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Abstract

In recent years, XML has been widely adopted as a universal for-
mat for structured data. A variety of XML-based systems have
emerged, most prominently SOAP for Web services, XMPP for in-
stant messaging, and RSS and Atom for content syndication. This
popularity is helped by the excellent support for XML processing
in many programming languages and by the variety of XML-based
technologies for more complex needs of applications.

Concurrently with this rise of XML, there has also been a qual-
itative expansion of the Internet’s scope. Namely, mobile devices
are becoming capable enough to be full-fledged members of vari-
ous distributed systems. Such devices are battery-powered, their
network connections are based on wireless technologies, and their
processing capabilities are typically much lower than those of sta-
tionary computers.

This dissertation presents work performed to try to reconcile
these two developments. XML as a highly redundant text-based
format is not obviously suitable for mobile devices that need to
avoid extraneous processing and communication. Furthermore,
the protocols and systems commonly used in XML messaging are
often designed for fixed networks and may make assumptions that
do not hold in wireless environments.

This work identifies four areas of improvement in XML mes-
saging systems: the programming interfaces to the system itself
and to XML processing, the serialization format used for the mes-
sages, and the protocol used to transmit the messages. We show
a complete system that improves the overall performance of XML
messaging through consideration of these areas.

The work is centered on actually implementing the proposals in

iii

http://www.cs.helsinki.fi/u/jkangash/


iv

a form usable on real mobile devices. The experimentation is per-
formed on actual devices and real networks using the messaging
system implemented as a part of this work. The experimentation is
extensive and, due to using several different devices, also provides
a glimpse of what the performance of these systems may look like
in the future.

Computing Reviews (1998) Categories and Subject Descriptors:
C.2.4 Distributed Systems
H.4.3 Communications Applications
C.4 Performance of Systems—Measurement Techniques
I.7 Document and Text Processing
E.2 Data Storage Representations
E.3 Data Encryption—Standards

General Terms: Measurement, Performance, Security,
Standardization

Additional Key Words and Phrases: XML messaging, binary XML,
XML processing interfaces, mobile and wireless
communication
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CHAPTER 1

Introduction

It has never seemed to me a
good idea to put anything in
writing.

This dissertation examines the fundamental properties of messag-
ing middleware for the distributed applications of the future. The
key research question is how to take advantage of existing stan-
dardized, widely-used formats like XML and common Internet
protocols in the future where the nature of distributed computing
differs considerably from the environment in which the existing
systems were developed.

1.1 Motivation

Extensible Markup Language (XML) [W3C, 2006a] is nowadays a
very common format for representing structured data. This in-
cludes its use as a messaging format for distributed systems, and
there is evidence that the applicability of XML is widening more
and more. Therefore it seems that any distributed system of the
future that is not inherently closed will need to be able to handle
XML data in some manner.

The number of mobile phones in the world has increased dra-
matically during the past decade, easily surpassing the number of
personal computers. The number of Internet-capable phones may

3



4 1 Introduction

not be quite as large, but, e.g., Keshav [2005] makes the claim that
phones are the devices that will drive the development of the Inter-
net in the future. Therefore focusing on how phones can function
as full-fledged members of the Internet appears to be necessary.

Reconciling these two, the open distributed systems in the fu-
ture will be based on XML and include a large contingent of mo-
bile phones. However, XML is a text-based format, intentionally
designed to contain much redundancy. This is not at all com-
patible with mobile phones, which require efficiently-processable
compact formats to spare their limited energy through decreased
processing and communication time.

Distributed applications have already become sufficiently com-
plex that it is no longer feasible to develop them directly on top
of the operating system. Accordingly, a variety of middleware plat-
forms [Aiken et al., 2000], which provide common functionality for
communication, have emerged to ease the development burden. It
is likely that most sophisticated systems of the future will be based
on some form of a middleware platform.

Most current middleware platforms were originally designed
for fixed networks, and this makes their suitability for mobile de-
vices questionable. The main challenges come from the nature of
mobility [Raatikainen et al., 2002]: as a device moves, the condi-
tions around it change, and the middleware platform will need to
adapt to these changing conditions. Adapting existing platforms
does not seem sufficient, but rather new platforms will need to be
designed to take into account the special needs of mobile devices.

1.2 Research Methodology

This work has from the beginning been close to applied research,
with the intent to implement prototypes that run correctly on ex-
isting platforms and demonstrate the improvements. The methods
have been chosen accordingly. The beginning of the work was to
delineate the scope of the research to XML messaging on mobile
devices, and after this, work on the identified subtopics proceeded
independently of each other.

The main phases of the research process that we followed are
illustrated in Figure 1.1. Research into each topic began by gath-
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Figure 1.1: The research process

ering existing systems that implement the required functionality.
The performance of these systems was measured and the areas
of poor performance identified. Further analysis of the measure-
ments then revealed the main causes of poor performance.

After the causes of poor performance were identified, the pre-
liminary measurement framework was extended with proof-of-
concept implementations of potential improvements. These im-
plementations focused on each potential improvement separately,
the purpose being approximate quantification of the amount of im-
provement possible. The intent was not to produce a complete
system yet, but to guide the eventual design.

Measurements with the proof-of-concept implementations re-
vealed the most fruitful avenues for further work. Based on these
findings, the new complete system was designed in a manner that
enables the identified improvements to be made. The design was
kept modular, separating each individual area of research into its
own component to make it possible to quantify the performance
of each improvement in isolation. The implementation was co-
ordinated with users of the prototype to ensure the presence of
sufficient functionality.

After the implementation was complete, performance measure-
ment code was written to compare the proposed system with ex-
isting systems. During experimentation the implementation of the
system was improved to the extent possible with localized opti-
mizations. The viability of the ideas was verified through positive
measurement results.

When the new system was finished, and performance measure-
ments had revealed that it achieves its goals, it was added to the set
of existing systems, and the process started again from the begin-
ning. Namely, experience in using the system brought to light both
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missing functionality and poor performance in areas that were not
originally considered. Correcting some of these problems neces-
sitated redesigning parts of the system, so to ensure that the new
design would be suitable, the same process was also followed for
the new improvements.

1.3 Research History

The work in this dissertation was performed in the Fuego Core
project1 at the Helsinki Institute for Information Technology2 dur-
ing the years 2002–2006. The project investigated issues in middle-
ware for the future mobile wireless Internet [Tarkoma et al., 2006],
and the work presented here formed the investigation into using
XML as a foundational building block in a middleware platform
for mobile devices.

The middleware platform developed in the Fuego Core project,
called Fuego middleware, has as its main components the XML mes-
saging and processing system presented here, an event system
for asynchronous many-to-many communication [Tarkoma, 2006],
and a data synchronizer with specific support for XML data [Lind-
holm et al., 2005]. The complete platform is available under a
Free/Open Source Software (F/OSS) license3, and also includes
components for mobile presence, event interoperability with Ses-
sion Initiation Protocol (SIP) [Ramya, 2005], and Host Identity Pro-
tocol (HIP) [Komu et al., 2005].

The work on messaging began with experiments on the per-
formance of a popular SOAP implementation [Kangasharju et al.,
2003] using a variety of networks, protocols, message formats, and
messaging interfaces. Based on this initial work, we determined
the four central areas of improvement in XML messaging: system
interfaces, XML processing interfaces, XML serialization formats,
and messaging protocols.

A depiction of how our identified components join together to
produce a messaging system is shown in Figure 1.2, with message

1http://www.hiit.fi/fi/fc/
2http://www.hiit.fi/
3http://hoslab.cs.helsinki.fi/homepages/fuego-core/

http://www.hiit.fi/fi/fc/
http://www.hiit.fi/fi/fc/
http://www.hiit.fi/
http://hoslab.cs.helsinki.fi/homepages/fuego-core/
http://hoslab.cs.helsinki.fi/homepages/fuego-core/
http://www.hiit.fi/fi/fc/
http://www.hiit.fi/
http://hoslab.cs.helsinki.fi/homepages/fuego-core/
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Figure 1.2: Components in XML-based messaging

flow from sender to receiver indicated by arrows and labeled ac-
cording to the form the message takes at each point of the flow.
As the Figure shows, we consider the Application Programming
Interface (API) of each component to also be an important part of
that component, worthy of study in its own right, and also neces-
sary to achieve an integrated system without coupling the compo-
nents tightly together.

The first version of our messaging system [Kangasharju et al.,
2005a] was based on the requirements that we had identified from
the rest of the middleware platform. We included improved ver-
sions of the components identified in Figure 1.2, including com-
ponents for XML processing [Kangasharju and Lindholm, 2005]
and XML serialization [Kangasharju et al., 2005b]. This system
was also presented in the author’s Licentiate of Philosophy the-
sis [Kangasharju, 2006].

This version of the messaging system could be said to be in-
complete in some ways. For one, even though the system ran on
mobile phones, we had run most of our experimentation on laptop
computers, and the characteristics of the two platforms are very
different. During experiments on mobile phones, we noted that
some parts of the implemented messaging system seemed some-
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what heavyweight for mobile phones, so we decided to further
develop the application interface and the protocol layer.

Another concern, which is a crucial part in modern distributed
systems, was security. There exist security specifications for XML
messages, but there are no widely-available implementations for
mobile phones. According to our methodology, we began work on
security by investigating the performance of XML security [Kan-
gasharju et al., 2006] and identified the key issues that would need
to be overcome.

Implementation of the proof-of-concept XML security system
for our preliminary experimentation also revealed some deficien-
cies in our original XML processing interface. We therefore de-
cided to redesign this interface, applying the principles that we
had found to work in our original implementation, but improv-
ing the interface’s extensibility and processing efficiency [Kangas-
harju, 2007]. The complete new system, proceeding from require-
ments through design to actual implementation, is described in
[Kangasharju et al., 2007a].

During the time this research was in progress, the World Wide
Web Consortium (W3C) began considering alternate serialization
formats for XML [W3C, 2003b]. Based on our own work in the
area, we participated in this work from the very beginning [Kan-
gasharju and Raatikainen, 2003]. We were involved in both the
XML Binary Characterization (XBC) Working Group (WG)4 that
charted the field and the work needed, and the Efficient XML In-
terchange (EXI) WG5 that is in the process of designing a format.
The author of this dissertation is one of the editors of the EXI Mea-
surements Note [W3C, 2007b].

The work presented in this dissertation was performed in its
entirety by the author, with the exception of the EXI measure-
ment framework presented in section 8.2 that was the joint work
of Sun Microsystems and AgileDelta, based on a benchmark plat-
form developed by Sun Microsystems. The XML differencing tool
described in subsection 8.2.1 was designed and implemented by
Tancred Lindholm, with the author responsible for its schema sup-
port. The measurements analyzed in section 8.3 were run by Ca-

4http://www.w3.org/XML/Binary/
5http://www.w3.org/XML/EXI/

http://www.w3.org/XML/Binary/
http://www.w3.org/XML/EXI/
http://www.w3.org/XML/EXI/
http://www.w3.org/XML/Binary/
http://www.w3.org/XML/EXI/
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rine Bournez on computers at the Naval Postgraduate School and
by John Schneider on computers available to him, but the analysis,
including the design of the analysis, is fully the author’s own.

1.4 Contributions

This work has produced a complete messaging system implemen-
tation that runs on real devices in real conditions. This is not in-
significant as implementing ideas in practice always turns up un-
foreseen issues, both in application design and in existing plat-
forms. The implementation has been the subject of two demon-
strations (WMCSA 2004, Pervasive 2007) as well as a basis for a
context-aware middleware platform [Riva, 2006].

The main contributions are in the area of XML processing and
serialization on mobile devices, the XML component of Figure 1.2.
The XML processing API is a significant advance over existing
APIs, providing an extensible and versatile system for processing
XML in a number of different styles. This is evidenced by our abil-
ity to use its generic functionality to implement efficient and novel
applications in widely different areas of XML processing.

The XML serialization format is significant as a publicly-avail-
able format that considers mobile phones explicitly in its design,
and its compression performance is comparable to other modern
formats. The format and the experiences gained during its devel-
opment have also influenced corresponding standardization at the
W3C, and some features of the designed format are candidates for
adoption in the eventual standard.

The work on combining a binary XML format with XML secu-
rity has not been performed before to a comparable extent. We
have explored deeply the issues of this area and propose an imple-
mented extension that goes a great deal towards improving perfor-
mance. Furthermore, we also provide specific recommendations
on how to avoid massive processing overhead on mobile phones
when the other party of the communication has sufficient process-
ing power available.
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1.5 Structure of the Dissertation

The dissertation begins in Part II with an overview of the two most
relevant areas of interest: XML and related technologies, with an
emphasis on using XML for messaging, in chapter 2, and mobile
computing, from networks and devices to writing distributed ap-
plications, in chapter 3. As there has so far been little overlap be-
tween these two areas, the text in these Chapters is intentionally
written to assume little or no prior knowledge.

Part III covers all the components of the developed messaging
system. The specifics of communication, at both application and
protocol levels, are the topic of chapter 4. This Chapter begins with
an overview of the system architecture, and then describes the
components System and Protocol of Figure 1.2, as implemented
in the system.

The rest of Part III covers the XML component of Figure 1.2. The
processing API and how it provides efficient and versatile XML
processing are covered in chapter 5 and the serialization format
used for XML data by the system is described in chapter 6.

Measurements and their analysis are the topic of Part IV. In
this Part, chapter 7 covers the extensive experiments that we per-
formed on the messaging system, using real mobile devices and
wireless networks. The analysis performed by the author for the
EXI WG is presented in chapter 8, with an emphasis on documents
and performance relevant to mobile messaging.

Finally, chapter 9 concludes the dissertation, summarizing the
contributions, and looks at the future, both how the presented sys-
tem is expected to affect coming developments and also the di-
rections in which further development appears the most fruitful.
Auxiliary code that is not necessary for full understanding of the
work is provided in Appendix A.
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CHAPTER 2

The XML Stack

We must choose one tribe,
and remove our favor from
all others.

XML [W3C, 2006a] has, since its inception, become a widely ac-
cepted markup language for all kinds of data. Its basic model of
data is that of a tree of nodes. Since trees are also a fundamental
construct in programming language data, XML has been applied
to representing general structured data. This is useful for inter-
change purposes as it provides a standard way to represent the
data to be exchanged between applications on varied platforms.

A multitude of technologies have sprung up around XML. The
W3C has been active in producing many of them, but due to the
large interest in XML, some have been produced by other organi-
zations. This collection of XML-based technologies is often called
the XML stack, based on the idea that they are stacked on top of the
XML base. In addition to XML itself, we also cover those parts of
the XML stack that we consider relevant to our topic.

2.1 Core XML Technologies

XML was originally born from the desire to streamline Standard
Generalized Markup Language (SGML) [ISO, 1986] for use on the

13
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World Wide Web (WWW). For this purpose the designers set the
following design goals (from [W3C, 2006a]):

1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process XML docu-
ments.

5. The number of optional features in XML is to be kept to the
absolute minimum, ideally zero.

6. XML documents should be human-legible and reasonably
clear.

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance.

The intent of many of these design goals was to eliminate com-
plexities in SGML that made it hard to implement processors and
to understand documents.

2.1.1 Basic XML

The original XML definition [W3C, 1998] was completed in 1998.
Currently XML version 1.0 is in its fourth edition [W3C, 2006a],
and there is also version 1.1 [W3C, 2006b] to address Unicode [Uni-
code Consortium, 2003] evolution and concerns about whitespace
handling. However, as XML 1.1 is incompatible with XML 1.0 (this
incompatibility was, in fact, the reason for the increased version
number), adoption has not been enthusiastic.

We show an example XML document in Figure 2.1. The top line
is the XML declaration, which declares common information about
the document such as the version of XML that it conforms to. It
also declares the encoding used for XML’s character set, Unicode.
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<?xml version="1.0" encoding="UTF-8"?>
<person nationality="DE">

<name>
<first>Richard</first>
<last>Wagner</last>

</name>
<occupation>Composer</occupation>
<born>1813-05-22</born>
<died>1883-02-13</died>

</person>

Figure 2.1: An example XML document

The values shown are the defaults. The <person> tag starts the
person element and the </person> tag ends it; an XML document
may contain only one element at its top level, which is called its
root element. Elements may include other elements (like name here),
text (Wagner), or attributes (nationality).

Whatever is between an element’s start tag and end tag is called
its content, e.g., Wagner is the content of the last element in Fig-
ure 2.1. If an element contains both text and other elements, it is
said to have mixed content. An element without any content, such
as <foo></foo>, may also be represented by an empty element tag,
<foo/>. An empty element tag may also include attributes.

While XML did achieve its goal of simplicity, at least when com-
pared with SGML, use on the heterogeneous WWW requires more.
The basic XML definition suffices for single-source vocabularies
where every element’s meaning is defined by a single entity. How-
ever, for wide-area distributed use it is beneficial to be able to de-
fine common vocabularies for general areas that can then be used
for parts of such documents. For example, we could imagine the
person element of Figure 2.1 to be defined by a genealogy institute
and then used by anyone who wants to include data about people
in their XML document.

This problem is solved by XML Namespaces [W3C, 2006c]. This
specification splits an XML name into two parts, its namespace and
local name, with the intent that each entity has complete control
over its namespaces, permitting the creation of general vocabu-
laries and avoiding collisions in names. Concretely, a namespace
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<?xml version="1.0" encoding="UTF-8"?>
<favorite-composers xmlns:p="http://example.org/people">

<p:person>
<p:name>

...
</p:name>
...

</p:person>
<p:person>

...
</p:person>

</favorite-composers>

Figure 2.2: An example XML document with namespaces

is identified with a Universal Resource Identifier (URI) [Berners-
Lee et al., 2005], as recommended by the architecture of the World
Wide Web [W3C, 2004a].

For use in an XML document, a generic URI would be cumber-
some and usually not permitted as an XML name. Therefore, the
namespace URIs need to be mapped to prefixes for use in XML doc-
uments. The complete name of an element is then presented as a
combination of its namespace URI’s prefix and its local name. An
XML document that conforms to this specification is called name-
space-well-formed.

The use of namespaces is demonstrated in Figure 2.2 where we
have placed the person element of Figure 2.1, and the elements
it contains, into the namespace http://example.org/people. This
namespace is mapped to the prefix p by the attribute xmlns:p of the
document’s root element. The prefix is then used with the colon
(:) to construct the qualified names of the elements from the corre-
sponding namespace. The root element favorite-composers does
not belong to any namespace.

2.1.2 XML Schema Languages

Applications using XML will typically not expect to process arbi-
trary documents, but only documents containing certain elements
and attributes arranged in a certain way. For instance, a processor
reading the document in Figure 2.2 will expect a favorite-com-
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posers root element containing several p:person elements. To de-
fine these kinds of syntactic constraints for XML documents, there
exist various schema languages.

XML documents conforming to the syntax rules of the XML def-
inition are called well-formed, a term defined in the XML specifica-
tion [W3C, 2006a]. Schemas divide the class of XML documents
into two subclasses: valid documents conform to the schema that
is being used, and invalid ones do not. An important point is that
there does not need to be a fixed specification of which schema is
used to validate an XML document, and in many applications the
schema used will be solely determined by the document processor
without input from the document creator.

The first schema language, originally defined for SGML but also
included in simplified form in the XML specification [W3C, 2006a],
is called Document Type Definition (DTD). Rules expressible in a
DTD provide a simple grammar to describe the contents of XML
documents. The XML specification allows an XML document to
contain a hard-coded reference to its DTD or to even contain this
DTD as an internal subset.

A possible DTD for the XML document in Figure 2.1 is given in
Figure 2.3. The name in the DOCTYPE part defines the root element
of valid XML documents. The content of each element is given
in sequence, with optional parts marked with a ?. Attributes of
elements are given separately with the ATTLIST declaration, which
gives the name, type, and default value for each attribute. The
#PCDATA stands for parsed character data, i.e., text.

There are two problems with DTDs, both visible in Figure 2.3.
The first is that they do not support namespaces at all. To get the
effect of namespaces, the names in a DTD need to be declared with
their prefixes, and hence the same prefixes need to be used every-
where when validating. The second problem is that there is no
support for data types. In our example, the elements born and
died are clearly dates, so it would be very useful if the schema
language were to support declaring that.

These omissions are fixed with XML Schema [W3C, 2004f,g],
an XML schema language developed by the W3C. Semantically
speaking, XML Schema is a superset of DTDs [Murata et al., 2005],
i.e., for any DTD there exists an XML Schema that validates exactly
the same XML documents.
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<!DOCTYPE person [
<!ELEMENT person (name,occupation?,born,died?)>
<!ATTLIST person nationality CDATA #IMPLIED>
<!ELEMENT name (first,middle?,last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT middle (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT occupation (#PCDATA)>
<!ELEMENT born (#PCDATA)>
<!ELEMENT died (#PCDATA)>

]>

Figure 2.3: An example DTD for the example XML document

We show a part of an XML Schema for our example document
in Figure 2.4. This only shows a part of the definition of the per-
son element and the born element. As we can see, the p prefix
for our namespace is declared in the root xs:schema element and
used later in element names. The targetNamespace attribute en-
sures that the defined elements are also in our namespace. Finally,
the definition of the born element illustrates the use of data types,
also defined by XML Schema.

In addition to DTD and XML Schema, there exist several other
schema languages. Many of these were merged into either XML
Schema or another schema language, RELAX NG [OASIS, 2001].
This latter is based on the theory of tree languages [Brüggemann-
Klein et al., 2001], and is seen by many to be a much cleaner lan-
guage than XML Schema. In addition to the normative XML def-
inition, RELAX NG also has a compact syntax potentially more
familiar to programmers [OASIS, 2002b], an example of which is
shown in Figure 2.5 for the example document of Figure 2.2. RE-
LAX NG has been shown to be strictly more expressive of structure
than either DTD or XML Schema [Murata et al., 2005].

The above schema languages are called grammar-based in that
they specify the structure of elements declaratively. An alterna-
tive kind of schema language is rule-based where relationships be-
tween element contents are specified algorithmically. The best-
known rule-based schema language is called Schematron [Jelliffe,
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<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"
targetNamespace="http://example.org/people"
xmlns:p="http://example.org/people">

<xs:element name="person">
<xs:complexType>

<xs:sequence>
<xs:element ref="p:name"/>
<xs:element minOccurs="0" ref="p:occupation"/>
...

</xs:sequence>
<xs:attributeGroup ref="p:nationality"/>

</xs:complexType>
</xs:element>
...
<xs:element name="born" type="xs:date"/>

</xs:schema>

Figure 2.4: A partial XML Schema for the example XML document

namespace p = "http://example.org/people"
start = favorite-composers
favorite-composers = element favorite-composers {

element p:person {
attribute nationality { xsd:string { pattern = "\w\w" } },
element p:name {

element p:first { token },
element p:middle { token }?,
element p:last { token }

},
element p:occupation { token }?,
element p:born { xsd:date },
element p:died { xsd:date }?

}+
}

Figure 2.5: A RELAX NG Compact Syntax schema for the example
XML document
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2002]. Grammar-based and rule-based languages can also be used
to complement each other by using the grammar-based language
to specify the structure and using the rule-based language to spec-
ify constraints that the grammar-based language does not support.

2.1.3 XML Data Models

The XML definition considers only the character-level syntax of
XML (also called “Unicode with angle brackets”). However, an
application that uses XML will often view it as representing a tree
consisting of elements, attributes, and text, or as James Clark, co-
author of RELAX NG, puts it [van der Vlist, 2003],

The abstraction is a labelled tree of elements. Each
element has an ordered list of children in which each
child is a Unicode string or an element. An element is
labelled with a two-part name consisting of a URI and
local part. Each element also has an unordered collec-
tion of attributes in which each attribute has a two-part
name, distinct from the name of the other attributes in
the collection, and a value, which is a Unicode string.

The W3C has produced two different data models for XML. The
older one is XML Information Set (Infoset) [W3C, 2004e], which at-
tempts to faithfully capture all relevant information from a name-
space-well-formed XML document and present it as a tree consist-
ing of information items, each containing a small amount of infor-
mation. In most XML-related specifications produced by the W3C,
XML is viewed through the Infoset specification. XML Schema is
specified to transform an XML Infoset into a post-schema-validation
infoset (PSVI), an information set where the information items are
annotated with types.

Another data model produced by the W3C is the XQuery 1.0
and XPath 2.0 data model [W3C, 2007h]. This was produced for
the needs of the XML processing languages XQuery [W3C, 2007g]
and XSLT [W3C, 2007i], and their associated addressing language
XPath [W3C, 2007f]. It extends the Infoset with support for type
information and collection representation.

For the purposes of many applications, these various data mod-
els are perfectly suitable. However, as is pointed out in [W3C,
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2005e], distinctions even in whether attribute values use single
or double quotes can be significant for some applications (as an
addition to the mentioned XML editors, we offer version control
systems where tools should not change any such data indiscrimi-
nately). This calls for a lower-level data model, based on charac-
ters or bytes.

We can naturally see XML, produced by the grammar in the
XML definition, possibly complemented with a character encod-
ing, as a data model in its own right, which would be the perfect
candidate data model for some applications. However, since XML
processing systems typically cannot preserve this representation,
there is a way to canonicalize XML [W3C, 2001]. Canonical XML
is a way to have several independent XML processors produce
the same byte sequence from two “equivalent” XML documents.
There is no formal definition of this equivalence, but Canonical
XML has been constructed so that people in the XML community
would agree that two XML documents are equivalent if they have
the same canonical form.

This proliferation of data models is a natural consequence of
specifying only a character-level representation without attaching
any semantics to any pieces of data. This is widely seen as a good
thing [Sperberg-McQueen, 2005], as it allows XML to be modeled
according to the application’s needs, which is reflected in the num-
ber and variety of data models.

2.1.4 XML Application Programming Interfaces

To use XML in an application, some API is needed for the pro-
gramming language used. The main concern in such an API is
support for parsing XML, as that is the more difficult task. Usu-
ally, some way is also provided to serialize XML from the applica-
tion data, but often applications simply include direct calls to the
lower-lever character-writing routines, since writing XML is per-
ceived to be a simple exercise.

The existing XML parsing APIs can be divided into two classes.
A streaming API produces events, small atomic pieces of XML, for
the application to consume one by one. The API treats these events
as ephemeral, not storing them anywhere. The other kind of API
is the tree API, where an XML document consists of nodes, again
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small atomic pieces of XML, but with links to each other that cor-
respond to the tree structure of XML. With a tree API, the nodes
are usually kept in memory.

Streaming APIs for parsing exist in two forms, push-style and
pull-style. In a push-style API the parser will usually have a single
function called parse or the like that takes control of parsing and
makes calls to application-registered callback functions for each
event. In contrast, a pull-style parser API has a function to extract
the next event and its relevant information, keeping the applica-
tion completely in control.

The oldest XML API, designed alongside the finalization of the
XML specification itself, is Simple API for XML (SAX) [Brownell,
2002], a push-style streaming API. One benefit of SAX compared
to many of its successors is that it provides access to all parts of
an XML document, including structured access to a possible DTD.
Another, almost as old, is Document Object Model (DOM) [W3C,
2004b], a tree API specified by the W3C.

One failing of these two APIs is that they were designed be-
fore XML namespaces, so their namespace support has been in-
cluded later, and because of backward compatibility they must
also support the old-style namespace-unaware processing. DOM
is also viewed as cumbersome because the API is specified in OMG
IDL [OMG, 2004] to make it language-independent, but this also
makes it unnatural for some programming languages.

The earliest pull-style streaming API was XmlPull [Slominski,
2004]. Having been designed after XML namespaces, its events,
especially in serializing, are fully based on namespace URIs, and
qualified names are not directly available to the application. Xml-
Pull is significant in that kXML1, the best-known XML implemen-
tation for mobile devices, implements the XmlPull API. On desk-
top systems, it has been superseded as the default pull-style API
by its successor, Streaming API for XML (StAX) [BEA, 2003].

For tree APIs, Java programmers in particular have been active
in trying to replace DOM. JDOM2 is an attempt to make a pure
Java API in that JDOM uses familiar Java classes and interfaces
to represent the nodes and iterate over them. The newest well-

1http://kxml.sourceforge.net/
2http://www.jdom.org/

http://kxml.sourceforge.net/
http://www.jdom.org/
http://kxml.sourceforge.net/
http://www.jdom.org/
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known tree API is XOM3, in part a reaction to observed problems
in all other XML APIs.

Considering these XML APIs in terms of data models, it is rare
for an API to be precisely specified as corresponding to some data
model. Rather, an API implicitly defines a data model for XML in
that the model for a document is what the API’s parser produces
from that document. The XML APIs mentioned above are all de-
fined for XML with namespaces, and do not include support for
the type information of the PSVI or the XPath data model.

A completely different way of processing XML is provided by
XML data binding [Sosnoski, 2003b], a process where code to con-
vert between XML and programming language data is generated
from a schema. This approach may make it easier to use XML
in some applications, especially as a replacement for existing sys-
tems, but it is also limited in that some schema is required, invalid
documents cannot be processed, and often processing some XML
constructs like mixed content is cumbersome.

2.2 Web Services

To use XML for messaging, some form of infrastructure needs to
be built, containing at least a syntax for messages and a description
of the transfer protocol. Furthermore, various auxiliary specifica-
tions will be needed for different systems and services that can be
built on top of messaging. XML-based messaging infrastructure is
commonly called Web services.

We will here cover the SOAP-style “structured” approach to
Web services. An alternate method of implementing Web services
that has gained prominence in recent years is Representational State
Transfer (REST) [Fielding, 2000], which is the architectural style
of the WWW and its main protocol, Hypertext Transfer Protocol
(HTTP). The main benefits of REST over SOAP are seen to be its
requirement for stateless interaction and cacheability of communi-
cated data.

Fundamentally, REST is based on resources that are each indi-
vidually addressable and connect to each other through hypertext

3http://www.xom.nu/

http://www.xom.nu/
http://www.xom.nu/
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links. In a REST application an interaction between a client and a
server is accomplished by the client requesting and sending data to
a series of resources, in contrast to the SOAP style where the client
always sends messages to the same “resource” and the content of
the message determines the state of the interaction.

2.2.1 XML Protocols

The first well-known use of XML for the interchange of program-
ming language data was the XML-RPC [Winer, 2003] system of
UserLand Software. This is a simple way to perform Remote Pro-
cedure Calls (RPCs) using XML over HTTP. It supports encoding
the usual programming language types as well as structured data
and arrays into XML.

While XML-RPC has been found suitable for a variety of ap-
plications, it lacks the kind of extensibility that is often required
in distributed systems. To correct this state of affairs, Simple Ob-
ject Access Protocol (SOAP) [W3C, 2000a] was devised. The main
design was still to use XML as a data format for messages, but
other considerations were relaxed; however, HTTP was still the
only specified protocol.

The SOAP 1.1 specification also describes how to encode struc-
tured data, the so-called SOAP encoding rules, which define how to
encode arbitrary data into XML, including cyclic structures. These
rules are used in the also-specified SOAP for RPC.

The SOAP 1.1 specification was published as a Note of the W3C.
After that, the W3C decided to work on XML-based protocols and
formed the XML Protocol Activity, which was later transformed
into the XML Protocol WG4 of the Web Services Activity5. This
WG produced version 1.2 of SOAP [W3C, 2007c], which relegates
most of the areas specific to protocols and usage scenarios to its
adjuncts [W3C, 2007d]. We shall focus exclusively on SOAP 1.2,
even though SOAP 1.1 is still popular in existing systems.

The SOAP specification only defines the outer structure of a
SOAP message, illustrated in Figure 2.6. This Figure shows the
root element, Envelope, with its children, the optional Header and

4http://www.w3.org/2000/xp/Group/
5http://www.w3.org/2002/ws/

http://www.w3.org/2000/xp/Group/
http://www.w3.org/2002/ws/
http://www.w3.org/2000/xp/Group/
http://www.w3.org/2002/ws/
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<soap:Envelope xmlns:soap=’http://www.w3.org/2003/05/soap-envelope’>
<soap:Header>

<target soap:role=’http://www.w3.org/2003/05/soap-envelope/role/next’
soap:mustUnderstand=’true’>

...
</target>
<priority soap:relay=’true’>

...
</priority>
...

</soap:Header>
<soap:Body>

...
</soap:Body>

</soap:Envelope>

Figure 2.6: The SOAP message structure

the mandatory Body. The children of the Header element are called
header blocks, and the example illustrates the common attributes
that SOAP defines for header blocks. Note that SOAP itself does
not define any header blocks, only common attributes for them.

The specified attributes for header blocks are used by the SOAP
processing model. This model begins with the initial sender send-
ing a message, the message passing through zero or more interme-
diaries, and finally being processed by the ultimate receiver. Collec-
tively, these processors are called SOAP nodes. The role attribute
specifies which nodes in this chain are intended to process the
header block, the mustUnderstand attribute set to true specifies
that if a node does not understand the header block, it must re-
spond with an error message, and the relay attribute set to true
specifies that the node is to retain the header block in the message
instead of removing it.

The SOAP specification does not concern itself with the particu-
lars of message transfer. It only defines a protocol framework that
can be used to specify how an underlying protocol is used to trans-
mit SOAP messages, and defines a protocol binding for HTTP.
This binding allows both one-way and request-response messag-
ing. Other protocol bindings have been specified for email [W3C,
2002c] and XMPP [Forno and Saint-Andre, 2005].
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The XML Protocol WG has also produced some other specifi-
cations on message formats. These specifications were driven by
the need to transmit binary data inside SOAP messages, a concern
that was handled by SOAP with Attachments [W3C, 2000b] for
SOAP 1.1. The desired characteristics of this attachment feature
were first specified on an abstract level [W3C, 2004c].

The main issue solved by an attachment feature for SOAP is
transmission of binary data, e.g., images. If embedded as such in-
side an XML document, they need to be base64-encoded [Freed
and Borenstein, 1996a], which both takes significant processing
time and increases the size of the data by one third. Further con-
cerns were the ability to embed XML from other sources: a com-
plete XML document is not embeddable inside XML, and even for
fragments there are the questions of namespace prefix mappings
and different character encodings. Finally, XML element delim-
iters can only be recognized by reading delimiters from the seri-
alized form, so embedded binary data will create overhead as the
parser will need to read every character in it.

The solution produced by the XML Protocol WG was XML-bi-
nary Optimized Packaging (XOP) [W3C, 2005g], a generic mech-
anism for including binary data in XML. XOP was intentionally
limited to the case where the binary data is base64-encoded in the
Infoset representation of the XML, and allows the separation and
direct binary representation of such data. It requires that the XML
document, along with any such binary data, be packaged inside
a format such as Multipurpose Internet Mail Extensions (MIME)
multipart/related [Levinson, 1998]. Any binary content inside
the Infoset representation is then replaced with a pointer to the
corresponding part in the package.

A way to use XOP to include binary data in SOAP messages is
specified by SOAP Message Transmission Optimization Mechan-
ism (MTOM) [W3C, 2005b]. This defines how a SOAP message is
packaged in MIME format using XOP, and defines a feature for
the SOAP HTTP binding to indicate that this optimization is being
used. A later specification [W3C, 2005a] defines how the Internet
media type [Freed and Borenstein, 1996b] of the binary data can be
included also in the XML instead of just in the packaging.
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2.2.2 Protocol Extensions

The SOAP processing model allows a very flexible way to define
extensions to the protocol. An extension will specify one or more
header blocks with names in its own namespace, and semantics
for them. The standard attributes defined for the header blocks
allow a robust manner of using the extensions, as even unaware
processors are required to recognize what to do with these exten-
sion headers, even if they do not implement the actual extension.

The Web Services Activity includes an Addressing WG6 char-
tered with defining how messages are addressed so that they can
be delivered to their proper destinations, and responded to by
their receivers. This work is based on a submission [W3C, 2004d]
from a group of W3C members. The Addressing WG has pro-
duced Recommendations for the core principles [W3C, 2006d] and
for a SOAP binding [W3C, 2006e].

The core Addressing specification defines an endpoint reference
that can be used to describe a Web service message recipient. The
specification further defines addressing properties, which allow cor-
relation of messages, e.g., to indicate the destination of a message
or to specify a request being responded to. These are all defined
using an XML Infoset representation, which also allows extensibil-
ity. The SOAP binding for Addressing defines how a SOAP mes-
sage can indicate that Addressing is in use, and how the abstract
core concepts are mapped to SOAP headers.

An example of how Addressing could be used in a SOAP mes-
sage is shown in Figure 2.7. The MessageID element denotes a
unique identifier for the message, the To element denotes the end-
point that is the target of the message, the ReplyTo element directs
replies to the message, and the Action element identifies the se-
mantics of the message. In accordance with the architecture of the
WWW [W3C, 2004a], all of these elements are URIs.

In addition to the W3C, Organization for the Advancement of
Structured Information Standards (OASIS) has been very active in
defining standards related to Web services. One of the main spec-
ifications of OASIS is the ebXML Message Service [OASIS, 2002a],
which defines a messaging service on top of SOAP 1.1 to sup-

6http://www.w3.org/2002/ws/addr/

http://www.w3.org/2002/ws/addr/
http://www.w3.org/2002/ws/addr/


28 2 The XML Stack

<soap:Envelope xmlns:soap=’http://www.w3.org/2003/05/soap-envelope’
xmlns:wsa=’http://www.w3.org/2005/08/addressing’>

<soap:Header>
<wsa:MessageID>http://example.org/client/1</wsa:MessageID>
<wsa:To>http://example.com/service</wsa:To>
<wsa:ReplyTo>

<wsa:Address>http://example.org/client</wsa:Address>
</wsa:ReplyTo>
<wsa:Action>http://example.com/purchase</wsa:Action>

</soap:Header>
<soap:Body>
...
</soap:Body>

</soap:Envelope>

Figure 2.7: A WS-Addressing header

port secure and reliable messaging. These reliability and security
features have since been further refined by OASIS into Web Ser-
vices Reliability [OASIS, 2004a] and Web Services Security [OASIS,
2004b]. The latter will be covered in detail in subsection 2.3.4.

Web Services Reliability (WS-Reliability) is intended to provide
reliability guarantees to SOAP messaging, including at-most-once,
at-least-once, and exactly-once semantics, as well as ordered deliv-
ery of messages. These are handled by SOAP headers, in which the
sender will include elements indicating its requirements.

2.3 Security

In the modern networked world, security, along with its related
topics, trust and privacy, has become perhaps the most important
concern for new systems. Broadly speaking, security has three
components [Bishop, 2003]:

Confidentiality Concealment of information or even the fact that
information exists

Integrity Verification of information and its origin

Availability Ability to access information
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2.3.1 Security in Messaging

While all of the components of security listed above are needed in
communication, a middleware messaging system does not need to
concern itself with all aspects of each. In particular, availability is
not usually a matter of systems features, but rather a matter of de-
signing and implementing the system so that erroneous data does
not cause crashes, and of administering the network so that Denial
of Service (DoS) attacks can be detected and countered.

Confidentiality in messaging is achieved through a variety of
encryption algorithms. These algorithms can be divided into sym-
metric, or private-key, systems, where the same secret key is used
for both encrypting and decrypting, and asymmetric, or public-key,
systems where encryption is performed using a publicly-available
key but decryption is possible only with a secret key.

The invention of asymmetric cryptography [Diffie and Hell-
man, 1976; Rivest et al., 1978] was a true boon to communications.
In symmetric systems, the most significant problem to solve is key
distribution: since the key needs to be shared by the sender and re-
ceiver of encrypted messages, the sender needs to deliver it some-
how to the receiver. This makes it difficult to communicate with a
party that has not been previously encountered, a situation that is
common in Internet-like public distributed systems.

Asymmetric cryptography solves this, since the receiver’s pub-
lic key is available to anyone, including the sender. The sender
can therefore simply encrypt the messages with that key, and only
the receiver can then decrypt them. In practice, asymmetric algo-
rithms are orders of magnitude slower than symmetric algorithms,
so the message is typically encrypted with a symmetric algorithm
and only the key used for this is encrypted with an asymmetric
algorithm, as is done in the popular Pretty Good Privacy (PGP)
system [Garfinkel, 1994]. Assuming the use of secure algorithms,
this achieves the same benefits as full asymmetric encryption of
the whole message, but with much better performance.

Integrity in messaging typically uses two related technologies,
signatures and certificates. A signature is computed over a mes-
sage and included with it so that the receiver can ensure that the
message has not been altered. Usually signatures rely on simi-
lar techniques as asymmetric cryptography [Elgamal, 1985; Rivest
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et al., 1978] in that the sender computes the signature using its se-
cret key, and verification of the signature is then possible using the
public key. The standard way to compute a signature is to hash the
signed content (e.g., with SHA-1 [Eastlake and Jones, 2001]) and
then apply the signing algorithm to this hash value.

A cryptographic signature proves that the signer is in posses-
sion of the secret key used for the signature, and passing the sig-
nature check means that message integrity has not been compro-
mised. However, signatures themselves do not address the other
part of integrity, verification of origin when the signing party is
previously unknown. Namely, most often parties are not identi-
fied by their cryptographic keys, though there are instances where
this is the case, such as HIP [Moskowitz and Nikander, 2006] or
the developers in the Debian project7. Therefore, cryptographic
keys can be accompanied with certificates, which are essentially
signatures linking the keys to some other identifier for the party,
by which the certificate issuer certifies that the identified party is
the possessor of the cryptographic key.

Use of certificates naturally raises the issue of how users then
trust the certifiers. The approach in PGP is called Web of trust,
which is based on each user rating the quality of other users as
certifiers, and these quality ratings are then used to calculate how
trustworthy an identification is. The more common approach, also
used for secure communication on the WWW, is to rely on trusted
third parties, who provide the service of signing public keys af-
ter receiving some proof of identity or authorization. Since trust
in these parties is built in to all applications, this establishes the
needed certification. Further discussion of these alternatives is
provided in, e.g., [Garfinkel et al., 2005; Perrin, 2003].

A common method of achieving security in communication be-
tween two parties is to begin a session by establishing a secure chan-
nel, i.e., a communication path that is both encrypted and authen-
ticated, and then using this channel for all communication. Estab-
lishment of such a channel is achieved by generating a symmetric
encryption key using a key exchange protocol [Diffie and Hellman,
1976] and then using this symmetric key to encrypt all communi-
cation. This method forms the basis of the most popular security

7http://www.debian.org/

http://www.debian.org/
http://www.debian.org/
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Figure 2.8: Message flow and content with different kinds of secu-
rity

protocol on the Internet, Secure Sockets Layer (SSL) [Freier et al.,
1996], standardized by the Internet Engineering Task Force (IETF)
as Transport Layer Security (TLS) [Dierks and Allen, 1999].

2.3.2 XML-level Security

Current XML messaging systems typically use HTTP as the proto-
col, and use SSL to conceal and authenticate the communication.
However, sometimes this connection-level security is not sufficient.
For instance, in the SOAP processing model, a message can pass
through several SOAP intermediaries, and with connection-level
security, the full message will be visible to each of these intermedi-
aries. Therefore, to achieve security between the initial sender and
ultimate receiver, security needs to be applied at the message level,
even at a granularity of individual XML elements.

Figure 2.8 illustrates connection-level and message-level secu-
rity. Here the client is sending a SOAP message with a header and
a body, and wishes to encrypt the content of the x element in the
body. With connection-level security the content is protected while
in transit but is fully visible at the first SOAP node that receives it.
In contrast, with message-level security the element content is en-
crypted even at the first node. A combination of both approaches,
encrypting the full message in transit but also encrypting the con-
tent, is also possible and needed in some use cases.
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Figure 2.9: Security with an online retailer

We will consider two usage scenarios in more detail. In an on-
line shopping system illustrated in Figure 2.9, the client C sends a
purchase order to the merchant’s outward-facing system S. S ex-
tracts the payment information (e.g., credit card number) for the
payment processor P and the list of ordered goods for the order
processor O. O will also need to communicate with P to verify that
the payment succeeded. The client will encrypt the payment in-
formation to prevent it from falling into the wrong hands, and the
merchant requires the client to sign the order for identification.

With just connection-level security, both client verification and
decryption of payment information must happen at S. In contrast,
with message-level security S merely needs to extract the relevant
parts from the message and forward them inside the merchant’s
internal network. Therefore, with message-level security, S can be
a simpler system that does not do any security processing, so com-
promising S will not be sufficient for an attacker to alter orders or
extract payment information.

Similar concerns apply to workflow systems. In a workflow
system, a series of computers are connected to each other, and
messages pass through each of them. Each computer will do some
processing on the message before passing it to the next system.
Depending on the makeup of the system, there may be a need for
securing the messages as they flow through the system.

The messages processed by workflow systems can be large, and
each individual computer may need to process only a small part of
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each. With connection-level security, each computer will need to
decrypt and verify the complete messages, as well as encrypt and
sign them. If security processing happened at the level of individ-
ual XML elements, each computer would need to process only the
parts that it is interested in.

A further benefit in workflow systems is compartmentalization.
Since each XML element is encrypted individually, they can be en-
crypted only to the computers in the system that need that infor-
mation. In this way, computers that do not need some information
will not even have access to that information, and signatures that
have been made remain attached to their original signers and not
to any intermediaries.

2.3.3 XML Security Specifications

The W3C has produced several specifications for encrypting and
signing XML documents at the level of individual elements. The
main specifications are XML Signature [W3C, 2002f] and XML En-
cryption [W3C, 2002e], and they are complemented by two canoni-
calization specifications [W3C, 2001, 2002b], as well as a method to
interoperate when signed content is later encrypted [W3C, 2002a].
An example of an XML document with both signed and encrypted
content is shown in Figure 2.10, with the actual content omitted.

The main XML element defined by XML Signature is the Signa-
ture element8. Such an element contains, at a minimum, a Signed-
Info element and a SignatureValue element. It may also contain
a KeyInfo element to identify the key used, either by including it
directly into the document or by providing a known identifier for
it, the latter being what the example in Figure 2.10 does. Finally,
the Signature element may contain a number of Object elements
that may carry arbitrary data.

The actual signature is carried in the SignedInfo and Signa-
tureValue elements. The former of these contains a number of
Reference elements, each of which identifies its corresponding
content by URI (this content does not have to be XML). In the
example of Figure 2.10, the Reference element refers to the part

8All elements defined by XML Signature are in the namespace http://www.
w3.org/2000/09/xmldsig#.
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<document xmlns:ds=’http://www.w3.org/2000/09/xmldsig#’
xmlns:xenc=’http://www.w3.org/2001/04/xmlenc#’>

<ds:Signature>
<ds:SignedInfo>

<ds:CanonicalizationMethod Algorithm=’...’/>
<ds:SignatureMethod Algorithm=’...’/>
<ds:Reference URI=’#contract’>

<ds:DigestMethod Algorithm=’...’/>
<ds:DigestValue>...</ds:DigestValue>

</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>...</ds:SignatureValue>
<ds:KeyInfo>

<ds:KeyName>...</ds:KeyName>
</ds:KeyInfo>

</ds:Signature>
<part id=’contract’>

<xenc:EncryptedData Type=’...#Element’>
<xenc:EncryptionMethod Algorithm=’...’/>
<ds:KeyInfo>

<ds:KeyName>...</ds:KeyName>
</ds:KeyInfo>
<xenc:CipherData>

<xenc:CipherValue>...</xenc:CipherValue>
</xenc:CipherData>

</xenc:EncryptedData>
...

</part>
</document>

Figure 2.10: XML encryption and signature example
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element using a relative URI referring to the id attribute. A di-
gest, i.e., a hash value, is computed over the referenced content
and included in the Reference element. The content of the Signa-
tureValue element is then a signed digest over the SignedInfo el-
ement. Both the digest and signature methods are selectable, with
a few alternatives mandated by the specification to be available.

Digest computation is always performed on byte sequences,
and if an XML document is processed by an intermediary, the seri-
alized form may change. To permit signature verification despite
this, the Reference element permits the use of transforms to the
content to be specified, and the SignedInfo element mandates the
presence of a canonicalization method to specify how the XML in
the SignedInfo element was actually converted into bytes. If the
content referenced by the Reference elements is XML, one of the
specified transforms should usually be a canonicalization method.

The W3C has specified two canonicalization methods, the origi-
nal Canonical XML [W3C, 2001], also called inclusive, and the later
exclusive canonicalization [W3C, 2002b]. The difference between
these is the treatment of in-scope namespaces in the canonical-
ization of subtrees. Figure 2.11(a) shows an XML document, of
which the subtree rooted at n2:b is canonicalized inclusively in
Figure 2.11(b) and exclusively in Figure 2.11(c). Inclusive canoni-
calization includes all in-scope namespaces in the n2:b tag while
exclusive includes only the ones actually used in the subtree.

The example in Figure 2.11 also demonstrates some other fea-
tures of canonicalization. Namely, attributes and namespace pre-
fixes in a start tag are lexicographically sorted, with all namespace
prefixes coming before any of the attributes. Also, empty elements
are represented explicitly as start tag–end tag pairs and not as
empty element tags.

The reason for exclusive canonicalization is applications such
as SOAP where the signed content can be considered separable
from its containing document. If this signed content is extracted
and inserted into another document, and the set of in-scope name-
spaces changes because of this, a signature generated using in-
clusive canonicalization will not validate anymore. On the other
hand, inclusive canonicalization is faster to perform, since it does
not require going through the whole signed subtree and collecting
the namespace prefix mappings that must be included.
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<n1:a xmlns:n1="urn:y">
<n2:b xmlns:n2="urn:x">

<n2:c/>
<n2:d y="y" x="x">

Text
</n2:d>

</n2:b>
</n1:a>

(a) Original

<n2:b xmlns:n1="urn:y"
xmlns:n2="urn:x">

<n2:c></n2:c>
<n2:d x="x" y="y">

Text
</n2:d>

</n2:b>
(b) Inclusive

<n2:b xmlns:n2="urn:x">
<n2:c></n2:c>
<n2:d x="x" y="y">

Text
</n2:d>

</n2:b>
(c) Exclusive

Figure 2.11: Two XML canonicalization examples

The example of Figure 2.10 also shows the content of the part
element having been encrypted. This is implemented by replacing
the original content with an EncryptedData element as defined by
XML Encryption9. XML Encryption also defines an EncryptedKey
element to carry an encryption key, the possible content of which
is a superset of that of EncryptedData.

An EncryptedData element includes, at a minimum, a Cipher-
Data element that can either reference the encrypted content or
include it in a CipherValue element. It may also include the en-
cryption method that was used as well as a KeyInfo element of
XML Signature to identify the key used for encryption. The Type
attribute can be used when the encrypted content is XML to denote
whether it is an element or the content of an element.

An EncryptedKey element has the same possible child elements
as an EncryptedData element, except the encrypted content in this
case is an encryption key. The additional content it has is a list

9All elements defined by XML Encryption are in the namespace http://www.
w3.org/2001/04/xmlenc#.
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of DataReference and KeyReference elements that refer to En-
cryptedData and EncryptedKey elements, respectively, encrypted
with the key contained in the element. As always, these references
may point to either the same document or to external content.

2.3.4 Web Services Security

Web Services Security (WS-Security) [OASIS, 2006a] from OASIS
defines how these XML security technologies are applied to SOAP
messages. This specification appears to be what message security
in Web services is converging towards.

WS-Security uses SOAP’s standard extensibility mechanism by
defining a security header block for SOAP messages. A security
header block identifies those parts of a SOAP message that sig-
natures or encryption have been applied to. It is possible for a
message to contain more than one security header block, each tar-
geted at a different SOAP intermediary, which provides support
for the workflow scenario described above.

Identification of encryption and signature keys in WS-Security
is typically accomplished through security tokens. A security token
identifies, in some manner, the party responsible for encrypting
or signing parts of the message. In principle, the token can iden-
tify the party in any manner understandable to both communi-
cation endpoints, but common methods include username-based
tokens [OASIS, 2006b] and X.509 certificates [OASIS, 2006c]. The
latter of these provides a certificate of identity authenticated by
a trusted third party, and may therefore be usable even when no
previous association exists.

An example of a security header block is shown in Figure 2.12.
The element shown here would be a child of the SOAP Header
element. The example also shows another feature of WS-Security,
the timestamp. A timestamp gives a creation date and an expiration
date, which are useful in protecting against replay attacks where an
eavesdropper resends a previously-sent message in an attempt to
cause the receiver to process it twice. A BinarySecurityToken can
carry any type of security token encoded as a byte sequence; here
the ValueType attribute identifies it as an X.509 token.

As can be seen from Figure 2.10 and Figure 2.12, adding a se-
curity header block to a SOAP message consumes a lot of space,
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<wsse:Security
xmlns:wsse=’http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-wssecurity-secext-1.0.xsd’
xmlns:wsu=’http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-wssecurity-utility-1.0.xsd’
xmlns:ds=’...’ xmlns:xenc=’...’>

<wsu:Timestamp wsu:Id=’...’>
<wsu:Created>...</wsu:Created>
<wsu:Expires>...</wsu:Expires>

</wsu:Timestamp>
<wsse:BinarySecurityToken ValueType=’...#X509v3’>

...
</wsse:BinarySecurityToken>
<xenc:EncryptedKey>

...
</xenc:EncryptedKey>
<ds:Signature>

...
</ds:Signature>

</wsse:Security>

Figure 2.12: A Web Services Security SOAP header block

especially when considering that most of the attribute values we
left out are URIs, which tend to be long. In our measurements on
WS-Security performance [Kangasharju et al., 2006] we noted that
the Apache WSS4J implementation10 on default settings generates
a security header block with size over 6 kilobytes. If the messages
themselves are very small, adding security header blocks might be
unacceptable overhead in many systems.

2.4 XML Performance

Performance is an ever-present concern in computer systems, and
in XML-based systems the bottleneck has often been observed to

10http://ws.apache.org/wss4j/

http://ws.apache.org/wss4j/
http://ws.apache.org/wss4j/
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be XML processing, sometimes parsing and sometimes higher lay-
ers of the XML stack. It is therefore necessary to investigate the
performance of systems, identify the actual causes for poor per-
formance, and attempt to improve the performance by different
implementation techniques.

2.4.1 Existing Measurements

SOAP as a protocol has been adopted by the Grid [Foster and
Kesselman, 2004] community for communicating scientific data.
Therefore they have been especially active in charting the bottle-
necks of XML messaging, with a focus on scientific computing.
More relevant to our work has been the mobile computing com-
munity, but there the measurements usually include networking,
so we cover them in subsection 3.3.2.

One of the oldest, and still perhaps the most famous, measure-
ment of SOAP performance was published by Chiu et al. [2002]
in the context of Grid computing. This work studied the struc-
ture of a SOAP implementation, identified performance issues in
each component, and built a highly-optimized SOAP processor to
address these issues. The optimized processor took advantage of
schema-specific parsing, had special code to handle arrays, and
eliminated all buffering between the application and the system
Input/Output (I/O) layer.

In the end, Chiu et al. eliminated most of the issues in SOAP
processing, leaving a problem inherent to XML. Namely, in the
optimized processor, over 90 % of the processing time was spent
in converting floating-point values between their internal repre-
sentations and the text required by XML. Addressing this issue
would require a binary encoding for data, which would then be
no longer compatible with the standard XML encoding that every
current SOAP system expects.

SOAP and XML have also been making inroads into the finan-
cial sector. In that field, there is an established text-based pro-
tocol called FIX [FIX, 2001]. Kohlhoff and Steele [2004] compare
the performance of FIX to SOAP and to the binary Common Data
Representation (CDR) used in CORBA [OMG, 2004]. From the re-
sult that SOAP performs poorly while the performance of FIX is
close to that of CDR, Kohlhoff and Steele conclude that the poor
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performance of SOAP is most likely due to poor implementations
and not to any inherent weakness of a text-based format.

Both of the former measurements are quite old, from a time
when SOAP implementations were not nearly as mature as they
are today. In the context of Grid computing, Head et al. [2006] have
proposed a benchmarking suite for evaluating the performance of
SOAP processors. The SOAP messages in this benchmarking suite
are designed so that they measure both the performance of differ-
ent features of the SOAP processors and the performance in typical
Grid computing applications.

Head et al. [2006] also evaluate several different SOAP proces-
sors against this benchmarking suite. Their conclusions are that
when using C, the best parsers to use are gSOAP11 and Expat12.
For Java, they recommend Piccolo13 instead of the better-known
Apache Xerces14. However, our latest experiments [Kangasharju
and Tarkoma, 2007] point in the direction that the latest release of
Sun’s Java implementation brings Xerces to the same level of per-
formance as Piccolo, and another parser, Woodstox15, is better than
either. Though this is indicative of the changing landscape of XML
parser performance, it must be noted that the full benchmark of
Head et al. was more extensive than our simple measurement.

2.4.2 Efficiency in XML Processing

As the importance of XML processing in modern systems grows,
so do naturally concerns over the performance of XML processors.
Mostly, the focus has been on improving parser performance, as
XML serialization is seen as quite trivial and not amenable to as
much improvement as parsing. Many of the techniques rely on a
schema of some form existing for the processed documents, either
explicitly or implicitly.

Serialization of SOAP messages has been considered by Abu-
Ghazaleh et al. [2004]. Their approach is based on noticing that

11http://www.cs.fsu.edu/~engelen/soap.html
12http://expat.sourceforge.net/
13http://piccolo.sourceforge.net/
14http://xerces.apache.org/
15http://woodstox.codehaus.org/

http://www.cs.fsu.edu/~engelen/soap.html
http://expat.sourceforge.net/
http://piccolo.sourceforge.net/
http://xerces.apache.org/
http://woodstox.codehaus.org/
http://www.cs.fsu.edu/~engelen/soap.html
http://expat.sourceforge.net/
http://piccolo.sourceforge.net/
http://xerces.apache.org/
http://woodstox.codehaus.org/
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many applications send several messages to the same Web service
endpoint, and therefore these messages bear close resemblance to
each other. When serializing a message to a new Web service for
the first time in this system, the serialized form is also saved into a
buffer. When a later message shares some or all of the same struc-
ture, this pre-serialized form can be used to avoid serializing again
the shared structure.

Later, Abu-Ghazaleh and Lewis [2005] applied the same tech-
nique to deserialization. This is based on creating checkpoints in
the byte stream, essentially saving the parser state. Whenever the
system notices that it is parsing bytes with the same semantics as
data that was previously parsed, it can simply replay the results
created before without needing to parse the bytes.

Takase et al. [2005] have applied the same technique in their
implementation. The differences from the work of Abu-Ghazaleh
and Lewis are that Takase et al. store the full byte sequences in-
stead of just checksums, and use a deterministic finite automaton
(DFA) that matches byte sequences and outputs SAX events.

These techniques work best when the processed XML docu-
ments are similar to each other, e.g., when they all conform to the
same schema. However, these systems are not actually capable of
using a schema. Rather, they extract common information from
the documents during processing, essentially building a schema-
derived data structure.

In contrast to such implicit schema use, other approaches have
focused on explicit schema use. Both Chiu and Lu [2004] and van
Engelen [2004] compile a schema into an automaton. The differ-
ence between these two approaches is that Chiu and Lu compile
the automaton into executable code while van Engelen uses it as a
data structure. In static cases, the former approach can be prefer-
able, as all the message types can be known beforehand, and direct
compilation into code may offer better performance. However, as
Web services are typically very loosely coupled, a more dynamic
system that can accommodate new types of messages at run time
is usually preferred.

XML Screamer [Kostoulas et al., 2006] takes an integrated ap-
proach to parsing. The basic observation is that, like network pro-
tocols, XML processing is defined in specifications using a layered
model, but like in network protocols, it is not sensible to mirror this
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layering in the implementation [Watson and Mamrak, 1987]. Ac-
cordingly, XML Screamer integrates parsing, validation, and object
construction into a single system.

The main benefit of XML Screamer is its ability to avoid read-
ing data more than once. The integrated approach allows decod-
ing the serialized bytes into characters and these characters further
into XML names or typed values in a single pass over the data. At
its heart, XML Screamer is a schema-based system, compiling a
schema into the executable code of a high-performance schema-
specific parser, thus sharing the disadvantages of the system of
Chiu and Lu [2004]. However, XML Screamer can also be used
with a fully permissive schema, and even in this mode it outper-
forms other high-performance XML parsers.

An interesting approach designed for multiprocessors has been
designed by Lu et al. [2006]. Their parallel parsing system begins
by preparsing the XML document to construct a skeleton version,
i.e., a data structure containing only the tree structure of the docu-
ment, none of the actual content. After the tree structure has been
extracted, the document is partitioned equally for all processors,
and can thus be parsed in parallel. As the preparsing phase does
not need to perform many expensive well-formedness constraints,
it is much faster than a full parse.

Many of the techniques described above are not suitable for mo-
bile devices. For instance, the caching parser of Takase et al. [2005]
requires megabytes of memory to store its memorized documents
and the parallel parsing of Lu et al. [2006] requires a multiproces-
sor as well as reading the whole document into memory. Similarly,
schema processing and compilation can be a prohibitive additional
cost, even though the runtime costs of the schema compilation ap-
proaches are not excessive when only a few schemas are used.

2.4.3 Efficiency in XML Security

The XML security specifications are defined in terms of the Infoset
model, which is a tree-based view that allows arbitrary traversals
of the XML document. However, using an explicit tree data struc-
ture in an implementation of such a specification is often not a very
good idea from the performance perspective. A common alterna-
tive is the attempt to process XML in a fully streaming manner,
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which provides memory usage benefits as well as the ability to
pipeline several processing stages together. However, if the pro-
cessing semantics are defined in terms of a tree model, it may be
difficult to avoid buffering.

Interest in efficient implementation of XML security has existed
for as long as there has been XML security. An early effort by Ima-
mura et al. [2002] implemented a streaming XML Encryption pro-
cessor using special features of Apache Xerces. While there was
little improvement in encryption performance, the streaming de-
cryption was several times faster than a traditional implementa-
tion based on DOM.

On the XML Signature front, Shirasuna et al. [2004] noted that
unless message-level security is required, SSL outperforms XML-
level security mechanisms. Shirasuna et al. also measured that
over 90 % of the signature generation time was spent on canonical-
ization. They thus conclude that optimizing the canonicalization
phase is the most fruitful avenue for improvement.

The lessons of Shirasuna et al. [2004] were taken to heart by
Lu et al. [2005] who integrated a streaming canonicalizer into the
XML parser. This approach was over 6 times as fast as the compar-
ison point, mostly due to the much faster canonicalization perfor-
mance. In addition, as the system of Lu et al. is a streaming proces-
sor, its memory consumption remains constant. The problem with
this approach is that it does not support all signed documents, only
those where the signature precedes the signed content.

Earlier we saw examples of XML parsers that exploited com-
monalities between parsed documents and cached information to
avoid expensive re-parsing. A similar approach was applied to
WS-Security by Makino et al. [2005] who build templates for com-
monly occurring XML fragments and can then use these templates
to directly process the same bytes again. This also helps in canoni-
calization, though some special processing needs to be performed
for in-scope namespaces. This work is similar to [Takase et al.,
2005] and, in fact, some of the same people were involved in both.

OASIS [2003] also worked on a minimal profile for WS-Security.
The basic concept is that the sender of a WS-Security message can
add assertions regarding the content of the message that help the
receiver process it faster. For instance, one assertion specifies that
the signed parts are transmitted in canonical form, obviating the
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need for separate canonicalization at the receiver side. Unfortu-
nately, this work never progressed past the draft stage.

2.5 Concluding Remarks

XML as the format for messages in a distributed system has the
benefit of ubiquity. The popularity of XML means that there will
nearly always be an existing implementation for an application’s
needs, and many issues that emerge have already been solved by
some technology in the XML stack.

The message format described by SOAP has many benefits. The
separation of the header from the body, with full namespace sup-
port, lets a system differentiate between message metadata and
data, and specify types of metadata independently of any other
uses of SOAP. The use of a language such as Web Services De-
scription Language (WSDL) [W3C, 2007e] permits giving a schema
definition for the messages as well. It is thus likely that SOAP
messages can be associated with either complete or partial schema
information, which comes from multiple sources.

Messaging applications are rarely interested in XML as such,
but only as an interchange format. Such applications will there-
fore view XML only through some data model, most commonly
the implicit one that is present in the API they use. Thus, it is nec-
essary for the XML API to provide a convenient ability to convert
between XML and application data, but on the other hand, current
data binding approaches appear too rigid due to their insistence
on a fully-correct schema.

An efficient XML processor implementation is a necessity in
the world of mobile devices. Most of the research in XML pro-
cessing efficiency appears to concentrate on large machines with
abundant resources, as evidenced by the memory consumption re-
quirements of the techniques described in subsection 2.4.2. Thus,
it is not certain whether XML can be accepted as a suitable mes-
saging format in mobile computing.



CHAPTER 3

Mobile Computing

Whit a weerd bludy playce;
ye wooldnae bileeve it.

Distributed systems become significantly different when wireless
communication and mobile nodes are introduced. These differ-
ences are not merely quantitative in that the links and nodes have
just worse performance, but also qualitative in that the charac-
teristics also differ from fixed links and stationary computers. A
deep understanding of the devices, networks, communication pro-
tocols, and programming support is crucial for developing future
applications that function properly in the new environment.

3.1 Device and Network Characteristics

Mobile computing in this dissertation refers to computing on small
mobile devices such as Personal Digital Assistants (PDAs) or mo-
bile phones1. While laptop computers have seen use in mobility
research as well, the convenience of the much smaller form fac-
tor and cheaper price has led to the ubiquity of mobile phones.
The networking capabilities of modern phones have even led to

1Mobile phones with advanced capabilities, especially for programming, are
also called smartphones.
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Keshav [2005] claiming that the future of the Internet will be dom-
inated by phones.

While form factor is an important enabler of the ubiquity of mo-
bile phones, we shall not consider it further. Form factor has its
main effect in user interface considerations, and our work is fo-
cused on the middleware level. Therefore our primary interest is
in the technologies used in the devices and their properties.

3.1.1 Mobile Phones

We shall here focus solely on mobile phones, instead of PDAs or
similar devices. The reasons are that phones are cheaper and there-
fore more widely used, and that the networking technologies on
phones in general form a superset of those usually available in
PDAs, with some of these technologies explicitly designed for mo-
bility. Finally, mobile phones are in general weaker in capabilities
than PDAs, so a system that works well on phones should also
work well on PDAs.

The central processing unit (CPU) on a mobile phone is typi-
cally based on the ARM architecture due to the power efficiency
of ARM CPUs. Clock frequencies on current models are usually
around 200 MHz or slightly higher. Memory available to appli-
cations is usually a few megabytes, with recent high-end models
having up to 20 megabytes.

Permanent storage on a mobile phone is typically based on flash
memory. Usually a phone is shipped with a small memory card,
possibly having up to 64 MiB available, but it is currently possible
to acquire memory cards with 2 GiB of space, which is the limit
supported by the old memory card interface (the newest mod-
els support even larger memory cards). High-end phones usually
provide some form of a hierarchical file system view of the storage
contents, but lower-end models just treat the storage as a simple
key-value database.

The main concern with mobile phones is not their slower CPU
speed or limited storage capabilities, but energy. As a phone needs
to be mobile, its power source is a portable battery that can only
contain a certain amount of energy. And unlike CPU speed and
storage capacity, battery energy density has not followed an expo-
nential growth curve [Paradiso and Starner, 2005].
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When considered from the messaging point of view, the key
question in energy consumption is how much energy do each of
computation, storage use, and network use consume. This ques-
tion has been studied in the context of security [Kangasharju et al.,
2006; Karri and Mishra, 2003; Potlapally et al., 2006] and compres-
sion [Barr and Asanovic, 2006] where the algorithms require large
amounts of CPU time, so it is necessary to know how much energy
is consumed by the algorithms and how much by networking. The
results indicate that even for modest amounts of communication,
networking costs dominate, and that compression helps, but only
when using simple efficient algorithms like DEFLATE [Deutsch,
1996a] instead of better but slower ones like bzip22 or Prediction
by Partial Matching (PPM) [Cleary and Witten, 1984].

Mobile phones have a variety of different operating systems
(OSs), the most common of which is Symbian3. Mobile ports of the
desktop OSs Windows and Linux are also used on some phones, as
well as manufacturer-specific ones. Each OS has a native program-
ming language (C or C++) and a specific API for programmers to
access the device’s functionality.

In addition to the native language, most phones also include
a Java Virtual Machine (JVM) for running Java programs. Dif-
ferent Java Micro Edition (JavaME) specifications define the capa-
bilities of devices (called configurations) and the APIs available to
programmers (called profiles). The most common profile is Mobile
Information Device Profile (MIDP) [SM, 2002], which is based on
the Connected Limited Device Configuration (CLDC) [Sun, 2003a].
A more expressive profile is Foundation Profile (FP) [Sun, 2002]
based on the Connected Device Configuration (CDC) [Sun, 2001],
found on some high-end devices. While the MIDP API is very
different from the normal Java API, the FP contains basically the
normal Java API at the level of version 1.1 with some extensions.

We chose to write our messaging system for the Java MIDP 2.0
API. This decision was made because programming in JavaME
does not differ greatly from standard Java programming, whereas
Symbian C++, the other option, includes a number of program-
ming conventions and unusual classes because it lacks features

2http://www.bzip.org/
3http://www.symbian.com/

http://www.bzip.org/
http://www.symbian.com/
http://www.bzip.org/
http://www.symbian.com/
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from standard C++ [Mikkonen, 2007]. While JavaME does not pro-
vide as much access to the phone’s capabilities as Symbian C++,
messaging middleware usually does not require the additional ac-
cess, so MIDP 2.0 is sufficient4.

3.1.2 Wireless Networks

One of the primary attractions of a mobile phone is its mobility,
which allows it to be easily carried by the user and operated while
mobile. Because of this, any networking technology used on the
phone must be based on wireless operation. Users may accept a
sporadic need to plug the phone in, e.g., for charging the battery,
but they will not accept a requirement to be plugged in to connect
to a network.

The main networking technology available on mobile phones
is naturally the actual phone network. Nowadays, this is either
a second generation (2G) digital technology such as Global Sys-
tem for Mobile communications (GSM) [Dettmer, 1991] or a third
generation (3G) technology such as Universal Mobile Telecommu-
nications System (UMTS) [O’Mahony, 1998]. While 3G networks
provide better-quality connectivity, their availability is not yet as
wide as that of 2G networks, so both kinds of technologies will
likely be in use in the near future.

GSM itself is circuit-switched similarly to the landline phone net-
work, i.e., whenever a call is placed, resources in the network it-
self are dedicated to maintaining a connection between the two
endpoints. For data communication, packet switching is considered
to be the superior approach [Roberts, 1978], in which each piece
of data is split into packets, each routed to the destination inde-
pendently of the others. This is an instance of the end-to-end princi-
ple [Saltzer et al., 1984], i.e., complex functionality should be placed
at the edges of the network.

General Packet Radio Service (GPRS) [Cai and Goodman, 1997]
is a packet-switching-based technology for data communication
built on top of GSM. The main benefit to the user is that with GPRS
the pricing structure of the operator is based on the amount of data

4MIDP 1.0 would not be sufficient due to its extremely limited networking
capabilities.
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Table 3.1: Theoretical data rates of mobile phone networks

Network Max. data rate

GSM 57.6 kbps
GPRS 171.2 kbps
EDGE 474 kbps
UMTS 2000 kbps

sent and not on the time the connection is open. UMTS includes
from the beginning both a circuit-switched and a packet-switched
part to support both phone calls and data traffic.

Without switching to 3G technologies, the data rates in GSM
networks can be increased by Enhanced Data rates for GSM Evo-
lution (EDGE) [Furuskär et al., 1999]. Upgrading the core GSM
network to support EDGE is not nearly as expensive as building
a 3G infrastructure, so large operators usually support EDGE in
their networks. Support in phones is less common, with only the
higher-end models including EDGE support.

The maximum data rates of these technologies, including GSM
for transmitting data over the circuit-switched network, are shown
in Table 3.1. Note that these are theoretical maximums that are
not achieved in regular use for a variety of causes, including user
mobility and interference from other users located in the same cell.

The phone network is not the only available networking tech-
nology, especially on higher-end phones, even though it is the
only one to support wide-area mobility. Commonly, phones sup-
port at least Bluetooth [BlueSIG, 2004] as well, but access to it
may on some lower-end models be limited to existing applica-
tions without a programming interface. Nowadays, especially on
phones intended for business use, Institute of Electrical and Elec-
tronic Engineers (IEEE) standard 802.11 [IEEE, 1999], also known
as Wireless LAN (WLAN) or WiFi, is becoming available as well.

WLAN is commonly used in office environments to provide
wireless connectivity to the Internet by placing a number of base
stations around the office. In contrast to this infrastructure mode, it
is also possible to use WLAN in an ad-hoc mode where the devices
configure themselves with certain parameters that ensure they can
all communicate with each other. While this mode can also be used



50 3 Mobile Computing

for network access if one device acts as a router for the others, it is
more common to use it for less organized networking.

The attraction of WLAN is its high data rate. Of the two com-
monly-used versions, the older 802.11b provides a maximum data
rate of 11 Mbps while the newer 802.11g provides 54 Mbps. How-
ever, to achieve these data rates in practice, the base station needs
to be very close to the device, precluding wide-area mobility with
high data rate.

Bluetooth is a very-short-range technology originally designed
for replacing wired connections between a computer and its pe-
ripherals. However, it was soon applied to Personal Area Net-
works (PANs), that is, networks formed of a single person’s com-
puting devices. Because of its origins, Bluetooth includes the Ser-
vice Discovery Protocol (SDP), which can be used to dynamically
discover devices and the services they offer.

The main attraction of Bluetooth over other wireless technolo-
gies is its low energy consumption. A short-range transmission
up to approximately 10 meters consumes only at most 2.5 mW of
power. With a data rate of over 700 kbps this makes Bluetooth a
very energy-efficient protocol for data transmission. According to
Riva [2006], a request-response interaction with messages of size
100–200 bytes consumes approximately an order of magnitude less
energy on Bluetooth than on ad-hoc WLAN, which in turn con-
sumes an order of magnitude less than on UMTS. Note that the
power consumption of WLAN is more than that of UMTS but the
much smaller time spent in communication reduces the total en-
ergy consumption.

Two technologies are expected to feature prominently in the
near future of mobile networking. Worldwide Interoperability for
Microwave Access (WiMAX), IEEE standard 802.16 [IEEE, 2004b],
is intended for Metropolitan Area Networks (MANs), i.e., city-
sized networks, instead of office-sized networks like WLAN is.
WiMAX promises a maximum data rate of 70 Mbps, though at its
maximum range the data rate will be lower than that of 802.11b.
A current problem with WiMAX deployment is the availability of
radio spectrum in different parts of the world.

The other technology, expected to become Bluetooth’s replace-
ment for low-power short-range communication, is Ultra-Wide-
band (UWB) [Porcino and Hirt, 2003]. The major benefit of UWB
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is that the use of a wide band for communication permits it to co-
exist with other radio systems on the same frequencies, so there is
no need to allocate new areas of the spectrum just for UWB. How-
ever, an attempt to standardize a UWB technology at the IEEE has
recently failed to reconcile two different approaches [Geer, 2006],
making UWB in its current state unlikely to be adopted widely and
across vendors.

3.2 Wireless Communication

The design of a communication protocol is highly dependent on
the communication environment. As wireless networking and mo-
bile computing have gained prominence only in the recent years,
most existing protocols have been designed for a mostly-static net-
work. However, the emergence of a new computing paradigm
does not necessarily require a revolutionary change, but may be
solvable through evolution.

There are two perspectives when designing protocols for mo-
bile computing. One is that a fixed network such as the Internet is
the main communication channel and mobile devices join this net-
work through designated access points. In this style, the fixed net-
work and the services provided by it form the infrastructure for the
distributed applications. The other view, exemplified by research
into ad-hoc networks [Perkins, 2001], is that networks can also con-
sist solely of mobile devices. In this case, there is no fixed infra-
structure, so service availability is not guaranteed, but depends on
the proximity of devices providing those services.

3.2.1 Internet Protocols

The basis for Internet communication is its network layer protocol,
Internet Protocol (IP) [Deering and Hinden, 1998; Postel, 1981a].
As the current trend even in the mobile world appears to be away
from wireless-specific protocols and towards direct Internet con-
nectivity, we will make the assumption that IP is the protocol used
when communicating with larger communities.

According to some views, mobility should be the province of
the network layer, as only that layer should care about the location
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of communicating nodes. Thus, there exists Mobile IP [Johnson
et al., 2004; Perkins, 2002] that provides a way to support mobile
nodes with IP. This is done by each mobile node having a per-
manent home address where IP packets are sent. The home address
is in reality monitored by the mobile node’s home agent that will
forward packets to the mobile node’s current care-of address. The
mobile node will simply send packets normally, but uses its home
address as the sender IP address.

This method leads to a problem called triangular routing: since
the mobile node is identified by its home address, all packets ad-
dressed to it must first go to the home agent and only from there to
the mobile node. Mobile IP for IP version 6 includes route optimiza-
tion support to mitigate this issue, but the fundamental problem
is that on the Internet IP addresses are used as both identifiers of
nodes (identities) as well as routing targets (locators).

This need to separate between identities and locators of net-
work nodes has long been known (Saltzer [1993] provides a good
overview). A recent proposal currently going through the IETF is
HIP [Moskowitz and Nikander, 2006], which adds a layer between
IP and the transport layer that provides cryptographic identifiers
that serve as identities, thus leaving IP addresses only as locators.
This solves problems in both mobility and multihoming without
sacrificing security [Nikander et al., 2003].

On the Internet there are two main protocols on the transport
layer: Transmission Control Protocol (TCP) [Postel, 1981b] and
User Datagram Protocol (UDP) [Postel, 1980]. TCP is a reliable
byte-stream protocol and UDP an unreliable datagram protocol.
Of the two, TCP is much more commonly used due to its relia-
bility, which removes the need for applications to implement their
own flow control and retransmission policy. However, UDP is sim-
pler and has a smaller per-packet overhead, which makes it more
attractive for mobile devices.

TCP has been the subject of a multitude of performance mea-
surements and enhancements. In wireless networks TCP has two
main problems. One is that it assumes all packet losses to be due
to network congestion and thus reduces its sending rate, whereas
over a wireless link packet losses can often be due to corruption
when no rate-limiting would be needed. The other is that the slow-
start algorithm that TCP uses to probe the available bandwidth
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begins by allowing only a very small number of sent but not yet
acknowledged TCP segments, which leads to a long period of un-
derutilization over high-latency networks.

The main ways to improve TCP performance while still hon-
oring TCP’s end-to-end semantics are to improve the algorithms
for estimating network latency (to avoid spurious retransmissions)
and bandwidth (to avoid needlessly long slow-start phase). All-
man and Paxson [1999] evaluate a number of algorithms for both
cases. More recently, Capone et al. [2004] have developed a band-
width-estimation algorithm that is shown to improve on a normal
TCP implementation without overestimating the bandwidth, un-
like some other proposed improvements.

Of interest to our topic are measurements of TCP performance
in mobile phone networks. An early work by Meyer [1999] uses
simulation to determine the specific problems that TCP encoun-
ters over GPRS connections. According to Meyer, packet loss is
a negligible problem, unlike over WLAN, due to retransmission
functionality built into GPRS. In the simulation, TCP took on the
order of 10 s to adjust its retransmission timer after a change in
network conditions.

More recently, Benetazzo et al. [2003] have analyzed TCP per-
formance over GPRS from the point of view of a network opera-
tor. In the measurements, a laboratory experiment in perfect con-
ditions observed a mean round-trip time (RTT) of 1.5 s, while in
a trace of real Internet traffic the RTT values were concentrated
around 4 s, with a minor concentration around 6 s. Vacirca et al.
[2005] provide similar measurements for both GPRS and UMTS,
acquiring a median RTT of 1.5 s for GPRS and 350 ms for UMTS,
though the UMTS distribution had a noticeably heavier tail.

3.2.2 Splitting Connections with Gateways

The end-to-end design principle [Saltzer et al., 1984] is usually con-
sidered to be a fundamental principle of the Internet, and the scal-
ability of packet switching also seems to indicate that communi-
cation state should not be maintained in the network. However,
with wireless communication there is a clear division of a connec-
tion between the wireless part and the wired part, and thus many
people see benefits in the approach where a gateway (also called a
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proxy or bridge) is placed at the edge of the wired network to split
communication into a wireless part and a wired part.

Border et al. [2001] provide an overview of techniques used for
improving TCP performance with gateways, with an emphasis on
their effects on TCP end-to-end semantics. Border et al. focus
on gateways that function at the transport and application layers,
as the operation of gateways on lower levels is usually transpar-
ent to the transport layer. A transport-layer gateway can be im-
plemented either as a split-connection gateway, which establishes
separate TCP connections to both ends, or transparently, based
only on modifying traffic on the connection. Application-layer
gateways are by necessity split-connection.

Balakrishnan et al. [1997] evaluate three kinds of TCP improve-
ments: end-to-end schemes that modify the TCP algorithms only
on the end hosts, link-layer schemes that retransmits lost pack-
ets locally over the wireless link to avoid TCP noticing them, and
split-connection schemes. The experiments were run on a two-hop
network with the wireless link being WLAN, with the conclusion
that a TCP-aware link-layer scheme performs best. Such an ap-
proach also has the benefit that it does not violate TCP end-to-end
semantics, unlike most split-connection schemes.

Wireless Application Protocol (WAP) [WAP, 2001a] is a gate-
way-based architecture that uses its own protocols and formats
over wireless links on all layers from the transport layer upwards.
WAP is designed for mobile WWW usage, and originally used its
own XML-based markup language, Wireless Markup Language
(WML) [WAP, 2001b], but has now moved to a profile of Exten-
sible Hypertext Markup Language (XHTML) [W3C, 2002d]. For
transmission over wireless links, WML content is also compressed
with a WAP-specific method [W3C, 1999].

WAP also includes a gateway-based security solution, Wireless
Transport Layer Security (WTLS) [WAP, 2001c]. As the WTLS con-
nection is formed between the mobile device and the WAP gate-
way, there is no end-to-end security, even if the connection from
the gateway onwards were secured as well. Essentially, this re-
quires a mobile device user to trust the gateway operator, since
the gateway acts as a man-in-the-middle in any attempted secure
communication with a server.

The WAP approach of replacing the whole protocol stack from
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message syntax to the transport layer also drew some early criti-
cism [Khare, 1999]. Nowadays, though, it appears that WWW ac-
cess on mobile devices will use standard Internet protocols, with
the protocols improved to take into account the variability of In-
ternet connectivity. A common technique currently is to determine
on the WWW server whether the client is a mobile device and send
more appropriate content in that case.

3.2.3 Pervasive Computing

The Internet is not the only reason for communication. The recent
rise of pervasive [Satyanarayanan, 2001] computing (similar con-
cepts are ubiquitous [Weiser, 1993] and nomadic [Bagrodia et al.,
1995] computing) has brought to the forefront issues with commu-
nicating with nearby devices.

The main concept of pervasive computing is that devices capa-
ble of computation are everywhere and they also possess commu-
nication capabilities. Thus a mobile device can, by communicating
with other nearby devices, potentially be able both to understand
its current environment better and to offload some computation to
other devices. The vision is that these capabilities will lead to ap-
plications that adapt to the user and her situation for a smoother
user experience.

The main technological enabler of pervasive computing is a
variety of wireless networking technologies. Both Bluetooth and
WLAN can be used to communicate with nearby devices, and mo-
bile phone networks, or possibly WLAN, can be used to access
remote servers on the fixed network. Thus, pervasive computing
combines access to infrastructure services with the more dynamic
current service environment of the mobile device.

Many pervasive computing applications function only in the
one-hop radius, i.e., devices communicate only with devices that
are in their immediate vicinity. However, forming the devices
into actual networks might bring additional benefits, especially
in heavily-trafficked areas. Such mobile ad-hoc networks [Perkins,
2001] are currently an active research topic, and many of the issues
in messaging are essentially the same in both ad-hoc networks and
wireless Internet connections.

We will not cover ad-hoc networks specifically here. Essentially,
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we will assume point-to-point communication that can be either
because of the link layer or because there is an underlying network
layer that handles routing. This lets us avoid questions like rout-
ing [Perkins and Royer, 1999] and device mobility pattern, which
can have a significant effect on communication [Camp et al., 2002].

3.3 Middleware and Mobility

Developing distributed applications is not an easy task, and writ-
ing one directly on top of the transport layer, say, using the sock-
ets API [Stevens, 1997], requires a lot of care. Furthermore, most
of the issues and required functionality are common across many
such applications. Therefore, there exist a variety of middleware
platforms [Aiken et al., 2000] to abstract away the common dif-
ficult parts, allowing developers to focus on application-specific
functionality.

As middleware has been a popular concept in distributed appli-
cations, there already exist several deployed systems for the fixed
network. Therefore an attractive option to include support for mo-
bile computing in a middleware platform is to extend an existing
system in some manner to provide it. Another alternative is to de-
sign the whole system from the beginning with the requirements
of mobile computing in mind.

3.3.1 Mobility Extensions

Remote Procedure Call (RPC) [Birrell and Nelson, 1984] is a com-
mon style for many middleware APIs. In RPC communication
with a remote system is made to look exactly the same as a local
procedure call in the program. Usually this implies that the caller
will block until the remote procedure returns with a value, as this
is the semantics with the local procedure call. This synchronicity
is usually not desired in wireless communication due to the fine
granularity of procedure calls and high latencies of the networks.

There are ways to make RPC work asynchronously. With prom-
ises [Liskov and Shrira, 1988], the return value of an RPC invoca-
tion is only a stub object, and the call itself is performed asynchro-
nously. When the application needs the return value, it will need
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to explicitly claim the promise. The futures of Multilisp [Halstead,
1985] take this even further by not requiring an explicit claim op-
eration at all, but Multilisp is a system for parallel programming,
not distributed.

A well-known and widely-used middleware platform based on
RPC semantics is Common Object Request Broker Architecture
(CORBA) [OMG, 2004], a distributed object platform from the Ob-
ject Management Group (OMG) that supports several program-
ming languages. Nowadays, CORBA also supports asynchronous
operation through its Messaging component. This supports both a
promise-like polling model as well as a callback model where the ap-
plication registers a callback object that the system invokes when
the operation’s result arrives.

There are two basic problems for a system based on RPC such
as CORBA in mobile computing. First, wireless networks are not
as efficient as wired ones, so invocation latency might not be suf-
ficiently low. Second, if invocation targets reside on mobile nodes,
there needs to be a way to locate them.

These problems are both solved, to some extent, by the Wire-
less CORBA specification [OMG, 2005]. It is based on the gateway
architecture, shown in Figure 3.1, where the logical connection be-
tween the objects on the mobile terminal and fixed network is split
by the Access Bridge in the middle. Wireless CORBA permits the
use of more efficient protocols over the wireless link through adap-
tation layers, and it specifies four such layers, for each of TCP, UDP,
WAP, and Bluetooth.

Locating objects on mobile nodes in Wireless CORBA is solved
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in a manner similar to GSM. Namely, a mobile terminal may have
a Home Location Agent in its administrative home network that
keeps track of the Access Bridge through which the terminal is cur-
rently connected. Any locators for objects on the terminal point
to the Home Location Agent, which redirects invocations to the
proper Access Bridge. A terminal may also be homeless, in which
case the locators point to an Access Bridge.

A well-known CORBA-like distributed object system is Java Re-
mote Method Invocation (RMI) [Sun, 2004], which is specific to
Java. Due to its similarities with CORBA, though, there exists an
explicit interoperability specification using the Internet Inter-ORB
Protocol (IIOP) of CORBA as the remote invocation protocol of
RMI. RMI has also been extended by Wall and Cahill [2001] to
support mobile objects. This approach is based on Architecture
for Location Independent CORBA Environments (ALICE) [Haahr
et al., 1999], which closely resembles the Wireless CORBA design.

A notable point with Java RMI is that the protocol requires a
large amount of round trips, making it unsuitable for a high-la-
tency network. Campadello et al. [2000] solve this issue with a
gateway on the fixed network side that takes care of most of the
communication needed in an RMI invocation, substantially reduc-
ing the number of round trips needed over the wireless link. Fur-
thermore, Campadello et al. note that the original implementation
wrote data one byte at a time, increasing the number of round trips
even more due to TCP’s slow start algorithm.

An alternative to RPC in middleware design that many con-
sider better-suited for scalable distributed systems, is publish/sub-
scribe (P/S) [Eugster et al., 2003]. P/S is a many-to-many asynchro-
nous communication model that decouples senders from receivers
through the P/S service API, shown in Figure 3.2. Here a filter is
a way for subscribers to express their interest in a subset of mes-
sages, and is essentially a matching function over the set of pos-
sible messages. Some P/S systems support advertisements through
which publishers can express a subset of messages in which all
their published messages belong.

In principle, message targets in a P/S system are located based
only on their subscriptions, so there should be no issue with mo-
bility. However, the implementation of a wide-area P/S system is
usually decentralized by using an overlay network of brokers [Car-
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i n t e r f a c e Publish {
void publish ( Message message ) ;

void a d v e r t i s e ( F i l t e r f i l t e r ) ; / / o p t i o n a l
void unadvert ise ( F i l t e r f i l t e r ) ; / / o p t i o n a l

}

i n t e r f a c e Subscr ibe {
void subscr ibe ( F i l t e r f i l t e r ) ;
void unsubscribe ( F i l t e r f i l t e r ) ;

}

Figure 3.2: The generic publish/subscribe API

zaniga et al., 2001], so whenever a node moves, it may attach itself
to a different broker, requiring an update to the routing tables.

A P/S system can be extended to support mobility using only
the P/S API [Caporuscio et al., 2003], but this method incurs a
large messaging cost. A better approach is to extend the brokers
directly with special operations for a node to signal that it has
moved. Usually in such treatments only subscriber mobility is
considered [Fiege et al., 2003], as publisher mobility is considered
to be rarer, and special support for it is needed only when adver-
tisements are used. However, publisher mobility can be treated
essentially in the same manner as subscriber mobility [Tarkoma
and Kangasharju, 2007].

3.3.2 XML and Web Services

Web services can also be seen as a middleware platform. While
their common usage does not require any specific consideration
for mobility, as HTTP is a stateless protocol that uses IP addresses
or Domain Name System (DNS) names for addressing, communi-
cation over wireless networks has an effect on their operation.

Originally, SOAP was positioned as a replacement for CORBA
and Java RMI. Early measurements by Elfwing et al. [2002] show a
performance ratio of 400 in favor of the CORBA implementation.
The reasons for this are analyzed and optimizations proposed that,
based on analytical considerations, would improve the ratio to 7.
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Elfwing et al. note that, at the time, this was essentially the limit
that would have been achievable with then-current technology.

Later work [Hericko et al., 2003; Juric et al., 2004] considers
the serialization and deserialization of objects, to a binary form
or to XML using Java Architecture for XML Binding (JAXB) [Sun,
2003b]. The conclusions are that, in total, SOAP invocations are
an order of magnitude slower than RMI invocations. In addi-
tion, when considering purely the serialization and deserialization
time, XML is again 5 to 10 times slower.

Laukkanen and Helin [2003] measure SOAP performance over
a GSM network, and note that on a mobile phone over 90 % of a
Web service invocation time is spent over the network. Tian et al.
[2004] perform a similar experiment over a GPRS network, and
conclude that generic compression provides a clear benefit despite
the increased processing time on the mobile device. While Tian
et al. do not analyze this benefit closely, a likely cause is the re-
duced number of TCP segments needed to transmit the messages.

All of these measurements treat SOAP and Web services as es-
sentially an RPC system. This view has drawn criticism from the
modern Web service community [Vogels, 2003], as Web services
are nowadays seen as a messaging system instead of a replacement
for distributed object systems. Indeed, by designing a remote pro-
cessing application based on messaging, the performance of Web
services can be increased to be better than naïve RMI [Cook and
Barfield, 2006].

However, common practice in the distributed object commu-
nity is to design interfaces by taking the network into account, sim-
ilarly to what Cook and Barfield do for Web services. This breaks
the abstraction of a remote object as a local object, since such inter-
face design would not be typically practiced in local usage. And,
despite appearances to the contrary, this has been long known in
the distributed computing community [Waldo et al., 1994].

Apart from Web services, there are few examples of XML-based
middleware. The usual concern, especially in the mobile commu-
nity, is the increased processing and data transmission require-
ments incurred by XML compared to a special-purpose binary for-
mat. However, extensibility in the protocol is often beneficial, and
that is rare with binary protocols, but is natively supported by
XML, which makes an XML-compatible system attractive.
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XMIDDLE [Mascolo et al., 2002] is a prominent example of an
XML-based middleware platform. Its model consists of shared
XML documents, accessed using standard XML technologies such
as DOM and XPath. The model resembles tuple spaces [Gelernter,
1985] somewhat, except that the use of XML gives hierarchy to the
data, making it more similar to file synchronizers [Balasubrama-
niam and Pierce, 1998; Lindholm, 2003], since the hierarchy of an
XML document can be compared to a hierarchical file system.

3.3.3 Designing for Mobility

Designing a middleware platform from scratch for pervasive com-
puting is very different from designing one for the fixed network.
In a fixed network with stationary computers, it may be assumed
that the network conditions remain stable and a computer’s capa-
bilities rarely change. In contrast, in pervasive computing, devices
are mobile, network conditions change between fast access and no
access, and the user’s and device’s contexts become significant in
determining what actions are appropriate.

The key requirement, as identified by Raatikainen et al. [2002],
is adaptability to the changing environment, consisting of the abil-
ities to make available nearby peripherals, to divide execution of
applications appropriately to computing systems in the environ-
ment, to tolerate non-availability of services, and to monitor the
environment to discover new services and determine what com-
puting capabilities are available. In addition to this, Raatikainen
et al. also require a unified information base for each user, avail-
able everywhere independently of network access.

This adaptability to the changing situation is more often called
context-awareness [Dey, 2001], and it has received a large amount
of attention in the recent years. While each application has its own
conception of what context is meaningful, the actual gathering and
processing of context information is a more generic process, and
therefore a variety of middleware platforms to support context-
awareness have been developed.

It is naturally possible to design a middleware platform for mo-
bile computing from the beginning while still retaining compati-
bility with an existing platform. Such an approach is provided by
Yau and Karim [2004] whose RCSM is compatible with the CORBA
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architecture, and uses an extension of CORBA’s Interface Defini-
tion Language (IDL) to define context-sensitive objects. However,
the communication protocol is not described, so it is uncertain
whether CORBA’s General Inter-ORB Protocol (GIOP) is used.

Hong and Landay [2001] propose an infrastructure approach to
context-awareness, with the goal being independence of specific
hardware and possibility for piecewise evolution of the system.
This raises to the forefront issues such as data format and protocol
design, where Hong and Landay see promise in XML and SOAP.

The one.world system [Grimm et al., 2004] follows three guid-
ing principles for pervasive applications: context changes are ex-
plicitly visible, ad-hoc composition of components is encouraged,
and data sharing is considered default behavior. Data in one.world
are tuples, and nesting is permitted, which makes the data model
hierarchical. Grimm et al. [2004] note that XML would be superior,
but identify issues with the programming interfaces and verbosity
that preclude XML usage in pervasive computing, the same con-
cerns that have been a driving force of this dissertation.

MundoCore [Aitenbichler et al., 2005] is a pervasive computing
middleware that provides both a CORBA-like distributed object
programming interface as well as a P/S interface. Aitenbichler
et al. [2005] note that many programmers gravitate towards the
distributed object paradigm whereas the P/S paradigm is more
often the better approach for pervasive computing applications.
However, they note that debugging a P/S application is harder
than debugging synchronized RPC.

3.4 Concluding Remarks

Modern mobile devices appear to be sufficiently powerful and ver-
satile to participate properly in distributed computing. However,
taking full advantage of the capabilities requires deep knowledge
of what is available. A modern device supports several different
kinds of networking technologies, but these all differ in range, data
rate, latency, error profile, and cost, and what is appropriate to
communicate through one might not be through another.

Selecting a proper communication protocol also requires care.
In many current environments it may be assumed that IP connec-
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tivity is available, and the Internet protocol stack can therefore act
as a building block. But in many cases using the ubiquitous In-
ternet protocols can add too much overhead, especially if there is
little data to communicate.

Energy consumption is the most important concern for mobile
devices, but taking it properly into account in application devel-
opment is not an easy task. Both communication and local com-
putation consume energy, but the ratios are very device- and net-
work-dependent so that what is acceptable communication on one
network and device can be completely unacceptable on another.

Development of distributed applications is often helped consid-
erably by a suitable middleware platform. However, traditional
middleware platforms can be poorly suited for mobile devices. In
particular, the overarching concern for energy efficiency needs to
permeate the design of the whole middleware [Riva and Kangas-
harju, 2007]. The middleware also needs to provide suitable pro-
gramming abstractions so that the most efficient communication
patterns are natural to use.
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CHAPTER 4

Messaging System and
Protocol

. . . , and from rubble may we
build.

The fundamental design of our messaging system was based on
the depiction of the components shown in Figure 1.2. However,
while the Figure is useful as guidance, it depicts the components as
if they depended precisely on the components below them. In the
real design, such strict dependencies are not completely followed.

Due to the differing characteristics of wireless networks and
mobile devices compared to fixed networks and stationary com-
puters, communication designed for the mobile side often needs to
take a different perspective from traditional distributed systems.
This affects both the design of an application and the API that it
uses for communication as well as the actual protocol that is used
to transfer data from one device to another.

4.1 Messaging System Architecture

In designing the architecture, we endeavored to make the compo-
nents shown in Figure 1.2 as independent from each other as pos-
sible. The design eventually resulted in four basic components,

67
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each of which required new considerations to take into account
the needs of mobile computing:

Messaging system The APIs and high-level functionality needed
for applications to send and receive messages.

Communication protocol The protocol for sending and receiving
serialized messages between devices.

XML API The API and system for processing XML data.

Serialization format The actual method of serializing XML data
into bytes and parsing it back.

Each of these components was designed to be independently us-
able, with connections made through defining and implementing
suitable interfaces, as befits an object-oriented design.

The way that these components integrate to form a complete
messaging system is shown in Figure 4.1. In this Figure, the end-
points and messages are the API and functionality of the central
messaging component. The communication protocol handles the
connections between devices, and is made completely indepen-
dent of the messages, in that it does not require messages to be
XML, just byte sequences. XML processing is handled with the
XAS system, potentially using the Xebu serialization format, de-
scribed in chapters 5 and 6, respectively.

The messages passed around by the system are represented by
the Message class. This is a class that knows how to serialize and
parse itself as a SOAP message using the XML API. The actual
serialization format can be selected at run time depending on the
capabilities of the communicating peers. As the Figure shows, the
message functionality is completely separated from the endpoints,
addresses, and connections, by having the Message class imple-
ment an interface that allows for serializing messages1.

The application data in the Message class is currently just a set of
name-value pairs, with generic values. As the rest of the messag-
ing system is not dependent on this particular class, other forms
of messages would be possible to integrate into the system. Other

1This capability was also useful in testing the protocol, as it allowed a very
simple alternative message class to be used.
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Figure 4.1: The messaging system architecture

data available to applications includes the source of the message, a
unique identifier for the message, and, if the message is a response,
the unique identifier of the message it is a response to.

4.1.1 Endpoints and Addresses

The basic concept in the actual messaging system API is the end-
point. Conceptually, an endpoint represents a target (or source) of
messages. Endpoints are divided into two classes: local endpoints
are listening points for receiver objects of the application and re-
mote endpoints are targets to which messages can be sent. A mes-
sage can also be sent to a local endpoint, which gets converted into
a direct method invocation of the registered receiver object.

The contents of an endpoint are a set of addresses and a target
name. The addresses serve to identify the host on which the end-
point resides and the target name identifies more specifically the
actual endpoint on that host. This is similar to the HTTP Uniform
Resource Locator (URL) syntax [Berners-Lee et al., 2005; Fielding
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et al., 1999], with the addresses acting as a combination of the http
scheme and host name, and the target name acting as the path. The
differences are that endpoints allow several addresses and that the
target names are not given any structure of their own.

The reason for an endpoint having many addresses is that mod-
ern mobile devices are able to use a variety of networking tech-
nologies, as described in section 3.1. Therefore a single target run-
ning on a single host can be reached through several different ad-
dresses. Furthermore, the environment of a mobile application
will change so that different networking technologies are appro-
priate at different times. Allowing an endpoint to contain multiple
addresses lets the messaging system select an appropriate technol-
ogy without the application being aware of these changes. How-
ever, we have not yet implemented any method for automatically
changing the network access technology in the messaging system.

Like endpoints, addresses are divided into two classes, local
and remote. Every address contained in an endpoint must be of
the same type as the endpoint itself, and in fact, the class of the
addresses is what determines the class of the endpoint.

4.1.2 Connections for Messaging

To send messages, the system must first open a messaging connec-
tion, which has open() and close() methods to manipulate the
connection state. As latencies in wireless networks can be high, all
connection manipulation is handled asynchronously, using a ded-
icated thread for communication with the remote node.

The state diagram for a connection is shown in Figure 4.2. In
normal use, both the open() and close() methods will trigger
sending data to the other side to indicate what is being done to
the connection, with the connection state changing as appropriate.
When the response is received, the state is again transitioned, with
the OPEN state being the one where messages can be sent. If a
connection is being closed, an open() call at that time transitions
the state to the REOPEN state, in which the response to the close
message triggers an immediate sending of the open message, tran-
sitioning the state to PENDING.

Applications do not normally see this connection management
at all. Currently, the endpoint interface provides applications the
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possibility to close the endpoint, which will call close() on all
messaging connections of the endpoint. This is intended as a re-
source-saving device, allowing applications to discard endpoints
they are no longer using. In the future, we would also like to in-
clude functionality for automatically determining when messag-
ing connections should be closed.

The main way that applications interact with the messaging
system is through invoking an endpoint object’s send() method.
This will pick a suitable address from the endpoint, and if needed,
open a connection to that address. If the connection was not yet in
the OPEN state, the message will be buffered until the response to
the open message comes back from the other side.

4.2 Application Communication Model

The differences required for mobile computing are not confined to
just the protocol level, below message syntax. Rather, they perme-
ate the whole design of the application. This is most evident in
client-server systems, where the most common current pattern is
the synchronous request-response (SRR), also the model of HTTP.

The problem with the SRR pattern is that the client applica-
tion will block waiting for the server’s response. On a mobile
phone network, where application-level latency can reach several
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seconds, this wastes time that the application could use for other
processing. Therefore a better pattern for this would be the asyn-
chronous request-response (ARR), to allow the client application to
continue processing while waiting for the server’s response.

However, switching to a different communication pattern is not
achieved by simply changing SRR invocations to ARR invocations.
Usually SRR applications are designed to take immediate advan-
tage of the received response. Converting such an application di-
rectly to ARR would just entail that the application would still
block waiting for the server’s response immediately after sending
the request. Therefore the applications need to be redesigned and
not just brought over directly from the fixed network side.

4.2.1 Message Exchange Patterns

The formalization of a distributed application’s communication
model is called a Message Exchange Pattern (MEP), and there are
several in existence, each best suited for certain applications. As
we focus on a basic messaging system, we consider only point-
to-point MEPs, not more complex ones such as P/S that we men-
tioned in subsection 3.3.1.

A few basic MEPs are shown in Figure 4.3. We do not separate
the application-level programming model for these into synchro-
nous and asynchronous yet. The simplest MEP is the one-way pat-
tern where the sender sends one message to the receiver without
waiting for a response. This is also a general pattern, in that it is
possible to implement other MEPs on top of it. However, we con-
sider it the responsibility of the messaging system to provide the
most common MEPs to aid in application development.

The one-way pattern also invites certain extensions. As there is
no communication in the other direction, the sender cannot know,
in the basic form of the pattern, whether the message ever reached
the receiver. Because of this, it is useful for the messaging sys-
tem to provide delivery guarantees even for the one-way pattern.
These guarantees can range from always providing exactly-once
semantics to providing a variety of options to the level of reliabil-
ity desired, such as in CORBA Messaging [OMG, 2004].

The simplest two-way pattern is the request-response. In this pat-
tern, the sender sends a single request to the receiver, which sends
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a single response back. In theory, reliability for this pattern can
be provided by the application, since the response indicates that
the receiver processed the message. However, it is more cost-ef-
fective to provide reliability guarantees at the messaging system
level, since detection of duplicate messages caused by retransmis-
sions is not something the application should concern itself with.

Two other commonly-seen two-way patterns are subscribe-notify
and conversation. In subscribe-notify the first message is a subscrip-
tion message. After this, whenever a condition expressed in the
subscription message is triggered, a notification message is sent to
the originator. Conversation is an extension of request-response
where every message can be responded to.

While the one-way pattern is fundamentally asynchronous, re-
quest-response can be either synchronous, where the sender will
have to block waiting for a response, or asynchronous, where the
sender is notified of a response in some other manner. Thus, its
synchronicity depends on the system API.

4.2.2 Messaging System API

A rough interface to a messaging system that supports both syn-
chronous and asynchronous styles is shown in Figure 4.4. The
MessagePromise interface represents a promise that acts as a con-
tainer for a not-yet-received response. The promise can be queried
as to whether it already contains the response (to avoid blocking),
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i n t e r f a c e MessagePromise {
boolean isReady ( ) ;
Message claim ( ) ;

}

i n t e r f a c e Receiver {
void r e c e i v e ( Message

response ) ;
}

i n t e r f a c e MessageSystem {
Message requestS ( Message request ) ; /∗

synchronous ∗ /
MessagePromise requestP ( Message request ) ; /∗

a synch ronous p o l l ∗ /
void requestC ( Message request , Receiver

r e c e i v e r ) ; /∗ a synch ronous c a l l b a c k ∗ /
}

Figure 4.4: Different request-response APIs

and the response can be extracted, possibly blocking until it is
available, by claiming the promise. The Receiver interface acts
as a general receiver for messages of any kind.

The MessageSystem interface in Figure 4.4 has one method for
synchronous invocation and two for asynchronous, based on poll-
ing and callbacks. The synchronous requestS method will return
the response as its value, blocking until it arrives. The asynchro-
nous polling method requestP returns a promise that can be later
claimed by the sender. Finally, the asynchronous callback method
requestC requires the sender to provide an implementation of the
Receiver interface. When the messaging system receives the re-
sponse, it will invoke this callback object’s receive method.

Of these styles, the asynchronous polling style can be imple-
mented using the asynchronous callback style, and the synchro-
nous style using the asynchronous polling style. Namely, the Mes-
sagePromise object that is returned by requestP is made to im-
plement the Receiver interface and is registered as the callback
object in a requestC invocation. The requestS method is imple-
mented by invoking requestP and immediately invoking the re-
turned promise’s claim method. Thus we can say that the asyn-
chronous callback style is the most general interface of these three.

To implement the conversation pattern using the interfaces of
Figure 4.4, we change the receive method of the Receiver inter-
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face by making it return a Message object. The semantics of this
return value is that if it is not null, it will be returned as a response
to the received message. The original receiver can also be imple-
mented using the Receiver interface, unifying the two sides and
allowing a natural implementation of the conversation pattern.

The subscribe-notify pattern cannot be directly implemented by
just the messaging system APIs. The reason for this is that the
sending times of the notify messages sent by the notifier are not
controlled by the messaging system. Therefore to support this pat-
tern in the messaging system the endpoint of the sender can be
extracted from a received Message object. It is naturally the ap-
plication’s responsibility to perform this extraction and determine
when to send notify messages to it.

4.3 Protocol Requirements

Improving the processing of application messages helps only to
the extent that processing is the bottleneck of the system. A mes-
saging system needs to consider also the protocol used for transfer-
ring messages. We noted originally [Kangasharju et al., 2003] that
the default manner of using HTTP in conjunction with SOAP is
significantly suboptimal, especially in wireless networks. For this
reason our messaging system also includes an improved protocol.

The basic unit in the protocol should be the message, and not a
stream of bytes or characters. We made the decision that the pro-
tocol should not provide the needed MEPs itself, but these should
be implemented in the messaging system using SOAP headers, as
is done in WS-Addressing [W3C, 2006d], though we refuse to use
URLs due to their prohibitive length. Therefore the basic protocol
should only provide one-way messaging as a primitive.

If the protocol is connection-oriented, this connection should
not limit which side can send messages at which time. While a con-
nection will always have client and server roles based on who ini-
tiated the connection, these roles should not reflect on the commu-
nication. TCP is an example that satisfies this requirement whereas
the request-response interaction of HTTP is not directly suitable.

The messaging system will also need some reliability guaran-
tees from the protocol. At-most-once semantics is clearly desir-



76 4 Messaging System and Protocol

able. This can further be extended to exactly-once semantics when
we can assume that connectivity for sending a message is available
infinitely often. Messages should not be garbled in transit, but for
this it should be sufficient to rely on lower layers. Ordered deliv-
ery is a nice feature to have, especially considering that messages
will be sent asynchronously before replies to previous messages
have been received. However, messaging itself does not place this
as a requirement, so it can be dropped if need be.

It is noteworthy that normal reliable transport protocols such as
TCP do not provide sufficient reliability in a mobile environment.
When a device moves to a new access network, it will also acquire
a new network address, which breaks all existing TCP connections,
meaning that messages may be lost if they are sent during mobility.
Reliability options in this case include unchanging addresses at
the network layer through Mobile IP or implementing the needed
reliability in the protocol itself.

As noted in section 3.1, modern mobile devices have a variety
of networking technologies available to them. While some, such
as GPRS and WLAN, are designed to support Internet connectiv-
ity, others, such as Bluetooth, are only usable for short-range peer-
to-peer communication. Despite the current trend of everything
moving to run on top of IP, there is still a need for the messaging
protocol to support a number of underlying protocols.

Furthermore, even if the whole network stack runs on top of IP
with only one protocol at each layer, there is still a need to adapt
to the current network. For instance, with a WLAN connection
to the Internet, bandwidth, latency, and monetary cost are rarely
an issue, whereas they are with GPRS and UMTS, and with Blue-
tooth even the set of available peers is restricted. The pervasive
applications of the future will require access to such information
to better configure their behavior to be appropriate to the current
context, and therefore the protocol layer will need to provide ac-
cess to some of the network characteristics.

4.4 Basic Protocol

Our implemented protocol, which we call Abstract Mobile Message
Exchange (AMME), consists of two layers, the Transfer layer and the
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Content-Type: application/x-ebu
Content-Length: 1245
...

<body data>

Figure 4.5: The BEEP message syntax

Mobility layer. The Transfer layer provides a very simple uniform
messaging semantics, and each underlying protocol has a separate
Transfer layer implementation. The Mobility layer is composed of
modules that can be independently composed to provide features
that the underlying protocol lacks. Since the Transfer layer pro-
vides a common interface and unified semantics, the modules of
the Mobility layer are independent of any underlying protocol.

The basic purpose of a messaging protocol is to be sufficiently
versatile to accommodate a variety of messaging styles. As we
noted in section 4.2, the callback-style interface of our messaging
system directly supports a variety of MEPs. Implementing these
should not be too contrived using whatever protocol is used for
message transfer.

4.4.1 Original Protocol Design

The initial version of our system was implemented and tested on
laptop computers, to better gauge the usefulness of the ideas. The
main intent was to use existing protocols as much as possible to de-
termine the most useful ways to implement functionality required
for mobile messaging.

The original version of AMME was built on top of Blocks Ex-
tensible Exchange Protocol (BEEP) [Rose, 2001]. BEEP is a generic
application-layer protocol designed for the creation of more spe-
cific protocols. A BEEP message consists of headers and a body,
similarly to HTTP, as illustrated in Figure 4.5. In the BEEP com-
munication model, a session is opened between two peers. Such a
session is further divided into channels for actual communication,
each of which can be opened by either side of the connection.

At the time we chose to use BEEP for our initial exploration,
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there seemed to be some interest in it, including a standardized
SOAP binding [O’Tuathail and Rose, 2002]. However, we did not
find implementations that would have been truly robust, and in-
terest in BEEP seems to have waned. A possible cause is its com-
plexity: a generic protocol is by necessity more complex than each
application-specific protocol, even if adopting the generic protocol
would save work in the long run. This waned interest is somewhat
regrettable, since in our opinion BEEP is a well-designed protocol
with many applications.

Of course, BEEP was not usable in the final version of our mes-
saging system, since none of the available implementations were
runnable on mobile phones. Furthermore, we originally targeted
MIDP version 1.0, which only supports HTTP for communication,
so we needed a solution usable for that protocol as well.

However, BEEP does have interesting features, which we found
useful and adopted for our design. The first of these is the splitting
of a session into multiple channels, which can be used to provide
multiplexing in the protocol itself. The second was that the name-
value headers provide a generic metadata mechanism. We used
this in our original protocol to provide features not available in
BEEP and our current design improves upon this idea.

One of the purposes to which generic metadata is put to in both
BEEP and HTTP is content negotiation. This refers to each message
carrying with it its Internet media type so that the receiver can
understand how to process it, and to including the acceptable me-
dia types in connection initialization messages. In our system we
envision the message to be an abstract representation of an XML
document that can have several different concrete representations.
Based on the media type carried in the metadata the system can
then direct incoming messages to the correct parsers, which we
consider to include both XML and binary format parsers.

4.4.2 Transfer Layer Semantics

As one requirement for the protocol was the ability to accommo-
date different underlying protocols, we chose to design the Trans-
fer layer in an abstract manner. That is, there is a common API
and certain behavioral guarantees associated with each operation
in the API. This needs to be sufficient to implement the Mobil-
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ity layer in a generic manner, requiring only an implementation of
the Transfer layer, called a Transfer layer mapping, when a new un-
derlying protocol needs to be supported. By keeping the Transfer
layer semantics sufficiently unconstraining, the work required for
this can be kept to a minimum.

On an abstract level, we designed the message syntax of AMME
to be the same as that of HTTP and BEEP: a header consisting of
name-value pairs and a body of opaque binary data. However, in
AMME this is merely an abstract model, with the header names
serving as unique and memorable identifiers, not necessarily as
something that would get sent in the message. Noting that in a
typical application, the size of the HTTP header part can reach sev-
eral kilobytes, we came to the obvious conclusion that the meta-
data in the protocol needs to be represented compactly.

The Transfer layer is based on point-to-point connections. In-
spired by BEEP, each connection is divided into pipes that carry
the actual messages. In principle there can be an arbitrary number
of pipes, and they do not need to be reflected in any manner in a
Transfer layer mapping, allowing efficient multiplexing of a con-
nection. While there are client and server roles, this is visible only
when opening a connection, and afterwards either party may send
messages on any pipe at any time.

The communication abstraction provided by the Transfer layer
is extremely simple. Each pipe is full-duplex, as noted above, one-
way, meaning that there are no response or acknowledgement mes-
sages, and unreliable, meaning that messages may be lost or may
arrive out of order. Messages are assumed to not be corrupted
during transit, so if corruption is possible with the underlying pro-
tocol, the mapping must protect against it.

The Transfer layer interface is shown in Figure 4.6. A Trans-
ferConnection is used to send messages. Headers can be sent ei-
ther individually through the two header methods or a Transfer-
Header can be requested from the connection with the newHeader
method, filled in, and passed at message sending time. For receiv-
ing messages, the application must implement the TransferAc-
ceptor interface. When a message is received, the system will first
call the two header methods to pass all the headers of the mes-
sage, and then the receive method for the actual message. This
style was designed to support streaming at the receiver end.
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i n t e r f a c e TransferConnect ion {
void send ( TransferHeader header , byte [ ]

message ) ;
TransferHeader newHeader ( ) ;
void numberHeader ( i n t type , long value ) ;
void generalHeader ( i n t type , Object value ) ;

}

i n t e r f a c e TransferAcceptor {
void r e c e i v e ( TransferConnect ion connection ,

InputStream in ) ;
void numberHeader ( TransferConnect ion connection ,

i n t type , long value ) ;
void generalHeader ( TransferConnection

connection , i n t type , Object value ) ;
}

Figure 4.6: The Transfer layer interface

Besides implementing the interfaces of Figure 4.6, a Transfer
layer mapping also needs to provide a header mapping. On the
abstract level, each header is just an integer in the interface, with
an encoded type: one of number, string, array of numbers, or array
of strings. Number headers are treated specially in the interface
to avoid conversion between primitive values and objects in Java.
Currently, the header mappings in our Transfer layer mappings
are static, in that each mapping knows all the possible header val-
ues and contains predetermined values for them.

4.4.3 Transfer Layer Mappings

Our system includes three Transfer layer mappings, for each of
TCP, Bluetooth, and HTTP. Of these, we consider the TCP map-
ping to be the best choice if possible, with Bluetooth used for ad-
hoc communication when an Internet protocol stack is not avail-
able, and HTTP used when the network infrastructure does not
allow anything else.

We built the Bluetooth mapping on top of the RFCOMM proto-
col, which provides a stream interface. This allows the Bluetooth
mapping to share code with the TCP mapping, as TCP is also a
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stream protocol. We needed to include some special processing in
the Bluetooth mapping, isolated in specific stream classes that are
passed to the generic stream mapping implementation.

In the stream mapping, the message header is represented fully
in binary. The type argument of the header methods of Figure 4.6
is simply output as such to the stream. The built-in typing in the
headers is sufficient for the receiving end to decode the header
even if it did not recognize the identifier, which allows for future
extensibility, since all unrecognized headers are simply passed on
to the higher layers of processing.

The HTTP mapping is much more complex than the stream
mapping, since HTTP’s single-request-response model is not very
suitable for general messaging. While real-world considerations
necessitate supporting HTTP, and the mapping’s design has some
interesting points, we do not consider HTTP to be very useful for
general messaging.

In the HTTP mapping, headers are mapped directly to HTTP
headers, with numbers encoded as strings with possible separa-
tors. We chose this representation to be compatible with existing
HTTP systems. However, we do not use the full names of the head-
ers but map each header name to a two-character identifier that is
still unique and memorable without excessively adding to the size
of a message. This mapping is not extensible in the same way as
the stream mapping as unknown header types do not currently
have a representation.

In the HTTP mapping, a Transfer layer connection is initialized
by sending an HTTP request to a stable URL of the server. The
server will then generate a unique URL for the opened connection,
which it sends back to the client in an HTTP response. All further
HTTP requests from the client are sent using this unique URL.

The connection itself is implemented by running two threads
on the client side, the message thread and the token thread, illustrated
in Figure 4.7. At the beginning of the connection, the token thread
sends an empty HTTP request, a token, to the other side. Whenever
the other side has a message to send, it can send it as a response to
the token request. When the client has a message to send, it is sent
in an HTTP request by the message thread. The response to such
a message will then be an empty message as well, as the Transfer
layer has no concept of responses or acknowledgements.
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Figure 4.7: Token and data messages in HTTP Transfer mapping

Table 4.1: Code line counts for the protocol components

Component Lines

Transfer 40
Stream 354
TCP 99
Bluetooth 307
HTTP 422
Mobility 522

4.5 Protocol Extension Modules

Apart from the most basic functionality, the Transfer layer does not
satisfy the requirements we placed on the protocol in section 4.3.
As we noted, this was a design decision made to keep the amount
of code required for each underlying protocol to the minimum.
Instead, the requirements are implemented by the Mobility layer,
which is independent of the underlying protocol due to the uni-
form interface and guarantees offered by the Transfer layer.

The decision to separate the Mobility layer, and to generify the
stream part of the stream-based protocols, is validated by the code
line counts shown in Table 4.1 (computed using the sloccount tool
by Wheeler [2002]). Here the Transfer component denotes the APIs
provided by the Transfer layer, and the Stream component is the
common stream-based code used by both the TCP and Bluetooth
mappings. The large size of the Bluetooth component is caused by
its inclusion of dynamic discovery of devices.

To implement the needed functionality, the Mobility layer de-
fines a number of headers for the messages. Furthermore, we
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noted that most of the required pieces of functionality are reason-
ably independent of one another, so we split the Mobility layer into
a number of modules. Each module defines a few headers, which
are inserted by the sender component of the module, and read and
interpreted by the receiver component of the module.

We originally believed that the module interface could be made
generic, with the possibility of composing only the modules re-
quired by each Transfer layer mapping. For instance, if the under-
lying protocol were to provide truly persistent connections and ad-
dressing, the persistence module would not be needed. However,
the functionality of the modules is not completely transparent, so
in the end it was necessary to compose the modules in quite a pre-
cise order and manner. For some modules it might be possible to
enable or disable them at will, but we did not explore this further.

4.5.1 Sequence Number Module

Since the Transfer layer does not provide any guarantees for re-
liable or ordered delivery of messages, we needed to implement
a sequence numbering system. Such a system cannot be avoided
even if the underlying protocol provides reliability, like, e.g., TCP
does. This is because we also target mobile clients, and during
mobility TCP connections will break. Any new connection estab-
lished afterwards will not share the old connection, so TCP’s reli-
ability does not extend to such situations.

When using this module every message contains a SEQUENCE-
NUMBER header, the value of which starts at 0 and increases by one
for each message. Acknowledgements are of two kinds. A CON-
SECUTIVE-ACKNOWLEDGEMENT header’s value is a single num-
ber indicating that all messages up to that sequence number have
been received (and can therefore be deleted from any buffers). An
INDIVIDUAL-ACKNOWLEDGEMENT header contains a list of se-
quence numbers for messages that have arrived out of sequence.

An individual acknowledgement typically indicates lost mes-
sages, so upon reception the receiver should resend all unacknowl-
edged messages. Since the system only has a single thread for each
connection, and uses queues for message sending, it should not be
possible for messages to arrive out of order, but we emphasize that
the Transfer layer need not guarantee this. For instance, we exper-
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imented with having more than one message and token thread in
the HTTP mapping and we did see out-of-order arrival then.

The Mobility layer also passes all received messages to the ap-
plication in the order of their sequence numbers. The messaging
system preserves this order, giving applications a guarantee of or-
dered delivery. Furthermore, the messaging system guarantees
that response messages will be delivered back in the same order
as the requests came, as long as the application processes and re-
sponds to the messages in a single-threaded fashion.

4.5.2 Connection Persistence Module

The Mobility layer also provides more direct support for mobility
with persistent connections. On first opening of a connection the
server will return a CONNECTION-IDENTIFIER header containing
a unique identifier for the connection. If the client later wishes
to continue a previous connection, it will send the connection’s
identifier in a CONNECTION-IDENTIFIER header when reopening
the connection. Thus the connection can be logically continued
even across mobility.

Naturally the server cannot remember every connection from
every client indefinitely. Therefore the server’s response also in-
cludes a CONNECTION-PRESERVE header, giving the time that the
server is willing to retain the state after a connection has been
dropped. The client can also provide this header to request a cer-
tain value, but the server’s provided value is authoritative.

This feature is also useful to applications, for two reasons. The
first is that applications, both at the client and server, will see a
unique persistent identifier for any communicating peer, and can
use this identifier instead of using an address, which may change
when the other end is mobile. The second benefit is that we are
able to retain the state of our format processor, which means the
messages are smaller, even when connections break.

4.5.3 Message Compaction Modules

The Mobility layer also contains modules to reduce the amount
of data that is transmitted. The most significant of these in high-
frequency messaging is the ability to bundle several application
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messages into a single AMME message. To do this, the Mobility
layer can insert a MESSAGE-BUNDLE header, the value of which
is a list of numbers. Each of these numbers is a byte-based in-
dex into the message body, and indicates where a new application
message starts. These individual messages are then separated by
the receiver and passed to the application as individual messages.

Another feature is the ability to specify types of messages and
to allow default values to be omitted. At the Transfer connection
opening, both parties will send, in an ACCEPT-TYPE header, a list
of message types that they understand. The intent is that these
types are alternate ways to serialize the same message. Later, if
a message’s type is the same as the first one in the receiver’s un-
derstood list, the CONTENT-TYPE header marking the type can be
omitted; the receiver will then default to its preferred type.

4.5.4 Measuring Round-Trip Time

As we have noted, applications need reliable information on the
device’s context to be able to adapt their behavior, and the mes-
saging system is best placed to determine the characteristics of
the current network. Thus far, we have implemented a module
to measure RTT using a method that does not require ping mes-
sages, i.e., immediate responses to specific messages. Our method
is similar to PinPoint [Youssef et al., 2006], except that our system
requires the clocks on both sides to advance at the same rate.

At connection opening both parties will inform the other of
their local time in milliseconds in an OWN-TIMESTAMP header.
After that, each message may contain a new OWN-TIMESTAMP

header updating this value, and a PEER-TIMESTAMP header, giv-
ing the time that the sender believes the receiver to have. By sub-
tracting the received PEER-TIMESTAMP value from its actual time,
the receiver will get an estimate of the RTT.

The precise formulas used in calculating timestamps are

sot = ct
spt = not + (ct− npt)
rtt = ct− rpt

not = rot− (ct− npt)



86 4 Messaging System and Protocol

A B

not = ct

rpt = not + t

t
t

(a) Round-trip
time
computation

A B

not = ct

rot = ct
t

t

(b) Timestamp
update

Figure 4.8: Computing round-trip times in AMME

where sot, spt, not, npt, rot, rpt, ct, and rtt denote, respectively, the
OWN-TIMESTAMP and PEER-TIMESTAMP values to send in a mes-
sage, the original received OWN-TIMESTAMP value and the local
time at that value’s reception, the OWN-TIMESTAMP and PEER-
TIMESTAMP values received in a message, the current time, and
the calculated RTT.

An illustration of how these equations work to compute the
RTT is given in Figure 4.8(a). Here we see B sending the origi-
nal message at time not = ct. After time t has passed, A sends a
message (this can be independent of the message sent by B), con-
taining the PEER-TIMESTAMP value of spt = not + t. When this
message arrives at B, the time that has actually passed from not is
t plus the RTT. Hence a subtraction of the received value from the
current time gives the RTT.

RTT consists of two individual times: the time for a message
to reach the recipient and the time for the recipient’s response to
come back. In the calculation of Figure 4.8(a) the first of these com-
ponents will always be the time that the initial message took. Since
changing network conditions, especially during mobility, will af-
fect RTT, the OWN-TIMESTAMP value can be updated to provide
more current information.

Figure 4.8(b) shows how this works. The second message sent
by B contains its current time in an OWN-TIMESTAMP header. A
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will then recompute its new not value to be rot− t. The new value
of not will affect the later calculations so that the initial message is
perceived to have taken the time that the latest message containing
an OWN-TIMESTAMP header took.

4.6 Summary

The design of our messaging system follows the abstract model
of Figure 1.2 and good object-oriented design principles by sep-
arating concerns. This is not the best design style for mobile de-
vices [Hartikainen et al., 2006], but for a prototype research imple-
mentation we consider it suitable, especially as one purpose is to
experiment with different implementations of the components.

The messaging system itself is a simple implementation, de-
rived in a straightforward manner from the requirements of mo-
bile messaging. Its most distinguishing feature, the use of the end-
point as an address container, is similar to how Interoperable Ob-
ject References (IORs) in CORBA work, except that the endpoints
contain much less data and are not intended to be transferable.

As mentioned above, many of the ideas in the protocol layer
come from BEEP, namely the ability to use a single physical con-
nection for multiple logical connections and the header-body di-
vision in messages. At the time, the method for measuring RTT
was novel (it first appeared at a student workshop [Kangasharju,
2004]), but as mentioned, the PinPoint system improves on it by
not even requiring the clocks to advance at the same rate.

We found the module-based system for implementing exten-
sions very comfortable compared to implementing them all in a
single class. The explicit design of the interfaces to support effi-
cient message processing made this approach feasible even from
the efficiency perspective. We believe that at least some useful
functionality could also be implemented as generic modules; our
current modules need very close coupling to the message sending
layer to function properly.
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CHAPTER 5

XML Processing with XAS

Let’s hear it for the vague
blur!

The traditional view of XML comes from its roots as a document
markup language. According to this document-oriented view, an
XML document is mostly composed of text, is intended to be read
and modified by people and therefore has descriptive names, and
element content is often mixed. Furthermore, XML is processed
by applications as XML, and commonly the whole document, the
size of which can be quite large, is kept in memory.

The emerging data-oriented view that we are concerned with
treats XML as a standard data interchange format. The actual data
is kept in an application-specific form inside the system, and there-
fore XML is visible only to programs, not people, though the text-
based nature of XML helps debugging the applications. Elements
are typically rigidly structured, and contain either only other el-
ements or a stringified representation of some programming lan-
guage data value. Traditional XML processing APIs are not always
very well suitable for processing such documents easily and effi-
ciently, and therefore part of our work focused on designing an
XML processing system and API that would support the data-ori-
ented view, including the possibility to use alternate serialization
formats conveniently.

89
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5.1 The Basic XAS API

Our original XML API [Kangasharju and Lindholm, 2005] was es-
sentially a small extension to the XmlPull API to support typed
content better. However, experience with this API [Kangasharju
et al., 2006; Lindholm et al., 2005] revealed that it was limited both
in extensibility and in providing advanced functionality for effi-
cient XML processing in unconventional ways. We therefore de-
cided to redesign the whole processing system to better support
our target applications.

Our new design was partially inspired by the design principles
of XOM [Harold, 2006], though speed and memory usage need
to be accorded more importance with mobile devices. In particu-
lar, since we already had experience with XML applications, the
design principle of implementing only what is required by some
application was viable to adopt. Also, the idea of enforcing cor-
rectness as required by XML already at construction time makes
the internal code much simpler, as the necessary constraints do
not need to be rechecked.

We retained the name XAS for the new system as well1. From
the beginning XAS was intended to be an integral part of Fuego
middleware, through which all XML processing would take place.
Thus the design would need to take into account not only the
needs of the messaging system, but also those of the synchroniza-
tion system, which processes XML as XML and does not convert it
to an application-specific format. Our experiences with the earlier
XAS API were valuable in understanding the precise needs of all
the components of Fuego middleware.

5.1.1 Item Sequences

The basic concept of the XAS system is the item, which corresponds
to an atomic piece of XML syntax. XAS comes with a few items
for representing XML in the normal manner. These core items are
shown in Table 5.1, including how each would be represented in
an XML document. The ED item represents the end of the docu-
ment and is introduced for symmetry with the SD item. The T item

1XAS used to be an acronym, but is no longer. It is not simply SAX reversed.
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Table 5.1: The core item types of XAS

Name Item XML

Start document SD <?xml version="1.0"?>
End document ED
Document type DTD <!DOCTYPE foo SYSTEM "...">
Start tag ST <p:foo xmlns:p="..." at="...">
End tag ET </p:foo>
Text T ...
Entity reference ER &ent;
Processing instruction PI <?bar baz?>
Comment C <!– ... –>

Table 5.2: Content of XAS core items

Item Content

SD empty
ED empty
DTD public and system identifier, text
ST qname, prefix map, attributes, parent
ET qname
T text
ER name
PI target, text
C text

represents normal text content. The DTD item represents the full
DTD as text, unlike in, say SAX, where the content of a DTD is
fully parsed. We do not consider it useful for an XML document
to have an embedded schema, but would prefer all schemas to be
external, so XAS does not support DTDs very well.

The content of each of these items, shown in Table 5.2, is de-
rived from the correspondence with XML shown in Table 5.1. The
qname type represents an XML name, i.e., a pair consisting of a
namespace URI and a local name. The parent of an ST item is the ST
item for that element’s parent in the XML document. The names of
the other types are based on the XML specification [W3C, 2006a],
and should be mostly self-explanatory.
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ST(a) ST(b) T ET(b) ST(c) T ET(c) ET(a)

x=...

y=...

z=...

<a xmlns:y=’...’ xmlns:x=’...’>
<b>...</b>
<c xmlns:z=’...’>...</c>

</a>

Figure 5.1: Representation of namespace prefix mappings

The ST item contains both a mapping between namespace URIs
and prefixes as well as the attributes of that element. The prefix
map is semantically a functional map [Okasaki, 1999] in that it is
derived from the parent’s prefix map by adding the prefix map-
pings of the ST item, but the parent’s prefix map must also remain
intact. As we expect there to be only a few prefix mappings in a
single start tag, we use a simple linked list as shown in Figure 5.1,
with the last node in a start tag’s list linking to its parent’s list.
Both the prefix map list as well as the list of attributes are kept in
sorted order inside an ST item so that canonicalization [W3C, 2001]
is efficient, but note that since the list can be sorted only within a
single ST item, canonicalization of a subtree will require merging
the list of the subtree’s root with its parent’s list.

For the attributes there is only one way to iterate over them,
in list order. For the prefixes, there are three different ways. Lo-
cal iteration goes over only the prefix mappings explicitly present
in the ST item and is used, e.g., when serializing the whole doc-
ument. Global iteration, on the other hand, goes over all in-scope
mappings in list order, and is used, e.g., to locate the namespace
URI mapping to a given prefix. Finally, detached iteration goes over
all in-scope prefix mappings dropping duplicate prefixes. This is
needed when serializing only a subtree, since any prefix mapping
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in scope may need to be included in the root element, but includ-
ing a mapping for the same prefix twice is an error.

The XAS model deviates from XmlPull by including slightly
more structure into the DTD and PI items, and from both XmlPull
and SAX by including both namespace prefix mappings and at-
tributes into the ST item. Furthermore, the ST item also contains a
reference to its parent ST item in the XML document, but it is pos-
sible to detach such an item as well as attach a detached ST item to
another ST item. Our original XAS model was closer to the Xml-
Pull model, but actual use revealed that the current model is easier
for applications to handle.

The item concept is implemented as a Java class Item, an ab-
stract superclass for all item types, which are implemented as sub-
classes of Item. The Item class itself has no functionality, only a
type field to make it possible to test the type of an item without
needing potentially expensive instanceof operations (or the even
more expensive Visitor pattern [Gamma et al., 1995], which would
be the “correct” object-oriented solution).

5.1.2 XAS Fragments

A sequence of XAS items is a fragment if it is one of

1. A C item or a PI item,

2. A sequence of T and ER items,

3. A sequence of fragments surrounded by an ST item and an
ET item with the same name, where there are no two consec-
utive fragments of type 2 or any fragments of type 4, or

4. A sequence of fragments surrounded by an SD item and an ED
item, optionally starting with a DTD item and having exactly
one fragment of type 3 and no fragments of types 2 or 4.

These rules are a direct translation of the XML grammar. A com-
plete XML document is a fragment of type 4. The intent behind
these definitions is that if a sequence of items is a fragment, its
subfragments are uniquely determined by the rules 1–4.

At the lowest layer, processing of item sequences with XAS uses
a streaming model. There are item sources and item targets, the
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i n t e r f a c e ItemSource {
Item next ( ) ;

}

i n t e r f a c e I temTarget {
void append ( Item item ) ;

}

Figure 5.2: XAS item source and target interfaces

<r><a><b/><c/></a><d/></r>

r Fa b /b Fc /c /a d /d /r

•
•
•

Figure 5.3: A XAS fragment with different iterations

interfaces of which are shown in Figure 5.2. The full processing
model follows the Pipes and Filters design pattern [Buschmann
et al., 1996], permitting applications to insert their own item trans-
formers on top of supplied sources or targets.

While for messaging applications it is usually sufficient to have
streaming parsers and serializers, other applications may need an
in-memory representation. In our work we have observed that for
many such applications there is in the end no need to process XML
as a tree, so the basic in-memory model of XAS is an array of items.
We chose this form because it will save space compared to the ad-
ditional pointers that building a tree structure would require.

However, it is still possible to use XAS through a tree view. This
is enabled by the use of fragment items. Such an item is a core part
of XAS and represents a fragment as defined above. A fragment
item replaces an ST or a T item and essentially contains a pointer
to the item after the fragment, which is a standard method for rep-
resenting a tree in a list or array [Knuth, 1997a]. The ability to se-
lectively convert fragments into tree form and iterate or skip them
is illustrated in Figure 5.3 where the a and c elements have been
converted into fragment items but other elements have not.

The three possible iteration sequences in Figure 5.3 show vary-
ing degrees of skipping. In each case the arrowheads indicate the
items that are processed in the iteration. At the fragment items the
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r Fa b /b Fe /c /a d /d /r

e f /f /e

size=6
size=2

•

Figure 5.4: A modified XAS fragment

iteration can either skip over the whole fragment or proceed inside
it. Note that since there are only two fragment items in the exam-
ple, the three iteration sequences shown are the only ones possible.

Efficient modification of XML documents is made possible by
separating two fragment-related concepts, length and size. The
length of a fragment is the number of items that it contains, and is
generally useful information. When a fragment item is contained
in a larger fragment, its size tells how many items it takes up space
in its parent fragment. For example, the size of the fragment item
representing element c in Figure 5.3 is 2 and that of element a is
6. Size is used by iterators to know the item logically following a
fragment item, since the physically following item can be a part of
the fragment.

An example of this is shown in Figure 5.4 where the fragment
of Figure 5.3 has been modified by replacing the c element with
an e element containing an f element. Here the fragment of the
new e element still takes up only two items in its parent, so its size
remains 2. However, now its list of items points to an external list,
and its length is therefore the length of that list, or 4. The ET item
for the c element remains in the main fragment, but any processing
of the fragment will skip over it by using the size of the fragment
now containing the e element.

5.2 XAS Extensibility and Advanced
Features

The design of XAS included an explicit requirement for extensi-
bility. Our earlier work [Kangasharju and Lindholm, 2005] had
integrated typed content into the low-level model, but even then,
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explicit extensibility through the ability to define application-spe-
cific items was quickly added. For the redesign of the API we de-
cided to keep the basic API as simple as possible and only model
XML as such, with extensibility considered from the start and as
much functionality as possible implemented as extensions.

5.2.1 Extensibility API

Extending XAS is done simply by defining a new subclass for the
Item class. Such a class will need to define its own item type that
is unique across all types used in the application. While ensuring
this uniqueness is not really feasible when assuming a number of
separate extensions, we structured the item type field by giving
meaning to its individual bytes to make clashes less likely.

Any special processing that an application wishes to perform
for its own item types can be inserted into the Pipes and Filters pat-
tern by defining an application-specific transform that recognizes
the item type. Here, a target may transform such special-purpose
items into some XML content whereas a source may introduce
such items when it finds suitable content in the XML document.
Furthermore, when processing an XML document in memory, the
application can recognize its own item types.

As additional support for extension items, XAS includes two
concepts called appendable item and serializable item, represented by
the Java interfaces shown in Figure 5.5. Both of these are supposed
to be recognized by any serializer that actually outputs bytes, but
the former might be recognized by other transformers as well. The
semantics of them are that an appendable item has a serialized
form consisting of a sequence of (simpler) items whereas a serial-
izable item has a serialized form consisting of bytes, so it cannot be
transformed unless there is byte output stream underneath. An ex-
ample of these item types is provided by the typed data handling
described in section 5.3.

The type parameter of the serialize method denotes the In-
ternet media type [Freed and Borenstein, 1996b] of the underlying
stream, and exists to support alternate serialization formats. For
instance, a binary format usually permits direct embedding of bi-
nary data in a serialized document whereas such content must be
represented as base64 in XML. Thus, a serializable item may need
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i n t e r f a c e AppendableItem {
void appendTo ( ItemTarget t a r g e t ) ;

}

i n t e r f a c e S e r i a l i z a b l e I t e m {
void s e r i a l i z e ( S t r i n g type , S e r i a l i z e r T a r g e t

t a r g e t ) ;
}

Figure 5.5: Interfaces for appendable and serializable items

i n t e r f a c e ParserSource extends ItemSource {
InputStream getInputStream ( ) ;
S t r i n g getEncoding ( ) ;
S tar tTag getContext ( ) ;

}

i n t e r f a c e S e r i a l i z e r T a r g e t extends I temTarget {
OutputStream getOutputStream ( ) ;
S t r i n g getEncoding ( ) ;
S tar tTag getContext ( ) ;

}

Figure 5.6: Parser source and serializer target interfaces

to be prepared to serialize itself in a variety of formats, though ul-
timately it is the application’s responsibility to make sure it does
not use media types for which it lacks serializers.

5.2.2 Direct Byte Stream Access

The SerializerTarget interface referenced in Figure 5.5 is an ex-
tension of the ItemTarget interface of Figure 5.2. There is also a
corresponding ParserSource interface as an extension of Item-
Source. These interfaces, shown in Figure 5.6, provide direct ac-
cess to the underlying output or input stream, making many appli-
cations more efficient. For instance, copying a part of an XML doc-
ument as such is much more efficient when it can be implemented
as a direct byte copy than it would be if parsed and re-serialized.
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Figure 5.7: Preservation of processing context (PC) in XAS

In addition to providing access to the byte streams, these ex-
tended source and target also provide other information required
to fully use the streams. First, they provide the character encod-
ing used in the document so that the application can understand
encoded characters correctly. Second, and more importantly, they
provide the current processing context, which consists of the stack
of ST items whose corresponding ET items have not yet been seen.

The formalization of the processing context is a fundamental
one in XAS and what in the end makes its direct stream access
so useful. The processing context contains all visible namespace
prefix mappings as well as attributes such as xml:space that may
affect processing. This is required information when, for instance,
there is a need to serialize or interpret XML qualified names that
are serialized using only the prefix.

The processing context can also be used to formalize what an
application is allowed to do with the direct byte stream access.
The precise requirement is that the processing context must be the
same at the time when the application requests the byte stream
and at the time when the application next performs a higher-level
XML processing operation. This ensures that any state kept by the
low-level XML processor is still correct (with the exception of any
position indicators that, e.g., XML parsers commonly maintain to
be able to point to erroneous locations). An illustration of such a
mixed byte-stream and regular XML processing is shown in Fig-
ure 5.7, with the associated constraint on the processing contexts.
Here, XAS Access denotes using the item-based parts of XAS.
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5.3 Typed Data Extension for XAS

As we noted above, handling typed data is a necessity in an XML
messaging application. Typed data usually refers to programming
language data types and the encoding and decoding (also called
marshaling and unmarshaling) of them to and from bytes. As we
also noted, we decided to implement typed data handling as a
pure extension for XAS, in part to ensure that XAS extensibility
is sufficiently usable for real applications.

Our previous experiences in typed data handling in XML led us
to divide typed data into two classes. Primitive typed data consists
of types whose encoded form in XML is formed of pure text, i.e.,
not containing any markup. On the other hand, complex typed data
is structured at the programming language level, and its structure
is encoded as XML structure. The intent is that the data contained
in complex typed data is also typed data in its own right and en-
coded as such.

The reason for this separation is our use of alternate XML serial-
ization formats. Such formats usually provide a more efficient rep-
resentation of primitive typed data, e.g., integers, dates, and float-
ing point numbers. However, it is also often desirable to represent
the structure of application data as structure in the produced XML.
Thus, an encoder for complex typed data will usually be indepen-
dent of the underlying serialization format whereas an encoder for
primitive typed data is closely coupled with it.

The typed data extension consists of two extension items, the
typed item and the parsed primitive, the former of which represents
complex typed data and the latter primitive. The typed item is an
appendable item and the parsed primitive is serializable, and both
contain an Object as a generic value and a Qname to denote the
type of the value. The type system in XAS is based on XML names
as in XML Schema [W3C, 2004g] instead of Java Class objects to
make it better suited for XML usage.

The encoding and decoding processes for typed data are fully
generic. There are codec classes (encoder–decoder pair) for both
complex (ValueCodec) and primitive (PrimitiveCodec) data, with
interfaces shown in Figure 5.8. An application may register its own
codecs with a singleton Codec class, and the encoding in the typed
item and parsed primitive look for such registered codecs for their
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i n t e r f a c e PrimitiveCodec {
S t r i n g getType ( ) ;
boolean isKnown (Qname type ) ;
void encode (Qname type , Object value ,

S e r i a l i z e r T a r g e t t a r g e t ) ;
Object decode (Qname type , byte [ ] value , i n t

o f f s e t , i n t length , S t r i n g encoding , S tar tTag
contex t ) ;

}

i n t e r f a c e ValueCodec {
boolean isKnown (Qname type ) ;
void encode (Qname type , Object value , ItemTarget

t a r g e t , S tar tTag contex t ) ;
Object decode (Qname type , ItemSource source ) ;

}

Figure 5.8: XAS codec interfaces

type. This class also provides a way to map Java classes to XAS
type names for the case when an application only has a generic
Object and it needs to create a typed data item from it.

For the encoding side things are simple, since the typed data
extension items can simply know how to encode themselves. For
the decoding side things are not so simple. There exist therefore
two source transformers, PrimitiveConverter that decodes prim-
itive typed data and Decoder that decodes complex typed data.
The implementation of Decoder is somewhat complex, as it needs
to buffer items prior to decoding, provide the items in the buffer
as an item source to the codec, potentially recursively as complex
typed data may contain other complex typed data, and to deter-
mine whether to provide to the application the buffered items or a
successfully-decoded typed item.

5.4 XML Security with XAS

One reason for the new design of XAS was to make it easier to im-
plement the XML security specifications. As with the typing exten-
sion, our XML security implementation is a pure XAS extension.
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The core XAS functionality is fully generic, but its features were
selected partially to provide good support for an efficient XML se-
curity implementation.

5.4.1 Requirements on the XML API

To ensure both that our implementation technique would not be
specific to XAS and that the required functionality in XAS would
not be specific to the security implementation, we designed our se-
curity implementation in a generic manner. Our starting point was
the previous work by Imamura et al. [2002] and Lu et al. [2005].
Based on this, we built a basic design, identifying the generic func-
tionality that an XML API needs to support it.

The intention of the basic design was to promote efficiency by
processing security features in a streaming manner whenever pos-
sible, and by avoiding re-serialization of data. Our previous proof-
of-concept implementation on top of the old XAS system [Kangas-
harju et al., 2006] had to make several passes through the docu-
ment, sometimes serializing the same piece several times. While
performance was still dominated by the asymmetric cryptography
operations, we knew that it was possible to improve the perfor-
mance of the XML part quite a bit.

We decided to build our implementation on top of an in-mem-
ory model of XML, since it does not seem feasible to have a purely
streaming implementation for XML Signatures. The reason is that
the signature element will include references to other content, and
its serialized form depends on that other content. So if the sig-
nature element comes first in the document, as is commonly the
case, it will need to be buffered in any case, so streaming provides
no benefits. Furthermore, it is not clear what is the best way to
address pieces of an XML document when the document itself is
ephemeral, and this would need to be solved for both signatures
and encryption.

We assume that the in-memory model is based on nodes of some
form. These nodes could be, e.g., the information items of XML
Infoset or the nodes of DOM; in our implementation they are XAS
fragments defined in subsection 5.1.2. We expect the node division
to have sufficient granularity so that individual XML elements and
content are represented as nodes. This requirement is usually sat-
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isfied by any node-based API. We also require the ability to define
new application-specific nodes and a way to add recognition of
them into the standard processing.

There needs to be a way to refer to individual nodes using regu-
lar variables of the programming language. We shall use the term
pointer to denote such a reference. The API needs to provide a
way to acquire these pointers, usually through a query interface
of some sort. Furthermore, it must be possible to modify the XML
document through these pointers by replacing nodes with others.

Our last requirement is not usually supported by XML process-
ing APIs. During serialization, our implementation technique re-
quires the ability to access the serialization parameters, such as
character encoding, as well as the underlying output stream for
direct writing of bytes. This is the main reason that this stream
access exists in XAS, though we specified it in a fully general man-
ner and have already used it in other cases. However, we do not
believe that the addition of this feature is an onerous requirement,
so it might be possible to extend some existing API with it as well.

While these are the only actual requirements as such, XAS also
has some features that help in further improving the efficiency of
the security processing. One is the above-mentioned maintaining
of attribute and prefix lists in sorted order, which makes canonical-
ization very efficient. As Shirasuna et al. [2004] had noted before,
canonicalization can be a bottleneck in XML Signature processing.

XAS also includes the direct byte stream access for the parser
side. This could be used to implement streaming parsing of en-
crypted data by inserting a streaming decrypter on top of the byte
stream and then an XML parser on top of that. However, in XML
it is not possible to determine the end of element content except by
encountering the end tag, and our byte stream access does not cur-
rently support the lookahead that this would require. Despite this
lack, we see no fundamental obstacle to implementing this feature
at some later time.

5.4.2 Implementation Technique

We use the assumed node-based XML API that permits extension
nodes and their special-purpose processing for our efficient im-
plementation. The smallest building block of our XML Signature
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implementation is the digest node. Such a node contains a pointer
to content that is to be digested. When a digest node is being seri-
alized, it will access the pointed-to content, serialize it into canon-
ical form, and compute a value for itself. It will also replace the
pointed-to content with a serialized node that contains these serial-
ized bytes as well as a pointer to the original content.

After this replacement, when the serialization process reaches
the serialized node, it will compare the encoding used for serial-
ization with UTF-8 that is used for canonicalization. If these are the
same, it will simply write the bytes into the output stream, which
is accessible per our requirements. This avoids the need to seri-
alize the data twice, with some potential overhead in document
size, since, e.g., empty elements are not represented in the com-
pact form in canonicalized documents. Note that this process will
serialize content twice if it is the target of two overlapping signa-
tures, but this is required, since the canonical form of a subtree is
not the same as it is when serialized as a part of a larger tree.

The Signature element is represented by a signature node. A
signature node contains a digest node for each piece of content to
be signed. These nodes are inside a SignedInfo element, which is
represented using regular nodes. The signature node also contains
a signed digest node, which is an extension of the digest node that
computes a signature as its value from the computed digest.

An example of how the serialization process for an XML docu-
ment with signatures works is shown in Figure 5.9. The progress
of the serialization process is shown by circling the current node in
bold. When the process comes to the SignedInfo element, it will
convert the pointed-to node x into a serialized node, with both the
bytes and the original node. Processing of the SignedInfo node is
actually special-cased, since we know it will always be pointed to
by the signed digest node of SignatureValue, so it will always be
replaced with a serialized node. Hence, when the process comes
to the SignatureValue node, it will simply compute the signed di-
gest over the serialized bytes.

A notable point is that the serialized nodes replace the original
nodes so that the pointers are also converted to point to the serial-
ized nodes. This is needed, since the direct writing of the serialized
bytes works only if the serialization is using UTF-8. If UTF-8 is not
used, the serialization needs to happen using the correct encoding.
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Figure 5.9: XML signature processing example

Furthermore, our implementation supports the re-serialization of
the same document, so that we cannot know whether retaining the
serialized bytes is useful or whether retaining the original node is
necessary at the first serialization.

For encryption, our implementation contains an encrypted data
node that replaces the node to be encrypted. When serialized, this
node will first serialize the original content and then serialize its
own value as an EncryptedData element containing the encrypted
version of the node’s content. Our encrypted data node implemen-
tation supports different Internet media types for serialization as
well as allows specifying gzip [Deutsch, 1996b] compression prior
to encryption, both of which are indicated in the attributes of the
EncryptedData element.

Our implementation also includes an encrypted key node, which
corresponds to an EncryptedKey element. Such a node contains a
number of pointers to content that is to be encrypted as well as a
key to use in encryption. When being serialized, an encrypted key
node will replace all pointed-to nodes with encrypted data nodes,
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Figure 5.10: EncryptedKey processing example

and serialize itself as an EncryptedKey element, containing the en-
crypted version of the key used for encrypting the actual content.
An example of this process is shown in Figure 5.10, similarly to
Figure 5.9. Note that serialization of the encrypted data happens
only when the encrypted data node itself is actually processed.

5.4.3 Extensions to XML Encryption

As we have noted, the main problem of XML on mobile devices
is its verbosity. In normal communication this is usually solved
by compression, but when encrypting data, compression needs to
be applied prior to encryption, as encrypted data is not supposed
to be compressible [Schneier, 1990]. However, the XML Encryp-
tion specification provides no standardized way to implement this
sensible policy.

Because of this, our implementation provides two extensions
to regular XML Encryption. First, we make use of the MimeType
attribute of the EncryptedData element to denote the type of the
serialized form, namely whether it is XML or a binary format. This
saves the regular Type attribute to denote whether the encrypted
content is an element or the content of an element.

The other extension is a completely new attribute for the En-
cryptedData element that we call ContentEncoding. The seman-
tics of this is intended to be the same as those of the Content-En-
coding HTTP header [Fielding et al., 1999], namely to indicate any
encoding that has been applied to the content after it was serialized
but prior to encryption. Our system currently recognizes only one
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Figure 5.11: API support for different views of XML

value for this attribute, gzip, to indicate that the content has been
compressed with gzip.

There is an existing attribute called Encoding in the Encrypted-
Data element, but, like with the Type attribute, we could not use it.
The reason is that the semantics of the Encoding attribute appear
to be the same as that of the Content-Transfer-Encoding MIME
header so it denotes only the manner in which 8-bit bytes have
been encoded for transmission and does not allow more elaborate
encoding methods.

5.5 Summary

There exists very little research into XML processing APIs; usually
the goal of XML API design is to just enable generic XML process-
ing without considering the more elaborate needs of some appli-
cations. In contrast, the design of XAS began by explicitly deter-
mining what kinds of special features would enable efficient XML
processing applications and then developing generic functionality
to support such features.

One of the distinguishing features of XAS is its consideration
of XML at various levels of abstraction. As shown in Figure 5.11,
the usual pattern is to have a separate API for each type of access.
XAS, on the other hand, is built on the idea that all these different
kinds of access are worthwhile and it should be possible to seam-
lessly combine them in the same application.

Of the features described here, the most prominent one is the
XML security implementation. While special-purpose streaming
implementations had been written before, XAS differs from these
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in that its implementation works also in cases where streaming
processing is not possible. Furthermore, the idea of using the bytes
acquired during canonicalization as the serialized form as well
does not seem to have appeared before.

We have also implemented an XML indexing feature by record-
ing the byte offset and processing context at the indexed points in a
document. We also implemented a repositionable parser that can
take an offset and its corresponding processing context and con-
tinue parsing correctly at the indicated offset. These features were
useful in implementing an on-demand construction of an XML
document in memory, which forms the basis of our XML editor
that can process gigabyte-size XML files on a mobile phone [Lind-
holm and Kangasharju, 2008]. This is also an improvement over an
existing special-purpose implementation of the concept [Fernan-
des and Raghavachari, 2005]. Indexing, however, is not so useful
in messaging, as it requires the whole XML document to be avail-
able, so we did not cover it in detail above.
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CHAPTER 6

The Xebu Serialization Format

The evil is young, barely
three days old.

The idea of an alternate serialization format for XML is not a new
one. As one design principle of XML, listed in section 2.1, was
“Terseness [. . .] is of minimal importance”, there have been several
attempts to reduce the amount of space that an XML document
takes. We will below cover the most important XML compression
ideas, and then move on to binary serialization formats and the
work done at the W3C in that area. The rest of this Chapter then
presents our own serialization format.

6.1 XML Compression

XML documents have much textual redundancy, so they compress
very well with generic text compressors. However, XML has struc-
ture beyond the linear one exploited by a typical compressor. For
instance, it could be expected that elements with the same name
(e.g., two occupation elements) would have more similar content
than just consecutive elements (such as occupation and born).

In the early days of XML there was much interest in XML-spe-
cific compression. The main interest was in getting better results

109
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Figure 6.1: The XMill transform

than the popular general-purpose compressor gzip1, which imple-
ments the well-known Lempel–Ziv compression algorithm [Ziv
and Lempel, 1977].

One of the early XML-specific compressors was XMill [Liefke
and Suciu, 2000]. The basic principles of how XMill works are sep-
aration of structure (tags) and data (text content), grouping related
data items (e.g., elements with the same name), and using different
compressors for different groups. XMill is a very flexible system,
allowing these principles to be used to different extents.

The XMill transform, shown in Figure 6.1, reads an XML doc-
ument using SAX and splits the generated events into different
containers. There is one container for the structure (tags), and a
number of data containers. A user can specify the names of ele-
ments that are included in each data container. Default containers
are then constructed individually for each element name that was
not included in the user’s definitions. The structure container also
contains pointers to the data containers so that the XML document
can be reconstructed after the transform.

XMill allows the user to specify semantic compressors for data
containers. For example, a user could specify that the content of
some specified element was always a date value, so the semantic
compressor could represent these in an efficient binary format. Se-
mantic compressors can also match regular expression templates

1http://www.gzip.org/

http://www.gzip.org/
http://www.gzip.org/


6.1 XML Compression 111

against the data value to eliminate common parts directly.
In the final phase, gzip is applied individually to each container

(to the data containers after semantic compression), and the con-
tainers concatenated to form the final document. Measurements
on XMill performed by Liefke and Suciu [2000] indicate that XMill
performs better than gzip on many kinds of XML data, and that
an original text document converted to XML and compressed with
XMill can be smaller than the original document compressed with
gzip. Timing measurements indicate that XMill is approximately
as fast as gzip, both compressing and decompressing.

While XMill performs well when combined with gzip, there ex-
ist better algorithms for textual data compression. A currently-
popular one is bzip22, which applies the Burrows–Wheeler trans-
form [Burrows and Wheeler, 1994] to preprocess the data into a
more compressible form. Bzip2 achieves a compression ratio close
to that of state-of-the-art compressors while being much faster.

Since the XMill algorithm only transforms the data to be com-
pressed, it can be used with any compression algorithm. It would
therefore be conceivable that using, e.g., bzip2 as XMill’s compres-
sion algorithm would yield even better compression. However,
this has been observed not to be the case; in fact, applying the
XMill transform to an XML document can worsen the performance
of state-of-the-art compressors [Cheney, 2001].

After noticing that XMill’s modeling of XML data is not suffi-
cient, Cheney [2001] proposed a technique called Multiplexed Hi-
erarchical Modeling (MHM), based on the well-known PPM tech-
nique [Cleary and Witten, 1984]. The idea behind MHM is roughly
similar to XMill: split the XML into different streams based on the
item type, and model each of these streams independently.

The MHM algorithm is performed on an Encoded SAX stream,
which is essentially the sequence of events produced by a SAX
parser from an XML document. It builds different models for doc-
ument structure and various kinds of names and text content. An
additional improvement to inject element start symbols at various
places inside the element improves the models even further. This
process has been implemented in the XMLPPM3 tool.

2http://www.bzip.org/
3http://xmlppm.sourceforge.net/

http://www.bzip.org/
http://xmlppm.sourceforge.net/
http://www.bzip.org/
http://xmlppm.sourceforge.net/
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Based on investigating the activity (development, mailing list
discussion, etc.), both XMill and XMLPPM seem to be very un-
used. In particular, XMill appears to have been abandoned after
publication, and its authors have moved on. The situation is even
worse for the many commercial tools that existed five to six years
ago, as they have completely disappeared.

Our main concern, though, is with XML messaging. Here typ-
ical XML documents are small and contain much structural in-
formation instead of text. The methods described above are all
generic XML compressors, so it seems believable that there could
exist messaging-specific ways to compress XML better.

Considering messages to a single destination, there will very
probably be a large amount of similarity among them. Especially
in the case of SOAP there will always be the SOAP framing, and
possibly some common extension headers. If we can assume a ses-
sion between two messaging applications, we could use differen-
tial encoding techniques that have proved useful for Internet pro-
tocols [Casner and Jacobson, 1999; Jacobson, 1990].

Even if we do not assume a session, there may still be a WSDL
description of a service endpoint, possibly including a message
schema. This description can be used to create a template mes-
sage, to which differential encoding is applied [Werner et al., 2004].
However, it appears that this technique does not yet provide sub-
stantial benefits, nor is the XML differencing and patching tech-
nology used sufficiently robust to run automatically.

6.2 XML Binary Serialization

For use in the resource-constrained environment of the wireless
world, XML compression methods are of little benefit. The goal
there is not merely to reduce the size of the documents but also to
reduce processing time and memory consumption in serialization
and parsing. An additional compression step, while beneficial for
bandwidth usage, only exacerbates these other concerns.

What is needed is an XML representation format that can be di-
rectly read and written in a streaming manner. This need is the
origin for many binary XML formats, as first exemplified by WAP
Binary XML (WBXML) [W3C, 1999]. Binary XML as a term usually
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refers to a binary serialization format that is designed to be com-
patible with XML and can be written and read directly without
going through XML in between4.

Binary XML techniques can roughly be divided into Infoset-
based and schema-based [Pericas-Geertsen, 2003]. Of these, the
former is suitable for any XML data while the latter may require
information on a schema that documents conform to. We must
handle general XML in our messaging system, so the basic format
needs to be Infoset-based. However, often a complete or partial
schema for the messages is available, so schema-based optimiza-
tions should be included if possible.

6.2.1 Tokenization Techniques

One basic concept of binary XML formats that has been used by
many existing formats is called tokenization. This is similar to what
generic compressors like gzip do in that a recurring string in the
data is replaced by a short integer token. This provides both in-
creased compactness, as the string is shortened to often only one
or two bytes, and improved processing speed, as there is no need
to perform as much string processing on the parser side.

While generic compression requires much processing power,
the tokenization performed by binary XML formats is much more
efficient. This is because tokenization does not consider every sub-
string of the serialized form to be tokenizable, only the names in
XML items. For instance, of an element name, a binary XML to-
kenizer tokenizes only the namespace and local name instead of
considering all possible substrings of the full qualified name.

The oldest format, WBXML [W3C, 1999], is a simple tokenizer.
Its tokens come from a space of 65536 (216) available values, and
at each point of a WBXML document there is a current code page,
which gives 8 bits of this value, allowing a token to be represented
in a single byte, yet enabling a large space of possible tokens. Code
pages are switched with special tokens; obviously the placement

4Strictly speaking, the term binary XML is an oxymoron, since XML is always
text. However, it is a common term, and there is no widely-used short alternative,
so we shall continue using it.
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of tokens into code pages needs to be done with care to avoid too
many code page switches.

While WBXML is an old and established format, it is poorly
suited to the XML messaging world. Its largest deficit is that it only
works for the specific format used with WAP, and any modifica-
tion to this would require a round of standardization. However,
even if this would be remedied, it would still leave the problem of
namespaces, which are not at all supported by WBXML.

Millau [Girardot and Sundaresan, 2000] extends the WBXML
format by splitting the document into a structure stream and a con-
tent stream. This allows separation of structure from content as well
as separate compression of content. Millau also extends WBXML
to permit binary encoding of common data types such as bytes, in-
tegers, or floating point values. Finally, the Millau implementation
provides binary versions of the SAX and DOM APIs, which were
measured to have a positive effect on application performance.
However, like WBXML, Millau does not support namespaces, so it
cannot be considered a modern format suitable for our purposes.

The best-known modern general-purpose format is indubitably
Fast Infoset [Sandoz et al., 2004]. This format represents the in-
formation items of XML Infoset in an Abstract Syntax Notation
One (ASN.1) schema [ITU, 2002b]. Then, it is possible to use the
well-established encoding rules of ASN.1 [ITU, 2002a,c] to serialize
a document represented as an Infoset into a more compact form.

The main benefit of Fast Infoset comes from the indexing of
strings and qualified names, i.e., tokenization. Another benefit,
which is also common to most binary formats, is the ability to em-
bed binary content directly into an XML document without en-
coding it in base64. It is also possible to preserve the state of the
indexing from one document to another, which is very useful for
message streams containing similar messages.

A somewhat similar general-purpose format is XBIS [Sosnoski,
2003a]. XBIS is designed to be one-to-one compatible with Canoni-
cal XML, which is a deviation from most other binary formats that
consider some more abstract data model. This makes XBIS a very
stream-oriented format.

The basic concept in XBIS, as in Fast Infoset, is tokenization.
Names of elements and attributes are always tokenized, while to-
kenizing text and attribute values is optional. A document is seri-
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alized as a sequence of nodes, each of which represents some piece
of XML data. The serialization format of nodes has been chosen
so that more commonly used types of nodes, e.g., element start
nodes, are serialized in a smaller number of bytes than, e.g., pro-
cessing instructions.

In contrast to the use of qualified names in Fast Infoset, XBIS to-
kens always reference the actual namespace URIs. As all element
and attribute names of a single namespace will simply reference
the first instance of that namespace (which should be a namespace
declaration in namespace-well-formed XML), this does not con-
sume additional space. It also makes the XBIS format somewhat
more independent of the actual namespace prefix mappings.

In contrast to WBXML and Millau, Fast Infoset and XBIS do not
limit the space of available tokens in any manner. Instead, they
define ways to encode arbitrary integers, and this encoding is also
used for the tokens. This makes these formats more widely ap-
plicable, as the tokenization does not degrade for any documents,
but it can cause an increase in the sizes of documents, since larger
token values will take more space in serialized form. The mem-
ory consumption of the implementation will also grow without
bounds, as every token ever assigned needs to be remembered in-
definitely. This limits the use of these formats for streams of mes-
sages while retaining state between messages.

Chiu et al. [2005] have designed the Binary XML for Scientific
Applications (BXSA) format explicitly based on the requirements
of scientific computing. BXSA extends the XML Infoset model
with typed data, especially arrays, but is capable of represent-
ing arbitrary XML. In contrast to most other general-purpose for-
mats, BXSA uses a type-length-value encoding for elements, simi-
larly to ASN.1 Basic Encoding Rules (BER) [ITU, 2002a], where the
value of an element can contain similar type-length-value frames
for contained elements. In comparison with established scientific
data formats, Chiu et al. measure BXSA to perform well, but there
is less consideration of the general XML world.

6.2.2 Using Schemas to Improve Compactness

In SOAP messaging we can say that there is always partial schema
information available, namely the high-level SOAP message struc-
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ture presented in section 2.2. Furthermore, in many cases there
will be schema information on some header blocks and the mes-
sage body. It can therefore be useful to allow the binary format to
take advantage of available schemas. However, since a schema for
messages can be a composite of several independent schemas, the
format needs to be flexible enough to allow partial schema infor-
mation to also have benefits.

Existing formats that can take advantage of schema information
include BiM of MPEG-7 [Niedermeier et al., 2002], Fast Web Ser-
vices [Sandoz et al., 2003], Xenia [Werner et al., 2006], and XML
Schema-based Binary Compression (XSBC) [Serin, 2003]. There
is also a schema extension for Millau [Sundaresan and Moussa,
2001]. Unlike with general-purpose techniques, there is more di-
versity in schema-based techniques.

XSBC [Serin, 2003] is a very simple format. Its approach is ba-
sically tokenizing the names in a schema beforehand, and encod-
ing typed data specially, determining the correct encoding from
schema information. Each element gets a unique token based on
the XPath expression that points to it. This is necessary so that el-
ements with the same name but differently-typed content can be
distinguished from each other.

Performance measurements on XSBC [Bayer, 2005] indicate that
XSBC achieves approximately the same serialized form size as Fast
Infoset. This is expected, since the tokenization technique used is
principally the same, and binary encoding of primitive typed data
often does not reduce the size. Furthermore, parse times for XSBC
are clearly worse than for Fast Infoset.

The Millau extension of Sundaresan and Moussa [2001] is based
on DTDs. The mechanism of the schema optimization is to per-
form as a validator against a DTD by traversing both the XML
document and the DTD simultaneously. There is only a need to
produce some structure information when the DTD allows several
choices as to the next item.

The measurements of Sundaresan and Moussa [2001] are per-
formed only for content-heavy XML. This is puzzling, since this
schema optimization is very slow and does not perform any con-
tent compression, so the measurements indicate it being a very
poor choice. Furthermore, the presence of DTD operators deep
in the tree is a significant cause of poor performance for this opti-
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mization, requiring that the DTDs used with this technique do not
have too many choices available.

Fast Web Services [Sandoz et al., 2003], like its sister technol-
ogy Fast Infoset, is based on ASN.1. Here, however, instead of
defining an ASN.1 schema for the XML data model, a mapping
from XML Schema to ASN.1 schema [ITU, 2004] is specified. Then,
XML instances conforming to a given schema can be transformed
into ASN.1 instances of the mapped schema. A standard ASN.1
encoding, such as Packed Encoding Rules (PER) [ITU, 2002c], is
then used to produce the serialized form.

The performance of Fast Web Services appears to be better than
that of the Millau extension. The measurements of Sandoz et al.
[2003] indicate that over 60 % of total time in a Web service invo-
cation is spent on processing the SOAP body, and that Fast Web
Services can cut this time down to one tenth. This factor is mea-
sured to increase with document size; the reported result is for a
50-kilobyte XML message, which is 10 kilobytes encoded in the
Fast Web Services format.

However, if the complete schema for a message is available,
the ASN.1-based technique of Fast Web Services can perform sig-
nificantly better. Measurements on a large corpus of XML mes-
sages [Cokus and Winkowski, 2002] indicate that ASN.1 PER can
achieve up to 50-fold improvement in document size compared
to XML. However, Cokus and Winkowski do not present timing
measurements.

The BiM format [Niedermeier et al., 2002] was designed for use
with the MPEG-7 metadata format [Avaro and Salembier, 2001] of
Moving Picture Experts Group (MPEG)5 used to represent audio-
visual content. The basis of BiM is generation of automata from
either a DTD or an XML Schema. The serialization automaton is
driven by the items of the XML document and produces the seri-
alized form directly. The parsing automaton performs the reverse
transformation.

The automata of BiM allow a very compact serialized form to
be generated. With the kind of constrained schema that BiM is
designed for, there are typically only a very small number of pos-
sible following items at each point, and the BiM automaton transi-

5http://www.chiariglione.org/mpeg/

http://www.chiariglione.org/mpeg/
http://www.chiariglione.org/mpeg/


118 6 The Xebu Serialization Format

tions can then output the minimal number of bits required to dis-
tinguish between these alternatives. Measurements [Cokus and
Winkowski, 2002] indicate that BiM is capable of achieving over
10-fold reduction in document size.

A technique similar to BiM was developed by Werner et al.
[2006] for a format called Xenia. This work is an extension of
BiM in that it makes explicit how recursive element definitions in
a schema are handled. Namely, Xenia uses pushdown automata,
giving it the ability to recurse during processing while maintaining
sufficient state to resume processing correctly after the recursive
element has been processed.

None of these formats permit deviations from the schema, but
XSBC could easily be extended to support them. We see this rigid-
ity as a liability, since in real use it is not uncommon that docu-
ments are produced without ensuring their validity, or that sche-
mas evolve and are no longer the same everywhere. Furthermore,
different use cases may require different schemas to be applied to
the same XML document at various times.

6.2.3 Binary XML Standardization

The W3C, as the keepers of the XML specification, has also fol-
lowed the binary XML developments, and in September 2003 or-
ganized a workshop on Efficient Interchange of XML Information
Item Sets [W3C, 2003b]. Several participants in this workshop pre-
sented their own binary formats, and as a result, the W3C char-
tered the XML Binary Characterization (XBC) WG6 (the author of
this dissertation participated in this WG representing the Univer-
sity of Helsinki). The WG’s purpose was to determine use cases
for an alternate serialization format, to find out why XML is not
suitable for these use cases, and to provide a recommendation on
whether the W3C should continue work in this area.

The XBC WG concluded its work at the end of March 2005
with the publication of its findings [W3C, 2005c], supported by use
cases [W3C, 2005f], required format properties derived from the
use cases [W3C, 2005e], and ways to measure the properties [W3C,
2005d]. The findings were that a binary format that supports the

6http://www.w3.org/XML/Binary/

http://www.w3.org/XML/Binary/
http://www.w3.org/XML/Binary/
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use cases is feasible to build and that the W3C should standardize
such a format. Based on this recommendation, the W3C chartered
the Efficient XML Interchange (EXI) WG7 to

define an alternative encoding of the XML Information
Set that addresses at least the minimum requirements
identified by the XML Binary Characterization Work-
ing Group.

The EXI WG charter8 defines the design goals of XML (see sec-
tion 2.1) to also be design goals of EXI, but lists the following ex-
ceptions:

• The interchange format must be compatible with the XML
Information Set instead of being “compatible with SGML”
(XML goal 3),

• For performance reasons, the format is not required to be
“human-legible and reasonably clear” (XML goal 6),

• Terseness in efficient interchange is important (XML goal 10).

The EXI WG began its work at the beginning of 2006. It initially
issued a call for contributions to the industry and XML commu-
nity, asking for existing binary format implementations. The in-
tent was to evaluate each of these against the requirements set to
the group, in part to determine whether it is even feasible to satisfy
all the requirements.

The group received a total of eight submissions that included
implementations. Each submission was also represented by a par-
ticipant in the WG, though this was not a requirement for a sub-
mission to be considered. The submissions and their submitters
were

• X.694 [ITU, 2004] with PER [ITU, 2002c], submitted by Paul
Thorpe from OSS Nokalva,

• X.891 (Fast Infoset) [ITU, 2005], submitted by Paul Thorpe
from OSS Nokalva and Paul Sandoz from Sun Microsystems,

7http://www.w3.org/XML/EXI/
8http://www.w3.org/2005/09/exi-charter-final.html

http://www.w3.org/XML/EXI/
http://www.w3.org/2005/09/exi-charter-final.html
http://www.w3.org/XML/EXI/
http://www.w3.org/2005/09/exi-charter-final.html
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• Xebu [Kangasharju et al., 2005b], submitted by Jaakko Kan-
gasharju from the University of Helsinki,

• X.694 [ITU, 2004] with BER [ITU, 2002a], submitted by Ed
Day from Objective Systems, Inc.,

• Efficient XML [Schneider, 2003], submitted by John Schnei-
der from AgileDelta,

• XSBC [Serin, 2003], submitted by Don Brutzman, Don Mc-
Gregor, and Alan Hudson from the Web3D Consortium,

• FXDI, submitted by Takuki Kamiya from Fujitsu, and

• esXML [Williams, 2003], submitted by Stephen Williams from
High Performance Technologies, Inc.

The EXI WG ran measurements on all of the submitted candi-
dates, mainly on how much compression they achieved and how
fast the submitted implementations were. Based on these mea-
surements, the WG selected the Efficient XML submission as the
basis for their current development of a binary format. This pro-
cess and the measurements are covered in more detail in chapter 8.

6.2.4 Efficient XML Interchange

The first draft of the EXI format was published in July 2007 [W3C,
2007a]. At the basic level, EXI uses tokenization like many other
formats. However, it also includes learning of content models,
called EXI grammars, which gives it an advantage over other for-
mats. This learning applies to the content of each element, so that
EXI will serialize repeating content even more compactly if it ap-
pears in an already-encountered context.

In more detail, EXI is based on the streaming model of XML,
and it uses a stack of grammars, with each grammar describing
the possible event sequences for a single element. As start tags and
end tags are encountered in the stream, grammars will be pushed
into and popped out of the stack, respectively. In the EXI speci-
fication, all of the grammars are right-linear LL(1) grammars (see,
e.g., [Lewis and Papadimitriou, 1998]), i.e., all productions are of
the form

N1 → TN2
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where N1 and N2 are non-terminals and T is a terminal represent-
ing an event, but the general technique is applicable to at least any
context-free grammar.

Each grammar production is assigned an event code, with more
likely productions getting codes representable in smaller space.
The serialization process can be seen as serializing the sequence
of event codes that encode a leftmost derivation of the document
in the EXI grammar. Elements and attributes are treated generi-
cally at first, i.e., there is a production that matches any start tag or
attribute in appropriate places, and the name of the element or at-
tribute is serialized after the corresponding event code. However,
after this first appearance, the grammar is modified to include a
production with specifically the encountered start tag or attribute,
which gains benefits if the added production repeats later.

The schema optimization of EXI is based on the same princi-
ple as its standard technique. Namely, a given schema is compiled
into a group of EXI grammars, which provide beforehand a more
accurate version than the dynamic learning in the non-schema-us-
ing case. In addition, the grammars include events not permit-
ted by the schema, which gives EXI the ability to tolerate arbitrary
schema deviations while still achieving much improved compact-
ness for valid documents. The grammar modification is not ap-
plied to the non-terminals derived from a schema, but only the
ones encountered at deviations.

Finally, EXI includes its own compression technique, which per-
forms better than simply running a generic compressor over the
EXI document. This technique is basically the same as the XMill
transform shown in Figure 6.1, with the differences that in EXI the
structure stream contains less explicit structure, some of the con-
tent streams may be combined if they do not contain a sufficient
number of material, and the document is compressed in chunks to
permit streaming.

6.3 The Basic Xebu Format

Our format, Xebu [Kangasharju et al., 2005b], is based on a minor
extension of the XmlPull [Slominski, 2004] API for XML parsing.
Each of the serialization methods shown in Figure 6.2 corresponds
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i n t e r f a c e X m l S e r i a l i z e r {
void startDocument ( S t r i n g encoding , boolean

standAlone ) ;
void endDocument ( ) ;
void s e t P r e f i x ( S t r i n g pre f ix , S t r i n g namespace ) ;
X m l S e r i a l i z e r s t a r t T a g ( S t r i n g namespace , S t r i n g

name) ;
X m l S e r i a l i z e r a t t r i b u t e ( S t r i n g namespace , S t r i n g

name , S t r i n g value ) ;
X m l S e r i a l i z e r endTag ( S t r i n g namespace , S t r i n g

name) ;
X m l S e r i a l i z e r t e x t ( S t r i n g t e x t ) ;
X m l S e r i a l i z e r t e x t ( char [ ] ch , i n t s t a r t , i n t

length ) ;
X m l S e r i a l i z e r typedContent ( Object data , S t r i n g

namespace , S t r i n g name) ;
void e n t i t y R e f ( S t r i n g name) ;
void p r o c e s s i n g I n s t r u c t i o n ( S t r i n g t e x t ) ;
void comment ( S t r i n g t e x t ) ;
void docdecl ( S t r i n g t e x t ) ;

}

Figure 6.2: Xebu serializer interface

to a Xebu event as shown in Table 6.19. A Xebu event is serialized as
a one-byte type token that contains the event’s type and some flags
to indicate how the rest of the event is to be processed, followed
by the content of the event.

Each string in an event’s content is serialized either as a one-
byte token or as a length-prefixed string. If Xebu has been set to
tokenize dynamically, the latter form also includes a one-byte token
for later appearances of the same string. Tokenization can hap-
pen either only for namespaces and names or for all strings in an
event’s content.

Xebu includes four separate token mappings, for each of name-
spaces, names, values, and text. Namespaces are simply the name-

9Note that the events and their names differ somewhat from the XAS items.
This is intentional in the sense that XAS and Xebu are designed as independent
components, so their designs do not need to be aligned.
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Table 6.1: Events in Xebu serialization

Event Abbr. Method Data

DOCUMENT START SD startDocument none
DOCUMENT END ED endDocument none
PREFIX MAPPING PM setPrefix namespace, prefix
ELEMENT START ES startTag qname
ELEMENT END EE endTag qname
ATTRIBUTE AT attribute qname, value
CONTENT CO text text
TYPED CONTENT TC typedContent qname, data
COMMENT CM comment text
PROCESSING

INSTRUCTION

PI processing-
Instruction

text

ENTITY REFERENCE ER entityRef name
DOCUMENT TYPE DTD docdecl text

space URIs. Names consist of pairs of a namespace and a local
name. Values denote attribute values and have a namespace, a
local name, and a value. Finally, text is simply text content. By
tokenizing complete names instead of each component separately,
Xebu achieves additional size reduction.

An approach to improve document size even further is to pre-
load the token mappings, which we call pre-tokenization and explic-
itly support in the Xebu serializer and parser. Our main use of this
feature is in a messaging connection where the messaging system
preserves the token mappings from one message to the next over
the lifetime of the connection. In such a case, only the first message
over a connection needs to contain the common names explicitly.

We chose to use only one byte for a token, since we believe
that the number of actually-common strings will be quite small
for each separate communication channel. Allowing more tokens
would have either wasted space (both in the messages to repre-
sent the values and in memory to store larger token mappings) or
complicated processing. For example, the code pages of WBXML
are usable for the very static case that it considers, but would be
extremely complex to implement for the more dynamic document
sets that Xebu considers.
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The second design decision was to include token values explic-
itly in the serialized form. This does waste space in comparison
with the approach of having them be selected implicitly. How-
ever, since the token space is limited in size, the implicit approach
would require the eviction policy of expired tokens to be specified
for interoperability. In our approach the serializer can select its to-
ken replacement policy freely, and can even vary it dynamically
without synchronization problems.

We have considered a number of different token replacement
policies in our work. The current implementation uses the Least
Recently Used (LRU) policy to determine which token to evict.
However, when considering the names in XML messages, we note
that some names are repeated in many messages while others are
very rarely present. Therefore, a technique like Adaptive Replace-
ment Cache (ARC) [Megiddo and Mocha, 2003] that provides two
classes of tokens, persistent and temporary, could be beneficial.

Another Xebu feature, also common in other binary XML for-
mats, is the binary encoding of known data types. This uses the
TYPED CONTENT event of Xebu, which denotes primitive typed
data as described in section 5.3. The content of a TYPED CONTENT

event consists of a generic Object value and a qname identifying
the data type in the manner of XML Schema.

The design of Xebu does not include tightly integrated type in-
formation in the serialized form, so the parser cannot, upon en-
countering a TYPED CONTENT event, determine the actual type
of the content. This is why the serialized form of a TYPED CON-
TENT event also includes its length in bytes (the flag bits are used
for this, so sufficiently short serialized forms are not penalized).
The Xebu parser then provides only an array of bytes to the higher
level, which is then responsible for providing the correct type to
the decoder. This is left completely to the application, so the de-
termination of type can be hard-coded or it can come from schema
knowledge or the presence of an xsi:type attribute [W3C, 2004f].

6.4 Schema Optimizations in Xebu

As noted above, a binary format for XML messaging should in-
clude optimizations in the case when a complete or partial schema
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for the messages is available. Both the pre-tokenization and data
type encoding described above can be seen as schema-based tech-
niques too, but they still function at the level of individual events
and cannot take advantage of the structure described by a schema.
Therefore Xebu also includes one technique that is based on ex-
ploiting the structure as well.

6.4.1 Schema Optimization Design

Our approach to schema-based optimization is similar to that of
BiM with its automata. We construct a Codec Omission Automaton
(COA) as a pair of automata, Encoding Omission Automaton (EOA)
for the serializer side and Decoding Omission Automaton (DOA) for
the parser side. Their input and output are both sequences of Xebu
events, in contrast with BiM where the output of the serializer side
and the input of the parser side are bit sequences.

By outputting event sequences instead of the final serialized
format we make our schema optimization more independent of
the underlying format. We note that it will not be completely inde-
pendent as the transformed event sequence may not obey the rules
that the XML definition places on the form of an event sequence
representing an XML document. A sufficient requirement for the
format is that the serialization of an event is contextless, i.e., a seri-
alized event can be correctly identified and read without knowing
any of the preceding or following events. Here reading an event
refers to extracting the bytes that comprise the event, not neces-
sarily a full understanding of it, which is not possible in isolation
with Xebu’s dynamic tokenization.

XML itself is not contextless as we have defined the term. One
reason is that recognizing an attribute as an attribute requires first
the processing of the attribute’s start tag, and therefore an attribute
cannot be distinguished from text content if its ELEMENT START

event is not present. Of the formats covered above, we believe
that at least XSBC satisfies the requirements for contextlessness.

The schema optimization we perform is simply the omission of
events from the input sequence of the EOA. Since we perform only
a transformation to another event sequence, there is little else to be
done. We do not see any other feasible actual improvements that
could be made while still producing event sequences.
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<a><b>...</b><c>...</c></a>

Events ES(a) ES(b) CO EE(b) ES(c) CO EE(c) EE(a)

After
omission ES(a) ES(b) CO SC EE(c) EE(a)

Figure 6.3: The need for the SEPARATE CONTENT event

The omission of events introduces issues that are not covered by
the model introduced in section 6.3, but will need to be handled
by the serialization. An issue that could break the system is the
coalescence of CONTENT events. The model allows an element’s
text content to be represented as multiple consecutive CONTENT

events to support efficient streaming. However, if events are omit-
ted so that two separate text contents become adjacent, as shown
in Figure 6.3 where the ET(b) and ST(c) are omitted, the parser
side will need to recognize where the content of b ends and the
content of c begins.

Our solution is to introduce the SEPARATE CONTENT event that
functions as a CONTENT event, except that its content explicitly
does not belong together with any preceding CONTENT event’s.
This is serialized with a separation flag in a Xebu CONTENT event.
In Figure 6.3 this is shown as the second CONTENT event becom-
ing a SEPARATE CONTENT event after the intervening events have
been omitted.

The TYPED CONTENT event provides a possibility for some fur-
ther size improvement. The event omission may in some cases
cause two TYPED CONTENT events to become consecutive, and in
cases where data structures are serialized as XML, this situation
might be quite common. Therefore we ensure that each kind of
primitive data is serialized in Xebu so that it is decodable without
length information, and serialize the consecutive TYPED CONTENT

events as a single TYPED CONTENT event at the Xebu level. This is
especially beneficial when serializing a sequence of small integers,
since then each integer takes only one byte instead of the two that
would be consumed if each integer were serialized as a separate
TYPED CONTENT event.

As our schema language we chose RELAX NG, mainly because
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it has, in addition to XML syntax, a standardized compact syn-
tax [OASIS, 2002b] more resembling traditional programming lan-
guages. This compact syntax is both easier for humans to handle
and more amenable to traditional parsing techniques.

Our language of choice for implementing the COA generator
was Standard ML [Milner et al., 1997], whose features are a good
match for implementing compilers [Appel, 1998]. As we were
not sure what subset of RELAX NG would be supported, a flex-
ible parsing system was necessary. The powerful structured data
manipulation capabilities of Standard ML made evolution of the
generator easy. To build our parser, we used the combinator tech-
nique [Fokker, 1995], which is well suited for implementing under-
standable easily extensible parsers for simple languages like the
RELAX NG compact syntax.

The parser implementation that we wrote to construct abstract
syntax trees for RELAX NG eventually ended up parsing the com-
plete RELAX NG compact syntax, as there were unexpected de-
pendencies and conveniences in parts that we originally thought
would be safe to discard. However, for automaton generation we
omitted two, perhaps central, features.

RELAX NG supports the interleave operator which takes a set
of sequences and allows these sequences to be interleaved with
each other. Each component sequence, however, must match as
some subsequence of the combined sequence. This operator is
responsible for much of the power of RELAX NG, but we did
not manage to find satisfactory semantics in our event omission
model that would allow concrete improvements for interleaved se-
quences. Our automaton construction therefore does not process
the interleave operator in any manner.

The other feature we left out were recursive definitions. Like
all schema languages, RELAX NG allows naming of schema rules
and referring to these named rules even within the same rule. Our
choice to use finite automata as such precluded the use of recur-
sion, though. In our most central use cases the messages are en-
codings of non-recursive data, so this omission was not as crucial
as it could be in a more general context. We have briefly consid-
ered adding a stack of states to the COA to allow the possibility of
recursing in the automata, but have not yet begun the design.
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6.4.2 Codec Omission Automaton

We next give a description of how the COA operates. Both the
EOA and the DOA are event-driven automata: their input is an
event sequence, and their transitions on these events have speci-
fications on what events to output. In both automata transitions
also have, in addition to an event, a type that determines (some of)
the processing to perform on that transition.

The event of a transition may be either a wildcard event or a con-
crete event. In the case of a concrete event, some of its components
may be wildcards. The set of matching transitions for an input event
is selected by collecting all the transitions whose event matches the
input event according to the following rules:

1. A COMMENT or a PROCESSING INSTRUCTION input event
does not match any event

2. A wildcard event matches any other input event

3. A non-wildcard event matches the input event if they have
equal non-wildcard components

After the set of matching transitions is collected, the most spe-
cific of these is selected. Basically, this means the transition whose
event has the fewest wildcards. If the set of matching transitions
is empty, the default transition is taken. This default transition does
not change the state that the automaton is in; we will cover below
what processing happens for each of EOA and DOA.

In the EOA transitions can be of two types, out and del. Of
these, the out transition specifies that the transition outputs the
event that triggered the transition. The del transition specifies that
no output is produced. In both cases the input event is consumed
from the sequence. The default transition is an out transition, i.e.,
it outputs the input event without changing state.

The DOA has two kinds of transitions: read and peek. How-
ever, these are not the main part of the transitions in the DOA. In
addition to the event and type, each transition in the DOA also has
two lists, the push and queue lists. These lists contain events that
were omitted by the EOA; the transition semantics provides for
their insertion into the DOA’s output sequence.
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When the DOA makes any transition, it begins by outputting
the transition’s push list. If the transition is a read transition, it
will then output the event that triggered the transition. And, in-
dependently of the type of the transition, it will then output the
transition’s queue list. The default transition is a read transition
with empty push and queue lists, i.e., the default transition pro-
duces exactly the input event in its output.

The semantics of the peek transition is otherwise the same as
that of the read transition except that the input event is not con-
sumed from the input sequence and the DOA does not output it.
This provides a way for the DOA to perform one-event lookahead.
The main uses of the peek transition in our implementation are for
wildcard names: the transition’s event will have a type, but no
name, so that it matches any event of that type. Our implemen-
tation is constructed so that the DOA never contains cycles con-
sisting only of peek transitions, which ensures that processing will
always terminate.

An example RELAX NG schema and its associated generated
COA are given in Figure 6.4. The schema (a) says that a person
element is a sequence of elements name, whose content is a string,
and age, whose content is an integer. The legend (b) provides some
abbreviations for the EOA in (c) and the DOA in (d).

From Figure 6.4 we can clearly see how an element with typed
content is converted to a COA. On the EOA side the ELEMENT

START and ELEMENT END events are omitted as is the ATTRIBUTE

event giving the type of the content. On the DOA side a peek tran-
sition first inserts the ATTRIBUTE event, and after this, a read tran-
sition on the TYPED CONTENT event inserts the rest of the element.

In the Figure the read transitions for the TYPED CONTENT event
have the omitted events in their queue list, since they get inserted
back after the read TYPED CONTENT event. In this case we do not
see the possibility of both push and queue lists being non-empty.
Such a situation could happen if the element content was just a
CONTENT event. In this case it would be sufficient to have a read
transition on the CONTENT event that had the ELEMENT START

event in its push list and the ELEMENT END event in its queue list.
An example of how the COA shown in Figure 6.4 works for a

document only partially conforming to the schema is given in Fig-
ure 6.5. Here the original document consists of an element contain-
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start = element person {
element name { xsd:string },
element age { xsd:int }

}
(a) Schema

p person
n name
a age
s type=xsd:string
i type=xsd:int

(b) Legend

0 1 2

345

del ES(p) del ES(n)

del AT(s)

del EE(n)

del ES(a)

del AT(i)

del EE(a)

del EE(p)

(c) EOA

6 7

89

peek TC[ES(p),ES(n),AT(s)]

read TC[EE(n)]

peek TC[ES(a),AT(i)]

read TC[EE(a),EE(p)]

(d) DOA

Figure 6.4: An example COA

ing three elements, two of them with typed content. The b element
is an added element that is not described in the schema, the other
names are as in Figure 6.4(b). Since the b element is not described
by the schema, its content also will not be typed, but just text.

The EOA in Figure 6.4(c) begins its processing in state 0, reading
the two ES events and the AT event, omitting them. In state 2 it
will make the default transition and output the TC event. After
that it transitions to state 3, omitting the EE(n) event. Now, since
the following events denote the b element, the EOA remains in
state 3, making default transitions and outputting the full element.
After that, it will then proceed as expected through states 4 and 5,
omitting the structure and outputting the TC event.

The DOA in Figure 6.4(d) begins in state 6. Since the first event
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<p><n t=’s’>A</n><b t=’d’>22</b><a t=’i’>37</a></p>

ES(p) ES(n) AT TC EE(n) ES(b) AT CO EE(b) ES(a) AT TC EE(a) EE(p)

⇓
EOA
⇓

TC ES(b) AT CO EE(b) TC

⇓
DOA
⇓

ES(p) ES(n) AT TC EE(n) ES(b) AT CO EE(b) ES(a) AT TC EE(a) EE(p)

Figure 6.5: Example of Xebu COA usage

it encounters is a TC event, it inserts the events that precede it, mov-
ing to state 7. From there, actually reading the TC event causes it to
move to state 8, producing also the EE(n) event. Then, since none
of the following events match what the transition is expecting, the
DOA remains in state 8, making default transitions and producing
only the events that are present in its input. Then, after the b ele-
ment has been completed, the DOA will again transition through
state 9 to state 6, producing the structure around the TC event.

6.4.3 Schema Optimization Implementation

Our RELAX NG parser constructs an abstract syntax tree from its
input schema. The implementation then performs some of the sim-
plifications specified by RELAX NG [OASIS, 2001]; as we are not
implementing a RELAX NG validator, we only implemented such
simplifications that were useful, including some that were our own
invention. These simplifications were easily implemented with
the catamorphism technique [Augusteijn, 1998] that transforms a
recursively-defined structure by recursing on it and applying a
node-specific function to the results on substructures.

After simplifying the RELAX NG abstract syntax tree, we gen-
erate the COA from it. This transformation recurses on the RE-
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element name { xsd:string }
element age { xsd:int }

element person { name, age }
element data { name | age }

Figure 6.6: Selecting whether to enter a subautomaton

LAX NG structure using again the catamorphism technique. We
implemented the catamorphism by specifying trivial processing
for every piece of RELAX NG syntax and then replacing these as
the implementation progressed. This made it easy to gradually de-
velop the system and to leave out the processing of the interleave
operator without affecting anything else. We call the intermediate
results of this process subautomata.

The main construct to process for the automaton generator is
the element construct. After all, elements are the most common
pieces of XML syntax, and the regularity of their placement offers
the most benefits for our event omission semantics. The processing
of the grouping constructs did prove interesting, as they necessi-
tated the addition of new semantics for the intermediate form of
the constructed COA.

In general, it is not possible to determine, when transforming
a language construct into a subautomaton, whether entry to that
subautomaton happens always or only sometimes. For example, if
an element is the second item in a group construct, it will always be
present, but if it is a part of a choice construct, it might not appear
in the processed document. Therefore the decision of whether to
omit an initial event cannot be made yet when processing the piece
of syntax that produces that event.

An example of this is illustrated in Figure 6.6. Here the sub-
automata for name and age are always used inside the person ele-
ment, but only one of them is used inside the data element. Thus,
in the former case it is possible to omit the ELEMENT START and
ELEMENT END events of both name and age elements, but in the
latter case it is not possible to omit the ELEMENT START events.

A subautomaton will need entry and exit points that are used
to attach it to the higher level constructs that get created. Because
of the issue described above, we implemented two entry and exit
points for each subautomaton, the known and unknown points. The



6.4 Schema Optimizations in Xebu 133

element pair { seq, seq }
seq = element seq { element item { xsd:int }* }

Figure 6.7: A problematic use of the star construct

known points will be used when it is known that the subautoma-
ton itself will be used; otherwise the unknown points are used.

The entry and exit points in the EOA are states whereas in the
DOA they are transitions. Use of states was simpler, but the more
complex process of DOA construction could not be implemented
with states. Recently, we have also implemented the EOA con-
struction using transitions as the entry and exit points [Kangas-
harju and Koskimies, 2008]. This did prove more complex, neces-
sitating the inclusion of peek transitions to the EOA as well.

Using states as entry and exit points introduced the problem
of chaining the subautomata. To solve this, we define, at build
time, equivalences between states, e.g., when two subautomata
are grouped consecutively, we mark the first one’s exit point as
equivalent with the second one’s entry point. After the complete
automaton is constructed we collapse each set of equivalent states
into a single state. We also reduce the constructed automata to
the start state’s strongly connected component, i.e., to those states
which are mutually reachable from the start state.

Repetition constructs also have some interesting points. An ex-
ample is provided in Figure 6.7, which shows two consecutive el-
ements both containing a sequence of indeterminate length com-
posed of the same elements. In this case it is known that these
subautomata will be used, so naïve processing would omit all EL-
EMENT START and ELEMENT END events, thus destroying the in-
formation of where the boundary between the sequences was.

For this reason, we added the concept of open subautomata.
An open subautomaton is one whose length is determinable only
by the presence of an ELEMENT END event in its containing ele-
ment, and not by anything internal. For the repetition constructs
we build such an open subautomaton, and the builder of the el-
ement subautomaton will always construct the known exit point
identically to the unknown exit point (note that the beginning is
not indeterminable, so the known entry point can still be different
from the unknown entry point).
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This concept could also be used to provide additional schema
evolvability. Marking a subautomaton as an open one would al-
low the addition of new content at the end of the corresponding
element’s content, since the default transitions would let all con-
tent through until the ELEMENT END event. While there is no di-
rect support for such specification in our current implementation,
its addition would only require local modification to recognize it
and no modification of other processing.

Finally, we need to have special processing of optional compo-
nents in a group construct on the DOA side. Normally, a group
construct will chain its subautomata, connecting each exit point to
the next subautomaton’s entry point. However, in the presence of
optional components, a connection also needs to be made to the
subautomaton following the optional component. To handle this
case, we mark the subautomata of optional components specially
in DOA construction and handle them when constructing a sub-
automaton from the group construct. On the EOA side there is
no need for this, as we just mark the entry and exit points of the
optional component to be equivalent.

6.4.4 Automaton Build Rules for RELAX NG Constructs

Above we have covered on a general level the building of the COA
from a RELAX NG schema. To provide some concreteness to our
description, we next go over some of the RELAX NG constructs
and show how they are converted into a COA. In these examples
an M (possibly with a subscript) denotes either a part of a schema
or a subautomaton constructed from that schema.

The automata we present will also show whether their known
or unknown entry and exit points are used. These are indicated
with a k or a u, respectively. We adopt the convention that entry
points are always at the left and exit points at the right. Further-
more, we also mark the exit point of an open subautomaton with
an o and that of an optional construct on the DOA side with a q.
These markings appear only when introduced in the construction.

We begin by showing the element case in Figure 6.8. In all Fig-
ures, we shorten event names, transition types, etc., to single let-
ters whose meaning should be clear from the context. We show
the normal case and the case where the subautomaton is an open
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Schema EOA DOA

element x
{ M }

Mk k

Mk o

kd Ex

ko Ex

k d Sx

u o Sx uo Ex

k d Sx

u o Sx uo Ex

Mk k

Mk o

k
q Ex

• k
r Ex

k p Sx

• •u
r Sx

u
r Ex

k p Sx

• •u
r Sx

u
r Ex

Figure 6.8: Subautomaton construction for element

Schema EOA DOA

M1, M2?, M3

M1
k
u k

M2k k

M3k k
u

M1
k
u k

M2u q

M3k k
u

p *
•

•

Figure 6.9: Subautomaton construction for group

one. Note that in the case of an open subautomaton the known
exit point is constructed in the same way as the unknown one.

Most of the constructs in RELAX NG only take subschemas
as arguments, so they will not produce events in the transitions.
Apart from the element construct, only the attribute and data
constructs produce events for transitions; the others may trans-
form existing transitions, but will not produce new ones.

The next case we cover is group in Figure 6.9. On the EOA we
have marked a double line to indicate that one subautomaton’s
exit point is marked equivalent to the next subautomaton’s entry
point. These equivalent states will then be collapsed to a single
one at the end. The constructed automaton will have its known
and unknown entry points be the same as the first subautomaton’s,
and analogously with the exit points and the last subautomaton.

On the DOA side we see that the M2 subautomaton is marked
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Schema EOA DOA

M1|M2|M3

M1u u

M2u o

M3u u

ok
u

M1u u

M2u o

M3u u

• •k
u o

Figure 6.10: Subautomaton construction for choice

optional. This is not shown in the EOA construction, but the result
is that in the EOA M2’s entry and exit points get marked equiva-
lent, and thus collapsed at the end of automaton construction.

As we see from the DOA construction, the grouping here cre-
ates two additional states. Using the unknown entry point for M2

ensures that it will be recognized if it is present. The peek tran-
sition between the two new states will be taken if M2 is not en-
tered, so the processing can continue with M3. Note that since the
most specific transition is always selected, the peek transition can
be made only if M2 is not entered.

In full, the DOA-side processing of the group construct is very
complex. In our implementation it takes nearly 100 lines of code
whereas the next largest, element processing for either the EOA or
the DOA, only takes 30 lines. Our example can only capture a part
of this complexity, since it is the result of needing to handle several
different cases depending on the types of the subautomata.

The final interesting subautomaton construction is the choice
construct in Figure 6.10. On the EOA side we need to select the
unknown entry and exit points for each subautomaton, as we can-
not know which option in the choice is taken by the document.
As can be seen, the entry and exit points of the subautomata are
collapsed. Furthermore, both known and unknown points of the
constructed automaton are the same, and the constructed automa-
ton is an open one if even one of the alternatives in the choice is.

The DOA is very similar to the EOA, except that since its entry
and exit points are transitions instead of states, the construction
will create a new state to scatter the entry points and to gather the
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exit points. Again, as in the EOA, the entry point selects all the
unknown entry points, and the exit point selects the unknown exit
points, and is open if even one of the subautomata is.

6.5 Summary

The design of Xebu always followed the requirement to run well
on mobile devices. Among well-known formats with published
specifications, Xebu would appear to be the only one possessing
all of the following features:

• small-footprint implementation,

• efficient in both time and memory usage,

• ability to process any XML, and

• ability to use schema information to different extents.

The EXI format may turn out to have these properties as well, but
it is too early to tell whether this is the case.

The main feature that distinguishes the basic Xebu format from
other formats is its bounded memory usage, accomplished using a
bounded space of possible tokens. The presence of the token val-
ues permits less coupling between serializer and parser, but also
leads to larger document sizes. This could be mitigated for small
documents by not including the token value until the token space
has been completely used.

The schema usage in Xebu is also a novel approach, as most
schema optimizations require perfect adherence to the schema. Its
utility is somewhat lessened, though, since we have no precise
knowledge of the permitted deviations. Furthermore, the COA
has some limitations that make it less usable on some real-world
schemas, namely ones with mixed content or recursive elements.

Despite the potential future prominence of the EXI format, we
still believe that Xebu is not completely obsoleted by it. The main
benefit of Xebu is an available implementation with well-under-
stood properties under a F/OSS license. It may take some time be-
fore a suitably efficient and small EXI implementation for mobile
devices materializes, and at least until that happens, we consider
Xebu to be a usable alternative.
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Part IV

Measurements and
Analysis
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CHAPTER 7

Messaging System
Measurements

You know nothing, Jon
Snow.

We performed several experiments on the messaging system. First,
we measured the actual messaging performance under a variety of
parameters. Second, we measured the performance of our security
implementation separately, as adding security features to the main
measurements would have obscured the actual messaging perfor-
mance. Third, we measured the performance of the Xebu format
on its own, as we consider that to be the most likely component to
be adopted on its own. Finally, we measured the overhead of the
AMME protocol and its RTT measurement accuracy.

We use two principal methods for reporting the results. When
there is sufficiently little data to present, only two or three param-
eters that vary, results are shown with bar charts or graphs. When
applicable, error bars are marked at two standard deviations, rep-
resenting the 95 % confidence interval. In other cases, where there
is more data to present, or when the presented results inherently
require more than two dimensions to present conveniently, tables
are used. In these tables we simply present the computed aver-
ages for each measurement, which are in some cases fully accurate
(e.g., when measuring sizes), but in some cases may have minor
variance.
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7.1 Component Sizes

As application footprint is important on mobile devices, we began
by measuring the sizes of the compiled class files. Our deployment
process for the system followed the standard steps [Knudsen and
Li, 2005]:

1. Compilation: Compiling the source code into Java bytecode
with a Java compiler using the MIDP class libraries,

2. Preverification: Performing some of the security checks re-
quired by Java in the compilation environment and adding
information on these into the class files, to reduce the check-
ing the device has to do at run time, and

3. Obfuscation: Removing unused classes, methods, and fields,
and shortening class, method, and field names to one or two
letters to reduce code size.

We used the Java tools from Sun Microsystems (JDK 6 and Wireless
Toolkit 2.2) for compilation and preverification, and Proguard1 for
obfuscation.

The full breakdown of the sizes of all the components is shown
in Table 7.1, grouped with related components together. In the
XML group, the XAS-base consists of only the basic XAS described
in section 5.1 while XAS-ext includes all of XAS. The Xebu compo-
nent includes, in addition to the actual parser and serializer, also
the code to integrate Xebu into XAS such as the typed data codecs.

The Messaging group is the main system and protocol. MTS-
base is the user-visible part described in section 4.2, AMME is the
full protocol part, and WSS is our Web Services Security imple-
mentation. As most of the functionality needed for WSS is pro-
vided by the XML security implementation in the XAS-ext compo-
nent, the specific WSS component is quite small.

In the AMME Transfer layer mappings, the Stream component
is common to the BT and TCP mappings, while the HTTP map-
ping is independent of these. This group is included in the AMME
component of the Messaging group as well; the rest of the code in
that component is the Mobility layer.

1http://proguard.sourceforge.net/

http://proguard.sourceforge.net/
http://proguard.sourceforge.net/
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Table 7.1: Sizes of messaging system components

XML
Name Size (B)

XAS-base 48566
XAS-ext 106370
Xebu 30771

Messaging
Name Size (B)

MTS-base 17138
AMME 50164
WSS 5887

AMME Transfer
Name Size (B)

Stream 8940
TCP 3581
BT 11083
HTTP 13263

External
Name Size (B)

kXML 23714
BC 111022
JZlib 68147

Totals
Name Size (B)

Total 506148
JAR 447728
JAR obf. 302761

We use some external components in the system as well. Regu-
lar XML parsing and serialization is handled by kXML2, low-level
security functionality by Bouncy Castle (BC)3, and gzip compres-
sion and decompression by JZlib4. These are the libraries usually
used for these purposes on mobile devices, but we note that the
sizes of Bouncy Castle and JZlib are quite large.

Finally, the total sizes include the total combined size of all the
class files, and the size of the JAR file. Since the JAR file is a com-
pressed archive, its size is naturally smaller than the total size of
all the classes. We show the JAR size both partially obfuscated
and fully obfuscated; the difference is that in the former the names
of classes, methods, and fields were not altered, but all unused
classes, methods, and fields were still removed.

7.2 Platforms

In our experimentation, we used a variety of real devices and net-
works, with the main purpose being to get an impression of the

2http://kxml.sourceforge.net
3http://www.bouncycastle.org/
4http://www.jcraft.com/jzlib/

http://kxml.sourceforge.net
http://www.bouncycastle.org/
http://www.jcraft.com/jzlib/
http://kxml.sourceforge.net
http://www.bouncycastle.org/
http://www.jcraft.com/jzlib/
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Table 7.2: The devices used in the experiments

Name Roles CPU Description

E61 Client 219 MHz ARM9 A Nokia E61
smartphone

9500 Client,
Server

163 MHz ARM9 A Nokia 9500
Communicator

brattain Server AMD Athlon XP 1700+ A desktop com-
puter

factors that affect a messaging system. We used both very recent
technology to provide an anchor point for the current performance
as well as slightly older technology so that it might be possible to
extrapolate some trends towards the future.

7.2.1 Devices and Networks

The devices we used in our experiments are shown in Table 7.2.
Both the E61 and the 9500 are “business” phones, the 9500 being
from the year 2004 and the E61 from the year 2006. Both support
MIDP 2.0 and CLDC 1.1, which are required for our current im-
plementation. The 9500 also supports the more capable FP, but as
our target platform is the more prevalent MIDP, our measurement
applications were also written for that profile.

The server machine brattain was an oldish desktop computer,
appropriated as a test server after reaching its end of life as a desk-
top system. We did measure processing time spent on that ma-
chine, but noted it to be negligible compared to the communication
time and processing time on the phone, so it will not be considered.
Neither will we show processing times on the 9500 server, as the
application using it is symmetric, so the processing times should
be equal on both sides of the connection.

The network technologies supported by the devices we used
are shown in Table 7.3. Except for UMTS on the Nokia 9500, all
of these are supported on both phones. Two of the networks are
ad-hoc technologies, so the server is also a phone, and three are
Internet connectivity technologies, for which we use brattain as
the server.
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Table 7.3: Networks used in the experiments

Name Clients Server Description

BT 9500, E61 9500 Bluetooth
Ad-hoc 9500, E61 9500 An ad-hoc WLAN
Infra 9500, E61 brattain An infrastructure WLAN con-

nection to the Internet
GPRS 9500, E61 brattain A regular consumer-provided

GPRS connection
UMTS E61 brattain A regular consumer-provided

UMTS connection

Table 7.4: Names for network-protocol combinations

Name Net Proto

BT BT BT
iT Infra TCP
gT GPRS TCP
uT UMTS TCP

Name Net Proto

aT Ad-hoc TCP
iH Infra HTTP
gH GPRS HTTP
uH UMTS HTTP

Considering the available networking technologies, the proto-
cols supported on each network, and the protocols supported on
each server device, we arrive at the eight different combinations
of network and protocol shown in Table 7.4. This Table also gives
short names for each combination that are used when showing the
results later.

7.2.2 Timing Measurements with Java

The Java compilation model is not the standard one where Java
source code is translated directly into machine-executable code.
Rather, the Java compiler translates source code into Java bytecode,
which is then executed by the JVM [Lindholm and Yellin, 1999].
A modern JVM will not simply interpret the bytecode as such,
but will apply just-in-time (JIT) compilation techniques to compile
the executed bytecode at run time into native machine code. This
makes timing measurements more difficult, as the executed code
changes while the measurement is in progress.
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Figure 7.1: The plateau effect in JIT compilation

The standard method to remove the effect of JIT compilation
in Java-based measurements is to start with a warmup loop that
runs the measurement loop without gathering any measurements.
After the loop has run sufficiently long, the actual measurement
can start. Typically, the length of the warmup loop is determined
experimentally, by increasing its length until the actual measure-
ment stabilizes. A more advanced, though also more rarely used,
method would be for the measurement framework itself deter-
mine when the measurement has stabilized. The risk with the lat-
ter technique is that the measurement may have a lengthy plateau
where it does not change, but after an even longer time, the JVM
performs even more optimization on the code, changing the mea-
surement value again, as illustrated in Figure 7.1. We did not ob-
serve this plateau effect in our measurements.

7.2.3 Benchmarks

The characteristics of the devices and networks we used are avail-
able information, and have been covered above for the specific
devices and in section 3.1 for the networks and on a more gen-
eral level for the devices. However, to properly explain results
of measurements, it is beneficial to understand how the devices
and networks that were used actually behave. To this end, we
implemented some simple benchmarks that we ran in the exact
same conditions as the actual experiments. The full code of all the
benchmarks can be found in Appendix A.

In addition to the devices shown in Table 7.2, we also ran the
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Table 7.5: Additional devices used in the experiments

Name CPU Description

7610 123 MHz ARM9 A Nokia 7610 smartphone
6630 220 MHz ARM9 A Nokia 6630 smartphone

benchmarks using the two devices shown in Table 7.5. These de-
vices are older or less capable than the others (both are from the
year 2004), so running the benchmarks on them as well provides
useful data for extrapolating the performance of future devices.

Our first benchmark, Knuth, was intended to measure the CPU
speed and give some indication of the JIT compilation abilities of
the JVM. For this, we used the random number generation algo-
rithm recommended by Knuth [1997b]. In theory, such an algo-
rithm might also be affected by memory speed, but the amount of
data used here should be small enough to fit in the CPU cache.

The measurement in the Knuth benchmark was filling a 1000-
element array with random numbers. Each timing loop performed
this operation 300 times, which we determined to be appropriate
to get large enough numbers that the clock granularity does not
pose an issue but small enough that the first run is not significantly
run with JIT-compiled code. We did not use a warmup loop, but
rather measured all replications to note the JIT effect. The stable
performance is computed by starting from the first measurement
that is not larger than all of its subsequent measurements.

The results of the Knuth benchmark are shown in Figure 7.2,
showing the time for the initial run for each device and the aver-
age time for the stable part. Interestingly, the initial run is slightly
faster on the 7610 than on the 6630 and E61, even though the latter
two have much faster CPUs. Apparently also the 9500 has started
JIT compilation already on the initial run, as it is clearly faster on
that but slower than the 6630 or E61 on the stable run. Overall, the
stable results appear to be in line with the CPU speeds as shown
in Table 7.2 and Table 7.5.

The second benchmark we performed, Virtual, was intended to
determine the method call overhead of the JVM with two param-
eters, the length of the method name and invocation through an
interface. The length of the method name would not seem to affect
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Figure 7.2: Results for the Knuth benchmark

real applications on mobile phones, as the obfuscator will shorten
the names to one or two characters. However, the standard Java
libraries still contain long method names, so obfuscation does not
eliminate this problem completely.

In this benchmark, the method name takes on values having
lengths of 1 (Short), 14 (Long), and 24 (Longest) characters. These
methods belong to an interface with two implementations. There
are three different styles of invocation: Same always invokes on
the same object, Flip invokes on the two objects in a round-robin
fashion, and Rand invokes on a randomly-chosen one of the pair.
All methods use the random number generator above to generate
100 random numbers. The measurement loop is 1000 rounds and
the loop is replicated 50 times. These values were chosen experi-
mentally to provide a sufficiently long time to mitigate the effect
of potentially-coarse timing granularity.

The complete results of the Virtual benchmark are shown in Ta-
ble 7.6, given for each device separately. Each cell in the Table con-
tains two numbers; the top one is the initial run and the bottom
one is the stable run.

There does not appear to be much difference in the JVMs on the
two phones 6630 and E61 that have a similar-speed CPU, as the
times are mostly very close to each other. Again, it is probable that
the 9500 begins its JIT compilation already on the initial run, since
it improves clearly less for the stable run than the 7610.

The effect of long method names is very pronounced, so it ap-
pears clear that obfuscation truly is a big win, not just in terms
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Table 7.6: Results for the Virtual benchmark

7610 Same Flip Rand

Short
438
328

453
385

610
487

Long
453
391

609
466

625
522

Longest
547
484

609
552

750
640

9500 Same Flip Rand

Short
344
297

469
359

515
451

Long
453
406

500
431

516
480

Longest
562
444

500
479

657
600

6630 Same Flip Rand

Short
235
188

266
219

297
273

Long
266
230

328
274

359
321

Longest
312
273

343
305

406
369

e61 Same Flip Rand

Short
219
182

249
215

295
264

Long
236
217

294
262

338
307

Longest
282
264

342
309

396
368

of JAR file size but also in method call time. Also, it would ap-
pear that the JIT compilation on all phones is capable of recogniz-
ing when an interface has only one implementation. However, it
must be kept in mind that the Flip style has an additional vari-
able access, AND operation, and branch, and the Rand style has a
variable access, a memory access, and branch, though the memory
access is likely a cache hit. But each time has only 1000 of these ad-
ditional operations, so it would appear that the pattern of selecting
the implementing class does have an effect, indicating also that if
there is only one implementation of an interface, invoking through
the interface may be sufficiently efficient.

The final benchmark, Net, was intended to measure the laten-
cies and data rates of the networks that we used. The first part
of this benchmark repeatedly sent one byte to the server and read
the server’s one byte response, measuring the time this took. In
the second part, the client sent one byte to the server, which in
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Figure 7.3: Latency results for the networks and devices

gH gT BT aT iH iT uH uT

0

200

400

600

800

1000

1200

7610
9500
e61

Legend

D
at

a
ra

te
(k

bp
s)

Figure 7.4: Data rate results for the networks and devices

response sent 2 MiB of random data to the client, and the client
measured the total time taken by this process. In this case, we did
not experiment with the 6630, since the two other benchmarks in-
dicate its JVM performance does not differ markedly from the E61,
and it supports a subset of the networks supported by the E61.

Figure 7.3 shows the latency values measured for each network
on each device, and Figure 7.4 shows the data rates. Some of the
measurements are missing due to problems with the Bluetooth im-
plementation on the phones, which we will explain in section 7.8.
In particular, the large Bluetooth latency is due to a workaround
that must be implemented for long-term communication.

Looking at the latency figures, we see roughly what we would
expect based on the measurements of others. One surprise is the
GPRS latency of the E61, which is nearly one half of that measured
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for the other two phones. UMTS latency is slightly lower than
GPRS latency, but still in the 100 ms order of magnitude. HTTP
latency is much worse than TCP, not only due to the additional
network round trip but probably also due to the additional data
that gets sent in the HTTP headers. The high variance of the 9500
with iT is caused by the coarse granularity of the 9500’s internal
clock: the clock ticks only once every 15 or 16 ms, so small and
varying latency values will not be measured accurately.

For the data rate we clearly do not reach the theoretical rates
listed in subsection 3.1.2. WLAN gave only 1 Mbps, and monitor-
ing the data transfer during the experiment, we note that this is
due to packet loss on the wireless link, causing the phone’s TCP
implementation to begin slow start again. Both the 9500 and E61
support EDGE whereas the 7610 does not, which is why its GPRS
data rate is in the neighborhood of 30 kbps, while the other two
phones approach 200 kbps.

7.3 Experiment Design

We ran four different experiments, described in Table 7.7. The
Messaging experiment was our main experimentation tool, and in
it we varied all possible parameters to determine precisely the fac-
tors that affect the system. The Security experiment exercised the
XML security implementation described in section 5.4. We sepa-
rated this into its own experiment because the messaging system
does not yet support security in its API but also, and more impor-
tantly, security processing is mostly orthogonal to the other factors
and its processing requirements dwarf every other factor. Finally,
we measured the key properties of Xebu and AMME on their own.

The Messaging experiment exercised each of the three Transfer
layer mappings that we implemented, each over every one of its
supported networks, i.e., all eight network–protocol combinations
shown in Table 7.4. This variety in one experiment, we believe,
gives sufficient information to compare between different proto-
cols, so in the security experiment we use the normal request-re-
sponse interaction of HTTP over the UMTS network.

The Messaging experiment used both regular XML and Xebu as
its message formats. In addition, we used both the plain formats
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Table 7.7: List of experiments

Experiment Description

Messaging A simple request-response messaging applica-
tion

Security A request-response interaction with secured
messages

Xebu An experiment measuring Xebu document
size and processing efficiency

AMME Measurement of AMME header size and RTT
calculation accuracy

Table 7.8: Formats used in the Messaging experiment

Name Description

XML Regular XML
XMLZ Regular XML compressed with DEFLATE
Xebu Basic Xebu
Xebuz Basic Xebu compressed with DEFLATE

as well as generic compression in the protocol layer. This comes
up to a total of four different formats, named in Table 7.8.

Of the formats shown in Table 7.8, XML and XMLZ are formats
that are widely supported in current systems. We contended in
subsection 5.4.3 that these formats are not sufficient in the pres-
ence of encrypted content, but an additional way to indicate com-
pressed content in encrypted XML data is required. Therefore
in the Security experiment we also use two additional formats,
shown in Table 7.9, that compress data also prior to encryption.
This is in contrast to the XMLZ and Xebuz formats, which only
compress the whole message after encryption is performed.

Finally, we have some additional parameters that we also vary.
Each of the parameters shown in Table 7.10 is used in the Mes-
saging experiment. We expect the invocation style to make a large
difference in the results. In the Xebu experiment we only vary mes-
sage size of these parameters, as we do not believe the networking
to make a difference there due to the messaging system having
to store the messages for potential retransmission. The possible
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Table 7.9: Additional formats used in the Security experiment

Name Description

XMLZZ Regular XML compressed with DEFLATE, including
encrypted parts

Xebuzz Basic Xebu compressed with DEFLATE, including
encrypted parts

Table 7.10: Other variables in the messaging experiment

Variable Description

Message size 1 or 10 card elements
Number of messages 2 or 20
Invocation style Synchronous or asynchronous

values for the two numeric parameters were selected to provide a
reasonable spread but still be realistic.

The messages in the experiments contain card elements, signi-
fying credit card information that is being transmitted, i.e., a name,
number, and expiration date. A message contains a single data el-
ement that contains the number of card elements denoted by the
size parameter. The full schema of the messages in the Messaging
and Xebu experiments is given in Appendix A.4. The Security ex-
periment uses a slightly different format, described in section 7.5.

7.4 Messaging Results

The Messaging experiment used a full factorial design [Jain, 1991]
of the components enumerated above. The factors are summarized
in Table 7.11. Here the two UMTS protocols uT and uH are not
available on the 9500, but otherwise all parameter combinations
were used. Format and Gzip were made separate factors in the
analysis. And as the set of available protocols is dependent on the
network, the network and protocol are joined into a single factor,
called Net, using the short names from Table 7.4.
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Table 7.11: All experimental factors and their possible values

Device Net Format Gzip Size Number Style

E61 BT XML No 1 2 Synch
9500 aT Xebu Yes 10 20 Asynch

iT
iH
gT
gH
uT
uH

Table 7.12: The main factors in the Messaging experiment

Factor Percentage

Number 36.6 %
Style 14.2 %
Style+Number 11.5 %
Net 9.5 %
Net+Number 5.8 %

7.4.1 Analysis of Variation

As can be expected, an analysis of the complete Messaging ex-
periment results, while interesting, is not particularly illuminat-
ing due to the large amount of data and its variability. However,
it serves as a useful starting point to determine the factors that
should be used to divide the analysis. Therefore we show the fac-
tors whose contribution to the total variation is more than 5 % (as
recommended by Jain [1991]) in Table 7.12. In this analysis, errors
contribute an effect of approximately 1 %.

The results are not very surprising. It is quite natural that the
number of messages has a large effect on the total messaging time,
and the large effects of messaging style and network used would
be expected, especially when considering the variety in the net-
works used. Of the factors not shown, neither the message format
nor compression usage contributes anything above the level of er-
rors. The effect of the device is larger, though not quite 5 %.
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Table 7.13: The main factors for fixed number of messages

2 messages
Factor Percentage

Device 36.6 %
Net 28.2 %
Device+Net 8.6 %
Style 7.1 %

20 messages
Factor Percentage

Style 40.9 %
Net 24.0 %
Net+Style 13.5 %
Device+Net 5.4 %

The experimental design itself was intended to cover a large
amount of ground. Accordingly, many of the factors have values
that might not all be relevant to a single use case. This is why it
is educational to fix the value for some such factor and to analyze
the remaining data while keeping this factor fixed. Then the fur-
ther results are applicable to a certain subset of messaging appli-
cations, but potentially there is little overlap between applications
with different values for the fixed factor.

As the Number factor is the one with the largest effect, we split
all later analysis on that into two branches, one with 2 messages
and the other with 20 messages. Table 7.13 shows, again, the fac-
tors having an effect of over 5 % in each of these cases individually.

As could be expected, invocation style does not become the ma-
jor effect until the number of messages increases. However, it is
still present in the Table even in the 2-message case, indicating that
even for infrequent messaging there may be a benefit from asyn-
chronicity. The device plays quite a major role in the 2-message
case, but especially looking at the latencies in Figure 7.3 we note
that there is a large benefit over many networks in favor of the
E61. And as we did not yet eliminate the network factor, it begins
to feature more prominently on the lists. Errors are starting to have
a larger effect, contributing 3 % to the 2-message case.

Next we eliminate the largest factor shown in Table 7.13 for both
of the cases, i.e., we fix the device for the 2-message case and the
style for the 20-message case. The first of these, the effects in the
2-message case for the 9500 and the E61 individually, is shown in
Table 7.14, and the second, the 20-message case for synchronous
and asynchronous style, in Table 7.15.

In the 2-message case, the network has the largest effect for both
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Table 7.14: The main factors for fixed device with 2 messages

E61
Factor Percentage

Net 42.5 %
Style 22.5 %
Size 8.6 %
Error 5.1 %

9500
Factor Percentage

Net 63.1 %
Style 8.6 %
Net+Style 7.7 %
Gzip 7.3 %
Error 5.2 %

Table 7.15: The main factors for fixed style with 20 messages

Synchronous
Factor Percentage

Net 66.3 %
Device+Net 14.7 %
Size 5.0 %

Asynchronous
Factor Percentage

Net 20.9 %
Size 18.7 %
Device 14.4 %
Error 7.3 %
Net+Gzip 7.1 %
Device+Net 7.0 %
Format 6.6 %

devices. Due to the worse network performance on some of the
networks on the 9500, it has a larger effect there, whereas on the
E61 with better network performance the invocation style features
prominently. Interestingly, with two major factors held constant,
message size is beginning to have a larger effect. On the E61 it
is the abstract size of the message, represented by the number of
elements, whereas on the 9500 the concrete size matters more, sig-
nified by added compression having a large effect.

As with the 2-message case, the 20-message case also shows the
network’s prominence. As with synchronous invocations the la-
tency of the network is crucial, and since the latencies in the exper-
iment networks have large differences, the network has a major
effect in that case. In the asynchronous case where latency matters
less and the data rate is not a problem with these message sizes,
the network does not have quite that large an effect.

In the asynchronous case, message size is starting to matter
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Table 7.16: The main factors for each net with 2 messages

Net Factors

BT Size (55.8 %), Device (15.9 %), Gzip (10.7 %),
Format (7.1 %)

aT Device (29.1 %), Gzip (20.5 %), Size (16.1 %),
Device+Gzip (15.8 %)

iT Device (52.9 %), Device+Gzip (21.0 %),
Gzip (7.2 %), Size (6.2 %)

iH Device (84.1 %), Error (8.7 %)
gT Device (55.1 %), Style (19.3 %), Size (8.5 %),

Error (5.9 %)
gH Device (67.7 %), Style (19.9 %)
uT Style (42.7 %), Gzip (19.2 %), Error (14.5 %),

Size (10.4 %), Gzip+Style (5.0 %)
uH Style (65.1 %), Size (9.7 %), Error (6.0 %),

Gzip+Style (5.1 %)

quite a bit, with Size, Gzip, and even Format having an effect of
more than 5 %, and there is no clear major individual effect. The
effect of errors is starting to mount, but not in the synchronous
case. We also note that the device has an effect in both cases, but
it has a much larger effect in the asynchronous case, potentially
caused by the prominence of the message size.

As the network had the largest effect in all four cases where two
factors were held constant, we next investigate the effects when the
network is fixed. We keep the division into the 2- and 20-message
cases, but that is the only other thing we keep fixed. As the number
of networks is so large, we change the presentation format slightly
in Table 7.16 and Table 7.17 that report the effects when the number
of messages and the network are kept fixed.

There are some things to keep in mind when looking at these
Tables, namely that not all possible measurements were made. As
UMTS is not supported on the 9500 but only on the E61, the De-
vice factor cannot have an effect in either of the UMTS networks.
Also, due to problems with the Bluetooth implementation, it was
not possible to use the asynchronous style over Bluetooth, so invo-
cation style cannot appear as a factor in the Bluetooth case.
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Table 7.17: The main factors for each net with 20 messages

Net Factors

BT Size (56.1 %), Gzip (14.5 %), Format (12.8 %),
Format+Size (8.1 %), Gzip+Size (6.3 %)

aT Style (36.3 %), Size (23.2 %), De-
vice+Style (8.8 %), Gzip (7.7 %)

iT Style (38.1 %), Device (14.8 %), De-
vice+Style (10.8 %), Size (10.2 %), Er-
ror (8.7 %), Device+Gzip (8.1 %)

iH Style (51.0 %), Device (27.6 %), Error (7.3 %)
gT Style (81.2 %), Size (7.3 %)
gH Style (77.4 %), Device (14.3 %)
uT Style (79.2 %), Gzip (6.4 %)
uH Style (88.1 %)

We can see that with the smaller number of messages in Ta-
ble 7.16, the device has the largest effect, except over Bluetooth.
However, on the better-performing networks, WLAN and to some
extent even UMTS, message size is becoming prominent through
the Size and Gzip factors. Invocation style is important for high-
latency networks but has little effect on low-latency WLAN.

For the larger number of messages in Table 7.17, invocation
style is the overriding concern on the mobile phone networks, ex-
plaining nearly all variation there. It also features prominently on
WLAN, as the number of messages becomes so large that the syn-
chronous style suffers from many additional round trips over the
network. Size-related factors make a clear appearance on the lists,
though not with HTTP.

One consideration that did not make a very visible appearance
was the message format. It would appear that, with all the other
factors present, it eventually matters very little whether the mes-
sages are serialized as XML or Xebu. However, this applies only to
the time spent for messaging and not to, say, energy consumption.
While the precise amount of data sent does not matter to the exe-
cution time, it has a large effect on the battery life, so these results
are not indicative that a binary format is a useless idea.
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7.4.2 Graphical Presentation

Due to the large number of different factors, it is not feasible to
draw graphs explaining everything that happens. Because of this,
we will here limit our consideration to only the E61 device and the
10-element message size. As the E61 is a newer model, its perfor-
mance is more indicative of the current and near-future state of the
art. As will be shown in section 7.6, the size differences of the mes-
sages do not yet appear in the 1-element case, so that is why we
selected the 10-element case for that. We also note that the 2-mes-
sage case is not very interesting, so we limit consideration to the
20-message case.

With these limitations it suffices to display one graph in Fig-
ure 7.5 that shows both invocation styles on all networks and con-
siders all message formats. Note again that asynchronous results
for Bluetooth are not available, and the Xebu bar for synchronous
Bluetooth is also missing due to similar reasons.

As would be expected based on the analysis of variation, the
times in the synchronous case are all clearly larger than those in
the asynchronous case. Furthermore, the improvement in perfor-
mance when moving to asynchronous style is clearly larger for the
higher-latency mobile phone networks. There is still a minor ad-
vantage for WLAN even in the asynchronous case, though.

An interesting point to note, which is not evident in the analysis
of variation due to the presence of so many other effects, is that the
combination of format and gzip does have a clear effect on most of
the individual networks. However, this effect is not unambiguous
across all measurements. In the synchronous case, message size re-
duction helps, and gzip performs better than either of the formats,
most probably due to the need for fewer TCP segments. On the
other hand, in the asynchronous case, the network is constantly
busy, so the added CPU time of compression and decompression
acts to increase the total processing time, especially over WLAN.

We also note that the ad-hoc technologies, WLAN and Blue-
tooth, perform markedly worse than infrastructure-based WLAN.
When considering the capabilities of the server, this appears self-
evident. After all, in the Ad-hoc and Bluetooth cases the server
is a 9500 that has to perform essentially the same actions as are
performed by the client, doubling the total CPU time.
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Figure 7.5: Messaging results by style, network, and format
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Comparing the relative performance of TCP and HTTP is also
illuminating. Namely, there does not appear to be a significant
performance difference in favor of either, despite HTTP being a
heavier protocol. We consider these results to validate the AMME
approach, in particular the HTTP Transfer mapping and the mes-
sage compaction module.

7.5 Security Results

While we have implemented both XML Signature and XML En-
cryption in our system, the messaging API is mostly not XML-
based. Because of this, there are currently no facilities in the mes-
sage system API for securing messages, since as of yet there has
been no user of such functionality. According to our design princi-
ple of not implementing functionality before it is required by some
application, we have therefore not yet designed a security API.

Because of the lack of security support in the message system
proper, the Security experiment client uses another SOAP format,
where the body consists of the data element of the Messaging ex-
periment schema of Appendix A.4 and the header contains a WS-
Security header. The client signs this message and then encrypts it,
the order recommended by experts [Ferguson and Schneier, 2003],
filling in the WS-Security header. The processed message is then
sent as an HTTP request to the server, which echoes it back. The
client decrypts the response and verifies the signature in it.

The security processing includes a number of phases, shown in
Figure 7.6. We measure the time taken by each phase individually,
which is intended to point to the areas most in need of improve-
ment. We also measure the total time taken in serializing and pars-
ing the message, including all security processing, and the time it
takes for communication. As mentioned above, we used only the
E61 with regular HTTP over the UMTS network.

As the Security experiment had fewer factors, we extended the
number of different message sizes. We varied the number of ele-
ments from 5 to 50 at 5-element increments. The runs were made
on each of the six formats from Table 7.8 and Table 7.9. We used
100 replications, split into smaller chunks that were run at different
times to eliminate effects from temporary fluctuation in connec-
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Figure 7.7: Security experiment message sizes

tion quality (originally we ran all replications consecutively and
did see clear fluctuation effects).

The sizes of the messages are shown in Figure 7.7. Recall that
the formats with one z in the suffix use only HTTP-level compres-
sion that can do little with encrypted data whereas the formats
with two z’s compress the contents of the EncryptedData element
prior to encryption, and also apply compression at the HTTP level.

From the sizes of XMLZZ and Xebuzz we see that Xebu does
not, at least in this case, compress any better than XML. However,
XML size improves markedly even with HTTP-level compression
whereas Xebu is hardly affected at all. The reason for this is that
the encrypted content is a sequence of essentially arbitrary bytes
that needs to be base64-encoded for inclusion into an XML docu-
ment. The compression then eliminates the redundancy of this en-
coding, decreasing document size by approximately 1/4 for large
messages that are mostly payload.
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Figure 7.8: Security experiment total times

The measured total times, from when the application begins se-
rializing the request to when it has finished parsing the response,
are shown in Figure 7.8. There is clear correlation with the mes-
sage sizes, but it is not perfect, as the Xebu formats do compara-
tively better than when looking at the size alone. The jump in XML
performance for the last case is an interesting one, which we will
explain later when it is even more visible.

The times taken for communication are shown in Figure 7.9. In
contrast to the other measurements, we took the minimum values
in this case. We saw very large variance in the timing results, mak-
ing computation of means somewhat fruitless, as the results did
not follow any sort of clear trend, and even had huge jumps in
places. This measurement therefore represents optimal conditions
in the network. The results shown in Figure 7.8 also use these min-
imum communication times.

Communication time, unlike total execution time, is practically
perfectly correlated with message size. As the server does not per-
form any processing, this is the expected result. We note that the
messages here are small enough that if we were to compute the
data rate of the connection based on the message sizes and these
communication times, we would not get results anywhere close
to the data rate shown in Figure 7.4. This is, again, an artifact of
TCP’s slow start algorithm.

The other two components of the total time are serialization,
shown in Figure 7.10, and parsing, shown in Figure 7.11. Unlike
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Figure 7.10: Security experiment serialization times

the communication times, there was little variation in these results,
so the graphs here show means, which are also the components of
the total times in Figure 7.8. Note that the X axis shows the number
of elements, and the different formats produce differently-sized
messages for these, as shown in Figure 7.7.

In both cases we note that adding compression markedly in-
creases the processing time for Xebu, but adding the compression
before encryption actually does not affect the XML case at all, or
even improves it in the case of parsing. One reason is that because
of compression there is much less XML data to encrypt, so the en-
cryption and decryption processing are much faster. In addition,
the compression ratio with XML is so much better than Xebu that
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Figure 7.11: Security experiment parsing times

there is less data to move around during processing, which also
affects total processing time.

In both serialization and parsing we see odd effects for XML, as
the curve increases much more sharply than for the other formats.
In serialization this can be explained by noting that the size of the
XML document grows much more rapidly, which leads to the odd
effect that its required serialization time seems also to grow more
rapidly than that of the other formats.

On the parsing side there is the sharp jump at the 50-element
point, which was already visible in Figure 7.8. Our investigation
revealed that this is the point where the message size goes over
16384 bytes, indicating that the parser has a dynamic buffer of this
size somewhere that needs to be enlarged during processing. We
confirmed this by experimenting with message sizes up to 100 el-
ements and noted a similar sharp jump when the message size
increased beyond 32768 bytes.

Finally, we show the breakdown of the times for serialization
and parsing in Figure 7.12 and Figure 7.13, respectively. These
Figures show how much time each phase shown in Figure 7.6 took
as a portion of the total time, with each number of elements rep-
resented as a row in the rectangle, and the number of elements
growing downward. A large portion of each processing is also
other processing, which consists of the non-security related serial-
ization and parsing.

As in our earlier measurements [Kangasharju et al., 2006], we
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note that most of the time in all cases is spent in RSA secret-key
operations, signature generation and key decryption. This is not
likely to be caused by a poor implementation, as a simple bench-
mark showed that the relative performance of the different secu-
rity operations here is approximately the same as with the high-
performance OpenSSL toolkit5.

What we do note from these Figures is that, with Xebu, a much
smaller proportion of the time is spent on the matters related to ac-
tual serialization and parsing and more on the security processing.
Furthermore, when contrasting to our proof-of-concept system in
[Kangasharju et al., 2006], we note that the relative time spent on
the serialization and parsing has decreased, undoubtedly due to
the efficient implementation based on the XAS API.

7.6 Xebu Results

We made the Xebu experiment a completely separate one even
though we also measured serialization and parsing times in the
Messaging experiment. This was because the only way to mea-
sure elapsed time in JavaME is by wall-clock time. As the mes-
saging system is multithreaded, wall-clock time measurement is
disturbed by other threads getting CPU time, making the mea-
surements imprecise. Also, even though we could simply take
the measured minimum values, this would not help in measuring
memory consumption, which we also wish to do.

Of the factors listed in Table 7.11, the Xebu experiment only
used Device, Format, and Size. Since the messaging system is de-
signed to store sent messages for potential retransmission, the Net,
Number, and Style parameters should not have an effect on the
message serialization and parsing times.

We show the sizes of the documents in Table 7.18. This also
includes Xebu-S, the Xebu format with full schema optimizations
included, i.e., pre-tokenization, data type encoding, and COA. We
note immediately that Xebu-S performs extremely well on these
documents, which is to be expected as the schema for the messages

5http://www.openssl.org/

http://www.openssl.org/
http://www.openssl.org/
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Table 7.18: Document sizes in the Xebu experiment

XML Xebu Xebu-S
Size plain gzip plain gzip plain gzip

1 777 351 501 348 72 75
10 3136 643 1171 725 472 396
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Figure 7.14: Xebu experiment serialization times

is basically linear, i.e., an element follows another with little choice
as to the next element.

The sizes also show that Xebu does not compress as well with
gzip as XML. While in the 1-element message compressed Xebu
is still slightly smaller than compressed XML, this advantage is
completely lost in the 10-element case. Xebu-S, on the other hand,
already reduces the size so much that gzip has little that it can do.

From now on we will focus solely on the 10-element case, as
the performance in the 1-element case is too dependent on initial-
ization efficiency. The serialization times for all the devices, for-
mats, and compression options for this message are shown in Fig-
ure 7.14. We have added the 7610 into these measurements to get
some idea of what our weakest device is capable of with Xebu.

We note immediately that the performance of the 9500 is ex-
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Figure 7.15: Xebu experiment parsing times

tremely poor in all cases. While we do not have detailed profiling
data available, we suspect this is caused by a poor implementation
of character encoding. In some of our earlier profiling, we have no-
ticed that well over 50 % of the time spent in Xebu processing can
be caused by character encoding and decoding.

The results on the E61 are somewhat of an oddity. Without
gzip Xebu appears to perform better than XML, but when gzip
is added, Xebu’s performance worsens quite a bit. However, with
XML the addition of gzip does nothing to the serialization time.
We do know that the Java implementation on the E61 appears to
be better than on the other phones, but it is hard to see what could
cause this behavior.

The parsing times are shown in Figure 7.15. Here we see be-
havior familiar from prior measurements, with Xebu being clearly
faster than XML when gzip is not applied, apart from the 9500
where there is no difference. Looking at the results for both 7610
and E61, we see that Xebu performs equally well on both. How-
ever, the results on the 9500 show that mobile applications still
need testing and profiling on all target devices.

This was the only experiment in which we also measured dy-
namic memory consumption. Because of garbage collection, it is
very difficult to measure this correctly in Java, especially on mobile
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Figure 7.16: Xebu experiment serialization memory

phones where there is little functionality to affect the collection and
no way to examine the state of the heap beyond the amount of free
memory. We ran these experiments by making sure all garbage
was collected (using standard techniques [Roubtsov, 2002]) im-
mediately prior to the experiment, and report only the maximum
value to ensure having caught a run that was not interrupted by
garbage collection.

The memory consumption measurements are displayed in Fig-
ure 7.16 for serialization and in Figure 7.17 for parsing. The mem-
ory consumption on the 9500 is again not consistent with the oth-
ers, and especially the parsing measurements would appear to cor-
relate strongly with the timing measurements. Since the amount
of memory allocated there is quite large, this could explain some
of the poor timings.

The kXML serializer consumes a large amount of memory on
the 7610 and E61 compared with Xebu. This again correlates with
the timing measurements, indicating a potential problem in kXML.
It would also appear that the code that is used by kXML and Xebu
has seen much improvement in allocation behavior in the E61, as
the memory consumption is much lower than on the other devices.
Xebu still performs slightly better than kXML, and we can say that
the memory consumption on the E61 is definitely acceptable.
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Figure 7.17: Xebu experiment parsing memory

7.7 AMME Results

Some of the features of the AMME protocol are partially visible
in the results presented in section 7.4, but we also measured some
characteristics of it individually. The important features that we
considered to be so measurable are the overhead that the AMME
Mobility headers cause for the messages and the accuracy of the
RTTs measured by the RTT module described in subsection 4.5.4.

The AMME header is independent on the actual messages, but
if several application messages are carried inside a single AMME
message, the MESSAGE-BUNDLE header will add something to the
header size. Therefore we measured three different header sizes:
one for the synchronous case with no MESSAGE-BUNDLE header,
and two for the asynchronous case, for the 2- and 20-message cases
separately. Finally, two protocols are sufficient, since the Bluetooth
and TCP mappings both use the stream headers.

The sizes for each of the six cases enumerated above are shown
in Table 7.19. Sizes for individual application messages are as
shown in Table 7.18. The Small asynchronous message contains
2 application messages, the Large message 16.

Comparison with message sizes, especially the smallest ones,
seems to point to the AMME header causing quite a bit of over-
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Table 7.19: AMME header sizes

Synch (B) Asynch (B)
Protocol Small Large

Stream 58 64 91
HTTP 147 162 267

head. However, since the messaging measurement was intended
to simulate one-off interaction, the sizes in Table 7.19 include the
ACCEPT-TYPE header, the value of which contains the strings ap-
plication/x-ebu and text/xml. This is nearly half of the smallest
Stream header size, so if the interaction is long-running, the effect
of the AMME header will be much smaller.

We performed the RTT measurement over a GPRS link, using
HTTP as the protocol, since it has a natural application-level round
trip. We simply included a measurement of the HTTP request-
response interaction time for the data messages. The average time
we measured with HTTP was 1.86 seconds, and the AMME RTT
module stabilized at 1.84 seconds. Since the AMME measurement,
as illustrated in Figure 4.8, discounts local processing, it would be
expected that the AMME measurement would be slightly lower.

This measurement was performed in the synchronous case with
no other activity going on while an HTTP request is outstanding.
We also experimented in the asynchronous case, and got much less
stable results. The RTT measurement fluctuated widely, and could
be as high as 6 or 7 seconds. Since the AMME measurement is
performed at the application level, other network activity and local
processing will affect the time it takes for data to transfer between
the RTT module and the network, thus extending the time and
making it more variable.

In a sense, the RTT module is working correctly in this case.
Namely, its values are intended for use by applications to deter-
mine the current application-level RTT, and since the module is
on the path of message processing, it is measuring what it is sup-
posed to. However, high network latency is a different problem
from high application load, so the RTT module alone is not suffi-
cient to provide accurate information on the network conditions.
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7.8 Practical Considerations

Actually running the experiments was not completely straightfor-
ward. While the implementation can be correct, written according
to the interface specifications, the underlying platform can have
bugs. Our experience has been that such bugs are frequently en-
countered with a system as complicated as this one. We list here
the symptoms of the problems we encountered, our conclusions as
to their proximate causes, and the ways we solved them either in
the system implementation or just for the experiments.

The latency results in Figure 7.3 and the Messaging results in
Figure 7.5 showed exceptionally poor performance for Bluetooth.
It turned out that the stream API of Bluetooth nearly always re-
turned an end-of-file indication when trying to read a second block
of data from the stream, even if more data was available. This was
possible to work around by waiting a while after a failed read and
trying again, which succeeded. However, the wait time had to be
set close to 1 s, making the latency be dominated by the wait and
not by the protocol.

Another reason for not being able to provide Bluetooth mea-
surements for all cases was poor implementation quality of the
protocol on the 9500. Whenever too much data was coming in
or going out, as in the asynchronous cases or even the synchro-
nous ones with Xebu, the JVM running the program on the 9500
crashed, and we could not find any way to work around this.
Finally, there were occasional problems with getting the E61 to
connect using Bluetooth. While the discovery phase seemed to
find the other device, it never started communicating. Oddly, this
happened with only certain configurations and was repeatable in
some cases but not in others.

In general, we found the E61 to be a reliable device with good
performance, perhaps indicating that the phones are truly making
technological progress, and may be capable of hosting complex
pervasive applications very soon in the future. We had one inter-
esting problem that did not affect the measurements but would be
an annoyance in real use. Namely, whenever we used the ad-hoc
WLAN for measurements, the phone rebooted itself after exiting
the program and shutting down the WLAN interface. We do not
believe such behavior would be acceptable to users.
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Communicating over the mobile phone networks also requires
paying attention to what the operator is doing. All mobile phone
networks function through an operator’s Network Address Trans-
lation (NAT) system: the phone itself gets an IP address from some
private non-routable space and the operator’s system converts be-
tween this and a routable address belonging to the operator. This
means that it is not possible to host Internet server applications
on the phone without doing something like what our protocol’s
HTTP Transfer mapping does with the token messages.

However, the token messages are not the complete solution.
Leaving an HTTP request hanging at the server will cause con-
nection termination by the operator at some point, which is why
the HTTP server side in our system will time out when waiting
for a response to a token message. When this timeout fires, the
server will simply send an empty message as a response, caus-
ing the client to recreate the token and open a new connection. We
have observed timeouts as low as a few minutes, but have recently
heard that many current operators have much longer timeouts.

7.9 Summary

The first thing that can be summarized from the measurements is
that there are no easy solutions. Different approaches work best in
different situations, and measurements are dependent on a variety
of things, some of which may not be evident at first glance, and
others not even after careful study. Thus, the system needs to sup-
port a variety of networks and communication patterns to achieve
the best results.

The benchmarking results provide a view, not only of current
performance, but also of potential future performance. Of partic-
ular interest is the fact that the E61 gets much better performance
over EDGE than the 9500, and also that there is not a very large
difference in performance between EDGE and UMTS on the E61.

On a network with low latency, such as WLAN, it would ap-
pear that decreasing message size provides useful benefits, and
this is also wise advice in general, as larger messages take more
energy to transmit. However, Figure 7.5 shows that applying gzip
in the asynchronous case actually worsens total performance. As
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the CPU sees much more use in this case than in the synchronous
one, additional compression quite naturally increases processing
time. So decreasing size at the cost of additional CPU time may
not be wise for applications that also do other processing during
communication, which speaks in favor of a binary format.

In security processing, we note that Xebu, with or without com-
pression, achieves approximately the same results as XML with
full compression. Figure 7.12 and Figure 7.13 show that most of
the time in this case is consumed by RSA secret-key operations.
Other asymmetric algorithms would show similar performance,
but one benefit of RSA, as commonly used, is that its public-key
operations are very efficient.

Since RSA has a performance asymmetry between its secret-key
and public-key operations, it suffices to eliminate secret-key oper-
ations, even at the cost of adding public-key operations. Our basic
recommendation is to have the mobile client pre-generate keys se-
curely when there is sufficient power available. It then sends these
keys when appropriate, encrypted for the server. The server indi-
cates that it used the sent key, letting the client avoid a secret-key
operation by adding a public key operation and some communi-
cation. We provide more detailed discussion of this proposal in
[Kangasharju et al., 2007b].

Xebu appears to be an acceptable format, especially when a pre-
cise schema is available. We do note that adding generic compres-
sion to Xebu seems to result in larger documents than XML com-
pressed generically. This is most likely caused by the explicit pres-
ence of the token values, which breaks repetitive sequences. This
could be mitigated by not requiring the token values when there
are still unmapped ones available, or even eliminated by precisely
specifying the token assignment algorithm.
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CHAPTER 8

EXI Format Comparison and
Analysis

It honestly doesn’t occur to
them.

The Efficient XML Interchange (EXI) WG at the W3C performed a
large amount of measurements on a number of proposed binary
XML formats. The author of this dissertation is a current partici-
pant in this group representing the University of Helsinki, and was
responsible for analyzing and summarizing the measurement re-
sults. This analysis, in conjunction with the actual results, formed
the basis for the WG’s decision to select Efficient XML as the base-
line for the EXI format.

8.1 Preliminary Considerations

In the initial phase, the EXI WG needed to determine what to mea-
sure. The initial work on this was performed by the XBC WG in
the properties document [W3C, 2005e] that lists a large collection
of characteristics a data format might have, and in the characteri-
zation document [W3C, 2005c] that determined which properties
are the most important.

The measurement process of the EXI WG used real XML data
currently in use in deployed systems. However, in scenarios where

177
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a binary format is desired, not all features of XML are needed, and
a format may achieve additional size reduction if it is aware of
the precise needs of a use case. This consideration was used in
classifying both formats and test data.

8.1.1 Measurement of Properties

According to the XBC properties document [W3C, 2005e], a prop-
erty is

a unique characteristic of an XML format which affects
the format’s utility for some collection of use cases.

A companion document [W3C, 2005d] defines for each property
how to determine whether a format possesses that property and to
what extent. The properties are divided into three classes: format
properties are based only on the format specification, algorithmic
properties are characteristics of an implementation, and additional
considerations are desirable properties that are not feasible to actu-
ally measure.

The two main properties that have driven the development of
alternate formats are Compactness and Processing Efficiency, since
these are required by a large number of use cases [W3C, 2005c] and
not usually considered to be properties of XML. The former is sim-
ply document size and the latter is the speed at which it is possible
to parse or serialize format instances. For mobile devices, other
important properties are Small Footprint and Space Efficiency that
measure the size of a processor implementation and the amount of
dynamic memory required during processing, respectively.

The Compactness measurement defined by the XBC WG [W3C,
2005d] considers tokenization to be the basic method of binary for-
mats, applicable to any XML data and any use case. In addition,
two advanced techniques are of more limited applicability. Doc-
ument analysis refers to more global analysis of the document, us-
ing well-known compression techniques, and may not be suitable
when Processing Efficiency is crucial. Schema-based techniques, on
the other hand, are only usable when a suitable schema for the
document is available.

These two additional options divide the Compactness measure-
ment into four different application classes [W3C, 2007b]:
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Neither Only tokenization is used.

Document Document analysis is applicable, schema-based tech-
niques are not.

Schema Schema-based techniques are applicable, document anal-
ysis is not.

Both Both document analysis and schema-based techniques are
applicable.

While the application classes were conceived for the Compactness
property, they will clearly affect the measurement of other proper-
ties as well. For instance, the compression methods used in docu-
ment analysis are typically very time-consuming in comparison to
the other processing, so Processing Efficiency also has to be con-
sidered per application class.

The XBC WG said very little about actually measuring Process-
ing Efficiency. The measurement itself lists some scenarios, from
basic XML parsing and serialization to constructing an application
data model or executing queries. However, the intent behind mea-
suring is to pit implementations against each other and measure
the time spent.

8.1.2 Preservation of Information

The XML Information Set includes all the information in an XML
document. However, not all use cases require preserving all of this
information. For instance, many applications that use XML only as
a format for structured data might not care about anything except
elements and attributes. Another example is provided by SOAP,
which actually forbids DTDs and processing instructions.

Because of these considerations, some use cases might get more
use out of a binary format that is able to improve its Compactness
by knowing which information will not appear in the processed
documents. To take this possibility into account, the WG defined
a fidelity scale for formats and test documents, indicating which
information a format can preserve or a test document requires.

The fidelity scale goes from −1 to 4, with −1 indicating that
only a subset of the XPath data model [W3C, 2007h] is preserved,
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and 4 indicating that the exact byte sequence of the original XML
document is preserved. The most relevant levels on this scale for
formats are 1, preservation of the full XML Information Set, and 2,
which also includes preservation of all declarations in a DTD.

The fidelity scale is complemented by fidelity options, which in-
dicate more precisely the information to preserve. The WG defined
six fidelity options,

• preservation of white space,

• preservation of comments,

• preservation of processing instructions,

• preservation of namespace prefixes,

• preservation of lexical values, and

• preservation of the document type declaration and internal
subset,

which mostly indicate specific information in an XML document
that needs to be preserved.

Both white space and lexical value preservation are only appli-
cable when a schema is used. A schema may indicate that some
white space is not significant, and the preservation option defines
that even this insignificant white space needs to be preserved. Sim-
ilarly, a schema will assign types to some values in the document.
Lexical value preservation means that the specific representation
of these values must be preserved, instead of merely preserving
the actual typed value.

The fidelity scale and options are closely tied to the property
Round-trip Support, which requires the format to preserve all rele-
vant information in an XML document. Since the relevant infor-
mation varies by use case, each document is assigned values for
the fidelity options to indicate precisely the information that must
be preserved. A candidate may therefore take advantage of the fi-
delity options by dropping information from the XML document
that is not used by the application at all.
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8.2 Comparison Framework

Of the properties identified as requirements by the XBC WG, some
are measurable by simply looking at the specification, and some
can even be included in any format without altering the specifica-
tion materially. However, some properties must be measured from
a real implementation. Such properties include the most crucial
ones, Compactness, Processing Efficiency, and Space Efficiency.

Compactness measurement is simple when an implementation
exists. It is enough to simply run the set of test documents through
the implementation’s serializer and measure the sizes of the re-
sulting candidate documents. However, it was determined that
some form of verification was needed for the results, to make sure
that all candidates preserved all of the relevant information in the
test documents. This verification took the form of measuring the
Round-trip Support property.

8.2.1 XML Differencing with Faxma

To measure Round-trip Support, the Fuego Core project provided
their XML differencing tool, Faxma [Lindholm et al., 2006], to the
WG. This tool can take either XML document sources or parsed
event streams as arguments, and it can be made to print a report
on the differences, similarly to the Unix diff program. We inte-
grated the differencing process as an optional component in the
Compactness measurement.

Getting Faxma to work in the Neither application class was es-
sentially a simple task. The candidates are required to provide
SAX parsers for their formats, so comparison is a simple matter of
translating these SAX event streams into XAS fragments and call-
ing the comparison method. One thing that this required was the
implementation of a SAX filter that understands the fidelity op-
tions and removes the content that does not need to be preserved.

The Schema case was somewhat more complex, as the fidelity
option for preserving lexical values requires type information to
be available. This requires a validating parse to construct the PSVI.
For ease of implementation, this was implemented by serializing
the provided SAX event streams into XML and then using a DOM-
based parser on the resulting documents. The constructed DOM
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tree then has type annotations for the nodes containing typed data,
which can be used to construct XAS typed items.

While the eventual code that got used in the EXI measurement
framework is in places specific to the test data (for instance, it has
special-case code for one list type instead of recognizing any list
type as defined by XML Schema), the full Faxma tool is mostly
generic and applicable to any XML documents and any schemas.
We intend to eliminate the special-casing, replacing it with either
generic code or user-specified data, and release Faxma as a gen-
eral-purpose schema-aware XML differencing tool. Its feature list,
which we understand is unequalled among such tools, includes

• capability to process almost any XML (DTDs are currently
poorly supported),

• ability to disregard information not deemed interesting,

• ability to compare typed data in either their lexical space or
value space, and

• ability to process invalid documents while still comparing
valid typed data in the value space.

8.2.2 Measuring Processing Efficiency

Measurement of Processing Efficiency and Space Efficiency is more
difficult. While in Compactness and Round-trip Support measure-
ments it can be expected that the implementation is deterministic,
so that each run produces the same result, measuring time and
memory usage will not produce the exact same results every time.
Further issues are caused by the running time depending on what
has been running previously, due to caching and the Java execu-
tion model, the latter of which we explained in subsection 7.2.2.

In addition to the warmup loop required for stable timings, the
measurement itself must be run several times to detect incidental
variation that always exists in timing measurements, and some-
times also in memory usage measurements. However, this looping
means that the data on which the measurements are run is used
constantly, making it a prime candidate for caching. If the data
comes from a disk, the disk cache will store it. If the data is in
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memory, the processor cache may occasionally be large enough to
store it. Having the test data cached will not give realistic perfor-
mance numbers, since a significant part of any data processing is
actually moving the data into and out of the processor.

However, it is not feasible to simply disable the caches to avoid
this phenomenon. An efficient implementation of a format pro-
cessor will take advantage of the caching that is present in the
platform, and this can make a large difference. Therefore, what is
needed is a way to ensure that the actual data used during the mea-
surement run has not been cached without disabling the caches
during the run.

For in-memory processing there are some options. One is to cre-
ate several copies of the test data in various locations in the mem-
ory, and to use a different one for each measurement run [Kos-
toulas et al., 2006]. The number of copies is set high enough so
that when it is necessary to reuse a copy, it is certain that the data
cannot be in the processor cache. Another option, available with
Java, would be to create a new buffered stream class for each run,
as this will ensure that there is a new location in memory for the
actual test data on each run.

It can be argued, though, that an in-memory measurement is
not a realistic reflection of the capabilities of a format. In real ap-
plications, data usually comes from an external source such as a
disk or a network, and is similarly output somewhere external.
Therefore to get a proper measurement of Processing Efficiency, it
is necessary to use a real data source and target, potentially several
different ones.

The solution that was implemented is based on networking.
Namely, all data is read from or written to a TCP connection. For
serialization experiments, the server at the other end simply re-
ceives the data and discards it. For parsing experiments, the server
is initially provided with the document to use, and it will send a
continuous stream consisting of copies of this document. The ba-
sic measurement is performed using the local loopback interface
as the network, and further measurements can be performed by
simply switching to a real network.
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8.3 Measurement Analysis

The measurements provided a vast assortment of data to analyze.
As XML is a widely applicable format, there are few commonal-
ities in the test data across the full suite. Accordingly, it is not
realistic to expect that it would be possible to determine a single
figure of merit for comparison of the candidates. Rather, the analy-
sis process must first identify common ground, provide summary
figures for each identified group, and then compare candidates in
each group, potentially drawing more general conclusions if such
are warranted.

We do not present the complete analysis of the measurements
here, but have chosen to focus on a subset of the test documents
relevant to mobile devices, fitting with our main topic. Also, we
only analyze a subset of the formats, as including more formats
would not provide much additional insight. The full analysis can
be found in [W3C, 2007b].

8.3.1 Test Data Classification

The data that was used in the analyzed measurements consists of
88 documents, representing 21 different XML vocabularies, called
test groups. Coverage of the XBC use cases [W3C, 2005f] is nearly
complete, with only 4 use cases out of 18 lacking representative
documents, and 3 of them being application-specific (X3D Graph-
ics Model Compression, Serialization and Transmission; XMPP In-
stant Messaging Compression; SyncML for Data Synchronization).

The use cases themselves provide one natural way of classify-
ing the test documents. Each test group is accompanied by a list of
use cases for which it is suitable [W3C, 2007b], so tabulating these
use cases and grouping related test groups together gives a set of
use groups shown in Table 8.1, a higher-level division than the test
groups, with still sufficient commonality between included docu-
ments that it should be possible to draw general conclusions across
complete use groups.

Another division comes from considering various complexity
metrics of XML documents. Qureshi and Samadzadeh [2005] con-
sider metrics such as the size of the serialized document in bytes,
the total number of elements in the document, and the height of
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Table 8.1: Use groups identified in the EXI test suite

Name Representative use case

Broadcast Metadata in Broadcast Systems
Document Electronic Documents
Finance Intra/Inter Business Communication
Military Military Information Interoperability
Scientific Supercomputing and Grid Processing
Sensor Sensor Processing and Communication
Storage XML Documents in Persistent Store
Web services Web Services for Small Devices

Table 8.2: Content density clusters in the EXI test suite

Name CD Size

High over 33 % any
Low-Large under 33 % over 100 kB
Low-Small under 33 % over 1 kB and under 100 kB
Low-Tiny under 33 % under 1 kB

the document when seen as a tree. They also consider an algo-
rithm that assigns a complexity value to a DTD and based on that,
and document-specific metrics, develop a complexity measure for
XML documents. Using a DTD extraction tool [Garofalakis et al.,
2000] it is possible to extend this measure to arbitrary XML.

For the EXI analysis, two complexity metrics were chosen. The
more obvious one is the size in bytes of each document. The other
metric is called content density (CD) and is measured by dividing
the amount of content by the total document size. Here content is
defined as the values of attributes and text data in the document.
This gives rise to CD clusters, shown in Table 8.2. The thresholds
were chosen as somewhat natural ones that would split the test
data into clusters of approximately equal size.

The CD clusters have an orthogonal purpose to use groups.
Whereas use groups are intended to measure the performance of
an implementation in a specific use case, the purpose of the CD
clusters is to measure the performance of format’s structure and
data encoding capabilities. The documents in the High cluster
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Table 8.3: Analyzed test groups

Group Size Description

ASMTF 4 Military information messages
CBMS 4 Broadcast metadata
Google 3 SOAP Web service messages
JTLM 2 Military SOAP messages
Location 2 Individual coordinates
SVGTiny 2 SVG documents
WSDL 2 WSDL documents

have relatively little actual XML structure, so differences there are
most likely due to different performance in encoding text data. On
the other hand, the documents in the Low clusters exercise mostly
the structure encoding implementations. Division by size makes it
possible to also determine the amount of overhead required of the
implementation: in the Low-Tiny cluster most of the processing
time is likely taken by initialization and not by document process-
ing as such.

For the purposes of the analysis presented here, we took the
test groups relevant to mobile devices and selected some of the
documents from those test groups. The main use groups we ex-
amined were Military, Sensor, and Web services, but the Conver-
gence of Broadcast and Mobile Services (CBMS)1 and Scalable Vec-
tor Graphics (SVG) [W3C, 2003a] documents were also chosen,
since multimedia is expected to be more prominent on mobile de-
vices in the future. The documents range in size from 100 bytes to
100 kilobytes and have a large range of different CD values.

8.3.2 Analysis Methodology

The total amount of measurement data gathered by the framework
is huge, as each individual document is measured for all candi-
dates and application classes in both Compactness and Processing
Efficiency. Even more, Processing Efficiency was measured with a

1http://www.dvb.org/groups_modules/technical_module/tmcbms/index.
xml

http://www.dvb.org/groups_modules/technical_module/tmcbms/index.xml
http://www.dvb.org/groups_modules/technical_module/tmcbms/index.xml
http://www.dvb.org/groups_modules/technical_module/tmcbms/index.xml
http://www.dvb.org/groups_modules/technical_module/tmcbms/index.xml
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number of underlying data sources and sinks. This all combines
to an immense amount of data that needs to be summarized.

To further complicate the summarization, the test documents
come from a variety of sources, with the intention that the test suite
capture as wide an area of XML usage as feasible. Therefore it is
certain that aggregating all the measurements into a single figure
of merit cannot produce useful results, but rather a number of dif-
ferent aggregate numbers are needed. In particular, this will be a
concern in real use of EXI where an application designer typically
has only a certain form of XML document in mind and wishes to
know how EXI performs in that case.

Our analysis proceeded along two different paths. The split-
ting into use groups and CD clusters provided usefully small and
homogeneous collections of documents over which aggregate con-
clusions can potentially be drawn, so they were taken as the basic
division for analysis. In addition, the whole test suite was collected
into one, but keeping in mind that analysis on that can only pro-
vide imagery, not useful conclusions. The mobile group described
above was locally added by the author, as the scripts written for
gathering and aggregating the data were designed to support ex-
actly this kind of use.

The first analysis was performed through graphical inspection.
The results of each use group and CD cluster were plotted for each
different application class. Such graphs give a useful overview of
the results for each particular groups of documents. In particular,
anomalous results are clearly visible so that they can be investi-
gated and eliminated. In addition, the graph can be used to form
impressions of the relative performances of the candidates, both in
relation to each other and to the baseline.

The graphical inspection was further supplemented with the
detailed measurements. Impressions acquired from the graphs
were confirmed by evaluating the results from individual test doc-
uments. The individual results were also used to determine ranges
of performance for each of the candidates. Finally, wide differ-
ences were inspected and explained by considering the content of
the test documents.

The second analysis used statistical methods to summarize the
performance into a single ratio over the baseline. As noted above,
extracting a single figure of merit over the complete set of test data
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is not feasible, so this analysis was also split by application class
and use group or CD cluster.

The basis of this summarizing was the assumption that a use
group or a CD cluster is sufficiently homogeneous that the per-
formance ratio of a candidate compared to XML is approximately
constant across the group. Thus, by plotting the results into a
(baseline, candidate) coordinate system the plot should resemble
a straight line, from which the ratio can be acquired through linear
regression analysis.

As in all statistics, the values computed from this cannot be
said to be exact. The regression analysis produces some deviation,
which is taken into account by reporting 95 % confidence intervals
for the ratios. This is computed in the standard manner, i.e., the in-
terval is [µ− t(0.975)× σ, µ− t(0.975)× σ] where µ is the slope of
the regression line, σ is its standard deviation, and t is the Student
distribution with the appropriate degrees of freedom.

The baseline for comparison in these analyses also merited care-
ful consideration. In the graphs it was decided to always show the
basic XML candidate. This is supplemented by also having a com-
pressed form of XML or a faster processor as each test run permits.
For the regression analysis it was decided to select the best XML
performer as the baseline. In the case of Compactness, this is also
required, since document analysis usually improves its compres-
sion ratio with increasing document size, thus making the relation-
ship between compressed and uncompressed sizes non-linear.

The analysis, graphs, and tables presented here form only a sub-
set of the complete analysis in [W3C, 2007b]. We limit the inves-
tigated candidates to Xebu, due to it being included in this dis-
sertation, Fast Infoset (denoted FI), due to it being the best-known
modern format, and Efficient XML (denoted EFX), due to it hav-
ing been selected as the basis for the future EXI format. Further-
more, graphs will be shown only for the Neither application class,
though data from other application classes will be discussed.

We noted above that the properties Space Efficiency and Small
Footprint are important for mobile devices. Neither of these prop-
erties was measured by the EXI WG, so we cannot include any
measurements of Space Efficiency here. However, most of the for-
mat implementations were made available, so it is possible to mea-
sure their footprints, which are shown in Table 8.4. The difference



8.3 Measurement Analysis 189

Table 8.4: The footprints of the candidate EXI implementations

Format Size (kB)

XML 1629
Xals 291
Xebu 184
FI 1222
EFX –

between Xebu’s size here and in Table 7.1 is because this measure-
ment includes Xebu, kXML, and large parts of XAS, and is not
obfuscated in any manner.

These footprints were measured by adding together the sizes of
the library files needed to run the candidate. The XML figure is
from the standalone Xerces distribution. Xals is a fast XML parser
used for parsing efficiency measurements, so its size includes only
a parser. As the Efficient XML implementation was only made
available to the W3C personnel, its size could not be included. One
final point to note is that the Xebu implementation is written for
the Java MIDP libraries. Since the Java library size is not included
in the measurements and the other formats are written for the full
Java Standard Edition (JavaSE) libraries, this may penalize Xebu
somewhat, though it is not feasible to quantify by how much.

8.3.3 Compactness Analysis

We begin by showing a graph of Compactness in the Neither class
of the three candidates in Figure 8.1. We refrain from showing
graphically the results of the other application classes as a com-
plete set of graphs would take up too much space without provid-
ing much additional information. This graph plots the compres-
sion ratio of the candidates against XML, i.e., the measurement
is XML document size divided by format document size, plotted
against XML document size in bytes. Due to the variety of XML
document sizes (the smallest is just slightly over 100 bytes and the
largest a bit under 100 kilobytes) the X axis in the graph uses a
logarithmic scale. This should not cause confusion as it is the indi-
vidual documents that are interesting, not just their sizes.
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Figure 8.1: Compactness results in the Neither class

From the graph we can distinguish a clear performance differ-
ence in favor of Efficient XML compared to Fast Infoset and Xebu,
with Fast Infoset being slightly better than Xebu and both clearly
improving over XML. Furthermore, examining the individual re-
sults, the documents where Efficient XML has the largest advan-
tage belong to the ASMTF and JTLM groups, i.e., military mes-
sages for which Efficient XML has been explicitly designed.

The performance ratios acquired through regression analysis
are shown in Table 8.5. As the technique summarizes the whole
run into a single interval, we show the results for all application
classes instead of just Neither as in Figure 8.1. Here the baseline
for the Document and Both classes is XML compressed with gzip.
Since neither Xebu nor Fast Infoset includes a compression algo-
rithm, the Document and Both results for these are the results of
compressing the Neither and Schema documents with gzip.

First of all, it must be noted that the results for Xebu and Fast
Infoset change very little when a schema is available. This is be-
cause in the Schema class both use only the technique we call pre-
tokenization. Fast Infoset does not support any other schema-
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Table 8.5: Compactness ratios

Format Neither Document Schema Both

Xebu [ 3.71 , 4.44 ] [ 0.86 , 0.97 ] [ 3.80 , 4.58 ] [ 0.88 , 1.02 ]
FI [ 4.18 , 4.86 ] [ 1.01 , 1.16 ] [ 4.50 , 5.06 ] [ 1.29 , 1.61 ]
EFX [ 5.38 , 7.47 ] [ 1.10 , 1.48 ] [ 8.40 , 12.67 ] [ 1.43 , 2.44 ]

based technique, and Xebu’s type encoding and COA could not
be used, since the test suite included only XML Schema defini-
tions, which were not supported by the Xebu implementation of
the time. Automatic conversion of XML Schema to RELAX NG
was attempted, but the available tools were not sufficiently robust
to produce usable results.

From these results we can conclude that Efficient XML is clearly
superior to Xebu and Fast Infoset. The latter two are approxi-
mately equal, with Fast Infoset appearing to have a slight advan-
tage. It would also seem that Fast Infoset compresses better with
gzip than Xebu. Both of these are likely to result from the explicit
token assignments in Xebu documents, as they both increase doc-
ument size and break larger repetitive sequences, hindering gzip.

8.3.4 Processing Efficiency Analysis

Processing Efficiency includes two components, serialization and
parsing. In fact, the XBC property [W3C, 2005e] includes even
more processing like data binding and query evaluation as well.
However, the EXI measurement framework only includes serial-
ization and parsing through the SAX API. There are also facilities
for running each candidate with its own native API, but this func-
tionality was not considered to be stable enough to include the
results in the analysis.

Unlike Compactness where the measurement is largely inde-
pendent of any actual implementation (this usually depends on
possible optional features, which the XBC property Single Confor-
mance Class was written to discourage), Processing Efficiency is not
feasible to analyze properly without an implementation. While
complexity analysis based on format specification may give rough
directions, format processors are typically linear in input size, and
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any constant factors in software as complex as an XML processor
are not discernible simply from a specification.

The dependence of this property on existing implementations
also means that the XML processors used for comparison need to
be efficient. As an example, Head et al. [2006] note that XML pars-
ing performance can easily vary by a factor of 2 or 3 depending on
the implementation. Because of such concerns, the EXI WG issued
a public call for efficient XML processors. The result of this was
that for parsing, the WG could compare against Fujitsu’s efficient
Xals parser, but for serialization only Java’s default implementa-
tion based on Apache Xerces was used.

The network-based measurement system described above in
subsection 8.2.2 was mostly used over the loopback interface. Our
experience [Kangasharju and Tarkoma, 2007] is that the loopback
interface on Linux is sufficiently fast not to be the bottleneck of
processing. However, recently measurements were also made over
real networks, and in addition to the loopback interface we also
present measurement over a 11 Mbps WLAN link as that is inter-
esting from the point of view of mobile messaging.

Serialization Efficiency

When considering alternate XML serialization formats, serializa-
tion performance is usually accorded much less importance than
parsing performance. Typically, XML serialization is seen as an
essentially trivial matter, consisting of a tree traversal with print
statements, so it is not expected that there would be large gains in
serialization. This view is also a likely reason why there is little
standardization in XML serialization APIs.

As with the Compactness measurements, we show graphs only
for the Neither class, and show the performance ratios for all ap-
plication classes. As mentioned above, we examine both the loop-
back measurements, to determine the CPU efficiency of the im-
plementations, and the WLAN measurements, to determine the
performance in an environment closer to that of mobile devices.

The serialization efficiency graph for the Neither class over the
loopback interface, shown in Figure 8.2, mostly supports the view
of serialization being hard to improve. This is again plotted as a
ratio compared to XML performance, so the X axis shows the num-
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Figure 8.2: Serialization efficiency results in the Neither class over
loopback

ber of serializations that the baseline was able to perform in a fixed
time, which was the measurement made in the EXI framework.
This means that the documents on the X axis are roughly in the
opposite order compared to the graph in Figure 8.1 (only roughly
because the number of transactions is not perfectly correlated with
document size).

While Fast Infoset clearly performs better than XML, the per-
formance of Efficient XML is not consistently better, and Xebu is
better than XML only on smaller documents where it is more likely
that the initialization costs dominate the processing time. Since the
baseline is Xerces, which is known to be a heavyweight parser, it
is to be expected that its performance for small documents would
not be very good.

The serialization efficiency ratios over the loopback interface
are shown in Table 8.6 for Xebu, Fast Infoset, and Efficient XML.
These ratios confirm the view from Figure 8.2 that while it is possi-
ble to improve serialization efficiency, the potential improvement
is small. Comparing these ratios to those in Table 8.5 we note that
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Table 8.6: Serialization efficiency ratios over loopback

Format Neither Document Schema Both

Xebu [ 0.91 , 1.07 ] [ 0.48 , 0.55 ] [ 0.80 , 0.91 ] [ 0.48 , 0.55 ]
FI [ 3.03 , 3.88 ] [ 2.46 , 2.93 ] [ 1.82 , 1.98 ] [ 2.36 , 2.70 ]
EFX [ 1.45 , 2.03 ] [ 1.65 , 1.90 ] [ 2.36 , 2.81 ] [ 2.57 , 2.95 ]

Table 8.7: Serialization efficiency ratios over 802.11b

Format Neither Document Schema Both

Xebu [ 3.58 , 4.51 ] [ 0.95 , 1.03 ] [ 3.62 , 4.49 ] [ 0.92 , 1.11 ]
FI [ 4.16 , 4.93 ] [ 1.01 , 1.13 ] [ 4.05 , 4.60 ] [ 1.19 , 1.57 ]
EFX [ 4.90 , 6.80 ] [ 1.10 , 1.47 ] [ 7.00 , 10.03 ] [ 1.62 , 2.61 ]

they are quite different, indicating that it truly is the CPU that is
the bottleneck in this measurement.

For the WLAN network, we get the serialization efficiency ra-
tios shown in Table 8.7. Comparing these numbers to those in Ta-
ble 8.5 for Compactness, we note that there is no significant differ-
ence between the results, which is also why we do not show these
results as a graph, since the graph is essentially the mirror image
of Figure 8.1. This is an expected result, as the implementations
are fast enough to process data faster than the 11 Mbps network is
able to transmit it. In a way, this result demonstrates that message
size is a much more important concern than the CPU efficiency of
a format, though it must be kept in mind that in a real application
there would also be other processing consuming CPU time.

Parsing Efficiency

We show the results for parsing in the same manner as for serial-
ization. Namely, graphs are shown for the Neither class while ra-
tios are computed for all application classes. We investigate again
the same networks, the loopback interface and WLAN.

The graph for parsing efficiency in the Neither class over the
loopback interface is shown in Figure 8.3. As with the serializa-
tion graph, this shows ratios of processor performance measured
in transactions per second compared to the baseline that is the de-
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Figure 8.3: Parsing efficiency results in the Neither class over loop-
back

fault Java implementation. The faster Xals parser is also included
in the graph and should be considered the main comparison point.

The graph shows a consistent performance for all candidates
and Xals for all the larger documents that achieve a lower num-
ber of transactions. Again, there is a clear upward improvement
in performance when looking at the smallest documents. Since
also Xals improves its performance, we can consider this further
evidence that the poor performance of the baseline here indicates
a large startup cost. Nevertheless, the improvement of the candi-
dates for these smaller documents is much larger than for Xals.

The efficiency ratios for this measurement, shown in Table 8.8,
are computed against Xals, as that is the baseline for comparison
in parsing. These ratios are clearly better than the ones for serial-
ization in Table 8.6, showing that there is indeed more to improve
on the parsing side by moving to an alternate format.

There are few surprises in parsing efficiency over the WLAN
interface in light of the comparable results for serialization above.
The parsing efficiency ratios in Table 8.9 do not differ significantly
from the ratios in Table 8.5 or Table 8.7, confirming that the net-
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Table 8.8: Parsing efficiency ratios over loopback

Format Neither Document Schema Both

Xebu [ 1.96 , 2.39 ] [ 1.89 , 2.35 ] [ 1.73 , 2.12 ] [ 1.99 , 2.51 ]
FI [ 4.10 , 4.85 ] [ 3.12 , 3.97 ] [ 5.00 , 5.71 ] [ 3.66 , 4.51 ]
EFX [ 3.20 , 4.40 ] [ 2.78 , 3.47 ] [ 3.80 , 4.32 ] [ 3.03 , 3.30 ]

Table 8.9: Parsing efficiency ratios over 802.11b

Format Neither Document Schema Both

Xebu [ 3.55 , 4.46 ] [ 0.94 , 1.01 ] [ 3.68 , 4.57 ] [ 0.88 , 1.04 ]
FI [ 4.17 , 4.96 ] [ 1.00 , 1.10 ] [ 4.21 , 4.76 ] [ 1.18 , 1.54 ]
EFX [ 5.04 , 7.20 ] [ 1.08 , 1.41 ] [ 7.09 , 10.11 ] [ 1.54 , 2.55 ]

work is the bottleneck. Further confirmation is available by exam-
ining the results of Xals, which we do not show here. Namely, the
performance ratio of Xals compared to the baseline remains at a
constant 1 for all documents, showing that the CPU efficiency of
the parser is of little importance.

8.4 Summary

The results shown above demonstrate that it is possible to improve
both Compactness and Processing Efficiency from XML without
sacrificing XML compatibility. While this does not seem a pro-
found realization, there is an often-expressed claim that this would
be impossible. Such claims usually stem from a misunderstand-
ing that an improved XML-compatible format would have to first
produce the XML and then compress it, which would indeed lead
to worse Processing Efficiency. This is why the property Directly
Readable and Writable [W3C, 2005e], i.e., directly accessible through
an XML API, is required for an EXI candidate.

Comparing to the results of section 7.6, Xebu would appear to
perform worse here. At least one explanation for this is that the
Xebu implementation used here was the same one that was used
on mobile devices. As seen in section 7.6, even changing the phone
could change the results noticeably, so it is understandable that the
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results change when running on a regular computer. We do not
believe these results to indicate that an efficient implementation of
Xebu for regular computers is impossible.

One important measurement that is unfortunately missing here
is measurement through a candidate’s native API. For instance, in
a scientific application with much floating-point content, a type-
aware binary format with a corresponding API can easily be 20–
30 times faster than XML on documents of any size [Kangasharju
and Tarkoma, 2007]. Since the forthcoming EXI format includes
native support for typed data, it is likely that an EXI API will
emerge to support such use cases. We believe our results in XML
API design could prove helpful to this EXI API design as well.
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CHAPTER 9

Conclusions

The butler did it.

We now have several years of experience in using this messaging
system, or its predecessor, as a component in the Fuego middle-
ware. There is much that we have learned about writing software
for mobile computing and about the general state of XML mes-
saging. Based on this experience, we remain optimistic that in the
future, mobile devices need not be relegated into a ghetto, but can
participate on the Internet as full-fledged members.

9.1 Contributions

To summarize the work presented in this dissertation, we can dis-
tinguish the following significant contributions:

XML Processing
Existing XML APIs usually require applications to also know
and care about XML as such. In our view, the API should
provide a unified approach to processing XML either as XML
or as just a data interchange format, and our work on the
XAS API validates this view. Our expectation is that XML
processing in the future will require extensibility and versa-
tility from the processing system, as developers invent novel

201
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ways to treat XML, and we designed the XAS API to explic-
itly support such development.

The multi-layered view of XML illustrated in Figure 5.11 that
XAS supports has already proved itself. This is evidenced by
our being able to implement efficient XML processing ap-
plications in different areas [Kangasharju, 2007; Lindholm
and Kangasharju, 2008] using only the generic functional-
ity of XAS, whereas previous works in similar areas [Fer-
nandes and Raghavachari, 2005; Imamura et al., 2002; Lu
et al., 2005] have been special-purpose implementations with
poorer functionality.

XML Binary Serialization
While there exist a number of binary serialization formats for
XML data, Xebu has a few unique features. First of all, the
design explicitly considers small mobile devices by bound-
ing the dynamic memory required during processing, and
as the measurements in subsection 8.3.3 show, this does not
penalize Compactness excessively. Second, Xebu is able to
use structure information from a schema, does not require it,
and is capable of processing some invalid documents. Apart
from the EXI format, which is still in development, none of
the well-known binary formats have all of these features.

XML Security with Binary XML
While there has been some consideration toward XML secu-
rity in the binary XML world (see, e.g., [Williams, 2007]), our
work goes further than anything prior. We have explicitly
considered the existing specifications and identified minimal
changes needed for improved support of alternate formats.
Our recommendations on efficient usage patterns for XML
security in the context of mobile computing would seem to
provide clear benefits.

Measurements in Real Environments
We performed extensive measurements with a number of
real mobile devices and real wireless networks. The analysis
in section 7.4 provides useful guidance for application de-
velopers in determining which factors are important in mo-
bile computing. We also noted that the varying conditions
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in different wireless networks and different communication
patterns make issues such as whether to apply generic com-
pression very dependent on the application itself and its en-
vironment.

Complete Available System
The implemented messaging system is a complete work, and
all of its components have been designed for mobile comput-
ing. It will be released under a F/OSS license, available to
others for use, extension, or further development.

9.2 Lessons Learned

In the final evaluation of our previous system [Kangasharju, 2006]
we noted some possible enhancements and identified future work
related to XML messaging. As a result of the previous system be-
ing mostly tested on laptops, it did not perform as well on mobile
phones as could have been hoped. For this work, we essentially
restarted the implementation from scratch, designing it based on
the ideas identified as successful while being able to ditch the bag-
gage that contributed nothing but bloat. Such a “Plan to throw
one away” approach is a well-recognized one in software engi-
neering [Brooks, 1995].

The measurements in chapter 7 demonstrate one thing: there is
no single solution for all the needs of pervasive computing. Be-
cause of this, we consider context-awareness even in the middle-
ware to be a necessary component of the future pervasive systems,
so that the system can adapt even its message syntax and used
compression methods to the available networking conditions. Un-
like the context that is traditionally considered, e.g., location or
activity, context for middleware is something related to the device
such as current network connectivity or battery energy level.

The ability of the messaging system to support a variety of net-
works, communication patterns, and message formats is a crucial
one. As the communication environment changes, so must the sys-
tem’s behavior, and the more options a system has, the more likely
it is to be able to retain good performance even in varying condi-
tions. As a counterpoint to this, we must note that such versatility
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increases code size. Our current system, including all of the mea-
surement applications, comes to slightly over 300 kB after obfus-
cation, which may be a bit high for some applications or devices.

We believe that for research work on mobile devices, Java is an
appropriate programming language to use. The ability to basically
begin programming immediately without having to learn a num-
ber of conventions that should not be necessary in a modern pro-
gramming language is a significant time-saver. Also, due to this
better accessibility, implementing a middleware platform in Java
is likely to have more impact, as the chance of adoption by others
is increased. Finally, we do not consider Java performance to be
a hindrance, but contend that it is the device itself that in the end
limits what can be usefully done.

The key points in the design of Xebu that are rarely present in
other binary formats are the presence of explicit tokens in the seri-
alized document, bounding the size of the token mappings, and
the ability of the COA to process some invalid documents. Of
these, the first is closely tied to the second, as without a bounded
token mapping there is no reason for an eviction policy. The pres-
ence of the explicit tokens makes this policy a matter for only the
serializer and not a question of interoperability. The usefulness of
the COA approach, however, is now somewhat in question, as the
proposed EXI format is able to process any invalid document.

9.3 Binary XML Future

The Xebu binary format fulfills its purpose well. It achieves a rea-
sonable size reduction, especially with a suitable schema, with-
out compromising on processing speed like generic compression
schemes do. We have identified use of the default character en-
coding system as a major bottleneck and are considering ways to
replace it. The method used in the proposed EXI format [W3C,
2007a] in particular holds a lot of promise in our opinion, and we
may replace Xebu’s character encoding with that shortly.

While Xebu as a format is surpassed by Efficient XML, and
therefore the eventual EXI, as shown by the measurements in sec-
tion 8.3, we believe it still has something to recommend for it.
Namely, the implementation is very simple, and the design of the
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format explicitly considers memory-constrained devices. Bound-
ing the processor state is especially useful in processing a stream
of messages while retaining state between the messages, a sce-
nario for which Xebu was explicitly designed and which other bi-
nary formats do not seem to consider as their state grows without
bounds. This bounded tables feature is also under consideration for
the EXI format [W3C, 2007a, appendix E].

Another reason to consider Xebu is that it is the only modern
binary format for mobile devices with a F/OSS license. Because of
this, several people working on mobile devices are already inter-
ested in Xebu, though we are not aware of any adoption in prod-
ucts. We believe this situation may continue for a while, as the first
similarly licensed EXI implementations are likely to be written for
regular computers, and efficient implementations on mobile de-
vices may take a while to appear.

In the mobile space, it is extremely probable that a binary for-
mat will be adopted in the near future, and most probably this
will be EXI. The work presented here is an extensive considera-
tion of various issues in adopting a new XML format, and should
prove useful for implementers of future EXI-based systems. Our
participation in the EXI WG also has the goal of widening the dis-
semination of these results, to the benefit of future adopters.

9.4 Future Work

In our previous work [Kangasharju, 2006] we identified three fu-
ture work items for XML messaging. Of these, the work presented
here has addressed XML security in a satisfactory way, though we
do not yet have an implementation of the more efficient authenti-
cation and encryption schemes.

Of the other future enhancements, we have performed prelim-
inary experiments on both binary-aware XML APIs and content-
based XML routing. On the binary API front our experiments in
data binding show that a system aware of the token mappings
of Xebu can perform much better than one required to do string
matching of the XML. When the problem is not in the structure
but in the content, we have already demonstrated significant gains
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from the access to the underlying byte stream and typed data sup-
port of XAS [Kangasharju and Tarkoma, 2007].

However, when considering a binary-aware API, we must also
consider the added complexity. Our preliminary experiments did
not use the dynamic tokenization of Xebu, and it is likely that an
efficient binary-aware API would have to rely only on static token
mappings extracted from a schema. Because of the uncertainty of
the benefits, we consider it better to wait for EXI to progress a bit
more and then start designing a binary-aware API for that format.
As there are some commonalities between EXI and Xebu, it might
be also possible to implement the API for Xebu as well.

On the content-based XML routing front, we have so far only
charted the current state of the art. This has revealed the existing
work to be more database-oriented and to not consider the prop-
agation of filters and especially deletions that are crucial for an
XML-based P/S system [Tarkoma and Kangasharju, 2006]. At the
moment we are not sure whether to progress towards exact match-
ing at all routers, with a more complex routing table implemen-
tation, or towards simplification of the propagated XPath filters,
with the requirement to do exact filtering at the edge nodes. Both
approaches appear to be viable avenues for future research.

In addition, as our experience in using Xebu has grown, we
have identified some deficiencies that could be reasonably recti-
fied [Kangasharju and Koskimies, 2008]. First, the elimination of
explicit token values when not all values have been yet assigned
would help with small documents. Second, the COA needs to be
somewhat reconsidered. Its current form as pure finite automata
does not work well with the hierarchical structure of XML, and
it would therefore be useful to consider some form of a stack ex-
tension. Finally, while the typed data in Xebu is usable currently,
it has proved difficult to integrate with existing type-aware XML
processing pipelines, so some reconsideration of the typed data
implementation would seem advisable.

9.5 Concluding Remarks

As a final conclusion to the work we have performed, we do not
believe that XML messaging is fundamentally incompatible with
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the world of mobile devices. Of the components that we identified
as needing improvement, the most likely one to be replaced is the
XML format. We do not see new messaging protocols to be as eas-
ily adopted, and consider the disappearance of BEEP evidence that
even sound designs have difficulties to establish themselves. The
area of XML APIs we consider to have been somewhat neglected,
and believe that there is room for innovations in API design. It is
possible that with the maturing of EXI interest in APIs will be re-
newed, as people will begin designing EXI APIs and at the same
time, we hope, improving the state of XML APIs in general.

It would also appear that mobile phones will be usable in the
future distributed systems as full-fledged members. The perfor-
mance that we measured, especially its development in the past
few years, indicates that rich applications can be written for the
current and upcoming devices. We were also delighted to note
that the stability of the operating system and language implemen-
tation have improved, so we expect programming to also become
easier, as fewer workarounds are needed. There still remains work
to do before writing pervasive applications is as easy as writing
fixed-network distributed applications, though.
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CHAPTER A

Additional Code

The complete code of the messaging system will eventually be
made available through the Helsinki Open Source Laboratory1.
However, the precise code used can be useful in fully understand-
ing some parts, especially the benchmarks of subsection 7.2.3, so
we reproduce relevant code excerpts in this appendix. We include
only the code that is relevant, and not, e.g., main or commandAction
methods, or measurement drivers when they do not contribute to
the results significantly.

A.1 The Knuth Benchmark

The code for the Knuth benchmark is a direct translation of the
C code given in [Knuth, 1997b, section 3.6]. It also includes a
ranStart method to fill the ranX array initially, but as we do not
measure the performance of that, it has been left out of this ap-
pendix.

private static final int KK = 100;
private static final int LL = 37;
private static final int MM = 1 << 30;
private static final int INNER = 300;

private static int ranX[] = new int[KK];

1http://hoslab.cs.helsinki.fi/
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private static int modDiff (int x, int y) {
return (x - y) & (MM - 1);

}

public static void ranArray (int[] aa) {
int i, j;
for (j = 0; j < KK; j++) {

aa[j] = ranX[j];
}
for (; j < aa.length; j++) {

aa[j] = modDiff(aa[j - KK], aa[j - LL]);
}
for (i = 0; i < LL; i++, j++) {

ranX[i] = modDiff(aa[j - KK], aa[j - LL]);
}
for (; i < KK; i++, j++) {

ranX[i] = modDiff(aa[j - KK], ranX[i - LL]);
}

}

// Driver code, this is timed
for (int j = 0; j < INNER; j++) {

ranArray(aa);
}

A.2 The Virtual Benchmark

interface Iface {
int s ();
int longMethodName ();
int veryLongUsefulMethodName ();

}

class A implements Iface {

private int[] aa = new int[100];
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public int longMethodName () {
KnuthBench.ranArray(aa);
return aa[0];

}

public int s () {
KnuthBench.ranArray(aa);
return aa[0];

}

public int veryLongUsefulMethodName () {
KnuthBench.ranArray(aa);
return aa[0];

}
}

class B implements Iface {
// Exact copy of A

}

private static final int INNER = 1000;

// Initialization for measurement
A a = new A();
B b = new B();
Iface ii = null;
int sum = 0;
boolean[] xs = new boolean[INNER];
for (int i = 0; i < INNER; i++) {

xs[i] = (random.nextInt() >>> 31) == 0;
}

// Driver loop
for (int j = 0; j < INNER; j++) {

switch (style.getSelectedIndex()) {
case 0: // Same

ii = a;
break;
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case 1: // Flip
ii = (j & 1) == 0 ? (Iface) a : b;
break;

case 2: // Random
ii = xs[j] ? (Iface) a : b;
break;

}
switch (method.getSelectedIndex()) {

case 0: // Short
sum += ii.s();
break;

case 1: // Long
sum += ii.longMethodName();
break;

case 2: // Longest
sum += ii.veryLongUsefulMethodName();
break;

}
}

A.3 The Net Benchmark

private static final int LOOP = 30;
private static final int FILE_SIZE = 2 * 1024 * 1024;
// data is initialized to random bytes
private static byte[] data = new byte[8192];

private static void streamServer (InputStream in, OutputStream out)
throws IOException {

while (true) {
int b = in.read();
if (b == ’l’) {

out.write(b);
out.flush();

} else if (b == ’b’) {
int n = FILE_SIZE;
while (n > 0) {
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out.write(data);
n -= data.length;

}
out.flush();
return;

}
}

}

private static void streamClient (InputStream in, OutputStream out)
throws IOException {

for (int i = 0; i < LOOP; i++) {
// Each iteration is timed
out.write(’l’);
out.flush();
int b = in.read();
}

}
out.write(’b’);
out.flush();
int n;
// This loop is timed
while ((n = in.read(data)) >= 0) {

// Do nothing
}

}

private static void httpClient (String url) throws IOException {
for (int i = 0; i < LOOP; i++) {

HttpConnection conn = (HttpConnection) Connector.open(url);
conn.setRequestMethod(HttpConnection.POST);
conn.setRequestProperty("Connection", "close");
OutputStream out = conn.openOutputStream();
out.write(’l’);
int code = conn.getResponseCode();
if (code == HttpConnection.HTTP_OK) {

InputStream in = conn.openInputStream();
int b = in.read();

}
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conn.close();
}
HttpConnection conn = (HttpConnection) Connector.open(url);
conn.setRequestMethod(HttpConnection.POST);
conn.setRequestProperty("Connection", "close");
OutputStream out = conn.openOutputStream();
out.write(’b’);
int code = conn.getResponseCode();
if (code == HttpConnection.HTTP_OK) {

InputStream in = conn.openInputStream();
int n;
while ((n = in.read(data)) >= 0) {

// Do nothing
}

}
conn.close();

}

A.4 Message Experiment Schema

The messages used in the experiments of chapter 7 are SOAP mes-
sages, each containing some headers defined by the messaging
system for addressing and correlating messages, and a body con-
taining a sequence of elements representing credit cards. The pre-
cise RELAX NG compact syntax schema for the messages is given
below. The mts:sender header block is present in messages for
which a response is expected and the mts:response header block
is present in response messages.

namespace soap = "http://www.w3.org/2003/05/soap-envelope"
namespace mts = "http://www.hiit.fi/fuego/fc/mts"
namespace exp = "http://www.hiit.fi/fuego/fc/exper"

start = element soap:Envelope {
header, body

}

header = element soap:Header {
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element mts:id { xsd:long },
element mts:target { xsd:string },
element mts:sender { xsd:string }?,
element mts:response { xsd:long }?

}

body = element soap:Body {
element mts:data {

element data {
element exp:card {

element exp:name { xsd:string },
element exp:number { xsd:string },
element exp:expYear { xsd:int },
element exp:expMonth { xsd:int }

}*
}

}
}
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