof rankr that is consistent with
S. ThenT has subtrees of rank at most- 1 andr, by the definition of rank. Assume
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Figure 3.1: The pull-up operation in the case of binary [aftes.

without loss of generality that the O-subtrgg has rank- — 1 and that the 1-subtreg’
has rank: .

Now, letw be another variable such that it is informative foand splitsS to subsets
so that the rank of the other is at most- 1. Assume without loss of generality that
r(Sy) < r — 1. We can now construct the 1-subtree for sanffjfefrom the decision
treeT. There are two cases:

1. wistested in tred’. Then deleting fronT" the nodes that are labeled withand
those nodes’ 0-subtrees clearly results in a valid decisioritted rank at most
r(T) = r consistent withS}". The 1-subtrees of the deleted nodes are pulled up to
replace the removed parts (see Fig. 3.1).

2. w does not appear if. In this casél’ can be used as such as the 1-subtree of the
tree.

In both cases a 1-subtree of rank at mospuld be constructed froffi. Hencey (S}) <
r. O

The above lemma is presented for the binary case for simplicity. It geresdb
multivalued attributes in a straightforward way: linavalued root node hasm — 1
subtrees of rank at most— 1 for a sampleS of rank r, then the remaining subtree,
denotedk-subtree, has rank at mastin the proof of the lemma, the remaining subtree,
k-subtree, can be constructed by deleting frérall nodes labeled witlhr and all their
subtrees, exceptsubtrees, similarly as in the Boolean case.

The proofs of the correctness and the running time of the procedure are simple vari-
ations of those for the Boolean case [Ehrenfeucht & Haussler 1989].

Lemma 9 The procedure Find is correct.
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Proof The correctness is established by induction®randr.

If |S| = 1orr = 0thenitis clear that the procedurend(S, r, V,, ) is correct.

Now assumes is a sample withS| = h > 2 andr > 1. Assume that the procedure
is correct forr — 1 whenS has arbitrary size, and ferwhenS has size less thain

For any informative variable, |S}| < |S| for all k € [m]. Thus, itis clear that if
Find(S, r, V,,,») does return a tree then by the inductive hypothesis and the definition of
rank it will be a tree of rank at mostthat is consistent witls.

If, on the other hand, none is reported, then, since 1, execution must stop either
on Line 9 or Line 10. If we stop on Line 9 returning none, by the inductive hypothesis
we must have(Sy) > r for somek € [m]| andr(S}) < r — 1 for all i # k for some
informative variables, and hence, by the generalization of Lemma (@) > r. If we
stop on Line 10, by the inductive hypothesis, we must have, for at least two distinct
valuesi, j € [m], r(S}),r(Sj) > r for every informative variable. Now, letT be
a decision tree of rank(S) that is consistent witlt and has a minimal number of
nodes. The root of' must be labeled with a variabtethat is informative forS, for
otherwise we can find a smaller decision tree of ragK) consistent withS. Now
assume that, j € [m] are the two distinct values for whiet(S}), 7(S}) > r. Thei-
subtree ofl" must be consistent with;” and thej-subtree withS?. Hence at least these
two subtrees must have rank at leasand therefore (7") > r by the definition of rank.
Thusr(S) > r. Hence in any case the proced®ied is correct. O

In the following we prove that Procedure 3Find is efficient in the sense that its
running time is only linear with respect to the size of the sample and polynontial wi
respect to the number of variables,and their arity;n, for fixed rank bound.

Lemma 10 For any nonempty sample of ann-ary functionf on[m] andr > 0, the
time of Find S, r) is O(|S|(m/2)"(n + 1)*").

Proof Fixn > 0 andk > 1, and letl’(4, ) be the maximum time needed feind(S, , V,, .»)
whensS is a sample of a functiofi: [m|™ — [m] with 1 < |S| < k and at most variables
are informative orf.

If i = 0thenT(s,r) is O(1), since|S| = 1 in this case. Ifr = 0 thenT'(i,r) is
clearly O(k). If » > 1 then the time required to test if all examples are of the same
class (functionStoppingConditio)) and to determine which variables are informative
(Line 3), and to perform other miscellaneous tests in the procedutdfis). Each
recursive call on Line 4 takes time at m@sti — 1, — 1) since the variable is no
longer informative inSj for any j € [m]. These calls are made at magtmes in the
course of the loop on Lines 3-9, yielding thus a total time for all executions on Line 4 of
atmostmiT' (i —1,r —1). The only remaining action is on Line 7, where a recursive call
is made taFind(S}, r, V' \ {v}) for some;j € [m] for some informative variable. This
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takes time at most'(i — 1, ). Since the conditional statement on Lines 6-9 terminates
the loop, this call is made at most once. It follows that/for 1,

T(i,r) < O(kn) +miT(i —1,r = 1)+ T —1,7).
Thus we have the following recurrence fB¢i, r):

T(0,7) < ¢ forallr >0,
T(i,0) < ¢ foralli > 0, and
T(iyr) <eco+miT(i—1,7r—1)+T(i—1,r)foralli,r > 1,
wherec; andc, are positive constants that aték) andO(kn), respectively. Solving
the last term, it follows that
i—1
T@,r) < co+miT(GE—1,r=1)+> (co+mjT(j— 1,7 —1))+T(0,r)
j=1

< citm) JTH-1r—1)+¢
j=1

a1

< cl—l—cgi—l-ml(l—i_ )

T(i,r—1),
sinceT (i, r) is clearly an increasing function in the range oHence
1
T(i,r) <c +eoi+1) + Em(i +1)*T(i,r — 1),

Solving, it follows that

T

T(i,r) < CQZ( ) (i+ 1% ¢ Z<%>j(i+1>2j

7=0

r—1 r
<0 (kn (%) (i + 12 4k (%) (i + 1)”) .
Since: < n andk = | S|, this implies that the time fdfind(S, r, V,, ) is

O(|S|(m/2)"(n +1)%). O

Given the procedur€&ind, we can now construct an algorithRindmin(S) to find
a minimum rank decision tree for a samgleby simply executind=ind(S, r, V, ,,,) for
consecutive rank candidates= 0, 1, 2, ... until a decision tree is returned. By Lemma
10, the time foFindmin(S) is

r(S)
O (Z_% O(|S|(m/2)"(n + 1)27«)) = O(|S|m"® (n+ 1)),

Hence we have
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Theorem 11 Given a samplé& of ann-ary functionf on[m|, using FindminS) we can
produce a decision tree that is consistent witlind has rank:(S) in time

O(|S|m"®) (n + 1)2r9), O

Lemma 7 and Theorem 11 have already given us the results that would be needed
to conclude the learnability of decision trees of bounded rank if the function slasse
F..(n,r) were representation length bounded projections (cf. [Natarajan 1991]). As it
happens, there is some overlap between these function classes, as camazidhs®
Lemma 7. That is, the minimum rank decision tree for a funcfida not necessarily
the smallest (and shortest) representatiofi.of herefore, we use Corollary 3 explicitly
to conclude the learnability of decision trees of at most a fixed rank.

Theorem 12 For anyn > r > 1 andm > 2, any target functiory € F,,(n,r), any
probability distribution P orm|™ and any0 < ¢, 6 < 1, given a samplé& derived from

a sequence of at least
1 emn\" 1
— In(4™ In =
- ((57) mearmmn) 1 5)

random examples of f chosen independently according to P, with probability at least
1 — 6, Find(S, 7, V,,.,) (resp. FindmiriS)) produces a hypothesise F,,(n,r) that has
error at mostz.

Proof By Lemma 7,/F,,(n,7)| < (4™mn)™/")" for n > r > 1. Hence by Corollary
3, with probability at least — §, every hypothesig € F,,(n, r) that is consistent with a
sequence of

m (emn/r)"
—ln |Fm(n7 T)‘ < 111’1 (4 mn)
£ 0 £ )
_ 1 ((emn)’" In(4™mn) + In 1)
€ r o
< |9

random examples of has error at most. SinceFind(S, r, V,, ;) andFindmin(S) both
produce one of these hypotheses, the result follows. O

The preceding results show thatary decision trees of rank at mosbnn variables
can be learned with accuraty-  and confidencé — ¢ in time O((n°" /) log(1/6)).
Since this is polynomial in /¢, 1/4, andn for fixed r, and since the nested parentheses
representation length of a decision tree of rank at most polynomial in the length of
the nested parentheses representation of any other decision tree of taiskimplies
thatm-ary decision trees of rank at masare polynomially learnable.

Theorem 13 The class ofh-ary functions represented hy-ary decision trees of rank
at mostr, wherem,n,r € IN,n > r > 1 andm > 2, is polynomially learnable. O
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3.3 Incremental construction of minimum rank decision
trees

In this section we show how a decision tree of minimum rank can be constructiee i
incremental setting, where the examples are received one at a time anddbivebs
to maintain a consistent decision tree of minimum rank by doing as few modfisati
to the existing hypothesis as possible. For a sequerafeexamples the method that we
develop is shown to require (asymptotically) at most the same total amoumeis
Findmin which is presented with the whole samplat once.

3.3.1 Updating a hypothesis efficiently

Before motivating the incremental version lehdmin it is worth taking notice of the
following simple observation, which, together with Lemma 8, plays an importdaim
the subsequent results.

Lemma 14 r(S) < r(SU{e}) < r(S)+1 for all example set§ and examples, where
S U {e} is consistent.

Proof First, assume that, on the contraryS U {e}) < r(S). Then there exists a
decision tred” of rank strictly less than(S) that is consistent withU{e}. ButT is also
consistent with any subset §fU {e}, in particular withS too. We have a contradiction
with the assumption. Hence, the first inequality holds.

For the second inequality, we show that from a decisionTreé rankr(S), which
is consistent withS, we can always construct a decision tree of rank at m@st + 1
that is consistent witls U {e}. There are two cases:

1. The example: is consistent withl". In this case there is no need to update the
hypothesisT is a consistent decision tree of the minimum ra(k).

2. The example is inconsistent witti". Then we can prove the claim by induction
over|S|.
For the caseS| = 0 the valuer(S) is undefined. WhenS| = 1 the rank ofS is

invariably O and the rank of U {e} is invariably 1. Thus, the second inequality
holds in this case.

Let us now make the inductive hypothesis that the claim holds for all vatues
k and let us then consider the situatich = .

Since all examples are not of the same class, it has to be that the decisigh tre
of minimum rank that is consistent with U {e} has a root node labeled with an
informative attribute; i.e., the root node partitiofis) {e} into at least two disjoint
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nonempty subsetS; andS,. Let us assume, without loss of generality, that

Si. Since, bothS; andS; are nonempty, it must be that< |S;| < |S|. Now
r(S1) = r(S] U {e}), where|S|| < |S| = k, hence, by the inductive hypothesis,
r(S1) < r(S) + 1. Furthermorey(S;) < r(S) for all other values # 1 by the
first inequality, becausg; C S. Hence, by the definition of rank, the rank of the
tree@ is at most(S) + 1.

O

Now we give the rationale for the incremental version offire@minalgorithm. For
clarity, we present the reasoning in the binary setting; its generaliztiomultivalued
case should be clear.

In the following letS be the sample of sizeobserved thus far and |&tbe a decision
tree of rankr(.S) that is consistent witty. In addition, lete be a new observation that
is consistent withS. Our objective here is to updafeto classify correctly together
with S. We want only few, if any, changes to the trf€e¢o happen and require that the
modified tree is of minimum rank for the extended sanffile{e}, i.e., its rank increases
(by one) only ifr(SU {e}) = r(S) + 1. If N is anode in a decision tr&g, then byQ x
we denote the subtree @¢f that is rooted afV. Sometimes we talk about the rank of a
nodeN, formally we mean the rank @ . By Sy C S we denote the examples that are
associated with (the leaves of) the subtike

Directing e down the tre€l” will result in e at one of the leaf nodes @f. Let us
denote that leaf by.. Only if the label inL differs from that ofe, doesT” need to be
modified. Note that, by Lemma 14, there always exists a decisiorfiregérank 1 that
is consistent withS;, U {e}. In some cases substituting the subtfedor L in 7" will
not increase the rank of the tr@& Then we know that the modified decision tree is
consistent with and, by Lemma 14, of minimum rank fou {e}. Let us now review
these cases.

Let P be the parent node (if any) df and letK be the sibling ofl. (see Fig. 3.2).
The subtred’s rooted atP has rank at least 1. i(7p) > 1, then, by the definition of
rank, it must be that(7x) = r(7p) > 1, and increasing the rank of the subtree rooted
at L from 0O to 1 will not change the rank @f» and, thus, will not affect the rank of the
whole tre€l’. In this case, the subtrdge may safely be substituted for the Iefaf

The remaining possibility is that(7p) = 1 and it has two subcases{7%) can
now be either 0 or 1. If(Tx) = 0, we can still increase the rank of the subtree rooted
at L freely, sincer(Tp) will not change in this case. If, on the other hantlx) = 1,
increasing the value of(7},) to 1 would now increase(Tr) and potentially propagate to
affect the rank ofl". However, that is not necessarily the case; there may be an ancestor
nodeA of L (on the path to the root) such that its rank may safely be incremented by one
without affecting the rank of the whole tr§é If such asafeancestor exists, all nodes
in the (sub)tred’, inherit the property. Therefore, it suffices to test the property for the
nodeL.
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Figure 3.2: When directed down the decision tree, exampleds up in leaf nodé. NodeP is
the parent of. and K is the sibling ofL.

Finally, it may be that is neither safe in its own right nor because of a safe ancestor.
Even then there still is a possibility of finding a consistent tree of réfk for the sample
S U {e}. We do not have to start to search for such a tree from the scratch; weagan r
reward of the work already done in constructiig Note that if a decision tree was
not consistent withs, neither will it be withS U {e}; the same holds for subsamples.
Therefore, if a (sub)tree was rejected as the hypothesis of (a subsetaf)do not have
to reconsider it in connection &f U {e}.

Starting from the parenP of I we do a bottom-up traversal on the path from the
root to L. At each node en route we search for a decision tree of the same rank that the
node currently has. The search begins from the first (informative) attribatédnas not
been considered previously. Attributes, which were previously uninforméaiawe, to be
reconsidered in order to determine whether the addition of exastphs changed their
status.

The traversal terminates when a consistent subtree of the current rank isdbund
some level or when the root has been processed without success. In case of the firs
termination condition we substitute the newly found subtree for the old one and, thus,
create a consistent tree of ranS) for S U {e}. In the latter case, all trees of rankS)
have been considered and none of them has proven to be consistest wifh} (or
[previously] with a subset of it). Therefore, it must be that U {¢}) = r(S) + 1. We
are already aware of one consistent decision tree of minimum rartkuofe}, viz., the
initial treeT" with subtre€l’; substituted foff, is such a hypothesis.

In some nodes there is no need to continue the search for the uncovered variables.
Consider the situation where the left subtree, in which the exaefglés into, of ances-
tor nodeA in Fig. 3.2 has rank(74) (in that case the right subtree has rafK,) — 1 or
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Table 3.1: Possible situations and the corresponding agtdibns taken when a new example is
directed to the leal. in the left subtree of the current hypothesis of rank

SITUATION SUBTREES UPDATE
TYPE left right ACTION
1: SAFE r—1| r—1 | Substitutel; for Ty,
2: SAFE <r-—1 r
3 r—1 r If none of the nodes on the path from t
root to the leafL is of type 1 or 2, ther
4: EXHAUSTED r < r —1 | startto search for atree of the current rg
from the parent of.. Skip the exhauste
nodes en route.

nk

|®X

less). Then, by Lemma 8, if the current variable in the node leads to a lefesudftrank
r(T4) + 1, the example sef 4 U {e} has rank:(T4) + 1. Therefore, there is no point in
continuing the search for a tree of lesser rank for that example set. Thé seatmues
at the parent node of for a larger example set. In this case we say th& exhausted
(with respect ta). In particular, at the root level this means that if the hypothesis has
subtrees of different rank and the disagreeing example is directed to the driangér
rank, then if the search returns unsuccessfully to the root, there does not exisiarde
tree of the same rank such that it is consistent with the extended sample.
Let us reiterate and consider the required update operations at the root leVab{ef

3.1).

1. If the root node is safe, i.e.,

(a) if the subtrees have equal ranks or

(b) there is a difference of more than 1 in their ranks and the example falls into
the one with lesser rank, then

it suffices to construct a decision tréeof rank 1 for the subsamplg, U {e¢} and
substitute it for the leaf. in the tree.

2. Otherwise, a bottom-up traversal on the path from the root to the leakeds to
be performed. At each node a search for a subtree of the current rank is carried out
for those variables that have not been tried yet. When the search reachestthe r

without success, then

(a) if the example fell into the subtree that has rank smaller by one than that of
the other subtree (Situation 3), a new root variable has to be searched for
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from among those not considered yet. If none of them yields the result, the
rank of the sample has increased, and it is enough to subsfitdte L in
the tree.

(b) If, on the other hand, the example fell to the subtree that has the higher (by
one) rank, the root is exhausted with respect to the example and the trivial
subtree substitution suffices.

Note in particular that only one out of the four situations above can lead to changing the
variable at the root, i.e., discarding the current hypothesis completely. Inftheasses a
trivial replacement of a leaf needs to be performed and in the potentially dreldazase,
at worst, one of the subtrees is rebuilt from the scratch. From Table 3.1 wedezalyc
see that the number of tree structures that may lead to updates that discaxdstimg
hypothesis (Situation 3) is small compared to the total number of tree stryciures
they only comprise a part of the exhausted ones, which together with the safargtsuct
do not require total reconstruction.

The method described above meets the requirements that were initiabynfeé$o a
successful incremental learner: It modifies the existing decision trige@sas possible
only when necessary and increases the rank of the hypothesis only if the rank of the
sample grows because of the addition of a new instance. Next we present the method in
more algorithmic form.

3.3.2 The incremental algorithm

In order to realize the incremental versionfehdmin as motivated above, we need to
attach some bookkeeping information to the hypothesis. Each No@eibtre€l'y) of
the hypothesis tre€ will have two sets associated with Exg V) is the set of examples
that fall into (the leaves of) subtrée, and the seVarg V) consists of the informative
variables that have not been evaluated in this node (since the last changenoeatoa
node) and of the uninformative variables (which may become informative.later)
ProcedureFind is modified in this task only to include some added bookkeeping
operations and a changBdit macro. The procedurgtoppingConditiomemains as it is.
The bookkeeping operations are embedded in the auxiliary subproghaitredize sets
the global variablé? to valueV (Line 2) and proceduréJpdatedeletes the selected
variablev from seti?” on Line 3 of Find, i.e.,WW «— W\ {v}. Most of the bookkeeping
is carried out when exiting the procedUfand. Macro 3.3Exit updates the values of
the sets associated with a node: TheEetassociated with the root of the returned tree
always contains the whole samglethe update of the s&arsdepends on the number of
the call, which now is the second parameter of the macro. When a leaf nodeujcdder
1) isreturned or if a tree is found without having to build a subtree of rgckll number
3), the unevaluated variables can be obtained from th&se#Vhen the search proves
unsuccessful (call numbers 2 and 5), updaWfagsis rendered superfluous. If a subtree
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Procedure 3.2Find(S,r, V)
input: a nonempty sampl& of somen-ary functionf on[m], an integer > 0,
and a set of variableg C V, ,,.
output: a decision tred” of rank at most that is consistent witly' if one exists, else none.
begin
(1) if StoppingConditiofS, k) then Exit(1,T = k) fi;
(2) if r = 0then Exit(2, none) fi;
(2) Initialize;
(3) for eachinformative variables € V do

3) Update
4) foreachk € [m] do T} < Find(Sy,r — 1,V \ {v}) od,
(5) if Yk € [m] : T} # none then T < MakeTre¢v, T7, ..., Ty,); Exit(3,T) fi;
(6) if T = none for a single valug: = ¢ € [m] then
(7) Ty < Find(S},r, V \ {v});
(8) if T} # none thenT' < MakeTre¢v, T7,...,T}) elseT «+ none fi;
9) Exit(4,T)
fi

od;
(10) Exit(5, none)
end.

of rankr has been successfully built (call number 4), then all variables can besthark
evaluated, since, because of Lemma 8, there is no point in maintaining aallearas
possible continuation points of the search.

The higher level search control in the incremental algorithm has to emuldteftha
Findminby maintaining, between examples, the intermediate stateBitidithincomes
across during its search procedure. The incremental main program isl€illett uses
a stack to control path traversal. Standard stack operations are evokéd biyunction
Popreturns the top element of the stack if one exists; funcimptells whether the stack
is empty or not. CalBubstitutéT, 75) replaces the (sub)trée by the tre€T;.

The algorithmlFM first uses the existing hypothedisto classify the new example
e (Lines 1-4). The example sets associated with the nodes on the path are updated
simultaneously. Once the leaf wheree ends up in, has been foun&M evokesFind
to construct a tred@; of rank at most 1 for the sample, U {e} (Line 5) and makes a
copyT’ of T in which leafL is replaced by subtrég; (Line 6). If ¢ is consistent with’,
thenFind returns another leaf and the ranKidfremains unchanged. Everritlisagrees
with 7', but L is a safe node, the rank of the modified cdpyemains unchanged, and it
can be returned as the updated hypothesis (Line 12). Otherwise, we continue the searc
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Macro 3.3 Exit(n, T')

input: an integem € [5] and a decision tre€.
begin

(1) Ezs(T) « S,

(2) casenis

(3) 1, 3: Vars(T) < W,
4 2, 5:null; % do nothing
(5) 4: Vars(T) < 0
end;
(6) return T;terminate % the execution of the calling procedure
end.

from the parent ofl. (Lines 8-11): A new subtree of the current rank is searched for
using the variables that have not been tried before. The loop terminates wicessfut
or when the root has been processed without success, in which case the new hypothesis
constructed on Line 6 will be returned even though it has increased rank. In lsath ca
the variable sets associated with the nodes of the tree need to be updatee. thédtic
unnecessary searching in case of exhausted nodes is avoided through careful control of
the variable sets associated with the nodes of the tree.

The correctness dFM should be clear from the rationale presented above.

Theorem 15 Let T be a decision tree of rank(S) that is consistent with sample of
an n-ary function onm| and lete be an example of the same function. Then the call
IFM (T, e) returns a decision tree that is consistent with { ¢} and has rank: (Su{e}).

Proof Follows almost directly from the correctnessfohd (Lemma 9). There is no
elegant way to prové~M’s correctness. The proof proceeds in a similar fashion as the
rationale of the algorithm. Since rigorous motivation and verbal analysis ofttregisn

was already presented, we pass over the formal presentation of the proof. a

To denote repeating application M to the members of an example sequefce
we write IFM(S) = IFM(IFM(. .. (IFM(—, s1) ...), Sq—1), 54), WhereS = (s,..., s,)
and — denotes the empty hypothesis. Incidentally, note that the result ofF®dllS)
is not uniquely determined; i.eFM is not invariant to the permutation of an example
sequence, but the result depends on the order of examples in that sequence. Gtearly, f
instance, different attributes are retained in the variable satsiagsd with the nodes of
the evolving tree depending on the examples seen. This, then, means also thaisthe tre
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Algorithm 3.4 IFM(T, e)

input: a decision tred’ of rankr(.S) that is consistent with a sampfeof somen-ary function
on [m] and an example of the same function.

output: a decision tred” of rankr (S U {e}) that is consistent witl' U {e}.

begin

(1) Directe down the treel’;

(2) for eachnodeN en routedo

(3) FEzs(N) « Ezs(N) U {e};

4) Push(N)
od;

(5) L < Pop; Ty < Find(Ezs(L), 1, Vars(T1));

(6) T'« T;Substitutély, T} );

(7) ifr(T) #r(T') then % r(Ty) > 0 andL was not a safe node
(8) Ty < none;
9) while Topand Ty = none do
(10) L + Pop; Ty + Find(Exs(L),r(T1,), Vars(T1));
(12) if Trr # none then Substitut€Tyy, T; ) fi
od

fi;
(12) return TV
end.

produced byFindminandIFM are not necessarily the same. What remains invariant to
the permutation is the rank of the resulting tree.

IFM explicitly simulates the functioning of the nested recursive callHnid evoked
by Findminand, hence, does exactly the same amount of work in searching for a con-
sistent concept for a sequence of examples that would be carried &urtdpinfor the
set consisting of the elements of that sequence. Therefore, we have the gamptotis
time complexities fotFM(S) andFindmin(S). (In additionlFM does some bookkeep-
ing, which does not affect the asymptotic time requirement.)

Theorem 16 Given an sampl& of ann-ary function onm], using IFM(S) we can pro-
duce a decision tree that is consistent witiand has rank:(S) in time O(|S|m"®) (n +
1)27"(5)).

Proof The proof is essentially based on the time requiremeriiimd and on the fact

that no more recursive calls 6ind will be made byiIFM over a sequencg of examples

than would happen during the execution of gafldmin(S). For the details of the proof
see Appendix A. O
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In the worst case a single cdfM (T, ¢) will take time O((|Sz| + 1)m"Mn?"(M),
In other words, the time of an update grows as the length of the example sequence and
the size of the hypothesis grow. However, as our earlier discussion shows.eoanly f
mistakes lead to time-consuming updates; updates where a simple subtaeemepit
is performed are carried out in linear time. Furthermore, even thoughptioportional
to n?"(") has to be spent on updates while the hypothesis has'(dhkbefore the rank
of the hypothesis is incremented, that time is usually divided between sever&tsipda

If Findminwas trivially used to generate a new hypothesis from the scratch after each
disagreeing example then, in the worst case, total time

q

Z (|S¢|mr(8i)(n + 1)27"(&‘)) -0 (|S|2mr(5)+1(n + 1)27’(S)+1)

=1

would be needed for a sequencegoéxamples. Hence, usingM instead of simply
repeatingFindminfor all the examples after each new example received over a span of
time proves profitable.

Because of Theorems 15 and 16 all the PAC learning results and their consequences
[Ehrenfeucht & Haussler 1989] hold ftFfM as well as folFindmin

3.3.3 On the number of erroneous predictions

Let us conclude this section by taking a little detour from our main theme—development
of a practical decision tree learner—and briefly consider HeM relates to the on-line
learning model [Littlestone 1988] by giving an upper bound for the number of false
predictions it will make on a sequence of examples. We continue to work within the
Boolean world.

How often doe$FM have to update its hypothesis? First, recall that only disagreeing
examples initiate any changes to the hypothesis. On the other hand, they nexessitat
some changes. Hence, every disagreeing example causes an update of soitye severi
From the point of view of the on-line prediction a disagreeing example is a mistake
made by the decision tree. Littlestone [1988] has studied absolute mistake bounds of on-
line learning, i.e., what is the minimum number of unavoidable erroneous predictions in
learning some concept class. In the following we apply that line of analyseataihg
rank-bounded decision trees, even though the situation there is slightly diffewent
that studied by Littlestone. The aim to maintain a consistent tree of thenumirank
at each stage requires that the target concept class changes dynamically.

The following lemma shows th#M is a “halving algorithm” [Littlestone 1988] for
DT%(n). This follows from the fact that rank is a structure delimiting propertyhwio
stand to the semantics of the tree; i.e., it does not consider the function reptebgnt
the decision tree in any other respect except that it has to be consistethevdample.
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Lemma 17 Let S be a sample of some Boolean functionign, such thatr(S) = r.
Then, IFM'S) makes at mosbg, | F»(n, r)| mistakes.

Proof Observe that for all’ € DT (n), whereT is consistent with the exampie the
setDT}(n) also contains the inconsistent tfEgthat is equal td” in its structure but has

the label of one leaf (the one thaénds in) flipped. Because of this duality each mistake

at least halves the number of candidate functions that could be chosen as the hypothesis
and the claim follows. O

Simon [1995] has studied learning rank bounded decision trees with equivalence
gueries [Angluin 1988] which is (more or less) equivalent to learning in the on-line
setting: Instances are received one at a timeraimdorcemen{information regarding
whether the instance was classified correctly or not) is provided concermhgnssance
[Littlestone 1988]. Simon presents an algorithm for learning decision trees of bibunde
rank efficiently with equivalence queries. The algorithm is similalF@ in the sense
that it, too, represents its hypotheses as decision trees. However, Satgorithm is
far more general thalfrM and does not attain the same efficiency.

It is easy to see that a decision tree of rarkas at leas?” leaves. In other words,

a sample that has rankmust contain at lea®t’ examples. Hence, when the length of
the example sequence is in betwe¥rand2"*!, not even a disagreeing example can
cause the rank of the hypothesis to increase framr + 1. Over a sequencg, since
S| > 2"5) it must be that(S) < |log, |S]].

3.4 Learning decision trees in the presence of noise

Elomaa and Kivinen [1991] and Sakakibara [1993] have independently demonstrated
how the (binary}ind procedure is made robust against random classification noise. The
technique they use is essentially the one used to derive procédund’runedTredrom
GrowTreein Section 2.1. This way they are able to prove the learnability of decision
trees of bounded rank in the presence of random classification noise. In thisseeti
show how the same techniques can be used in the extended learning model.

Before going any further we point out that, as our discussion in Section 2.1 would
suggest, pruning lets the learning method in practice tolerate, not only randasn clas
fication noise, but other types of noise too. The basic results of Elomaa and Kivinen
[1991] and Sakakibara [1993] deal with the noise model of Angluin and Laird [1988].
Sakakibara further discusses how these results relate to learnabNiajiamt’s [1985]
malicious error modelBearing this in mind we only discuss random classification noise
in the following.

The main theme of this section is to show the learnability of multiconcepsitiars
in the presence of random classification noise. It suffices to show that AlgoBt5
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Algorithm 3.5 Rod{(S, r,n,ny, €, 9)

input: a nonempty noisy samplg of somen-ary function onm|, integers- > 0 andn > 0,
and positive reals,, e, andd, such that) < 7, < 1/2and0 < ¢,6 < 1.

output: a decision tree of rank at most

begin

(D) ke |l gy e g 4 2m);

(2) T« Find(S,r,Vym);

(3) if T # none then return T else return an arbitrary decision tree of ramifi

end.

Procedure 3.5StoppingConditiofsS)
input: a nonempty noisy samplg of somen-ary function onm)|.
output: a truth value.
begin
% LetM;,i =1,...,m, be the number of examples fhlabeled by:.
(1) if My > ~|S|or M; < kforall j # k (andM}, > &) then return true else return false fi
end.

Rodt—yet another variant of Ehrenfeucht and Haussler's method—is a noise-tolerant
Occam algorithm for decision trees of bounded rank.

The main modification to procedulénd is to relax the fitting of the hypothesis to the
sample as explained in Section 2.1. In growing the tree, we do not split the exsatple
if the number of examples in the set is less than a thresholdif at least a proportion
~ of the examples already have the same label. Thus the candidate variable is pruned.
Now, in addition to the proceduifénd, we need a main program that calculates the
appropriate values of and~, and callsFind with these values. The functiab(n, r)
in the following is the maximum number of leaves in a decision tree from the proof of
Lemma 7.

We prove thaRodtis a noise-tolerant Occam algorithm fer-ary decision trees of
fixed rank by modifying the corresponding proof of Elomaa and Kivinen [1991]. They
go about the task by considering rules induced by a decision tree.

A rule over the variables,, ..., v, € V,,, is a pair{c, I), wherec is true, false or
a conjunction over assertions on the values of variallesnd/ belongs tdm|. A rule
(', 1') is arefinementf the rule(c, {) if I' = [ and¢’ logically impliesc. We say that an
example(z, ) matchesa rule(c, !') if = satisfies. If the example matches the rule and
[ # I', we say that the exampthbsagreeswith the rule.

For a decision tre&' we define the sei(7T') of rulesinduced byl". Informally, each



50 THE DESIGN OF A LEARNING ALGORITHM

path leading from the root of the tree to a leaf induces one (wlg. The labell is
obtained from the leaf. The conjunctierconcerns exactly the variables appearing at
the nodes on the path. The assertion concerning variable: is (v = k) if the path
leads to thek-th son of the node labeled hy Thus we have the following recursive
definition:

1. If T is aleaf labeled by, theno(T') = {(true,!)}.

2. If the root ofT is labeled by andT; fori = 1, ..., m are the subtrees @f, then

m

o) =J{{w=1i)Acd) [{e,]) € o(Ty) }.

i=1

Clearly, for each assignmentc [m]™ there is a unique rulér, 1) € o(T) such that
satisfies:, and for this rule we havér(z) = [.

In the presence of classification noise each assignmeptinhas the same prob-
ability n of being misclassified. Hence, R = (¢, 1) is a rule induced by the target
decision tree and the number of examples matcliing sufficiently large, with a high
probability approximately a proportionof these examples disagrees with This led
Elomaa and Kivinen [1991] to define the notion (@f, v)-accuracyfor x € IN and
0 < v < 1, wherek gives a bound for the absolute andor the relative number of
misclassifications made by a rule.

Definition For a ruleR and a samplé, let M (R, S) be the number of examples
that matchR, and letD(R, S) be the number of examples fhthat disagree witlR.
The ruleR is (k, v)-accuratewith respect taS if D(R, S) < max{ s, yM(R,S) }.
A decision tre€T is (x, v)-accurate with respect t8 if all the rules induced by" are
(k, v)-accurate with respect t®, andstrongly(x, v)-accurate with respect 9 if all the
refinements of the rules induced Byare(x, v)-accurate with respect t®.

The property of having a strongly:, v)-accurate decision tree is preserved when a
samplesS is split into the subsamples’, « = 1,..., m, as demonstrated below. By
we denote the decision tree that is obtained fiBiwy replacing each subtrgé that has
the labelv at the root with the-subtree ofl”. If v is the label of the root of’, the tree
T? is simply thei-subtree off".

Lemma 18 If T is strongly(x, v)-accurate with respect t&, then for all variablesy
and for all indicesi, i = 1,...,m, the treeT? is strongly(x, y)-accurate with respect to
S,

Proof If arule R = (c,[) is induced byT?, then eitherR or the rule((v = 1) A ¢, 1)
is induced byT. In either case, iR, = (' Ac,l) is a refinement oR?, thenR, =
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((v=1) A Nc¢,l)is arefinement of a rule induced By Hence,R; is (k, v)-accurate
with respect taS. SinceM (R,, S) = M (R, S}) andD(R,, S) = D(Ry, S}), the rule
Ry is (k,)-accurate with respect t8]. Thus, the tred?’ is strongly(x, v)-accurate
with respect ta57. In a similar way we see that the trégs, i = 2,...,m, are strongly
(k,y)-accurate with respect t§, i = 2, ..., m, respectively. O

Next we sketch a proof for the first part of the correctnesBindl. That is, if there
exists a decision tre€ that is strongly(x, v)-accurate with respect t6 and has rank
at mostr, then the calFind(S, r, k, y) returns a decision treg’ that is(x, v)-accurate
with respect taS and has rank at most

Lemma 19 If there exists a tree that is strongly:, v)-accurate with respect t6 and
has rank at most, then the call FindS, r, x, v) returns a tree that igx, v)-accurate
with respect ta5 and has rank at most.

Proof Itis clear from the definitions thd&ind never returns a tree that exceeds the rank
boundr. It is also obvious that a treé€ with the root labeled by is (x, v)-accurate with
respect taS if the subtrees of” are(x, v)-accurate with respect to the subsamigs

i = 1,...,m, respectively. Hence, a simple induction shows tfiatl always returns
either none or dx, v)-accurate decision tree. It remains to show that the call cannot
return none if the assumptions of the lemma are satisfied. This is done by a similar
induction as in the proof of Lemma 9; we omit the details. O

We show next that it suffices to find:, v)-accurate trees with suitable valuesrof
and~. Recall, from the proof of Lemma 7, that by(n, ) we denote the maximum
number of leaves in any reducedary decision tree over, ,,, of rankr. For the rest of
this section, lef, be a decision tree of rankovern variables of aritym, and letP be
a probability distribution orim]™. Letn <17, < 1/2,0 <e < 1,and0 < < 1. LetS
be a noisy sample af examples ofl, drawn fromE X, (P, fr,), where

256 L(n,r) 2
> In2+1In-).
7= e3(1 — 2nm,)3 (mn net n6>
Finally, let
_ e —2m)q

8L(n,r)
and (1 2m)

6 J—

Y=t Tnb

The following lemma shows that the functigia represented by afx, v)-accurate
decision tre€l’ of rank r fulfills the average disagreement condition required from a
noise-tolerant Occam algorithm (Definition 5).
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Lemma 20 If a decision tre€l" has rank at most and is («x, v)-accurate with respect

to S, then
(fT) ) < X 6( 77b)

Proof SinceT is (k,y)-accurate with respect t6, we haveo(T) = A U B, where
D(R,S) < kforal R € AandD(R,S) < yM(R, S) forall R € B. Since|o(T)| <
L(n,r), we have

8(1 — 2771,)

> D(R,S) < kL(n,r) <gq 3

ReA
and
1-2
> D(R,S) <~y > M(R,S) Sq'y=q<m+w>.
ReB ReB 8

For all assignments there exists the unique rule, I) in o(7") such that: satisfies: and
[ = fr(x). Therefore,

D(fTaS): Z D(R’S): ZD(R’S)+ ZD(R,S),

Reo(T) ReA ReB

and the claim follows. O

It remains to show that with a high probabiliimnd returns a(x, y)-accurate tree.
Because of Lemma 19, we can show this by proving that theTreis with a high
probability strongly(x, v)-accurate with respect t8. In the proof we need the following
result of probability theory by Hoeffding [1963]. L&E (p, t, ) be the probability ot
leastand LE(p, t, r) the probability ofat mostr¢ successes inhindependent trials each
with probabilityp of success.

Lemma 21 If 0 < p, s < 1, andt is a positive integer, then

—252t

GE(p,t,p+ s) and

<e
LE(p,t,p—S) S €

—2s2¢
O

Lemma 22 With probability at least — §/2, the tre€T, is strongly(x, v)-accurate with
respect taS.

Proof If R = (¢, 1) is a refinement of a rule induced Y, then fr () = [ for all =
that satisfyc. Hence, examples i that disagree witlz have been misclassified. B
is not(x, v)-accurate with respect t8, then a proportion greater tharof the examples
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matching R have been misclassified, and there are more thanch examples. Let
s =~ —mn,andu = M (R, S). Lemma 21 gives an upper bound

GE(n,u,7) GE(n,u,n+ s)

_ 942
e 2s5°u
67252(n+1)

25/ L(n.r)

VANRVAN VAN VAN VAN

e In2-1n(2/4)

6/2mn+1

for the probability that the rulé is not (x, v)-accurate with respect t8. The number

of refinements of rules induced Kk, cannot exceed the number of conjunctions over
single value assertions on variablgs. . . , v,,. The number of such assertions is certainly
bounded by™", since there are: single value assertions on each of theariables and
each of them can be either present in or missing from the conjunction. By summseg the
probabilities over all the ruleB we therefore see that with probability at least §/2

all the refinements of the rules inducedByare(x, v)-accurate with respect t9. O

We are now ready to prove th&bdtis a noise-tolerant Occam algorithm:
Theorem 23 Rodt is a noise-tolerant Occam algorithm for decision tree of rank

Proof The run time ofFindis O(¢gm" (n + 1)?"); the analysis is almost identical to that
carried out in Lemma 10.

By Lemma 22, with probability — 6/2 there is at least one decision tree of rank
r that is strongly(x, vy)-accurate with respect t§, namely7,. By Lemma 19,Find
returns a(k, y)-accurate tree of rank at most and by Lemma 20 this makd®odta
noise-tolerant Occam algorithm. O

Corollary 24 Decision trees of rank are polynomially learnable in the presence of
classification noise.

Proof Immediate from Theorems 6 and 23, since by Lemma 7 the class of decision trees
of bounded rank is of polynomial size. O

In noise-free domains the iterative algoritifimdminlearns decision trees of fixed
rank without receiving an explicit rank bound as input. The same technique can be
employed in the noisy setting: the correctnesfofitguarantees that, with probability
1 — §/2, the first returned tree is (@&, y)-accurate decision tree such that its rank does
not exceed the rank of the target tree (assuming the sample size is large enough).
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3.5 The algorithm Rank

In this section we gather the preceding refinements and improvements inisianléee
learning algorithm that combines ideas from theoretical studies and prastpaiience.
We refer to the algorithm aRank

A practical learning algorithm has to be efficient in order to be generally cgigée.
Therefore, we, for instance, do not have time to iterate the learning primcesser to
find a good approximation of the noise rate affecting the learning situation as proposed
in the previous section. Instead, we expect the user to supply appropriate values for
and~. Itis typical in inductive learning methods to expect the user to supply a value for
a confidence level or a threshold parametef’)* For instance, ID3 [Quinlan 1986b],
CN2 [Clark & Niblett 1989], and C4.5 [Quinlan 1993] are all examples of such pro-
grams. Furthermore, in C4.5 the user is allowed to tune the value of a parahsdte
corresponds ta. Resorting to the user’s choice of parameter values, naturally, loses the
general provability of the method, but still, if appropriate values, as ginethe pre-
ceding theorems, are supplied, the guaranteed learnability properties of theirigll
method are preserved.

We have to deviate from the formal considerations, also, in what concerns theesam
size. The algorithm is expected to produce a sensible hypothesis even with flessma
samples. Therefore, we apply the following heuristics in the learning &hgorilf no
tree is found, then we resort to predicting the most common class; i.e., wa eetur
single leaf tree that is labeled with the most common class. The situaagrarise, for
instance, if strict match is required for an inconsistent sample.

The main program of our method is presented as Algorithm 3.7. We have given de-
fault values to the input parameters of the algorithm; they do not fit all learninguthem
The given values suit perfect domains, where heavy pruning is not needed.

The following small trick inRanks high level control structure makes the algorithm
in practice much quicker thaRindmin There is no need to seek to examine the rank
candidates in order starting from value 0. The search can be started fyorarsidate
value (in between 0 and).? The program divides into two separate parts: In one part
(Lines 2—-4) the case, where no tree was recovered using the initial ranklatads han-
dled and the other part (Lines 5-8) takes care of the situation where a treetuaed.

The former part entails increasing the rank candidate until a decision treteiiaed by
Find. Even though the final part of the algorithm works in the same mannerfasdn
min, something has been gained by this little trick; viz., rank candidates sniadler
the initial value, which would not have been successful, have been passealitnert
unnecessary inspection. In the second part, where a tree was alreadyedaoik the

2If the typical rank values had a wide rand®nary searchcould be utilized here. However, real-
world domains tend to have a relatively low rank (see Chapter 5). Therefas not worth the effort to
incorporate a sophisticated search technique here.
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Algorithm 3.7 RanKS, R = 2,k = 1,y = 0.95)

input: a nonempty (possibly noisy) sammeof some functionf : Ry x Re X ... X R, = Rc¢.
The algorithm may optionally be supplied with the followiadditional parameters:
Nonnegative integer® andx, and a realy, such that) < v < 1.

output: a decision tree.

begin

(1) 7« R, T+« Find(S,R,V, n);

(2) if T = none then

3 repeatr < r + 1; T < Find(S,r, V}, ) until T' # none or r = n;

% let k£ be the most common label among the examples.in
4 if T =nonethenT «+ T =k fi

else
5) r«r(T);
(6) while » > 0 do
@) Q < Find(S,r — 1,V m);
(8) if @ # nonethenr «+ r(Q); T + Qfi
od

fi;
(9) return T
end.

initial rank candidate, it remains to check whether it is of minimum rank. Agae
do not have to rurrind for all consecutive rank candidates, but it suffices to check the
values that are smaller by one than the smallest rank of a decision tree fausfialt

The only remaining major modification to the control lBhdminin Rankis the
most common class prediction in case that no classifier with required pesgasrfound
(Line 4). Also, upward search can be terminated if no hypothesis is found before the
rank candidate exceeds the number of attributes (Line 3). No classifieratinbutes
can have rank beyond the limit This stopping condition was not needed in the earlier
Findminvariants, since a consistent sample always has a classifier with ssdrlequal
to the number of attributes in the domain.

This method’s time requirement is only linear in the number of training examples
and thus it fulfills even the strictest efficiency requirements posed tiigahlearning
programs [Clark & Niblett 1989].

One practical aspect of this program that has not been made explicit is itaignissi
value management. We simply apply Clark and Niblett’s [1989] technique of filling i
a missing value with the most common value of that attribute. We choose tth®de
because it is quite simple and relatively competitive [Quinlan 1989] and, heuifiees
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to us in this study, where we do not emphasize this aspect of learning.

The incremental method is not incorporated into the above described algorithm. The
same control optimizations that can be used in batch learning are not applicatuest
mental learning. Therefore, it is not possible to intertwifkl totally to Rank Instead,
we runlFM separately whenever incremental learning is needed. Of course, the algo-
rithms have been implemented together, and the same subprograms are utilmad by
high-level control procedures. It should be clear that the simulation schelr&atan
be applied in the noisy setting as well. In that case we just call theoreo$Find, which
provides for noise, froniFM as well.



Chapter 4

TELA—a Tool for Attribute-Based
Induction

Testing and comparing different implementations and techniques on sample data is
integral part of the design and application of inductive machine learning programs. |
involves many simple but tedious auxiliary tasks that are usually not supportég by
learning tools themselves. Hence, there is a strong need for an environnidatiia
tates testing and comparing different inductive learning programs. Most cd¢iigiés

that are needed in such an environment have to do with data set manipulation.

This chapter describeBELA (Testing Environment for Learning Algorithms), an
integrated environment that has been developed to alleviate the troubles bsubked
unavoidable subsidiary tasks when experimenting with inductive learning progitass.
distributed freely to all interested parti€S ELA incorporates facilities and support for
data transformation, format conversion, experiment design and executiona#sticst
collection. It has been designed to accommodate, in principle, any program using a
attribute-based representation formalism. The initial developmehEDbA is described
by Beckset al. [1992] and Elomaat al. [1995]. We present the design rationale of
the system, describe its current state, and consider future enhancement &attilon
4.1 we concentrate on the design principlesT&LA. Section 4.2 contains a detailed
description of the current system. Future development directiom&bA are outlined
in Section 4.3. Related systems are surveyed in Section 4.4. Finalligi54d& reviews
some practical experiences gained abidat A.

3TELA system together with a comprehensive documentation is available frenuRi-address
http://ww. cs. hel sinki.fi/research/pnmdmim /tela.htm . Alternatively, it can be
obtained by anonymoud p access fronfit p. cs. hel si nki . fi/ pub/ Sof t war e/ Local / TELA.

57
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4.1 Design rationale of TELA

Consider the following situation: Data has been acquired from the applicationidoma
it has been classified for use as a training set for a learning algorithm handata
has been prepared into the format required by the algorithm. Instead of sirapigde
the assessment of an acquired classifier to the domain expert, we csritespirocess
by testing and evaluating the rule in several ways. We might assist thesasent by
empirically testing the classifier by repeatedly dividing the trainingirsiet (random)
training and test sets, we might also experiment with modified versions ditiage.g.,
leaving some attributes out, or we might try different induction tools on the sashke t
All the data transformations and format conversions needed in the tasks mdraimne
can surely be accomplished with the help of standiddX, say, tools and a text editor.
However, these secondary subtasks require much more effort than the primentvebj
of experimenting with the algorithms and data sets and, hence, easily drowgtihefs
what really is important.

Since experimentation is an integral part of the design process of new learning al
gorithms [Langley 1988] as well as application of inductive programs, as exerdplifie
above, it is essential that experiments can be carried out without unngcesegpli-
cations. TELA is a system that has been designed to facilitate experimentation with
attribute-based inductive learning programs. In the following we motiveteesign of
the system.

There are two general goals that have been pursued in the developriéitAd+
independencanduniformity. Both goals have manifold aims and manifestations in the
system.

¢ Independence of particular learning algorithms, classifier representatiahsi-a
sualization tools produces an environment that is as general and versatile as pos
sible. Commitment to particular algorithms or classifier types (e.g., tadITDI
learners) always rules out related algorithms or relevant approaches (eig., dec
sion list learners). Binding the system’s interface to a particular rmateon tool
mainly hampers its portability, but may also bias against new types of learning
algorithms.

¢ Uniformity of the appearance of the system and its facilities gives the uter be
control over the system and lets him, thus, concentrate on his main duties: Exper-
imentation with and comparison of learning algorithms. Controlling a too davers
environment is an unnecessary and interfering task.

In addition to the general goals, specific operational objectives have been put to
TELA. Today a number of different inductive algorithms are easily available (by anony-
mousf t p, for example). Even though many algorithm implementations come with the
source code, one would like to retain the black-box-view of them, but still be able to
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compare them with other algorithms or implementations. In other words, it should be
enough to familiarize oneself only with the input/output of a given algorithm before ex-
perimenting with it. Hence, a system is needed that can easily acconmen@adtabst)

any learning algorithm that uses attribute data. Such a platform should suppfatthe
lowing activities, which are all featured IFELA.

Data preparation and manipulation

Extracting basic statistical information of the data sets involved. daiiteon to

data carefully designed by the domain expert, the learning algorithms typically
have to deal with data acquired from some sensors or a database. In order to be
able to reliably assess the performance of an algorithm, the user has to tee awa
of the basic statistical facts (representativeness) of the traininteahdata.

Easy declarative definition of the data formats used by the learning algorithms
and automatic conversions between these data formats are required to tfghte
addition of new learning algorithms and for executing unbiased comparison of
different algorithms on exactly the same data.

Dynamic data manipulation by changing the sets of attributes and examples con-
sidered and the possibility to transform data by redefining attribute types and by
adding random noise to the examples. This allows the user to vary the applica-
tion domain characteristics as he pleases. For example, noise-tolerapte rof

prime importance when the learning algorithm is put to actual use.

Execution control

Efficient communication between the environment and an enclosed learning algo-
rithm. Even though the platform and learning algorithms are independent of each
other, the user has to be able to operate the algorithms from within the environment
and receive feedback from them.

Experiment planning and incremental execution of tests are central vebicles

a successful environment. Without adequate support for higher level experiment
compilation the operation of such an environment reduces merely to run time sup-
port for learning algorithms. Incremental execution of tests is a desiratybepy
because experimentation, by nature, requires re-evaluating (and rerunnisg) test
once (partial) results are reflected upon.

Support for multiple users is required in any program that endeavors to be a
general-purpose tool. Control and monitoring of users must ensure that different
users will not get tangled into each others experiments.
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Analysis support

e Standard ways of testing the algorithms and standard ways of relating their-perf
mance by measuring suitable execution statistics. Commonly acceptetaés-
gies (e.qg., repeated random partitioning and cross-validation) should be available
for all algorithms. Furthermore, the same performance measures (e.ggeavera
accuracy, size, and learning time) should be measurable for the claseifiait
algorithms.

e Benchmark methods for validating the results produced by the learning algorithms.
The user can achieve an understanding of the general usefulness of the machine
learning algorithms on an application by relating their performance to that of a
simple well-established method (e.g., Bayes-rule [Breiratal. 1984] or one-
level decision trees [Holte 1993])).

In the next section we describe in detail hGELA meets all these demands. In
addition to the visible functionality listed above, the platform needs a numbeterhil
supporting functions. The overall architecture should offer the user a coherent view
of the many diverse functions that are available. Coherence is achievideLih by
including most of the above functions into a single command language.

One of the larger issues that we had to resolve when desiJitthé was to decide
on the extent of the system’s internal knowledge representation language (KRn-A c
mon KRL is required to communicate data between algorithms. It cannot simpdytbe
to the user to define the translation from the data format of the new algorithm ® thos
of all previously incorporated ones, since there may be tens of such algorithmgdyalre
present. Hence, an internal representation language, acting as an insgomedall
these translations, is required. Even though we are operating within thetesstworld
of attribute-based representation languages, there is plenty of room faiorari®ne
could aim at developing a universal KRL for learning algorithms that use thbwaér
representation. Such a language ought to be able to express all inputs, outputs, back-
ground knowledge, and, even, intermediate results of all algorithms withinafsesc
But that makes the representation language extremely vulnerable: Any charge in t
data representation of a single algorithm requires changing the KRL and propagating
the changes to all other algorithms. Instead of providing a universal KELA imple-
ments the common core of the data representation languages of attribute-bastonnduc
algorithms. The same arguments have guided the KRL design iMdlchine Learning
Toolboxproject [Causset al. 1990, Sleeman 1994].

Communicating the induced classifiers between two algorithms makes stimas—
for example, a neural network cannot usually be interpreted as a decision tresoVdr,
management of the multitude of output formats of inductive algorithms would lead to
close intertwining of the system and the algorithms. Hence, we have not trieg-to
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resent the output classifiers in the internal KRLT&LA. It is left to each individual
learning algorithm to represent and interpret its own classifiers.

4.2 An overview of the system

This section describeSELA at its current composition (versionggs). We demon-
strate howTELA implements the requirements stated in the previous section. First we
describe the general architecture of the system. Next we introduce the higlextpeel
iment specification language that is the main distinction betWddnA and its closest
equals; detailed discussion is left to Section 4.4. Finally, we describia¢higies for
semiautomatic accommodation of new learning algorithms. More detailediutestr

of the technical aspects can be found in the user manual [Elomaa & Rousu 1996a].

4.2.1 System architecture

A general view of the architecture ®ELA is presented in Figure 4.1. The user interacts
with the system chiefly in terms of the languaBESLA (TELA Experiment Specifi-
cation Language). The language contains facilities for accomplishing the operations
demanded in the previous section. Only seldom—when enclosing new algorithms to
the system—is there need to use the other languag&bA, the data format definition
language (Section 4.2.3). Hence, the appearance of the system to its user is coherent.
The three modules GfELA that are visible to the user are Data Logging Module, Ex-
periment Specification Module, and Data Format Definition Module. A brief gegmn
of these components follows.
Data Logging Modulassists the user in defining the data. Most learning algorithms
require the user to supply attribute declarations in addition to the actualpbxanec-
tors. Now, if a large database of examples is received from the applichimoain with-
out attribute declarations, a skeleton attribute declaration file cgeberated with this
module for any learning algorithm, whose data format has been defined, instead of going
through the voluminous data and manually recording the values appearing in the data for
each of the attributes. The skeleton file lists the attributes (withndyimames) and the
values (or the subrange of values) that appear in the example vectors for tibatettr
The domain expert can then give correct names for the attributes and extenmdniges,
if required. If the domain expert carefully designs the example set, not muchaass
is usually needed. Moreover, the example volumes tend to remain low indasss.
Experiment Specification Modukethe main method of interaction between the sys-
tem and its user. This module contains the languBg8LA that is used to specify the
test sequence. Execution BESLA specifications is interactive and incremental. This
is accomplished with thee%D session editor interface [Holsti 1989]. At any given mo-
ment, usually as a consequence of a response given by the system, the user canrgo back i
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Figure 4.1: The general architectureT@&LA.

the TESLA code and change the specification given; parts of the specification are auto-
matically retracted and re-executed to update the state of the systemréspond to the
changed specification. The final specification can be saved as a record of theexpe

Data Format Definition Modulés invoked when a new learning algorithm is added
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to TELA. This module automates the generation of parsers and scanners for the attribute
declarations and example descriptions of the new machine learning program. It also
introduces new terms to the languaBEeSLA. The user only has to provide a simple
description (fill in a template provided) of the syntax used in the attributEGgions
and example descriptions. Algorithm parameters are also introduced in thrgpties
for TESLA,; however, they are not processed automatically, but need the user to provide
an external processor to interpret them in terms of the learning algorithmila8y,
management of the output of the algorithm has to be done manually. This includes
classification, display, and accuracy recording.

The internal modules of ELA which are not directly manipulated by the user are
the TESLA Command Server, two Databases, the Algorithm Execution Machinery, and
the 1/0O Server.

e The TESLA Command Servearansforms the specification provided by the user
into calls of the internal functions and services of other modules.

e The Algorithm Databaseecords and maintains information about the learning
algorithms. The data format definitions for learning algorithms are maintamed i
the database; they are queried by the other internal modules.

e The Working Set Databasmntains information about the active attributes and
examples, and the active classifier, if any.

e The algorithm Execution Machinegalls external learning algorithms and con-
trols their execution in cooperation with the 1/0 Server. It is responédnlgath-
ering the requested statistics from the external algorithms. Algorithm depende
particularities are queried from the Algorithm Database.

e The I/O Servepasses information between the system and the learning algorithms;
it takes care of the data conversions that are needed in the process. ibugeattr
declarations and example vectors are communicated through files.

There are two standard benchmarks in the system. The results obtained lyraglear
algorithm can always be contrasted with the results that would be obtained mging a
of the Rankvariants or Rousu’s [1996] MDLP-based learners. No other algorithms are
distributed with the system (because the proprietorship of the algorithms betoihgsrt
developers). However, the I/O interfaces for the algorithms NewlID [Btis¥®90b],

CN2 version 4.1 [Boswell 1990a, Clark & Boswell 1991], C4.5 [Quinlan 1993], and ITI
[Utgoff 1994], Naive Bayes [Kononenko 1993], and T2 [Ae¢ral 1995] are part of the
current system.
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4.2.2 Experiment specification language

A central feature oT ELA is its high-level procedural experiment specification language
TESLA that lets the user define complicated test sequences and comparisons with the
learning algorithms and data he chooses. The language allows recording inteemediat
results and saving classifiers for further inspection. Incremental egecanid manipu-
lation of TESLA specifications is supported by thei session editor interface [Holsti
1989].

TESLA is a procedural language that contains statements for accomplishing most of
the effects listed in Section 4.1. There is only one control statemdiii8LA: Repeated
execution of test sequences is enabled bydbtestatement. The other statements of
TESLA are simple statements that do not change the control of execution. A typical
TESLA specification contains operations from each of the three categories mentioned in
Section 4.1. The statementsTESLA can be assigned to these categories as follows.

e Data preparation and manipulation operations dominate the language. There are
eleven statements for these purposead, write, stat, exclude, include, select,
map, class, randomize, noise, anddivide.

e The only execution controlling facility iTESLA is therun statement.

e Three statements for (directly) supporting classifier analysis are incindé&SLA:
test andcv allow empirical testing of a classifietio implements iteration. Some
of the aforementioned statements also support empirical analysis, butrkst/di

In Table 4.1 an examplEESLA specification is given, in which, first, a set of active
attributes is declared and the active example set is defined withettk statement.

The attribute declarations and the example vectors must conform to the predkftaed
formats, here they follow that of the C4.5 algorithm [Quinlan 1993]. A classifieed
in a file could also be activated with this statement. Algorithm dependeatlidiie
name extensions are automatically expanded to the file names given.

After loading the data, the range of attribute “date” is dynamically redefinedjus
themap statement. Using this command a set of values or a subrange can be mapped to
a new value; the redefined attribute will always be of nominal type. Note thanpie+
ment implicit value hierarchies using this statement by mapping an exidtiguge’s
values (the months) to those on a higher level of abstraction (seasons of theAyesar).
changes the new distribution of the attribute’s values is queried witkttetatement

Commandselect is used to choose from the active set of examples those ones that
have “summer” as the value of attribute “date”. This renders the attriwgerfluous
and, hence, it iexcluded from the experiment.

Two irrelevant attributes are dynamically declared usingrbleide statement, which
replicates each example in the data as many times as the new attribytedsible val-
ues. Hence, the number of examples becomes multiplied by four in our example spec-
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Table 4.1: Example of &ESLA specification. In this actual interaction user commands are
marked with bold fontTELA's replies have been, in part, abbreviated for better legi-
bility.

Wel come to TELA version 1.995 !

read C45 atts soy exs soy;,

Attribute description read fromfile soy. nanes.

290 exanples read fromfile soy.data.

map date as [april may]: spring [june july august]: summer else fall others winter;
Mappi ng conpl et e.

stat date;
Attribute Type Val ues ... Unknown Don’t Care
name (* = cl ass) (Nom) count count
dat e DI SCR 0 0
fall 101
spring 43
sunmer 146
Wi nt er 0

Total exanple count: 290

select date in [summerf];

146 exanpl e(s) sel ected.

exclude date;

Specified attributes excl uded.

include irrell: a b, irrel2: c d;

Wor ki ng set contains now 37 attributes and 584 exanpl es.
set randseed 0;

Random nunber generator initialized with seed 0.
randomize class: O others 5;

class: 0 out of 584 val ues changed.

areadama: 24 out of 584 val ues changed.
cankerle: 19 out of 584 val ues changed.
cankers: 26 out of 584 val ues changed.

do 10 record time size rank accuracy;
divide training: 67 others testing;
run Rank (initrank=2, gini, level=4, kappa=1, gamma=0.90%,
read TELA both testing;
test Rank;
end;
RUN Rank rounds: 10 AVG RANK =2. 000 (+/-0.000) AVG SIZE =134. 300
(+/-6.870) AVG TI ME =10.034 (+/-0.403)
TEST Rank rounds: 10 AVG ACCURACY =81. 255 (+/-0.287)
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ification. Assigning each of the values to a replicated example ensureshéhaew
attribute will not be relevant to the class label of the examples.

Before the random number generator is applied we initialize its seed to a mbnsta
value as to obtain a test sequence that can better be repeated. Random noisSgtate
is added to all attributes’ values usirgndomize statement. It allots, with probability
0.05, a new value for an attribute in any example vector. All values in ar@dejaange
have an equal probability of being chosen. In particular, the command may als@lea
attribute’s value intact. The other randomization comman@iESLA, noise, does not
include the attribute’s original value in the set from which a new value atatl.

Any legal sequence of legadESLA statements can be repeated any number of times
using thedo statement. The repetitions are independent; i.e., the starting configuration
of the system’s internal state is the same for each repetition. Negietiti@ns are not
allowed. In this example theéo statement records average values over 10 repetitions for
the construction time, size, accuracy, and rank of the resulting decisen tr

Within thedo statement the active set of examples is split, usingivide statement,
into two mutually exclusive portions, containing 67% and 33% of the data. The first
portion remains active. All designated portions are written (in TELA fatnmto files
from where they can later be reactivated.

After desired manipulations and transformations have been performed on the data
the Rankalgorithm is run on the modified data. Then statement invokeRankwith
the given parameter values. The active sets of attributes and examgtesxanunicated
to the algorithm. The returned classifier will become the active one. Aftitrating the
test data, the classifier is tried using thst statement, which simply checks the accuracy
of the active classifier on the set of active examples.

The remaining statements, which were not included in the above examples are a
follows. At any time, the user can save (modified) attribute dectarafiexamples, or
the active classifier into a file by tiverite statement. The statement does not change the
activation situation of the system: All sets that are active when #tersent is invoked
will remain active after its execution. New class attribute cachmesen using thelass
statement. The new class, naturally, has to be of nominal type.

Cross-validation testing [Breimaet al. 1984] can be accomplishedTiESLA by the
cv statement. In cross-validation the data is split imtisjoint subsets of (nearly) equal
size, then, for each subset a classifier is constructed leaving the one subskthasut
training set and using it as the test set. The average of théependent error estimates
is a very good approximator of the true misclassification rate of the classifie

4.2.3 Enclosing new algorithms in TELA

The first duty of TELA is easy accommodation of new attribute-based learning algo-
rithms without having to know the particularities of them apart from their I/@nfats.
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Table 4.2: Data format definition for tiieankalgorithm.

BEG N DESCRI PTI ON Rank % I nherits unspecified values from
DEFAULTS = TELA % the description of TELA
RULETYPE = ' Deci sion Tree’

[ ATTRI BUTES]

ATTSEP = "~ % Separ at or of consecutive defs
VALSEP = '~ % Term nates a val ue’ s name
ATTSEXSSEP =

NOM NAL =

INT =

CONT = ' CONT’ % Required by TELA

UNKNOMN = ' x’ % Synbol for unknown val ue
DONTCARE =

ATTSFOOTER = ’ end’ % Li st term nator

EXSFOOTER = ' end’

[ I NTERFACE]

EXENAME = ' al gorithns/rank/rank.run’ % Par aneter processor
ATTSEXSFI LES = SEPARATE % (see Appendi x O
ATTSEXT = ' .att’ % Def aul t ext ensi ons
EXSEXT = ' .exs’
[ OPTI ONS]
G N % Legal paraneters
| FM
PREVHYPO
I NI TRANK
LEVEL
KAPPA
GAMVA
[ RUNSTATS]
Sl ZE % Qual ity measures
RANK % TIME is present for all algorithns
[ TESTSTATS]
ACCURACY
END DESCRI PTI ON

For that purpos@ELA offers a declarative data format definition language. The input to
a (non-incremental) learning algorithm can be divided into two p&taticinput con-

sists of the attribute declarations and of the data vectors conforming to tleadens;
thedynamigpart of the input of an algorithm consists of its commands or parameters and
the values subscribed to them. The definition languageEafA follows this division:
Definitions have a static and a dynamic part. However, not all data format¢sahdy-
namic part: The internal knowledge representation languag&bA can only be used
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in describing the attributes and the examples, but it has no executablepcomlesce.

TELA provides the user with a template to be filled in for the data format definition.
This template has slots for a few simple declarations (e.g., different seanaed in the
input files) defining the specifics of the new algorithm’s attribute declaratidreaam-
ple description syntax. Default values to this definition are inherited from e data
format, but the user is free to any other existing data format as the sigseottdne new
definition. Hence, only those slots that differ from a predefined data format nds to
filled in. In Table 4.2Ranks data format definition is given. The declarations are stored
into the Algorithm Database from which they subsequently queried by the other interna
modules ofTELA. Predefined standard declarations belonging to the current version of
TELA areTELA (the internal KRL, static only)NewID, CN2, C4.5, MDLTree, MDL-

List, Rank, Findmin, ITI, T2, andNaive Bayes. The dynamic control cannot easily be
automated IMELA. Therefore, it expects to receive the name of an executable external
program that can process and pass, e.g., parameter values to the learninigral@grit
Table 4.2). The external C shell programRdnkis presented in Appendix C.

As already explained, the outputs of different learning algorithms cannot be handled
as smoothly. The user must providl&LA with procedures for saving and visualizing
the produced classifier, for classifying a set of examples with it, and éardeng the
accuracy of a classifier on a given example set. In the simplest casddeewID),
the user can implement these with the help of the learning algorithm itdedfclassifier
can be written into a file and can be offered for user inspection (in ASEhh&t) with
a command of the learning algorithm, subsequently the classifier can be reréael by
algorithm and used to classify a set of examples. Only recording the accofracy
classifier on a given data causes some troubles, but typically that informateasily
extracted from the output of the learning algorithm. In a more difficult case (ewq., f
C4.5), the algorithm neither supports saving the classifier in user-readable fooma
allows classifying a set of (unseen) examples with it. In such a case énehas to
implement these features (e.g., in C code).

4.3 Future development of TELA

Even thoughlELA has been implemented and used to execute the experiments reported
in the next chapter and in experiments of other studies [Lamminjoki 1995, Rousu 1996,
Elomaa & Rousu 1996b], it is still a subject to future improvements. This@ebtiefly
takes up the most urgent development needsafA.

At its present compositioMELA lacks a graphical user interface, which might be
useful in some situations. The main reason for this omission is that we hawedva
to be able to distribute the system with few environment restrictionsh&umiore, our
experience of decision tree learning has demonstrated that in practice thedridees
often are of such magnitude that there is no good way of visualizing them (and decision
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lists do not really need graphical representation). However, extenidihg\ with a
graphical user interface has been taken into account in the system’s deshyylid be
quite easy to extenfELA with an independent graphical user interface.

Even more than graphical extensiortsLA needs support for thEESLA language,
which is a sizable programming language. A programming environment or, at least, a
syntax editor would facilitate test sequence specification.

Currently TELA can only support a single set of attributes and examples and a sin-
gle classifier. Together these three components are calledlang seTsatsarakis &
Sleeman 1993]. If the user wants to manipulate several working s€&LA, he has to
manage them (save and load, as required) himself. It is quite typical thatyshigffer-
ent working sets are manipulated during a test sequence. Therefore, autanéit c
over working sets should be addedRtBLA. Implementing such a property TELA is
straightforward: The languagéeSLA just needs tools for naming and accessing differ-
ent working sets. The Working Set Database can maintain the informatiomnlegéne
working sets.

In inductive learning tasks it often is the case that the attributes supgiedot
definitely the ones that should be used. If, however, we have a fixed set of data from
the application domain at our disposal, we cannot expect to find new information about
the data, but we have to content ourselves with that at our disposal. Nevssihele
many cases reorganizing the fixed set of data by constructing new attriboneshe
existing ones can turn out beneficial either in classification accuracyesligittility of
the resulting classifier. There are learning algorithms that automgtamaistruct new
attributes from the primitive ones [Matheus & Rendell 1989, Pagallo & Hau$9g0],
but that is not the case for all learning algorithms. A facility that would ¢hesdomain
expert some tools for constructing new attributes from the existing ones, e.@ebsxt
combinations of numerical attributes, could be added to the system. At the mdraent t
map statement oTESLA is the only tool inTELA for doing anything of this kind.

More sophisticated measurements of data characteristics [Matlaile 1994] could
be presented to the user for him to better be able to relate his results asd gmsutility
of an algorithm. In principle, nothing prevents including such into the system. Taking
the idea even further, tools for automatic parameter value adaptation ofearamg
method selection (multistrategy learning) would Stil_A’s framework well. However,
these would extend the system far beyond its original target functionality.

There are many further extensions that could be considerEalié (e.g., automatic
comparison of working sets) and extensive use will surely bring out many moteaths
of trying to list all of them, let us just note that the strict discipline ejsd inTELA
concerning the independence of the system turns out to be valuable in this respect. It
is easy to extendELA with new facilities. Of course, some desirable properties are
fundamentally hard to implement; they will not be any easier in connectidgtb.
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4.4 Related systems

There are other systems for supporting the execution of inductive learning algarithm
WILA [Sleeman 1994, Tsatsarakis & Sleeman 1993] is closest to our system in its de-
sign rationale and functionality, even though its aims are in part different those of
TELA. WILA is a prototype system for helping both the domain expert and the knowl-
edge engineer to use attribute-based inductive algorithms.A \WWhares our platform
approach in that it, too, is intended to be an easily extensible environment foeimde
dent learning algorithms (as publishedji\W only incorporates the NewlID algorithm).
Facilities for preprocessing the data to be fed in are provided for the dox@énteand

the knowledge engineer. They can also postprocess the output of the learning algorithm.

WILA differs from our system most dramatically in that it offers only minimal sup-
port for experiment planning, execution, and analysis. No special facilitiesujpr
porting test sequence design or execution are providedAV@nly gives the user the
opportunity to do some pre- and post-processing for single runs of NeMaDA offers
many facilities for relating the performance of different algorithms orstree task or a
single algorithm on different tasks, but\d mainly relies on the graphical presentation
of the induced decision tree and the domain expert’s understanding of it. Furthermore,
the view offered to the user is quite dispersed inLW A separate tool is provided for
each task. Finally, WA lacks many of the data manipulation opportunities that are part
of our system. On the other hand,|M is able to manage multiple working sets, it has
a limited facility for building new attributes from existing ones, and i laagraphical
user interface.

IND [Buntine & Caruana 1993] is a comprehensive system implementing the most
popular approaches to decision tree learning as variations of a common leagong al
rithm. For example,ND implements C4.5 by executing the appropriate splitting rule
selection and pruning methods when constructing a decision trae.h&ds many ad-
vanced features and it is quite a versatile tool for decision tree induct®approach,
however, is fundamentally different from that DELA and WILA . First, IND is a closed
system that is not intended for the user to extend. If a new decision tree learaihgdn
nevertheless, was to be addedno@] then, in the simple case, one could add a new style
to IND’s repertoire by running precoded programs with suitable options. In the more dif-
ficult scenario, the new algorithm cannot be implemented directlyioy but requires
adding new programs or options to the system. In both cases the user has to have in-
depth knowledge of the new method. Furthermore, implementing decision list learning
algorithms—CNZ2, for instance—is not supported ) even though the algorithms
principally use the same techniques as decision tree learners.

GENcoL of De Raedt and Bruynooghe [1992] is a very general implementation of a
concept learning framework. Most approaches to concept learning can be implémente
in GENCOL by instantiating its many generic parts. The generality of the system makes
it more a tool for the design of new concept learning approaches than a tool for practical
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induction tasks.

4.5 Practical experiences on using TELA

This section reflects lessons learned usiiid A. Both personal experiences and those
of other users are offered. Up to these dait A has been used solely by the members
of the development group. It is only quite recently tM&LA has been adopted into use
by other teams. It is time to review the first feedbacki@LA’s design and utility.

Inclusion of new learning algorithms

Several learning algorithms have been incorporated WibA since the completion of

the system. For this work algorithnigankand ITI [Utgoff 1994] have been added,
Rousu [1996] has incorporated two MDLP-based algorithms, and the T2 algorithm
[Auer et al. 1995] has been made part of the system’s repertoire.

The current implementation &@ankwas modified, especially witELA in mind,
from an older version of the algorithm [Elomaa 1992]. Therefore, it was thestaagk
to incorporatdRankinto TELA,; all the potential pitfalls could be avoided by taking them
into account already in the implementation. As an example, the algorithm counts and
outputs (in the desired format) all the required statistics, and is aligtd and output
its decision trees. Hence, inclusionénkinto TELA only required us to give the data
format definition (Table 4.2) and to modify a suitable dynamic control programdoik
(Appendix C) from that of C4.5. The latter duty was clearly the more demanding one,
and even it could be handled quite smoothly.

Lamminjoki [1995] enclosed the incremental decision tree learner ITI [Utgoff 1994]
into TELA's repertoire. He was not familiar with the algorithm or the environment in
advance, but had ample knowledge on inductive learning. According to Lamminjoki's
experience it was relatively easy to handle the dynamic control of ITI. Sizkeofe-
sulting tree was easily extracted from among the output of the algorithm, theialeci
tree could be saved into a file for later use, classifying a set of test&arwith a tree
grown was readily available in ITI, and its accuracy, again, was tasytract. What
turned out to be more complicated, was the measurement of the rank of a tree produced
by ITI. Naturally, it was not featured in ITI itself, but because of the expents in the
next chapter we, however, wanted that measure at our disposal. In order tinsave
and effort, it was elected to use a shortcut in obtaining this measurematiterRhan
implement a parser and a scanner for ITI's decision trees (which has beeredpnir
C4.5) we simply added a rank-counting function to the source code of ITI. In general,
it seems to be the biggest shortcoming of the current versiarEbfA, that often one
would need to manipulate the hypothesis generated by an algorithm, but no support for
that is provided. In summary, it is Lamminjoki’s view that it is not hard to ethae
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unfamiliar algorithm intoTELA (as long as it is not too peculiar) as regards the basic
functionality and measurements; all additional requests take much more effor

The experiences of Rousu [1996] on enhancing the repertoif&bA are parallel
with those of the author: It is easy to make ones own algorithms to conform to the
requirements of the system. Similarly, the problems encountered with TtAeasame
as those met when incorporating ITI.

In summary, it is very easy to incorporate algorithms WiteLA in what concerns
static input and measurements that are in advance available in a ledgarthan. What
requires more thought, is the measurement of characteristics not supported by the new
algorithm. That tends to require programming an interpreter for the output aassifi

Extensive experiments

So far, three major test series constitute the system’s main validest: Those run

for this work and reported in the following chapter, those run by Rousu [1996] for his
thesis, and those by Elomaa and Rousu [1996b]. Two first test series were fiyn part
simultaneously. Thus, they constitute a test for the multi-user facibfiise system.

TELA has turned out to be just the right tool for executing all these experiments. (Of
course that was to be expected, since we had a similar test setup in mindegigning
TELA.) Nonetheless, there were some minor complications encountered during the ex-
periments. At first it proved a little hard to adopt to the very strictectable computing
methodology of &ED [Holsti 1989] that now also appears as a parT&lLA through
its current interface. For instance, if data was saved into a file dd8).A command
write and, subsequently, that command was retracted in an attempt to reuse ting exis
code, then the file written previously as the result of this command would be dialetde
a new one would replace it. This is so different from the usual functioning of computer
programs that, at first, it will undoubtedly surprise any unfamiliar user. Oregat
used to the correctable computing paradigm, things started to work with ease.

There are some things iRELA that could and probably should be changed. For
example, more versatile file name extension facilityT/BSLA would make the sys-
tem appear much more user friendly, and the often-appednnde-run-test command
sequences IMESLA specifications (see Table 4.1) could easily be abbreviated. Further-
more, a more extensive help facility is required.



Chapter 5

Empirical Evaluation and Validation

This chapter reports on a series of comparative experiments on learninghaigpoak-
ecuted undemELA. The experiments were carried out in order to empirically validate
the Rankalgorithm elaborated in Chapter 3. Furthermore, these experiments act as yet
another test case for the correct functioning BLA. First we outline the general guide-
lines for the tests: What kind of measurements are taken, and in which donvslhres?

are particular tests designed to reveal? Then we describe briefly therdgnvaere the
comparative measurements are taken. After listing and commenting omitgcal
measurements in Section 5.2, the final two sections summarize, analyzeseunssdhe
results obtained in these common benchmark data sets.

5.1 Experiment setting

In this section we introduce the setting for the empirical experimentst \Wweasketch

a general outline for the tests that are taken. Then we introduce briefly timateals

of the algorithms that are included in the comparison, and describe the most important
aspects of the test domains.

5.1.1 Experiment outline

Experimental study is an important and often used method of evaluating leagsing s
tems. There is a collection of principles and standard experiment types tleatdiane
to be generally accepted goals, means, and methods of evaluating learningsgySte
bler & Langley 1988, Michieet al. 1994]. Our experiments conform to these guidelines
as far and as completely as the limitations imposed by the wider purpose ofuths st
allow.

There are three different sets of tests reported in the following secfitwe. first
one tries to puRankinto perspective with respect to other inductive learning programs
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according to the single most important property of a learning program, the clagsiiic
accuracy on unseen instances. For this end weRamkon data taken from StatLog
project [Michieet al. 1994]—a recent comprehensive comparison on inductive learning
methods—and evaluaRanks performance with respect to the reported results. This set
of tests consists of three independent experiments.

Once a general impression BRnks utility is obtained, we want to get a more de-
tailed understanding of hoRankmanages in comparison with the more established,
but similar learning methods. Also, we do not want to observe the algorithms’ leehavi
along one dimension only, but intend to record other characteristic measusesiestt
as hypothesis size and training time, in addition to prediction accuracyhdfarore, a
good account of the effects of noise on learning is still missing after the dirsif $ests.

The second set of tests consists of further experiments with uncorrupted data. Thi
time the main emphasis is on measures other than prediction accuracy. Aslgdative
of these experiments is to discover the shapRanks learning curve and compare it
with the curves of other learning methods. This set of tests consists of fiveasepa
experiments.

The last set of tests examinBsankand four other programs in the presence of ran-
dom noise. We try to find out how different noise types affect learning of a hypothesis.
The types are attribute and classification noise, and a combination of the tinmisk
curve,” recording the degradation pace of an algorithm’s prediction accuraicg aeise
rate gradually increases, is also registered for the test programs.

Let us already at this point lay down the general guidelines for the experiments and
explain how the quality measurements are taken.

Two generally accepted test schemes—both implementé&8LA—are the basis
of these experiments: In cross-validation [Breinsral. 1984, Michieet al. 1994] the
data is randomly partitioned into a user-specified number of mutually excludisets;
one subset is retained for testing and the others are used in training; this peotedur
repeated successively for each subset. Thus one is able to utilize the whibédble
sample as unseen instances in testing as well as in training. The mezslueiare av-
erages over all subexperiments. The second test scheme patrtitions the dateodnly
subsets containing user-specified random portions of the data; one of the subsets is used
in training and the other—consisting of instances unseen to the learning algorithm—i
testing. We choose the test strategy of each experiment on the basis aflégrat, we
try to follow the same strategy that was used in earlier studies in twddstain compa-
rable results. For example, the StatLog experiments were meticulouslgleetand the
same procedures can be repeated.

Corruption of domains is accomplished usiligSLA commandandomize, which
implements the following strategy [Elomaa & Rousu 1996a]. An attribute isupted
to noise level percent by replacing, with probability/100, its original value with a
new value drawn randomly from the attribute’s range (including the value to kecesp|
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in all the instances. The probability distribution is uniform: All values madtribute’s
range have an equal chance to be selected.

The reported results are always averages over ten repetitions withrtireeexperi-
ment setting. In most cases there is a random element either in the leammgngmror in
the example manipulation. Rerandomization is applied in every repetition x&orze,
if a random sample is required, then a new sample is drawn randomly at eactiaepet
The randomization naturally causes variation in the results. Ten liepstis maybe
not enough to guarantee totally reliable results, but it suffices to show thecttavel
and direction of the results. Moreover, we compensate the low number of iapebly
executing a large number of independent experiments.

Rankonly manipulates categorized attribute ranges; it can not handle numerioal val
ranges. At first this might appear to be a major shortcoming, but that, howewer, is
the case. Feature manipulation prior to induction is a standard technique timahagte
to be utilized in practice (see e.g., [Langley 1996]). In these experimenthocse
the categorization of numerical attribute value ranges using a separabefpeocessor
before we submit the data ®ank In order to ensure unbiased comparisons with C4.5
we use C4.5 itself as the attribute-categorizing preprocessor. In gactitirst run C4.5
on uncategorized data and let it induce some quantization for the attribute aalyesr
Then, by usingTESLA commandmap we redefine the data fdRankand run it with
guantized data.

There are four quality measures monitored in the tests. The first onegeeitietion
accuracyof the classifier produced by a learning program, or more loosely, the prediction
accuracy of a program. This refers to the proportion of those instances that r@etlgor
classified by the hypothesis and were not included in the training setirmaéken by
a program to construct a classifier is the second measure. It does not includadhe ti
spent doing basic data set manipulation. Construction times are measured Aynd
expressed in seconds. The third measure igdiné& of a decision tree as defined in
Section 3.1. Thesizeof a classifier is the fourth and final measure that is monitored.
There are two cases: The size of a decision tree is the total number ohéhgerd
external) nodes in it; the size of a rule set is the sum of the total number of ruiles in
and the total number of conjuncts in them. Over the years there has been some debate
about the correct way to measure these complexities. We have found the abaizedesc
measures to be at least informative, if not directly comparable.

The results that are reported are always the best ones obtained except fogStatL
experiments, where input parameter values for the algorithms were fixed. ST e i
vary each algorithm’s input parameter values registering only resultstirerbest run.
The measure that determines the best result is the prediction accuracthel esults
reported are always results from the run on which the highest classificatareay was
obtained. This causes some additional difficulties in executing the experimmhts a
interpreting the results, but it is the only fair way to carry out the comparis
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5.1.2 The algorithm implementations

In most of the tests reported below we compare five different induction alg@jthm
NewlID [Boswell 1990b, Tsatsarakis & Sleeman 1993], CN2 [Clark & Niblett 1989,
Clark & Boswell 1991], C4.5 [Quinlan 1993], ITI [Utgoff 1994, 1995], aRdnk Under

the common namRankwe actually have three different algorithms: The b&simin,
Rank and its incremental varianEM. Results for these three will be recorded sepa-
rately. The standard reference of this comparison is a classificatioistietitat always
predicts the most frequent class among the training examples. We refesstthéde-
fault (clasg method. Clearly, in no situation should the inductive programs decline to
do worse than the default class heuristic, if we want to claim that somathgagned by
using these methods.

NewlID is a slight modification of the basic TDIDT method of ID3. The main differ
ence is that no pruning is done while growing the hypothesis tree. Post-pruning of the
tree is available upon the user’s wish. The split attribute selectiohadeif NewID is
not the entropy-based information gain of ID3, but a new method that is based on the
Laplacian error estimate [Niblett & Bratko 1986].

We use implementation version 4.1 of the CN2 algorithm [Boswell 1990a], which
is a substantially improved variant of the original CN2 rule induction methdakkC
Niblett 1989]. The main difference to the original algorithm is, again, using tipéaka
cian error estimate instead of entropy-based heuristics. The modificat®esplained
in detail by Clark and Boswell [1991].

C4.5 is a product that has evolved from Quinlan’s studies on decision tree learning
over several years. The starting point in the development of C4.5 has beeratgbtstr
forward TDIDT approach of ID3, but it has progressed a long way. The improvement
are explained in detail by Quinlan [1993]. Note that we only use the decision tree pro-
ducing variant of the algorithm, the possibility to convert trees into rule [g@tiinlan
1987c] is not utilized.

ITlis a modern incremental decision tree learner whose foundation is in §al¢/o-
rithm [Utgoff 1989], which, in a way, was the incremental equivalent of ID3. Birtyj,
ITlis intended to be the incremental equivalent of C4.5: It handles continuous afribut
more or less the same way as C4.5 does, whereas ID5 is unable to manage them at al
We have incorporated ITI into these experiments mainly to act as a countef jfal .
TheFindminalgorithm in these experiments is the one described in Section 3.2, i.e.,
the basicFindmin extended to handle multivalued variables. (In fact, the extension to
handle variables of varying arity from Section 3.5 has also been included.)

The implementation language Bindmin, Rank andIFM is Ada. The rest of the
algorithms have been obtained from their developers; they have all been inmpéehire
C. All algorithms and th& ELA environment run on a Sun SPARC workstation environ-
ment undetJNI X operating system.
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Table 5.1: Main characteristics of the experiment data. Biosare characterized by the number
of attributes (not including the class), average numbeiatfas per attribute, number
of classes, and total number of examples.

| DOMAIN | ATTRIBUTES | VALUES | CLASSES | EXAMPLES |

CR.AUST 14 6.1 2 690
VEHICLE 18 7.0 4 846
DIABETES 8 12.5 2 768
SHUTTLE 9 2.9 7 58,000
DNA 60 2.0 3 3,186
MPLX6 11 2.0 2 2,048
LED 7 2.0 10 200
CHESS 36 2.0 2 3,196
TUMOR 17 2.2 22 339
SOYBEAN 35 2.9 15 290
MUSHROOM 22 5.6 2 2,065

5.1.3 Experiment domains

The latest broad interest in machine learning has now lasted just under tadedezver
since Feigenbaum’s notion of the “knowledge acquisition bottleneck” in expert systems
[Feigenbaum 1977] and Michalski’'s famous soybean disease identification résults [
halski & Chilausky 1980]. During this time a collection of standard referenca foat
evaluating the behavior of induction algorithms has accumulated. The literatiudesc
several reports on empirical tests on different algorithms within thieselard domains.
Hence, to achieve comparable results, we also run tests in some of thesmslolis
of utmost importance to experiment with many domains, since the algorithms’ bbehavi
tends to depend on the domain characteristics. (For a detailed study on tHaticorre
between algorithms and domain characteristics see Mathaed [1994].) We have se-
lected data sets with varying characteristics in order to evalhateffects caused by
these characteristics. The test data in our experiments comes from tvoesoldihe
StatLog project [Michiest al. 1994] and the University of California at Irvine repository
of machine learning databases [Murphy & Aha 1994].

We now describe briefly the test domains of the experiments. Table 5.1 summarizes
the main characteristics of the data sets. A comprehensive descriptionddta can be
found in Appendix B.

CR.AUST: This is one of the most commonly used machine learning databases; it in-
volves assessing credit card applications. The data was introduced tonmachi
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learning community by Quinlan [1987c].

VEHICLE: An image data set for testing how 3-dimensional objects can be identified
from a 2-dimensional image. Here the images are silhouettes of different types of
cars. The data set comes from the StatLog project.

DIABETES: This medical data originates from National Institute of Diabetes and Diges-
tive and Kidney Diseases. It records data gathered from 846 patients. Thenproble
is to predict whether a patient would test positive for diabetes (accordingo W
criteria). After categorization the 8 attributes have on average 10i8van their
range.

SHUTTLE: Data set originating from NASA and concerning the position of radiators
within the Space Shuttle. Relatively easy problem that also was one ofdhe St
Log domains. Comes partitioned to training (43,500 examples) and test (14,500
instances) sets. We use this data to test how the test programs scalb tgspct
to the number of examples.

DNA: Also this data comes patrtitioned into prespecified training (2,000 exampids) a
test (1,186 instances) sets. Our version, even though it has 60 attributes, is not
the original nucleotide representation [Noordevgeal 1991], but a modification
of the binarized version from the StatLog project [Micleeal. 1994]. We have
modified it by excluding 120 binary attributes, leaving only 60 as the basis of
classification. This simplification was suggested by the StatLog group in trder
make the problem easier.

MPLX6: This is the six-bit multiplexor function with five irrelevant bits. Multgxor
functions are known to be difficult concepts for standard learning programs to
master [Quinlan 1988a]. The data consists of 2048 instances.

LED: The LED display digit identification domain presented by Breireaal. [1984].
The data consists of 200 seven-LED display images representing the decimal dig-
its. There is a 10% attribute noise affecting the examples. The noise ntekes t
data appear inconsistent.

CHEsSS A data set describing king and rook versus king and pawn (on a7) chess endgame
board positions. This data comes originally from Shapiro’s [1983] Ph.D. thesis,
where the endgame is analyzed with extreme detail. There are over 3000 example
described by 36 attributes.

TuMoOR: Database concerning the location of primary cancer tumor gathered at the Uni-
versity Medical Center, Institute of Oncology, Ljubljana, Slovenia. Thisne of
the medical domains that has repeatedly appeared in machine learningiiéerat
(e.g., [Cestnilet al. 1987, Clark & Niblett 1989, Michalsket al. 1986, Mingers
1989a)). It is known that four internists (non-specialists) determined a ¢dorec
cation of primary tumor in 32% of cases and four oncologists (specialists) in 42%
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of test cases in this domain [Cestrkal. 1987, Michalsket al. 1986]. There are
22 classes in this domain.

SoYBEAN: This is the famous database of soybean infection diseases of Michalski and
Chilausky [1980]. The examples consist of 35 attributes. There were 19 ¢ldsses
of which are omitted as suggested by Michalski and Chilausky because they have
only few instances. Diagnostic decision rules of 96.2% accuracy for the 15 class
case have been acquired from approximately 20 hours of discussions with a plant
pathologist [Michalski & Chilausky 1980].

MusHROOM This database is another famous and widely applied standard test case
for induction algorithms. The data describes mushrooms in terms of their phys-
ical characteristics, and classifies them as poisonous or edible. The tai@sse
gathered from books by Fisher [1987] for his Ph.D. work. We use only a random
excerpt of 2065 instances of this domain in our experiments.

Of the above listed domains M x6 is a special one, since it is extensive, including
all the possible value assignments for the attributes, whereas the othersresally
gathered or randomly generated data sets that cover only a part of all the possible
stances of the domain. M.X6 is a Boolean function, £b and GHEssfollow man-made
exact rules, while the others are governed by the laws of nature.

5.2 Empirical results

This section reports and discusses the empirical results obtained in tharexmsrout-
lined in the previous section.

5.2.1 Three StatLog problems

Michie et al. [1994] report the prediction accuracies of several learning programs on
many different learning problems. We have tabulated part of their restdtIable 5.2.
For detailed information on the learning programs, the experiments, and thes ngsul
refer the reader to the book of Michet al. [1994].

We have results on the StatLog domains for a good collection of contemporary in-
ductive learning methods readily at hand. Thus, we can obtain an overviBards
utility by performing the same experiments with it. Learning algorithmsahatused in
the subsequent experiments are marked with boldface font in Table 5.2. In addition to
Rankvariants, we have added a row for ITI into the table. The programs were ofyginal
sorted into relative order in each experiment; the last row records fhasimgs. For
the new algorithms would-be placings are given. In the StatLog project the data sets
were categorized into groups according to domain types. We have included one data
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Table 5.2: Prediction accuracies of twenty-eight learqginggrams on three of StatLog project’s
experiments. ColumnifME sums the training times over these three experiments and
column RACINGS gives the relative accuracy order of the algorithms in thiése
mains. The test methods are 10-, 9-, and 12-fold cross vmligaespectively. The
algorithm types are: Stat = statistical method, DT = denisiee learner, R = rule set
induction, and NN = neural method.

| METHOD | TYPE | CR.AUST | VEHICLE | DIABETES | TIME | PLACINGS |
Discrim Stat 85.9 78.4 77.5 755 3, 6, 3
Quadisc Stat 79.3 85.0 73.8 305.8{ 21, 1, 11
Logdisc Stat 85.9 80.8 7.7 809.7| 3, 4, 1
SMART Stat 84.2 78.3 76.8 83,234.2/ 13, 7, 4
ALLOC80 | Stat 79.9 82.7 69.9 2,281.0{ 19, 3, 21
k-NN Stat 81.9 72.5 67.6 167.8| 15, 11, 22
CASTLE Stat 85.2 49.5 74.2 95.2| 8, 22, 10
CART DT 85.5 76.5 74.5 122.4| 6, 8, 9
INdCART DT 84.8 70.2 72.9 363.1| 10, 16, 14
NewlD DT 81.9 70.2 71.1 42.8| 15, 16, 19
AC DT 81.9 70.4 72.4 7,912.0| 15, 15, 18
Baytree DT 82.9 72.9 72.9 4471 14, 10, 14
NaiveBay DT 84.9 44.2 73.8 34.1, 9, 23, 11
CN2 R 79.6 68.6 71.1 180.4| 20, 19, 19
C45 DT 84.5 73.4 73.0 191.5| 12, 9, 13
[Trule R 86.3 67.6 75.5 1,190.1| 2, 20, 6
Cals DT 86.9 72.1 75.0 2840, 1, 12, 8
Kohonen NN - 66.0 72.7 7,928.4| —, 21, 17
DIPOL92 NN 85.9 84.9 77.6 2420, 3, 2, 2
Backprop | NN 84.6 79.3 75.2 229520/ 11, 5, 7
RBF NN 85.5 69.3 75.7 1,7529| 6, 18, 5
LVQ NN 80.3 71.3 72.8 629.4| 18, 14, 16
Cascade NN - 72.0 - 289.0| —, 13, -
Default — 66.0 25.0 65.0 -\ 22, 24, 23
ITI DT 82.0 74.0 68.3 4,2952[ 15, 9, 22
Findmin DT 72.2 58.7 69.0 66.4| 22, 22, 22
Rank DT 85.4 70.0 75.6 695 8, 18, 6

IFM DT 84.1 65.3 71.3 79.0| 14, 22, 19
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set from each (prediction task) group into this experiment. The test scheatig¢hrse
experiments is cross-validation, but each data set has its own folditg:. f&@st. AUST is
tested using 10-fold cross-validationEMICLE using 9-fold, and IABETES using 12-
fold. Let us examine these problems in detail one at a time and then present thké ove
summary.

Cr.Aust domain does not discriminate clearly between different types of prediction
methods: Among the best methods there are symbolic and subsymbolic learners as well
as statistical discriminators. Furthermore, most methods achievefwediccuracy that

is within seven percentage points. In other words, all methods do more or lesk/equal
well on this domain.

None of our test programs belongs to the very peek of best performers in this domain.
Indeed Rankturns out to be the best predictor among them. It achieves average accuracy
85.4% using 10-fold cross-validation. That is only 1.5 points less than the best method
has recorded in the StatLog experiments and 0.9 points more than C4.5 has Rewied.
would have been the eighth best predictor in this task; i.e., it would have belonged to
the top third among these algorithmd=M scores slightly less, but is still within the
same region. It would have been the number 14 predictor. The Baslmin which
by definition overfits, does substantially worse than its heuristic varamdsall other
learners. Still it achieves clearly better performance than the delask heuristic does.

Vehicle domain elicits more dispersion into the prediction accuracies of the algaithm
This time statistical and neural methods do on average clearly bettesythdoolic learn-

ers do. One might guess that it is the increased number of classes that causes the c
fusion; we examine the impact of increased number of classes in detail subsgquentl
There are a couple of programs that fail even worse thadminin this domain.Rank

is slightly better than CN2, about equal with NewID, and somewhat less @aedhemn
C4.5 in this task. It would have placed only as the eighteenth best algorithm. More-
over,Rankis now full 15 points behind the best predictor, while the difference was only
1.5 points in the previous experimenEM falls even further back, but remains clearly
more accurate than the basiodmin ITI now climbs to the top position among our test
programs, passing even its original inspiration C4.5.

Diabetes domain, again, does not bring out great variation in prediction accuracies.
Findminis almost competitive with the heuristic methods in this task; its acgueaen
though last but one, is only 8.7 percentage units less than that of the best method. Re-
spectively, its heuristic variantsRankandIFM—are unable to increase their accuracy
much from the base case Bihdmin Rank nevertheless, again scores better than C4.5,
and is among the best algorithms in this test, placing as the sixth best predidtor
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again does somewhat worse, but remains competitive, surpassing, for indlendb,
and CN2 algorithms.

Overall one cannot draw unambiguous conclusions on what type of predictor should
be used in these domains. If we cumulate the prediction accuracies obtairesbén t
three experiments, we see that the best predictor is a neural method, DIPOL92 (R48.4%
followed closely by a statistical discriminator, Logdisc (244.4%), and tleabest sym-

bolic method, CART (236.5%), is not far behirfdankfalls on average 5.8 points behind

in prediction accuracy from the best method and most of the difference is due to one do-
main (VEHICLE). When contrasted with C4.Rankturns out to be equal on average.

If the algorithms were placed in order according to the cumulated accuracietest
programs would obtain the following placings out of Zank—9, C4.5—10, ITI—17,
NewID—19,IFM—21, CN2—22 Findmin—25, and Default—26. This would suggest
that our test programs are divided into two groupankand C4.5 being clearly more
accurate than the rest of the programs. In general, the division is not scoteas
demonstrated by the subsequent experiments.

Column TiME in Table 5.2 shows the cumulated training times as reported by Michie
et al. [1994]. The training times oRankvariants and ITI have been transformed into
the same scale according to the times measured for NewID in our ownltegeneral,
symbolic learners are expedient, the time consumption of statistical methoeks, wad
neural techniques are slow to traiRindminand its variants belong to the very fastest
learners while ITI together with AC turn out to be the slowest symbolic learnghese
experiments. The latter two are special algorithms: ITI processes ezampt at a time
and AC uses look-ahead [Shepherd 1983]. The variarfaokalso use look-ahead and
IFM even processes the examples one at a time. Nonetheless, they still dressitni
more expedient on these domains than ITI and AC.

These StatLog problems give us a spectrum of reference for ordering learning pro-
grams along one dimension. At the top of the spectrum there are the heavy neural net-
work methods and statistical discriminators with somewhat better peafazenon aver-
age than symbolic learning methods—decision tree and rule learners—Revds one
of the best members of the latter category. Important differences along othersions,
such as intelligibility of the resulting classifier, go unnoticed here. Thests hint that
increase in the number of classes—the main distinction in the domain chiestacdeof
VEHICLE when opposed to R AusT and DABETES—would be a strongly dispersive
factor. Whether that really is the case will be examined subsequently ith deta

Having now positioned the variants Bankinto their place in this spectrum, we turn
to examine their behavior in more detail. The above comparisons should have made it
clear that already at its present compositiRankis able to compete with the élite of
learning programs in many respects. We restrict ourselves to compaoiseaskand a
couple of its equals in the remaining experiments. The exact placement of theifgjlo
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results into the wide spectrum of learning programs is not known, but the abovesresult
give us a pretty good idea.

5.2.2 Experiments in noise-free domains

We carry out five more experiments in domains that have no (explicit) noise present
All domains are, though, not error-free; the real-world domains have more ortless a
tribute value recordings missing. This time only seven inductive methods arasiauot
with each other. Our first experiment repeats the StatLog problems. We fodhg on
other quality measurements than prediction accuracy. In the second expesientst
the seven programs on thePUx6 domain. Quinlan [1988a] has shown that the ba-
sic TDIDT approach is inherently unable to come up with the optimal decisienirire
this domain. We briefly review hoRankand other methods do. The third experiment
evaluates the effect of the number of classes, attributes, and attvddues on the dif-
ferent methods. The fourth experiment registers the learning curves of the psogmam
the VEHICLE domain. We record the prediction accuracies of the programs when the
hypothesis is induced from training sets of varying size. Finally we test gogitims
capability to scale up by executing them on the substantially largemr 8L domain.
Subsequently we follow the convention of marking by boldface font, in each sepa-
rate run, the measurement, which is considered the best among those obtained by the
heuristic algorithms (shortest time, lowest rank, smallest hypothesidighdst accu-
racy). Emphasizing these values is not intended to disclose anything about th# over
performance of the algorithms, but just indicate the best recording.

StatLog domains revisited

Before going into results in other domains, we inspect the values of quality nesasur
other than prediction accuracy recorded by our test programs in the three Stitl og
mains. Table 5.3 presents the measured values.

From Table 5.3 we can see that C4.5 always prunes the heaviest and, hence, produces
the smallest decision trees. StiRanks trees are slightly more accurate than those
produced by C4.5 on two experiments out of three. Even NewID's trees are sthalie
those ofRank in spite that they have higher rank on averdgadmindoes not prune at
all and, therefore, produces trees of excessive complexity. Moreover, itdiegasthave
the correct rank, whereas its heuristic variants relax the criteriormaval/s manage to
find trees of lower ranklIFM comes up with trees that are only slightly more complex
than those produced dyank A further observation is that in theBHICLE domain
the relaxation oRankandIFM, even though it reduces the size of their hypotheses to
a fourth of that ofFindmiris trees, is not enough: They still come up with trees that
are much larger than those produced by other algorithms; in tandem, they turn out poor
predictors.
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Table 5.3: Values of the quality measurements other thamacg for the seven test programs in
the three StatLog domains. Column RK records the averadgeofahe decision trees

produced.
CR.AUST VEHICLE DIABETES
TIME RK SIZE | TIME RK SIZE TIME RK  SIZE
Rank 3.6 2.0 128.8 20.9 3.0 463.7 1.8 2.0 188.8
C4.5 46 1.8 326 18.2 3.1 1448 59 24 72.2
NewlID 4.0 2.9 118.7 10.6 4.0 190.8 3.7 3.9 142.0
CN2 151 - 52.6 429 - 219.4 6.8 - 39.8
IFM 48 2.0 173.5 255 25 390.8 3.3 20 2410
ITI 236.2 3.3 176.01,469.7 3.8 309.51,118.1 3.2 311.9
Findmin| 10.1 3.0 937.5 154 3.0 1737.4 29 3.0 1,6734

The learning times show some variation. WHeanksucceeds in coming up with
a good predictor, it is also the fastest learner among our test programs. éftpuwev
the VEHICLE domain in whichRankfails, it increases its relative time consumption.
As demonstrated analyticalyi=M has asymptotically the same time requirement as
Rank in practice it turns out to be only slightly slower—because of the additional
bookkeeping—even though the examples are processed one at a time. A clear contrast
to ITI, which uses abundantly more time than its inspiration C4.5. NewID i$ mbie
expedient than C4.5, and CN2 is relatively slow in all of these experim&mdminis
time consumption varies, but in general it is surprisingly efficient in corapamwith he
other methods, considering it uses look-ahead in attribute selection. Thengass in
these domains, however, comes from ITI: It uses orders of magnitude more time tha
the other methods do. Subsequent experiments demonstrate that this is not always the
case: ITI—being an incremental algorithm—is commonly slower than our otheartes
grams, but not that much slower. Let us already at this point offer our view of iseme
for ITI's peculiar behavior in this respect. We submit it to the reader thacibntinuous
attribute value range discretization that hampers ITI’s efficiency osetld@mains. In
incremental learning the heavy basic operations (cf. [Fayyad & Irani 1992]) ndeal to
performed over and over again every time a new instance is receivethieFuore, 1Tl
does not use the most modern efficient solutions to the splitting problem [Fetitain
1995].
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Table 5.4: Training times, ranks, and sizes of the hypothaskiced by the seven test programs
from three random samples of different size in the six-bittipkexor function domain.
All generated classifiers were 100% accurate. Test strégagpss-validation.

2-FOLD 5-FOLD 10-FoLD
TIME RANK SIZE | TIME RANK SIZE | TIME RANK SIZE
Rank 149 30 370 278 3.0 36.2| 284 3.0 36.8

C4.5 1.8 35 490, 19 32 418 17 33 456
NewlID 31 35 480 37 36 486 38 3.3 432
CN2 6.2 - 327 1.7 - 34.6| 9.5 - 32.5
IFM 44 30 400, 74 30 474 83 3.0 496
ITI 202 35 470 455 34 46.9 524 33 452

Findmin| 10.7 3.0 150 163 3.0 150 186 3.0 15.0

The multiplexor function

The basic top-down approach of decision tree learning always fails in findingdke m
concise representation for the multiplexor functions, since the data bits (cfndp®)
appear to be more relevant to an instance’s classification than the addsd€3uinlan
1988a]. Hence, all pure TDIDT approaches, independent of their split attribute sele
tion heuristics, will produce trees of excessive complexity. Nonethelesgrées may
still be 100% accurate classifiers. Furthermore, the basic TDIDT apprsactable to
make any distinction between address bits and irrelevant attributiae imultiplexor
function domains [Quinlan 1988a]. This follows from the fact that none of the address
bits alone bears any relevance to the classification of an instance. @nbjirtation of
address and data bits makes up a feature conveying information about theceltsaifi
of an instance. In this experiment we examine how our test programs manage the six-bi
multiplexor function domain into which we have added five irrelevant attrgoute

The experiment consists of three independent runs: The function is induced from
three samples of different size. We use 2-, 5-, and 10-fold cross-validat@nthe
sample sizes are 50%, 80%, and 90% of the total examples of the domain, respec-
tively. Training times, ranks, and sizes of the classifiers thus obtanmeddsted in Table
5.4. Prediction accuracies are not presented, since all programs, except theotkesa
heuristic, find a 100% accurate classifier at each run. The size of the optioisibde
tree for the six-bit multiplexor has 15 nodes. Hence, our first general observatiat is
none of the heuristic programs comes very close to the most compact representation; the
best results are over twice the size of the optimal decision tree

Findmindoes not use any heuristic attribute selection and, thus, avoids choosing data
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bits near to the root of the tree, even though they appear relevant. Therei®edwihys
able to find the size-optimal treéRankand CN2 find the smallest hypotheses of heuris-
tic methods at each run. The former’s rank criterion, which is preferred al other
criteria, prohibits it from including any of the irrelevant attributeshie trees produced.
The excess with respect to an optimal tree is caused by the fallacioushgrdébits.
CNZ2'’s success in this respect is due to the better flexibility of rule reptaten for this
task.IFM is the only algorithm whose hypothesis size is clearly affected by the increase
in sample size. However, considering how it operates, that is to be egpddte ad-
ditional instances are included into the existing tree, if possible, withoutasang its
rank, but regardless of the increase in its size. The sample size has necaméfto the
size of any other algorithm’s classifiers.

The time requirement of all test programs, except C4.5, is affected by thasacire
sample size. Note that on this domain consisting of only nominal attributes tifirie
consumption reduces to the same order with the other algorithms; though, it remains the
slowest learner of them all. An interesting detail is that the increat@piproach irRank
turns out very profitable in time savintzM is substantially quicker on this domain than
Rank EvenFindmincan operate faster th&ank

The conclusion of this experiment is tirahk criterion helps Rank to produce more
concise decision trees than other algorithms, but even its results are quit®naitiie
optimal result However, sinc&ankincorporates the basindminas its core, we could
obtain the optimal tree by turning all heuristics off. Finally we note that ¢engh the
heuristic algorithmger seare unable to come up with the most compact representation,
quite simple restructuring techniques, like those introduced in IDL by Van deeVel
[1990] and applied by Elomaa and Kivinen [1990], can be used to post-process decision
trees to reduce their size considerably.

Impact of the number of attribute values

As Rankhas been developed based on a learning algorithm that can handle only binary
classification tasks, it seems quite natural to test how multicatedgasgifications are
managed. The impact of two vs. several classes on an algorithm’s succdssehas

topic of concern with other methods too [Quinlan 1988b]. Also, the number of attributes
and the number of values per attribute may have an impact on the return. Absolute
figures measuring these effects are hard to come to. Therefore, we exploetative
differences of the learning programs.

Number of classes The first experiment intends to shed some light on the impact of
increased number of classes. We execute experiments iretheSOYBEAN, and Tu-

MOR domains, which have as many as 10, 15, and 22 classes, respectively. Table 5.5
tabulates the results for these experiments. Our first observation iticlain cannot
tolerate inconsistencies appearing in the data setsdnd TUMOR. The former domain
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Table 5.5: Values of the quality measures on tiEp] SOYBEAN, and TUMOR domains, which
have 10, 15, and 22 classes, respectively. ColumnsandRK contain the average
training times and ranks of produced classifiers, respalgtiv he test strategy in these
experiments is 10-fold cross-validation.

Rank
C4.5
NewlID
CN2
IFM

ITI
Findmin
Default

LED, 10 classes SOYBEAN, 15 classes TUMOR, 22 classes
TM RK SIZE ACC.| TM RK SIZE ACC.|TM RK SIZE ACC.
1.1 2.0 184 63.0| 9.4 20 150.6 85435 2.0 429 435
1.1 3.0 30.6 69.00 1.7 29 592 838/ 24 29 593 413
14 3.1 436 73.1| 2.2 3.0 130.8 77.83.2 4.0 1634 37.7
19 - 576 66.2/122 - 545 83.7|92 - 90.2 42.0
1.3 20 21.0 61.3/179 2.0 1750 83.6/4.7 2.0 469 39.9
3.7 40 920 68.2439 3.0 798 89.2| - -— - -
- - - — 1103 2.0 2086 814 - - - -
- 0.0 10 123 - 0.0 1.0 10.6) — 0.0 1.0 26.0

has noise added into it [Breima al. 1984] and the latter is known to be an inconsistent
one because of insufficient attributes. Incidentally, note that the defaustiobasistic is
not necessarily a very good performance reference in this type of multicatelgssy-
fication task whenever the instances are divided evenly among the classbe (€D

domain).

The results lend themselves to many interpretations: Different digoscores the
best accuracy on each separate domain. Only NewlD, whose relative panfoerde-
teriorates as the number of classes increases, suffers in a constant famngre in-
creased number of classes. Anyhow, it is evident tiegther Rank nor IFM suffer from
the increased number of clasgesre than other heuristic methods do.

On the LED domainRankand IFM are fast and construct clearly the smallest hy-
potheses. Unfortunately they are not very accurate in class prediction.agastcy
is obtained by NewID. C4.5 and ITI record approximately equal accuracies.afibe |
though, using more time and constructing quite large decision trees.

On the YBEAN data set ITI, surprisingly, comes up with distinctly the best classi-
fiers, which are both compact and accurate. Of course, the incremental petadkes
more time than batch procedures do. NewlD’s performance notably deterioatethe
previous experiment: Its hypotheses are considerably less accurate than those of othe
algorithms. Rank does well, being the second most accurate program, usingehelati
much time. IFM competes head to head with C4.5 and CN2 in prediction accuracy.
Again, the look-ahead iRankandIFM makes them consume more time than is needed
by C4.5 and NewlID.
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On the last domain of this experiment)MorR—an infamous databas@ankis able
to construct classifiers that are more accurate and concise than those ohetheds.

The time consumed is a bit more than it does take C4.5 to find its hypothesidFMso
comes up with smaller decision trees than other methods do; though, they are not quite
as accurate as those producediank Even CN2 surpasses C4.5 in accuracy, being the
other algorithm, in addition tRank that is able to obtain the prediction level of medical
specialists [Cestnilket al. 1987]. NewlD continues its decline: The trees produced are
neither accurate nor compact. Also ITI stumbles badly; because of some emdhg)
program it is unable to produce a legal decision tree in this task.

All in all, these experiments give evidence contrary to our initial fear Reatks
performance would suffer from the increased number of classes. Indeed, theéhagive
impression thaRankrather improves its relative performance than loses any of its ad-
vantage when the number of decision categories goes up. However, the evidence is too
limited to justify making any far-reaching conclusions.

Number of attributes Similarly as it is hard to manufacture a problem that would
watertightly demonstrate the impact of increased number of classes, riditgenerate

a domain for measuring the effects of the number of attributes. Note that we do not
mean a case where irrelevant attributes are added to the domain. SusEh@@duces
results that are quite predictable and will hence be disregarded here. Welleady a

run experiments in domains with up to 35 attributes and largely varying geenamber

of values per attribute. We run another experiment to evaluate the effdet atimber

of attributes, but analyze the meaning of the average number of values on the basis of
results that have already been gathered.

Table 5.6 records results from our experiment observing the effect of the number of
attributes. Whenever variation is absent from the recorded values, alediave been
omitted from the figures in the tabldzindmins strict matching does not work in the
DNA domain, there is some inconsistent element included, which would require relaxed
fitting.

In this experiment the domains happened to be relatively easy; in partidudar, t
CHEssand the MusHrRooMdomains are mastered almost perfectly by all the programs.
On the DNA domain, too, almost equal accuracies are obtained by all the programs.
Findminis and its heuristic variants’ time consumption grows considerably when the
number of attributes goes up. A result that is consistent with the thdandmins
time requirement is polynomially dependent on the number of attributes (Theorem 11).
On the other hand, all algorithms increase their training time notably as the namber
attributes grows; even those algorithms, which record the leasteelatirease, double
their time consumption when going from domain to another. Classifier sizesitgnolt
roughly in the same proportion. The peculiarity of this experiment is that on tixe D
domainlFM comes up with trees of equal size to those Rahkconstructs. It does it
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Table 5.6: Values of the quality measures on thesirooM CHESS and DNA domains, which
have 22, 36, and 60 attributes, respectively. Colummsand R contain the aver-
age training times and ranks of produced classifiers, réspBc Test strategy in

with prespecified training and test sets.

MusHROOM and CHESs s 10-fold cross-validation and in Nz 10-time repetition

MUSHROOM, 22 attrs CHESS 36 attributes DNA, 60 attributes

TM R SIZE ACC.| TM R SIZE ACC.| TM R SIZE ACC.
Rank 47 1 10.0 99.7| 89.8 2.0 1199 98.8/ 1815 2 255 914
C4.5 23 2 25.2 100 3.9 25 512 99.2 75 3 103 93.9
NewlID 6.6 10.0 99.8 76 28 650 98.7 11.2 3 129 93.0
CN2 19.0 - 10.0 100 63.6 - 735 984 918 - 258 915
IFM 6.2 1 10.0 99.7|1499 2.0 187.1 97.9| 447 2 255 091.9
ITI 26,8 1 9.0 100 |129.1 3.0 90.6 99.7 4578 4 285 091.9
Findmin| 5.1 1 20.0 100 | 146.2 2.0 327.7 98.7 - - - -
Default - 0 1.0 66.6 - 0.0 1.0 52.2 - 0 1 50.8

considerably faster and, furthermore, the trees are even slightly mamasethan those
of Rank
By these results and those recorded earlier it is obviousthigaincreased number
of attributes in a domain does not automatically mean complications to the learning
programs

Average number of values Finally, in light of the experiments carried out above, we
can conclude thahe number of values per attribute in a domain, as such, has no sig-
nificance to our test program$laturally, even the largest average number of values per
attribute in our test domains is quite small. In real-world applicationeeth@ght be
data available with tens if not hundreds of possible values per an attribuseeVident
that in such a domain most of our test programs would suffer heavily. Howeigegst
evident that either such data should be preprocessed to better suit the algoridhigistor
modifications of the algorithms should be developed to better manage such situations.
All'in all the conclusion of these experiments has to be Retk and IFM tolerate
large numbers of classes, attributes, and values per attribute at least as wehers ot
empirical learners, in what concerns classification accuradpwever, their trees tend
to be somewhat larger than those of other methods and it usually also takesmre ti
to construct them. The latter observation could be expected because of thediacgtra
control procedure of the algorithms. Our objective in the developmeRbokwas to
bring it closer to empirical methods, without sacrificing its provable proggertather
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Figure 5.1: Learning curves of the algorithms on a domairceoring prediction of vehicle cat-
egory.

than to devise yet another purely heuristic algorithm. Therefore, it would bepdiais
lation to aspire after equivalent results ankin every respect.

Learning curves

Fig. 5.1 depicts the algorithms’ learning curves on tleH\WCLE domain. This domain
was chosen for this experiment, because it seemed to cause variatiorptediction
accuracies; similarly one could expect it to lead to different shapedifepcurves.
With the clarity of the figure in mind, we have decided to excl&@iedmin from this
experiment. Default class heuristic’s accuracy is the horizontal line a2kftchccuracy
level.

The general appearance of all the learning curves is very similar: Mosithlgsr
reach their final level of accuracy quite rapidly and then settle down. @miy sandom

fluctuation exists in the tail of the curve. Of course, since the programs do not have

equal predictive power, the accuracy levels, where the curves settie davy. CN2
picks up its final accuracy a little slower than the other programs. Thus it ¢sir
more gently sloping than that of the other algorithms. The curv&aokandIFM have

more amplified fluctuation in the beginning than those of other algorithms. The reason

for their behavior is the rank criterion: The programs resist increasing theofahlkeir

hypotheses and, with small samples, are often able to find acceptable hypotesis t
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Table 5.7: Values of the quality measurements for the sessrptograms in the BJTTLE do-
main. Test strategy is 10-time repetition with prespecifrathing and test sets.

TIME RANK SIZE ACC.
Rank 42.3 1 9 98.93
C4.5 13.8 2 14 99.10Q
NewlID 3,186.3 1 7 99.0(
NewID* 41.8 1 9 99.00
CN2 6,670.7 - 39 100
IFM* 55.7 1 9 99.04
ITI 15,990.7 2 75 99.98
Findmin - — - -
Default - 0 1 79.16

with a (too) small rank. Unfortunately, these prove poor predictors. Othemnaise of
our test programs exhibits behavior, which differs significantly from that of the sather
To our surprise NewlID turns out to constantly have the highest prediction accuracy—a
phenomenon that has not presented itself in earlier experiments. Though, the curves of
C4.5 and ITI are so entangled to that of NewlID that one can hardly tell them apart
As a final note we may draw the reader’s attention to the fact that the strtadliming
set size for which results are recorded, 1% of the domain (8—9 examplesjlyarekls
better classifiers than the default class heuristic.

Scaling-up capabilities

The last experiment in this test series examines the algorithms’ capdbilécale up
by running them with a very large database, again, taken from the StatLogtpitijec
SHUTTLE domain contains altogether 58,000 examples. They are divided into a training
set of 43,500 examples and a test set of 14,500 examples. The test strategy, of sourse, i
10-time repetition with these prespecified example sets.

This is a very simple experiment, which only attempts to verify that thigaegrams
can tolerate substantially larger amounts of data than has been used up torthi¥ ipei
problem itself is pretty easy; almost perfect accuracy for the full datétgined by a
9-node decision tree [Michiet al. 1994, p. 155]. The large domain causes problems to
some of our test programs: We were not able to come up with comparable results for a
the algorithms. Therefore, we restrain from marking down the best recordirigle
5.7, which tabulates the measured values obtained in this experiment.

In Table 5.7 the results that have been obtained using categorized data have been
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marked with an asterisk. For NewlID results using categorized and ntahdeta are
given. C4.5 was unable to handle uncategorized numericat;dagsausual, thdRank
variants cannot tolerate numerical attributes. Oddly, CN2 and ITI, for gast, were
unable to process the discretized version of the data. Therefore, we caneoit pessilts
that are comparabl&indmins exact fitting, again, fails on this domain, the algorithm is
unable to produce a decision tree.

This extreme experiment underlines the importance of expedient handling of numer-
ical attribute value ranges: Time consumptions of the algorithms are on tditdyent
levels depending on whether original or preprocessed data was presented to thlees; |
ITI on average almost five hours to come up with a classifier, when C4.5 reaqunie
under 14 seconds on average. For NewlID the numerical data requires approximately 80
times the training time of discretized data. On the part of the other quadisarements
the results ought to be more comparable. We observe that CN2 is the only algorithm that
is able to come up with a perfect classifier. The hypothesis size, hovggoars quite
large. The other algorithm operating on the numerical data, ITI, also comesthp wi
accurate but large classifier. The rest of the algorithms are within 0.2iqege points
in accuracy. Furthermore, they produce more concise concept representatioGslithan
and ITI.

This large domain turns out to be one of the rare cases Whbftas able to surpass
Rankin accuracy. The conclusion of this experiment is ambiguous. We were able to
produce a classifier with all our heuristic test programs, but only after madifthie
data for some of the algorithms. NewID was the only program capable of handling both
versions of the data. However, the size of this domain is already so laageyé find
it only reasonable, that the algorithms do not provide for such an amount of examples.
The study oflata miningPiatetsky-Shapiro 1991] is concerned with discovering general
laws from among massive amounts of data.

5.2.3 Experiments in noisy domains

Noise is always a factor in real-world learning situations. We need to cotaitlcer
experiments on the impact of unsystematic errors on the algorithms in order to thigtai
correct picture and gain proper understandingrahks success in this respect. There-
fore we carry out this set of tests, which consists of three independent expexifbat

first experiment, again, deals with a StatLog problem. This time we aatificorrupt

the data of the IABETES problem to contain 25% random attribute and classification
noise. Thus we obtain an initial view of noise’s harmfulness to each of the dgwit

The second experiment studies the effect of different types of data corruption on the
algorithms. We corrupt the MsHrRoOM domain artificially with different types and
combinations of noise. The third experiment elicits the algorithms’ “noise cubyes

4Categorized version of the data has been produced based on the classifier lga@id b
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Table 5.8: Values of three quality measures on theBBTES domain with, first, attributes and,
then, the class corrupted to noise level 25%. The averagdes @frdecision trees are
not reported, because only minor variations appear in thearlier results are repeated
for better legibility. Test strategy is 12-fold cross-daltion.

ORIGINAL ATTRIBUTE NOISE CLASSIFICATION NOISE
TIME SIZE ACC. | TIME SIZE ACC. | TIME SIZE ACC.

Rank 1.8 188.8 75.6 1.9 1753 70.2 1.9 1735 66.3
C4.5 59 722 730 55 518 73.1 104 93.3 61.7
NewlID 3.7 1420 711 51 176.3 68.9 57 2445 61.3
CN2 6.8 398 71.1 7.2 31.8 69.4 6.3 29.7 64.8
IFM 3.3 2410 71.3 2.8 263.7 70.1 3.4 2394 64.3
ITI 1,118.1 3119 68.3 1,031.6 303.9 68.03,723.5 416.2 57.7
Default - 1.0 65.0 - 1.0 65.0 - 1.0 63.0

gradually increasing the noise rate of theYB8EAN domain.

A StatlLog problem corrupted

Our first experiment with noise-affected data explores the general impactsef oloithe
classifiers produced. For this end we re-execute twice thaEXes problem with the
exceptions that this time, first, all attributes and, then, the class labeistances have
been corrupted to the noise level of 25%; i.e., one fourth of values are drawn at random.
That should certainly not be a negligible level of noise and should not go unnoticed
without having an impact on the measures. This domain’s usual test strategyd12-fol
cross-validation, is employed again.

Table 5.8 presents the results obtained in this experink@miminis excluded from
this and the following experiments, because it is unable to tolerate incorseseap-
pearing in the data due to the noise. Therefore it cannot do better than the defssilt cl
heuristic, into which it ultimately resorts after having tried all ra@kdidates out.

Table 5.8 shows that attribute noise is handled gracefully by all our test programs
Classifiers remain approximately equal-sized, if not reduce in sizepsetiearned when
no explicit noise was present, training times do not increase significanthypragpde-
ductions of 0-7% in classification accuracy appear. InconvenientlyRiamnthat loses
the most in accuracy. C4.5 shows excellent capability to tolerategtrimise: It can
even increase its accuracy when noise is introduced into the data.

Further reductions in accuracy come about when attribute noise is changedifo-clas
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cation noise. Moreover, some algorithms increase the size of theirfidesabundantly.
C4.5, in particular appears to be sensitive to classification noise: It doitdblesining

time, increases the hypothesis size, and decreases its accuracy by oveorhS¥at of

the noise-free setting. However, the reason for C4.5 appearing so vulnerabigeatha

be its exceptionally good behavior when dealing with attribute noise on this domain.
CN2, on the other hand, accepts classification noise without complications.Resé,
andIFM tolerate classification noise weRankregains its position as the most accurate
algorithm among our test programs.

RankandIFM retain their performance throughout the experiment in the sense that
they use approximately the same amount of time, the rank of their trees staysanth
the sizes of these trees are more or less the same independent of whether negsmnis pr
or not; only the prediction accuracies vary. This experiment seems to inthealianks
andIFM’s pruning works better for classification noise than for attribute noise. df thi
is ascertained in the subsequent experiments, it will not surprise us much,tisence
algorithms have been designed to take classification noise rather thiatattooise into
account. Nevertheless, it would be a minor disappointment, since we have argued tha
their pruning mechanism ought to be able to take care of other types of noise, too. Let
us suspend passing the final judgement until we have the results of the next experiment
at hand.

Altogether, this initial experiment would suggest that none of the learning programs
is particularly vulnerable neither to attribute nor to classification ndBexause of the
straightforward corruption scheme, there are different amounts of randomIy awedw
ues involved in these two experiments. In the former experiment 25% of thesvaflue
the eighth attributes of the 768 examples in the test set were randomly drawins,Tha
over 1,500 allotted values. In the latter experiment only 25% of the labels of the 768
examples in the test set were drawn at random, i.e., approximately 200 al&ditdsl.
Despite this, consistently with our earlier discussion (Chapter 2)batérinoise is toler-
ated better than classification noise by all our test programs.

Different types of noise

We have discussed attribute and classification noise and their insepeoatiation
already on several occasions. Now we test whether our test progRamisn particular,
exhibit different kinds of behavior when facing these noise types. RecallRaak
has only been analyzed with classification noise, but is also expectednagmahe
other noise types. There are two parts in this experiment as well: In thedirsthe
MusHRooMdomain is corrupted with a 20% noise rate using all three noise types. The
second part, then, repeats the same experiment with 35% noise rate, thisTeste.
strategy is 10-fold cross-validation. The bar charts in Fig. 5.2 depict theseduhis
experiment (for the exact measured figures see Appendix D).

The basis for this experiment was that all the test programs recorded act0ff6y
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Figure 5.2: The quality measurements on thesrROOM domain subjected to noise. For each
algorithm three pairs of bars are shown: The first pair depizéasurements under
attribute noise, the second one under classification nafgkthe third one when both
the class label and attribute values are affected by randmrse Black bar presents
noise level 20% and the white one noise level 35%. The widglggeis the recording
obtained for the measurement in question in the noise-&tmg.
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or slightly less, when no noise was present in the domain (cf. Table 5.6). Fudterm
the small hypotheses were built relatively quickly. The equal original perfoceaf
the algorithms lets us observe absolute differences in the algorithms’ noissnitde

The bars in Fig. 5.2 tell, more or less, the same tale for all of the algoritAttribute
noise is less damaging for prediction accuracy than classification noiseh whiurn
proves to be less impairing than the combination of both noise types. Furtherimore, t
disturbance caused by noise gains power as the noise rate increases; the highsethe noi
rate, the less accurate the result. The general appearance of the accusasyveay
similar for all the algorithms. Only ITI is conspicuously more severely hihbige than
other algorithms.

There is more variation present in the bars corresponding to the classésr but
still a common pattern appears: For most algorithms the presence of clegsificoise
alone lets them prune heavier than when attribute noise is prevailing. Otheitives
algorithms have their individual characteristics as to whether heavier pruntcgeds
to keep the resulting classifiers concise as noise rate goes up.

As to the learning times, there seem to be two main lines: In C4.5 andINdwel
heavier (post-) pruning, when only classification noise is present, makes thenotse
time than in the presence of attribute noise. The rest of the algorithms aneh 98-
tensive (prune on the fly) and require less time when classification noiselpreiva
general, there is a natural correspondence between the size of the hypothesiseand tim
spent on constructing it. Finally, ITI again uses untolerable amounts of timetalad b
trees of excessive size under all types of corruption.

The performance dRankandIFM on noisy data accepts the challenge issued by the
successful contemporary empirical learn&ank in particular, is at the same level with
the best methods in every respeliiM has been designed to sacrifice compactness on
behalf of efficiency. The fact that it also looses somewhat in accuracy @tunéte,
but seems to be inevitable for incremental learners. This experiment does nottsuppor
the view thatRanks andIFM'’s pruning would not tolerate other types of noise than
classification noise; on the contrary, the two algorithms obtain comparahlksevith
all three corruption schemes. The next experiment should make it clear, watthwerte
noise is managed by tieankvariants, or not.

Noise curves

Similarly as increasing sample size improves an algorithm’s predictte steadily, giv-

ing thus a “learning curve,” increasing the noise rate yields a steadilyakogepredic-

tion accuracy and a “noise curve” for the method can be drawn. This experimerdsec
the noise curves of the test programs in tr@yS8EAN domain. Both attribute noise
and classification noise values are depicted in Fig. 5.3. Test stratelgig iexpperiment

is 10-time repetition: Random portion of 67% of examples is used in training and the
remaining 33% is reserved for testing.
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Let us analyze these two curves separately. When subjected to attriisé the
algorithms very rapidly loose their accuracy; already noise level of 1-30%, inaene
suffices to halve an algorithm’s prediction accuracy on this domain. The dedirim-
ues until the accuracy level of the default class is attained. Ultimatetgethods resort
to predicting the most common class. Hence their accuracy cannot fall sagific
below that of the default class heuristic.

The curves of the algorithms get pretty badly tangled together. The only observations
that can be safely made is that NewlID, as usual, tolerates noise poorlyhanalso
IFM’s prediction accuracy declines faster than that of the other programs; wgith hi
noise rate$FM catches the other algorithms’ degradation pace.

Somewhat surprisingly, when exposed to classification noise, the algoritemgse
do better on this domain. This time most algorithms have a curve that is almeest; lit
takes large amounts of noise before the accuracy declines substantially. Reail is
discerned as the worst noise handler among our test programs. Also, ITI's poor handling
of classification noise, which was already taken notice of in the previousimerer
sets it apart from the other algorithms. The curves of the rest of the algorithimes c
down head to head.

These curves do not give evidence for the feadRafks inferior handling of attribute
noise. Rather, these curves demonstrateRaaik fights both noise types as effectively
as other methods do

5.3 Summary and analysis of the results

As the first general observation, let us draw the reader’s attention to théh&only
ITI ever constructed decision trees with rank beyond value 4 on these exp&sioos-
cerning several real-world databases. Indeed, the rank of decision tasksced by
Findmin, Rank andIFM never exceeded value 3. We may conclude that typical real-
world learning tasks have an accurate decision tree within the smaidstategories.
This ascertains the measurement’s utility and supports the idea of learnmmgum
rank decision trees as a practical approach. Furthermore, it might open up Igessibi
for developing an even faster and simpler method of learning rank-bounded decision
trees for practical purposes.

Incremental methods are, naturally, slower than their off-line equival&mnbcessing
the examples one at a time, of course, has an overhead. However, as demaistrat
our experiments above, in many real-world domains the difference in prastuite
small. A small increase in running time is gladly accepted in applicatiemsanding
on-line learning capability, so long as it stays below times needed by, e.g.,dbie m
popular neural methods. Incremental algorithms also tend to produce somewhat larger
trees than their batch equivalents. Moreover, their accuracies areeosga slightly
below those recorded for the trees of batch algorithms. These observationsediehba
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both our pairs of batch and incremental equivalents: C4.5 and ITI as wRkhakand

IFM. Altogether, one has to pay a price for using an incremental algorithm, but since
they are special-purpose tools intended to be used only when no alternativetbaists

is, in no way, an untolerable tradeoff for the improved applicability.

However, these experiments have clearly shown that ITI does not constitata-a
petitive incremental alternative to modern inductive learners, maedause of its slow-
ness, which will invalidate it from many practical tasks. Inddé&d] clearly presents a
more serious challenge to batch learners, being only slightly less accutagéfitient
in most cases.

There is ample evidence in the above experiments to support the claitheloaterall
performance of Rank bears the comparison with its different empirical rivalNese
of the algorithms, however, is quite modern in the sense that they do not make use of
the latest and most advanced general techniques and means developed to amkinducti
learning (constructive induction, in particular). All the algorithms aredasperimental
methods that could be enhanced with such means, and their performance would improve
even substantially.

Itis evident that the most important aspect of a learning algorithm is itsfitas®n
accuracy on unseen instances [Langley 1988, Miehia. 1994]; i.e., its capability to
learn the rule governing the classification of instances, if any. Howawveimportant
motivation and aim behind the introduction of these tools has been to developissist
and explanation generators for human experts to use, e.g., in expert system engineering.
It is this goal that sets standards to the size and intelligibility of thesiflass produced
(in addition to Occam’s Razor). If there was not that much difference letweme of
the algorithms’ accuracy, greater gaps in the classifier sizes ardatbtec

Findmin emphasizes clearly the importance of relaxed fitting in coping with real-
world problems. Real-world data is hardly ever perfect. Therefore rietexia the form
of pruning is required even if no significant amounts of noise are present. Of course,
this has been taken into account in Valiant’s learning framework by atlgwverror and
d-uncertainty.

The feeling concerning the relative performance of the programs obtained froen thes
experiments is that C4.Rank and CN2 are pretty equal in prediction accuracy. C4.5,
however, is on average clearly faster than the two, and constructs morsebypothe-
ses. NewlD is distinctly poorer learner than the thi&&4 can compete with it in every
respect. ITI still has many deficiencies, which make it unable to convpétehe other
algorithms. Nevertheless, all heuristic algorithms give clear advantagehoosing the
simple default class heuristic.

Let us conclude this section with the following piece of information. Summing ove
all different tabulated results, the average accuracies of the tesbprsgtre:
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C4.5 81.11%
Rank  80.95%
CN2 80.55%
NewlD 79.43%
IFM 79.42%
ITI 79.12%

Default 53.79%

This result does not necessarily give a fair picture of the programs’ actuy,gihce
the test domains are not representative of those encountered in practice.conttaey,
the test domains are often such that they are expected to cause difficuloas test
programs. All in all, even though clear differences in the algorithms’tutdan be
observed in particular experiments, only fairly small differences exingn taking the
average over all test domains (cf. [Elomaa 1994)).

5.4 Discussion

Our empirical tests have succeeded in verifying fRahkis a highly competitive deci-
sion tree learning technique and tA&LA is a valuable tool for experiment design and
execution. However, bofhELA andRankhave many natural development opportunities
that would enhance their utility and user-friendliness.

The most obvious deficiency iRankis its time consumption’s dependence on the
number of variables in the domain, which makes the algorithm unstable in thistespe
Even thougtRanknever loses its grip similarly as ITI does, it would be desirable torattai
a better efficiency. To relax the dependency of the number of variables wouldeequir
changing the learning approach profoundly. However, there exists an impleragntati
technique that would enhan&anks speed substantially: Because of the multirecursive
operation of the algorithm, dynamic programming would bring substantial savings into
its time consumption. Furthermore, tabulating intermediate results woulduppos-
sibilities to similar optimizations that are implementediiM: Avoiding unnecessary
recursive calls td-ind.

We have evaluateBindmin Rank andIFM in separation, even though they are im-
plemented all together. Only seldom were there situations where bEgidginor IFM
would have proved more profitable than usiank but still a couple of occasions exist.
Combined these three variantsfdhdminwould have been an even more successful de-
cision tree learner thaRankalone. However, we do not have a way of knowing when to
use which variant. Improving the adaptivity Rankremains a topic for future research.



Chapter 6

Conclusion

We conclude this dissertation by, first, summarizing the work that was repane,

then, presenting some remarks about the work: What could be done to continue the
work? Which topics were omitted and how important are they? What are the piactic
and principal implications of this work? How does it relate to current trendsaichine
learning research?

6.1 Summary

After the introductory chapters, in Chapter 3, the first original contribution efdisiser-
tation was presented. Based on the decision tree learning algd¥itttminof Ehren-
feucht and Haussler [1989] a new empirical decision tree leaRsatk with firm the-
oretical underpinnings was developed. All results concerning the algorithm’s function-
ality were demonstrated in the framework of multivalued variables #msbes, which

is the normal state of affairs in the application domains of learning algoritliihean

be argued that multivalued nominal attributes can be quite easily convetdedloolean
ones, but since intelligibility is one of the strongest advantages of decisia) alesuch
changes are damaging in practice.) In order to cope with dynamic changes in the ap-
plication domains, results of incremental learning of rank-bounded decisiorviezes
demonstrated. Lastly, the unclinical nature of real world was taken ictouzat by pro-
viding for random errors in the classification of training examples. Togethes these
modifications to the original algorithm entail practicability.

In Chapter 4 the need of an integrated testbed for learning algorithms was demon-
strated and the design of such an environm&Bt, A, was presentedlELA has many
advanced features: It incorporates an experiment specification languagertest the
user to follow strict rules in experiment design, it has an interactiveinteface with in-
cremental execution facility, semiautomatic algorithm inclusion is supgpautomatic
collection of results is the quintessence of the platfofilaLA has been designed so that

101
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minimum amount of knowledge of a learning program is required before it can be used
with TELA. It also tries to provide as much assistance as possible for the actwesiorcl

of alearning algorithm. The system relieves its user from many simpleiatts duties

that are unavoidable in testing learning algorithms.

A central feature offELA is the support provided for experiment design and incre-
mental execution of specifications. Being able to design test sequences onrddughe
is essential for the reliability of the tests and comparisons. Moreoxperenents de-
signed with a carefully elaborated specification languagelk8LA are more likely to
turn out to be useful thaad hocexperiments. Finally, experimentation is unavoidably
iterative by nature: The results determine whether a test sequence hasteesshil or
whether it has to be re-executed. TELA incremental execution oFESLA specifica-
tions is supported by theE&D interface.

TELA is still a prototype system, an initial attempt towards a more ambitious envi
ronment. In order to gather as much feedback as posBHIA is distributed freely to
all interested parties. Even thou@lELA has been tested extensively, it is yet to con-
front the real challenge: Application in a real-world development process.edwer,
numerous extension possibilities exist; only experience gathered from diffecgatisr
and users will tell what should be the final form of the system.

In Chapter 5 the algorithrRankand the environmemELA were compared together
with several contemporary inductive algorithms on a large number of real-leairiding
domains. Several different aspects of the algorithms and their hypothesiBaigasgere
examined in these experiments. Initially we provided a framework for theeguiest
experiments by running all our test programs in three data sets from the StatLegtproj
[Michie et al. 1994], which has related the performance of empirical learning algorithms
with respect to statistical discriminators and neural networks. Thenslegroup of ex-
periments was run on domains with varying characteristics, but with no poesent.

In these experiments we emphasized other quality measurements in additierpre-
diction accuracy. We explored the algorithms’ capability to tend towardgptmal de-
cision tree; their capability to tolerate increases in the number o$etaand attributes,
and in the average number of values per attribute. Learning curves werdagdgoione
domain. Finally, the algorithms’ capability to scale up was examined by runhamg t

in a substantially larger domain than those that had been used up to that poinhalhe fi
set of experiments concentrated on the effects of noise. Different combinafinose
and their impact on the classifiers produced was examined in three experiik s

all, Rankis successful in these tests: It attains the overall performance of Cdiéh 8
considered one of the best decision tree learners of today.

The results of this thesis include several individual technical contributions. nfa
jor constructive contributions come out of this research: The successful detisgon
learnerRankand the uniquely useful testing environm&rLA. Our empirical eval-
uation constitutes an important addition to the ever-increasing volume of kdgevle
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obtained by empirical experimentation. The main contribution of this thesisevesw
lies in the development processiRénk The work comprises a successful and extensive
case study of the theoretical design rationale in the development of an errpaiteng
algorithm.

6.2 Remarks

Now that learning decision trees has proven to be intractable in prdEtaoecocket

al. 1995], there is no other alternative than to tighten the syntactic restriciosed to

the resulting hypothesis tree somehow. Delimiting the rank of a decisiomixaeally,

is not the only way, but as demonstrated in our empirical work, it is one that has high
relevance in real-world domains.

There are many routes that could be followed to continue this work. It is the eas-
iest task to come up with further theoretical results that could be pravegeactical
improvements that could be implemented.

On the theoretical side many basic results could be worked on. As an examaphg, m
other noise models than that which was used in this work could be considered. We
touched briefly the on-line learning model of Littlestone [1988]; the analysi§ ldf
under this model ought to be carried through so that comparison with Simon’s [1995]
work can be made. Analysis &ankcould be carried out in a more realistic learning
model than the PAC model. For instance, AgnosticPAC model [Kearn®t al. 1992]
might be a better alternative as advocated by Maass [1994].

The theoretical underpinnings of our work have attracted mild criticism [Aater
al. 1995]: It has been claimed that the classification noise model does not conform to
those situations that are encountered in the real world, which then would |eddrior
performance in practice. However, the noise handling technique that we endhup wit
is exactly the same that was originally present in the ID3 algorithm [Quih&88].
Furthermore, our empirical tests verify that the pruning incorporatedRattkworks
without complications in all of the real-world domains tried.

The practical improvement possibilitiesRankinclude, among others, the following
details. The fact thaRankis not able to handle numerical attribute ranges is the factor
that most clearly sets it apart from the rest of our test programs. Howéeegeneral
solution to this problem [Fayyad & Irani 1993, Fultehal. 1995] could easily be in-
corporated intdiRank Furthermore, we are aware of the optimal solution to the problem
[Elomaa & Rousu 1996b]; it would enhance the method’s efficiency substantially. How
to reconcile the method elegantly with the minimum rank criterion, of coueseains
a problem. EnhancinBanks parameter independence is a topic for future research. At
its present composition the algorithm is quite sensitive to the selection of prypain-
eter values. Furthermore, we would like it to be automatic that the cqivest for the
task at handFfindminvariant is chosen. FOFELA several improvement proposals were
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given already in Chapter 4. Work for implementing some of these ideas hadyalrea
commenced.

Of course, further tests with boRankandTELA are always welcome. Even though
both programs have been tested extensively, new empirical experimentbéeed ex-
pose further strengths and weaknesseRankand TELA. Moreover, TELA still lacks
application in a real-world development process, which only will give thenalte vali-
dation to the system’s utility.
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Appendix A

Proofs of Lemmas and Theorems

This appendix gives rigorous proofs for those lemmas and theorems for which full proofs
were omitted in the text. All important proofs are included in the text; thossepted

here are mostly simple variations of proofs presented earlier in the telseovigere. We
proceed in the order of the text chapters.

Chapter 2

First, Theorem 6 is proved by modifying the corresponding proof of Sakakibara [1993]
only slightly. For the proof we need Hoeffding’s [1963] inequalities (Lemma 21) and
the following lemma.

Lemma 25 LetF be a polynomial-sized function class andsjgbe such that) < n, <

n+ e(1 — 2n)/2. Let OccaniS,¢,d,n,) be a noise-tolerant Occam algorithm f@.

When given a sample of m examples drawn from the orackeX, (P, f) the algorithm
outputs a hypothesig such thatP(f A g) < ¢ with probability at leastl — 6. The
sample sizen required is at least

8 2| Fy, k|
In =
£2(1/2 — npy)? 0

Proof Let us consider the disagreements of the hypothgesisd the samplé&; i.e.,
examplesz,[) € S such thaty(z) # [. The probability that an example;, /) drawn
from EX, (P, f) disagrees witly is

e the probability thatr € {y € [m]" | f(y) # g(y) } and! is not corrupted by the
oracle, which isP(f A g) - (1 — n), plus
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e the probability that: € {y € [m|" | f(y) = ¢g(y) } andl is corrupted by the ora-
cle, which is(1 — P(f A g))n.

Summing these together, we have that the probability, that an examplelisagrees
with the hypothesig, is

P(fAg)-(1—n)+(1—=P(fAg)n=n+P(fAg)-(1—2n).

For the target functiorf we haveD(f, S) = n|S| and for any functiory, such that
P(f Ag)=e,wehaveD(g,S) = (n+(1—2n))|S|. Thus, any such has an expected
rate of disagreement that is greater by at least =(1 — 27) than that of the target
function.

By the assumptiol < 7, and the first Hoeffding’s inequality, the probability that
the target functiory’ has more thain, + s/4)m disagreements with a sampeof m
examples drawn frofb X, (P, f) is

GE(U: mﬂ?b+5/4) GE(nbam: 77b+5/4)

6—2(5/4)2771

2|F
672(1/16)81n%

INIA N IA

2|F|
—In 25

o
2|F|’

e

Hence, with probability at least- ¢ /2, Occants, ¢, ¢, n,) can find and output a function

g € F, such that
D(g,S
Dg.5) o 4 °
The probability that a function with error greater thahas at mostr, + s/4)m dis-
agreements is, by the assumptign< n + (1 — 2n)/2 = n + s/2 and by using the

second Hoeffding’s inequality, at most

LE(n+e(1—2n),m,n + s/4) LE(m, + s/2,m,m + s/4)

<
< - 2As/4)Pm
)
m.

Since there are at mo#F| functions inF, the probability of producing a function
with error greater than is less than

|F| - e 26/0"m — §/2.

Therefore, with probability at leagt— ¢, Occants, ¢, 6, i) outputs a functiory such
thatP(f A g) < e. O
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Algorithm A.1 OccamLear\S, ¢, 4, ny)

input: a nonempty noisy samplg of somen-ary function onm|, and positive reals, «,
andJ, such thaty < n, < 1/2and0 < ¢,0 < 1.

output: a functiong.

begin
(1) ne
(2) Q+«0;
(3) whilen, >0do
(4) Q <+ QU Occam(S,e,0,me);
(5) ne%ne—ﬁ(l—an)/Q
od;

(6) return a functiong € @ such that it minimized (g, S), the number of disagreements
with the samples
end

Now we can prove the actual theorem.

Theorem 6LetF be a polynomial-sized function class andsjgbe such that) < 7, <
n + (1 — 2n)/2. If there exists a noise-tolerant Occam algorithm ¥y thenF is
polynomially learnable in the presence of classification noise. The sample size dequire

is at least
8 2| Fy, k|
In ’
£2(1/2 — npy)? J
Proof Let OccanS,¢,d,n,) be the noise-tolerant Occam algorithm ferUsing the
algorithmOccam we can construct a learning algoritfbccamLearrfor F that, with
probability1—4, outputs a hypothesis such that’(f A g) < ¢, for the target functiorf
from the oracleE' X, (P, f), wheref € F,, , andP is an arbitrary probability distribution
onF.

In the sequence of successively smaller valyesxamined byOccamLearrthere
will be one such thag < 7. < n+¢(1—2n)/2 becausey, is decreasing by(1 —2n,)/2
and, by assumptior(1 — 2n,) < (1 — 2n). Then, because of Lemma 25, the lower
bound onm implies that, with probability at least— ¢ /2, OccamLearrwill produce at
least one functiog € @ such that

D(g, S)

m

IN

Ne + 5(1 - 2776)/4

3
< el —2n).
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The probability that a functioh € F with error greater thaa hasD(h, S)/m <
n+3/4-¢(1—2n)is at most

3 2
LE (n +e(1 = 2n),m,n+ (1 - 277)> < e 2Ae=2m)/4)7m,

Since there aréF| functions inF, the probability of producing a function with error
greater than is less than

F| . e~ 20=20/0m 59

Hence with probability at least-6 OccamLearroutputs a functio such thatP(f A g) <
E.
O

Chapter 3

Detailed proof for the time requirement BiM (Theorem 16) was not given in the text.
We prove the result in the following by a verbal argumentation, rather than gavirgy

orous mathematical proof, which would require long and obscure presentation. The fol-
lowing argumentation—together with the empirical evidence—ought to suffice for our
current needs. The following lemma simplifies the proof of the main result sulzha

Lemma 26 Let Fry,(S) denote the time spent by Findmin, in the worst case, on the
calls to Find when given the sampfeas input. Respectively, 1ét;,,(S) denote the
time spent by IFM, in the worst case, on the calls to Find when processing thenseque
S of examples. The®py (S) < Fru(S).

Proof First, observe that, due to the incremental processing of examples, a @ariabl
can only change from uninformative to informative. In other words, the addition of an
instance to the sample can change some uninformative attributes into infe oaes,
but never the other way round. Therefore, any attribute that is informativa goibset)
from the outset will remain such for (a subset of) the full sample. BecaubéspirtIFM
variables are never needlessly examined; i.e., every attribute thirgaded, really is an
informative one w.r.t. (a subset of) the final samp)end ought to have been examined.
Now, consider the calls teind made byFindminfor a sampleS of rankr. First,
it must determine that the sample does not have fank ,r — 1 by ascertaining that
none of the trees with lower rank thans consistent with the sample. In the worst case
that involves examining all permutations of informative variables foraaikrcandidates.
Only if an exhausted node appears in the evolving tree, Boebninavoid examining
some candidate trees. However, in the worst-case time consumpttamdonin (Theo-
rem 11) this optimization cannot be taken into account. There&itatminstill has to
come up with the tree of correct rank by continuing the recursive search procedure



121

It is easy to see that at most the same time as spefnioyninon the calls td-ind is
required byIFM, since it does not waste any effort by examining false variables. Af call
to Find that are made biFM also have been made, in the worst case, dufingmins
execution. The bookkeeping in the incremental algorithm ensures that an attsibute
never examined more than once in a given permutation of variables in the evivkagng
Thus, the time spent biFM on the calls td=ind, in the worst case, cannot exceed that
of Findmin Therefore F;r1(S) < Fra(S). O

Theorem 16Given a samplé& of an-ary function onm/, using IFMS) we can produce
a decision tree that is consistent withand has rank-(S) in time O(|S|m" ) (n +
1)27"(5)).

Proof Itis easy to see that the additional bookkeepintF-iM does not raise its asymp-
totic time requirement beyond that Bihndmin In IFM every example in the sequenge

has to be directed down the tree, which, in the worst case, requires exathiaingue

of thei informative variables. Only constant time operations are performed forxthe e
amples. Thus, the bookkeeping may require, in the worst case(x{iisgi) < O(|S|n),

which is dominated by the time required for callsfiod and, therefore, does not affect
the algorithm’s asymptotic time requirement. The remaining operations (stackge-
ment and subtree substitutions) are also constant time operations and, thelefooe,
change the asymptotic time requirement. Hence, because of Lemma 26, the claim fol
lows. O
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Appendix B

Description of the Test Domains

This appendix presents the test domains used in the empirical experiments iarGhapt
more detail than has been applied earlier. For each data set we give d gesergtion
of the real-world domain it represents, if any, the attributes that aa@ tascomprise the
real-world information, and the classification task at hand. The past usagelofiata
set and the special characteristics reported in the literaturessreesliewed.

B.1 Assessing credit card applications

Background This is a database containing confidential information taken from credit
card applications. Therefore, all attribute names and values have bewedta mean-
ingless symbols to protect confidentiality of the data. Nevertheless, the doaraiarns
approval of credit card applications on the basis of simple financial facts.

Attributes and examples There are 14 attributes, 8 of which are categorical and 6
continuous. The discretized version of the data offerdgliaokhas on average 6.1 values
per attribute. There are 690 examples in the domain.

Noise and missing values In this version of the data set, which comes from the Stat-
Log group [Michieet al. 1994], there are no missing values. Originally there were a few
missing values, but they were replaced by the overall median (mode ofttitoeitat for

a nominal attribute and mean of the attribute for a numerical attribute).

Class distribution  Of the total 690 examples 307 (44.5%) belong to category approved
and the remaining 383 (55.5%) examples are disapproved applications.
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B.2 Vehicle type identification

Background Image recognition is often thought to constitute an unsurmountable ob-
stacle to empirical learning algorithms. Neural networks are usuallysafffor the job.
Unfortunately in an autonomous mobile robot, for example, one does not have the lux-
ury of iterating the learning period indefinitely until the network converges\jlghat
al. 1991], but one has to be able to make prompt decisions. Therefore, empiricatdearne
too, have to be considered for these tasks [Tan 1993, Sillitoe & Elomaa 1994].

This data was originally gathered at the Turing Institute [Mic#tial. 1994]. Images
of four model vehicles were used: A double decker bus, Chevrolet van, Saab 9000, and
Opel Manta. It was anticipated to be easy to distinguish the bus and theorartte
cars, but that it would be harder to make a distinction between the twolké&features
were extracted from the 128 128 grey scale pictures.

Attributes and examples The 18 features attempt to characterize shape of the object
in the image. They include typical attributes in wave-based recognitionn&ance:
Circularity, radius ratio, compactness, scaled variance along majanarudt axes, etc.
After categorization, the attributes have on average 7 values in timgerarhere are
846 examples in this data set.

Noise and missing values There is no explicit noise in the data, only that which is
inherent due to the measuring apparatus. All values are known.

Class distribution The images are distributed pretty evenly between the different ve-
hicles: There are 218 (25.8%) examples of buses, 199 (23.5%) vans, 217 (25.7%) Saabs,
and 212 (25.1%) Opels in the data.
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B.3 Diabetes prediction

Background Application of machine learning techniques, and artificial intelligence
techniques more generally, to medical domains has been studied a lot over the year
The main reason for this being the availability of suitable data and propeifataton
tasks. Furthermore, medical decision making is in part so clearly baséewrstic
methods that parallels with artificial intelligence techniques are @adratv.

The data in hand comes from the National Institute of Diabetes and Digestive and
Kidney Diseases. The diagnostic, binary-valued variable investigatethesher the
patient shows signs of diabetes according to World Health Organizationarite., if
the two-hour post-load plasma glucose was at least 200 mg/d| at any survey examinat
or if found during routine medical care. The population lives near Phoenix, Arizona,
USA. Several constraints were placed on the selection of these insfamtea larger
database. In particular, all patients here are females at least Zlofdaf Pima Indian
heritage.

Attributes and examples The attributes constitute of eight medical measurements
taken at a routine examination. They are:

number of times pregnant,
plasma glucose concentration (a2 hours in an oral glucose tolerance test),

diastolic blood pressure (mm Hg),

triceps skin fold thickness (mm),

two-hour serum insulin HuU/ml),

body mass index (weight in kg/(height in )
diabetes pedigree function, and

age (years).

Discretization yields, on average, 12.5 values for each attribute. Theidoomsists of
768 examples.

Noise and missing values There is no explicit noise present nor any recordings miss-
ing.

Class distribution There are 500 (65.1%) patients that have tested positive and 268
(34.9%) ones that tested negative.
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B.4 Space shuttle radiator positioning

Background Thisis alarge database concerning actual NASA Space Shuttle problem:
The position of space radiators in the shuttle [Catlett 1991]. The sevenslagsesent

the possible states of the radiators. Data has been gathered during twoestiggutst

Very small prediction error (far below 1%) is obtained by a decision treewrsnodes
[Michie et al. 1994]. The original data contains hundreds of thousands of examples, but
in the StatLog version of the domain there are 58,000 examples.

Attributes and examples There are only 9 attributes describing instances. They com-
prise measurements of three sensors that are monitored at one second int&hvals
attributes were originally numerical, but in our tests we have also udesteetized ver-

sion of the data (see Chapter 5 for a more thorough account of this). In the distretize
version attributes have on average 2.9 values in their range. The total nungb@nof

ples in this domain is 58,000. It has been divided into a training set of 43,500 examples
and a test set of 14,500 examples.

Noise and missing values The data appears to be noise free, since arbitrarily small
error rates can be attained given sufficient data. There are no missueg wathe data.

Class distribution  Approximately 80% of the data belongs to class “radiator flow”.
The class distribution is relatively skewed otherwise also: Formasteclass “bpv close”
has only 10 instances, which do not count as even a per mill of the full data. Thefollow
ing table gives the exact numbers of examples per class.

| CLASS DISTRIBUTION |

FuLL DATA TEST DATA
rad flow |45586 (78.6%) 11,478 (79.2%
fpv cl ose 50 (0.1%) 13  (0.1%)
f pv open 171  (0.3%) 39 (0.3%)
hi gh 8,903 (15.4%) 2,155 (14.9%)
bypass 3,267 (5.6%) 809 (5.6%)
bpv cl ose 10 (0.0%) 4  (0.0%)
bpv open 13  (0.0%) 2 (0.0%)

[ TotaL 58,000 [ 14,500 |
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B.5 DNA sequence boundaries

Background Biological data has gained importance recently. In particular, the massive
exploration into the human genome has brought much attention to these applications of
machine learning. Especially, DNA manipulation and interpretation is ofgnmerest.

Splice junctions are points on a DNA sequence at which “superfluous” DNA is re-
moved during the process of protein creation in higher organisms. The problem posed in
this data set is to recognize, given a sequence of DNA, the boundaries betozsn-
the parts of the DNA sequence retained after splicing—atrdns—the parts that are
spliced out.

Here the primary decision to make is whether the center point in the DNA se-
guence window presented is a splice junction or not. This problem consists of two
subtasks: Recognizing exon/intron boundaries (referred to as El sites), agaizcg
intron/exon boundaries (IE sites). In the biological community, IE borders argedfe
to asacceptorsvhile El borders are referred to dsnors

Attributes and examples The StaLog INA data set [Michiest al. 1994] is a processed
version of the University of California at Irvine repository data set [MurphyABa
1994]. The main difference is that the symbolic variables representing the ndekeot
(only A, G T, C) were replaced by 3 binary indicator variables. Thus the original 60
symbolic attributes were changed into 180 binary attributes. The names of thelesa
were removed. The examples with ambiguities were removed (there was$ooinlof
them). According to the suggestion of the StatLog group, we chose to use a further
processed version of this data: 120 more or less irrelevant attributesdetated, and

only the remaining 60 binary attributes were utilized. Training set consfsg&000
examples and the test set contains 1,186 examples.

Noise and missing values The examples are not affected by noise and neither are any
values missing from the data.

Class distribution The examples in the training and test sets are divided into the three
classes as described in the following table.

| CLASS DISTRIBUTION |
TRAINING DATA TEST DATA

ei 464 (23.2%) 303 (25.6%)
ie 485 (24.3%) 280 (23.6%)
neither | 1,061 (52.6%) 603 (50.8%)
| ToTAL | 2,000 | 1,186 |
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B.6 The six-bit multiplexor function

Background The family of multiplexor functions contains, for each positive integer
k, a Boolean function defined dn+ 2* attributes, obits. A multiplexor function is a
simple Boolean function that can be considered consistirigaafdress bitand2”* data

bits. The k address bits are capable of indexing the spac?® afata bits. The value

of the multiplexor function is defined to be the value of the data bit determined by the
values of the: address bits together (see the picture below).

|
ADDRESSBITS DATA BITS
110]|1 ojol1j0]10}|1]0]1
FUNCTION
VALUE
1

The domain in hand is the six-bit multiplexor functioh & 2), which has two
address bits and four data bits. In addition, five further bits that are neithersaddre
nor data bits are used to define the function. The latter five bits are catbbelant
bits, since their values have no effect on the outcome of the multiplexor function. An
irrelevant bit has both Boolean values in the sample for each configuration ofidie ot
bits’ values.

Ever since Quinlan [1988a] showed that the straightforward top-down approach of
decision tree learning is inherently incapable of learning the most naturah{enichal
at the same time) tree representations for these functions, the multiplexbohsitave
appeared repeatedly in machine learning literature (e.g., [Pagallo & ldad890, Ut-
goff 1989, Van de Velde 1990]). In fact, one could say that multiplexor functions have
been adopted as one of the first simple standard test cases to manage by arnig le
technigues. Overcoming problems related to multiplexor functions have everetthspi
novel techniques [Van de Velde 1990].

Attributes and examples Each attribute in this domain is a Boolean one. Thus they
all have two valuestrue andfalse The address bits are callédidr O and Addr 1,
data bhits are namebat a0,..., Dat a3, and the irrelevant bits are namedr el 1,...,
Irrel 5.

Noise and missing valuesThere are no missing value recordings for any of the ten
attributes or the class information among the 2048 instances of the sample.

Class distribution The examples, naturally, are divided evenly among the two classes.
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B.7 LED digit identification

Background Simple displays put together from light-emitting diodes (LEDs) are com-
mon, for instance, in modern-day household appliances and similar apparatus. The
diodes in such displays have two states: They are etth€lit) or off (put out). Thus

the LEDs can be modeled by Boolean variables.

X
)
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The domain in hand concerns the identification of digits in an ordinary pocket calcu-
lator display. The display has 7 LEDs per character (see the picture afdveglasses
are the ten decimal digits. However, the calculator is a broken one andfgiugsim-
ages at times: Each LED has a 10% error rate. This noisy domain of seven-cBydi
digit categorization was used as an example in the seminal book on decisiteatee
ing by Breimaret al. [1984], and the domain has been one of the standard initial testing
grounds for learning tools ever since (e.g., [Buntine & Niblett 1992, Quinlan 1987b,
Quinlan & Rivest 1989]).

Attributes and examples The data consists of 200 such noisy images and their correct
interpretations. Each example is described by 7 Boolean attributes.

Noise and missing values A 10% noise rate affects the attributes, the classification of
an instance is noise-free. There are no values missing from this data.

Class distribution The class distribution of the 200 examples is described in the fol-
lowing table.

| CLASS DISTRIBUTION |
1118 (9.0%) 28 (14.0%)
2|24 (12.0%) 19  (9.5%)
3|20 (10.0%) 22 (11.0%)
4112  (6.0%) 24 (12.0%)
5|13  (6.5%) 20 (10.0%)
| TOTAL 200 |

O OWo~N®
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B.8 Chess endgame result

Background The game of chess and other board games have traditionally attracted
attention as a testing ground for artificial intelligence ideas. These gareesonsid-

ered to require enough mental skills in a restricted setting to givablelievidence of

the techniques’ capabilities [Michie 1986]. Inasmuch as chess is consideredynt i
extremely complicated game difficult even for humans to master. Adiifiictelligence
approaches to chess have had to create specialized hardware to narropvittheigaan
performance. When simpler and easier managed chess domains are desiredoéire num

of pieces can be reduced. Thus, one comes around to consider chess endgames, where
all but some pieces have already been captured.

The domain GEssconcerns endgames where, in addition to the King, White has a
Pawn on square a7 and Black has a Rook. All other pieces, except the Pawn, may be
situated anywhere on the board. The next move is to be made by White. The decision
classes are “won” and “not-won” for White. Even this seemingly simple domasn ha
proven to be too complex to be solved by conventional programming techniques [Shapiro
1983].

This particular chess domain [Shapiro 1983] and other similar endgame domains
[Michie 1986, Quinlan 1986a, Quinlan 1986b] have been used extensively to test the
performance of symbolic learning techniques throughout the years.

Attributes and examples The 36 attributes are result of a detailed analysis of the
endgame in hand, and they all comprise an answer to a relevant question like “Doe
one or more Black pieces control the queening square?” or “Is there a potential skewe
as opposed to fork?”. Hence, much more chess knowledge than just the basic board
configuration is encoded into the attribute values. A detailed analysis of skeatwl
complete account of the attributes is given by Shapiro [1983, Chapter 7].

The entire set of 3,196 instances results from the 209,718 legal King and Pawn on a7
versus King and Rook positions with White to move [Shapiro 1983].

Noise and missing values There are no missing values in the data nor noise prevailing.

Class distribution There are 1,669 examples (50.2%) in the class won and the rest
(1,527 examples, 49.8%) belong to class “not-won”.
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B.9 Primary tumor location

Background The second medical domain concerns cancer. This time the focus is on
predicting the location of a primary tumor. Physicians distinguish between 22possi
locations, which are the classes of this domain. The location of primary turooeisf
the important sources of evidence used in selecting cancer treatment.

The instances of this domain have been shown to 4 internists (non-specatigts)
to 4 oncologists (specialists) at the Institute of Oncology, University Mgdenter in
Ljubljana, Slovenia, where the data was originally compiled. The internist®acolo-
gists were asked to classify the instances, and their accuracy waedhdhey obtained
32% and 42% correct classification rate, respectively [Michalski. 1986].

Attributes and examples The description data here is straightforward: 13 of the total
17 attributes answer whether metastases have been detected at abgatem|(liver
and brain, for example). The remaining attributes give, e.g., the age and theteex of
patient and the histologic type of carsinoma. The data set is inconsistent; i.e.ather
examples with identical attribute values, but different classificatiSince the data has
been verified after collection (by operation or X-ray), it must be that thefsgtributes is
incomplete [Clark & Niblett 1989, Michalslat al. 1986]. The total number of examples
is 339.

Noise and missing values Two attributes have several values missing: For attribute
“histologic type” the value is not known in 67 examples and for “degree of diffe” in 155
examples. In addition, attributes “sex,” “skin,” and “axillar” lack theweeding in one
example.

Class distribution The following table makes the classification of examples explicit
by listing the number of instances in the domain for each class. The relatitrerpof
the examples per a class is also given.

| CLASS DISTRIBUTION |

salivaryglands | 2 (0.6%) | gallblader| 16 (4.7%)|| ovary 29 (8.6%)
head & neck 20  (5.9%)| thyroid 14  (4.1%)| vagina 1 (0.3%)

esophasus 9 (2.7%) | kidney 24 (7.1%)|| anus 0 (0.0%)
corpus uteri 6 (1.8%)|| bladder 2 (0.6%)| colon 14 (4.1%)
stomach 39 (11.5%)| pancreas | 28 (8.3%)| rectum| 6 (1.8%)
duoden &sm.inf 1 (0.3%)| prostate | 10 (2.9%)| liver 7 (2.1%)
cervix uteri 2 (0.6%)| lung 84 (24.8%)| breast | 24 (7.1%)

testis 1 (0.3%)
| TOTAL 339 |
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B.10 Soybean disease identification

Background The extremely famous data set of Michalski and Chilausky [1980] con-
cerns the identification of diseases of soybeans in terms of macro-symptorols,cahi

be observed without sophisticated mechanical assistance. The intent beidgtinaer,

or even a layman should be able to make reliable observations [Michalski &uGSky
1980].

Attributes and examples The 35 categorical attributes of this domain describe the
growth environment (attributes 1-7), the plant in general (attributes 8-11),0aad |
plant condition (attributes 12—35). The plant local descriptors are further retretd t
tributes describing the condition of leaves (12-18), stem (19-27), fruits or pods (28-29),
seed (30-34), and root (35). The attributes are explained in more detail by Michals
and Chilausky [1980].

There are 15 classes; 4 categories have been eliminated from this teskeason
given is that the last four classes are unjustified by the data since they bvdees s
examples.

Noise and missing values The following table lists those attributes that have missing
value recordings and the number of such failings for each attribute.

ATTRIBUTE MISSING ATTRIBUTE MISSING

2. plant stand 1 20. | odgi ng 1
3. precip 8 21. stem cankers 41
4. tenp 11 22. canker | esion 11
5. hail 7 23. fruiting bodies 11
6. crop hist 41 24. external decay 35
7. area damaged 1 25. nycel ium 11
8. severity 1 26. int discolor 11
9. seed tnt 41 27. sclerotia 11
10. germ nation 41 28. fruit pods 11
11. plant growth 36 29. fruit spots 25
12. | eaves 1 30. seed 35
14. | eaf spots marg 25 31. nold growth 29
15. | eaf spot si ze 25 32. seed discol or 29
16. | eaf shread 25 33. seed size 35
17. leaf malf 26 34. shriveling 29
18. leaf mld 25 35. roots 35
19. stem 30

TOTAL 705
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Class distribution  The last table makes the classification of examples explicit by list-
ing the number of instances in the domain for each class. The relative portibe of t
examples per a class is also given.

CLASS DISTRIBUTION ‘

diaporthe stem cankerl0 (3.3%)|| bacterial blight 10 (3.3%)
charcoal rot 10 (3.3%)|| bacterial pustule 10  (3.3%)
rhizoctoniarootrot | 10 (3.3%)|| purple seed stain 10 (3.3%)
phytophthora rot 40 (13.0%)| anthracnose 20 (6.5%)
brown stem rot 20 (6.5%)|| phyllostictaleaf spot 10 (3.3%)
powdery mildew 10 (3.3%)| alternarialeaf spot 40 (13.0%)
downy mildew 10 (3.3%)| frog-eye leaf spot 40 (13.0%)
brown spot 40 (13.0%)

TOTAL 290 |
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B.11 Mushroom species classification

Background This data set includes descriptions of hypothetical samples correspond-
ing to 23 species of gilled mushrooms in the Agaricus and Lepiota families belonging
to the North American flora. There is no simple rule for determining the éyilof a
mushroom; no rule like “leaflets three, let it be” for Poisonous Oak and Ivy. Mexye

the following rule happens to hold in the random excerpt that is used in the experiments
It states that the edibility of the fungus can be determined by its odor and if it has no
odor, then by the cap’s color.

i f odor = alnmond OR ani se OR creosote
THEN nmushroomis Edi bl e
if odor = fishy OR foul OR nusty OR pungent OR spicy
THEN nmushroom i s Poi sonous
i f the mushroom has no odor
THEN
if its cap has color yellow
THEN rmushroom i s Poi sonous
OTHERW SE rmushroom i s Edi bl e.

This domain was first used in Fisher’s [1987] Ph.D. thesis and has ever since been
used in several published studies (e.g., [Buntine & Niblett 1992, Holte 1993])

Attributes and examples The gillfungi are described in terms of their physical ap-
pearance, e.g., characters of the cap, the gill, and the stalk, their populatioangpe,
their habitats. Each agaric species is identified as definitely ediblajtébfipoisonous,

or of unknown edibility and not recommended. This latter class has been combined with
the poisonous one. We use a random excerpt of 2,065 examples of the full data, which
contains over 8,000 examples.

Noise and missing values Only the attribute “stalk-root” has missing value recordings.
Its value is not known for 935 instances.

Class distribution In the excerpt of 2,065 examples that is used in the experiments
1,375 (66.6%) examples are classified as edible and the remaining 690 (33.3%) examples
are either definitely poisonous or of unknown edibility and have, thus, been classified
poisonous.



Appendix C

Dynamic Interface for Rank

This appendix lists the C shell script that acts as the dynamic interface doetz A
andRank It has three parts: First the required variables are declared, thessvadm-
municated byTELA are assigned to them, and finally, the learning algorithm is evoked
with the given parameters.

HH#HHHHH B R RHHHH R R R R R R R R R R R R R R R
#H VARI ABLES #t
HHRHHHHH R R R HH R R R R R R R R R R R R R R R R
set echo

set callpath = '/ hone/fs/group/telal/bin/algorithns’

cd $call path

set fil enane # Attribute declaration file
set exsfil enane # Exampl e vector file

set heuristics = 'no’ # Use G ni-index?

set increnental = 'no’ # I ncrenental node?

set prevhypo

set initrank = 2 # Initial rank candidate

set level =1

set kappa = 0

set gamma = 9000

set outfile

set node # I nduction or testing
set statsfile

set treefile

set accuracy

set rank

set size
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DYNAMIC INTERFACE FOR RANK

HHBHHBHBHHBHBHBH R BHBHBH BB BHBHBH BB BH B H BB H R R HBHBHBHIH

H##

ASSI GN PARAMETER VALUES

H##

HHBHHBHBHHBHBHBH R BHBHBH B R BHBHBH B BH B H BB H R R HBHBHBHEH

whi | e ($#ar gv)
switch ($1)
case

case

case

case

case

case

" STATSFI LE= .
set statsfile = $2
shift
br eaksw
" STATS=
whil e ($#argv > 1)
shift
switch ($1)
case 'Sl ZE :
set size = 'SIZE
br eaksw
case 'RANK' :
set rank = ' RANK' ;
br eaksw
case ' ACCURACY :
set accuracy = ' ACCURACY’
br eaksw
def aul t:
got 0o next _param
endsw
end
br eaksw
" ATTSFI LE= .
set filenane = $2
shift
br eaksw
" EXSFI LE= .
set exsfilenane = $2
shift
br eaksw
" CLASSI FI ER=’
set treefile = $2
shift
br eaksw
"A N’
set heuristics = 'yes’

br eaksw



case

case

case

case

case

case

case

endsw

shift

next param
end

"I FM

set increnmental =
br eaksw

" PREVHYPO=' :
set prevhypo
shift

br eaksw

"I NI TRANK=":
set initrank
shift

br eaksw

" LEVEL=":
set |evel
shift

br eaksw

" KAPPA=" :
set kappa
shift

br eaksw

" GAMVA=' :
set gamma
shift

br eaksw

" MODE=" :

$2

$2

$2

$2

$2

if ($2 == ' TRAIN) then

set nmode = 'i’
el se

set nmode = 'x’
endi f
shift
br eaksw

\rm-f $call path’/’ rank. script

) yesl
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HHBHHBHBHHBHBHBH R BHBHBH BB BHBHBH BB BH B H BB H R R HBHBHBHIH
H## CALL ALGORI THM FOR | NDUCTI ON OR TESTI NG H##
HHBHHBHBHHBHBHBH R BHBHBH B R BHBHBH B BH B H BB H R R HBHBHBHEH

if ($node == "x’) then
goto testing
endi f

echo \"$filenane\" > $call path’ /' rank. scri pt
echo \"$exsfilenane\" >> $cal | path’/’ rank. scri pt
echo 'rank’ >> $cal |l path’/’ rank. script # |1 NDUCE !

echo $heuristics >> $call path’/’ rank. scri pt
if ($heuristics == 'yes’) then

echo $l evel >> $callpath’/'rank. script
endi f

echo $increnental >> $cal | path’/’ rank. scri pt
if ($increnmental == "no’) then

echo $initrank >> $cal l path’/’ rank. script
endi f

echo $kappa >> $cal |l path’/’ rank. scri pt

echo $gamma >> $cal | path’ /' rank. scri pt

echo \"$statsfile\" >> $call path’ /' rank. scri pt # Statistics
echo \"$treefile\" >> $call path’/’ rank. scri pt # Resulting tree
$cal Il path’ /' rank < $cal l path’/’ rank. scri pt

exit O

testing:

echo \"$filename\" > $cal | path’ /'’ rank. scri pt

echo \"$exsfilenane\" >> $cal | path’/’ rank. scri pt

echo "test’ >> $call path’/’ rank.script # TEST

echo \"$treefile\" >> $call path’ /' rank. script # Wich tree?
echo \"$statsfile\" >> $call path’ /' rank. scri pt # Statistics

$cal l path’ /' rank < $call path’/’ rank. scri pt

exit



Appendix D

Exact Measurements Under Different
Noise Types

Table D.1: Exact values corresponding to the bar chartctipin Fig. 5.2.

ATTRIBUTE NOISE
20% 35%
TIME RANK SIZE ACC.| TIME RANK SIZE ACC.
Rank 9.8 2.0 1409 946 77 2.0 949 85.8

C4.5 22 29 63.8 93.1 27 2.7 68.2 86.7
NewlID 51 3.0 179.3 091.7 53 29 150.7 83.9
CN2 28.3 - 80.5 95.8 36.6 - 126.7 90.8
IFM 77 2.0 1524 92.2 109 20 182.8 86.5
ITI 1304 3.1 1322 941 22277 3.7 208.0 74.3

CLASSIFICATION NOISE

20% 35%

TIME RANK SIZE ACC. TIME RANK SIZE ACC.
Rank 45 1.1 20.2 89.3 53 1.0 10.0 83.9
C4.5 36 20 22.4 91.2 43 20 243 816
NewlID 70 10 10.0 89.8 89 10 10.0 80.8
CN2 22.6 - 56.7 89.7 18.0 - 346 81.7
IFM 71 10 38.3 88.5 64 1.0 474 81.0
Tl 987.2 50 7794 79513634 54 10742 67.8
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MIXED NOISE
20% 35%
TIME RANK SIZE ACC. TIME RANK SIZE ACC.
Rank 84 20 97.0 830 112 20 1095 722
C4.5 31 16 29.8 82.4 30 21 33.0 73.0
NewlID 73 3.0 1909 815 6.3 3.0 340.3 69.6
CN2 42.9 - 96.0 83.4 20.8 - 234 73.2
IFM 159 20 1414 831 188 20 2124 6938
ITI 1,337.6 3.2 426.7 70.91,436.6 3.7 5456 585
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