
DEPARTMENT OF COMPUTER SCIENCE
SERIES OF PUBLICATIONS A

REPORT A-2003-3

Middleware Infrastructure for Distributed Mobile
Applications

Stefano Campadello

To be presented, with the permission of the Faculty of Science of the
University of Helsinki, for public criticism in Auditorium XII, Main
Building, on April 12th, 2003, at 10 o’clock.

UNIVERSITY OF HELSINKI

FINLAND



Contact information

Postal address:
Department of Computer Science
P.O. Box 26 (Teollisuuskatu 23)
FIN-00014 University of Helsinki
Finland

Email address: postmaster@cs.Helsinki.FI

URL: http://www.cs.Helsinki.FI/

Telephone: +358 9 1911

Telefax: +358 9 191 44441

Copyright c
�

2003 Stefano Campadello
ISSN 1238-8645
ISBN 952-10-0974-8 (paperback)
ISBN 952-10-0975-6 (PDF)
Computing Reviews (1998) Classification: C.2.4,C.2.6,D.2.11,D.2.12
Helsinki 2003
Helsinki University Printing House



Middleware Infrastructure for Distributed Mobile Applications

Stefano Campadello

Department of Computer Science
P.O. Box 26, FIN-00014 University of Helsinki, Finland
Stefano.Campadello@cs.helsinki.fi

PhD Thesis, Series of Publications A, Report A-2003-3
Helsinki, March 2003, xvi+166 pages
ISSN 1238-8645
ISBN 952-10-0974-8 (paperback)
ISBN 952-10-0975-6 (PDF)

Abstract

One of the most exciting new fields in computer science at the beginning
of this millennium is represented by Nomadic Computing. This new tech-
nology empowers the user to access typically fixed network services from
any place. Mobile users access information services regardless of their
physical location or movement behavior and independently of temporal
factors. A boost to the Nomadic Computing comes from the improvement
of wireless data technology, which began with GSM data communication
and now is leading to the deployment of UMTS networks.

Thus, wireless technology and networked applications are starting to find
a common path to give answers to the needs of Nomadic users. Unfortu-
nately this merge has been mostly a collision rather than a smooth mar-
riage. Applications were downgraded to let them fit in small devices with
poor connectivity, and the results have often been disappointing.

This dissertation focuses on these topics. Firstly, a background overview
introduces the challenges that mobile distributed applications face and
presents an overview of the main protocols and tools existing in dis-
tributed computing. The improvement proposed in literature to address
the described challenges are also discussed. Then Java RMI is taken as an
example and its problems in a wireless context are analyzed. We propose
several improvements to it, we show a prototype implementation giving
protocol and messaging details and we give a complete performance eval-
uation. Secondly, we propose a new approach to Nomadic Computing. A
new paradigm shift is suggested, where it is no longer the user who has to



adapt to the different scenarios that he may find during his “nomadism”,
but it is the service that modifies itself to adapt to the current situation.
This new way to design services needs a totally new infrastructure, and
brings many new research challenges. We describe them, and following
the results of the first part of the dissertation, we suggest an architecture
to address them.

Computing Reviews (1998) Categories and Subject Descriptors:
C.2.4 Computer-Communication Network: Distributed System
C.2.6 Computer-Communication Network: Internetworking
D.2.11 Software Engineering: Software Architectures
D.2.12 Software Engineering: Interoperability

General Terms:
Design, Experimentation, Performance, Standardization

Additional Key Words and Phrases:
Middleware, Nomadic Computing, Distributed System, Communication,
Software Architecture



Acknowledgments

This work has been a long journey, that started a few years ago in a foggy af-
ternoon in my hometown in Italy and finishes in a sunny but cold afternoon in
Finland. And like all journeys, it would have not be possible without the help of
many persons.

First of all I have to thank Professor Kimmo Raatikainen, my supervisor but
also my mentor. With his support and suggestions he made this journey not only
possible but also enjoyable. His skill to read my manuscripts while flying around
the world still amuses me.

This work has been carried out mainly at the Department of Computer Sci-
ence of the University of Helsinki. I would like to express my gratitude to all
those persons who are making the department an excellent and friendly working
environment. I would like to thank Professors Martti Tienari and Timo Alanko,
for their support during my first months in a new country and for having intro-
duced me to their projects, and Jukka Paakki for running the department. My ap-
preciation goes also to Oskari Koskimies and Pauli Misikangas for having shared
with me many fruitful discussions. A special mention goes to Heikki “Helluli”
Helin for his support and valuable comments and suggestions and for having
designed the style of this thesis. It has been delightful sharing many travels with
him and Heimo Laamanen during my FIPA experience: I will miss those mem-
orable steaks. Thanks also to Marina Kurtén for correcting the language of this
dissertation.

My gratitude goes also to my colleagues at Nokia Research Center in
Helsinki. I’m especially thankful to Titos Saridakis and Michael Przybilski for
their encouragement and pleasant company. I’m obligated to Heikki Saikkonen
and Tapio Tallgren from Nokia Corporation for allowing and encouraging me to
finalize this work and for providing an excellent research environment.

A special tribute goes to my friends, especially to Francesco Pento and the
“laiset” group. Without them the word “free time” would be meaningless.

Above all, I want to thank all my family for their love and support.

Papà, questo lavoro è dedicato a te.

Helsinki, February 2003

Stefano Campadello

iii



“Deus, dona mihi serenitatem accipere res quae non possum mutare, forti-
tudinem mutare quae possum atque sapientiam differentiam cognoscere”



Contents

I INTRODUCTION

1 Introduction 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Overview of the Dissertation . . . . . . . . . . . . . . . . . . 5
1.4 Research History . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Mobile User and Mobile Code . . . . . . . . . . . . . . . . . . 6

II BACKGROUND OVERVIEW

2 The Challenges in Mobile Distributed Applications 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 The Challenges in Mobile Computing . . . . . . . . . . . . . 12

2.2.1 Communication Issues . . . . . . . . . . . . . . . . . . 13
2.2.2 Mobility Issues . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Devices Issues . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.4 Security Issues . . . . . . . . . . . . . . . . . . . . . . 15

3 Middleware for Distributed Computing 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Remote Procedure Calls . . . . . . . . . . . . . . . . . . . . . 18
3.3 Java RMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 RMI in Nomadic Computing . . . . . . . . . . . . . . 21
3.4 OMG CORBA . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.1 CORBA in Nomadic Computing . . . . . . . . . . . . 24
3.5 Microsoft COM and DCOM . . . . . . . . . . . . . . . . . . . 24

3.5.1 DCOM for Nomadic Users . . . . . . . . . . . . . . . 26
3.6 WAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



vi CONTENTS

3.6.1 Wireless Application Environment (WAE) . . . . . . . 27
3.6.2 Wireless Session Protocol (WSP) . . . . . . . . . . . . 27
3.6.3 Wireless Transaction Protocol (WTP) . . . . . . . . . . 28
3.6.4 Wireless Transport Layer Security (WTLS) . . . . . . 28
3.6.5 Wireless Datagram Protocol (WDP) . . . . . . . . . . 28
3.6.6 WAP 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . 28

III INFRASTRUCTURE FOR NOMADIC APPLICATIONS

4 Enhancing Infrastructure for Nomadic Applications 33
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Enhancing the Communication Layer . . . . . . . . . . . . . 33

4.2.1 Improving TCP over Wireless Links . . . . . . . . . . 33
4.2.2 Improving the Client-Server Paradigm . . . . . . . . 35
4.2.3 Enhancing both Sides: The Mowgli Project . . . . . . 40

4.3 Addressing the Mobility Issues . . . . . . . . . . . . . . . . . 44
4.3.1 Mobile IP . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.2 Mobility Support in IPv6 . . . . . . . . . . . . . . . . 48

4.4 Enhancing the Middleware Layer . . . . . . . . . . . . . . . . 50
4.4.1 Dolmen . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.2 Wireless CORBA . . . . . . . . . . . . . . . . . . . . . 53
4.4.3 Alice Project . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Wireless Java RMI 61
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 RMI Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 Analysis of an RMI Call . . . . . . . . . . . . . . . . . 62
5.2.2 RMI Use of TCP Connections . . . . . . . . . . . . . . 64

5.3 Optimization of Java RMI for Slow Wireless links . . . . . . 65
5.3.1 Optimizations . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.2 Maintaining Compatibility . . . . . . . . . . . . . . . 65
5.3.3 Use of Mediators . . . . . . . . . . . . . . . . . . . . . 66

5.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 67
5.4.1 Dynamic Run-time Generation of Generic Stub . . . . 69

5.5 The Wireless RMI Protocol ( � RMI) . . . . . . . . . . . . . . . 71
5.5.1 Lookup Request . . . . . . . . . . . . . . . . . . . . . 72
5.5.2 Lookup Answer . . . . . . . . . . . . . . . . . . . . . . 73
5.5.3 Invocation Request . . . . . . . . . . . . . . . . . . . . 74
5.5.4 Invocation Result . . . . . . . . . . . . . . . . . . . . . 75

5.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 75



CONTENTS vii

5.6.1 Test Arrangements . . . . . . . . . . . . . . . . . . . . 75
5.7 Summary of Performance Results . . . . . . . . . . . . . . . . 76

5.7.1 Lookup results . . . . . . . . . . . . . . . . . . . . . . 76
5.7.2 Invocation results . . . . . . . . . . . . . . . . . . . . . 79

5.8 Mobile RMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.9 The Nomadic RMI Protocol ( � RMI) . . . . . . . . . . . . . . . 84

5.9.1 The � RMI Protocol Messages . . . . . . . . . . . . . . 84
5.9.2 Protocol Operations . . . . . . . . . . . . . . . . . . . 87
5.9.3 Error Behaviour . . . . . . . . . . . . . . . . . . . . . . 89

5.10 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Middleware for Nomadic Applications 95
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 Middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3 Service Advertisement and Discovery . . . . . . . . . . . . . 96

6.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3.2 Bluetooth . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.3 Jini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.4 Salutation . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.5 SLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.6 UPnP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Pervasive Computing . . . . . . . . . . . . . . . . . . . . . . . 109
6.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4.2 The Portolano Project . . . . . . . . . . . . . . . . . . 109
6.4.3 Oxygen . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4.4 Endeavour Expedition . . . . . . . . . . . . . . . . . . 110
6.4.5 MosquitoNet . . . . . . . . . . . . . . . . . . . . . . . 111
6.4.6 PIMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

IV DYNAMIC NOMADIC-AWARE APPLICATIONS

7 From Adaptation to Native Support 115

8 Agents in Personal Mobility 117
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.1.1 Basic Elements . . . . . . . . . . . . . . . . . . . . . . 117
8.2 Telecommunications Scenarios . . . . . . . . . . . . . . . . . 118

8.2.1 The Roaming in Detail . . . . . . . . . . . . . . . . . . 120
8.3 Kiosk Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.3.1 Booking a Flight though a Kiosk Provider . . . . . . . 123



viii CONTENTS

8.3.2 Sending a Fax . . . . . . . . . . . . . . . . . . . . . . . 123
8.4 Service Invitations . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.4.1 Service Invitation Implementation . . . . . . . . . . . 125
8.4.2 Refinement of the Definitions . . . . . . . . . . . . . . 126

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9 Dynamic Composition of Execution Environment 129
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.2 The problem space . . . . . . . . . . . . . . . . . . . . . . . . 129
9.3 Adaptation Through Dynamic Aggregation . . . . . . . . . . 130

9.3.1 The Basic Modules . . . . . . . . . . . . . . . . . . . . 131
9.3.2 Basic module communication and advertisement . . 132
9.3.3 Application Logic . . . . . . . . . . . . . . . . . . . . . 133
9.3.4 The Personal Agent . . . . . . . . . . . . . . . . . . . . 133

9.4 A Sample Application: Incoming News . . . . . . . . . . . . 133
9.4.1 Application Logic . . . . . . . . . . . . . . . . . . . . . 134
9.4.2 Personal Profile . . . . . . . . . . . . . . . . . . . . . . 134
9.4.3 Basic Modules . . . . . . . . . . . . . . . . . . . . . . . 134

9.5 Example of Adaptation . . . . . . . . . . . . . . . . . . . . . . 134
9.6 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.7 Proof of Concept . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.7.1 A prototype implementation . . . . . . . . . . . . . . 137
9.7.2 Declaring a Basic Module . . . . . . . . . . . . . . . . 137
9.7.3 Defining a Service . . . . . . . . . . . . . . . . . . . . 138
9.7.4 Implementing the Service . . . . . . . . . . . . . . . . 141
9.7.5 The Personal Agent . . . . . . . . . . . . . . . . . . . . 145
9.7.6 The Client . . . . . . . . . . . . . . . . . . . . . . . . . 148

V CONCLUSIONS

10 Conclusions 153
10.1 The Journey of this Dissertation . . . . . . . . . . . . . . . . . 153
10.2 The World Outside . . . . . . . . . . . . . . . . . . . . . . . . 154
10.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 154



List of Figures

1.1 The wireless layers . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Network communication with the Remote Procedure Call. . 19
3.2 Java RMI Layers . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Java RMI Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 CORBA Architecture . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 DCOM objects in the same process . . . . . . . . . . . . . . . 25
3.6 DCOM objects in the different processes . . . . . . . . . . . . 25
3.7 DCOM objects in different machines . . . . . . . . . . . . . . 25
3.8 WAP Programming Model . . . . . . . . . . . . . . . . . . . . 26
3.9 WAP Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.10 WAP Architecture 2.0 . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Range of adaptation strategies . . . . . . . . . . . . . . . . . . 36
4.2 The CODA file system . . . . . . . . . . . . . . . . . . . . . . 37
4.3 The Monads architecture . . . . . . . . . . . . . . . . . . . . . 38
4.4 The Odyssey client architecture . . . . . . . . . . . . . . . . . 39
4.5 Overview of Mowgli Communication Architecture . . . . . . 41
4.6 Overview of Mowgli WWW . . . . . . . . . . . . . . . . . . . 43
4.7 Mobile IP entities . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.8 Agent Discovery Protocol . . . . . . . . . . . . . . . . . . . . 46
4.9 Registering through a Foreign Agent . . . . . . . . . . . . . . 47
4.10 IP in IP encapsulation . . . . . . . . . . . . . . . . . . . . . . . 48
4.11 Minimal encapsulation . . . . . . . . . . . . . . . . . . . . . . 49
4.12 Dolmen Architecture . . . . . . . . . . . . . . . . . . . . . . . 51
4.13 Protocols in invocations over a wireless network . . . . . . . 53
4.14 Architecture for Terminal Mobility in CORBA . . . . . . . . . 54
4.15 GIOP Tunneling Protocol Architecture . . . . . . . . . . . . . 55
4.16 Sequence of Handoff . . . . . . . . . . . . . . . . . . . . . . . 57
4.17 The ALICE Architecture . . . . . . . . . . . . . . . . . . . . . 58



x LIST OF FIGURES

5.1 The trace of the “sayHello” remote invocation . . . . . . . . 62
5.2 Wireless RMI scenario . . . . . . . . . . . . . . . . . . . . . . 67
5.3 Using mediators to optimize the remote invocation . . . . . 68
5.4 The normal RMI structure . . . . . . . . . . . . . . . . . . . . 72
5.5 Optimized RMI structure . . . . . . . . . . . . . . . . . . . . . 72
5.6 Summary of the lookup test in a Windows environment . . . 78
5.7 The difference between original RMI lookup and optimized

lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.8 Summary of the void ping() test in a Windows environment 79
5.9 Invocation times . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.10 The Handover sequence diagram for � RMI . . . . . . . . . . 88
5.11 The protocol aborting an ongoing handover procedure . . . 90
5.12 The protocol recovering from a loss of IH message . . . . . . 90
5.13 The protocol recovering from a loss of IH message during a

second handover . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.14 An example of the Nomadic RMI protocol. . . . . . . . . . . 93

6.1 Middleware Architecture . . . . . . . . . . . . . . . . . . . . . 96
6.2 A Bluetooth scenario . . . . . . . . . . . . . . . . . . . . . . . 98
6.3 A scatternet of six piconets . . . . . . . . . . . . . . . . . . . . 99
6.4 Jini Services on top of RMI . . . . . . . . . . . . . . . . . . . . 100
6.5 The join process . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.6 The lookup process . . . . . . . . . . . . . . . . . . . . . . . . 102
6.7 Service usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.8 Model of The Salutation Manager . . . . . . . . . . . . . . . . 105
6.9 Use of RPC in Salutation . . . . . . . . . . . . . . . . . . . . . 106
6.10 Personality Alternatives . . . . . . . . . . . . . . . . . . . . . 107
6.11 SLP Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.1 A normal subscription . . . . . . . . . . . . . . . . . . . . . . 118
8.2 The user roams . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.3 The User registers herself to the Visited Service Provider . . 119
8.4 The user obtains the service . . . . . . . . . . . . . . . . . . . 120
8.5 Agents negotiate QoS . . . . . . . . . . . . . . . . . . . . . . . 121
8.6 After negotiation the Mobile Agent chooses a Service Provider122
8.7 Kiosk Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.8 Booking a flight . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.9 Service Invitations . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.10 The News Service is active . . . . . . . . . . . . . . . . . . . . 125



LIST OF FIGURES xi

9.1 Adaptation through dynamic configuration of the execu-
tion environment . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.2 Service Deconstruction . . . . . . . . . . . . . . . . . . . . . . 132
9.3 The scenario of the proof of concept . . . . . . . . . . . . . . 137
9.4 The message displayed with the Monitor class . . . . . . . . 149
9.5 The message displayed with the Serial class . . . . . . . . . . 149



xii LIST OF FIGURES



List of Tables

5.1 Invocation data traffic . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Hardware used in the measurements . . . . . . . . . . . . . . 76
5.3 Test cases set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4 Test Environment . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Comparison between normal RMI and optimized RMI for
the Windows Lookup case . . . . . . . . . . . . . . . . . . . . . 77

5.6 Comparison between normal RMI and optimized RMI for
the Linux lookup case . . . . . . . . . . . . . . . . . . . . . . . 77

5.7 Comparison between normal RMI and optimized RMI in
the Windows environment . . . . . . . . . . . . . . . . . . . . 82

5.8 Comparison between normal RMI and optimized RMI in
the Linux environment . . . . . . . . . . . . . . . . . . . . . . 83

9.1 Application Logic . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.2 desktop Basic Modules . . . . . . . . . . . . . . . . . . . . . . 135
9.3 Smart Phone Basic Modules . . . . . . . . . . . . . . . . . . . 135



xiv LIST OF TABLES



List of Programs

5.1 DynStub.java . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 HandlerClass.java . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.1 The Java Interface for a generic Basic Module . . . . . . . . . 138
9.2 The Java Interface for a generic Output Service . . . . . . . . 138
9.3 AMessage class listing (continued on next page) . . . . . . . 139
9.4 The Monitor Interface . . . . . . . . . . . . . . . . . . . . . . . 141
9.5 The Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . 141
9.6 The implementation class of the Monitor Interface . . . . . . 142
9.7 The helper GUI class listing . . . . . . . . . . . . . . . . . . . 143
9.8 The listing of the ASerialOutput class . . . . . . . . . . . . . 144
9.9 The Personal Agent interface . . . . . . . . . . . . . . . . . . 145
9.10 The listing of the ServiceCouple class . . . . . . . . . . . . . . 145
9.11 The listing of the AP class . . . . . . . . . . . . . . . . . . . . 147
9.12 The listing of the AClient class . . . . . . . . . . . . . . . . . 148



xvi

LIST OF PROGRAMS



Part I

Introduction





Chapter 1

Introduction

Education is an admirable thing, but it is well to remember from time to time that
nothing that is worth knowing can be taught.

- Oscar Wilde

1.1 Introduction

One of the most exciting new fields in computer science at the beginning
of this millennium is represented by Nomadic Computing. This new tech-
nology empowers the user to access typically fixed network services, such
as email, calendar information or web pages, from any place. Mobile users
access information services regardless of their physical location or move-
ment behavior and independently of temporal factors.

A boost to the Nomadic Computing comes from the improvement of wire-
less technology. During the last decade GSM [85] has introduced a data
communication [31] that, even if of limited capabilities, is massively avail-
able. New protocols with increased performance have followed, such as
High Speed Circuit Switched Data (HSCSD) [42, 44] and General Packet
Radio Service (GPRS) [43], and Universal Mobile Telecommunications
System (UMTS) [26, 94] is expected to be delivered soon.

Thus, wireless technology and networked applications are starting to find
a common path to give answers to the needs of Nomadic users. Unfortu-
nately this merger has been mostly a collision rather than a smooth mar-
riage. Applications were downgraded to let them fit in small devices with
poor connectivity, and the results have often been disappointing.



4 CHAPTER 1. INTRODUCTION

Another exciting challenge in this scenario goes under the name of Inter-
operability. Since the computer revolution has begun to change our life,
different programming languages, protocols and hardware devices have
been designed, implemented and used, making the computer-world lively
but chaotic.

Maintaining interoperable devices in typical nomadic computing environ-
ments is a task not yet faced by the computer community. It is true that
much work has been done so far to improve the performance of TCP/IP
communication over wireless links, for example, as we will discuss later
in this dissertation, but what is missing is a systematic review of all the
layers that compound an application in a nomadic environment.

1.2 Motivation

This work will try to fill this lack, at least to some extent. The main goal of
this dissertation is to convince the reader that careful design is needed
if the word “wireless” is part of the game, whenever the subject is an
application, a communication protocol or a middleware component (Fig-
ure 1.1). For this purpose we will start describing the different challenges
that wireless and mobile computing pose in each of these layers. We will
present some of the solutions proposed in the literature, and, if the issue
has not been addressed already, we suggest our own solutions.

APPLICATIONSAPPLICATIONS

MIDDLEWARE
(IIOP/RMI/ACTIVE-X)

MIDDLEWARE
(IIOP/RMI/ACTIVE-X)

RADIO LINKRADIO LINK

TRANSPORT LAYER
(TCP/IP)

TRANSPORT LAYER
(TCP/IP)

Figure 1.1: The wireless layers

Later on this dissertation becomes more visionary, and tries to suggest a
new approach to Nomadic Computing. A new paradigm shift is intro-
duced, where it is no longer the user who has to adapt to the different sce-



1.3. OVERVIEW OF THE DISSERTATION 5

narios that he may find during his “nomadism”, but it is the service that
modifies itself to adapt to the current situation. This new way to design
services needs a totally new infrastructure, and brings many new research
challenges. We will describe them, and following the results of the first
part of the dissertation, we will suggest an architecture to address them.

1.3 Overview of the Dissertation

The rest of this dissertation is divided into five parts. The following part
contains Chapters 2 and 3 and presents a background overview. Chapter 2
introduces the challenges that mobile distributed applications face, while
Chapter 3 gives an overview of the main protocols and tools existing in
Distributed Computing.

Part three (Chapters 4,5,6) addresses the infrastructure for Nomadic Ap-
plications. Chapter 4 gives an overview of the improvement proposed in
literature to address the challenges described in the previous part. Chap-
ter 5 is one of the main contributions of this thesis. It takes Java RMI
as an example and analyzes its problems in a wireless context, proposes
several improvements, shows a prototype implementation giving proto-
col and messaging details and gives a complete performance evaluation.
Chapter 6 presents new architectures devoted to Nomadic Computing and
introduces the concepts of Pervasive Computing.

The fourth part presents a new paradigm to allow a dynamic adaptation
of applications to a nomadic environment. Chapter 7 gives the reader the
motivation for this new approach. Chapter 8 introduces the use of Agent
technology in Personal Mobility scenarios, while Chapter 9 enters into de-
tails of the proposed new architecture, describing a proof of concept, as
well.

The final part of the thesis (Chapter 10) draws the conclusions and makes
the final remarks.



6 CHAPTER 1. INTRODUCTION

1.4 Research History

This thesis, even if written in the form of a monograph, consists of sev-
eral conceptual ideas that the author has developed during his research
and presented in international conferences or fora. Preliminary contribu-
tions have been shared with the Mowgli project (see Section 4.2.3) at the
University of Helsinki and within the Dolmen project (see Section 4.4.1)
where the author implemented part of the MDBR.

Influenced by this knowledge the author has designed, implemented and
evaluated Wireless Java RMI, here introduced in Chapter 5 but already
presented, in less details, in [21, 22]. This work has been carried out in the
framework of the Monads project (see Par. 4.2.2.1). Other results obtained
by the author from the Monads project have been presented in [20].

The interest of the author in the role of agents in a nomadic environment
is influenced by his participation in the FIPA standard committees, es-
pecially the ones addressing the adaptation of FIPA specifications to the
nomadic environment. The contributions of the author have been incor-
porated in the resulting specifications [37, 38, 39]. The work done in FIPA
has given motivation for two other articles written by the author, [62, 50].
Nevertheless, all these contributions regarding agents are not fully pre-
sented in this dissertation. For a complete presentation we refer to [49].

The author’s ideas presented in the fourth part get their roots from these
previous works. Chapter 8 has been essentially presented in [23] while an
initial version of Chapter 9 has been published in [19].

1.5 Mobile User and Mobile Code

In this dissertation we will focus on the nomadic users and their needs.
In this respect, we consider the applications they use as part of their no-
madism, being them situated, for example, on mobile devices.

A different approach is to consider a mobile application as an application
where the code moves from site to site, mainly in a wireline environment,
regardless of the position of the end user. Examples of this approach are,
for instance, platforms for mobile agents. There are many conferences,
books and fora devoted to mobile agents, and even the Java platform, by
mean of Enterprise Java Beans (EJB) [73] or Jini (see Section 6.3.3), consid-
ers mobile code.



1.5. MOBILE USER AND MOBILE CODE 7

In this dissertation we keep our focus on Nomadic applications rather than
on mobile code, but in our belief this two visions will soon merge, as the
work done in FIPA, as cited before, proves. It is not by chance that the ar-
chitecture we introduce in the last chapters of this dissertation uses mobile
code.



8 CHAPTER 1. INTRODUCTION



Part II

Background Overview





Chapter 2

The Challenges in Mobile
Distributed Applications

Okay, Houston, we’ve had a problem here.
- John L. Swigert, Command module pilot, Apollo XIII

2.1 Introduction

The concept of Nomadic Computing [9, 59], comes from a user desire: to
have access to the preferred computer service “Anytime, Anywhere”. The
proliferation of computing devices such as laptops or palmtops and their
increase of computational power and usability has given the users the pos-
sibility to move around the world bringing with them their own equip-
ment. The demand to be able not only to carry the devices, but also to use
them during the move was a natural consequence.

As Kleirock says, “The essence of a nomadic environment is to automati-
cally adjust all aspect of user’s computing, communications, and storage
functionality in a transparent and integrated fashion” [58].

The evolution of wireless technology has been as rapid, and the meeting
between telecommunications and computer science has been fast and rich,
but not without pain. Unfortunately, in fact, the usual assumption that
engineers and computer scientists had before was that networking meant
to be “always connected”. And this is not the case anymore. Moving from
the office to home, reading e-mail in an airport lounge or writing a report
in a train cannot be considered as an exceptional case nowadays. Thus,



12 CHAPTER 2. THE CHALLENGES IN MOBILE DISTRIBUTED APPLICATIONS

in networking, the disconnected mode cannot be considered a failure any
longer, but one of the possible user scenarios.

The request for a transparent adaptation of these changes involves location
transparency, communication device independence, adaptation to com-
munication bandwidth variation, and mobility transparency. The applica-
tions willing to address the Nomadic user have to be adaptive, evolving
with the given quality of service and computing capabilities at any time.

It is clear then that the conjunction between wireless technology and com-
puter science opens many new bright scenarios, but also leads to numer-
ous new challenges. They are analyzed in the following sections.

2.2 The Challenges in Mobile Computing

Mobile Computing can be defined as a paradigm of computing in which
users who carry portable devices have access to information services
through a shared infrastructure, regardless of their physical location or
movement behavior. There are many examples of scenarios that exploit
the concepts of Mobile Computing:

the possibility to use a laptop computer during travel with the ability
to upload the work done once disembarked from the aircraft

the possibility to follow financial information independently from
the actual location, thus being able to take the right actions on time.
For instance, selling or buying stocks requires perfect timing

being able to instantiate a communication network during a disas-
ter recovery mission. For example, fulfill the need to coordinate the
search of survivors after a major earthquake

the possibility to access Internet services and information while on
the move. For instance, to be able to read e-mail at any time or to
obtain the address of the restaurant in a foreign town (and maybe
the description of the fastest way to reach the place).

It could seem that the potential of this new paradigm is limited only by
the imagination on the service designers, but not everything is ready for



2.2. THE CHALLENGES IN MOBILE COMPUTING 13

the revolution. Most of the services the mobile users want to access are de-
signed to be static and accessed by static users. But, while traditional tech-
niques are based on the assumption that the location of hosts in distributed
systems does not change and the connection among hosts does not change
either during the computation, in a mobile environment these assump-
tions are rarely appropriate. Thus building the infrastructure needed to
enable Mobile Computing leads to many challenges [40], as described in
the following sections.

2.2.1 Communication Issues
Mobile computers and devices require a wireless network to access the
network while on the move, and wireless communication faces more ob-
stacles than wired communication because the surrounding environment
interacts with the radio signal, introducing echoes, noises or even blocking
it. As a result, wireless communication is characterized by lower band-
widths, higher error rates, and frequent disconnections. These factors can
furthermore increase communication latencies resulting from retransmis-
sions, transmission timeout delays and error-control protocols ([2, 53]). In
addition, the wireless connection can degrade or be lost while the users
move, and if the number of mobile users in the wireless network is ele-
vated, the network capacity can be overloaded at the service’s expense.

2.2.1.1 Low Bandwidth

Wireless networks deliver lower bandwidth than wired networks and are
two or three orders of magnitude slower. Sending a long file to the wire-
less network, for instance, could require very long time, and the chance to
experience a network failure increases with time. A graphical user inter-
face can act in a bizarre way if accessed remotely due to the length of the
response-time, becoming useless to the user.

2.2.1.2 High Bandwidth Variability

As a consequence, mobile devices experience much greater variation in
network bandwidth than traditional computers. The bandwidth can in-
crease (or decrease) of one to four orders of magnitude, depending on
whether the system is plugged in a wired network or in a wireless do-
main. A video conference, for example, is possible while the network is



14 CHAPTER 2. THE CHALLENGES IN MOBILE DISTRIBUTED APPLICATIONS

wired, but cannot sustain the same quality of service when the system is
unplugged and the transmission goes over a wireless network.

2.2.1.3 Disconnections

Computer systems depend heavily on a network connection and they may
not function properly if the network experiences failures. For example,
distributed file systems may lock up waiting for a remote server to allow
access, or an application can simply fail if it does not obtain any answer
from the network. Once the network disconnection ends, another major
problem is the recovery phase. The disconnected terminal must be rein-
tegrated in the network, and possible conflicts due, for example, to stale
data, must be resolved.

2.2.2 Mobility Issues

The ability to change locations while connected to a network increase the
volatility of some information. Data considered static for stationary sys-
tems becomes dynamic in Mobile Computing. For example, a stationary
computer could be configured statically to use the printer in the next room,
while a mobile computer needs a mechanism to find the available printers
and to select one.

Mobility introduces several problems: A mobile computer’s network ad-
dress changes dynamically, its current location affects configuration pa-
rameters, and its communication bandwidth varies according to its posi-
tion [8, 17, 102].

2.2.2.1 Address Migration

In Mobile Computing, the physical location of a mobile unit does not de-
termine its network address. In fact, while the users move, their mobile
devices will use different access points to the network, and thus different
network address. In classical networking, once an address for a computer
is known to the system, it is cached with long expiration time. This is-
sue poses a challenge in Mobile Computing since to communicate with a
mobile computer, messages must be sent to the most recent address.



2.2. THE CHALLENGES IN MOBILE COMPUTING 15

2.2.2.2 Location-dependent Information

Since traditional computers do not move, information that depends on
location, such as local printers and local conventions (as local currency),
is typically configured statically. The challenge is to find these pieces of
information automatically and to configure the device conforming to the
actual location.

2.2.3 Devices Issues

Classical systems and applications are usually designed for static devices.
Mobile devices need to be small, light, durable and being operational un-
der wide environmental conditions. They require minimal power usage
for a long battery life.

2.2.3.1 Power Limitation

Energy supply is the major bottleneck for mobile wireless computers. Bat-
teries are the largest single source of weight in a portable computer, and
users desire to carry light devices. On the other hand, longer battery life
is another feature requested by mobile users. Thus, energy efficiency is a
necessity, and a challenge, both at the level of hardware, and software.

2.2.3.2 User Interface and Display Issues

Size constraints on a mobile device force to use small user interfaces. Small
display size is a serious problem, especially for users who want to access
remote information services, such as those provided on the Internet [64].
But input devices need also to be redesigned, since the shortage of surface
area in modern portable devices suggests to sacrifice large input devices,
like keyboards, in favor of analog input, such as pen-based interfaces. This
redesign poses new challenges, especially in hand-writing recognitions.

2.2.4 Security Issues

Mobile Computing imposes special security requirements, particularly
with regard to identification and certification [7, 47, 63].



16 CHAPTER 2. THE CHALLENGES IN MOBILE DISTRIBUTED APPLICATIONS

Because the device is not the person, technology can hide the identities
of the communication parties. Ensuring that the persons at the other end
of the communication channel are who they assert they are is critical, for
example, in billing. Privacy is at risk when utilizing insecure channels,
as is possible in wireless communication. Applications are at risk when
new data is downloaded from an untrusted site and data is at risk when
downloaded to an untrusted side. In general, Mobile Computing raises all
the security challenges that can apply to Computer Science.



Chapter 3

Middleware for Distributed
Computing

And how is education supposed to make me feel smarter? Besides, every time I
learn something new, it pushes some old stuff out of my brain.

- Homer Simpson

3.1 Introduction

In the previous chapter we described the major challenges that designers
of applications for a nomadic user have to face. But there is also another
level of interaction in modern computing that is affected by mobility and
a wireless environment: Distributed Computing.

The rise of networked workstations and fall of the centralized mainframe
has been the most dramatic change in the last two decades of informa-
tion technology. As the number of computer networks has increased, the
concept of distributing services among multiple computers has become in-
creasingly possible and desirable. This new concept has been widely im-
plemented, and modern operating systems, like Unix, embed distributed
services inside the system.

In this chapter we focus our attention on a subset of all the vast field of dis-
tributed computing and distributed systems, which deals with the man-
agement of remote procedure calls or objects.

The ability to access remote resources as they were local is of particular



18 CHAPTER 3. MIDDLEWARE FOR DISTRIBUTED COMPUTING

interest to Nomadic users, since this paradigm could automatically hide
the communication details to the developers and the users. Unfortunately,
as we will see, often the implementations of this concept do not fit well in
wireless and mobile environment.

In the following sections we illustrate the main protocols in use and the
reasons why they fail in providing useful service to Nomadic users.

3.2 Remote Procedure Calls

Remote Procedure Calls (RPC) [93] is a paradigm for providing commu-
nication across a network between programs written in a high-level lan-
guage. RPC implements a logical client-to-server communication system
designed specifically for the support of network applications. The idea of
RPC has been discussed in the literature since 1976 [103]. Nelson’s doc-
toral dissertation [77] presents extensively the design possibilities for an
RPC system.

The primary purpose of RPC is to make distributed computing easy. It was
previously observed that the construction of communicating programs
was a very difficult task, even for researchers with a good knowledge
of the distributed computing concept. Since procedure calls are a well-
known and a well-understood mechanism for transfer of control and data
inside a program running on a single machine, it was proposed to extend
the same mechanism to transfer data across a network.

The flow of control in a RPC call is depicted in Figure 3.1. The control goes
logically through two processes: the caller process and the server process.
First, the caller process sends a call message that includes the procedure
parameters to the server process. Then the caller process waits for a reply
message (synchronous call). Next, a process on the server side, which
is dormant until the arrival of the call message, extracts the procedure
parameters, computes the results, and sends a reply message. The server
waits for the next call message. Finally, a process on the caller receives the
reply message, extracts the results of the procedure, and the caller resumes
execution.

RPC presumes the existence of a low-level transport protocol, such as
TCP/IP or UDP, for carrying the message data between communicating
programs. RPC provides an authentication process that identifies the
server and client to each other and includes a slot for the authentication



3.3. JAVA RMI 19

Figure 3.1: Network communication with the Remote Procedure Call.

parameters on every remote procedure call so that the caller can identify
itself to the server. The client package generates and returns authentica-
tion parameters.

The RPC interface is generally used to communicate between processes on
different workstations in a network. However, RPC works just as well for
communication between different processes on the same workstation.

The use of the RPC protocol is declining, since its main implementations
are not written in object-oriented programming languages, thus the inter-
est in a wireless or mobile version of RPC is low. In the next session we
describe Java RMI, which is seen as the modern and object oriented ver-
sion of RPC.

3.3 Java RMI

Remote Method Invocation (RMI) [69] is the object-oriented version of
RPC. RMI is essentially the same concept that allows the programmer to
transparently invoke methods on objects that reside on another computer.
In this way, the object-oriented paradigm is preserved in distributed com-
puting.



20 CHAPTER 3. MIDDLEWARE FOR DISTRIBUTED COMPUTING

Java RMI was designed to simplify the communication between two ob-
jects in different Java Virtual Machines (VM) by allowing transparent calls
to methods in remote virtual machines. Figure 3.2 depicts the protocol
stack in the Java RMI communication.

Server Program

Skeleton (JDK 1.1)

Remote Reference Layer

Client Program

Stub

Transport Layer The Internet

Remote Reference Layer

Transport Layer

Logical Path

Figure 3.2: Java RMI Layers

Once a reference of a remote object is obtained, it is possible to call meth-
ods of that object in the same way as methods of local objects. Since the
remote object resides in a different virtual machine, an RMI Registry is
needed to manage remote references. When an RMI server wants to make
its local methods available to remote objects, it registers those methods to
the local registry. A remote object connects to the remote registry, which
listens to a well-known socket, and obtains a remote reference.

Java RMI is built on top of a transport layer, which provides abstract RMI
connections built on top of TCP connections. When an RMI connection is
opened, the transport layer either opens a new TCP connection, or reuses
an existing one if a free one is available. If the reused connection has been
idle for more than the time of a round-trip, the transport layer first sends
a ping packet to make sure the connection is still working. Once an ac-
knowledgment for the ping packet is received, the new RMI connection is
established. If a TCP connection has not been used by any RMI connec-
tions for a while, it is closed.

The general Java RMI architecture is depicted in Figure 3.3. First a server
creates a remote object and registers it to the local Registry (1). The client
then connects to the remote Registry (2) and obtains the remote reference.
At this point, a stub of the remote object is transferred from the remote vir-
tual machine to the client virtual machine. This happens only if the stub
is not yet present in the local VM. When the client (3) invokes a method at
a remote object, the method is actually invoked at the local stub. The stub
marshals the parameters and sends a message (4) to the associated skele-



3.4. OMG CORBA 21

Client ObjectClient Object

StubStub

RegistryRegistry

ServerServer

Remote ObjectRemote Object

SkeletonSkeleton

1

3

8
5

6

7

4

Client Virtual Machine Server Virtual Machine

2

Figure 3.3: Java RMI Protocol

ton on the server side. The skeleton unmarshals the parameters and in-
vokes the appropriate method (5). The remote object executes the method
and passes the return value back to the skeleton (6), which marshals it and
sends a message to the associated stub on the client side (7). Finally the
stub unmarshals the return value and passes it to the client (8).

3.3.1 RMI in Nomadic Computing
As explained in more detail in section 5.1, RMI is not suited to be used
in a wireless environment, thus it is not of great use in Nomadic and Mo-
bile Computing. Getting a single reference to a remote object in a GSM
data environment requires between 8 and 20 seconds, depending on the
version of the Java virtual machine. The main reasons for this fact lay in
the way the protocol is implemented, with a heavy use of underlying TCP
connections. And, as we will see, TCP behaves poorly in wireless com-
munication. Other reasons are directly dependent on the protocol (and
thus independent from the implementation) like the use of Serialization
and Distributed Garbage Collection. The second point is that RMI in not
designed to be used in mobile hosts: If the client’s host changes Internet
address the protocol fails. In section 5.1 we suggest a solution to these
problems and we present the results of our prototype implementation.

3.4 OMG CORBA

The Common Object Request Broker Architecture (CORBA) [80] specifies
a system which provides interoperability between objects in a heteroge-
neous, distributed environment and in a way transparent to the program-



22 CHAPTER 3. MIDDLEWARE FOR DISTRIBUTED COMPUTING

mer. This open distributed object computing infrastructure is being stan-
dardized by the Object Management Group (OMG) [82], that is, a non-
profit consortium created in 1989 with the purpose of promoting theory
and practice of object technology in distributed computing systems.

The idea behind CORBA is essentially the same as the one behind RMI, but
the fundamental difference is that while Java RMI is meant to enable in-
teroperability between Java platforms, CORBA is programming-language
independent. Figure 3.4 illustrate the essential components of the CORBA
Architecture.

In this model clients request services from objects through a well-defined
interface. This interface is specified in OMG IDL (Interface Definition Lan-
guage). A client accesses an object by issuing a request to the object. The
request is an event, and it carries information including an operation, the
object reference of the service provider, and actual parameters (if any).
The central component of CORBA is the Object Request Broker (ORB). It
encompasses all of the communication infrastructure necessary to identify
and locate objects, handle connection management and deliver data. The
ORB Core is the most crucial part of the Object Request Broker since it is
responsible for communication of requests.

Interface

Repository

IDL

Compiler

Implementation

Repository

Client
OBJ

REF

Object

(Servant)
in args

operation()

out args +

return

DII
IDL

STUBS

ORB

INTERFACE

IDL

SKEL
DSI

Object Adapter

ORB CORE GIOP/IIOP

Figure 3.4: CORBA Architecture

Going into more details, the essential components in the CORBA architec-
ture are:



3.4. OMG CORBA 23

Object – This is a CORBA programming entity that consists of an identity,
an interface, and an implementation. It is the place where the client
requests the service.

Servant – This is an implementation programming language entity that
defines the operations that support a CORBA IDL interface. Ser-
vants can be written in a variety of languages, including C, C++,
Java, Smalltalk, and Ada.

Client – This is the program entity that invokes an operation on an object
implementation. Accessing the services of a remote object is trans-
parent to the caller.

Object Request Broker (ORB) – The ORB provides a mechanism for
transparently communicating client requests to target object imple-
mentations. The ORB simplifies distributed programming by de-
coupling the client from the details of the method invocations. This
makes client requests appear to be local procedure calls. When a
client invokes an operation, the ORB is responsible for finding the
object implementation, transparently activating it if necessary, de-
livering the request to the object, and returning any response to the
caller.

CORBA IDL stubs and skeletons – CORBA IDL stubs and skeletons
serve as the “glue” between the client and server applications, re-
spectively, and the ORB. The transformation between CORBA IDL
definitions and the target programming language is automated by a
CORBA IDL compiler.

Dynamic Invocation Interface (DII) – This interface allows a client to di-
rectly access the underlying request mechanisms provided by an
ORB. Applications use the DII to dynamically issue requests to ob-
jects without requiring IDL interface-specific stubs to be linked in.
Unlike IDL stubs (which only allow RPC-style requests), the DII also
allows clients to make non-blocking deferred synchronous (separate
send and receive operations) and one-way (send-only) calls.

Dynamic Skeleton Interface (DSI) – This is the server side’s analogue to
the client side’s DII. The DSI allows an ORB to deliver requests to
an object implementation that does not have compile-time knowl-
edge of the type of object it is implementing. The client making the
request has no idea whether the implementation is using the type-
specific IDL skeletons or is using the dynamic skeletons.



24 CHAPTER 3. MIDDLEWARE FOR DISTRIBUTED COMPUTING

Object Adapter – This element assists the ORB with delivering requests
to the object and with activating the object. More importantly, an ob-
ject adapter associates object implementations with the ORB. Object
adapters can be specialized to provide support for certain object im-
plementation styles (such as OODB object adapters for persistence
and library object adapters for non-remote objects).

3.4.1 CORBA in Nomadic Computing

Also CORBA, as it exists at the time of writing, is less than perfectly suited
for wireless access. Certain assumptions have been built into CORBA that
are not valid for wireless networks and which create difficulties for appli-
cations using wireless access. The fundamental challenges for CORBA in
wireless and mobile environments include reliability of transport, which
is much lower in wireless networks than in fixed networks, and mobil-
ity of terminals, which implies that the terminal may change its point-of-
presence in the network.

We return to these issues in Section 4.4.2.

3.5 Microsoft COM and DCOM

Component Object Model (COM) [25] developed by the Microsoft Corpo-
ration, provides a support for interoperability and re-usability between
distributed objects. Distributed COM (DCOM) [28] is an extension of
COM allowing interaction between objects running in different machines.
DCOM is completely integrated in COM, and they can be considered a
single technology.

COM allows a binary compatibility between the client and the object, writ-
ten in arbitrary languages, through the use of interfaces in a similar man-
ner as Java RMI. COM objects and interfaces are specified using Microsoft
Interface Definition Language (IDL).

There are three ways in which a client can access COM objects:

1. In-process server (Figure 3.5). Both the client and the server execute
in the same process. The client calls methods in the component with-
out any overhead.



3.5. MICROSOFT COM AND DCOM 25

Client Component

Figure 3.5: DCOM objects in the same process

2. Local Object Proxy (Figure 3.6). The client and the component can
access a server running in a different process executing in the same
machine.

Client ComponentComponent
COM

run-time
COM

run-time
COM

run-time

LPC

Security
Provider

DCE
RPC

LPC

Security
Provider

DCE
RPC

LPC

Security
Provider

DCE
RPC

LPC

Security
Provider

DCE
RPC

Figure 3.6: DCOM objects in the different processes

3. Remote Object Proxy (Figure 3.7). When client and component re-
side on different machines, DCOM simply replaces the local inter-
process communication with a network protocol.

Client ComponentComponent
COM

run-time
COM

run-time
COM

run-time

Protocol Stack

Security
Provider

DCE
RPC

Protocol Stack

Security
Provider

DCE
RPC

Protocol Stack

Security
Provider

DCE
RPC

Protocol Stack

Security
Provider

DCE
RPC

DCOM network protocol

Figure 3.7: DCOM objects in different machines

When the client is separated from the server, the data must be marshalled.
As in Java RMI and CORBA, marshalling is accomplished by a proxy and a
stub object that handle the cross–process communication. All COM objects
are registered in a component database. The clients obtain the address of
the methods implemented by the server through a simple table of method
addresses called vtable.



26 CHAPTER 3. MIDDLEWARE FOR DISTRIBUTED COMPUTING

3.5.1 DCOM for Nomadic Users

Since COM and DCOM are based on a native binary format, the com-
ponents implementing these specifications are not platform-independent.
Furthermore, COM and DCOM are best supported on Microsoft Windows
platforms. Even if support for other platforms is on the way, the technol-
ogy will be primarily Windows (and thus proprietary) based. For these
reasons we do not foresee a practical use of COM/DCOM in an open and
dynamic environment like Nomadic Computing, where proprietary solu-
tions can represent impenetrable barriers to mobility.

3.6 WAP

The Wireless Application Protocol (WAP) [100, 101] is an attempt to define
an open standard for how content from the Internet is filtered for mo-
bile communications. From its very beginning WAP has been designed
for Mobile and Nomadic Computing, even if the first target is to provide
Internet access to wireless devices such as digital cellular phones, pagers
and PDAs.

Figure 3.8: WAP Programming Model

The Wireless Application Protocol takes a client-server approach. It in-
corporates a relatively simple microbrowser into the mobile device, requir-
ing only limited resources on it. This makes WAP suitable for thin clients
and early smart phones. WAP puts the intelligence in the WAP Gateways
while adding just a microbrowser to the mobile devices themselves (Fig-
ure 3.8). WAP utilizes proxy technology to connect between the wireless
domain and the Internet. In this way content and applications can be
hosted on standard web servers.



3.6. WAP 27

WAP has a layered architecture as shown in the diagram below:

Figure 3.9: WAP Architecture

3.6.1 Wireless Application Environment (WAE)

The application layer of WAP is a compound of The Wireless Applica-
tion Environment (WAE) and the Wireless Telephony Application (WTA).
They allow the developer to use specific formats and services created and
optimized for interacting with devices with limited capabilities. WAE
formally specifies just the formats such as images and text formats that
the applications have to be compliant with but says nothing about the
client implementations1. WTA is a collection of telephony-specific ex-
tensions that allows control over the telephone device. WAE contains a
lightweight markup language (WML), and a lightweight scripting lan-
guage (WMLScript).

3.6.2 Wireless Session Protocol (WSP)

The WSP layer provides a lightweight session layer to allow efficient ex-
change of data between applications. In particular, WSP supports the ef-
ficient operation of a WAP micro-browser running on the client device
and communicating over the low-bandwidth and high-latency wireless
network. This layer is similar to the existing HTTP 1.1 standard, being
semantically equivalent. Typically, the HTTP messages are transformed
into WSP messages before being sent over the air. WSP introduces fea-
tures that address many of the limitations that are inherent to HTTP. WSP
establishes a long-lived session between the client and the WAP gateway
and it uses an efficient binary encoding instead of plain ASCII text.

1Client applications are typically microbrowsers and text message editors.



28 CHAPTER 3. MIDDLEWARE FOR DISTRIBUTED COMPUTING

3.6.3 Wireless Transaction Protocol (WTP)

WTP is situated on top of a datagram service such as User Datagram Pro-
tocol (UDP), to provide a simplified protocol suitable for low bandwidth
mobile stations. WTP offers three classes of transaction service: unreliable
one-way request, reliable one-way request and reliable two-way request
respond. It supports delayed acknowledgment and handshake minimiza-
tion to help reduce the number of messages sent over the wireless link.
WTP delays the transmission of data and acknowledgments in the hope
to concatenate multiple messages into a single transmission, thus reduc-
ing network overhead.

3.6.4 Wireless Transport Layer Security (WTLS)

WTLS is modeled after the Transport Layer Security (TLS) [30] that is a
“de facto” standard over the Internet. WTLS provides authentication us-
ing certificates optimized so that they demand less bandwidth than the
traditional certificates sent over the Internet. This protocol includes data
encryption, to prevent third parties from seeing or modifying the data.
It is also designed to defend the device against various security attacks,
including reply attacks and denial-of-service attacks.

The WTLS protocol is optional in the WAP stack. A device is not required
to support WTLS, and even when it is present its use is optional. This
is due to the fact that WTLS raises computation and bandwidth require-
ments. Being optional it allows WAP to be deployed on devices with min-
imal resources.

3.6.5 Wireless Datagram Protocol (WDP)

WDP is the bottom layer of the WAP stack. It shields the upper layers from
the bearer services provided by the networks, allowing the applications a
transparent transmission of data over the different bearers. WDP is also
responsible for packet segmenting and reassembling.

3.6.6 WAP 2.0

The activity of the WAP forum has continued during the years, and many
changes have been made to the standards to improve interoperability
and to support the upgraded or new networks and network bearers that
have been introduced, as General Packet Radio Service (GPRS) [43], High-
Speed Circuit-Switched Data (HSCSD) [42, 44] and UMTS [26, 94]. In 2001



3.6. WAP 29

the forum released a whole new body of specifications, the 2.0 version.
This new version includes an additional WAP stack, as depicted in Fig-
ure 3.10.

Figure 3.10: WAP Architecture 2.0

This stack supports Internet protocols when IP connectivity is available
to the mobile device. This support has been motivated by the emergence
of high-speed wireless networks that provide IP support directly to the
wireless devices. Backward compatibility with the 1.x protocol stack is
assured too.

A further enhancement is the introduction of XHTML Mobile Profile
markup language (XHTMLMP). This markup language extends the basic
profile of XHTML as defined by the W3C consortium [98].



30 CHAPTER 3. MIDDLEWARE FOR DISTRIBUTED COMPUTING



Part III

Infrastructure for Nomadic
Applications





Chapter 4

Enhancing Infrastructure for
Nomadic Applications

Computers don’t make errors—What they do they do on purpose.
- Dale Gribble

4.1 Introduction

The limitations and constraints presented in Section 2 represent a chal-
lenge to a wide adoption of mobile data services. To overcome this prob-
lem there have been several researches addressing issues of mobile sys-
tems and applications, especially for the purpose of mobile information
access. These solutions attack the problem from different perspectives. A
group of them try to enhance the communication layer directly, fighting
the problems where they come from. Another group focuses their atten-
tion to the middleware, the closest place to the applications. Furthermore,
another group tries to add mobility to existing protocols. In this chapter
we describe these solutions.

4.2 Enhancing the Communication Layer

4.2.1 Improving TCP over Wireless Links

The Internet Engineering Task Force (IETF) published a document [74]
suggesting the implementers how to improve the behavior of TCP so that



34 CHAPTER 4. ENHANCING INFRASTRUCTURE FOR NOMADIC APPLICATIONS

it would also satisfy to the users of what they call the Long Thin Net-
works. The name derives from the observation that wireless networks are
Long networks because their round-trip time is quite long, and Thin be-
cause their bandwidth is usually low compared with the one of wireline
networks1. The paper identifies the following problems in TCP over Long
Thin Networks:

Slow Start and Congestion Avoidance whenever TCP’s retransmission
timer expires, the sender assumes that the network is congested and
invokes slow start congestion control. In a wireless environment re-
transmissions are mostly triggered by corruption, thus the slow start
is wrongly requested.

Delayed ACKs the sender increases the dimension of its window de-
pending on the number of ACKs received. The number, of course,
is dependent on the round-trip time between sender and receiver,
which implies that TCP’s adaptation is correspondingly slower than
on networks with shorter delays.

Three-way Handshake TCP starts a three-way handshake whenever a
new connection is set up. Data transfer is only possible after this
phase has completed successfully. On networks with long latency
and for short transactions this handshake wastes valuable time.

Many proposals have been made to modify or eliminate slow start in long
latency environments. Solutions vary from using a larger initial window
during the slow start [5] to counting the data acknowledged and not the
number of ACKs [4]. Other proposals include a change in the actual slow
start protocol: While adding ACKs, they suggest changing the spacing of
the acknowledges or to delay duplicate ACKs.

Another issue is the length of the headers in TCP/IP: Because Long
Thin Networks are bandwidth-constrained, compressing every byte out
of over-the-air segments is worthwhile [24, 29, 55, 34]. Compressing the
header improves the interactive response time, allows using small packets

1Satellite links, not considered here, make Long Fat Networks (LFN), since they may
have high bandwidth. Satellite networks may often show a delay*bandwidth product
above 64 KBytes. For a Wireless LAN a typical round-trip time may be around 500 ms,
and the sustained bandwidth is about 24 Kbps. This yields a delay*bandwidth product
roughly equal to only 1.5 KBytes.



4.2. ENHANCING THE COMMUNICATION LAYER 35

for bulk data with improved efficiency and decreases header overhead2.
Other proposals [92] suggest to compress the IP payload, but, in general,
compression made at the application level can outperform these solutions.

SNOOP Berkeley’s Snoop protocol [10] is a hybrid scheme mixing link-
layer reliability mechanisms with the split connection approach. It is an
improvement over split TCP approaches in that end-to-end semantics are
retained, meaning that the Snoop protocol does not break the TCP connec-
tion. Snoop does two things:

1. Locally (on the wireless link) it retransmits lost packets, instead of
allowing TCP to do so end-to-end.

2. It suppresses the duplicate ACKs on their way from the receiver back
to the sender, thus avoiding fast retransmit and congestion avoid-
ance at the latter.

The Snoop protocol is designed to avoid unnecessary fast retransmits
when packets are received unsorted and duplicated acknowledgments
are received by the sender. The optimization is made in the intermediate
node between the sender and the wireless receiver, so this solution works
well only when such an intermediate node exists. Another problem with
SNOOP is that it does not work if the IP traffic is encrypted and the inter-
mediate node does not share the security association between the mobile
device and the sender.

4.2.2 Improving the Client-Server Paradigm

Moving from the TCP/IP level toward the application layer we recog-
nize the need for adaptation to the rapid changes in network conditions.
Satyanarayanan [88] identifies two extremes in the strategies for adapta-
tion (Figure 4.1). The range is delimited by two extremes.

At one extreme, adaptation is entirely the responsibility of individual ap-
plications. This approach, called laissez-faire adaptation, avoids the need
for system support. The other extreme, called application-transparent
adaptation, places the entire responsibility for adaptation on the system.

2For a common TCP segment size of 512 the header overhead of IPv4/TCP within a
Mobile IP tunnel can decrease from 11.7 to less than 1 per cent.



36 CHAPTER 4. ENHANCING INFRASTRUCTURE FOR NOMADIC APPLICATIONS

Application-aware

(collaboration)

Laissez-faire

(no system support)

Application-trasparent

(no changes to applications)

Figure 4.1: Range of adaptation strategies

Between these two extremes there exists a multitude of mixed solutions
that are referred to as application-aware adaptation. The laissez-fair ap-
proach lacks a central element to control and limit the resource requested
by the different applications. The second approach is more attractive,
since it preserves the compatibility with existing applications, but there
may be situations where the adaptation wholly controlled by the sys-
tem is inadequate or counterproductive. A typical case of application-
transparent adaptation is to use proxies to perform adaptation on behalf
of applications. We used this kind of adaptation for the architecture pre-
sented in Chapter 5.

4.2.2.1 Application-Transparent Adaptation

Examples of application-transparent adaptation addressing adaptation
for mobile file system applications are Little Work [52] and the Rover
Toolkit [57, 86]. In these examples, a local proxy runs on the mobile host
and provides an interface for regular server services to the applications.
The proxy attempts to mitigate any adverse effects of mobile environ-
ments.

Web proxies enable Web browsing applications to function over wireless
links without imposing changes on browsers and servers. Web proxies
can be used to prefetch and cache Web pages to the mobile client’s ma-
chine, to compress and transform image pages for transmission over low
bandwidth links, and to support disconnected and asynchronous brows-
ing operations.

Below, other Application-Transparent proposals are briefly summarized.



4.2. ENHANCING THE COMMUNICATION LAYER 37

CODA The most famous example of Application-Transparent Adapta-
tion is the CODA file system [90]. To provide adaptability the system uses
a file system proxy to make existing applications work with no modifica-
tion (Figure 4.2).

Applications

File System Proxy

Mobile Host

Mobile
File Server

Fixed Network

Mobile File System APIs

File
System
APIs

Figure 4.2: The CODA file system

The proxy records all updates to the file system during disconnection and
synchronizes on reconnection. Automatic mechanisms for conflict resolu-
tion using optimistic concurrency control are provided for directories and
files through the proxy and the file server. The file system proxy in CODA
allows disconnected operations, optimistic replication and has a support
for weak connectivity.

WebExpress WebExpress [48] uses a Web Proxy approach to intercept
and control communications over the wireless link for the purposes of re-
ducing traffic volume and optimizing the communication protocol to re-
duce latency. A proxy approach is also used in the Mowgli project (see
section 4.2.3).

The approach adopted by these solutions does not require changing ex-
isting applications for running in mobile environments. However, it
could sacrifice functionality and perhaps performance. As applications are
shielded from dealing with mobility, it might be very hard for the system
to make adaptation decisions that meet the needs of different and diverse
applications. As a result, it may have to require some manual intervention
by the user (for example having the user indicate which data to prefetch
onto the mobile device) to make applications run smoothly. Such user-
administered manual actions could be less agile to adapt to the changing
environment.



38 CHAPTER 4. ENHANCING INFRASTRUCTURE FOR NOMADIC APPLICATIONS

Monads A research project carried out by the University of Helsinki and
called MONADS [20, 72] addresses this problem. The project examines
adaptation agents for nomadic users designing and implementing a soft-
ware architecture based on software agents (Figure 4.3) . The Monads ar-
chitecture is based on the Mowgli communications architecture (see Sec-
tion 4.2.3), that takes care of data transmission issues in wireless environ-
ments. In addition, the project made use of existing solutions, such as
FIPA [36] specifications as far as possible. The principal idea in the Mon-
ads project has been that nomadic applications are offered information
about the future quality of the connection, and they are supposed to ad-
just their behavior to meet the forthcoming situation.

Legacy Agent PlatformLegacy Agent Platform

Mowgli Data Channel ServiceMowgli Data Channel Service

Monads Services

Knowledge Services

Learning ServiceLearning Service

Knowledge Sharing ServiceKnowledge Sharing Service

Profile Management Services

User Profile ManagementUser Profile Management

Terminal Profile ManagementTerminal Profile Management

Storage Services

Caching ServiceCaching Service

Database ServiceDatabase Service

Brokering Services

Naming ServiceNaming Service

Brokering ServiceBrokering Service

Communication Services

RMI ServiceRMI Service

Data Transfer ServiceData Transfer Service

Agent Transfer ServiceAgent Transfer Service

Event ServiceEvent Service

QoS ManagementQoS Management

User Interface ServiceUser Interface Service

Stream ServiceStream Service

Management Services

Agent Server ManagementAgent Server Management

Resource ManagementResource Management

User Agent ManagementUser Agent Management

Persistence and ActivationPersistence and Activation

Tracing Services

Perception HistoryPerception History

Log ServiceLog Service

Account ManagementAccount Management

Performance TracingPerformance Tracing

Debug TracingDebug Tracing

Security 
Services

Figure 4.3: The Monads architecture

In the Monads philosophy, software systems that are to be used in wire-
less environments should be able to adapt to sudden changes in the quality
of data transmission over wireless connections. As a minimum, a system
should detect when current data transmission tasks may not be completed
any longer in a reasonable amount of time due to temporary changes in the
QoS. More sophisticated systems could try to adapt to the current QoS by
using special data filtering and compression methods, and to refuse to ac-
cept requests that cannot be fulfilled within a certain time limit. In Mon-
ads, adaptation is mainly achieved by learning; the architecture’s main
focus has been on learning to predict QoS [70].



4.2. ENHANCING THE COMMUNICATION LAYER 39

4.2.2.2 Application-Aware Adaptation

Application-aware adaptation allows applications to react to the mobile
resource changes. One way to realize the application-aware adaptation
is through the collaboration between the system and individual applica-
tions. The system monitors resource levels, notifies applications of rele-
vant changes, and enforces resource allocation decisions. Each application
independently decides how best to adapt when notified. Examples of this
approach are the Odyssey Project[79], the BARWAN Project [16] and the
Prayer System [14]

API
extensions

Kernel

Application

Viceroy
Generic support

Wardens
Type-specific support

Cache manager

Viceroy
Generic support

Wardens
Type-specific support

Cache manager

Figure 4.4: The Odyssey client architecture

Odyssey The application-aware adaptation in Odyssey (see Figure 4.4)
is performed through the use of type-specific operations between the sys-
tem and applications. The type-awareness is incorporated into both the
system for efficient resource usage and the applications for differential
handling of data types. The system-level knowledge of data types fa-
cilitates the optimization of the resource usage for different and diverse
applications. For example, the size distribution and consistency require-
ments of data from an NFS server differ substantially from those of re-
lational database records. Image data may be highly compressible using
one algorithm, but not another. Video data can be efficiently shipped us-
ing a streaming protocol that drops rather than retransmits lost data; in
contrast, only reliable transmissions are acceptable for file or database up-
dates. Odyssey incorporates type-awareness via specialized code compo-
nents called wardens. A warden encapsulates the system-level support at
a client to effectively manage a data type. To fully support a new data type,
an appropriate warden has to be written and incorporated into Odyssey



40 CHAPTER 4. ENHANCING INFRASTRUCTURE FOR NOMADIC APPLICATIONS

at each client. The wardens are subordinate to a type-independent com-
ponent called the viceroy, which is responsible for centralized resource
management.

The collaborative relationship in the application-aware adaptation is thus
realized in two parts. The first, between the viceroy and its wardens, is
data-centric: it defines the consistency levels for each data type and factors
them into resource management. The second, between applications and
Odyssey, is action-centric: it provides applications with control over the
selection of consistency levels supported by the wardens.

The BARWAN Project In the BARWAN project, the application spe-
cific proxy uses the proxy agents to optimize the quality of service for
the client in real time. To use transcoding to adapt to network varia-
tion, the proxy must have an estimate of the current network conditions
along the path from the proxy to the client. SPAND (Shared Passive Net-
work Performance Discovery), a network measurement system, allows a
measurement host to collect the actual application-to-application network
performance (e.g., available bandwidth and latency) between proxies and
clients. SPAND monitors end-to-end bandwidth and connectivity to the
clients (and servers) and notifies the proxy of any changes, which may re-
sult in changes in transcoding to adjust the quality of service. The original
servers are unaware of the transformations or of the limited capabilities of
the clients or networks.

The Prayer System In the Prayer System the application-aware adapta-
tion is supported with the use of abstractions: QoS classes and adaptation
blocks. A QoS class is defined by specifying the upper and lower bounds
for resources. An application divides its execution into adaptation blocks.
An adaptation block consists of a set of alternative sequences of execution,
each associated with a QoS class. At the beginning of an adaptation block,
an application specifies the QoS classes that it is prepared to handle, along
with a segment of code associated with each class and an action to take
should the QoS class be violated within the code segment.

4.2.3 Enhancing both Sides: The Mowgli Project

The Mowgli [76] communication architecture [60, 61] replaces the tradi-
tional client-server paradigm by a new client-mediator-server paradigm.
As Figure 4.5 depicts, a mobile workstation connects to the fixed network



4.2. ENHANCING THE COMMUNICATION LAYER 41

through a wireless link. The Mobile-Connection Host (MCH) provides a
service access point to Internet services.

Figure 4.5: Overview of Mowgli Communication Architecture

Applications on a mobile workstation obtain the basic communication ser-
vices through an application programming interface called the Mowgli
socket interface. Since the Mowgli sockets are downward compatible with
the Berkeley (BSD) sockets, existing applications using TCP or UDP sock-
ets need neither be modified nor recompiled. The Mowgli socket inter-
face binds the applications to the communication services in the Mowgli
agent-proxy layer. A proxy, which runs in the MCH, and an agent, which
runs in the mobile workstation, co-operate in the role of a mediator. An
application on the mobile workstation sees the agent as its peer while an
application in the Internet sees the proxy as its peer. Instead of TCP/IP
the communication between the agent and proxy is based on the Mowgli
Data Channel Service (MDCS) and on the Mowgli Generic Communica-
tion Services (MGCS).

The concept of the mediator is a convenient tool when problems due to
wireless communication are solved in order to meet the needs of nomadic
users. In the Mowgli approach an agent-proxy team is a distributed me-
diator. There are two basic kinds of agent-proxy teams: generic ones and
application-specific ones. A generic agent-proxy team mediates applica-
tion protocol data as it is and is able to support any existing application.
A generic team can also provide generic enhancements, for example data
compression, available in the MGCS. An application specific agent-proxy
team is tailored for a certain application, like WWW. Such a team can
exploit application semantics in optimizing the communication over the



42 CHAPTER 4. ENHANCING INFRASTRUCTURE FOR NOMADIC APPLICATIONS

wireless link and take care of mobility-related functionality in the applica-
tion.

The Mowgli Data Channel Service provides a flexible set of commu-
nication services to agents and proxies. The basic service includes bi-
directional data channels that transfer data over the wireless link. In
Mowgli there are two basic kinds of channels: stream channels, which pro-
vide TCP-like functionality, and message channels, which provide UDP-
like functionality. In contrast to UDP Mowgli message channels provide a
reliable datagram service.

Each channel has independent flow control and its own attributes that con-
trol the behavior of the channel. Data channels are multiplexed according
to channel priorities. Even if there are bandwidth-intensive background
transfers, priority-based scheduling allows the MDCS to provide reason-
able response times to interactive applications. The MDCS also provides
improved fault-tolerance. The MDCS is designed to recover efficiently
from unexpected temporary disconnections which are quite common in
cellular environments. The MDCS maintains the channel state so that the
transfer can be resumed after interrupts. Each data channel has its own
attributes that control the behavior of the channel.

4.2.3.1 Mowgli WWW

The Mowgli WWW software [65] consists of the following basic compo-
nents shown in Figure 4.6: Mowgli WWW Agent, Mowgli WWW Proxy,
Control Tool, and Apache HTTP server. One of the main principles in the
Mowgli architecture is that there should be no need to modify existing
applications. Mowgli WWW has been designed in accordance with this
principle.

The Mowgli WWW Agent and Proxy cooperate to fetch hypermedia
documents from fixed WWW servers to the mobile workstation. With
each other they communicate using the highly optimized Mowgli HTTP
(MHTTP) protocol. No modifications to WWW clients or servers are re-
quired. Together, the agent and proxy optimize the data traffic over the
wireless part of the network for maximum performance.

The Control Tool is a separate program that is launched in conjunction
with a conventional WWW browser. It provides a user interface to control



4.2. ENHANCING THE COMMUNICATION LAYER 43

Figure 4.6: Overview of Mowgli WWW

the overall operation of Mowgli WWW. In addition, a per-document user
interface is provided. This interface contains settings and operations to-
gether with status information that applies to individual documents. The
primary advantages of this approach are:

Eliminating Extra Round Trips Removing various extraneous round
trips inherent in the HTTP protocol is fairly straightforward with the
mediators. The Mowgli WWW Agent intercepts requests from the
local WWW client, translates them into the optimized MHTTP re-
quests, and forwards them over the wireless link to the proxy. Posing
as a client, the proxy, in turn, connects to the HTTP Proxy for each
request and asks it to perform the request. The proxy then forwards
the response back to the agent, which passes it on to the client. The
Mowgli WWW Proxy makes extensive use of a predictive upload
facility by prefetching document objects embedded in WWW docu-
ments. This means that the proxy knows that embedded document
objects are going to be needed soon, and thus it uploads the objects to
the mobile workstation without waiting for a specific request from
the agent. This technique significantly reduces the response times
observed by the end-user when fetching typical WWW documents.

Reducing Amount of Transferred Data The Mowgli WWW Proxy com-
presses document objects while sending them over the wireless link,
and the Mowgli WWW Agent decompresses them before forward-
ing them to the WWW browser. In order to achieve efficient com-
pression of transferred data Mowgli WWW supports content-type
specific data compression: each particular document type (e.g., text,
image data, audio data) can be assigned a different compression al-
gorithm that performs best on that type of data.



44 CHAPTER 4. ENHANCING INFRASTRUCTURE FOR NOMADIC APPLICATIONS

Background Operations The background transfer feature in Mowgli
WWW offers a convenient way for accessing WWW pages without
the need to wait actively for the response. The Mowgli WWW Agent
places the requests for background transfers into the batch transfer
queue from which it proceeds to fetch them one by one. In order not
to interfere with normal operation, data channels with a low prior-
ity are used. As the scheduling control is pre-emptive, the highest-
priority channel with data to send always gets link capacity. This
ensures that the user always gets prompt response, even when there
are on-going background transfers.

The user can look at the jobs in the queue, start and stop the queue at
will, delete an individual job or move one in front of the queue. The
background fetches can also be started at a preset time, for instance
at a time when the telephone calls are cheaper.

4.3 Addressing the Mobility Issues

4.3.1 Mobile IP

When IP routing was originally defined, mobility of hosts was not consid-
ered to be an issue. Routing methods were built for static networks, where
the hosts were unlikely to move from one subnet to another. Routing takes
advantage of a network number contained in every IP address. Thus, the
IP address encodes the computer’s physical location, and, by default, the
location is fixed.

Mobile IP [83] defines protocols and procedures by which packets can be
routed to a mobile node, regardless of its current point-of-attachment to
the Internet, and without changing its IP address. Mobile IP consists of
the following entities:

Mobile Node (MN) A host or router that may change its point of attach-
ment from one network or subnetwork to another through the Inter-
net. A mobile node must support mobile IP in order to communicate
with mobile agents, the home agent and the foreign agent.

Home Agent (HA) A home agent is always attached to the home network
of a mobile node, that is, the network that a mobile node belongs to
by its IP address. A home agent must support mobile IP and is re-
sponsible for forwarding packets destined to the mobile node at the



4.3. ADDRESSING THE MOBILITY ISSUES 45

network that the mobile node is attached to. Forwarding is accom-
plished by IP-in-IP tunneling.

Foreign Agent (FA) Situated in the foreign network, it handles registra-
tion requests and replies between the mobile node and the home
agent, and is usually the other endpoint of the IP-in-IP tunnel.

Care-of-address (COA) An address which identifies the mobile node’s
current location. It can be viewed as the end of a tunnel directed
towards a mobile node. It can be either assigned dynamically or as-
sociated with its foreign agent.

R1 R2 R3

MR4

S

Home

agent

Foreign

agent

M

Figure 4.7: Mobile IP entities

There are several actions to be taken to allow a Mobile node to move.

4.3.1.1 Agent Discovery

This protocol, based on ICMP, provides a means for a mobile host to detect
when it has moved from one network to another, and for it to detect when
it has returned home. When moving into a new foreign network, the agent
discovery protocol also provides a means for a mobile host to discover a
suitable foreign agent in this new network with which to register.

Home agents and foreign agents periodically advertise their presence by
multicasting an agent advertisement message on each network to which
they are connected (Figure 4.8). Mobile hosts listen for agent advertise-
ment messages to determine which home agents or foreign agents are on



46 CHAPTER 4. ENHANCING INFRASTRUCTURE FOR NOMADIC APPLICATIONS

the network to which they are currently connected. If a mobile host re-
ceives an advertisement from its own home agent, it deduces that it has
returned home and registers directly with its home agent. Otherwise, the
mobile host chooses whether to retain its current registration or to register
with a new foreign agent that it knows.

Figure 4.8: Agent Discovery Protocol

While at home or registered with a foreign agent, a mobile host expects to
continue to receive periodic advertisements from its home agent or from
its current foreign agent. If that does not happen, the mobile host may
deduce either that it has moved or that its home agent or current foreign
agent has failed. If the mobile host has recently received other advertise-
ments, it may attempt registration with one of those foreign agents. Oth-
erwise, the mobile host may multicast an agent solicitation message onto
its current network.

4.3.1.2 Registration

When connected with a new foreign agent, a mobile host must register
with that foreign agent. It must also register with its home agent to inform
it of its new care-of address. Furthermore, when a mobile host returns to
its home network, it must register with its home agent to inform it that it
is no longer using a care-of address.

There are two possible scenarios. In the first case the mobile node receives
an agent advertisement and discovers a care-of address from the agent
advertisement extension. The mobile node sends a registration request



4.3. ADDRESSING THE MOBILITY ISSUES 47

to the foreign agent including the mobile node’s home address, the home
agent’s address, the mobile node’s care-of address (Fig. 4.9). The foreign
agent receives the registration request and after inspecting it either relays
the message to the home agent or replies to the mobile node with a deny-
ing registration reply. A possible reason for a denying reply might be too
big a registration lifetime value in the registration request.

Figure 4.9: Registering through a Foreign Agent

In the second case the mobile node discovers that its own IP address has
changed. This change might have happened automatically or by user in-
tervention. The new IP address is called a co-located care-of address. The
mobile node constructs a registration request that contains the same infor-
mation as in the first case, except that the care-of address is replaced with
the co-located care-of address. The mobile node sends this registration
request straight to the home agent. Thus a mobile node can also roam a
network that does not offer foreign agent services.

4.3.1.3 In Service

After the registration is completed a IP-in-IP tunnel is set up between the
home agent and the care-of address or the co-located address.

The Mobile IP requires support for IP-in-IP encapsulation for tunneling,
as illustrated in Figure 4.10. In this method, to tunnel an IP packet, a new
IP header is wrapped around the existing packet; the source address in the
new IP header is set to the address of the home agent, and the destination
address is set to the mobile host’s care-of address. The new header added
to the packet is shaded in gray in 4.10. This type of encapsulation may
be used for tunneling any packet, but the overhead for this method is the



48 CHAPTER 4. ENHANCING INFRASTRUCTURE FOR NOMADIC APPLICATIONS

addition of an entire new IP header (20 bytes) to the packet.

0 4 8 16 19 31

Total LengthVers IHL TOS

IP Identification Flags Fragment Offset

IP Header ChecksumIP in IPTTL

Care-of Address

Tunnel Source IP Address

TCP/UDP/etc

. . .

Total LengthVers IHL TOS

IP Identification Flags Fragment Offset

IP Header ChecksumOrig ProtocolTTL

IP Address of Mobile Host

Original Source IP Address

Figure 4.10: IP in IP encapsulation

Mobile IP also defines a more efficient encapsulation, called minimal en-
capsulation. Minimal encapsulation is an encapsulation method that is
very efficient in terms of overhead: it adds only 8 or 12 bytes to each packet
sent to a mobile host. In the encapsulation process the header is rewritten.
The outer packet has a standard IP header, while the encapsulated packet
has a dedicated but small header. This is why it is said that the tunneling
header is inserted immediately after the original header of Figure 4.11.

4.3.1.4 Deregistration

After the mobile node returns home, it deregisters with its home agent to
drop its registered care-of address. There is no need to deregister with the
foreign agent because the service expires automatically when the service
time expires.

4.3.2 Mobility Support in IPv6
The design of Mobile IP support in IPv6 [27, 56] has been highly influenced
by the IP support in IPv4 (Mobile IP). Mobile IPv6 thus shares many fea-
tures with Mobile IP, but the protocol is now fully integrated into IP and



4.3. ADDRESSING THE MOBILITY ISSUES 49

0 4 8 16 19 31

Total Length

IP Address of Mobile Host

Vers IHL TOS

IP Identification Flags Fragment Offset

IP Header ChecksumMin EncapTTL

Care-of Address

Tunnel Header ChecksumSOrig Protocol

Tunnel Source IP Address

TCP/UDP/etc

. . .

Figure 4.11: Minimal encapsulation

provides many improvements. This section summarizes the main differ-
ences between Mobile IP and Mobile IPv6.

IPv6 supports the Route Optimization functionality as a fundamen-
tal part of the protocol, rather than being added on as an optional set
of extensions as in Mobile IP. This integration of Route Optimization
functionality allows direct routing from any correspondent node to
any mobile node, without needing to pass through the mobile node’s
home network and be forwarded by its home agent. The Mobile IP
registration functionality and Route Optimization functionality are
performed by a single protocol rather than two separate (and differ-
ent) protocols.

In Mobile IPv6 a mobile node uses its care-of address as the Source
Address in the IP header of packets it sends, allowing the packets to
pass normally through ingress filtering routers. The home address
of the mobile node is carried in the packet in a Home Address des-
tination option, allowing the use of the care-of address in the packet
to be transparent above the IP layer.

There is no longer any need to deploy special routers as foreign
agents. In Mobile IPv6, mobile nodes make use of IPv6 features,
such as Neighbor Discovery and Address Autoconfiguration, to op-



50 CHAPTER 4. ENHANCING INFRASTRUCTURE FOR NOMADIC APPLICATIONS

erate in any location away from home without any special support
required from its local router.

Most packets sent to a mobile node while away from home in Mobile
IPv6 are sent using an IPv6 Routing header rather than IP encapsula-
tion, whereas Mobile IP must use encapsulation for all packets. This
requires a smaller header reducing the overhead.

While a mobile node is away from home, its home agent intercepts
any packets for the mobile node that arrive at the home network, us-
ing IPv6 Neighbor Discovery rather than ARP. The use of Neighbor
Discovery improves the robustness of the protocol and simplifies its
implementation.

The dynamic home agent address discovery mechanism in Mobile
IPv6 uses IPv6 anycast and returns a single reply to the mobile node,
rather than the corresponding Mobile IP mechanism that used IPv4
directed broadcast and returned a separate reply from each home
agent on the mobile node’s home link. This mechanism is more ef-
ficient and more reliable, since only one packet need be sent back to
the mobile node.

Mobile IPv6 defines an Advertisement Interval option on Router Ad-
vertisements allowing a mobile node to decide for itself how many
Router Advertisements (Agent Advertisements) it is willing to miss
before declaring its current router unreachable.

4.4 Enhancing the Middleware Layer

4.4.1 Dolmen

Wireless access and terminal mobility issues in CORBA have been studied
in the EC/ACTS projects DOLMEN [66].

Dolmen uses the concept of bridging to interconnect mobile terminals to
the fixed network. In particular, it implements two half-bridges, one resid-
ing in a mobile terminal and the other in a well-known access point within
each mobility domain in the fixed network. This allows the introduction
of an efficient light-weight Inter-ORB protocol for use over the wireless
access network. This approach also allows addressing terminal mobility,
performance, and reliability issues.



4.4. ENHANCING THE MIDDLEWARE LAYER 51

MT4
ORBBackbone ORB

MT1
ORB

MT2
ORB

Wireless Access
Domain C

MT3
ORB

FDBR

MDBR

FDBR

FDBR

FDBR

MDBR

MDBR

MDBR

Mobility Domain A Mobility Domain C

Mobility Domain B

Wireless Access
Domain A

Wireless Access
Domain B

Figure 4.12: Dolmen Architecture

Figure 4.12 shows how mobile terminals can be connected to a fixed net-
work domain with mediated bridging: The wireless access domain and
part of the core network domain is divided into mobility domains. The
core network part of each mobility domain instantiates one or more Fixed
DPE Bridges (FDBRs) that serve as access points to the fixed network.
Each mobile terminal has its own ORB that provides object services to the
applications running on the terminal. Invocations of objects outside the
local access domain are directed to the Mobile DPE Bridge (MDBR) on the
mobile terminal.

The MDBR forwards the invocation to the FDBR, which then invokes the
desired object. The FDBR acts as the representative of the mobile terminal
within the fixed network, invoking operations in other objects on behalf of
the mobile terminal. The FDBR also accepts invocation requests for objects
located on the mobile terminal from objects within the core network. The
FDBR forwards an invocation request to the MDBR, which then invokes
the actual object and returns the response through the FDBR.

4.4.1.1 Allowing Terminal Mobility

When a mobile terminal is in contact with the core network (Figure 4.12),
a physical signaling connection exists between the two bridges. When the
terminal moves to another domain, this signaling connection is released,



52 CHAPTER 4. ENHANCING INFRASTRUCTURE FOR NOMADIC APPLICATIONS

a new FDBR within the new domain is contacted, and a new signaling
connection created. In Dolmen this procedure is referred to as a bridge
handover. During a bridge handover, the Location Register is updated
and the new FDBR is registered as the current access point of the mobile
terminal. This allows future invocation requests to be routed to the mobile
terminal through the correct FDBR.

Since one of the basic requirements for the mobility bridges is that they
must hide the effects of mobility from client and server objects, the invo-
cations in progress at the time of handover must be reliably and correctly
completed despite the momentary break in connectivity that is inherent
in a handover. This reliability is achieved by buffering invocation-related
messages in the old FDBR until the mobile terminal has successfully con-
nected to a new FDBR. A forwarding connection is then set up between
the old and new FDBRs and the buffered messages are forwarded to the
new FDBR.

Because IIOP is a connection-oriented protocol and an invocation reply is
always sent over the same connection from which the request arrived, it
is not possible to re-route an invocation reply. Therefore, the tunnel con-
nection is maintained until replies for all pending invocations have been
delivered to their destination through the old FDBR. Since CORBA com-
munication requires a reliable message service, the bridges must perform
recovery after an unexpected loss and subsequent re-establishment of the
signaling connection. The LW-IOP protocol described below provides the
means for such a recovery: each LW-IOP message must be acknowledged
by the receiver before it can be discarded by the sender. In the event of a
communication error, any unacknowledged messages are resent after the
communication channel has been re-established.

4.4.1.2 Light-Weight Inter-ORB Protocol (LW-IOP)

Since all object invocations between a mobile terminal and the core net-
work pass through MDBR and FDBR, as depicted in Figure 4.13, it is pos-
sible to optimize the messages passing through the wireless connection.
Dolmen designed a special Light-Weight Inter-ORB Protocol (LW-IOP) for
wireless access networks with low-bandwidth signaling channels.

The LW-IOP protocol is based on the GIOP protocol in the sense that the
exact same functionality is supported. However, the set of messages and



4.4. ENHANCING THE MIDDLEWARE LAYER 53

T er m.

OR B
M D B R

S er ver

OR B
F D B R

I I OP

T CP /I P

L W -I OP

w i r el ess

t r an spor t

pr otocol

I I OP

l ocal

commun i cat i on

T er mi nal Cor e N etw or k

Figure 4.13: Protocols in invocations over a wireless network

their representations are more efficient. In addition, caching and compres-
sion techniques are utilized in order to reduce the number of octets sent
over the wireless access network.

The main properties of LW-IOP are:

Reduced size of structures. For example, GIOP request identities
are allocated 32 bits, thus allowing for the unlikely scenario of more
than 4 billion concurrent requests. LW-IOP request identities permit
16,384 concurrent requests, and thus require only 14 bits.

Reduced size of headers. For example, the basic type unsigned
long is frequently used, for instance to indicate the length of a
string. Since these values are rather small in general, a represen-
tation with a variable size is used, in 1 to 5 octets instead of system-
atically 4 bytes. In most cases, the numbers are represented in 1 or 2
octets.

Strip of protocol identifiers and version numbers from the headers.

Coded representations of textual and binary strings, which are very
usual in GIOP, are employed to avoid the need to always transmit
the full information.

4.4.2 Wireless CORBA

OMG itself recognized the problems of CORBA in wireless and mobile do-
mains and thus issued a Request For Proposal [81] to solicit proposals that
allow applications on mobile terminals to exploit and provide CORBA-
based services. The main issues to resolve were:

1. IIOP servers are not expected to change their transport connection
endpoints.



54 CHAPTER 4. ENHANCING INFRASTRUCTURE FOR NOMADIC APPLICATIONS

2. Both IIOP and the transport connections are supposed to be reliable.
IIOP has no support for resuming broken IIOP connections, and if
the connection breaks the client and server are left in an inconsistent
state.

3. There are no means of changing network interface during an IIOP
connection without breaking it.

4. As pointed out in the previous section, the connections are expected
to enjoy high bandwidth.

Consequently to the RFP the OMG has adopted the Wireless Access and
Terminal Mobility in CORBA [32] specification, highly influenced by the
Dolmen project.

Home domain

Visited domain

Access

Bridge

Access

Bridge
Access

Bridge

Access

Bridge

Terminal

Domain

Terminal

Bridge

Home

Location

Agent

GIOP

tunnel

Figure 4.14: Architecture for Terminal Mobility in CORBA

4.4.2.1 Architectural Framework

The key elements in the architecture are shown in Figure 4.14. It identifies
three different domains: the Home Domain, which hosts the Home Loca-
tion Agent, the Visited Domain, which hosts one or more Access Bridges
and the Terminal Domain, which hosts the Terminal Domain. These dif-
ferent concepts are described below.

Mobile IOR A mobile IOR is a special IOR that hides the mobility of
a terminal from clients that invoke operations on objects located on the



4.4. ENHANCING THE MIDDLEWARE LAYER 55

terminal. The Mobile IOR provides this feature is a transparent way to the
client’s ORB. Hence a non-mobile client does not need to implement the
Wireless CORBA specifications.

Home Location Agent The role of the Home Location Agent is to keep
track of the current location of the terminal. It provides operations to
query and update terminal locations.

Access Bridge The Access Bridge is the network end point of the GIOP
tunnel. It encapsulates the messages sent to the Terminal Bridge and de-
capsulates the messages coming from the Terminal Bridge. If needed the
Access Bridge may also provide notifications of terminal mobility events.

Terminal Bridge On the terminal side of the GIOP tunnel there is the Ter-
minal Bridge. It encapsulates the messages sent to the Access Bridge and
decapsulates the messages received from the Access Bridge. The Terminal
Bridge may provide a channel that delivers terminal mobility events.

GIOP tunnel The GIOP tunnel is the mean to transmit messages be-
tween the Terminal Bridge and the Access Bridge. The GIOP Tunneling
Protocol (GTP) defines how GIOP messages are transmitted and the con-
trol messages to establish, release and re-establish the GIOP tunnel. The
GTP is a transport-independent protocol. The specification defines three
concrete tunneling protocols over TCP, UDP and WDP. The overall archi-
tecture is depicted in the figure 4.15.

Terminal ORB Access Bridge ORB peer ORB

GIOP GIOP

GIOP messages

TCPTCP
TCP byte stream

IIOPIIOP
IIOP messages

GTP adaptation layer GTP adaptation layer

transport transport

GTP GTP
GTP
msgs

Object
CORBA invocations

Object

Figure 4.15: GIOP Tunneling Protocol Architecture



56 CHAPTER 4. ENHANCING INFRASTRUCTURE FOR NOMADIC APPLICATIONS

4.4.2.2 Message Processing

When the Home Location Agent receives a message targeted at a termi-
nal, it returns the Mobile IOR of the Address Bridge associated with that
terminal. If the Home Location Agent does not know the Address Bridge
it returns a system exception.

When the Access Bridge receives a message targeted to the terminal it is
associated with, it encapsulates the message with the GTP and sends it
through the GIOP tunnel.

However, if the Access Bridge receives a message aimed to a terminal it
has not been associated with, then it queries the current location of the
terminal from the Home Location Agent.

4.4.2.3 Handoff

The handoff in Mobile CORBA can occur in two different cases: backward
handoff (Bridge handoff) and forward handoff (access recovery). It may
have different initiators: Network Initiated handoff, when an external ap-
plication invokes the start of the handoff, or Terminal Initiated handoff,
when the terminal connects to a new Access Bridge.

In general, a stretch of the handoff sequence is the following (Fig. 4.16):

1. The old Access Bridge requests the new Access Bridge to accept the
terminal.

2. The old Access Bridge communicates to the Terminal Bridge to es-
tablish a connection to the new Access Bridge.

3. The new Access Bridge updates the location of the terminal to the
Home Location Agent.

4. The Terminal Bridge communicates to the old Access Bridge that a
connection has been established.

5. The old Access Bridge communicates to the new Access Bridge that
the handoff is completed and releases the GIOP tunnel with the Ter-
minal Bridge.



4.4. ENHANCING THE MIDDLEWARE LAYER 57

TB old AB new AB

start_handoff

HandoffTunnelRequest
transport_address_request

EstablishTunnelRequest

Establishment of transport connectivity

HLA

location_upadte

EstablishTunnelReply

HandoffTunnelReply handoff_completed

ReleaseTunnelRequest

ReleaseTunnelReply
notify other ABs

DepartingTerminalNotification
HandoffNotification

ArrivingTerminalNotification

report_handoff_status

TB old AB new AB

start_handoff

HandoffTunnelRequest
transport_address_request

EstablishTunnelRequest

Establishment of transport connectivity

HLA

location_upadte

EstablishTunnelReply

HandoffTunnelReply handoff_completed

ReleaseTunnelRequest

ReleaseTunnelReply
notify other ABs

DepartingTerminalNotification
HandoffNotification

ArrivingTerminalNotification

report_handoff_status

Figure 4.16: Sequence of Handoff

4.4.2.4 Access Recovery

When the Terminal Bridge detects that the connectivity with the Access
Bridge is lost it starts the access recovery procedure. The possible out-
comes of the procedure depend upon the fact that a connectivity is estab-
lished with the same Access Bridge or with a new Access Bridge. In the
first case, after the connection is secured a retransmission of the pending
messages takes place. In the latter case, the retransmission will take place
through the new Access Bridge after an implicit handoff.

4.4.3 Alice Project

The Alice project [3, 46] tries to address the same problems identified in
the previous section. The ALICE architecture allows server and client ob-
jects to reside on mobile terminals without relying on a centralized loca-
tion register to keep track of their movements. In ALICE IIOP clients and
servers on the mobile terminal can interact with IIOP servers and clients
on the wired network using standard IPv4 transparently. In a similar way
as the Access Bridge of the previous section, a Mobility Gateway is situ-
ated on the wired network to allow the mobile terminal to access the wired
network. The architecture is depicted in Figure 4.17. The architecture con-



58 CHAPTER 4. ENHANCING INFRASTRUCTURE FOR NOMADIC APPLICATIONS

sists of three layers. The Mobility Layer (ML) provides mobility support
independently from CORBA and IIOP. The IIOP Layer implements the
IIOP protocol independently from the mobility. The Swizzling IIOP (S/I-
IOP) provides to IIOP the support required when the server objects reside
on mobile terminals.

Sockets

Mobile Host Fixed Network

S/IIOP Layer

Mobility Layer

Sockets+

TCP/IP

Sockets

TCP/IP

Sockets

IIOP API

IIOP Layer

IIOP API

IIOP Layer

ORB or IIOP API

ORB or IIOP

ORB or IIOP API

ORB or IIOP

Mobility Gateway

TCP/IP

Sockets

TCP/IP

Sockets

TCP/IP

Sockets

TCP/IP

Sockets

Mobility Layer

Sockets+

S/IIOP Layer

S/IIOP API

Figure 4.17: The ALICE Architecture

4.4.3.1 Mobile Layer

The Mobile Layer hides the broken connection from the layers above it,
thus avoiding breaking the IIOP semantic. Furthermore, the ML allows
the mobile terminal to allocate TCP/IP ports on the Mobility Gateway.
This is needed for incoming connection attempts. The ML offers mobil-
ity information to the S/IIOP layer on both the mobile terminal and the
mobility gateway, so that address translation and request forwarding can
be performed. Finally the ML performs a handoff between different gate-
ways.



4.4. ENHANCING THE MIDDLEWARE LAYER 59

4.4.3.2 Handoff

When the Mobile Layer on the mobile terminal connects to a new ML on
the Mobility Gateway (MG) a handoff takes place. Since in the ALICE
framework there is not a centralized registry, the new MG is informed by
the mobile terminal of the address of the old MG and the identifiers of all
the logical connections that existed between the mobile terminal and the
old MG. The old MG sends all the unacknowledged data it has in its cache
to the new MG. If there were open connections between the old MG and
the mobile terminal, they must all be tunneled between the old and the
new MG. This could lead to a chain of tunnels between different mobility
gateways if the terminal moves frequently. The Swizzling Layer performs
all the needed update operations to the IORs.

4.4.3.3 Drawbacks

The idea not to rely on a centralized location service is interesting but there
are two main drawbacks in the ALICE architecture. First, its implemen-
tation required a modification to the standard socket semantics. This is
because it is not possible for a server located in a mobile terminal to bind
to a particular port number. Secondly, the chain of tunnels that may occur
when the mobile terminal changes its point of access frequently does not
sound appealing.



60 CHAPTER 4. ENHANCING INFRASTRUCTURE FOR NOMADIC APPLICATIONS



Chapter 5

Wireless Java RMI

Complex problems have simple, easy-to-understand wrong answers.
- Grossman’s Misquote Of HL.Mencken

5.1 Introduction

Java RMI (see Par. 3.3) is becoming extremely popular in distributed com-
puting when the language environment is Java. The reasons behind this
success are quite obvious: RMI alleviates the user from the burden of all
the communication between remote objects. With only few modifications
to the source code the application is easily transformed to a distributed
one. RMI itself takes care of the details as memory management and dis-
tributed naming. Furthermore, given that Java is becoming the de-facto
standard language over the Internet, developers are encouraged to reuse
off-the-shelf solutions as RMI.

This popularity is also reaching new environments: RMI is a popular
choice in Agent Platform for extra-platform communication, and it is the
default communication tool in the increasingly popular middleware Jini
(see 6.3.3). Thus Java RMI is used more often in mobile environments,
such as in mobile agent platforms, and in wireless environments, such as
some Jini scenarios suggest. Thus, it is only a matter of time before the
performance of Java RMI over wireless links becomes important.

For this reason, and to show in more detail how much the nomadic en-
vironment affects the behavior of the non nomadic-aware software, we
analyzed the performance of Java RMI over a slow wireless link.



62 CHAPTER 5. WIRELESS JAVA RMI

ClientClient RegistryRegistry ServerServer

TCP1

Header

Protocol Ack, EPId

EPId, Lookup()

ServerRef

Header

Protocol Ack, EPId

EPId, dirty()

Lease

Ping

Ping Ack

DGCAck

Ping

Ping Ack

sayHello()

“Hello World”

clean()

clean result

...

TCP2

ParallelParallel

Figure 5.1: The trace of the “sayHello” remote invocation

5.2 RMI Problems

In this section we describe the main problems that RMI shows in a wireless
environment. The data was collected using a network sniffer and then
analyzed.

5.2.1 Analysis of an RMI Call

In this section we will show an analysis of a simple RMI call. The method
is called “sayHello”. As return value the method returns the String “Hello
World”.

In our test the stub class was already present on the client side, so there
was no need to download it. The trace of the call is outlined below (see
Figure 5.1):

1. The first round-trip is between the client and the Registry on the
remote side and uses a new TCP connection(TCP1). The registry
returns an acknowledgment of the RMI protocol and what it believes



5.2. RMI PROBLEMS 63

to be the client’s IP address (EPId). It should be noted that this first
round-trip happens every time a new connection is opened.

2. In the second round-trip, the client requests (and obtains) the remote
reference of the desired remote class. At this point, the RMI connec-
tion is closed, logically closing the TCP1 connection.

3. Opening a second TCP connection TCP2, the client connects with
the server. Since this is the first RMI call a header and a protocol
acknowledgment are exchanged.

4. The client-side Distributed Garbage Collection (DGC) requests from
the server a lease of the required remote reference through a Dirty()
invocation. The RMI connection is closed, logically closing the TCP2
connection.

5. At this point, the Client must tell the DGC of the Registry that it ob-
tained a remote reference, so it opens a new RMI connection. The
first round-trip between the client and the Registry is a ping: in this
way the client verifies that the TCP connection, which was logically
closed before, is still alive1. Having verified this, the client commu-
nicates to the Registry that it has received a lease from the server
with a DGCAck message.2

6. In parallel with the previous point, the client can invoke the remote
method on the server. But, since the TCP connection was closed, a
ping round-trip takes place. After this, the client invokes the method
and obtains the results of the invocation as return value.

7. When the client does not need the remote reference any more, usu-
ally when the remote reference is locally unreferenced, it sends a
“clean” message to the server. This exchange is preceded by the
usual ping round-trip.

Data traffic is summarized in Table 5.1. In each row is given the number
og bytes of data (and percentages) transferred in each transfer pattern.

1Note that a ping does not occur if the TCP connection has been idle for a time less than
a ping round-trip.

2Before this acknowledgment has been sent, the Registry must not release its server ref-
erence, since that might cause the server to wrongly conclude that there are no references
in use.



64 CHAPTER 5. WIRELESS JAVA RMI

Table 5.1: Invocation data traffic
Client to Server and

Server and Registry Total
Registry to Client

Registry 55 (6%) 276 (42%) 331 (20%)
Lookup
Invocation 41 (4%) 37 (6%) 78 (5%)
Data
DGC 831 (85%) 305 (46%) 1136 (69%)
Data
Protocol 52 (5%) 40 (6%) 92 (6%)
Overhead
Total 979 (100%) 658 (100%) 1637 (100%)

On a slow wireless link the amount of data that is sent over the link is
important. In this example, the actual invocation takes up only 5% of the
total transmitted data while 69% was related to the DGC protocol. This
means that the channel is primarily used for auxiliary data, making the
invocation expensive.

Another important issue is the high number of round-trips. On slow links,
like GSM, even a single byte exchange like ping causes delays due to the
long latency times involved (a round-trip over GSM is typically around
one second). In this example, six round-trips were necessary before the
invocation was completed, not counting the two round-trips caused by
TCP handshaking. However, only two are really needed - one to get the
server reference, and another for the actual invocation.

5.2.2 RMI Use of TCP Connections

The reuse of TCP connections in the transport layer is commendable be-
cause it saves resources. However, the implementation causes frequent
ping messages. This is problematic with high-round-trip wireless connec-
tions. While Java RMI is not optimal for wireless networks, neither is TCP
upon which Java RMI is built. The problems with TCP in a wireless en-
vironment are well-known [61, 18]. Especially in JDK1.1, RMI and TCP
conspire to produce bad results. RMI writes header data byte by byte, and
because of the slow start algorithm [54], TCP has to wait for an acknowl-
edgment once it has sent the first segment containing only one byte. This
means that it takes a full round-trip before the second segment can be sent.

In JDK1.2 (Java2), data is no longer written byte by byte, and the perfor-



5.3. OPTIMIZATION OF JAVA RMI FOR SLOW WIRELESS LINKS 65

mance is much better. However, the protocol itself still enforces many
round-trips for a single invocation (due mainly to the ping packets).

5.3 Optimization of Java RMI for Slow Wireless links

Tests run on top of a GSM data connection show that a simple reference
lookup can take as long as 20 seconds for JDK1.1. This fact should not
come as a surprise to the reader at this point as we have seen in the previ-
ous chapters. Given the importance of Java RMI, we decided to optimize
it for wireless links. The following sections describe the solutions we de-
signed and outline the reasons behind our choices.

5.3.1 Optimizations

Optimization of Java RMI for wireless links means a reduction of protocol
overhead and the number of round-trips. The analysis of the trace of the
RMI call shown in Figure 5.1 suggests the following optimizations:

Serialization – The serialization protocol used by Java RMI produces a
large amount of overhead in the invocation. This overhead should
be minimized.

Protocol Acknowledgment – It should be possible to suppress protocol
acknowledgments, or at least to avoid their crossing the wireless
link.

Registry lookups – Lookup invocations are very expensive in terms of
data transferred through the wireless link. Thus lookups should be
avoided as much as possible.

Distributed Garbage Collection – This protocol introduces heavy data
overhead and its use in a wireless environment is less meaningful,
since the link is subject to sudden disconnections that can be han-
dled at the transport layer. It is important to avoid its redundancy
and high number of round-trips.

5.3.2 Maintaining Compatibility

Once identified where to focus on to improve RMI performance, there are
two different ways to implement the solutions. The first one is to change



66 CHAPTER 5. WIRELESS JAVA RMI

the RMI implementation itself, i.e. to change JDK system classes. The main
disadvantage of this choice is that modifications of both client and server
software is necessary, thus making this solution unattractive. In fact, while
it can be acceptable to modify the runtime classes on the client side, it is
inconceivable to modify the runtime classes on the server side. In fact, the
client’s host is in possession of the user, while the servers’ hosts can be
spread through the Internet and thus outside the direct influence of the
user.

The second solution, presented in the next sections, attempted to preserve
the original implementation supporting it with the use of mediators.

5.3.3 Use of Mediators
Figure 5.2 shows the scenario where a user invokes a remote method from
a mobile device. There are three main actors in the scenario:

1. The user device, where the client invokes the RMI method, situated
in a wireless domain.

2. The access node, situated in the fixed network, that serves the mobile
terminal with an access point to the fixed network.

3. The server computer, where the server application is running, situ-
ated somewhere in the Internet.

It is possible to insert a mediator in the access node and a mediator in the
user device. In this way we can decouple the RMI protocol from the wire-
less connection. On the client side, the RMI Agent captures the invocations
made by the client, while in the access node the RMI Proxy forwards the
requests to the server. In this way the two mediators can control the data
passing through the wireless channel.

The role of the RMI mediators in an invocation is shown in Figure 5.3.
The RMI Agent captures the invocation made by the client. A lookup re-
quest is first checked in the local cache, and only if the remote reference is
unknown the request is forwarded to the server.

DGC invocations are optimized by decoupling client and server. The RMI
proxy keeps servers alive by periodically renewing the leases3. It will only

3A lease is a time period after which the server will assume that the client has died
unless the client renews the lease.



5.4. IMPLEMENTATION DETAILS 67

Fixed Network

Access Nodes

Server computers

User devices

Figure 5.2: Wireless RMI scenario

stop doing so once the RMI agent tells it that no more references to the
server exist on the other side. In this way the DGC semantics are loosened
to suit the needs of wireless communication without modifying client or
server code. No lease request, that is, dirty() invocations, needs to be sent
over the wireless link since all leases are managed on the fixed network
side. In this way the number of round-trips is minimized. The amount
of data transferred over the wireless link is also reduced. Of course, clean
requests still have to be sent to inform the other side that there is no refer-
ence to a server any longer. An optimized data representation can be used
for these requests, which further reduces DGC overhead.

5.4 Implementation Details

Using mediators it is possible to maintain standard RMI compatibility be-
tween the client and the RMI Agent and between the RMI Proxy and the



68 CHAPTER 5. WIRELESS JAVA RMI

RMI Agent Registry Server

Lookup()
Lookup()

ServerRef

Client RMI Proxy

In cache?

EPId, Lookup()

InternalRef
AgentRef

EPId, dirty()

Lease

Generate stub, store to cache
++count[ref]

Ping

Ping Ack

DGCAck

sayHello()
sayHello()

sayHello()

“Hello World”
“Hello World”

“Hello World”

clean()

clean result
clean result

...
AgentRef GC’d

clean()
--count[ref] == 0 ?

Header

Protocol Ack, EPId

Header

Protocol Ack, EPId

Ping

Ping Ack

Ping

Ping Ack

...

Java Invocation

Monads Protocol

Java RMI Protocol

Figure 5.3: Using mediators to optimize the remote invocation

server. Practically this means that the RMI Agent is seen as a RMI server
by the client, and the RMI Proxy acts as a client from the server’s point of
view. The main advantage of this approach is that the applications both
in the user domain and in the server domain do not need to be modified.
Unfortunately it is not an easy task to capture the invocations made by
the client. As described in section 3.3, before invoking a remote method
a client has to obtain the remote object reference. This is done usually by
connecting to a local registry. This problem has been solved by modify-
ing the runtime classes on the mobile device. Instead of a standard RMI
registry the user application invokes our own version implemented inside
the RMI Agent. It is the task of the Agent to request the reference from the
Proxy.

A second problem arises when the reference is passed to the client as a
stub. The stub has an open and direct connection with the remote server.
Unfortunately following this path the client would bypass the RMI Agent
and its optimization during the remote calls. The next section describes
how we dealt with this issue.



5.4. IMPLEMENTATION DETAILS 69

5.4.1 Dynamic Run-time Generation of Generic Stub

To overcome the problem described in the previous session the RMI Agent
has to return a generic stub to the client so that all the methods invoked by
the stub are captured. The generic stub will contact the RMI Agent instead
of connecting directly to the remote server. In order to make this possible,
a dynamic run-time generation of classes must be possible. Fortunately
JDK 1.3 introduced the concept of dynamic proxy classes.

A dynamic proxy class is a class that implements a list of interfaces speci-
fied at runtime when the class is created. A proxy instance is an instance
of a proxy class. Each proxy instance has an associated invocation han-
dler object, which implements the interface InvocationHandler. A
method invocation on a proxy instance through one of its proxy interfaces
will be dispatched to the invoke method of the instance’s invocation han-
dler, passing the proxy instance, a java.lang.reflect.Method object
identifying the method that was invoked, and an array of type Object
containing the arguments. The invocation handler processes the encoded
method invocation as appropriate and the result that it returns will be re-
turned as the result of the method invocation on the proxy instance.

To intercept the remote invocation our implementation follows these
steps:

1. Obtain the list of the interfaces implemented by the remote object.

2. Attach a generic invocation handler to any method declaration in
any interface implemented by the remote object.

3. Return a proxy instance to the client.

A segment of the invocation handler source code is shown in Program 5.1.

Each proxy instance has an associated invocation handler. When a method
is invoked on a proxy instance, the method invocation is encoded and
dispatched to the invoke method of its invocation handler.

The DynStub class implements the interface Invocation Handler so that
the client’s invocations in the stub are dispatched to its invoke method.
The solution to our problems is in the last line of the invoke method, where



70 CHAPTER 5. WIRELESS JAVA RMI

Program 5.1 DynStub.java

public c l a s s DynStub
implements InvocationHandler �

private s t a t i c i n t p o s i t i o n ;

DynStub ( i n t p ) �
t h i s . p o s i t i o n =p ;�

. . .

public Object invoke ( Object proxy , Method m, Object [ ]
args ) throws Throwable �

i f ( args==null ) �
args=new Object [ 0 ] ;�

i n t methodindex = getMethodIndex (m, proxy ) ;
return HandlerClass . doInvoke ( t h i s . p o s i t i o n ,

methodindex , args ) ;�
�

the invocations are forwarded to the doInvokemethod in the Handler-
Class (segments of the code are shown in Program 5.2) implemented in
the RMI Agent.

When a client requests a remote reference, the RMI Agent will invoke the
lookup method in the HandlerClass class. This method obtains the
list of the interfaces from the server side and creates a proxy using the
Proxy.newProxyInstancemethod. When the client invokes a method,
the proxy will invoke the method handler doInvoke() in the Handler-
Class.

Note that, as side effect, no stub classes are downloaded in the client side
through the wireless channel, since the real stub is returned by the remote
server to the RMI Proxy in the server side and there it resides. The dynamic
stub needs only the runtime classes of the interfaces implemented by the
remote object, but those classes must be known by the client before making
any remote method invocation.



5.5. THE WIRELESS RMI PROTOCOL ( � RMI) 71

Program 5.2 HandlerClass.java

public s t a t i c Remote lookup ( S t r i n g u r l , i n t port ) throws
NotBoundException , RemoteException �

. . .

Class [ ] i n t e r f a c e s = new Class [ n ] ;

. . .

i n t e r f a c e s = getRemoteInter faces ( ) ;

InvocationHandler handler = new DynStub ( p o s i t i o n ) ;
Remote fakeStub = ( Remote ) Proxy . newProxyInstance (

i n t e r f a c e s [ ] . getClassLoader ( ) , i n t e r f a c e s , handler
) ;

return fakeStub ;

�

protected s t a t i c Object doInvoke ( i n t p o s i t i o n , i n t
methodindex , Object [ ] args ) throws
ClassNotFoundException , RemoteException �

. . .�

Figures 5.4 and 5.5 outline the difference between the architecture of our
RMI optimization and the normal RMI.

5.5 The Wireless RMI Protocol ( � RMI)

The Wireless RMI Protocol ( � RMI) is the core of the Wireless RMI archi-
tecture and its purpose is to provide an efficient means for communication
between the RMI Agent and the RMI Proxy via the wireless channel. In
the following section we describe in detail the messages that compound
the protocol and how they are used.



72 CHAPTER 5. WIRELESS JAVA RMI

Client Server

Lookup() :where is Hello?

invokeMethod()

Send the me stub

“ReturnValue”

Hello is here

Registry

Server

Server-stub

DGC messages

Here is the stub

Client

Stub

Figure 5.4: The normal RMI structure

Client
Server

Client

FakeStubs

ProxyAgent

Registry

Server

Registry

Server

Monads
Registry

Client

Figure 5.5: Optimized RMI structure

5.5.1 Lookup Request

After the client requests a remote reference, the RMI Agent has three op-
tions:

1. the reference points to a local object. The RMI Proxy makes a local
RMI call and returns the result directly to the client.

2. the reference points to a remote object, but the reference has been
requested already. The RMI Agent returns the stub extracted from
its database.

3. otherwise, the RMI Agent sends a Lookup Request (LR) packet to
the Proxy on the fixed side.



5.5. THE WIRELESS RMI PROTOCOL ( � RMI) 73

The format and the explanations of the symbols are the following:

0 8

L URL
Symbol Size Explanation

L 1 octet Lookup invocation
URL variable The remote reference

The first field tells the Proxy that the following is a lookup request, and
URL is the reference of the remote object as listed in the remote Registry.
In Java terms, the invocations done by the Proxy resembles the following:

stub = Registry.Lookup(URL)

5.5.2 Lookup Answer

After receiving an LR message, the RMI Proxy invokes a
Registry.lookup(URL) method and receives the RMI stub from
the remote object. The Proxy then extracts information from the stub
through Java introspection and saves the information in a database.
Then it sends one of the following Lookup Answer (LA) messages to the
RMI Agent:

0 8 16 24

L IDX N interface ...
N+1 times

or

0 8 15

L E

The packet fields have the following meaning:



74 CHAPTER 5. WIRELESS JAVA RMI

Symbol Size Explanation

L 1 octet Lookup Invocation
IDX 1 octet Database index

E 1 octet Error code
N 1 octet # of interfaces

interface variable Java Interface

Symbol Possible value
E NOT BOUND

REMOTE EXCEPTION
CONNECTION REFUSED

Once having received an LA packet, the RMI Agent checks if the first field
contains an error code. In this case it throws an exception. Otherwise it
uses the information to create the dynamic run-time stub (see Sec. 5.4.1)
and it saves it to a database. The IDX value is the hash key to use for
requesting the same object on the Proxy side.

5.5.3 Invocation Request

To execute a method in a remote object, the message that the RMI Agent
sends to the Proxy is the Invocation Request(IR) message:

0 8 16 24

I M IDX MET Parameter ...
M times

Where the fields have the following meanings:

Symbol Size Explanation

I 1 octet Invocation
IDX 1 octet Database index
M 1 octet # of parameters

MET 1 octet Method index
Parameter variable Java Object

The Proxy receives the message, retrieves the stub from its database us-
ing the IDX index and invokes the method indexed by MET with the
Parameter (s). In Java terms, the invocation resembles the following:

IDX.MET(Parameter, ...)



5.6. PERFORMANCE EVALUATION 75

5.5.4 Invocation Result

After the invocation is done, the RMI Proxy sends the result to the RMI
Agent using the Invocation Result (IR) packet:

0 8 16

I E Return Value

with the following meanings:

Symbol Size Explanation

I 1 octet Invocation
E 1 octet Error code

Return variable Java Object

Symbol Possible value
E OK

REMOTE EXCEPTION
STALE

If the invocation was successful, the error code is OK and the return value
is sent. Otherwise, the E field is filled with STALE if one of the in-
dexes was stale (and a new lookup invocation is needed) or with REMOTE
EXCEPTION if another exception was raised.

5.6 Performance Evaluation

To validate our solution and to check its performance, our implementation
was measured in field trials. The objective was to study how our system
behaves in different circumstances and to compare its performance with
regular RMI.

5.6.1 Test Arrangements

In the measurements, we used the configuration specified in Table 5.2. The
mobile node was connected to the Access Node using GSM HSCSD data
service. Technically the HSCSD consists of two parts: multislot capability
and the modified channel-coding scheme. The former provides the use of
several parallel time slots per user where normal GSM can use only one.
At the beginning of the HSCSD service, the maximum number of time
slots is mostly limited to 3+1 (asymmetrical connection, three time slots
for downlink) and 2+2 (symmetrical connection). The modified channel-
coding scheme provides the user with a data rate of 14.4 kbps instead of
the original maximum 9.6 kbps. In order to achieve higher bit rates, a more
efficient puncturing method is used. This, on the other hand, decreases



76 CHAPTER 5. WIRELESS JAVA RMI

the radio interface error-correction performance. Therefore, the 14.4 kbps
channel coding cannot be used when there is a lot of noise and interference
affecting the quality of the radio signal. Depending on connection type
and the capabilities of the network infrastructure, the maximum user data
rate can be 28.8 kbps using a modem connection, 38.4 kbps using an ISDN
V.110 protocol, or 57.6 kbps using an ISDN V.120 protocol.

Table 5.2: Hardware used in the measurements
Mobile Terminal Toshiba Portégé 7020CT (Intel

Pentium II/366MHz; 128Mb Main
Memory)

Access Node Compaq DeskPro EN6350 (Intel
Pentium II/400MHz; 128Mb Main
Memory)

GSM Phone Nokia CardPhone 2.0 (Prototype)
Access Node Modem Multitech MT2834ZDXI (28.8Kbps)

We performed the measurements using a modem connection, thus hav-
ing 28.8 kbps as maximum user data rate. The following combinations of
channel coding (CC) and time slots were used: 1+1 (96CC; original GSM),
1+1 (144CC), 2+2 (96CC), 2+2 (144CC), and 3+1 (96CC). The measurements
were conducted in a normal office environment with good HSCSD radio
link conditions.

The software package used in the test was the KaRMI benchmark suite
provided by the Institute for Program Structures and Data Organization
of the University of Karlsruhe [78]4. The test cases used are shown in
Table 5.3. Each test was repeated 20 times in every configuration.

Since the implementation of the Java Virtual Machine and the underlying
TCP/IP implementation are different in different operating systems, we
conduct all the experiments in a Windows environment and in a Linux
environment, as described in Table 5.4.

5.7 Summary of Performance Results

5.7.1 Lookup results

In the lookup case, we measured the time to get the reference to a remote
object. In our optimized implementation, we did not measure the case
when the reference is found in the RMI Agent’s reference cache; in this

4Software available at http://wwwipd.ira.uka.de/˜hauma/EfficientRMI/



5.7. SUMMARY OF PERFORMANCE RESULTS 77

Table 5.3: Test cases set
Name Parameters type Return value
Void null null
ReturnPing Byte[500] Byte[500]
PingImage Byte[5998] null
PingText Byte[9689] null
ReturnText Byte[9689] Byte[9689]

Table 5.4: Test Environment
Client Server

Windows
OS Windows 98 Windows NT (SP 6)

JDK Sun JDK 1.2.2 Sun JDK 1.2.2
Linux

OS Linux 2.2.14 Linux 2.2.14
JDK Sun JDK 1.2.2 Sun JDK 1.2.2

case, the reference is found in a few milliseconds depending on the speed
of the underlying hardware and Java implementation.

Table 5.5: Comparison between normal RMI and optimized RMI for the
Windows Lookup case

Original RMI Monads
Min Max Median Average Min Max Median Average

1+1 (96CC) 5540 6530 5685 5693 1260 4840 1290 1528
1+1 (144CC) 1000 8900 6565 6667 1260 1430 1320 1346
2+2 (96CC) 1543 6040 5135 5118 1150 1380 1210 1234
2+2 (144CC) 1071 8240 5710 5682 1160 2140 1260 1313
3+1 (96CC) 5100 8300 5210 5315 1100 2310 1210 2310

Table 5.6: Comparison between normal RMI and optimized RMI for the
Linux lookup case

Original RMI Monads
Min Max Median Average Min Max Median Average

1+1 (96CC) 6304 6478 6390 6388 1116 2346 1136 1200
1+1 (144CC) 6490 8332 6684 7080 1107 1622 1119 1154
2+2 (96CC) 5118 5745 5216 5263 958 1225 979 995
2+2 (144CC) 5382 8364 6214 6378 994 5878 1068 1625
3+1 (96CC) 5308 9547 5963 6144 961 1139 980 1139



78 CHAPTER 5. WIRELESS JAVA RMI

Tables 5.5 and 5.6 show the results of lookup tests in Windows and Linux
respectively. As expected, our implementation is significantly faster due
to the reduction of unnecessary round-trips (see Figure 5.6). Using the
original GSM (1+1, 96CC) our implementation is more than four times
faster than the normal RMI in a Windows environment, and more than
five times faster in Linux. An interesting result is that in HSCSD data
service using the 14.4 kbps channel-coding scheme, the round-trip time
is slightly higher than using the original 9.6 kbps channel coding. Since
fewer round-trips are needed in our implementation, we gain more when
14.4 kbps is used as shown in Figure 5.7. The actual throughput does not
significantly affect lookup results, since there is only a small number of
bytes to send both in our implementation and in the original Java RMI.

1+1(96CC) 1+1(144CC) 2+2(96CC) 2+2(144CC) 3+1(96CC)
0

1

2

3

4

5

6

7

Modem Speed

se
co

nd
s

Normal RMI
Monads RMI

Figure 5.6: Summary of the lookup test in a Windows environment

1+1(96CC) 1+1(144CC) 2+2(96CC) 2+2(144CC) 3+1(96CC)
0

1

2

3

4

5

6

Modem Speed

se
co

nd
s

Figure 5.7: The difference between original RMI lookup and optimized
lookup



5.7. SUMMARY OF PERFORMANCE RESULTS 79

5.7.2 Invocation results

In the Invocation case, we performed an extensive study using different
kernels found in the KaRMI package. Table 5.3 summarizes the test cases
we used.

First, to evaluate basic overhead caused by RMI, we used a simple remote
method; with no parameters nor return value. The results are given in Ta-
bles 5.7 and 5.8 for Windows and Linux respectively. As there are only a
few bytes to transfer in both directions, the difference between our imple-
mentation and original RMI is insignificant. In our implementation there
is some additional processing overhead, as all invocations go through the
RMI Agent. However, with the slow wireless communication path being
the bottleneck, this is not a problem. In Figure 5.8, the results of the Win-
dows environment are illustrated.

1+1(96CC) 1+1(144CC) 2+2(96CC) 2+2(144CC) 3+1(96CC)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Modem Speed

se
co

nd
s

Normal RMI      
Monads RMI      
Monads non comp.

Figure 5.8: Summary of the void ping() test in a Windows environment

Next we evaluate the case where the remote object takes an array of bytes
(500) as an argument, and as a return value, returns the same array back.
Tables 5.7 and 5.8 summarizes the results of this test case in Windows and
Linux respectively. In this case, there is now more data to send, and there-
fore using compression affects the results significantly. This is mainly due
to the content of the array; in the KaRMI package all arrays are always
initialized with zeros.

In order to evaluate our implementation with more realistic data, we used
a case where the client sends a file to the server as a parameter of a remote
method, and another case, where the server also returns the same file as
a return value. As the content of the file affects the results of our imple-
mentation significantly when compression is used, we selected two files
with very different content; the text file used was a HTML page of 9689



80 CHAPTER 5. WIRELESS JAVA RMI

bytes and the image file used was a GIF image of 5998 bytes. The general
purpose compression algorithm we are using is not able to compress GIF
images. As a result, we do not gain anything from using compression with
very random data, but on the other hand, the additional overhead needed
in this case is not significant. When we are transferring text data, for exam-
ple, the compression works well, and our implementation is significantly
faster than the original RMI. The summaries of image and text transfer
results are shown in Tables 5.7 and 5.8. The results are summarized in
Figure 5.9.



5.7. SUMMARY OF PERFORMANCE RESULTS 81

1+1(96CC) 1+1(144CC) 2+2(96CC) 2+2(144CC) 3+1(96CC)
0

1

2

3

4

5

6

7

Modem Speed

s
e
c
o
n
d
s

Normal RMI      
Monads RMI      
Monads non comp.

(a)

1+1(96CC) 1+1(144CC) 2+2(96CC) 2+2(144CC) 3+1(96CC)
0

2

4

6

8

10

12

Modem Speed

s
e
c
o
n
d
s

Normal RMI      
Monads RMI      
Monads non comp.

(b)

1+1(96CC) 1+1(144CC) 2+2(96CC) 2+2(144CC) 3+1(96CC)
0

2

4

6

8

10

12

14

16

18

20

Modem Speed

s
e
c
o
n
d
s

Normal RMI      
Monads RMI      
Monads non comp.

(c)

1+1(96CC) 1+1(144CC) 2+2(96CC) 2+2(144CC) 3+1(96CC)
0

1

2

3

4

5

6

7

Modem Speed
s
e
c
o
n
d
s

Normal RMI      
Monads RMI      
Monads non comp.

(d)

1+1(96CC) 1+1(144CC) 2+2(96CC) 2+2(144CC) 3+1(96CC)
0

2

4

6

8

10

12

Modem Speed

s
e
c
o
n
d
s

Normal RMI      
Monads RMI      
Monads non comp.

(e)

1+1(96CC) 1+1(144CC) 2+2(96CC) 2+2(144CC) 3+1(96CC)
0

2

4

6

8

10

12

14

16

18

20

Modem Speed

s
e
c
o
n
d
s

Normal RMI      
Monads RMI      
Monads non comp.

(f)

Figure 5.9: Figure (a) shows the invocation times of uplink image transfer
using different link speeds in a Linux environment. Figure (b) shows the
invocation times of uplink text transfer while Figure (c) shows the invoca-
tion times of two-way text transfer in a Linux environment. Figures (d),(e),
and (f) show the corresponding times in the Windows environment



82
C

H
A

PT
E

R
5.

W
IR

E
L

E
SS

JA
V

A
R

M
I

Original RMI Monads Compressed Monads Uncompressed
Min Max Median Average Min Max Median Average Min Max Median Average

Comparison between normal RMI and optimized RMI for the Windows Void case
1+1 (96CC) 650 1380 710 719 650 720 660 662 600 880 660 651
1+1 (144CC) 760 1980 825 867 710 2040 770 835 710 2030 770 826
2+2 (144CC) 710 1980 770 821 650 720 660 681 710 770 720 722
3+1 (96CC) 650 1370 660 697 600 660 660 654 650 660 660 659

Comparison between normal RMI and optimized RMI for the Windows ReturnPing case
1+1 (96CC) 1640 1710 1650 1672 710 820 770 749 1530 3400 1540 1689
1+1 (144CC) 1480 4060 1540 1649 820 1480 855 881 1420 5540 1455 1667
2+2 (144CC) 1100 1590 1150 1193 710 1210 770 804 1090 3790 1100 1301
3+1 (96CC) 1370 1540 1430 1437 650 2580 685 782 1310 3460 1320 1529

Comparison between normal RMI and optimized RMI for the Windows PingImage case
1+1 (96CC) 6260 13900 6535 7382 6150 15980 6510 7475 6150 16090 6370 7352
1+1 (144CC) 5210 33940 5245 8436 5220 11210 5325 5989 5160 8680 5440 6031
2+2 (144CC) 3020 4510 3075 3238 3070 4720 3130 3202 3020 6810 3080 3477
3+1 (96CC) 6200 16750 6310 7780 6150 12580 6205 6541 6150 10380 6285 6755

Comparison between normal RMI and optimized RMI for the Windows PingText case
1+1 (96CC) 9450 17300 10050 10488 3350 6590 3400 3576 9390 19230 9915 10840
1+1 (144CC) 7250 10270 7335 7563 2960 6420 3050 3298 7140 8240 7225 7296
2+2 (144CC) 3950 4330 3960 3990 2690 5380 2960 3125 3950 7960 4010 4399
3+1 (96CC) 9440 12360 9530 9897 3350 6260 3435 4248 9440 11640 9500 9625

Comparison between normal RMI and optimized RMI for the Windows ReturnText case
1+1 (96CC) 18340 19220 18780 18691 6090 10930 6150 6657 18290 27080 18895 19811
1+1 (144CC) 13680 26920 13920 15027 5000 10990 5110 6072 13620 15050 13705 13841
2+2 (144CC) 7190 9940 7250 7396 2910 6750 3075 3359 7200 10540 7250 7558
3+1 (96CC) 12570 13290 12630 12682 4450 7580 5820 5836 12520 15220 12580 12715

Table 5.7: Comparison between normal RMI and optimized RMI in the Windows environment



5.7.
SU

M
M

A
R

Y
O

F
PE

R
FO

R
M

A
N

C
E

R
E

SU
LT

S
83

Original RMI Monads Compressed Monads Uncompressed
Min Max Median Average Min Max Median Average Min Max Median Average

Comparison between normal RMI and optimized RMI for the Linux Void case
1+1 (96CC) 749 1543 779 809 699 720 719 716 699 719 719 717
1+1 (144CC) 799 1663 799 844 759 2469 759 846 759 800 792 780
2+2 (144CC) 710 1953 719 781 669 1899 719 772 679 720 719 714
3+1 (96CC) 679 2744 694 891 639 1070 659 679 639 2016 649 847

Comparison between normal RMI and optimized RMI for the Linux ReturnPing case
1+1 (96CC) 1829 1879 1839 1846 800 868 800 803 1740 1837 1760 1756
1+1 (144CC) 1430 1507 1439 1446 790 898 800 805 1390 2210 1440 1466
2+2 (144CC) 1078 1119 1080 1089 720 1330 760 786 1110 1177 1120 1125
3+1 (96CC) 1319 1379 1350 1352 700 2560 720 939 1300 3430 1320 1495

Comparison between normal RMI and optimized RMI for the Linux PingImage case
1+1 (96CC) 6239 6340 6269 6276 6220 12660 6320 7126 6180 6241 6180 6191
1+1 (144CC) 4629 5829 4669 4826 4590 12510 4714 5690 4600 4791 4639 4652
2+2 (144CC) 2659 3189 2689 2742 2680 7200 2760 3170 2680 3200 2685 2771
3+1 (96CC) 5779 6859 5800 5890 5740 8430 5804 5938 5739 9100 5780 6056

Comparison between normal RMI and optimized RMI for the Linux PingText case
1+1 (96CC) 9479 10109 9529 9599 3460 5570 3480 3641 9420 9483 9450 9451
1+1 (144CC) 6789 7479 6840 6894 2720 3560 2720 2778 6750 7170 6760 6838
2+2 (144CC) 3712 5490 3764 3938 1719 3000 1720 1790 3750 3920 3760 3771
3+1 (96CC) 8879 9809 8900 8963 3160 3209 3180 3178 8840 10300 8890 9203

Comparison between normal RMI and optimized RMI for the Linux ReturnText case
1+1 (96CC) 18740 18858 18765 18774 6331 6970 6360 6391 18719 19880 18749 18854
1+1 (144CC) 12829 13450 12840 12920 4600 10820 4655 5595 12750 16830 12800 13079
2+2 (144CC) 6691 7131 6805 6816 2671 3920 2700 2762 6711 7190 6760 6806
3+1 (96CC) 11759 12463 11804 11870 4100 4188 4122 4126 11729 15151 11766 12190

Table 5.8: Comparison between normal RMI and optimized RMI in the Linux environment



84 CHAPTER 5. WIRELESS JAVA RMI

5.8 Mobile RMI

The solution presented in the previous pages does not support mobility. If
the client is located in a mobile host and the connection between it and the
RMI Agent on the fixed side is interrupted, the RMI system could find it-
self in an unstable state until the timeouts in the RMI (and � RMI) protocol
expire. On the other end, � RMI has been designed with this problem in
mind, and it is not difficult to expand it to support mobility. In this section
we give a description of � RMI Protocol, that is, an extension of the � RMI
protocol to allow the mobility of the RMI client.

5.9 The Nomadic RMI Protocol ( � RMI)

5.9.1 The � RMI Protocol Messages

This section gives a description of the different messages used in the � RMI
protocol. The description includes the format of the message and its fields.

5.9.1.1 The Init Handover (IH) message

This message is used to start a handover procedure. The format of the IH
message is the following:

0 8

IH KEY
Symbol Size Explanation

IH 1 octet Handover Procedure
KEY variable Client Identification Key

The identification key is used by the Proxy to recognize the identity of the
client when it will reconnect in a different domain.

5.9.1.2 The Handover Ready (HR) message

This message announces the connection of the mobile host to a new RMI
Proxy. The format of the HR message is the following:



5.9. THE NOMADIC RMI PROTOCOL ( 	 RMI) 85

0 8 40

HR AD KEY
Symbol Size Explanation

HR 1 octet Handover Ready
AD 4 octets IP address
KEY variable Client Identification Key

AD is the address of the RMI Proxy to which the client was connected
previously.

5.9.1.3 The Proxy Handover (PH) message

The PH message connects the receiver RMI Proxy with an old one. The
format of the message is the following:

0 8

PH KEY
Symbol Size Explanation

PH 1 octet Proxy Handover
KEY variable Client Identification Key

The KEY field is used to recognize (and authenticate) the client.

5.9.1.4 The Proxy Sync (PS) message

0 8 16

PS N database ...
N times

or

0 8 15

PS E



86 CHAPTER 5. WIRELESS JAVA RMI

The packet fields have the following meaning:

Symbol Size Explanation

PS 1 octet Proxy Synch
E 1 octet Error code
N 1 octet # of databases

database variable Proxy database

Symbol Possible value
E KEY UNKNOWN

DATABASES EMPTY
CONNECTION REFUSED

With this message the databases of the mobile RMI Agent are transferred
from the old Proxy to the new one.

5.9.1.5 The Synchronization Status (SYN) message

This message is delivered to the client when a synchronization between
the old Proxy and the new one has begun. Its format is:

0 8 15

SYN S
Symbol Size Explanation

SYN 1 octet Synchronization Status
S 1 octet Status

Symbol Possible value
S SYNCHRONIZATION STARTED

CONNECTION REFUSED
SYNCHRONIZATION DONE

5.9.1.6 The Tunnel Invocation (TI) message

This message transfers return values of pending requests to the new proxy.
The format of the TI message is

0 8 16

TI E Return Value



5.9. THE NOMADIC RMI PROTOCOL ( 	 RMI) 87

with the following meanings:

Symbol Size Explanation

TI 1 octet Tunneled Invocation Answer
E 1 octet Error code

Return variable Java Object

Symbol Possible value
E OK

REMOTE EXCEPTION
STALE

5.9.1.7 The Handover Done (HD) message

This message communicates to the new proxy that all the pending requests
have been delivered. Its format is:

0 7

HD
Symbol Size Explanation

HD 1 octet Handover Done

5.9.1.8 The Abort Synchronization (AS) message

This message is used by a proxy to communicate to its peer that the syn-
chronization needs to be aborted. The structure of the AS message is:

0 8

AS KEY
Symbol Size Explanation

AS 1 octet Abort Synchronization
KEY variable Client Identification Key

The KEY field is used to identify the client.

5.9.2 Protocol Operations

Figure 5.10 depicts the sequence diagram for the � RMI protocol.



88 CHAPTER 5. WIRELESS JAVA RMI

Agent Proxy1

Proxy2

IH

HR

PH

PS

TI*

HD

SYN

Figure 5.10: The Handover sequence diagram for � RMI

When the host where the RMI client is located recognizes the need of a
change in the access node5 an Init Handover (IH) message is sent to the
RMI Proxy to communicate the desire to start a handover procedure. The
identification key is used by the Proxy to recognize the identity of the
client when it will reconnect in a different domain. When the Proxy re-
ceives the IH message it saves all the information related to the mobile
host to a database and buffers any data coming from the remote server for
the client.

At this point the connections between the Agent and the Proxy can be
interrupted and the mobile host can reach its new destination.

Note that the protocol works even if the disconnection is not voluntary.
The RMI Proxy senses when the connection with a remote Agent is closed,
and it can start a handover procedure by itself (see also Figure 5.11). If
the disconnection was definitive, a timeout in the Proxy would release the
memory reserved for that Agent.

When the mobile host connects to a new access node, it sends a Handover
ready (HR) message to the new Proxy. The AD field is the IP address of the
previous RMI Proxy and the KEY is the identification of the Agent. The
length of this field depends on security requirement, since it can be used as

5This need could be triggered directly by an 	 RMI-aware application.



5.9. THE NOMADIC RMI PROTOCOL ( 	 RMI) 89

an authorization token. In this way malicious entities cannot impersonate
a client host and disrupt its services sending fake HR messages.

When the Proxy receives this message, it opens a tunnel to the well-known
synchronization port of the old Proxy, and sends a Proxy Handover (PH)
request. If the request is denied, the client will receive a PS message with
the status CONNECTION REFUSED. The old Proxy, once it has received the
PH message, checks if it knows the KEY. In this case it answers with the
Proxy Sync (PS) message. If the KEY is unknown, it will return an error
message. With this message the databases related to the mobile RMI Agent
are transferred from the old Proxy to the new one. The new proxy sends a
SYN message to the client. At this point the client knows that its databases
are located at the new proxy. After a reconnection the Agent has to deliver
the IP address of the new Proxy in the HR message.

If there are no pending requests, the old Proxy releases the stubs from the
remote server and frees the memory. The new Proxy obtains new stubs
from the remote servers as usual. On the other hand, if some servers have
not yet answered all the client invocations there can be pending requests.
When the remote server completes its tasks and returns the pending return
values these are tunneled with the Tunnel Invocation (TI) packet from the
old to the new Proxy Agent. When the old Proxy receives all the pending
answers from the remote servers it was connected to it sends a Handover
Done (HD) packet to the new Proxy and frees all the references it had with
the clients.

At this point the tunnel between the two proxies is closed and the han-
dover is completed.

5.9.3 Error Behaviour
While connections between Proxies can be considered reliable, the link
between the client host and the access node can break. In fact, the client
(or the device itself) can initiate a handover procedure while the previous
one is not concluded yet. In this section we demonstrate how the protocol
recovers in these cases.

If the IH message is lost because the host initiated a handover before the
message reached the access node, nothing happens to the fixed side. As
the client connect to a new Proxy, it sends the HR message to it and the pro-
tocol continues as usual. Figure 5.11 depicts the scenario. This situation is
equivalent to an unvoluntary disconnection. The Proxy will recognize the
loss of connection with the mobile host and start the handover procedure.



90 CHAPTER 5. WIRELESS JAVA RMI

Agent
Proxy1

Proxy2

IH

HR

PH

PS

Figure 5.11: The protocol aborting an ongoing handover procedure

If the HR is delivered and then the client initiates another handover, it
sends an IH message. The new Proxy sends an AS message to the old
proxy and the synchronization is aborted. The new Proxy deletes all the
information it stored about the client and the tunnel between the two prox-
ies is closed (Fig 5.12).

Agent Proxy1 Proxy2

HR

PH

PS

Proxy3

IR

AS

HR

PH

Figure 5.12: The protocol recovering from a loss of IH message



5.9. THE NOMADIC RMI PROTOCOL ( 	 RMI) 91

If the IH message is lost, when the client connects to another proxy it will
send a HR message containing the IP address of the old proxy. The new
proxy, following the protocol, will send a PH message to the old proxy. At
this point, it will recognize that another handover took place, and it will
send an AS message to the proxy with whom it had previously started a
synchronization. The procedure then follows the protocol.

Agent Proxy1 Proxy2

AS

PH

PS

Proxy3

IR

HR

PH

HR

PS

Figure 5.13: The protocol recovering from a loss of IH message during a
second handover

Figure 5.14 describes a complex example of how the protocol works. A
star indicates the arrival of a return value. In detail:

1. The Agent invokes a method (i1) to a remote server through Proxy1.
Before the server answers, the client starts a handover procedure.

2. The Agent connects to Proxy2 through a new access node and com-
pletes the procedure since it receives the SYN message.

3. The return value of the i1 (r1) arrives to Proxy1 while the client in-
vokes a new method (i2) through Proxy2. Before the result values
are returned, the client initializes another handover.



92 CHAPTER 5. WIRELESS JAVA RMI

4. The client connects to Proxy3. Proxy1 tunnels r1 to Proxy2 with the
TI1 message. At the same time the return value of i2 (r2) is ready in
Proxy2.

5. Proxy1 sends a HD message and concludes the handover procedure
releasing the tunnel with Proxy2.

6. Proxy2 tunnels r1 to Proxy3 and the value is returned to the client.
The same happens with r2, after Proxy2 sends the messages TI2 and
HD to Proxy3 and closes the tunnel.

7. The handover is completed. From now on the client can invoke re-
mote methods through Proxy3 until next handover.

5.10 Related Work

Optimizing Java and Java RMI performance have been quite popular re-
search topics; see for example [1]. The work, however, has concentrated
on high-speed networks—to the best of our knowledge there are no pub-
lished results yet on Java RMI performance in slow wireless networks (cel-
lular networks).

For the high-speed networks UKA serialization and KaRMI, developed at
the University of Karlsruhe [78], provide a more efficient RMI for Java.
The Manta project (Fast Parallel Java) in the Vrije Universiteit, Amster-
dam [67, 96] has developed an efficient remote method invocation based
on a transparent extension of Java for distributed environments. The
Manta RMI is a part of the Manta environment and it cannot be used sep-
arately. At Indiana University there is a group that has conducted an in-
teroperability and performance study of remote method invocation [12].
Another performance evaluation study has been carried out by the HORB
project in Japan [51].



5.10. RELATED WORK 93

Agent Proxy1

Proxy2

HR

PH

PS

Proxy3

HR

PH

PS

SYN

TI1

SYN

HD

HD

i1

IH

IH

1

2

i2

3

1

2

TI1

4

r1

TI2

r2

5

6

7

Figure 5.14: An example of the Nomadic RMI protocol.



94 CHAPTER 5. WIRELESS JAVA RMI



Chapter 6

Middleware for Nomadic
Applications

I love deadlines. I like the whooshing sound they make as they fly by.
- Douglas Adams

6.1 Introduction

In the previous chapters we described how a difficult task it is to try to
adapt existing protocols and applications to mobile and wireless environ-
ments. The burden is often increased by the evolution of the “classic” com-
puting paradigm that, ignoring the issues carried by the nomadic com-
puting, drives toward high bandwidth demands and interactive always-
connected technologies, including an exasperated use of multimedia.

On the other hand, sometimes this evolution introduces elements that can
be reused in nomadic computing. For instance, in the previous chapter,
describing our wireless version of Java RMI, we adopted the use of medi-
ators. Mediators are part of a more general layer called “middleware”. In
this chapter we describe some middleware architectures that can be used
by nomadic applications, and we show how middleware is evolving to-
ward the concept of pervasive computing.



96 CHAPTER 6. MIDDLEWARE FOR NOMADIC APPLICATIONS

6.2 Middleware

A definition of “middleware” globally accepted by the academic society
and the enterprise world does not exist. In general, the concept of middle-
ware assumes a functional layer between the client and server. In the pro-
totype implementation presented in the previous chapter the middleware
layer was situated between the client and the network, but more generally
it may provide service such as location and alias resolution, authentication
and transaction semantics. Other behaviors associated with middleware
include time synchronization and translation between data formats.

Client Logic

OS/Network API OS/Network API

Server Logic

Network Connection

Figure 6.1: Middleware Architecture

This additional layer allows clients to interact with a generic abstrac-
tion of a service rather than with a specific process. Various services are
provided through abstracted layers as well, blurring the distinction be-
tween services provided by the middleware and functionality added by
servers. These abstractions allow applications to be developed to a stan-
dardized API without knowledge of the location or implementation of ex-
ternal functionality. This implementation hiding is one of the middleware
model’s strengths, although it makes it difficult for the client to determine
what performance it can expect from any given logic implementation.

6.3 Service Advertisement and Discovery

6.3.1 Introduction

As we will see later, the recent trends in mobile and ubiquitous computing
created a variety of new protocols aiming to provide automatic “discov-
ery” and configuration of devices and services. Unfortunately, the termi-
nology in this area is not standardized yet, and it is prone to confusion.
We will use the term “Lookup” and “Discovery” as follows:



6.3. SERVICE ADVERTISEMENT AND DISCOVERY 97

Lookup – We use this term when we refer to a process of locating a re-
source. Arguments of a lookup operation may be an address or an
exact name. Lookup is a passive operation and requires the existence
of other services (directory or agent) to answer the request. Exam-
ples of lookup service are DNS and CORBA Naming Service.

Discovery – This is a more spontaneous process, in which entities discover
other entities on the network, and present themselves to other enti-
ties. A discovery process can be used for a lookup process, but not
vice-versa. Usually discovery requests no human administrative in-
tervention.

The followings are some of the most well known discovery protocols avail-
able on the market or in a later stage of development.

6.3.2 Bluetooth

The Bluetooth [15] wireless technology was created to solve a simple prob-
lem: replace the cables used on mobile devices with radio frequency
waves (Figure 6.2). Initially, the technology will be used as replacement for
point-to-point cables, but solutions for forming personal area networks of
Bluetooth devices will evolve later. Bluetooth is a low-power, short-range,
wireless radio system. The radio has a range of ten meters and provides
up to seven 1 Mb/s links to other Bluetooth devices.

Bluetooth channels use a frequency-hop/time-division-duplex (FH/TDD)
scheme. The channel is divided into 625 
�� intervals, called slots. A differ-
ent hop frequency is used for each slot. The nominal link range is from 10
centimeters to 10 meters, but it can be extended to more than 100 meters
by increasing the transmission power. Bluetooth can support an asyn-
chronous data channel, up to three simultaneous synchronous voice chan-
nels, or a channel supporting simultaneously asynchronous data and syn-
chronous voice. Each voice channel supports 64 kb/s synchronous (voice)
link. The asynchronous channel can support an asymmetric link of maxi-
mally 721 kb/s in either direction while permitting 57.6 kb/s in the return
direction, or a 432.6 kb/s symmetric link

The Bluetooth units can create both point-to-point and point-to-multipoint
connections. A connection with two or several (maximum eight) units
is called a piconet where all units are following the same frequency-hop
scheme. To avoid interference between units, one of them automatically



98 CHAPTER 6. MIDDLEWARE FOR NOMADIC APPLICATIONS

LAN

Access point

Joystick

Headset

Printer

Laptop

Mouse

Mobile phone

Cellular network

Laptop

4

Figure 6.2: A Bluetooth scenario

becomes a master of the piconet. Units in a piconet can communicate with
each other, share services and synchronize data. Individual devices can
participate in more than one piconet at a time and can be in one of several
states:

Standby the device is conserving power and waiting to connect to an-
other Bluetooth device.

Inquire the device is searching for nearby Bluetooth devices.

Page the device is connecting to another Bluetooth device.

Connected the device is connected to another Bluetooth device.

Hold and park the device is participating in a piconet with varying de-
grees of power savings.

Two or several piconets can communicate with each other and are then
called a scatternet (Fig. 6.3).

Bluetooth provides a simple API for enumerating the devices in range and
browsing available services. Client applications use this API to search for



6.3. SERVICE ADVERTISEMENT AND DISCOVERY 99

LAN

Access point

Joystick

Headset

Printer

Laptop

Mouse

Mobile phone

Laptop

4

Figure 6.3: A scatternet of six piconets

available services either by service classes, which uniquely identify types
of devices (such as printers or storage devices), or by matching attributes
(such as a model number or supported protocol).

Since the range of Bluetooth is not impressing, it would be possible to lis-
ten to other units from a nearby room. To avoid such risks and to maintain
privacy the Bluetooth physical layer includes authentication and encryp-
tion.

6.3.3 Jini

Jini [6] is an environment for spontaneous federations of services. It is
based on Java and allows different Jini-enabled devices to announce the
services they provide so that they can be found and used by other services
in other devices. This provides a mean for spontaneous connections be-
tween different devices so that they can collaborate to carry out tasks that
require multiple devices or services. For example a digital camera can join
a local wireless network, discover printing or storage facilities available on
the network, load the required software and use it to print or store images.

Jini technology consists of a programming model and a runtime infras-
tructure. The purpose of the programming model is to help build robust



100 CHAPTER 6. MIDDLEWARE FOR NOMADIC APPLICATIONS

distributed applications by using a federation of services and client pro-
grams. It instructs the developers on how to design and implement appli-
cations for Jini and within the Jini environment. The runtime infrastruc-
ture is the environment where these applications run. It provides means
and tools for adding, searching, contacting and employing services and
resources available on the network.

Jini-enabled devices can discover a Jini environment, join it, look up other
services and employ other services to carry out tasks.

6.3.3.1 Jini Services

The Jini infrastructure (Figure 6.4) operates on a relatively high level of
abstraction and is not concerned with communication details. The RMI
mechanism hides communication implementation details below a simple
object lookup and remote class loading mechanism.

Cell PhonePDA

Network

RMI

Discovery

Lookup

Services Services

Jini
Technology

Network
Services

Figure 6.4: Jini Services on top of RMI

6.3.3.2 The Discovery Process

On top of RMI Jini provides the lookup service, which is accessed by a
process called discovery and join. The lookup service keeps track of the
services and records them in groups. A single service can belong to several
groups. There may be one or more lookup services operating on a network
but at least one lookup service must be available in the network.

As soon as a Jini-enabled device discovers that it has joined a new network



6.3. SERVICE ADVERTISEMENT AND DISCOVERY 101

it broadcasts a “presence announcement” message. This announcement
contains information about how the service can be contacted and a list of
groups it wants to join.

6.3.3.3 The Join Process

Once a device has discovered a lookup service it joins the community by
sending information about itself. It does so through the stub it received
from the lookup service. The information is sent by transmitting an ob-
ject, which contains the service interfaces that the object wants to be made
available. Once the lookup service has received this information it stores it
in an internal database for future lookups and the join process is complete
(Fig. 6.5).

Service Object

Service Attributes

Lookup
Service

Service Object

Service Attributes

Lookup
Service

Client

Service Object

Service Attributes

Service
Provider

Service Object

Service Attributes

Service
Provider

Figure 6.5: The join process

The services that the device provides are identified by the type of service
interfaces it implements. Each kind of service is associated with one Java-
based interface. Furthermore, the object contains service attributes that
can be used to describe the service in more detail.

The lookup service stores and locates services based on the types of their
interfaces and later clients interact with the service by invoking methods
on an object that implements a certain interface. In addition to the Jini-
specified service interfaces the device can make available applets, other
attributes and objects that implement specific protocols for accessing its
services.



102 CHAPTER 6. MIDDLEWARE FOR NOMADIC APPLICATIONS

6.3.3.4 The Lookup Process

Once a service has joined at least one group on the lookup service it is
available to clients.

A client starts the search by locating and querying a lookup service for
services of a certain type. The type is specified as Java interface. The
lookup service uses its database to find matches to the query and returns
the objects that match the query to the client (Fig. 6.6).

Service Object

Service Attributes

Lookup
Service

Service Object

Service Attributes

Lookup
Service

Client

Service Object

Service
Provider

Figure 6.6: The lookup process

The client receives from the lookup service stubs of the searched services.
Thought the stubs the client can interact with the remote device/service
by invoking methods on the object implementing the service interface
(Fig. 6.7).

In addition to the service interface the client can use the Java reflection
mechanism to investigate the methods implemented by the object.

While the use of RMI is suggested by the tools made available in the Jini
runtime environment, it is not mandatory. The role of Jini is to provide a
way for the client to find the services it needs and to bootstrap the com-
munication process. After the lookup service sends the client the service
object, it is up to the client and the loaded object to take care of communi-
cations between the client and the service. The communications channel
can be practically anything that can be implemented in Java code that is
running on the client.



6.3. SERVICE ADVERTISEMENT AND DISCOVERY 103

Service Object

Service Attributes

Lookup
Service

Service Object

Service Attributes

Lookup
Service

Client

Service Object

Service
Provider

Figure 6.7: Service usage

6.3.3.5 Jini Reliability

The operational environment of Jini is inherently unreliable. Communi-
cation disruptions and the intermittent connection of the devices make
programming reliable distributed applications a difficult task. The Jini
technology programming model offers a small set of APIs that can help
in creating reliable distributed systems. It approaches the problem using
leasing. A lease is a grant of guaranteed access to a remote reference such
as an object’s limited to a specified period of time. It is the referencing ob-
ject responsibility to renew the lease before it expires. Once a lease expires
the garbage collector assumes that there are no longer remote references
to it and its memory space can be recollected.

Furthermore, the Jini distributed event mechanism extends the Java event
model, which works within a single Java virtual machine, to distributed
systems. An object can register itself as a listener for events generated
by a remote object. Once the event source has fired an event the Jini en-
vironment will take care of migrating the event to the registered listener
objects. This infrastructure can be used extensively in the client to service
communication.



104 CHAPTER 6. MIDDLEWARE FOR NOMADIC APPLICATIONS

6.3.3.6 Discussion

The Jini infrastructure and programming model are both based strongly
on Java. The communication mechanism is RMI (see Sec. 3.3). RMI’s object
migration capabilities enable not only mobile data but also mobile code —
Jini-enabled devices can send out Java code that executes on the client that
wants to use the device. This is the most powerful mechanism in Jini that
stems directly from Java. A device can provide as much functionality on
the client using Jini as is needed and nothing apart from the basic Java
runtime environment and Jini environment need be installed beforehand.
Thus Jini truly enables spontaneous, complex interconnections between
different devices with practically no prearrangements.

Unfortunately, as described in great detail in the previous chapter, RMI
is not meant to be used in a wireless environment. Thus, most of these
interconnections, at the time being, must be considered as not mobile.

The security implications of Jini are serious. If even simple devices such
as light switches, locks and digital cameras are available as networked
devices there has to be heavy security measures in place to prevent ille-
gitimate use. Jini is aimed at making cooperating computing and physical
resources easy to create, maintain and use. Thus security should be strong
but easily managed so that the ease does not disappear due to too much
trouble with security.

6.3.4 Salutation
Salutation is an architecture for service discovery under development by
the Salutation Consortium [87]. The salutation architecture defines an ab-
stract model with three Network Entities: Clients, Services and Salutation
Managers (SM) as shown in the figure below.

Services register their capabilities with an SM, and clients query the SM
when they need a service. After discovering a desired service, clients are
able to request the utilization of the service through the SM. As depicted
in Figure 6.9 Salutation defines its protocol based on RPC (see Section 3.2).

The SM manages all communication, and bridges across different commu-
nication media as needed through three different protocols:

The Salutation Manager may set up the data pipe and then step into
the background, allowing the Client and Service to manage the mes-



6.3. SERVICE ADVERTISEMENT AND DISCOVERY 105

Figure 6.8: Model of The Salutation Manager

sage stream and data formats. This is known as Native Personality.
In this personality the Salutation Manager acts as a Service Broker,
and the applications, services and devices manage the interactions
between Clients and discovered Services. Messages are exchanged
between Clients and Services directly, without the involvement of
the Salutation Manager.

The Salutation Manager may set up the data pipe and manage the
message stream, while the data formats are selected and controlled
by the Client and Service. This is known as Emulated Personality.
This personality is useful when a common messaging protocol does
not exist between a Client and a discovered Service. All Messages
under an Emulated Personality Protocol are carried by the Salutation
Manager Protocol. Message exchange is native data in Salutation
packets. Under the Emulated Personality Protocol, Client Messages
go through Salutation Managers, however the Salutation Manager
never inspects the contents or semantics of Messages.

The Salutation Manager may set up the data pipe, manage the mes-
sage stream, and provide the data format definition for Client/Ser-
vice interaction. This is known as Salutation Personality. This per-
sonality provides a common messaging protocol and common data
format between a Client and a discovered Service. Under the Saluta-
tion Personality Protocol, the message format and exchange protocol
are defined by the Salutation Architecture and all messages are car-
ried by the Salutation Manager Protocol.



106 CHAPTER 6. MIDDLEWARE FOR NOMADIC APPLICATIONS

Figure 6.9: Use of RPC in Salutation

Salutation defines a specific (extensible) record format for describing and
locating services. This format includes service type (such as [PRINT]) and
attributes (such as “color”). Clients locate services by sending service re-
quests that may include matching-binding attributes.

6.3.5 SLP
Service Location Protocol (SLP) is an IETF protocol for service discovery
and advertisement [45]. Unlike Jini, Salutation, and UPnP, which all aspire
to some degree of transport-level independence, SLP is designed solely
for IP-based networks. SLP comprises three entities: service agents (SAs),
user agents (UAs), and directory agents (DAs) (Fig. 6.11). SAs advertise
the location and attributes of available services, while UAs discover the
location and attributes of services needed by client software. UAs can dis-
cover services by issuing a directory-like query to the network. DAs cache
information about available services. Unlike Jini, SLP can operate without
directory servers, but the presence of DAs can substantially improve per-
formance, by reducing the number of multicast messages and the amount
of network bandwidth used. In fact, if DHCP is used to configure SLP
agents with the location of DAs, then multicast is completely unnecessary.
On the contrary, in the absence of DAs, UAs multicast requests for service
and receive unicast responses directly from the SAs that control matching
services. This tends to increase bandwidth consumption, but provides a
simpler model, appropriate for small networks (such as a home LAN).

SLP has several mechanisms for discovering DAs: In passive discovery,



6.3. SERVICE ADVERTISEMENT AND DISCOVERY 107

Client
SLM SLM

Functional Unit

Client
SLM SLM

Functional Unit

Client
SLM

Functional Unit
SLM

Salutation Personality

Salutation Data in

Salutation Packets

Emulated Personality

Native Data in

Salutation Packets

Native Personality

Native Data in

Native Packets

Figure 6.10: Personality Alternatives

SAs and UAs listen for multicast announcements from DAs, which peri-
odically repeat these advertisements. In active discovery, SAs and UAs
multicast SLP requests or use DHCP to discover DAs. When a DA is
present, SAs and UAs use unicast communication to register their services
and find appropriate services respectively.

SLP services are advertised through a service URL, which contains all in-
formation necessary to contact a service. Clients use the service URL to
connect to the service. The protocol used between the client and server is
outside the scope of the SLP specification, so its security model concen-
trates on preventing the malicious propagation of false information about
service locations. SAs can include digital signatures when registering so
DAs and UAs can verify their identity. Digital signatures can also be re-
quired when DAs advertise their availability, allowing UAs and SAs to
avoid rogue DAs (that is, those without a proper signature).

6.3.6 UPnP

UPnP [95] is a proposed architecture for service advertisement and dis-
covery supported by the UPnP Forum, headed by Microsoft. Unlike Jini,
which depends on mobile code, UPnP aims to standardize the protocols
used by devices to communicate, using XML. UPnP’s device model is hier-
archical. In a compound device (for example, a VCR/TV combo), the root
device is discoverable, and a client (called a control point) can address the
individual subdevices (for example, a tuner) independently.

As in JINI, UPnP has a multi-stage protocol. At the base, UPnP provides



108 CHAPTER 6. MIDDLEWARE FOR NOMADIC APPLICATIONS

Directory Agent
(DA)

Service

Service Agent
(SA)

Service Agent
(SA)

Service Agent
(SA)

Service Agent
(SA)

Service Agent
(SA)

Service Agent
(SA)

Service Agent
(SA)

Service Agent
(SA)

Service Agent
(SA)

Service Agent
(SA)

ServiceApplication

Internet

.   .   .  .

Subnet

Figure 6.11: SLP Architecture

simple discovery, in which network addresses are discovered. Advertise-
ment is done by a local broadcast announcement. When successful, the
simple discovery call returns an IP address or URL plus a device type. Ser-
vices are described by extended URLs, similar to (but completely incom-
patible with) SLP. The URL points to an XML file with an elaborate de-
scription of the device. Starting with this URL, UPnP defines a Web-based
discovery protocol, which uses HTTP (with extensions). A UPnP device is
said to export one or more services. Services are described in XML, and the
XML can be a complete abstract description of the type of service, the in-
terface to a specific instance of the service, and even the on-going (virtual)
state of the service. The interface and state descriptions are intended to
allow clients to implement custom interfaces to devices, by mapping local
displays and operations to the abstract state and interface represented in
the XML.

UPnP requires IP, not to mention HTTP and XML. Non-IP networks and
interconnects can be bridged, at least at the level of the XML. UPnP has no
specific security features. It depends on the network and Web infrastruc-
ture for its security. Thus, security is clearly an optional.



6.4. PERVASIVE COMPUTING 109

6.4 Pervasive Computing

6.4.1 Introduction

The term “Pervasive Computing” means different things to different peo-
ple. For same, pervasive computing is about mobile data access. Others
put the emphasis on “smart” and “proactive” spaces. Satyanarayanan [89]
characterizes a pervasive computing environment as one saturated with
computing and communication capability, yet so gracefully integrated
with users that it becomes a “technology that disappears”. The presence of
computing power and communication devices are hidden from the end-
user to whom is offered at the same time a powerful service-centric sys-
tem.

In this section we present an overview of the main projects focusing on
pervasive computing.

6.4.2 The Portolano Project

The University of Washington is carrying out a project called Por-
tolano [84, 35]. In their vision of the new century, computing devices will
be highly specialized to particular tasks, will be consumer items with a
vast distribution, and their user interfaces will be invisible to all but the
most sophisticated end-users.

To realize their vision the project focuses on an infrastructure that moves
from system architectures that are vertically integrated (aiming to provide
entire solutions to a problem) to horizontally layered architectures. Par-
ticular stress is given to the development of user interfaces able to handle
different devices and that rely upon the user intent, and to the need of
data-centric networks. The researchers expect to encounter several chal-
lenges in their effort, including resource discovery, intermittent connectiv-
ity and power consumption.

6.4.3 Oxygen

Oxygen [71] is a major research project of the Laboratory of Computer
Science of the M.I.T. The Oxygen project vision predicts a future were
computation will be freely available everywhere. Devices will lose their
“anonymity”, but they will personalize themselves in the user presence
by finding whatever information or service he or she needs. The commu-
nication will not be carried out by clicking or typing, but simply naturally
using speech.



110 CHAPTER 6. MIDDLEWARE FOR NOMADIC APPLICATIONS

To realize this futuristic vision Oxigen is focusing on several key technolo-
gies:

At the heart of the system there is Handy 21 similar to a cellular
phone, but with an additional visual display, a camera, infrared de-
tectors and a computer. Since it is all software-configurable it can
change, for example, from a cell-phone to a plain FM radio.

The second key technology of Oxygen is the Enviro21. This device
stays attached to the environment (built into walls) and does the
same services as the Handy21 but with greater speed and capacity.

The Handy21 and the Enviro21 are linked by a novel network, called
Net21. Its principal function is to create a secure collaborative region
among Oxygen users.

Other enabling technologies in Oxygen consist of speech recognition, in-
telligent knowledge access and automation of every-day tasks through
collaboration technology.

6.4.4 Endeavour Expedition
The Endeavour Expedition at the University of California in Berkeley [33]
is a collection of projects that examines various aspects of ubiquitous com-
puting. The goal is to enhance human understanding through the use of
information technology, by making it dramatically more convenient for
people to interact with information, devices and other people. A revolu-
tionary Information Utility, which is able to operate at a planetary scale,
will be developed. The underlying applications, which are used to vali-
date the approach, are rapid decision making and learning. In addition,
new methodologies will be developed for the construction and adminis-
tration of systems of this unprecedented scale and complexity.

Of particular interest in the context of our discussion are:

Ninja –“Enabling Internet-scale Services from Arbitrary Small Devices”
that develops a software infrastructures to support scalable, fault-
tolerant and highly-available Internet-based applications [41].

Iceberg – An Internet-core Network Architecture for Integrated Commu-
nications that is seeking to meet the challenge for the converged net-
work of diverse access technologies with an open and composable



6.4. PERVASIVE COMPUTING 111

service architecture founded on Internet-based standards for flow
routing and agent deployment [99].

6.4.5 MosquitoNet

The Mobile Computing Group at Stanford University (MosquitoNet) [75]
has developed the Mobile People Architecture (MPA) [68] that addresses
the challenge of finding people and communicating with them personally,
as opposed to communicating merely with their possibly inaccessible ma-
chines. In their vision people should be reached regardless of the commu-
nication devices or applications they choose to use. They should be able
to receive messages anywhere, but without revealing their whereabouts
to anyone. Finally, users should be able to have all their incoming com-
munications prioritized and filtered on their behalf to avoid unwanted
messages such as “spams”.

The MPA architecture introduces the concept of routing between people
by using the Personal Proxy. The proxy has a dual role: as a Tracking
Agent, the proxy maintains the list of devices or applications through
which a person is currently accessible; as a Dispatcher, the proxy directs
communications and uses Application Drivers to marshal communication
bits into a format that the recipient can see immediately. It does all this
while protecting the location privacy of the recipient from the message
sender and allowing the easy integration of new application protocols.

6.4.6 PIMA

The PIMA project [11] at the IBM T.J. Watson Research Center has devel-
oped a new application model for pervasive computing. In their view, de-
vices need to be perceived as portals into the application and data space
supported by the environment, rather than repositories of custom soft-
ware. Furthermore, applications need to be seen as tasks performed on
the behalf of a user, not as programs written to exploit the resources of a
specific device.

Based on this vision they suggest a new application model character-
ized by a device-independent application development process, which
includes abstract specification of the application front-end and require-
ments. The model should also support application discovery and resource
negotiation at load-time. The run-time system should allow the resources
to be dynamically shared among client devices and servers.



112 CHAPTER 6. MIDDLEWARE FOR NOMADIC APPLICATIONS



Part IV

Dynamic Nomadic-Aware
Applications





Chapter 7

From Adaptation to Native
Support

When you look long into an abyss, the abyss also looks into you.
- Friedrich Nietzsche

The previous chapters of this dissertation have been focused on the diffi-
culties to port “classical” applications to a nomadic environment. One of
the contributions of this research has been to show how all the different
communication layers up to the middleware, need to be modified. While
we suggested solutions for the adaptation, none of them is optimal and
can be used to “nomadicize” all the possible existing applications and ser-
vices.

On the other hand, the presence of computing devices, computer networks
and wireless communication is increasing enormously in everyday life.
Organizers start to be wirelessly connected, smart phones are becoming
popular not only in Europe but they are spreading through the world,
from the USA to China, from India to Africa, even if with a different speed
of adoption. Furthermore, computing power in the form of processors are
embedded in an increasing number of appliances, from cars to TVs, from
microwave ovens to air conditioners.

This ubiquitous presence of the computing power is pushing the research
of solutions for exciting new environments, where people interacts with
embedded, invisible computers. It is not surprising to read in market anal-
ysis that future services and applications will be more and more intended
for Pervasive Computing (see Sec. 6.4) which is adding more challenges



116 CHAPTER 7. FROM ADAPTATION TO NATIVE SUPPORT

to the ones already presented in Chapter 2, such as collaborative environ-
ments, information presentation, user interfaces and e-commerce. Many
research groups in universities and companies are proposing several so-
lutions to improve state-of-the-art Pervasive Computing, but still they fall
into the category of adaptation.

In the following chapters we will try to give a suggestion for a different
approach, in which the the adaptation is switched from the environment
to the application. The main contribution will be the idea that applica-
tions and services should be created with a genetic imprinting so that they
can dynamically modify themselves to adapt to the challenges of nomadic
environments. A new class of applications that are fully aware of their
surroundings and that take maximum advantage from the pervasive com-
puting power and the enabling middleware solutions presented in Chap-
ter 6.

This idea is illustrated in Chapter 9, while in next chapter we focus on
the Telecommunication field and we show how it is possible to enable
personal mobility with the help of agent technology. As we will see, this
scenario poses the seeds of the evolution in the Dynamic Composition of
Execution Environment.



Chapter 8

Agents in Personal Mobility

All profoundly original work looks ugly at first.
- Clement Greenberg

8.1 Introduction

As the first step we introduce an example of an alternative architecture
to enable personal mobility in a telecommunication environment through
the use of mobile agents. This basic architecture will introduce some intu-
itions that will be used and expanded in the next chapter, when we will in-
troduce a new paradigm for constructing applications in a nomadic-aware
manner.

8.1.1 Basic Elements

Below we present the basic definition that will be used in the following
examples. All together they represent the minimum set of elements that
compound the proposed architecture1. These basic elements are:

The User is the one who wants to start a service session.

The Service Provider is the stakeholder that offers services.

The Connectivity Provider is the stakeholder that takes care of physical
connections between terminals and Service Providers.

1Even if some definitions remind of the TINA concept, this architecture does not rely
on TINA.



118 CHAPTER 8. AGENTS IN PERSONAL MOBILITY

The Terminal logically connects the User with the Service Provider.

Mobile Agents are software objects that act on behalf of the User through
various Service Providers,

User Profile contains all the useful information about the User’s behavior
and preferences.

These basic elements are sufficient to build and support most of the sce-
nario existing in personal mobility. In the next section, through some ex-
amples, we will refine the previous definitions.

8.2 Telecommunications Scenarios

A User has a subscription for a service in the local Service Provider. The
type of service requires that the User Profile is located near the Service
Provider as in Figure 8.1. This is due to the fact that most of the time the
User will use a Terminal located in the Service Provider’s domain.

When the association with the Service Provider is fixed (due to adminis-
trative or economical reasons) the Service Provider is called Home Service
Provider. In this example the user is connected with his Home Service
Provider and can use the Services provided by the Service Provider di-
rectly.

Terminal

User

Profile

Service Provider

Figure 8.1: A normal subscription



8.2. TELECOMMUNICATIONS SCENARIOS 119

When the user moves outside the domain of the Home Service Provider,
he can use a Terminal connected with another Service Provider that has
a Federation Contract with his Home Service Provider. A Service Provider
different from the Home Service Provider is called Visited Service Provider.
It does not contain the User Profiler, so the service cannot be allowed im-
mediately. Anyway, since there exists a Federation of Service Providers
and the User has a subscription with a Federated Service Provider, the
User can obtain the service through the new Service Provider (see Figure
8.2).

Terminal

Home Service

Provider

User

Profiler

Visited Service

Provider

Federation

Visited

Service

Provider

Figure 8.2: The user roams

To do that, a Mobile Agent connects to the Home Service Provider and
gets the needed information from the User Profile and comes back to the
Visited Service Provider (Figure 8.4).

Visited Service

Provider

Terminal

Figure 8.3: The User registers herself to the Visited Service Provider

After checking the information, the Visited Service Provider allows or de-
nies the Service to the User.



120 CHAPTER 8. AGENTS IN PERSONAL MOBILITY

8.2.1 The Roaming in Detail
When the User moves and wants to use the Service outside the domain of
his Home Service Provider she must find a Terminal in the domain of the
Visited Service Provider. Then she registers herself asking for the Service
(Figure 8.3). This is done through a Mobile Agent.

Terminal

Home Service

Provider

User

Profile

Visited Service

Provider

Agent

Figure 8.4: The user obtains the service

The Visited Domain receives the request from the Terminal. The request
contains also the User’s unique Identifier so that the Service Provider
checks from its Subscription Database and realizes the User does not have
a subscription here but that she has roamed. The Service Provider needs to
obtain the User’s information to decide to allow the Service or not, so the
Agent goes to the User’s Home Service Provider and gets the information
(Figure 8.4).

The scenario becomes more interesting if the Terminal can connect with
more than one Service Provider. In this case the User requests not only a
service, but also she wants to have the cheapest one (or the best one). In
this way the User Agent can add a Quality of Service (QoS) requirement
to the Service request.

The role of the Mobile Agents becomes indispensable. Every Service
Provider has a Local Agent whose role it is to promote the Service
Provider’s Services to the visiting Agents. When the User, through the
Terminal, requests a Service outside his Home Service Provider, a Mobile



8.3. KIOSK SCENARIO 121

Terminal

Visited Service Providers

Figure 8.5: Agents negotiate QoS

Agent visits all the local Service Providers and collects the information
(promotions) given by the local Service Providers (Figure 8.5).

The Mobile Agent also goes to the Home Service Provider to collect the
User Profile and then decides which Service Provider fulfills the User’s
requirements best. After this phase, the Terminal starts a connection with
the chosen Service Provider (Figure 8.6).

8.3 Kiosk Scenario

In this example the Services the User wants to obtain are simple. For exam-
ple she wants to send a fax document from a Terminal situated in a shop,
or she wants to find the cheapest way to travel to a foreigner city from a
Kiosk situated in a Travel Agency. This type of Service is not strictly tied to
a single Provider, thus the User Information, provided by the User Profile,
are directly owned by the User2. Therefore the role of the Home Service
Provider has no meaning. The Terminal role is also different: Instead of
being at the User’s side, it is logically attached to the Service Provider. The

2Smart Cards could be used for this purpose.



122 CHAPTER 8. AGENTS IN PERSONAL MOBILITY

Visited Service Providers

Figure 8.6: After negotiation the Mobile Agent chooses a Service Provider

new scenario is depicted in Figure 8.7.

User

Profile

Service Providers

Kiosk

Figure 8.7: Kiosk Scenario

The User connects to a Terminal giving his Identification Code. Since the
User Profile is situated in the User domain, the Service Provider immedi-
ately gets the information it needs. Then the Service Provider satisfies the
User request directly or through other Service Providers.



8.4. SERVICE INVITATIONS 123

8.3.1 Booking a Flight though a Kiosk Provider
The User wants to travel to Paris. She goes to a Kiosk Service Provider
in the nearest Travel Agency. She puts a Smart Card into a Kiosk Termi-
nal and digits her own Identifier. A Mobile Agent is transferred to the
Terminal and an immediate negotiation between these two entities takes
place. If the Services is allowed, then another Agent, specialized in Travel
Services will get the needed information from the User Profile such as
preferred Airline, usual flight class, desired departure and arrival time,
and move to the well-known Airlines Providers. Special Agents in those
Providers will promote the service and, after the usual negotiation phase,
the User will receive the list with the different options and she will choose
one. Figure 8.8 depicts the scenario.

Figure 8.8: Booking a flight

8.3.2 Sending a Fax
Sending a fax through a Kiosk is managed in the same manner: Again,
the User inserts a Smart Card into a Terminal connected to the Provider.
Also in this case the Smart Card contains the User Profile, but since the
Service is a typical anonymous one where the only needed information is
a credit card number or a prepaid card, only this information is given to
the Provider. The other phases of the Service are similar to the previous
ones: the Provider, though a Mobile Agent, finds the cheapest route to
send the fax, and then finishes the job.

8.4 Service Invitations

Since in personal mobility the User is not strictly connected with the ter-
minal, new cases involving “Service Invitations” may be interesting. In



124 CHAPTER 8. AGENTS IN PERSONAL MOBILITY

other words, if the user cannot move the terminal (like a telephone or a
fax machine), she would like to have the same services from the Visited
Service Provider. As an example, the user would like to have incoming
calls to her home fax redirected (diverted) to the visited fax. The user has
thus already subscribed to a service at a Service Provider, and the service
is active. Since the Service Provider wants to own the user information,
the User Profile is tied to it and the Service Provider acts as a Home Ser-
vice Provider. The user then decides to move to a place with no prior
knowledge if the service can be served there or not, so she cannot “a pri-
ori” divert the call to a different number. She can just announce to her
Home Provider her intention to roam. Once arrived at the destination and
when she finds a terminal suitable to receive the service, the User regis-
ters itself in the new site to receive the incoming calls. This is done in the
same way as the first case: a Mobile Agent scans all the available Con-
nectivity Providers, negotiates the best Quality of Service and decides the
best route to reach the Home Service Provider. After this phase, the Agent
reaches the Home Service Provider and communicates the new address of
the User and the best route to follow (Figure 8.9).

Home Service

Provider

User

Profile

Figure 8.9: Service Invitations

When an incoming call arrives the Home Provide will divert it to the new
Address. In this way, if two Users have both roamed to the same Service



8.4. SERVICE INVITATIONS 125

Provider’s domain, different from the Home one, after the first call they
will talk directly, without involving the Home Service Provider any longer
and thus minimizing the costs. Another example with the same scenario:
A user requests a service that needs a long time to be served. In this case
the user could want to receive the answer to another terminal.

8.4.1 Service Invitation Implementation
We implemented a simple prototype of this scenario using Voyager
ORB [97] agent architecture. The scenario is the following:

The User subscribes to a News Service to receive the latest news directly
to her video. This service is independent of the user location and the ter-
minal. The Service, when a new news comes, sends it to all the users who
have subscribed to the service. The User Agent, through the Agent Plat-
form, takes care to deliver the information to the correct Terminal.

In details The User must register herself to the Service. She has to give
her Personal Information Code (PIC) and to specify a host address. In this
prototype there is no authentication procedure, and the host specified by
the User became her Home Service Retailer.

At this point the User name is inserted in the User Database in the host
specified by the User and a User Agent is created.

When the User is willing to receive the News, she starts the Service giving
her PIC. The User Agent is awakened and when a news-item arrives it
takes care to display it to the User location (Figure 8.10).

Figure 8.10: The News Service is active

If the User roams, the Agent will follow her to the new location, thus tak-



126 CHAPTER 8. AGENTS IN PERSONAL MOBILITY

ing care to obtain the news from the Home Service Provider.

8.4.2 Refinement of the Definitions

As stated in the previous section, the User Profile is not static, but is dy-
namic or mobile. It is easy to construct new scenarios changing the “po-
sition” of the different elements. The main idea is to have few elements
and a general architecture valid for a large number of different scenarios.
Refining the basic elements described in section 8.1.1 we obtain:

The User is the entity that requests the services, but from the ar-
chitectural point of view is not necessary. Also a Service can start
another Service (as in the Service Invitation scenario). Only the User
Profile is essential.

The Terminal is just an interface between the User and the Service
Provider. This interface can be a real laptop computer, a GSM phone
or just a cash dispenser, but the logical function is the same. Some-
times it is situated in the User domain, other times it can be con-
nected to the Service Provider’s domain but it is independent from
the User.

The Service Provider is the place where the Service is offered. It is
independent from the User. The Home Service Provider is a normal
Service Provider with a User Profile.

The User Profile is the core of the architecture. It contains all the
information needed to start a Service. What is needed depends on
the scenario: An exhaustive database for a typical telecommunica-
tion scenario, a prepaid card for a Kiosk. The main idea is that the
User Profile is mobile: it is clear in the fax scenario, since it follows
the User’s movements, but it could also be just a cash dispenser, but
the logical function is the same. Sometimes it is situated in the User
domain, other times it can be connected to the Service Provider’s
domain but it is independent from the User.

The Mobile Agents are the communication means between the other
components. They are not “empty” but they can contain information
and intelligence.



8.5. CONCLUSION 127

8.5 Conclusion

The aim of the examples in this chapter is to introduce the idea to have
a special architecture to allow the deployment of Nomadic applications.
Even if some definitions are of generic use, the architecture presented in
this chapter is tied to a telecommunication scenario. Next chapter intro-
duces a more generic approach to the problem.



128 CHAPTER 8. AGENTS IN PERSONAL MOBILITY



Chapter 9

Dynamic Composition of
Execution Environment

Any sufficiently advanced technology is indistinguishable from magic.
- Arthur C. Clarke

9.1 Introduction

If the reader has followed the development of the dissertation from the be-
ginning, she will have a clear idea at this point that the solutions presented
before are partial and cannot be used in a global context. Improving the
transport protocol is a major step in wireless computing but it is not the
silver bullet. Adding a specific middleware for adaptation can increase
the usability of an application if the communication is prone to sudden
disconnections but does not allow the migration of the application to a dif-
ferent device. The application itself can make use of the underlying layers
in such a way that makes it impossible to adapt it to any environment dif-
ferent from the one it was designed for. Therefore a different approach is
needed. In this chapter we suggest a new paradigm to deploy applications
that can run in diverse environments.

9.2 The problem space

The objective we want to achieve with the dynamic composition of the
execution environment is an architecture that presents the following char-



130 CHAPTER 9. DYNAMIC COMPOSITION OF EXECUTION ENVIRONMENT

acteristics: is Device Independent, is Platform Independent, has a High
level of Abstraction, and its adaptation is Transparent to the user.

Normally the applications are designed for a particular environment. This
makes it easy for the designer to optimize the application for the charac-
teristics of that environment. It also makes it almost impossible to adapt
the same application to a different environment. In fact, Nomadic applica-
tions will run on different devices and the device handover, or the migration
of an application from one device to another with different characteristics,
can also happen when the application is in its active state. Our goal is to
reach device independence so that the application can be executed on a wide
variety of devices.

Once active, the application will run on top of an operating system. Our
goal is to reach platform independence, so that the application can run on top
of different operating systems and communication protocols but maintain-
ing the basic application logic. For instance, the application should be able
to operate in a Windows or Unix environment and be able to use IIOP or
Java RMI as the means of communication.

A high level of abstraction is a desired characteristic of any system. This
helps the designer to reuse existing solutions or to make new ones avail-
able. For this reason we will describe our solution in terms of conceptual
modules.

The user should not be forced to manually adapt her application to the
new environment when roaming. The ultimate desire of the user is to
have the same application anywhere. Since this is not possible due to the
different characteristics of the different devices, the adaptation should be
transparent, so that it should occur without user intervention. On the other
hand, the user should be able to monitor the adaptation, and, if desired,
to modify it.

9.3 Adaptation Through Dynamic Aggregation

Figure 9.1 depicts how a nomadic application adapts to the existing envi-
ronment. Once an application is requested to become active, the Personal
Agent examines the application logic and the basic modules (both soft-
ware and hardware) available in the device. It selects the most appropri-
ate hardware modules creating an executing environment. On top of the
executed environment, the selected software modules are also aggregated



9.3. ADAPTATION THROUGH DYNAMIC AGGREGATION 131

to create an active instance of the application.

Application LogicApplication Logic

Software modules Hardware modules

Application instance

Personal Agent

Figure 9.1: Adaptation through dynamic configuration of the execution
environment

Adaptation is done by construction: The application instance is built dy-
namically depending on the characteristics of the device. In the following
sections we describe the components of the architecture in detail.

9.3.1 The Basic Modules

One of the components of our architecture is represented by the soft-
ware and hardware basic modules. The concept of these modules de-
rives from an observation: In a traditional environment, applications often
re-implement the same sub-service, like user interfaces or messaging ser-
vices, instead of reusing already existing instances. In our architecture the
services are decomposed into their “smaller” component and the decom-
position continues until a bottom level is reached, where further partition-
ing is not possible without losing the unique characteristic of the service.
In this way we create a “community” of services that inter-operate be-
tween each other.

As an example of this deconstruction, a web browser application (see Fig-
ure 9.2) can be subdivided into smaller services of “communication” and
“human interaction”. These services can further be decomposed. For ex-
ample, the “communication” service can be decomposed in a module that



132 CHAPTER 9. DYNAMIC COMPOSITION OF EXECUTION ENVIRONMENT

Web BrowserWeb Browser

Communication
Communication

Human Interaction
Human Interaction

S
ec

u
re

S
o

ck
et

L
ay

er
S

ec
u

re
S

o
ck

et
L

ay
er

M
es

sa
g

in
g

M
es

sa
g

in
g

S
tr

ea
m

in
g

S
tr

ea
m

in
g

S
ec

u
re

S
o

ck
et

L
ay

er
S

ec
u

re
S

o
ck

et
L

ay
er

M
es

sa
g

in
g

M
es

sa
g

in
g

S
tr

ea
m

in
g

S
tr

ea
m

in
g

G
ra

p
h

ic
al

U
se

r
In

te
rf

ac
e

G
ra

p
h

ic
al

U
se

r
In

te
rf

ac
e

V
o

ca
l

In
te

ra
ct

io
n

V
o

ca
l

In
te

ra
ct

io
n

D
ia

lo
g

M
an

ag
er

D
ia

lo
g

M
an

ag
er

G
ra

p
h

ic
al

U
se

r
In

te
rf

ac
e

G
ra

p
h

ic
al

U
se

r
In

te
rf

ac
e

V
o

ca
l

In
te

ra
ct

io
n

V
o

ca
l

In
te

ra
ct

io
n

D
ia

lo
g

M
an

ag
er

D
ia

lo
g

M
an

ag
er

Figure 9.2: Service Deconstruction

implements a secure socket communication, in another module that im-
plements a streaming communication, and so on. Hardware decompo-
sition is done in a similar manner. A desktop computer has several basic
modules: the processor that offers computational services, the RAM mem-
ory and the hard disks that offer data storage services, the monitor and the
speakers that provide output service and the keyboard and the mouse that
implement input services. Every basic module implements a basic service
and has specific properties. This enables the adaptation by construction:
The instance of the application is done by putting together the available
basic modules.

9.3.2 Basic module communication and advertisement
In order to be able to aggregate, the basic modules need to communicate
with each other. There must be a protocol so that they can offer their ser-
vices and advertise the proprieties of their services. Furthermore, they
need a way to discover which services are offered by other modules and
where these other modules are located. The problem space described here
is known as ”Service Advertisement and Discovery”. Several solutions
have been proposed that can be used. For example, if the community
of modules is mostly compound of hardware services, the use of Blue-



9.4. A SAMPLE APPLICATION: INCOMING NEWS 133

tooth [15] looks appealing. On the other hand, to manage a community of
software services we find the use of Jini [6] more interesting if the language
environment is Java, or Salutation [87] in promiscuous environments. In
any case the protocol, whatever it will be, needs to have clear and open in-
terfaces to avoid the situation, for example, where a community of mod-
ules based on Jini is not able to collaborate with a community based on
Bluetooth.

9.3.3 Application Logic

Every application can be decomposed in two parts: The Application logic
that describes what the application should do, and the state of the applica-
tion. The application logic needs to be described in a standard way. In our
case the application logic should describe the interactions between differ-
ent modules. It is the task of the Personal Agent to choose an appropriate
software module to implement the interaction requested by the applica-
tion logic.

9.3.4 The Personal Agent

As mentioned before, the Personal Agent has the task to find the most ap-
propriate way to implement the application logic using the available basic
modules. The task requires the ability to take sophisticated decisions and
to act autonomously. In this dissertation we do not focus on the complex
algorithms that the Personal Agent needs to use. We refer the readers to
the literature on Intelligent Agents. Instead, we want to focus the atten-
tion on the main requirement that our architecture seeks from an agent
platform, that is its capability to Interoperate with other platforms.

A further property of the Personal Agent is that it owns the profile of the
user. This means it can “a priori” configure the application following the
user desire.

9.4 A Sample Application: Incoming News

As an example implementation of our architecture we have the following
scenario:

A user has a subscription to an information service. When
the subject of a news item is of interest to the user, the service



134 CHAPTER 9. DYNAMIC COMPOSITION OF EXECUTION ENVIRONMENT

provider will push the piece of news to the user’s device, and
the item will be displayed. The user usually receives the news
on her desktop at the office but she wants to receive business-
related news also when traveling.

9.4.1 Application Logic

The application login of this scenario is quite simple. A sketch is shown
in Table 9.1. Basically, the application needs to open a connection with the
news server provider, and when a piece of news arrives, to display it on
the screen.

Table 9.1: Application Logic
1) Establish connection to server
2) Receive description of message
3) Accept/rejecting incoming message
4) Display message

9.4.2 Personal Profile

The Personal Agent owns the user profile. Therefore, it knows, for exam-
ple, that business related news have high priority. It knows also that the
user does not like to receive multimedia news if the display in not good
enough. The user also expects to be informed about every news, at least
about their headline.

9.4.3 Basic Modules

Our example scenario involves two devices. The first one is a desktop
computer connected to the network through a fast connection, with a high-
resolution color monitor and high computing power. The second device is
a smart cellular phone, with wireless connection, low-resolution monitor,
limited computing power, and restricted battery life. The basic modules
we are interested in in this scenario are described in Table 9.2 and Table 9.3.

9.5 Example of Adaptation

The user enables the application while she is working at the office. The
Personal Agent (PA) starts to scan the application logic and inquires from



9.5. EXAMPLE OF ADAPTATION 135

Table 9.2: desktop Basic Modules
Hardware Modules Software Modules

Service Interface Service Interface
Output ColourDisplay Compression Standard
Output TextDisplay Messaging SocketHiBand
Output StreamingVideoDisplay Messaging RMIServer
Output StereoAudio ...
Network fastEthernet
Processor HighPower

Table 9.3: Smart Phone Basic Modules
Hardware Modules Software Modules

Service Interface Service Interface
Output ColourDisplay Messaging SocketLowBand
Output TextDisplay Messaging RMIClient
Output BipAudio ...
Network GSMData
Processor LowPower

the community of basic modules for a Messaging service. One service
implementing the SocketHiBand interface is available. The related Net-
work service is enabled too. The PA connects to the news service provider.
When the description of a new item of news arrives, the PA analyses it
and, depending on its characteristics, it requests appropriate Output ser-
vice. This device has several hardware modules implementing the service,
so the application is able to display virtually any kind of news.

The user now decides to move from the office but she desires to keep the
news application active in her Smart Phone. The PA takes care of the De-
vice Handover. The application logic is the same but the Basic Modules
are different. Therefore the application needs to be modified. The Per-
sonal Agent can complete its task in several ways. Here we describe two
of them.

1. The PA requests the Messaging service that implements Socket-
LoBand and connects to the news server. When the description of
the new news item arrives, the PA accepts only the news that can



136 CHAPTER 9. DYNAMIC COMPOSITION OF EXECUTION ENVIRONMENT

be transmitted over the wireless connection and shown by the Hard-
ware Basic Modules of the Smart Phone. This implies, for example,
discarding all multimedia streams, images and large texts.

2. The PA communicates with another PA situated in the office device.
Knowing the user profile, the local PA decides to request of the re-
mote PA the compression of all the images, and, if possible, the cre-
ation of a news digest instead of streaming video. The remote PA
will carry out these tasks using the desktop device Software Mod-
ules. The local PA will then request the Messaging service from the
module that implements RMIClient. When the description of a new
message arrives, the PA will request its delivery through a Remote
Invocation. The modules in the office device will request the news
item from the news server, will compress it and send it back as return
value of the RMI call.

9.6 Comments

This scenario demonstrates the concept of dynamic composition of the ex-
ecution environment. The application is constructed dynamically depend-
ing on the characteristics of the device in use. The greatest advantage is
given by the use of intelligent agents. As in the proposed scenario, the ex-
change of information between the various Personal Agents can result in
innovative solutions. This architecture also opens several issues. One of
the most important ones is related to security. The possibility to combine
several modules and also to request services from other devices is a pow-
erful enhancement. However, it also introduces several security threats
that must be addressed.

9.7 Proof of Concept

The architecture presented in this chapter represents a paradigm shift from
the typical application development cycle. Its implementation requires
new tools and a new mentality from the application designers. Here we
present a simple proof of concept, utilizing existing technologies as much
as possible.



9.7. PROOF OF CONCEPT 137

9.7.1 A prototype implementation

In this section we present a prototype implementation of the ideas intro-
duced in this chapter. To accelerate the deployment of the prototype we
used Java as programming language and RMI (see section 3.3) as remote
invocation protocol.

In this example the application (not designed here) needs a means to out-
put a message. Consequently the Personal Agent (PA) has to find the
appropriate service between the Basic Modules it knows. The available
services depend on the power and the properties of the device where the
application is running. This leads to the fact that PA can decide to modify
the content of the message to meet the request of the service.

Figure 9.3 depicts the environment of this proof of concept: the applica-
tion requires to display a message to a device. The application logic just
requires to invoke the method output() without caring what the possibili-
ties of the current device are. It is a task of the PA to return the right service
for the device choosing from the ones that have registered to it before.

Figure 9.3: The scenario of the proof of concept

9.7.2 Declaring a Basic Module

A service, to become part of the Basic Module Community, has to declare
its willingness to join the Community. To do so, it must implement the
interface defined in Program 9.1.



138 CHAPTER 9. DYNAMIC COMPOSITION OF EXECUTION ENVIRONMENT

Program 9.1 The Java Interface for a generic Basic Module

public i n t e r f a c e AService 
public Class g e t I n t e r f a c e ( ) throws j ava . rmi . RemoteException ;

�

This interface contains only one method, getInterface(), that returns
the interface implemented by the service. This helps the PA to decide what
actions have to be taken to fulfill the application needs and, as we will
see later, to obtain a reference to the methods that are not defined in this
generic interface1.

9.7.3 Defining a Service

The interface described in Program 9.2 defines a generic Output Service.
This is the interface that the client will request when it will need to output
a message.

Program 9.2 The Java Interface for a generic Output Service

public i n t e r f a c e AOutput extends j ava . rmi . Remote 
public void output ( AMessage msg) throws j ava . rmi .

RemoteException ;

�

This interface defines only one method, output(AMessage). And this
is the only method that the client application needs to know. Any service
that wants to offer an output service and being part of the Community has
to implement both interfaces. But it can also implement other methods,
allowing the user to better manage the device.

The class AMessage is shown in Program 9.3. Since the message will
most probably be sent through the network it has to implement the
Serializable interface. The class suggests that a message is com-
pounded not only by a string, but it can also contain an image, a headline

1Since this proof of concept is implemented in Java, once having obtained a reference,
the client is able to find out all its methods and fields by using the Java reflection package.



9.7. PROOF OF CONCEPT 139

and a priority. The priority can be used to determine which message to
display in the case of multiple messages waiting in a queue.

Program 9.3 AMessage class listing (continued on next page)

public c l a s s AMessage implements S e r i a l i z a b l e 
public s t a t i c f i n a l i n t STANDARD = 0 ;
public s t a t i c f i n a l i n t IMAGE = 1 ;
public s t a t i c f i n a l i n t MULTIMEDIA = 2 ;

private S t r i n g message = null ;
private S t r i n g headline = null ;
private ImageIcon image=null ;
private i n t p r i o r i t y =0;
private i n t type = STANDARD;

public AMessage ( )  �

public AMessage( S t r i n g msg) 
t h i s . message = msg ;�

public void setMessage ( S t r i n g msg) 
t h i s . message = msg ;�

public S t r i n g getMessage ( ) 
return t h i s . message ;�

public void setHead ( S t r i n g headline ) 
t h i s . headl ine = headline ;�

public S t r i n g getHead ( ) 
return t h i s . headl ine ;�

public void setType ( i n t type ) 
t h i s . type = type ;�

public i n t getType ( ) 
return t h i s . type ;�



140 CHAPTER 9. DYNAMIC COMPOSITION OF EXECUTION ENVIRONMENT

public void setImage ( ImageIcon image ) 
t h i s . image=image ;�

public void setImageDescript ion ( S t r i n g d e s c r i p t i o n ) 
t h i s . image . s e t D e s c r i p t i o n ( d e s c r i p t i o n ) ;�

public S t r i n g getImageDescript ion ( ) 
return t h i s . image . ge tDescr ipt ion ( ) ;�

public ImageIcon getImage ( ) 
return t h i s . image ;�

public void s e t P r i o r i t y ( i n t p r i ) 
t h i s . p r i o r i t y= p r i ;�

public i n t g e t P r i o r i t y ( ) 
return t h i s . p r i o r i t y ;�

public boolean i s I c o n ( ) 
i f ( t h i s . image = = null )

return f a l s e ;
return true ;�

�

In our prototype there are two services offering an output service: Monitor
(whose interface is shown in Program 9.4) and Serial (whose interface is
shown in Program 9.5). They both implement the AOutput interface, but
they also add some different methods. The Serial interface adds a method
that sets the color of the text to be displayed (setColor()), while the
Monitor interface adds a method to define the title of the window display-
ing the message (setPanelTitle()).



9.7. PROOF OF CONCEPT 141

Program 9.4 The Monitor Interface

public i n t e r f a c e IMonitor extends AOutput 

public void output ( AMessage msg) throws j ava . rmi .
RemoteException ;

public void s e t P a n e l T i t l e ( S t r i n g t i t l e ) throws j ava . rmi .
RemoteException ;

�

Program 9.5 The Serial Interface

public i n t e r f a c e I S e r i a l extends AOutput 
public void output ( AMessage msg) throws j ava . rmi .

RemoteException ;
public void se tColor ( boolean b ) throws j ava . rmi .

RemoteException ;

�

9.7.4 Implementing the Service

The class that will offer the service has to implement several interfaces.
For instance, the class AMonitorOutput (Program 9.6) implements three
different Java interfaces:

1. AService, thus declaring its willingness to become part of the Com-
munity. As such, the method getInterface() returns the IMonitor in-
terface.

2. AOutput, thus declaring that the service it offers implements all
the methods describe in that interface. In our case, the method
output(AMessage).

3. IMonitor, thus declaring it also implements all the methods specific
to the Monitor interface.



142 CHAPTER 9. DYNAMIC COMPOSITION OF EXECUTION ENVIRONMENT

Program 9.6 The implementation class of the Monitor Interface

public c l a s s AMonitorOutput extends UnicastRemoteObject
implements AService , AOutput , IMonitor , j ava . io .
S e r i a l i z a b l e 

private s t a t i c S t r i n g t i t l e = "Dynamic Computing" ;
private s t a t i c GUI gui = new GUI( t i t l e ) ;

public AMonitorOutput ( ) throws RemoteException 
super ( ) ;�

public Class g e t I n t e r f a c e ( ) 
return IMonitor . c l a s s ;�

public void output ( AMessage msg) 
i f ( msg . getType ( ) = = AMessage .MULTIMEDIA)

JOptionPane . showMessageDialog ( null , "Not Standard
Message received. Not able to display." , "
alert" , JOptionPane .ERROR MESSAGE) ;

else 
gui . output (msg) ;
gui . pack ( ) ;
gui . show ( ) ;�

�

public void s e t P a n e l T i t l e ( S t r i n g t i t l e ) 
t h i s . t i t l e = t i t l e ;�

public s t a t i c void main ( S t r i n g a [ ] ) throws Exception 
. . .

/ / R e g i s t r e r i n g t h e s e r v i c e with AP
AMonitorOutput ob j = new AMonitorOutput ( ) ;
IAP ap = ( IAP ) Naming . lookup ( APlocation ) ;
ap . r e g i s t e r ("AOutput" ,"Monitor" , ob j ) ;

. . .�
�



9.7. PROOF OF CONCEPT 143

The class implements also the interface Serializable since this class
could be downloaded from the network.

This implementation of the interface IOutpututilizes the helper class GUI
(see Program 9.7), which uses the Java Swing classes to display the mes-
sage in a window environment. When ready, the service registers itself
with the AP using the register()method (see also section 9.7.5).

Program 9.7 The helper GUI class listing

public c l a s s GUI extends JFrame implements Act ionLis tener 
public GUI ( S t r i n g t i t l e ) 

super ( ) ;
t h i s . s e t T i t l e ( t i t l e ) ;�

public void output ( AMessage msg) 
JPane l headline = new JPane l ( ) ;
JPane l t e x t = new JPane l ( ) ;
JPane l ok = new JPane l ( ) ;
JPane l image = new JPane l ( ) ;
. . .
JTextArea t = new JTextArea (msg . getMessage ( ) , 2 9 , 3 0 ) ;
. . .
JLabe l img = new JLabe l (msg . getImage ( ) ) ;
JButton b1 = new JButton ("Close" ) ;
b1 . setActionCommand ("read" ) ;
b1 . addActionListener ( t h i s ) ;
headline . add ( h ) ;
. . .�

public void actionPerformed ( ActionEvent e ) 
S t r i n g command = e . getActionCommand ( ) ;
i f ( command . equals ("read" ) )

hide ( ) ;�
�

The AOutput service is also implemented by another class,
ASerialOutput (see Prog. 9.8). This service is aimed to display
the message to a device that has no ability to display windows.



144 CHAPTER 9. DYNAMIC COMPOSITION OF EXECUTION ENVIRONMENT

Program 9.8 The listing of the ASerialOutput class

public c l a s s ASerialOutput extends UnicastRemoteObject implements
AOutput , AService , I S e r i a l , j ava . io . S e r i a l i z a b l e 

private boolean c o l o r = f a l s e ;

public ASerialOutput ( ) throws RemoteException 
super ( ) ;�

public Class g e t I n t e r f a c e ( ) 
return I S e r i a l . c l a s s ;�

public void output ( AMessage msg) 
i n t type ;

System . out . p r i n t l n (msg . getHead ( ) +"\n" ) ;
type=msg . getType ( ) ;
i f ( type ! = AMessage .STANDARD) 

System . out . p r i n t ("WARNING: Not a standard message. " )
;

switch ( type ) 
case AMessage .MULTIMEDIA:

System . out . p r i n t l n ("This device cannot display it.\n"
) ;

break ;
case AMessage .IMAGE:

System . out . p r i n t l n ("Cannot display image: "+msg .
getImageDescript ion ( ) +"\n" ) ;

break ;�
�
i f (msg . g e t P r i o r i t y ( ) ! = 0 )

System . out . p r i n t l n ("HIGH PRIORITY:" ) ;
System . out . p r i n t l n (msg . getMessage ( ) ) ;�

public void se tColor ( boolean b ) 
t h i s . c o l o r=b ;�

public s t a t i c void main ( S t r i n g a [ ] ) throws Exception 
. . .

/ / R e g i s t e r i n g with AP
ASerialOutput ob j = new ASerialOutput ( ) ;
IAP ap = ( IAP ) Naming . lookup ( APlocation ) ;
ap . r e g i s t e r ("AOutput" ,"Serial" , ob j ) ;

. . .�
�



9.7. PROOF OF CONCEPT 145

9.7.5 The Personal Agent

The Personal Agent has a central role in this prototype. It receives the reg-
istration from the services by the register() method and it has to de-
liver the services that the applications require through the getService()
method. Thus a generic Personal Agent has to implement the interface de-
scribed in Program 9.9.

Program 9.9 The Personal Agent interface

public i n t e r f a c e IAP extends Remote 
Remote g e t S e r v i c e ( S t r i n g s e r v i c e ) throws RemoteException ;
void r e g i s t e r ( S t r i n g s e r v i c e , S t r i n g i n t e r , Remote stub )

throws RemoteException ;

�

Program 9.10 The listing of the ServiceCouple class

public c l a s s ServiceCouple 
private S t r i n g ident ;
private Remote stub ;

public ServiceCouple ( S t r i n g id , Remote s t ) 
t h i s . ident=id ;
t h i s . stub= s t ;�

public Remote getStub ( ) 
return t h i s . stub ;�

public S t r i n g get Id ( ) 
return t h i s . ident ;�

�

Program 9.11 shows a prototype implementation of a Personal Agent. The
register() method is implemented on line 13. The first parameter de-
clares the “family” of the services it implements (i.e. AOutput). The sec-
ond parameter gives information about the capabilities of the specific im-
plementation (such as “Monitor” or “Serial”) while the last parameter is
the RMI stub.



146 CHAPTER 9. DYNAMIC COMPOSITION OF EXECUTION ENVIRONMENT

The AP groups all the stubs of the same family in a vector (line 18), and
then puts the vector in a hash table (line 19). It also uses the Service
Couple helper class (Program 9.10) to store the stubs.

A client application will request a service through the method
getService() implemented on line 28. The client will only request the
“family” of the service (in our case AOutput), and it is the task of the AP
to give the one that fits the device best. In our prototype the logic is quite
simple:

1. If there are no services satisfying the request, raise an exception (line
33)

2. If there is only a service satisfying the request, return that (lines 38-
40)

3. If there are both services, return the Monitor one, that is, the one
with the best QoS (lines 43-47)



9.7. PROOF OF CONCEPT 147

Program 9.11 The listing of the AP class

1public c l a s s AP extends UnicastRemoteObject implements IAP 
3/ / The r e f e r n c e s o f t h e s e r v i c e s a r e k e p t i s a hash t a b l e
4private s t a t i c Hashtable s e r v i c e s h a s h = new Hashtable ( ) ;

6. . .

8public AP ( ) throws RemoteException 
9super ( ) ;
10

�

13public void r e g i s t e r ( S t r i n g s e r v i c e , S t r i n g s t u b i n t , Remote
stub ) throws RemoteException 

15ServiceCouple sc = new ServiceCouple ( s t u b i n t , stub ) ;

17i f ( ! s e r v i c e s h a s h . containsKey ( s e r v i c e ) ) 
18v . add ( sc ) ;
19s e r v i c e s h a s h . put ( s e r v i c e , v ) ;
20

�
21else 
22Vector ser = ( Vector ) s e r v i c e s h a s h . get ( s e r v i c e ) ;
23i f ( ! ser . conta ins ( sc ) )
24ser . add ( sc ) ;
25

�
26

�

28public Remote g e t S e r v i c e ( S t r i n g s e r v i c e ) throws
RemoteException 

30ServiceCouple sc = null ;

32i f ( ! ( s e r v i c e s h a s h . containsKey ( s e r v i c e ) ) )
33throw new RemoteException ("Service not registrered" ) ;
34else 
35Vector ser = ( Vector ) s e r v i c e s h a s h . get ( s e r v i c e ) ;

37/ / I f t h e r e i s on ly one s e r v i c e , we r e t u r n t h a t
38i f ( ser . s i z e ( ) ==1) 
39sc =( ServiceCouple ) ser . get ( 0 ) ;
40return sc . getStub ( ) ;
41

�
42/ / Otherwis e we r e t u r n Monitor ( Hacked ! )
43sc = ( ServiceCouple ) ser . get ( 0 ) ;
44i f ( sc . ge t Id ( ) . equals ("Monitor" ) )
45return sc . getStub ( ) ;
46sc = ( ServiceCouple ) ser . get ( 1 ) ;
47return sc . getStub ( ) ;
48

�
49

�
50

�



148 CHAPTER 9. DYNAMIC COMPOSITION OF EXECUTION ENVIRONMENT

9.7.6 The Client

An example of the application client is shown on Program 9.12. It creates
a message, connects to the AP and requests a service implementing the
AOutput service. Then it uses the received service to display the message.

Program 9.12 The listing of the AClient class

public c l a s s AClient 
public s t a t i c void main ( S t r i n g a [ ] ) throws Exception 

. . .

AMessage msg = new AMessage ( ) ;
msg . setMessage ( . . . ) ;
msg . setHead ("Study finds Alaska glaciers melting at

higher rate" ) ;
msg . setImage (new ImageIcon ("glacier.jpg" ) ) ;
msg . setImageDescript ion ("Glaciers in Alaska." ) ;
msg . setType ( AMessage .IMAGE) ;
IAP ap = ( IAP ) Naming . lookup ( APlocation ) ;
AOutput out = ( AOutput ) ap . g e t S e r v i c e ("AOutput" ) ;
out . output (msg) ;

. . .

�
�

The quality of the display depends upon which service implementation
the PA returned. Figure 9.4 shows the result on a Windows host with the
Monitor class, while Figure 9.5 shows the same message displayed to a
Linux console using the Serial class. The fact that the adaptation to the
device capabilities (and operating system) has happened dynamically at
runtime and without client intervention should be stressed.



9.7. PROOF OF CONCEPT 149

Figure 9.4: The message displayed with the Monitor class

Figure 9.5: The message displayed with the Serial class



150 CHAPTER 9. DYNAMIC COMPOSITION OF EXECUTION ENVIRONMENT



Part V

Conclusions





Chapter 10

Conclusions

Life can only be understood backwards; but it must be lived forwards.
- Johann Wolfgang von Goethe

10.1 The Journey of this Dissertation

In this dissertation we described the evolution of the concept of Nomadic
Computing. This journey followed a pattern that is quite common in the
Information Technology world. Once new ideas become concrete, there is
a tendency to apply them in all possible fields. This step creates further
ideas but also new challenges. Sometimes the challenges become too dif-
ficult, and the evolution paths of the new ideas reach their ends. At other
times these new ideas coherently evolve in a new paradigm and bring in-
novation in different fields, even not correlated with each other before.
But most of the time they just stand in the middle, being able to evolve
and innovate only in one direction.

The improvement in the wireless infrastructure during the last decade has
pushed many researchers to apply this technology to computer networks,
trying to create a new paradigm able to melt together two of the most
successful branches of technology: Telecommunication and Computer Sci-
ence. This new paradigm has many names. We used Nomadic Comput-
ing. But this has been a marriage more of interest than love. In Chap-
ter 2 we described the differences and the challenges they had to face, and
then in Chapter 4 the solutions they were offered to. But we think this is
not enough. In Chapter 5 we believe to have demonstrated that putting
together those two technologies trying to cut off their differences is not



154 CHAPTER 10. CONCLUSIONS

enough. We designed and implemented a working prototype that gave
surprisingly good results. That happened because we had in our mind
both partners when we put them together.

At the same time this marriage produced new ideas that related them even
closer, as we described in Chapter 3. But it is our belief that we need
more. So, in the last part of the dissertation we described what we believe
to be the best compromise: Both partners have to change themselves in
order to create new features. It is a new forma mentis, where the two
technologies become indistinguishable as they simply offer services. It
is the relationship between the different services that changes depending
upon the location and time, not the single service. This, in our opinion,
makes the two technologies able to adapt to each other.

10.2 The World Outside

The paradigm described by the author in the last part of this dissertation is
original, but lately some of those ideas have been proposed independently
in other contexts and in other forms. For example, the role of the intelli-
gent agents behind the concept of Semantic Web [13, 91] is very similar to
the role of the Personal Agent described in Section 9.3.4. Also, FIPA [36]
has spent efforts to standardize the presence of intelligent agents in a no-
madic environment as, for example, the specification on Nomadic Appli-
cation Support [38].

As an example on the application side, the World Wireless Reference Fo-
rum [105] pushes the concept of dynamic adaptation as an important point
in its vision for the future of telecommunications [104].

10.3 Final Remarks

Unfortunately, even if new ideas are constantly appearing to conjugate
the richness of modern applications with the restricted proprieties of mo-
bile devices, overall there has not been such an organic view as depicted
through this dissertation. So far the marriage between the two technolo-
gies, as argued above, is still in its early phase.

We hope that this dissertation will add stimulus to the development of
the paradigm envisaged in its last chapters. We believe there is a need to



10.3. FINAL REMARKS 155

make a distinction between the application logic, or what an application
is supposed to do, and its implementation, or how it will reach its scopes.
Nomadic Computing would take full advantage of this, since more em-
phasis would be put on fulfilling the users’ desires and needs. And the
evolution of Nomadic Computing is the ultimate goal of this dissertation.



156 CHAPTER 10. CONCLUSIONS



References

[1] ACM 1998 Workshop on Java for High-Performance Network Comput-
ing. Available from the World Wide Web: <http://www.cs.ucsb.edu/
conferences/java98/program.html>.

[2] T. Alanko, M. Kojo, H. Laamanen, M. Liljeberg, M. Moilanen, and
K. Raatikainen. Measured Performance of Data Transmission over Cel-
lular Telephone Networks. Computer Communications Review, 24(5):24–44,
October 1994.

[3] Alice Web Site. Available from the World Wide Web: <http://www.dsg.
cs.tcd.ie/research/alice/>.

[4] M. Allman. On the generation and use of TCP acknowledgments. In ACM
Computer Communication Review, volume 28(5), October 1998.

[5] M. Allman, V. Paxson, and W. Stevens. TCP congestion control. RFC 2581,
April 1999.

[6] K. Arnold, O. Sullivan, R. Scheifler, J. Waldo, and A. Wollrath. The Jini
Specification. Addison-Wesley, 1999.

[7] A. Aziz and W. Diffie. Privacy and authentication for wireless local area
networks. IEEE Personal Communications, 1:25–31, 1994.

[8] B. R. Badrinath, Arup Acharya, and Tomasz Imielinski. Impact of mobility
on distributed computations. ACM Operating Systems Review, 27(2):15–20,
April 1993.

[9] R. Bagrodia, W. Chu, L. Kleinrock, and G. Popek. Vision, issues, and ar-
chitecture for nomadic computing. IEEE Personal Communications, pages
14–27, December 1995.

[10] H. Balakrishnan, S. Seshan, E. Amir, and R. Katz. Improving TCP/IP Per-
formance over Wireless Networks. In Proc. of the First ACM International
Conf. on Mobile Computing and Networking (MobiCom ’95), pages 2–11, Berke-
ley, California, USA, November 1995.



158 REFERENCES

[11] G. Banavar, J. Beck, E. Gluzberg, J. Munson, J. Sussman, and D. Zukowski.
Challenges: An application model for pervasive computing. In Proceedings
of The sixth Annual International Conference on Mobile Computing and Network-
ing, pages 266–274, August 2000.

[12] F. Berg, S. Diwan, J. Villacis, J. Balasubramanian, E. Akman, and D. Gan-
non. Java RMI Performance and Object Model Interoperability: Experi-
ments with Java/HPC++. In Proc. of the ACM 1998 Workshop on Java for
High-Performance Network Computing, Stanford, Palo Alto, Calif., February
1998.

[13] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American, May 2001.

[14] V. Bharghavan and V. Gupta. A framework for application adaptation in
mobile computing environments. In Proceedings of COMPSAC 1997, August
1997.

[15] The Bluetooth specification. Available from the World Wide Web: <http:
//www.bluetooth.com/dev/specifications.asp>.

[16] E. Brewer, R. Katz, Y. Chawathe, S. Gribble, T. Hodes, G. Nguyen,
M. Stemm, T. Hender-Son, E. Amir, H. Balakrishnan, A. Fox, V. Padman-
abhan, and S. Seshan. A network architecture for heterogeneous mobile
computing. IEEE Personal Commun., pages 8–24, 1998.

[17] R. Cáceres and L. Iftode. The Effects of Mobility on Reliable Transport
Protocols. In Proc. IEEE 14th International Conference on Distributed Computer
Systems, pages 12–20, Poznan, Poland, June 1994. IEEE Computer Society
Press.

[18] R. Cáceres and L. Iftode. Improving the Performance of Reliable Transport
Protocols in Mobile Computing Environments. IEEE Journal on Selected Ar-
eas in Communications, 13(5):850–857, June 1995.

[19] S. Campadello. Dynamic composition of execution environment for adap-
tive nomadic applications. In Samuel Pierre and Roch Glitho, editors, Mo-
bile Agent for Telecommunication Applications. Proceedings of the Third Inter-
ational Workshop, MATA 2001, Lecture Notes in Computer Science, pages
73–80, Montreal, Canada, August 2001. Spinger.

[20] S. Campadello, H. Helin, O. Koskimies, P. Misikangas, M. Mäkelä, and
K. Raatikainen. Using Mobile and Intelligent Agents to Support Nomadic
Users. In 6th International Conference on Intelligence in Networks (ICIN2000),
pages 199–204, Bordeaux, France, January 2000.

[21] S. Campadello, H. Helin, O. Koskimies, and K. Raatikainen. Performance
enhancing proxies for Java2 RMI over slow wireless links. In Proceedings of
the Second International Conference on the Practical Application on Java, pages
76–89, Manchester, UK, April 2000.



REFERENCES 159

[22] S. Campadello, H. Helin, O. Koskimies, and K. Raatikainen. Wireless Java
RMI. In Proceedings of The 4th International Enterprise Distributed Object Com-
puting Conference, pages 114–123, Makuhari, JAPAN, September 2000. IEEE
Computer Society. ISBN 0-7695-0865-0.

[23] S. Campadello and K. Raatikainen. Agent in personal mobility. In Pro-
ceeding of the First International Workshop on Mobile Agents for Telecommunica-
tion Application, MATA 99, pages 359–374, Ottawa, Canada, October 1999.
World Scientific.

[24] S. Casner and V. Jacobson. Compressing IP/UDP/RTP headers for low-
speed serial links. RFC 2508, February 1999.

[25] The Component Object Model specification. Mi-
crosoft Corporation. Available from World Wide Web:
http://www.microsoft.com/com/resources/comdocs.asp.

[26] IEEE Personal Communications. Special Issue on the European Path To-
wards UMTS. Vol. 2, 1, February 1995.

[27] NOKIA Corporation. Mobile IPv6. In Inside MITA, pages 65–76. IT Press,
2001.

[28] DCOM technical overview. Microsoft Corporation, November 1996.
Available from the World Wide Web: <http://msdn.microsoft.com/
library/backgrnd/html/\\/msdn\_dcomtec.htm>.

[29] M. Degermark, B. Nordgren, and S. Pink. IP header compression. RFC
2507, February 1999.

[30] T. Dierks and C. Allen. The TLS protocol. Technical Report RFC 2246, IETF,
1999. Available from the World Wide Web: <http://www.ietf.org/
rfc/rfc2246.txt>.

[31] I. Dittrich, P. Holzner, and M. Krumpe. Implementation of the GSM-Data-
Services into the mobile radio system. MCR Mobile Radio Conference, Nice
France Nov. 1991, pages 73–83, 1993. GSM Data Services.

[32] Object Management Group. Telecom DTF. Wireless access and terminal
mobility in corba draft adopted specification. OMG document dtc/01-05-
01, May 2001.

[33] Endeavour Expedition: Charting the Fluid Information Utility . Available
from the World Wide Web: <http://endeavour.cs.berkeley.edu/
>.

[34] M. Engan, S. Casner, and C. Bormann. IP header compression over PPP.
RFC 2509, February 1999.

[35] M. Esler, J. Hightower, T. Anderson, and G. Borriello. Next century chal-
lenges: Data-centric networking for invisible computing: The portolano
project at the university of washington. In Proceedings of The fifth Annual
International Conference on Mobile Computing and Networking, 1999.



160 REFERENCES

[36] Foundation for Intelligent Physical Agents (FIPA) Internet Homepage. Available
from the World Wide Web: <http://www.fipa.org>.

[37] Foundation for Intelligent Physical Agent. FIPA ACL message represen-
tation in bit-efficient specification, October 2000. Specification number
XC00069.

[38] Foundation for Intelligent Physical Agent. FIPA agent message transport
envelope representation in bit-efficient specification, November 2000. Spec-
ification number XC00088.

[39] Foundation for Intelligent Physical Agent. FIPA nomadic application sup-
port specification, November 2000. Specification number XC00014.

[40] G. Forman and J. Zahorjan. The Challenges of Mobile Computing. Computer
Science Department, University of Washington, U.S., 1993.

[41] S. D. Gribble, M. Welsh, J. R. von Behren, E. A. Brewer, D. E. Culler, N. B.,
S. E. Czerwinski, R. Gummadi, J. R. Hill, A. D. Joseph, R. H. Katz, Z. M.
Mao, S. Ross, and B. Y. Zhao. The Ninja architecture for robust internet-
scale systems and services. Computer Networks, 35(4):473–497, 2001.

[42] GSM Technical Specification, GSM 02.34. High Speed Circuit Switched
Data (HSCSD), Stage 1, July 1997. Version 5.2.0.

[43] GSM Technical Specification, GSM 02.60. GPRS Service Description, Stage
1, 1998. Version 6.1.0.

[44] GSM Technical Specification, GSM 03.34. High Speed Circuit Switched
Data (HSCSD), Stage 2, May 1999. Version 5.2.0.

[45] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service location protocol,
version 2. Technical Report RFC 2608, IETF, 1999. Available from the World
Wide Web: <http://www.ietf.org/rfc/rfc2608.txt>.

[46] M. Haahr, R. Cunningham, and V. Cahill. Supporting CORBA Applications
in a Mobile Environment. In Proc. of the ACM MobiCom ’99 Conference, pages
36–47, Seattle, Wash., August 1999.

[47] R. Hagen. Security requirements and their realization in mobile networks.
In XIV International Switching Symposium, pages 127–131, Yokohama, 1992.
IEICE. GSM Security;TELE Library.

[48] B. Hausel and D. B. Lindquist. WebExpress: A System for Optimizing Web
Browsing in a Wireless Environment. In Proc. of the Second ACM Interna-
tional Conf. on Mobile Computing and Networking (MobiCom ’96), pages 108–
116, Rye, New York, USA, November 1996.

[49] H. Helin. Supporting Nomadic Agent-based Applications in FIPA Agent Archi-
tecture. PhD thesis, University of Helsinki, 2003. ISBN 952-10-0882-2.



REFERENCES 161

[50] H. Helin and S. Campadello. Providing messaging interoperability in FIPA
communication architecture. In K. Zielinski, K. Geihs, and A. Lauren-
towski, editors, New Development in Distributed Applications and Interoper-
able System. Proceedings og the Third IFIP TC6/WG6.1 International Working
Conference on Distributed Applications and Interoperable Systems (DAIS), pages
121–126, Krakow, Poland, September 2001. Kluwer Academic Publishers.

[51] S. Hirano, Y. Yasu, and H. Igarashi. Performance Evaluation of Popular
Distributed Object Technologies for Java. In Proc. of the ACM 1998 Workshop
on Java for High-Performance Network Computing, Stanford, Palo Alto, Calif.,
February 1998.

[52] P. Honeyman, L. Huston, J. Rees, and D. Bachmann. The LITTLE WORK
Project. Third Workshop on Workstation Operating Systems. IEEE Com-
puter Society Press, Key Biscayne, Florida, U.S., 1992.

[53] T. Imielinski and B.R. Badrinath. Mobile Wireless Computing: Solutions and
Challenges in Data Management. The State Univeristy of New Jersey RUT-
GERS, 1993. General Interest Data Management.

[54] V. Jacobson. Congestion Avoidance and Control. In Proc. ACM SIGCOMM
’88 Symposium on Communications Architectures and Protocols, pages 314–329,
Stanford, California, August 1988.

[55] V. Jacobson. Compressing TCP/IP Headers for Low-Speed Serial Links.
Request for Comments 1144, Network Information Center, February 1990.

[56] D. Johnson and C. Perkins. Mobile support in IPv6. Tech-
nical report, IETF, 2001. Available from World Wide Web:
http://www.ietf.org/internet-drafts/draft-ietf-
mobileip-ipv6-15.txt.

[57] A. D. Joseph, J. A. Tauber, and M. F. Kaashoek. Mobile Computing with
the Rover Toolkit. IEEE Transactions on Computers (Special Issue on Mobile
Computing), 46(3), March 1997.

[58] L. Kleinrock. Nomadicity: Anytime, anywhere in a disconnected world.
Mobile Networks and Applications., January 1997.

[59] L. Kleinrock. Nomadic computing and smart spaces. IEEE Internet Com-
puting, pages 52–53, Jan-Feb 2000.

[60] M. Kojo, K. Raatikainen, and T. Alanko. Connecting Mobile Workstations
to the Internet over a Digital Cellular Telephone Network. In Proc. of the
MOBIDATA Workshop. Rutgers University, NJ, November 1994. Updated
version in Mobile Computing, Kluwer, 1996, pages 253–270.

[61] M. Kojo, K. Raatikainen, M.Liljeberg, J.Kiiskinen, and T.Alanko. An Effi-
cient Transport Service for Slow Wireless Telephone Links. IEEE Journal on
Selected Areas in Communications, 15(7):1337–1348, September 1997.



162 REFERENCES

[62] H. Laamanen, H. Helin, and S. Campadello. Software agent technology
in nomadic computing: FIPA Nomadic Appication Support. In XIII In-
ternational Symposium on Services and Local accesS (ISSLS2000), Stockholm,
Sweden, June 2000.

[63] B. Lampson et al. Authentication in distributed systems. ACM Trans. On
Computer Systems 10,4 Nov 92, pages 265–311, 1993. Distributed Systems
Authentication.

[64] J. Landay. User interface issues in mobile computing. In Proceedings of the
Fourth Workshop on Workstation Operating Systems. IEEE, October 1993.

[65] M. Liljeberg, H. Helin, M. Kojo, and K. Raatikainen. Enhanced Service for
World-Wide Web in Mobile WAN Environment. Technical Report C-1996-
28, Department of Computer Science, University of Helsinki, 1996.

[66] M. Liljeberg, K. Raatikainen, M. Evans, S. Furnell, N. Maumon,
E. Veltkamp, B. Wind, and S. Trigila. Using CORBA to Support Termi-
nal Mobility. In Proc. of TINA’97 Conference, pages 56–67. IEEE Computer
Society Press, 1998.

[67] J. Maassen, R. van Nieuwpoort, R. Veldema, H. E. Bal, and A Plaat. An
Efficient Implementation of Java’s Remote Method Invocation. In Proc. 7th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pages 173–182, Atlanta, GA, May 1999.

[68] P. Maniatis, M. Roussopoulos, E. Swierk, K. Lai, G. Appenzeller, X. Zhao,
and M. Baker. The mobile people architecture. In ACM Mobile Computing
and Communications Review (MC2R), July 1999.

[69] Sun Microsystems. Java Remote Method Invocation – Distributed Comput-
ing for Java. White Paper, 1998.

[70] P. Misikangas, M. Mäkelä, and K. Raatikainen. Predicting QoS for Nomadic
Applications Using Intelligent Agents. In Proc. of the IMPACT99, Seattle
(WA), December 1999.

[71] The MIT project Oxygen. Available from the World Wide Web: <http:
//oxygen.lcs.mit.edu/>.

[72] Monads home page. Available from the World Wide Web: <http://www.
cs.helsinki.fi/research/monads/>.

[73] R. Monson-Haefel. Enterprise JavaBeans. O’Reilly Publisher, 3 edition, 2001.

[74] G. Montenegro, S. Dawkins, M. Kojo, V. Magret, and N. Vaidya. Long Thin
Networks. RFC 2757, January 2000.

[75] Mosquitonet: The mobile computing group at stanford university. Avail-
able from the World Wide Web: <http://mosquitonet.stanford.
edu/>.

[76] Mowgli Home Page. Available from the World Wide Web: <http://www.
cs.Helsinki.FI/research/mowgli/>.



REFERENCES 163

[77] B. J. Nelson. Remote procedure call. Technical Report CSL-81-9, Xeros Palo
Alto Research Center, 1981.

[78] C. Nester, M. Philippsen, and B. Haumacher. A More Efficient RMI for Java.
In Proc. of ACM 1999 Java Grande Conference, pages 152–157, San Francisco,
Calif., June 1999.

[79] B.D. Noble, M. Satyanarayanan, D. Narayanan, J.E. Tilton, J. Flinn, and
K. Walker. Agile application-aware adaptation for mobility. ACM SIGOPS
Oper. Syst. Rev., 5(31):276–287, 1997.

[80] Object Management Group. The Common Object Request Broker: Architecture
and Specification, 1995. Available from the World Wide Web: <http://
www.omg.org/corba2/>.

[81] Object Management Group. Telecom DTF. RFP on Wireless Access and Ter-
minal Mobility in CORBA. OMG document telecom/99-05-05, May 1999.

[82] Object Management Group Internet Homepage. Available from the World
Wide Web: <http:www.omg.org/>.

[83] C. Perkins. IP mobility support. Technical Report RFC 2002, IETF, 1996.
Available from the World Wide Web: <http://www.cis.ohio-state.
edu/htbin/rfc/rfc2002.html>.

[84] The portolano project home page. Available from the World Wide Web:
<http://portolano.cs.washington.edu/>.

[85] M. Rahnema. Overview of the GSM System and Protocol Architecture.
IEEE Communication Magazine, 31(4):92–100, April 1993.

[86] Rover Web Site. Available from the World Wide Web: <http://www.
pdos.lcs.mit.edu/rover/>.

[87] The Salutation specification. Available from the World Wide Web: <http:
//www.salutation.org>.

[88] M. Satyanarayanan. Fundamental challenges in mobile computing. Fif-
teenth ACM Symposium on Principles of Distributed Computing, May 1996.

[89] M. Satyanarayanan. Pervasive computing: Vision and challanges. IEEE
Personal Communications, pages 10–17, August 2001.

[90] M. Satyanarayanan, J.J. Kistler, P. Kumar, M.E. Okasaki, E.H. Siegel, and
D.C. Steere. Coda: A highly available file system for a distributed worksta-
tion environment. IEEE Transactions on Computers, 39(4), April 1990.

[91] The Semantic Web Community Portal. Available from World Wide Web:
<http://www.semanticweb.org/>.

[92] A. Shacham, R. Monsour, R. Pereira, and M. Thomas. IP payload compres-
sion protocol (ipcomp). RFC 2393, December 1998.

[93] R. Srinivasan. RPC: Remote Procedure Call protocol specification version
2. RFC 1831, August 1995.



164 REFERENCES

[94] Third Generation Partnership Project Web Site. Available from the World
Wide Web: <http://www.3gpp.org/>.

[95] The universal plug and play forum home page. Available from the World
Wide Web: <http://www.upnp.org/>.

[96] R. van Nieuwpoort, J. Maassen, H. E. Bal, T. Kielmann, and R. Veldema.
Wide-area parallel computing in Java. In Proc. of ACM 1999 Java Grande
Conference, pages 8–14, San Francisco, Calif., June 1999.

[97] ObjectSpace Voyager ORB Internet Homepage. Available from the World Wide
Web: <http://www.objectspace.com/products/voyager/>.

[98] Xhtml 1.0: The extensible hypertext markup language. Available from
World Wide Web: http:www.w3.org/.

[99] Helen J. Wang, Bhaskaran Raman, Chen nee Chuah, Rahul Biswas, Ra-
makrishna Gummadi, Barbara Hohlt, Xia Hong, Emre Kiciman, Zhuoqing
Mao, Jimmy S. Shih, Lakshminarayanan Subramanian, Ben Y. Zhao, An-
thony D. Joseph, and Randy H. Katz. ICEBERG: An Internet-core network
architecture for integrated communications. IEEE Personal Communications,
2000. Special Issue on IP-based Mobile Telecommunication Networks.

[100] WAP Forum. Wireless Application Environment Overview, ver-
sion 1.2, November 1999. Available from World Wide Web:
http://www.wapforum.org/what/technical.htm.

[101] Wap home page. Available from the World Wide Web: <http://www.
wapforum.org/>.

[102] M. Weiser. Some computer science issues in ubiquitous computing. Comm.
of The ACM 36,7 Jul 93, pages 74–84, 1992. General Interest Application.

[103] J. E. White. A high-level framework for network-based resource sharing.
Proc. National Computer Conference, June 1976.

[104] WWRF. Book of vision 2001, 2001. Available from World Wide Web:
<http://www.wireless-world-research.org/Bookofvisions/
Bov.html>.

[105] Wireless World Research Forum. Available from World Wide Web: <http:
//www.wireless-world-research.org/>.



TIETOJENKÄSITTELYTIETEEN LAITOS DEPARTMENT OF COMPUTER SCIENCE
PL 26 (Teollisuuskatu 23) P.O. Box 26 (Teollisuuskatu 23)
00014 Helsingin yliopisto FIN-00014 University of Helsinki, FINLAND

JULKAISUSARJA A SERIES OF PUBLICATIONS A

Reports may be ordered from: Department of Computer Science, Library (A 214), P.O. Box 26, FIN-
00014 University of Helsinki, FINLAND.

A-1990-1 K. Pohjonen & J. Tarhio (toim./eds.): Tietojenkäsittelyopin laitoksen tutkimusraportteja
1988–89 – Research reports at the Department of Computer Science 1988–89. 27 pp.

A-1990-2 J. Kuittinen, O. Nurmi, S. Sippu & E. Soisalon-Soininen: Efficient implementation of loops
in bottom-up evaluation of logic queries. 14 pp.

A-1990-3 J. Tarhio & E. Ukkonen: Approximate Boyer-Moore string matching. 27 pp.

A-1990-4 E. Ukkonen & D. Wood: Approximate string matching with suffix automata. 14 pp.

A-1990-5 T. Kerola: Qsolver – a modular environment for solving queueing network models. 15 pp.

A-1990-6 Ker-I Ko, P. Orponen, U. Schöning & O. Watanabe: Instance complexity. 24 pp.

A-1991-1 J. Paakki: Paradigms for attribute-grammar-based language implementation. 71 + 146 pp.
(Ph.D. thesis).

A-1991-2 O. Nurmi & E. Soisalon-Soininen: Uncoupling updating and rebalancing in chromatic
binary search trees. 12 pp.

A-1991-3 T. Elomaa & J. Kivinen: Learning decision trees from noisy examples. 15 pp.

A-1991-4 P. Kilpeläinen & H. Mannila: Ordered and unordered tree inclusion. 22 pp.

A-1991-5 A. Valmari: Compositional state space generation. 30 pp.

A-1991-6 J. Tarhio & M. Tienari (eds.): Computer Science at the University of Helsinki 1991. 66 pp.

A-1991-7 P. Jokinen, J. Tarhio & E. Ukkonen: A comparison of approximate string matching algo-
rithms. 23 pp.

A-1992-1 J. Kivinen: Problems in computational learning theory. 27 + 64 pp. (Ph.D. thesis).

A-1992-2 K. Pohjonen & J. Tarhio (toim./eds.): Tietojenkäsittelyopin laitoksen tutkimusraportteja
1990–91 – Research reports at the Department of Computer Science 1990–91. 35 pp.

A-1992-3 Th. Eiter, P. Kilpeläinen & H. Mannila: Recognizing renamable generalized propositional
Horn formulas is NP-complete. 11 pp.

A-1992-4 A. Valmari: Alleviating state explosion during verification of behavioural equivalence.
57 pp.

A-1992-5 P. Floréen: Computational complexity problems in neural associative memories.
128 + 8 pp. (Ph.D. thesis).

A-1992-6 P. Kilpeläinen: Tree matching problems with applications to structured text databases.
110 pp. (Ph.D. thesis).

A-1993-1 E. Ukkonen: On-line construction of suffix-trees. 15 pp.

A-1993-2 Alois P. Heinz: Efficient implementation of a neural net � - � -evaluator. 13 pp.

A-1994-1 J. Eloranta: Minimal transition systems with respect to divergence preserving behavioural
equivalences. 162 pp. (Ph.D. thesis).

A-1994-2 K. Pohjonen (toim./ed.): Tietojenkäsittelyopin laitoksen julkaisut 1992–93 – Publications
from the Department of Computer Science 1992–93. 58 s./pp.

A-1994-3 T. Kujala & M. Tienari (eds.): Computer Science at the University of Helsinki 1993. 95 pp.

A-1994-4 P. Floréen & P. Orponen: Complexity issues in discrete Hopfield networks. 54 pp.



166

A-1995-1 P. Myllymäki: Mapping Bayesian networks to stochastic neural networks: a foundation
for hybrid Bayesian-neural systems. 93 pp. (Ph.D. thesis).

A-1996-1 R. Kaivola: Equivalences, preorders and compositional verification for linear time tempo-
ral logic and concurrent systems. 185 pp. (Ph.D. thesis).

A-1996-2 T. Elomaa: Tools and techniques for decision tree learning. 140 pp. (Ph.D. thesis).

A-1996-3 J. Tarhio & M. Tienari (eds.): Computer Science at the University of Helsinki 1996. 89 pp.

A-1996-4 H. Ahonen: Generating grammars for structured documents using grammatical inference
methods. 107 pp. (Ph.D. thesis).

A-1996-5 H. Toivonen: Discovery of frequent patterns in large data collections. 116 pp. (Ph.D. the-
sis).

A-1997-1 H. Tirri: Plausible prediction by Bayesian inference. 158 pp. (Ph.D. thesis).

A-1997-2 G. Lindén: Structured document transformations. 122 pp. (Ph.D. thesis).

A-1997-3 M. Nykänen: Querying string databases with modal logic. 150 pp. (Ph.D. thesis).

A-1997-4 E. Sutinen, J. Tarhio, S.-P. Lahtinen, A.-P. Tuovinen, E. Rautama & V. Meisalo: Eliot – an
algorithm animation environment. 49 pp.

A-1998-1 G. Lindén & M. Tienari (eds.): Computer Science at the University of Helsinki 1998. 112 pp.

A-1998-2 L. Kutvonen: Trading services in open distributed environments. 231 + 6 pp. (Ph.D. the-
sis).

A-1998-3 E. Sutinen: Approximate pattern matching with the q-gram family. 116 pp. (Ph.D. thesis).

A-1999-1 M. Klemettinen: A knowledge discovery methodology for telecommunication network
alarm databases. 137 pp. (Ph.D. thesis).

A-1999-2 J. Puustjärvi: Transactional workflows. 104 pp. (Ph.D. thesis).

A-1999-3 G. Lindén & E. Ukkonen (eds.): Department of Computer Science: annual report 1998.
55 pp.

A-1999-4 J. Kärkkäinen: Repetition-based text indexes. 106 pp. (Ph.D. thesis).

A-2000-1 P. Moen: Attribute, event sequence, and event type similarity notions for data mining.
190+9 pp. (Ph.D. thesis).

A-2000-2 B. Heikkinen: Generalization of document structures and document assembly. 179 pp.
(Ph.D. thesis).

A-2000-3 P. Kähkipuro: Performance modeling framework for CORBA based distributed systems.
151+15 pp. (Ph.D. thesis).

A-2000-4 K. Lemström: String matching techniques for music retrieval. 56+56 pp. (Ph.D.Thesis).

A-2000-5 T. Karvi: Partially defined Lotos specifications and their refinement relations. 157 pp.
(Ph.D.Thesis).

A-2001-1 J. Rousu: Efficient range partitioning in classification learning. 68+74 pp. (Ph.D. thesis)

A-2001-2 M. Salmenkivi: Computational methods for intensity models. 145 pp. (Ph.D. thesis)

A-2001-3 K. Fredriksson: Rotation invariant template matching. 138 pp. (Ph.D. thesis)

A-2002-1 A.-P. Tuovinen: Object-oriented engineering of visual languages. 185 pp. (Ph.D. thesis)

A-2002-2 V. Ollikainen: Simulation techniques for disease gene localization in isolated populations.
149+5 pp. (Ph.D. thesis)

A-2002-3 J. Vilo: Pattern Discovery from Biosequences. 149 pp. (Ph.D. thesis)

A-2003-1 J. Lindström: Optimistic Concurrency Control Methods for Real-Time Database Systems.
111 pp. (Ph.D. thesis)

A-2003-2 H. Helin: Supporting Nomadic Agent-based Applications in the FIPA Agent Architecture.
200+17 pp. (Ph.D. thesis)


