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Abstract

In this thesis we have developed novel methods for analyzing biological data, the
primary sequences of the DNA and proteins, the microarray based gene expression
data, and other functional genomics data. The main contribution is the develop-
ment of the pattern discovery algorithm SPEXS, accompanied by several practical
applications for analyzing real biological problems. For performing these biolog-
ical studies that integrate different types of biological data we have developed a
comprehensive web-based biological data analysis environment Expression Pro-
filer (http://ep.ebi.ac.uk/).

Biosequences, i.e., the primary sequences of DNA, RNA, and protein molecules,
represent the most basic type of biological information. Features of these se-
quences that are reused by nature help us to understand better the basic mech-
anisms of gene structure, function, and regulation. The SPEXS algorithm has
been developed for the discovery of the biologically relevant features that can be
represented in the form of sequence patterns. SPEXS is a fast exhaustive search
algorithm for the class of generalized regular patterns. This class is essentially the
same as used in the PROSITE pattern database, i.e. it allows patterns to consist of
fixed character positions, group character positions (ambiguities), and wildcards
of variable lengths. The biological relevance of the patterns can be estimated
according to several different mathematical criteria, which have to be chosen ac-
cording to the application.

We have used SPEXS for the analysis of real biological problems, where we have
been able to find biologically meaningful patterns in a variety of different applica-
tions. For example, we have studied gene regulation mechanisms by a systematic
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prediction of transcription factor binding sites or other signals in the DNA. In or-
der to find genes that potentially share common regulatory mechanisms, we have
used microarray based gene expression data for extracting sets of coexpressed
genes.

We have also demonstrated that it is possible to predict the type of interaction
between the G-protein coupled receptors (GPCR) and its respective G-protein,
the mechanism widely used by cells for signaling pathways. That prediction,
although the GPCR’s have been studied for decades, primarily for their immense
value for the pharmaceutical industry, had been thought to be unlikely from the
primary sequence of GPCR alone.

The tools developed for various practical analysis tasks have been integrated into
a web-based data mining environment Expression Profiler hosted at the European
Bioinformatics Institute EBI. With the tools in Expression Profiler it is possible to
analyze a range of different types of data like sequences, numerical gene expres-
sion data, functional annotations, or protein-protein interaction data, as well as to
combine these analyses.
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Chapter 1

Introduction

1.1 Motivation and background

The amount of the data collected and stored in databases worldwide is growing
with increasing speed. While computers were initially designed and used mostly
for numerical computations, a large proportion of the data is nowadays collected
and processed in textual form. The sources of textual data can be very differ-
ent, varying from documents in natural languages to the sequences of biological
macromolecules. Efficient methods of analysis are required for understanding the
underlying principles about the sequence data.

A natural way to represent the distinctive features of textual data is to use the
linguistic properties of the data in the form of formal grammars and languages.
Artificial languages like programming languages such as Pascal, C++, Java etc. or
page layout and structure markup languages such as LATEX, HTML, or XML, have
a strict predefined grammar. Thus all the texts can be rigorously checked against
these grammatical rules.

Unlike the formal languages, the natural languages have evolved over hun-
dreds of thousands of years. Formalizing these languages using grammatical rules
for written as well as spoken languages is necessary for many automated tasks.
These grammars evolve as the language itself evolves. Some of the grammatical
rules can be automatically learned from the data itself. For example, it is possible
to learn hyphenation rules quite accurately from examples of correctly hyphen-
ated words only (Liang 1983; Kivinen et al. 1994). However, formal grammars
are usually not capable of capturing all the aspects of the natural languages, thus
exceptions to the rules are common.

Perhaps one of the most fascinating languages being studied by the mankind
is our own genetic code, the DNA, RNA, and protein molecules that are essential
to all life on planet Earth. These macromolecules are built (usually in a linear
manner) from a small amount of building blocks like nucleotides or amino-acids.
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6 1 INTRODUCTION

The genetic code, using perhaps an oversimplification, can thus be interpreted as
sequences of these basic building blocks or letters. The function of each of the
molecules is usually determined by their structure, and one of the key questions in
modern molecular biology is to understand the relationship between the sequence,
structure, and function of these molecules as well as the biological processes they
are involved in.

The machinery that is able to read, interpret, replicate, and otherwise utilize
the information stored in DNA, RNA and protein molecules is essential to life.
This universal language of life has evolved over billions of years, producing many
different life-forms from the simplest bacteria to human beings, being able to
survive in extreme heat and pressure or under constant freezing conditions, or
consuming completely different energy sources. Many of the properties of our
genetic code and the ways to interpret that code remain yet to be discovered,
described, and understood.

David Searls wrote (Searls 1992): “Linguistic metaphors have been a part of
molecular biology ever since the structure of DNA was solved in 1953. Biologists
speak of the genetic code, of gene expressionand of reading framesin nucleic
acids. DNA is transcribedinto RNA, which is then translatedinto protein. Cer-
tain enzymes are even said to edit RNA. Despite all this linguistic terminology,
however, there has been little effort to apply the tools of formal language theory
to the problems of interpreting biological sequences.”

Not all of the possible aspects of the biological sequence data, or texts
written in natural languages, or sequences of signals arising from the output
of various measurement devices (e.g. telecommunication network monitoring
devices) can be described sufficiently by the formal grammars belonging to
classes of the language hierarchy defined by Noam Chomsky (Chomsky 1956;
1959). This is due to ignoring the semantic aspects or physical properties of the
underlying data sources. Nevertheless, we believe that many features of the data
can be captured by restricted subclasses of these formal languages, and that these
features can be further used for exploring the semantical aspects of the data.

In this thesis we study pattern discovery approaches for finding regularities in
the sequence data. The main focus is on discovering patterns, the words or sen-
tences according to some linguistic rules, that occur frequently in input sequences
or are characteristic for certain subsets of the input data. Firstly, the frequently re-
curring patterns are often indicative of the underlying structure and function, as in
biology, the conservation of certain features in the course of evolution usually in-
dicates the importance of these features. Secondly, different subsets of input data
may represent examples from meaningful concepts. Patterns common to these
different subsets can help to distinguish between these sets, as well as to reveal
features important for different classes of sequences.
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These two cases of pattern discovery describe the two basic problems – the
family conservation problemand the family classification problem, which both
are discussed in the thesis.

In this thesis we focus on pattern discovery in biological sequences, as this is
perhaps one of the most important application areas with implications to molecu-
lar biology and medicine. The aim of the current research is to develop methods
for discovering patterns that can be used for advancing the biological knowledge
about the structure and function of the genes and gene products.

1.2 Pattern Discovery

Sequence pattern discoveryis a research area aiming at developing tools and
methods for finding a priori unknown patterns in a given set of sequences, pat-
terns that are frequent, unexpected, or interesting according to some formal cri-
teria. Patterns are formal grammatical descriptions for certain languagesrepre-
senting subsets of all possible sequences over a finite alphabet. Patterns can be
represented using different formalisms, for example, as regular expressions, or
probabilistic weight matrices. The interestingnessof patterns can be interpreted
in relation to the pattern description itself or in relation to the sequences being
analyzed. For example, if the pattern occurs significantly more frequently than
expected by chance then the pattern may be considered interesting. In order to
define the interestingness of a pattern a formal scoring mechanism is needed. And
finally, for practical applications the algorithms and tools are needed that can be
used for discovering interesting patterns. Overall, the pattern discovery problem
can thus be divided into three subproblems (Brazma et al. 1998a):

1. choosing the appropriate language to describe patterns

2. choosing the scoring function for comparing patterns

3. designing an efficient algorithm for identifying the best-scoring patterns
from the selected pattern class according to the chosen scoring function.

Appropriate language for describing patterns depends from the application
area. For example, one can ask if the type of patterns one is looking to discover
can in principle capture the biological phenomena one attempts to study. Thus,
the pattern language has to be chosen appropriately from the biological point of
view. Similarly, the scoring function has to be such that it has proven relevance
also in the biological terms, not only in abstract mathematical or statistical sense.
Unfortunately, not all pattern languages and scoring functions are such that effi-
cient algorithms can be designed so that the pattern discovery could be performed
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in a reasonable time. From the practical point of view, one may have to balance
between the desire to use the very complex pattern language and scoring func-
tions which are biologically perhaps the most relevant, and the available compute
resources that require to use computationally more feasible methods. For very
large data sets, for example, one may have to use simpler pattern representation
language that can offer improved speed in calculations. The balance has to be
reasonable though, so that the chosen pattern language and scoring functions do
not eliminate the biological relevance of the discovered patterns.

In current thesis we have developed methods and tools for the exhaustive
search for the best patterns from a range of different pattern representation lan-
guages. In the practical applications we also demonstrate that the choice of simple
pattern languages is often sufficient to capture rather complex biological informa-
tion. This is the motivation throughout the thesis, to design practical algorithms
that can be used for studying biologically relevant pattern classes in a variety of
biological applications.

Before discussing the three aspects of pattern discovery in more detail we
present a few practical applications of using the patterns to represent biologically
meaningful concepts. These examples belong essentially to the same pattern rep-
resentation languages which are later stydied in this thesis.

1.2.1 Applications of pattern discovery

Biological sequences, or biosequences, can be grouped in familiesbased on their
function, structure, cellular location, molecular processes, gene regulation, or
other criteria. Here we present some applications, where the patterns common
to these groups are able to capture very different biological features.

Many of the protein families and their characteristic patterns have been col-
lected in the protein family database PROSITE (Bairoch 1992; Hoffmann et al.
1999). Finding characterizations of biosequence families is an important sequence
analysis problem. If a feature common to all known sequences of a family is
found, then it is likely that this particular feature is important for the biological
role of the family. Algorithms for sequence pattern discovery have been widely
used for characterizing protein families, e.g. (Jonassen 1997; Hart et al. 2000b;
Rigoutsos & Floratos 1998b), for surveys see for example (Brazma et al. 1998a;
Wang, Shapiro, & Shasha 1999).

Jonassen and colleagues (Jonassen, Eidhammer, & Taylor 1999) have studied
patterns that incorporate structural information about the packing of residues, i.e.
amino acids in the protein sequence, in three-dimensional space. They define a
packing motifas a pattern that has multiple occurrences in a set of protein struc-
tures. Packing motifs describe clusters of residues that are spatially close together
in the 3-D structure, but not necessarily in the primary sequence.
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Patterns in protein sequences can represent potentially important features for
their functional activities. We have applied pattern discovery combined with care-
ful targeted input sequence selection for predicting the coupling specificity of spe-
cific transmembrane receptor proteins called G-protein coupled receptors (GPCR)
and the G-proteins from Gs , Gi=o , or Gq11 class (Möller, Vilo, & Croning 2001).
The GPCR proteins represent the largest type of molecular targets of modern
drugs, yet the prediction of the coupling specificity between GPCR proteins and
G-proteins from a specific type has required expensive laboratory experiments.
The patterns indicative of the most probable interaction type are also likely to re-
veal the specific residues (amino acids) that are important for these binding events.
This study is presented in Section 6.2.

Gene regulation, i.e. the mechanism for regulating the levels of gene products
in cells happens in a variety of ways. Usually, the first step is to transcribe the
genes represented in the DNA into the RNA. It is believed that relatively short
regions of DNA are recognized by the proteins involved in the transcription ma-
chinery as well as alternative splicing events, and that these features in the DNA
determine a large extent of the gene regulation. The task of pattern discovery
is to predict the potential regulatory signals, for example the transcription factor
binding sites, from the DNA. This is considered in more detail in Section 7.1.

From the computer science viewpoint considering pattern discovery as pure
string algorithms, the DNA and proteins differ only by the alphabet size (four and
twenty, respectively). Yet, these sequences do represent different physical objects
and hence the need for finding patterns may arise in different biological research
domains. Often the respective research communities are separated, as well as
the approaches developed. The biological features represented by patterns can
vary in semantics depending on the biological application, and hence the language
of representing the patterns and the criteria for evaluating their interestingness
can be very different for different applications. Usually, the data sets involving
DNA sequences are much larger than those for the proteins. Finally, the physical-
chemical properties of the real atoms represented by letters of an alphabet, or
other physical constraints of the molecules in the different application domains
differ and may need to be taken into account in pattern discovery.

1.2.2 Pattern representation languages

According to the pattern language we can distinguish between discrete patterns
like regular expression type motifs (Bairoch 1992; Jonassen 1997; Brazma et
al. 1998b) and probabilistic patterns like probabilistic weight matrices (Hertz &
Stormo 1999; Bailey & Elkan 1995; Roth et al. 1998; Neuwald, Liu, & Lawrence
1995), for example. In the current thesis we consider the deterministic regular pat-
terns (defined in Chapter 2) and approximately matching patterns (see Chapter 4).
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Although the probabilistic motif representation is more appropriate for describing
certain physical features of the molecules, like a protein’s binding efficiency to
DNA, these motifs are more complex to discover by computational methods due
to a much larger search space. In Section 5.2 we will outline one possible solution
for combining the good sides from both the deterministic as well as probabilistic
approaches.

One of the oldest and most prominent pattern databases, the PROSITE
database (Hoffmann et al. 1999) stores information about protein families, their
descriptions, and patterns that can be used to determine the membership of novel
sequences to these families. Biologically significant patterns and profiles are for-
mulated in such a way that with appropriate computational tools they can help to
determine to which known family of proteins the new sequence may belong, or
which known domain(s) it contains.

In this section we provide as an example the definition of the pattern language
as used in the PROSITE database, as well as give two examples of the PROSITE
entries showing how the patterns from this pattern language can capture biolog-
ically relevant features about real protein families. Later we show that the same
pattern language can also capture other types of features. For example, many of
the DNA binding sites can be expressed using similar pattern representation.

The patterns in PROSITE are defined in the Example 1.1. The patterns used in
PROSITE actually correspond to the class of regular patterns (a subset of regular
expressions) as defined in Chapter 2 and later studied throughout the thesis. The
genetic code, including the amino acid alphabet, is also described in Chapter 2.

Example 1.1 Pattern definitions from the PROSITE database
(http://www.expasy.org/prosite/).

The PA (PAttern) lines contain the definition of a PROSITE pattern. The
patterns are described using the following conventions:

� The standard IUPAC one-letter codes for the amino acids are used.

� The symbol ‘x’ is used for a position where any amino acid is accepted.

� Ambiguities are indicated by listing the acceptable amino acids for a given
position, between square parentheses ‘[ ]’. For example: [ALT] stands for
Ala or Leu or Thr.

� Ambiguities are also indicated by listing between a pair of curly brackets ‘f
g’ the amino acids that are not accepted at a given position. For example:
fAMg stands for any amino acid except Ala and Met.

� Each element in a pattern is separated from its neighbor by a ‘-’.
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� Repetition of an element of the pattern can be indicated by following that
element with a numerical value or a numerical range between parenthesis.
Examples: x(3) corresponds to x-x-x, x(2,4) corresponds to x-x or x-x-x or
x-x-x-x.

� When a pattern is restricted to either the N- or C-terminal of a sequence,
that pattern either starts with a ‘<’ symbol or respectively ends with a ‘>’
symbol.

� A period ends the pattern.

Examples:

PA : [AC]� x� V� x(4)� fEDg:

This pattern is translated as: [Ala or Cys]-any-Val-any-any-any-any-fany but
Glu or Aspg

PA : < A� x� [ST](2)� x(0; 1)� V:

This pattern, which must be in the N-terminal of the sequence (‘<’), is trans-
lated as: Ala-any-[Ser or Thr]-[Ser or Thr]-(any or none)-Val.

Using this syntax for possible patterns in protein sequences, the sequence fam-
ilies can be described. The next example from PROSITE gives a shortened textual
description of a particular protein family, called Zinc finger C2H2 family, and its
characteristic consensus pattern.

Example 1.2 The Zinc finger C2H2 family from the PROSITE database.
Zinc finger domains are nucleic acid-binding protein structures, composed of

25 to 30 amino-acid residues including 2 conserved Cys and 2 conserved His
residues in a C-2-C-12-H-3-H type motif. The 12 residues separating the second
Cys and the first His are mainly polar and basic, implicating this region in partic-
ular in nucleic acid binding. The Zn binds to the conserved Cys and His residues.
Fingers have been found to bind to about 5 base pairs of nucleic acid containing
short runs of guanine residues. They have the ability to bind to both RNA and
DNA, a versatility not demonstrated by the helix-turn-helix motif. The zinc finger
may thus represent the original nucleic acid binding protein.
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A schematic representation of a zinc finger domain (The two C’s and two H’s
are zinc ligands):

x x
x x

[LIVMFYWC] x
x x
x x
x x
C H

x \ / x
x Zn x
x / \ x

C H
x x x x x x x x x x

Consensus pattern: C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-H-x(3,5)-H

Usually the patterns in PROSITE are developed by first aligning the sequences
by multiple sequence alignment tools and then manually developing the patterns
that seem to be conserved in the right regions of the multiple alignments. Some
of the pattern discovery effort can be automatized, however, as illustrated by the
following example from the PROSITE database, where a pattern discovered by a
computational method has been incorporated into the database.

Example 1.3 Description of a PROSITE entryPS00272; SNAKE TOXIN
Snake toxins belong to a family of proteins which groups short and long neu-

rotoxins, cytotoxins and short toxins, as well as other miscellaneous venom pep-
tides. Most of these toxins act by binding to the nicotinic acetylcholine recep-
tors in the postsynaptic membrane of skeletal muscles and prevent the binding of
acetylcholine, thereby blocking the excitation of muscles.

Snake toxins are proteins that consist of sixty to seventy five amino acids.
Among the invariant residues are eight cysteines all involved in disulfide bonds.
A signature pattern1 was developed (Jonassen, Collins, & Higgins 1995) which
includes four of these cysteines as well as a conserved proline thought to be im-
portant for the maintenance of the tertiary structure. The second cysteine in the
pattern is linked to the third one by a disulfide bond. The four C’s are involved in
disulfide bonds. The pattern itself is following:

G� C� x(1; 3)� C� P� x(8; 10)� C� C� x(2)� [PDEN]

1The signature pattern (or characteristic pattern) is a pattern that is common to all or nearly all
of the members of the family. Sometimes they are also called a consensus pattern, especially when
the pattern is common to all sequences.
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Similar types of patterns can also be used for analyzing DNA sequences.
The DNA-binding proteins are known to bind to specific parts of DNA, which
can be described in terms of sequence motifs. For example, the pattern GGTG-
GCAA which has been shown to be a proteasome specific control element, dis-
covered both by conventional wet-lab, as well as by in silico prediction methods
(Mannhaupt et al. 1999; Jensen & Knudsen 2000; Vilo et al. 2000).

These DNA motifs are often shorter and more restricted than protein family
signatures. However, as DNA is a very long molecule, the specificity of the motifs
in DNA is usually much weaker than for protein family memberships.

For example, the so called TATA-box, that has a role in defining the tran-
scription start point, is often considered a well-conserved fragment of DNA with
consecutive basepairs TATAA. But sometimes the polymerase can also bind other
sequence variants, like TATTA, which has one mutation as compared to TATAA.
It is useful to also note that not all TATAA-substrings in DNA are the real binding
sites for proteins.

We consider the discovery of putative transcription factor binding sites in more
detail in Chapters 6 and 7.

1.2.3 Pattern rating functions

Given a family of related sequences, there may exist many patterns that are present
in all or nearly all of the sequences. The more complex the pattern language, the
more different patterns match at least some of the sequences. It is a challenging
task to tell which of these patterns are relevant. For sorting the patterns according
to their interestingness and relevance we need formal fitness measuresthat give to
each pattern a score that can be used for comparing patterns.

These fitness measures can be based on the specificity and sensitivity of
the patterns (see Section 2.7), the information content (Schneider et al. 1986;
Jonassen, Collins, & Higgins 1995), the ratio (Brazma et al. 1998b), the probabil-
ity statistics (van Helden, André, & Collado-Vides 1998), the minimum descrip-
tion length (MDL) principle (Brazma et al. 1997), and others.

Sometimes several simple quality indicators can be presented to users, as in
the following example from PROSITE.

Example 1.4 The quality indicators for the Zinc Finger motif from Example 1.2.
SWISS-PROT release number: 40.7, total number of sequence entries in that

release: 103373;
Total number of hits in SWISS-PROT: 3272 hits in 617 different sequences;
Number of hits on proteins that are known to belong to the set under consid-

eration: 3222 hits in 568 different sequences;
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Number of hits on proteins that could potentially belong to the set under con-
sideration: 8 hits in 7 different sequences;

Number of false hits (on unrelated proteins): 42 hits in 42 different sequences;
Number of known missed hits: 6;
Number of partial sequences which belong to the set under consideration, but

which are not hit by the pattern or profile because they are partial (fragment)
sequences: 2;

Precision (true hits / (true hits + false positives)): 98.71%;
Recall (true hits / (true hits + false negatives)): 99.81%.

The aim of different pattern discovery methods is usually to find motifs that
are overrepresented in the data set analyzed, or unexpected according to some
other criteria. It is possible to count how many sequences contain the motif or
how many occurrences of the motif there is in total (i.e. count numbers of oc-
currences within the same sequence). When counting several occurrences within
each sequence the occurrences may be overlapping and not independent. There-
fore, it is simpler to count just the number of sequences that contain the motif.

The ratio of pattern occurrences in two data sets tells how much more frequent
the pattern is in one data set than in another. The problem with ratios is that if the
frequencies are small then the ratios may be very high, even though the patterns
do not represent meaningful concepts. These high ratios may be slightly compen-
sated by assuming higher expected number of occurrences in the comparison set
(Brazma et al. 1998b).

Given the background model for the expected number of occurrences, for
example from the explicit counting of pattern occurrences in comparison data,
one can estimate how many occurrences of each pattern to expect. This es-
timate can be used to calculate how probable the actual number of occur-
rences is (assuming the same background model) based on binomial or hy-
pergeometric distribution, for example. Binomial distribution assumes inde-
pendent random trials and allows to calculate the probability to observe each
pattern at least a given number of times in the data. Binomial distribution
has been used, for example, in (van Helden, André, & Collado-Vides 1998;
Vilo et al. 2000). Hypergeometric distribution corresponds to selection with-
out replacement, i.e. the probabilities depend on previous outcomes. For large
data sizes and small numbers of trials binomial distribution approximates well
the hypergeometric distribution. Hypergeometric distributions have been used
for example in (Jensen & Knudsen 2000; Barash, Bejerano, & Friedman 2001;
Palin et al. 2002).

A statistical measure for ranking patterns, Z-score (”normal deviate” or ”de-
viation in standard units”), which measures by how many standard deviations the
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number of occurrences of patterns in the sequences exceeds its expected number
of occurrences, was studied by (Sinha & Tompa 2000). Their method for ranking
patterns uses a Markov model generated from upstream sequences to establish the
expected probabilities for patterns. The algorithm itself enumerates all possible
patterns and tabulates their numbers of occurrences. Next, all patterns are ranked
based on the Z-scores and the best patterns are output. This measure is however
relatively time-consuming to calculate.

When calculating the total number of occurrences for patterns, i.e. possibly
several occurrences per one sequence, one can in principle use the same statistical
criteria. However, one has to be aware of the possibility that pattern occurrences
may be overlapping and thus not independent. The cyclic patterns, i.e. patterns
that can have an overlap with themselves, have a higher expected number of occur-
rences even under the assumption that all nucleotides have equal and independent
probability of occurrence at each position.

Apostolico et al. (Apostolico et al. 2000) have developed methods to calcu-
late different pattern rating scores, like mean and variance of pattern occurrences,
and some derived significance measures in an optimal fashion using a suffix tree
algorithm. In this way unusually frequent or infrequent words can be detected
efficiently.

Measures like the sensitivity and specificity of the pattern (see Example 1.4)
as well as the correlation coefficients (Brazma et al. 1998a) can also be readily
applied to motif discovery, although for promoter analysis our knowledge about
true positives (genes regulated depending on the presence of the motif) and true
negatives (genes not regulated based on the motif) is largely missing.

A probabilistic model for segmenting strings into ”words” and concurrently
building a ”dictionary” of these words was introduced (Bussemaker, Li, & Sig-
gia 2000a; 2000b). The pattern rating tells which of these substring patterns to
merge into bigger words, to be stored in the dictionary. In this statistical approach
background probabilities (negative examples) are not used, yet the algorithm also
reports words which occur infrequently in the data set analyzed.

1.2.4 Pattern discovery algorithms

Based on the algorithmic component, pattern discovery methods can be classi-
fied into 1) sequence driven, mostly alignment based approaches, and 2) pattern
driven enumerative approaches, where the search algorithm evaluates the pres-
ence of each pattern by counting the numbers of their occurrences. Pattern driven
approaches can be performed intelligently so that patterns that are not present in
the data are not generated. For example, if a pattern � is not present frequently
in the data, then no refinement that makes � more specific (hitting in even fewer
places) can be frequent in the data either.
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For probabilistic methods, some of the widely used motif finding methods
are, for example, Gibbs Motif Sampling (Lawrence et al. 1993; Rocke & Tompa
1998), Expectation Maximization (Bailey & Elkan 1995), maximization of the
information content (Wolfertstetter et al. 1996; Roth et al. 1998). Of these Alig-
nACE (Roth et al. 1998) has been optimized for alignment of DNA sequences
by automatic consideration of patterns possibly on both strands and for finding
multiple motifs per sequence via an iterative masking procedure.

The methods developed at the IBM Bioinformatics Research Group for
discovery of patterns in biological sequences (Rigoutsos & Floratos 1998b;
Hart et al. 2000a), operate in two phases: scanning and convolution. During
the scanning phase, elementary patterns with sufficient occurrence frequency are
identified. These elementary patterns constitute the building blocks for the con-
volution phase. They are combined into progressively larger and larger patterns
until all the existing, maximal patterns have been generated.

Some of the most efficient algorithms capable of discovering discrete pat-
terns such as substrings of any length, are based on the suffix tree data structure
(Weiner 1973; McCreight 1976; Ukkonen 1995). Suffix trees are used to index
texts (sequences) in a way so that query times would not depend on the size of
the indexed text. In the suffix tree all possible subwords can be read from the
top of the tree-structured index regardless of original text size. There are many
bioinformatics applications of suffix trees (Gusfield 1997; Bieganski et al. 1994;
Gusfield, Landau, & Schieber 1992). The direct link to pattern discovery meth-
ods is given by the fact that all possible substrings (patterns) are presented in
this tree structure. Suffix tree based approaches and extensions thereof have
been used for promoter analysis by several groups, e.g. (Brazma et al. 1998b;
Marsan & Sagot 2000; Jensen & Knudsen 2000; Lonardi 2001). For example a
tool Verbumculus (Lonardi 2001; Apostolico, Bock, & Lonardi 2002) has been
used for identifying substring patterns using suffix trees and visualizing the inter-
esting patterns according to many different statistical criteria.

For frequent substring discovery and graphical analysis of word frequencies,
an interactive tool Xlandscape (Levy et al. 1998) based on the suffix array con-
struction algorithm (Manber & Myers 1990) has been used. The tool permits to
study the sequence landscape – frequency of all words in the query sequence that
can be found in database. A more traditional use of suffix arrays is to build com-
pact full-text indexes. For example, in (Gonnet & Knecht 1996) the PAT indexes
are built for searching the text databases.

In this thesis we demonstrate some ways how the methods motivated by the
suffix trees can be applied for pattern discovery from (bio)sequences. For the dis-
covery of the most frequent patterns we have modified the writeonly-topdown or
simply wotd-algorithm for constructing the suffix trees (Giegerich & Kurtz 1995;
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Giegerich, Kurtz, & Stoye 1999). Note that in the earlier work this method was
called lazy suffix tree construction as it was originally designed for lazy functional
programming language implementations (Giegerich & Kurtz 1995).

This approach is simple and easily modifiable, as different branches of the
suffix tree can be constructed independently from each other. In the wotd im-
plementation style only those branches of the suffix tree need to be constructed
which are actually accessed by search procedures. Traditional linear-time algo-
rithms (Weiner 1973; McCreight 1976; Ukkonen 1995) maintain complex data
structures and they all construct the tree in a very specific order, thus making
modifications into the search order hard or impossible.

For the clarity of presentation we have based our algorithms on a suffix trie
structure that consumes O(n2) size in the worst case, where n is the total length
of input sequences. While in the compact suffix tree representation each node is
a branching node and each label on the edges can represent several characters, in
the trie structure each label can represent only one character and nodes need not
to be branching, i.e. they may have only a single child.

1.3 Contributions of this work

We have developed a new algorithm called SPEXS for discovering frequently oc-
curring patterns from sets of sequences. SPEXS generates a pattern trie while
maintaining information about the occurrences of each pattern. Patterns are con-
structed incrementally by expanding the prefixes of the frequent patterns. Only
the patterns that do occur in input strings frequently enough, are generated and
analyzed. Pattern classes that can be generated in this way include the substring
patterns, substring patterns containing group characters (i.e. positions where alter-
native characters from a given list can be used), and patterns containing so-called
wildcard positions. SPEXS is able to take as input multiple sets of sequences
and to construct the patterns according to user-given pattern specification while
tracking simultaneously the occurrences in each input set. Based on these occur-
rences different fitness functions can be used for evaluating the interestingness of
discovered patterns.

A methodology for combining the discovery of the potentially coregulated sets
of genes using clustering of gene expression profiles followed by pattern discovery
from the upstream sequences to the genes in these clusters has been developed,
and the respective experiments have been carried out in practice. The SPEXS
algorithm has been used extensively for discovering putative transcription factor
binding sites in gene upstream sequences.

A method for further analysis of the discovered patterns by large-scale co-
visualization of gene expression, DNA sequence, and pattern data has been devel-



18 1 INTRODUCTION

oped. This helps investigators in assessing the quality of the in silico predictions.
Additionally, we have developed a novel algorithm for discovering approxi-

mately matching patterns where the matches are not expected to be always perfect.
We describe a new method for matching a pattern approximately against the suffix
tree. In that approach we generalize the exact matching of the substring patterns
against the suffix tree so that matching can be done with errors, i.e. substitutions,
insertions, and deletions. Instead of computing the explicit dynamic programming
table for all branches of the suffix tree, the approximate matching is simulated by
treating the lists of nodes in the suffix tree as entries in the dynamic programming
table.

Pattern discovery methods based on exhaustive search often output a large
number of patterns, even if the most stringent quality criteria have been used for
thresholding the interesting patterns. Clustering methods and other methods have
been shown to be useful for facilitating further analysis of the set of patterns output
by discovery algorithms. We provide a short introduction to these methods and
show their applicability in real-world data analysis.

A novel pattern fitness measure based on the Minimum Description Length
(MDL) principle has been developed that allows for constructing the union of
patterns covering the set of input sequences. The experimental implementation
of this pattern discovery method has been shown to produce biologically relevant
clustering (resembling the evolutionary relationship between the sequences) of the
input sequences.

For analyzing known or predicted transcription factor binding sites and their
co-occurrences in the genome, a data mining approach that attempts to identify
sets of co-occurring patterns has been developed. This method can also be used
with the automatically predicted binding sites, to extract more meaningful know-
ledge about the regulatory mechanisms.

A well-studied, but previously unsolved problem of predicting G-protein cou-
pling specificity to their respective G-protein coupled receptor (GPCR) proteins
by the GPCR sequence alone has been shown to be solvable at least to a certain
extent. Patterns present in the sequences corresponding to the internal loops of
the transmembrane GPCR proteins, and showing the specificity toward the bind-
ing by different G-proteins from Gs , Gi=o , or Gq11 classes, were discovered by
the SPEXS algorithm.

A major result of this work is an extensive software package called Expres-
sion Profiler (http://ep.ebi.ac.uk/). This package integrates a collection of compu-
tational methods (including SPEXS) into a user-friendly web-based tool for the
analysis of functional genomics data. It is briefly described in Chapter 7 and (Vilo
et al. 2003; Vilo, Kapushesky, & Kemmeren 2002).
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Many of the results of this thesis have appeared in a more complete form in
the original articles related to this work (Brazma, Ukkonen, & Vilo 1996; Brazma
et al. 1996; 1997; 1998b; 1998c; Brazma & Vilo 2000; Vilo et al. 2000; Vilo &
Kivinen 2001; Möller, Vilo, & Croning 2001; Kemmeren et al. 2002; Vilo et al.
2003).

1.4 Structure of the thesis

The thesis is structured as follows. First we introduce definitions in Chapter 2.
Next, the SPEXS algorithms are described in Chapter 3, and the discovery of
approximately matching patterns in Chapter 4. The pattern analysis and post-
processing is described in Chapter 5. Different applications of SPEXS for bioin-
formatics analysis are described in Chapter 6. The software tools are described in
Chapter 7, and finally, the conclusions are presented in Chapter 8.
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Chapter 2

Definitions

Pattern discovery, as we consider it in the current thesis, deals with methods for
finding regularities in sequences. In this chapter we define the concepts of se-
quences, patterns, pattern classes and provide the basic framework used later for
the design of algorithms for pattern discovery.

2.1 Strings

We use � to denote a finite set of characters, an alphabet. The sizeof the alphabet
� is j�j. Any sequence S = a1a2 : : : an, such that n � 0 and each ai is in �, is
called a string (or sequence, or word) over the character set �. The lengthjSj of
the string S is n. The string of length 0, i.e. an empty string, is denoted by �. The
set of all possible strings over � is ��.

We identify individual characters by their positions within the string. The
character ai at the position i can also be denoted by S[i]. Character positions of
a non-empty string S are in the range 1 � i � jSj, i.e. the first character of the
string is at position 1, and the last character is at position jSj.

Consecutive characters ai : : : aj of S form a substringof S that starts from
position i and ends at position j. We denote this substring by S[i::j], where
1 � i � j � jSj. An alternative definition which does not use character positions
within the string states that x is a substring of S if S = yxz for some strings y
and z.

A substring S[i::i] has length 1 and corresponds to the character ai at position
i. A substring S[i::j] has length j � i+ 1. We say that substring S[i::j] occursat
the positionor location j of the string S. We say that a substring x has multiple
occurrences in S if x = S[i::j] = S[i0::j0], and j 6= j0.

21
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2.2 Patterns

We follow closely the definitions of the generalized regular patterns (Brazma et
al. 1998c).

Let � = fa1; : : : ; amg be the basic alphabetand let L(ai) = faig be the
languagedefined by ai.

Let g1; : : : ; gn be non-empty subsets of � such that each subset contains
more than one element. For naming the subsets gi we use another alphabet,
� = fb1; : : : ; bng, disjoint from �. We define the language L(bi) = gi, and
call characters bi the group characters.

Let � be a symbol not in � [ �. Define L(�) = ��. We call � the wild-card
of unrestricted length.

Let �(k; l) define the language L(�(k; l)) = [li=k�
i, i.e. L(�(k; l)) is the set

of all words over � with the length between k and l characters. We call �(k; l)
the restricted length wild-card of the length betweenk and l. Let X be the set
f�(k; l) 0 � k � l <1g of restricted length wildcards.

We define the generalized regular pattern, or for short, pattern� as a string
over the alphabet � [ � [ f�g [X . We define the language L(�) of the pattern
� = c1 : : : cr, where ci 2 � [ � [ f�g [X , as

L(�) = f �1 : : : �r �1 2 L(c1); : : : ; �r 2 L(cr) g:

We say that pattern � matchesthe string �, if a substring � of � exists such that
� 2 L(�). Locations of the occurrences of pattern � are defined by occurrences
of the substrings � in �. Note that if � 2 L(�), then � 2 L(���).

We define the union of patternsas an expression of the type �1 + : : : + �k;
where �i (1 � i � k) is a pattern and + =2 � [ �. The language of the union is
defined as

L(�1 + : : :+ �k) = L(�1) [ : : : [ L(�k):

Note that the languages of the generalized regular patterns belong to the class
of regular languages, the language class at the level 3 of the Chomsky language
hierarchy.

We call � a substring patternif � = c1 : : : cr , and each ci 2 �. For example,
given an alphabet � = fA; T; C; Gg of the DNA, where letters correspond to the
nucleotides, the pattern AAGA is a substring pattern.

We call � a substring pattern with group charactersif � 2 (� [ �)�. Given
the alphabet � as above, and a group b 2 �, L(b) = g = fG; Tg, the pattern AAbA
is an example of such substring pattern with group characters. We often represent
the group character positions b in the pattern � by a bracketed list of all characters
in L(b) = g. Hence the above pattern becomes AA[GT]A. We use the symbols
bi 2 � as the names for character groups gi. For notational convenience, we treat
gi as equal to bi and say gi 2 �.
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2.3 Pattern classes

2.3.1 Definition of pattern classes P1–P6

Our aim is to discover “interesting” patterns from the input data. The first task
is to define the pattern language P , the search space for the pattern discovery
problem. We define the following pattern classes using the notations from the
previous section.

P1 = f� � 2 ��g – substring patterns

P2 = f� � 2 (� [ �)�g – substring patterns with group characters

P3 = f� � 2 �+(��+)�g – patterns with wildcards of unrestricted length

P4 = f� � 2 �+(�(k; l)�+)�, where �(k; l) 2 Xg – patterns with wildcards of
restricted length

P5 = f� � 2 (� [ �)+(�(� [ �)+)�g – patterns with group characters and
wildcards of unrestricted length

P6 = f� � 2 (�[�)+(�(k; l)(�[�)+)�g – patterns with group characters and
wildcards of restricted length

Example 2.1 DNA sequences can be considered as strings over the alphabet of
four letters that represent the nucleotides, � = fA; C; G; Tg. The character set
� = f[AC]; [AG]; [AT]; [CG]; [CT]; [GT]; [ACG]; [ACT]; [AGT]; [CGT]; [ACGT]g contains
all the possible groups of characters from �. The alphabet � [ � can be used for
defining substring patterns with group characters.

2.3.2 Choice of group characters �

The number of all possible subsets of characters in � grows exponentially. The set
of group characters � is called a partitioning of � if

S
gi2� gi = �, and gi\gj = ;

for all i 6= j. In other words, if no group intersects with others and every character
from � belongs to exactly one of the groups in �.

In practice, the set of useful character groups depends on the application do-
main, hence it is reasonable to assume that users provide the set of meaningful
groups �. In biosequences, i.e. the DNA and amino acid sequences, the charac-
ter groups in � are usually chosen based on the physico-chemical properties of
nucleotides or amino acids respectively (see Table 2.2).

Alphabet indexing is a mapping from � to a smaller alphabet. It replaces
symbols in � by symbols from � that is a partitioning of �. It has been shown that
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in some cases this technique does not lose any essential information as compared
to original strings over � (Shimozono et al. 1993). This mapping can be done as
a preprocessing step.

In the current thesis we assume that the groups � are given by users, and that
the groups can be overlapping, i.e. they do not have to be a partitioning of the
alphabet.

Example 2.2 Protein sequences are strings over the alphabet of amino-acids
� = fA; R; N; D; C; Q; E; G; H; I; L; K; M; F; P; S; T; W; Y; Vg (see Table 2.1). Amino
acids can be grouped by their properties to small, large, hydrophobic, hydrophilic,
charged, or neutral etc. (see Table 2.2). According to this classification, � =
f[AGILPV]; [HFWY]; [DE]; [RHK]; [ST]; [CM]; [NQ]; [ILV]g defines one set of possible
biologically substantiated groupings.

Name Three-letter code 1-letter code
Alanine Ala A
Arginine Arg R
Asparagine Asn N
Aspartic acid Asp D
Cysteine Cys C
Glutamine Gln Q
Glutamic acid, Glutamate Glu E
Glycine Gly G
Histidine His H
Isoleucine Ile I
Leucine Leu L
Lysine Lys K
Methionine Met M
Phenylalanine Phe F
Proline Pro P
Serine Ser S
Threonine Thr T
Tryptophan Trp W
Tyrosine Tyr Y
Valine Val V

Table 2.1: Twenty amino acids, their three- and IUPAC single-letter codes.

2.3.3 Alternative pattern representations

The language to represent patterns that we have outlined is essentially the same as
that used in the PROSITE database, described in Example 1.3. A slightly different
syntactic representation for the same pattern language may be used by different
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Amino acid properties Amino acids in each group 1-letter codes
Aliphatic Ala, Gly, Ile, Leu, Pro, Val A G I L P V
Aromatic His, Phe, Trp, Tyr H F W Y
Acidic Asp, Glu D E
Basic Arg, His, Lys R H K
Hydroxylic Ser, Thr S T
Sulphur-containing Cys, Meth C M
Amidic (containing amide group) Asn, Gln N Q
Polar Arg, Asn, Asp, Cys, Gln, Glu, His, Lys, Ser, Thr, Tyr R N D C Q E H K S T Y
Hydrophobic Ala, Cys, Gly, Ile, Leu, Met, Phe, Pro, Trp, Tyr, Val A C G I L M F P W Y V
Hydrophilic Arg, Asn, Asp, Gln, Glu, His, Lys, Ser, Thr R N D Q E H K S T
Charged Arg, Asp, Glu, His, Lys R D E H K
Positive charge Arg, His, Lys R H K
Negative charge Asp, Glu D E
Neutral Ala, Asn, Cys, Gln, Gly, Ile, Leu, Met, Phe, Pro, A N C Q G I L M F P S T W Y V

Ser, Thr, Trp, Tyr, Val

Table 2.2: The amino acids grouped according to their physico-chemical proper-
ties.

authors or by different tools and databases. In practical applications we prefer the
syntax of regular expressions as used in UNIX, perl, egrep, and less, for example.

Example 2.3 Consider the Snake Toxin motif from the PROSITE database as
described in Example 1.3:

G� C� x(1; 3)� C� P� x(8; 10)� C� C� x(2)� [PDEN]:

In our pattern representation language, if we use a single period to represent
a group g = �; g 2 � consisting of all possible amino acids, the above pattern
would read

GC � (1; 3)CP � (8; 10)CC::[PDEN]

For many software tools that have built-in regular expression matching capa-
bilities, the above pattern is represented as

GC:f1; 3gCP:f8; 10gCC::[PDEN]

2.3.4 Characterizing the language of patterns and language de-
scribed by each pattern

To understand the complexity of the the pattern discovery problem we need to
understand the size of the possible search spaces involved. Given a language P for
defining the patterns �, we can ask the following questions. How many different
patterns of length r can one construct? Given a pattern � 2 P , how many strings
� belong to the language L(�)? Given a string �, how many different patterns
� 2 P are there such that � 2 L(�)?
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Given a string S and two different-looking patterns �1 and �2, these two pat-
terns may match at exactly the same locations of S despite the fact that in general
L(�1) 6= L(�2). Moreover, an individual pattern � may match the same string S
in different ways, for example different overlapping substrings of S may belong
to L(�), or the correspondence between the character positions in the sequence
S and pattern � can be established in different ways. The ambiguity of pattern
matching is considered later in Chapter 3.

Given a character set � and a set of group characters �, there are j�jr sub-
string patterns, j�[�jr substring patterns with group characters, j�j2(j�j+1)r�2

substring patterns with unrestricted length wildcards (assuming that the first and
last positions of the pattern are not wildcards). For wildcards of restricted length
there are many possible wildcard representations depending on k and l, the mini-
mum and maximum wildcard lengths, respectively.

Given a pattern � = c1 : : : cr 2 P , the size of L(�), where L(�) =
f �1 : : : �r �1 2 L(c1); : : : ; �r 2 L(cr) g, can be as much as jL(c1)j � jL(c2)j �
: : : � jL(cr)j. The number of different strings � 2 L(�) grows exponentially in the
number of group character positions in �. The size of L(ci) where ci is one of the
wild-card positions, grows exponentially in the length of the wild-card.

As the size of the pattern class as well as the number of sequences belonging to
the language represented by a single pattern both grow exponentially for complex
pattern classes, the simple enumerative methods for discovering such patterns are
not feasible. However, if we are asked to find patterns that are frequent in a given
set of sequences, we have the following question. Given a string � 2 ��, how
many different patterns � 2 P there are such that � has at least K occurrences in
�. The answer to this question is a basis for algorithm complexity estimations in
the following chapters, and is considered for each pattern class and problem type
separately.

2.4 Pattern discovery problem

We define V to be a set of possible labelings for representing concepts. We con-
sider strings over an alphabet � that belong to classes represented by � 2 V .
Typically V consists of two elements, which we often represent as + and �, or in
other words, � 2 f+;�g = V .

Assume that a family of related sequences F+ exists. We denote the rest of
the sequences by F�. I.e., F� = ���F+ and �� = F+[F�. Let f be a function
f : �� ! fFALSE, TRUEg assigning Boolean values to strings, we call such a
function a string function. The string function f is a characteristic functionfor
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the family F+ if

f(s) =

(
TRUE if s 2 F+
FALSE if s 2 F�

We would like to find automatically the string functions that are characteristic
for a given family, say F+. Unfortunately, we do not even know the full set of
sequences in F+, but only a sampleS � F+ (i.e. some members of the family
F+). We denote the sample as a set of examplesor simply examples. When there
are two classes in V , we say that sample S consists of positive (S+) and negative
(S�) examples, S = S+ [ S�. This is illustrated in Figure 2.1.

The string function f(s) that is characteristic for a specific family may not
be computable in principle, if the family membership is determined by non-
computable decisions, or it may be uncomputable based on our limited knowledge
about the domain. For example, string functions that are able to determine a set of
proteins (represented by their primary sequences) that have certain 3-D structure
features and interact with another set of proteins, may be well beyond our current
scientific capabilities.

The string functions we are interested in in this thesis are expressed in terms
of patterns � matching or not matching the sequences s respectively. We consider
string functions f�(s), alternatively represented as f(�; s),

f�(s) = f(�; s) =

(
TRUE if � matches the string s
FALSE otherwise

The basic problem in pattern discovery is, given a sample from family F+
and, possibly, a sample from F�, to automatically find the string functions f�
that approximate the characteristic function f for the family F+ and so finding a
representation � for set F+.

The motivation for pattern discovery arises from the need to discover common
(syntactic) features to the sets of semantically related sequences. For example,
patterns conserved across many sequences in a protein family may reveal func-
tionally or structurally relevant features. Motifs conserved in regulatory regions
of genes sharing similar expression profiles potentially carry some information
for gene regulation machinery, for example, binding sites for DNA-binding tran-
scription factors, structural elements of DNA, or other signals.

We can separate two main types of the pattern discovery problem.
Family classification problem. Assume that we have positive and negative

examples, S+ � F+ and S� � F�. The goal is to find a string function approxi-
mating the characteristic function for the family F+. That goal has two parts. We
want to find compact “explanations” of known sequences, and we want to predict
the family membership of yet unknown sequences.
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��

F� = �� � F+

F+ S+ S�

Figure 2.1: The family F+ of related sequences, and samples S+ and S� graphi-
cally.

Family conservation problem. Assume that we know only positive exam-
ples S+ � F+ from the family. The goal is to find features characteristic to the
sequences in S+. The most interesting string functions in this case are the ones
that have low probability of returning TRUE for random1 sequences and high
probability to return TRUE for the sequences in F+. This is similar to the family
classification problem with the sample S+; S�; where the sample S� consists of
randomly chosen strings from �� � F+. If S� contains sequences that are very
similar to sequences in F+, the family classification problem should be solved
instead of the family conservation problem.

Note that the patterns discovered from the family conservation problem are
often used for family classification. For example, for a new sequence one can ask,
which of the motifs that are conserved for different families are present in the new
sequence. Based on these motifs the new sequence can be suggested to belong to
the same families. Perhaps the main reason to use the family conservation prob-
lem for a given set of sequences is, that often we do not know the representative
enough set of negative examples, that could be used to guide the search in the way
as for the family classification problem.

1We assume some model for generating random sequences. Most commonly we assume that
symbols in the sequences are independently distributed. The frequencies of individual symbols
can be either equal to each other or they can be estimated from the sample or some database of
sequences.
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2.5 Solving the pattern discovery problem

The pattern discovery problem can be divided into three separate subproblems
according to the following paradigm (Brazma et al. 1998a):

1. Choose the class P of patterns that will be used for family classification
or conservation studies (i.e., the hypotheses space).

2. Design a fitness measure F that, given (a) a set of sequences, samples
for classification or conservation problem, and (b) a pattern, returns a rating
of this pattern in respect to the examples.

3. Develop an algorithm A that, given a set of examples, returns patterns
� 2 P with high ratings with respect to F .

In the current thesis we have developed methods for discovering patterns from
the language of generalized regular expressions. The features of biological signif-
icance may well be more complex than simple regular patterns, however there are
many examples that these pattern classes are often sufficient to carry at least some
biologically significant information.

Once we have chosen the pattern search space P , it is natural to try out differ-
ent fitness measures F . Different data sets may require fitness measures tailored
according to the specific needs of the particular problem. For example, in some
cases researcher may be interested in long conserved patterns stretching along the
full length of sequences, and in other cases it is interesting to find the minimal yet
significant differences between two sets of sequences.

We would like to avoid the need to design a different algorithm for each dif-
ferent fitness measure. Instead, we want to use efficient generic search strategies
that would allow to incorporate alternative fitness measures. In order to have
a generic framework, we prefer exhaustive search strategies to be sure that the
“best” patterns are always found. Alternatively, for some fitness measures in-
dividually tailored search heuristics could be used that may work better for the
particular pattern language and fitness measure.

To be able to perform the exhaustive search in the reasonable time we have
chosen the approach where the pattern language can be specified on an individual
case to case basis depending on the problem statement and data size. We want to
have enough flexibility in the pattern language itself, yet also to be able to restrict
the search space for larger data sizes. And finally, although several different pat-
tern fitness measures could be used, the real relevance of the discovered patterns
has to be justified in the biological terms.
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2.6 Problem types considered in the current study

In this thesis we will study the following types of pattern discovery problems for
different pattern classes.

Problem type A: Given a string S 2 �� and an integer K , construct all patterns
� (of type P1–P6) such that � has at least K occurrences in S.

Problem type B: Given a set of n strings S1; S2; : : : ; Sn, Si 2 ��, and an integer
K , construct all patterns � (of type P1–P6) such that � has at least one
occurrence in at least K sequences of S1; S2; : : : ; Sn.

Problem types A and B are useful in restricting the search space to most fre-
quently occurring patterns. Given an exhaustive search strategy that is able to
generate all possible patterns according to problem types A and B, the potential
list of patterns produced may be huge. On their own these problem statements do
not tell us which of the frequently occurring patterns are the most “interesting”.
Thus, we need to define an order or ranking in which to present the patterns, as
well as a strategy to establish which cut-off values produce all the relevant pat-
terns, and how to summarize them. We order the patterns based on the fitness
measure. The pattern that has the best fitness value is most interesting.

Problem type C: Given a string S 2 ��, find all patterns � (of type P1–P6) in
the decreasing order of fitness F .

Problem type D: Given a set of n strings S1; S2; : : : ; Sn, Si 2 ��, find all pat-
terns � (of type P1–P6) in the decreasing order of fitness F .

Problem type E: Given two sets of strings S+ and S�, find all patterns � (of type
P1–P6) such that � has significantly more occurrences in S+ than in S�.

Our aim is to provide a generic framework for algorithms that can be used for
discovering patterns according to problem type specifications A–E. We want the
algorithms to be exhaustive in the sense that given the precise definition of the
pattern language, the search is guaranteed to find all patterns satisfying the given
criteria. Pattern fitness scores can be used for ranking the patterns and the aim is
to find the patterns with the best fitness measure.
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2.7 Rating functions for family classification problem

The question of which patterns are the most interesting can depend on the appli-
cation area. One simple criteria is of course that the most frequent patterns are
more interesting, as they probably tell us more about the general features of the
strings. On the other hand, frequent patterns tend to be too general, and not spe-
cific enough. Thus, we are interested in the unexpectedly frequent patterns. The
less probable the occurrences are, the more interesting they are.

For the problem type E, we are given sets of sequences from different input
classes, usually a sample of positive and negative examples. The task of the pat-
tern discovery algorithm is to find patterns that are most predictive for the class
prediction.

Given a pattern �, let TP = jL(�) \ F+j be the number of true positives,
TN = jF��L(�)j the number of true negatives, FP = jL(�)\F�j the number
of false positives, and FN = jF+ � L(�)j the number of false negatives. In
practice all the members of the families F+ and F� are not known and one has
to estimate these numbers from the currently available data, often the S+ and S�,
respectively. Some of the commonly used fitness measures are:

� Sensitivity TP=(TP + FN)

� Specificity TN=(TN + FP )

� Positive Predictive Value PPV TP=(TP + FP )

� 2x2 correlation coefficient

TP � TN � FP � FNp
(TP + FP )(FP + TN)(TN + FN)(FN + TP )

In practice, the choice of the negative sample S� can be complicated. These
sequences can be chosen based on the biological question one wants to study, they
may be generated according to some probabilistic generative model, or they can
be chosen from the real data representing the “real” background.

We discuss other fitness measures later in Chapters 6 and 7, in relation to
practical applications.

2.8 Suffix trees and substrings of the string

In the current thesis we study two approaches for solving the pattern discovery
problems outlined earlier. The first is based on the writeonly-topdown algorithm
(wotd-algorithm) (Giegerich & Kurtz 1995; Giegerich, Kurtz, & Stoye 1999) that
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we have generalized for constructing all the patterns from the defined pattern lan-
guage. The second pattern discovery approach introduced in current thesis utilizes
the previously built suffix tree for the pattern discovery process.

Both methods are representatives of the exhaustive search algorithms in the
sense that all patterns from the predefined pattern language are discovered and
reported. Efficient pruning of the search space guarantees that only these patterns
that are frequently present in input data, are constructed and evaluated.

Every string S of length n has exactly n+(n�1)+ : : :+1 = n2+n
2 = O(n2)

substrings S[i::j], where 1 � i � j � jSj. Depending on S, some of these
substrings can be equal to each other. Surprisingly, it is possible to enumerate
and index all of them in O(n) time by constructing a data structure called suffix
tree. Suffix tree is a variant of PATRICIA trees (Morrison 1968). There are sev-
eral different linear-time algorithms for constructing suffix trees (Weiner 1973;
McCreight 1976; Ukkonen 1995); the textbook (Gusfield 1997) gives a clear ex-
posure of these methods.

Definition 2.4 (Gusfield 1997) A suffix tree T for an n-character string S is a
rooted directed tree with exactly n leaves numbered 1 to n. Each internal node,
other than the root, has at least two children and each edge is labeled with a non-
empty substring of S. No two edges out of a node can have edge-labels beginning
with the same character. The key feature of the suffix tree is that for any leaf i, the
concatenation of the edge-labels on the path from the root to leaf i exactly spells
out the suffix of S that starts at the position i. That is, it spells out S[i::n].

Figure 2.2 gives an example of a suffix tree. The size of the suffix tree for S
is linear in jSj. This can be seen by the following argumentation. By introducing
a special end-of-string character $, all suffixes of S$ end in different leaves. As
there are exactly n leaves and every internal node is branching, there are at most
2n nodes in the tree. Each node and edge can be implemented with a size O(1)
by representing each edge label with two pointers to the corresponding substring
of S. Hence the size of the compact suffix tree is O(n).

The ability to construct suffix trees in linear time and space makes it a very
attractive starting point for further algorithmic developments. On the other hand,
the full suffix tree construction may not be necessary when we want the patterns
to occur very frequently in sequences. The wotd-algorithm was first developed
for lazy functional programming languages that evaluate the code only when it is
really needed, i.e. the suffix tree branches are calculated when they are needed
during the tree traversal. This approach requires ideally that different branches of
the tree can be generated independently from each other. The wotd approach to
suffix tree generation can be more attractive in this case, as it does not make any
“unnecessary” work. Although the wotd-algorithm is a O(n2) time algorithm for
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the text of length n, it has been shown sometimes to outperform the linear-time
algorithms (Giegerich, Kurtz, & Stoye 1999).

The string-lengthof an edge label in the suffix tree is the length of the string la-
beling the edge (even though the label is compactly represented in constant space).
The length of a suffix treeis the sum of the string-lengths of all the edges of the
suffix tree.

We will use the simplified, but quadratic-size version of the suffix tree called
suffix trie. A suffix trie for S is a standard trie structure (Morrison 1968) that
represents all the suffixes of S. It differs from the suffix tree in that every edge-
label is a symbol in �, i.e. it has length exactly one. At the same time we loose
the condition that every node has to have at least two children. Therefore, the size
of the suffix trie can be quadratic in jSj (see Figure 2.2).

The suffix trie lists all the suffixes on the paths starting from the root and
ending in the leaves. Each leaf contains the starting position of the particular
suffix. Each substring is a prefix of some suffix. Hence, all substrings of S are
enlisted on the paths starting from the root. In a suffix trie for S, every substring
of S is identified by exactly one node and conversely, every node in the suffix
trie identifies exactly one substring. The substring identified by a node N can be
read from the character labels of the arcs along the path from the root to N . The
string-length of the suffix trie is the same as the number of the edges in the suffix
trie. Let us denote by N(s) the node where the labels of the nodes from the root
to N(s) spell out the string s. All starting positions of every substring s can be
read from the leaves of the subtrie under the node N(s) in time proportional to
the number of occurrences of the substring s.

A suffix array (Manber & Myers 1990) of S is an array of positions
1; 2; : : : ; jSj in S, sorted according to the lexicographic order of the suffixes start-
ing at these positions. A suffix array can be constructed directly or it can be cre-
ated from the suffix tree by reading the labels (start positions of suffixes) from the
leaves of the suffix tree in the inorder from left to right. The suffix array needs only
one third of the space of the corresponding tree (Baeza-Yates & Gonnet 1990).
Every pointer of the suffix tree can be simulated on the suffix array by performing
two indirect O(log jSj) binary searches. Thus, the tree can be used as a concep-
tual model for many problems while suffix arrays can be used in implementations.
There are also some other approaches to reduce the space requirements of suffix
trees using modifications of suffix arrays while maintaining the efficiency of the
tree representation (Kärkkäinen 1995).
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Figure 2.2: Suffix tree, suffix trie, and suffix array for the string S = ATACATA$.
The last character, $ is added to make all suffixes of S different from each other.
The linear size of suffix trees is achieved by representing arbitrary-length edge
labels with two pointers. For example, CATA$ can be represented by two integers
(4; 8), i.e. CATA$ = S[4::8].



Chapter 3

Discovery of frequently occurring
patterns

In this chapter we present algorithms for the pattern discovery problems A–E for
pattern types P1–P6 outlined in Chapter 2. The proposed algorithms are gen-
eralizations to the wotd suffix trie construction algorithm so that the trie nodes
represent the patterns from the specified pattern language. Patterns are generated
systematically starting from the simplest (and thus most frequent) patterns, and
gradually specializing each pattern within the limits of the chosen pattern class.
The search is exhaustive, i.e. all variants of patterns within the chosen pattern
class are potentially generated. The search space is narrowed down by eliminat-
ing patterns that can not match enough of the input sequences. The generation of
patterns is speeded up by keeping pointers to all the occurrences of each pattern
and updating this information for each possible pattern extension. Based on the
numbers and exact locations of pattern occurrences, different fitness scores can be
calculated.

The algorithms described in this chapter have been implemented in a software
tool SPEXS, described later in Section 7.1.1. The SPEXS tool is integrated into
a larger analysis package called Expression Profiler (Section 7.1), where gene ex-
pression, protein interaction, functional annotation, genomic sequence, and other
functional genomics data can be analyzed.

First, we describe the approach in detail for generating the substring patterns
(class P1) for problem types A–E. Later, pattern classes P2-P6 are discussed.

3.1 Discovery of substring patterns (P1)

Substring patterns are the simplest type of regular patterns. Although a very
restricted pattern class, they have been shown to be able to capture many in-
teresting features of DNA or protein sequences in practice (see, for exam-
ple, (van Helden, André, & Collado-Vides 1998; Mannhaupt et al. 1999;
Vilo et al. 2000)).

35
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3.1.1 Frequent substrings of a string S (P1:A)

Given a string S, for example the full-length chromosome, a natural question is to
ask which elements occur repeatedly in that sequence. More formally, we consider
the following problem.

Problem P1:A Given a string S 2 �� and an integer K , construct all sub-
string patterns � 2 �� (of type P1) such that � has at least K occurrences in
S.

3.1.1.1 Solution based on traditional suffix tree algorithm

A linear time and space suffix tree index of a string S efficiently enumerates all
possible substrings of S. The number of leaves under each node in the suffix tree
is equal to the number of different occurrences of substrings represented by that
node. The substrings having at least K occurrences can then be output.

Analysis of this method is straightforward. Construction of the suffix tree
takes O(n) time, and the corresponding tree has O(n) nodes. Depth-first traversal
for counting the number of leaves under each node can be done in O(n) time.

The full answer, i.e. the list of all frequent substrings, may be quadratic O(n2)
according to the total tree-length. Hence, the algorithm is called output sensitive,
i.e. its running time is linear in the size of the produced output.

This solution seems optimal, as it should take time O(n) to scan through the
data and the time proportional to the size of the answer to output it. From the
practical point of view the space required for storing the full suffix tree can be
large. In an efficient implementation the size of the tree is on the average at least
10-15 times the size of S.

3.1.1.2 Basis for an alternative approach

We are interested in patterns that occur at least K times in S. By constructing the
full-size suffix tree, unnecessary effort is spent for constructing the subtrees with
less than K leaves. Ideally, we do not need the full suffix tree, but only the part
that corresponds to the most frequent substrings of S.

Traditional linear time suffix tree construction algorithms are unable to “pre-
dict” which subtrees will represent frequent substrings and which do not. If the
length l of the longest substring occurring at least K times in S could be es-
timated somehow, the modification of the algorithm for building the tree up to
depth l only, could be used. Unfortunately, there is no tight upper bound for the
maximum depth l that could guarantee the inclusion of all frequent substrings. On
the average, the depth l > logj�j(n) should be sufficient for random strings where
each position is independently randomly chosen from the letters of the alphabet.
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In the worst case, however, even very long substrings can occur frequently in S.
Moreover, the biological sequences are known not to be random sequences, for
example the genomic sequences contain longer repeats than expected.

We aim at a solution that does not assume the randomness of S, is faster for
larger values of K , keeps the space requirement relatively low, and at the same
time is simple to understand and implement. The solution is motivated by the
wotd-algorithm for suffix tree construction (Giegerich & Kurtz 1995; Giegerich,
Kurtz, & Stoye 1999). We represent the algorithm for constructing the O(n2) time
and space, suffix trie instead of the compact suffix tree. The trie variant is easier
to describe and implement, as well as it allows us to generalize this algorithm for
discovering patterns from more complex pattern classes (P2–P6).

3.1.1.3 Notations

For identification of an individual node in the trie we use the string � over the
trie label alphabet (for substring patterns this alphabet is �). The node N(�)
in the trie uniquely defines a path from the root such that the node labels along
that path spell out the string �. For example, N(ABC) is the node identified by
substring ABC. The node N(�C) is the child of N(�) with character label C.
We use the dot-notation to represent additional information about the node N ,
e.g. N:label, N:parent, and N:child. In that notation, N(�X):label = X ,
and N(�X):parent = N(�), where X belongs to the label alphabet. Given a
node N , we denote its children by N:child(c) meaning the child P of node N
such that P:label = c. The pattern associated to node N can be spelled out by
N:pattern(). The occurrences of the pattern � are denoted by N(�):pos. We use
a shorthand N:sibling(c) for identifying the siblings N:parent:child(c) of node
N . Note that N:sibling(c) is N if N:label = c.

3.1.1.4 Algorithm

Now we can present Algorithm 3.1 for solving the Problem P1:A. Algorithm 3.1
builds the suffix trie for the input string S in a systematic order, e.g. in the breadth-
first order, level by level. For each node N(�) we create the list of positions
N(�):pos to each location of S where � occurs. To represent the occurrence
that ends at position j of S we use a pointer to position j + 1; this is just for
technical convenience. To create the children of node N(�), we find characters
a 2 � for which the substring �a occurs in at least K different locations of S.
This is achieved by one traversal of the position list N(�):pos and creating the
position lists for every character occurring at these positions in S. Only these
nodes N(�a) are inserted into the trie, for which the character a occurs at least
K times at positions N(�):pos.
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Algorithm 3.1 (P1:A) Frequent substrings of a string S
Input: StringS, integerK
Output: Substring patterns that occur at leastK times in stringS
Method:
1. Root  new node

2. Root:label �

3. Root:pos  (1; 2; : : : ; jSj)

4. enqueue(Q;Root)

5. while N  dequeue(Q)

6. OutputN:pattern() and its occurrences fromN:pos

7. foreach c 2 �

8. Set(c) ;

9. foreach p 2 N:pos

10. addp+ 1 to Set(S[p]) unless p = jSj

11. foreach c 2 � where jSet(c)j � K

12. P  new node

13. P:label c

14. P:pos Set(c)

15. N:child(c) P

16. enqueue(Q;P )

17. deleteN:pos

18. end

The trie is constructed by first generating the root node and then systematically
adding children to each of the leaves in the resulting tree. Each node in the trie
represents a unique substring of S. The position lists associated with each node
provide the information where all the occurrences of the substring corresponding
to that node are. Note that position lists are only needed for the leaves during the
tree construction, hence they can be deleted for internal nodes.

An advantage in constructing the tree in this way is that all children of a node
are inserted in one step. There is no need for multiple visits to nodes in different
parts of the trie and the physical implementation of tree nodes can be optimized
by knowing exactly how many children the node will have. Example of such a
trie construction is in Figure 3.1.

Construction of the trie explicitly as done in Algorithm 3.1 is not necessary
as the relevant information can be stored in the nodes inserted into queue Q only.
By maintaining the trie the actual patterns can be read from it.
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S=ATACATA$
pos=12345678

N(�):pos = 1; 2; 3; 4; 5; 6; 7; 8

N(A):pos = 2; 4; 6; 8

A

N(AT):pos = 3; 7

T

N(ATA):pos = 4; 8
A

N(T):pos = 3; 7

T

N(TA):pos = 4; 8
A

Figure 3.1: Discovering the substrings of string S = ATACATA$ having at least
2 occurrences in S. The frequent patterns are �,A,T,AT,TA, and ATA.

3.1.1.5 Analysis of the algorithm

The correctness of the algorithm. All starting positions of any possible pattern
(1; : : : ; jSj) are inserted to the tree root N(�):pos. For each pattern all possi-
ble extensions are generated unless their number of occurrences drops below the
threshold K . The generated patterns are inserted to the queue for further exten-
sions, making the search exhaustive. Once the prefix of a pattern occurs less than
K times, no extension of that pattern can occur more frequently and the construc-
tion of respective subtree is not necessary. Therefore, Algorithm 3.1 is correct.

Algorithm complexity. Let us analyze the time and space complexity of the
Algorithm 3.1 for discovering the most frequent substrings. First we prove two
lemmas.

Lemma 3.2 For any nodeN in the suffix trie,jN:posj � �c2�jN:child(c):posj.
Proof Follows from the fact that only jN:posj positions are considered, and that
the position lists of children of a node are disjoint as the respective substrings end
by different characters.

Lemma 3.3 The total size of the position lists of the leaves at any time during the
execution of Algorithm 3.1 is at mostjSj.
Proof Follows from Lemma 3.2 and the fact that the root node in the tree has jSj
positions and the step 17 in Algorithm 3.1.
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Note that the size of the trie structure is optimal in the sense that only the
nodes N(�) corresponding to substrings � that occur at least K times in S, are
inserted. Extra work has to be done for creating and maintaining the position lists.

Theorem 3.4 Given a stringS, jSj = n, the total time used by Algorithm 3.1
is linear in the total number of occurrences of all frequent substrings� in S i.e.
O(��jN(�):posj)=O(n2). Assume that there arep frequently occurring patterns
� in S. The working space used by Algorithm 3.1 isO(p+ n).
Proof Algorithm 3.1 visits each node in the trie twice. First, when it is con-
structed and put into the queue, and second, when it is retrieved from the queue
and extended by all possible one-character extensions. The time used for con-
struction of each node N(�) corresponding to a unique frequent pattern � 2 ��

is proportional to the size of its position list, i.e. the number of all occurrences
of that pattern. It remains to analyze how much effort is spent for constructing
patterns that are not included into the trie, i.e. those, whose numbers of occur-
rences do not exceed the minimum frequency threshold K . This effort can in fact
be accounted for the node representing the longest prefix of a pattern that is still
frequent enough. The verification that a possible extension of a node N is not fre-
quent enough is achieved at the same time as frequent extensions are calculated,
with a single traversal of the position list N:pos. In total, the work is proportional
to ��jN(�):posj over all patterns � that occur at least K times in S.

There are n � l + 1 possible locations for all possible substrings of length l.
At every depth l of the trie the work is proportional to the total size of the position
lists of all nodes at that depth, i.e.O(n). As the trie of the frequent patterns � has
depth O(n), it follows that ��jN(�):posj = O(n2).

If K = 1, Algorithm 3.1 constructs the full suffix trie, the size of which is
O(n2).

The working space needed for the construction of the trie consists of the space
for the trie and the position lists of all current leaves. The size of the trie is O(1)
per each node in the trie (that is, per each frequently occurring pattern �), O(p)
in total. When extending a particular node, the occurrences associated to that
node are stored until all children have been calculated. As the total size of all
position lists of the leaves (at any time during the trie construction) is at most n
(Lemma 3.3), and the largest position list (e.g. for empty pattern �), has at most
n members, in total at most 2n positions are present in all the position lists jointly
at any given time.

The worst-case time requirement of Algorithm 3.1 depends on the size of the
trie. The work that is done at any depth l in the trie is O(n). Hence, the time
complexity is O(nd), where d is the depth of the tree, i.e. the length of the longest
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substring � that occurs at least K times in S. In the worst case, the running time
of Algorithm 3.1 can be quadratic in jSj even for large K . One example of such a
worst case input is the string S = aaa : : : a.

It may seem a bad idea to use this potentially quadratic time algorithm when
O(n) time algorithms for suffix tree construction exist. Interestingly, the experi-
ments have shown that the wotdsuffix tree construction algorithm, resembling the
one described above, can compete quite well with the theoretically faster linear-
time algorithms (Giegerich, Kurtz, & Stoye 1999). The reasons are mostly due to
the non-locality properties of linear-time suffix tree generation algorithms which
may cause slow-downs due to memory paging in current computer architectures.
Therefore, this quadratic time suffix tree (and suffix trie) construction algorithm
is interesting as such.

Theorem 3.5 The average running time of Algorithm 3.1 for constructing all the
substrings that occur at leastK > 1 times in a random stringS where each
character is equally probable at each position isO(jSj logj�j

jSj
K ).

Proof Given a random string S with uniformly distributed characters over alpha-
bet �, all patterns of the same length can be assumed to occur equally probably
in S. By adding one character c to the pattern �, the number of occurrences of
�c is on the average 1=j�j times the number of occurrences of �. Hence, for
l > logj�j

jSj
K the sizes of individual position lists of the nodes at depth l contain

typically less than K elements. Therefore, we can conclude the theorem.

3.1.1.6 Discussion

Note that Algorithm 3.1 does not fix the order in which the leaves are considered
during the tree construction. The order of the tree construction is determined by
the implementation of the queue Q. If it is a standard FIFO queue, the pattern
search is performed in breadth-first order, level by level. This allows to output the
results in a systematic order from shorter to longer patterns, all the substrings of
the same length ordered alphabetically. The construction and/or output order can
also be different. For example, if queue Q acted like a stack (LIFO queue), the
tree would be constructed in the depth-first order.

If the queue Q was implemented as a priority queue using the size jN:posj
for ordering its entries, the topmost node in the queue would always represent the
most frequent substring. In this way the search would be effectively performed
from the most frequent to less frequent order. The search could also be stopped at
any given moment as all the more frequent patterns would already be output.

Next we show how to modify Algorithm 3.1 for solving problem types (B-E).
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3.1.2 Substrings common to a set of input sequences Sn (P1:B)

Problem type B deals with a typical pattern discovery situation, identifying pat-
terns common to a set of sequences. Typically, these sequences may represent
proteins from a single protein family, or DNA sequences assumed to share com-
mon regulatory motifs, for example.

Problem P1:B Given a set of strings Sn = fS1; S2; : : : ; Sng, Si 2 ��,
and an integer K , construct all patterns � of type P1 such that � has at least one
occurrence in at least K sequences of S1; S2; : : : ; Sn.

We solve this problem by first catenating all individual sequences S1; : : : ; Sn
using a character # 62 � as a separator, to construct a single sequence S =
S1#S2# : : :#Sn. This catenated sequence S is used for pattern discovery almost
in the same manner as for the problem P1:A, only few modifications to Algorithm
3.1 are made.

Algorithm 3.6 (P1:B) Frequent substrings of set of strings
Input: StringsSn = fS1; : : : ; Sng, integerK
Output: Substring patterns that occur in at leastK strings ofSn

Method:
1. S  S1# : : :#Sn , s.t.# 62 �

2. Generate a mappingf1; 2; : : : ; jSjg ! f1; 2; : : : ; ng for countseq(Set)

3. Root new node

4. Root:label �

5. Root:pos  (1; 2; : : : ; jSj)

6. enqueue(Q;Root)

7. while N  dequeue(Q)

8. Output N.pattern()

9. foreach c 2 �

10. Set(c) ;

11. foreach p 2 N:pos

12. addp+ 1 to Set(S[p]) unless p = jSj or S[p] = #

13. foreach c 2 � where countseq(Set(c)) � K

14. P  new node

15. P:label c

16. P:pos Set(c)

17. N:child(c) P

18. enqueue(Q;P )

19. deleteN:pos

20. end
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First, we avoid patterns that could span across the string boundaries by disre-
garding any patterns that contain the separator character ’#’ (line 12 in Algorithm
3.6).

Second, we count the number of sequences Si that have at least one pattern
occurrence. For this we generate a mapping (e.g. based on lookup-table) from
each position in the catenated sequence S to index i based on the sequence Si
(line 2). The number of different sequences Si can be counted in linear time in
the length of the position list N(�):pos by simply traversing the list and counting
each sequence index i once (function countseq(N(�):pos), line 13).

Algorithm 3.6 is correct based on the same justification as Algorithm 3.1. Ev-
ery possible pattern is generated as long as it occurs in at least K input sequences.

Algorithm 3.6 runs in the same time and space as Algorithm 3.1 for the cate-
nated string S. The length of the longest possible frequent pattern is bound by
max(fjSij Si 2 Sng). This can improve the worst-case performance, especially
if Sn consists of short sequences only.

Counting the number of sequences by function countseq(N(�):pos) does not
add more than one extra traversal through each position list, hence the asymptotic
running time and space remains the same as for Algorithm 3.1.

3.1.3 The most “interesting” substrings of sequence S (P1:C)

The most frequently occurring patterns are obviously the empty pattern � (occurs
at each position) and patterns of length one. The occurrences of single-character
patterns correspond to the occurrences of each letter in the input sequence. These
rather trivial “patterns” are not necessarily what users would like to see reported.
Instead, they want the patterns to be output according to their fitness F . This gives
us the following problem statement.

Problem P1:C Given a string S 2 ��, and an integer K , find all patterns �
of type P1 that occur at least K times in S and report them in the decreasing order
of their fitness F .

Note that we have introduced the requirement for the minimum number of
occurrences which was not mentioned in the problem statement in Section 2.6. We
assume that users can require discovered patterns to occur at least K times (or in
K sequences, where appropriate). This, besides reducing the search space, usually
has a good justification from the analysis domain. If the minimum frequency
requirement is not given, the pattern discovery procedure could be forced to study
through all possible patterns, even these that are unique within the sequence S.

We modify Algorithm 3.1, so that pattern fitness measures will be calculated
and patterns can be presented to users in the order based on that fitness. We
assume that different functions F : P1 � �� ! IR for evaluating the fitness can
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be used. This gives us Algorithm 3.7.

Algorithm 3.7 (P1:C) Frequent and interesting substrings of a string S
Input: StringS, integerK, fitness functionF : P1��� ! IR
Output: Substring patterns� with best fitnessF(�; S) that occur at leastK times inS
Method:
1. Root  new node

2. Root:label �

3. Root:pos  (1; 2; : : : ; jSj)

4. enqueue(Q;Root)

5. while N  dequeue(Q)

6. foreach c 2 �

7. Set(c) ;

8. foreach p 2 N:pos

9. addp+ 1 to Set(S[p]) unless p = jSj

10. foreach c 2 � such thatjSet(c)j � K

11. P  new node

12. P:label c

13. P:pos Set(c)

14. N:child(c) P

15. enqueue(Q;P )

16. enqueue(B;P;F(P:pattern; S)) // Store the patterns and their fitnesses

17. deleteN:pos

18. // Output the “best” patterns stored in priority queueB

19. while (N; f) dequeue(B)

20. OutputN:pattern andf

21. end

The command enqueue(B;P;F(P:pattern; S)) on line 16 inserts the node
P and its fitness F(P:pattern; S) to a priority queue B (line 16), from where
they can later be retrieved (line 19) in the order of their fitness. Note that usually
the function F(P:pattern; S) does not require the full input sequence S, but only
the locations of the matches of � on S. These matches are stored in P:pos and
can be made available to calculate the fitness F . In that case, one can assume the
function F(P:pattern; P:pos) instead of F(P:pattern; S).

Algorithm 3.7 is correct, it exhaustively enumerates all patterns � that occur
at least K times in input S, while storing the patterns into the priority queue based
on the fitness F(P:pattern; S).

The exhaustive enumeration runs in the same time and space as Algorithm 3.1.
For each frequent pattern, extra work is needed for calculating the fitness function
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F(P:pattern; S). If the fitness function computation takes linear time in the num-
ber of pattern occurrences O(jP:posj) or the pattern length O(jP:patternj), the
total time complexity can be cubic O(n3) in the worst case. If the pattern fitness
function can be computed in a constant time based on the fitness of the pattern
of the parent node only, the dependency on the pattern length could be avoided.
Some of such techniques are described by Apostolico et al. (Apostolico et al.
2000).

The node identifiers are stored in the priority queue B based on the fitness. If
there are p frequent patterns (p = O(n2) in the worst case), the additional time
O(p log p) may be spent for storing and retrieving patterns from B. Thus the
overall worst case time complexity is O(n2 logn).

Not all frequent patterns are interesting in practice, but only the q top ranking
patterns with respect to the fitness function F . In that case the priority queue B
of best-scoring patterns can be modified to hold a maximum of q items. Each
newly generated pattern is compared to the worst performing pattern generated so
far and if the new pattern has a better score, the previous qth worst pattern will be
removed and the new pattern inserted. The size of B remains constant as well as
the time spent for each priority queue operation.

3.1.4 The most “interesting” substrings for a set of input sequences
Sn (P1:D)

Problem P1:D Given a set of strings Sn = fS1; S2; : : : ; Sng, Si 2 ��, find all
patterns � of type P1 that occur at least in K sequences of S1; S2; : : : ; Sn, and
report them in the decreasing order of the fitness F .

Previously we showed that Problem P1:C can be solved by modifying Algo-
rithm 3.1 for solving Problem P1:A. Problem P1:D is a similar generalization to
Problem P1:B. Algorithm 3.8 for solving Problem P1:D is a straightforward mod-
ification of Algorithm 3.6 in similar manner as Algorithm 3.7 was modified from
Algorithm 3.1. The same applies to the analysis of the time and space complexity,
these remain essentially the same as for Algorithm 3.6 and we omit the analysis.
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Algorithm 3.8 (P1:D) Most “interesting” substrings of a set of strings
Input: StringsSn = fS1; : : : ; Sng, integerK , fitness functionF : P1� Sn ! IR
Output: Substring patterns that occur in at leastK strings ofSn in the order of fitness
F
Method:
1. S  S1# : : :#Sn , s.t.# 62 �

2. Generate a mappingf1; 2; : : : ; jSjg ! f1; 2; : : : ; ng for countseq(Set)

3. Root  new node

4. Root:label �

5. Root:pos  (1; 2; : : : ; jSj)

6. enqueue(Q;Root)

7. while N  dequeue(Q)

8. foreach c 2 �

9. Set(c) ;

10. foreach p 2 N:pos

11. addp+ 1 to Set(S[p]) unless p = jSj or S[p] = #

12. foreach c 2 � where countseq(Set(c)) � K

13. P  new node

14. P:label c

15. P:pos Set(c)

16. N:child(c) P

17. enqueue(Q;P )

18. enqueue(B;P;F(P:pattern; Sn))

19. deleteN:pos

20. while (N; f) dequeue(B)

21. OutputN:pattern andf

22. end

Note that we assume that the fitness function F can actually have access to
the mapping from sequence positions to sequence numbers, to the countseq(Set)
function, as well as the pattern itself. We do not want to restrict this presentation
to any specific function.

3.1.5 Substring patterns overrepresented in S+ vs S� (P1:E)

As discussed in Section 2.4, it is often important to be able to discriminate be-
tween two sets of sequences. The most obvious candidates for such patterns are
the ones that do occur in one set but not in the other. In practical tasks, this is
usually not the case. Here we are interested in the patterns that are significantly
more abundant in one set of the input sequences than in the other.
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Problem P1:E Given two sets of strings S+ and S�, find all patterns �
of type P1 such that � occurs in at least K sequences out of S+ [ S� and is
“significantly” more frequent in S+ than in S�.

This problem can be viewed as a special case of the problem P1:D. The main
difference is that the input sequences represent two sets of sequences instead of
one, and the aim of the fitness function is to rank the patterns so that the best
differentiation between these two sets is achieved. The significance of the over-
representation is calculated by a special case of fitness measure F that, given a
pattern � and two sets of sequences S+ and S�, estimates whether the number of
matches of � is significantly higher in S+ than in S�.

Algorithm 3.9 (P1:E) Substrings more frequent inS+ thanS�
Input: StringsS+ = fS+1 ; : : : ; S

+
n+
g, S� = fS�

1 ; : : : ; S
�
n
�

g , integerK, fitness mea-
sureF
Output: Substring patterns that occur at leastK times inS+ [ S�, and significantly
more frequently inS+ than inS� according toF
Method:
1. S  S+1 # : : :#S+n+#S

�
1 # : : :#S�

n
�

, s.t.# 62 �

2. Generate a mappingf1; 2; : : : ; jSjg ! f1; 2; : : : ; (n+ + n�)g for countseq(Set)

3. Root  new node

4. Root:label �

5. Root:pos  (1; 2; : : : ; jSj)

6. enqueue(Q;Root)

7. while N  dequeue(Q)

8. foreach c 2 �

9. Set(c) ;

10. foreach p 2 N:pos

11. addp+ 1 to Set(S[p]) unless p = jSj or S[p] = #

12. foreach c 2 � where countseq(Set(c)) � K

13. P  new node

14. P:label c

15. P:pos Set(c)

16. N:child(c) P

17. enqueue(Q;P )

18. enqueue(B;P;F(�; S+; S�))

19. deleteN:pos

20. while (N; f) dequeue(B)

21. OutputN:pattern andf

22. return Root

23. end
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The most important change in Algorithm 3.9 as compared to Algorithm 3.8,
is the way how the fitness measure is calculated. In order to know how frequent
the pattern � is in each input set, we need to count numbers of occurrences in S+
and S� separately. This can easily be achieved by a straightforward modification
to the countseq(N(�):pos) function. Based on these numbers different fitness
measures can be used.

In practice we may be interested in patterns that occur at least a given num-
ber of times in a particular input set, For example, in patterns that occur at least
K+ times in set S+. This is easy to accommodate by slight modifications to the
mapping from sequence positions to sequence numbers, and to the countseq()
function. This feature has been used in some of the applications discussed in
Chapter 6.

Note that it is straightforward to generalize Algorithm 3.9 for more than two
sets of input sequences. In that case, however, the relevant fitness measures need
to be chosen so that they are suitable for particular analysis of the multi-class
input.

3.2 Substring patterns with group characters (P2)

In this section we present algorithms for discovering substring patterns with group
positions, i.e. patterns of type � 2 (� [ �)� (class P2) from Section 2.1.

As we have showed in Section 3.1, the different pattern discovery problems
A–E can be solved in a rather similar way for the class of substring patterns. The
same applies for most other pattern classes. To save space and to keep readers
from being bored, we show only how the pattern discovery problem B can be
solved for the pattern class P2.

3.2.1 Frequent substrings with group characters common to a set of
strings Sn (P2:B)

Problem P2:B Given a set of strings Sn = fS1; S2; : : : ; Sng, Si 2 ��, and an
integer K , construct all patterns � of type P2 (� 2 (� [ �)�) such that � has at
least one occurrence in at least K sequences of S1; S2; : : : ; Sn.

We modify Algorithm 3.6 in order to permit symbols from the extended char-
acter set � [ � as node labels. For each group symbol g 2 � following the node
N(�), the node N(�):child(g) = N(�g) is created.

We do not need to store explicitly the positions N(�g):pos. These can be
calculated from the position lists of individual characters c 2 g, as N(�g):pos =S
c2gN(�c):pos. However, it is necessary that nodes N(�c), c 2 g, are inserted
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into the trie with corresponding N(�c):pos even if jN(�c):posj < K and N(�c)
is not extended further.

Algorithm 3.10 (P2:B) Generation of frequent patterns with character group positions
Input: StringsSn = fS1; : : : ; Sng, integerK, character groups�
Output: Patterns from(� [ �)� that occur in at leastK strings ofSn

Method:
1. S  S1# : : :#Sn, # 62 �

2. Generate a mappingf1; 2; : : : ; jSjg ! f1; 2; : : : ; ng for countseq(Set)

3. Root  new node;Root:label �

4. Root:pos  (1; 2; : : : ; jSj)

5. enqueue(Q;Root)

6. while N  dequeue(Q)

7. Output N.pattern()

8. // Construct the position list for pattern defined by nodeN

9. if N:label 2 � then Pos N:pos

10. else Pos 
S
c2N:labelN:sibling(c):pos

11. // Group the positions according to characters in stringS

12. foreach c 2 �

13. Set(c) ;

14. foreach p 2 Pos

15. addp+ 1 to Set(S[p]) unless p = jSj or S[p] =0 #’

16. foreach c 2 �

17. if countseq(Set(c)) � K then

18. N:child(c) new node with labelc

19. N:child(c):pos Set(S[c])

20. enqueue(Q;N:child(c))

21. foreach g 2 �

22. if 9f 2 (� [�); f � g;
P

c2f jSet(c)j =
P

c2g jSet(c)j then next g

23. if countseq([c2gSet(c)) � K then

24. N:child(g) new node with labelg

25. foreach c 2 g s.t.:9N:child(c)

26. N:child(c) new node with labelc and positionsSet(S[c])

27. enqueue(Q;N:child(g))

28. if all nodesN:sibling(c), c 2 � [ � have been expanded

29. delete all listsN:sibling(c):pos, wherec 2 �

30. end
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We say that the pattern � 2 P2 is most specificwith respect to S if by re-
placing any of the group character g 2 � in pattern � by a character c 2 g or
by a group g0 2 �, g0 � g, none of the modified, more specific patterns �0, has
exactly the same occurrences in S as the original pattern � has. In other words,
no position in � can be made more specific without losing hits in S.

When adding group character extensions to the tree, we perform an extra test
to avoid inserting such group characters g for which there exists a sibling f that
corresponds to a subset of characters from g yet occurs in all the same places (line
22). This test eliminates some replication of work.

Algorithm 3.10 does not guarantee that the discovered patterns would be most
specific. For example, given two sequences GAS; HAT, all the possible character
groups � and K = 1, the pattern discovery procedure outlined here would con-
struct the patterns [GH]; [GH]A; [GH]AS; [GH]AT. The last two would not be desired
in this context, as the first group character position would be redundant. By re-
versing the algorithm and working with position lists toward the top of the trie, it
would be obvious that the first group should be replaced by the more strict char-
acter G, i.e. the patterns would be GAS; HAT. The time and space requirements
for this reverse calculation are proportional to the length of the pattern times the
number of the occurrences of the pattern. This reverse “specificity” check can be
performed for patterns that are most interesting.

In practice, it is easy to modify Algorithm 3.10 so that on each path from
the root at most x group characters are allowed. By adding a counter of group
characters that have been used on the path from root to each node, if the limit is
exceeded, then only the single character extensions (c 2 �) are allowed. This al-
lows to be more specific about the pattern language and to speed up the algorithm
significantly (at the expense of the pattern language of course).

For all nodes N and symbols c 2 �[�, jN:posj � jN:child(c):posj, i.e. the
sizes of the position lists are non-increasing along any path from the root down to
leaves.

Theorem 3.11 Assume thatx is the maximum number of group charactersg 2 �
allowed in a pattern, andp is the maximum number of group charactersg 2 �
that all contain a particularc 2 � (eachc belongs to at mostp different groups
g). The maximum number of patterns of length at mostl over�[� that may have
at least one occurrence in stringS of lengthn is O(xnpxlx+1). The worst case
time complexity of Algorithm 3.10 isO(xn2pxlx+1).
Proof There are n � l + 1 possible substrings of length l of string S, jSj =
n. By allowing character group positions we essentially allow that some po-
sitions of substrings can be represented by a group of characters instead of a
single character from �. Assume that each character c 2 � belongs to (at
most) p different character groups. If at most x positions of a substring of
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length l may be replaced by one of these p character groups, there are at most
1 + pl + p2l(l � 1) + : : : + px(l(l � 1) � � � (l � x + 1)) = O(xpxlx) different
patterns that match this substring. String S can contain O(ln) substrings of length
less than l, hence the total number of patterns that can match substrings of length
at most l in S is O(xnpxlx+1).

The patterns are constructed incrementally by expanding shorter patterns one
position at a time. The work used for creating each pattern is proportional to the
number of occurrences of each pattern. In the worst case it is O(n). Hence, the
worst case time complexity of Algorithm 3.10 is O(xn2pxlx+1). In reality only
the patterns that occur frequently in S, i.e. the patterns that match at least K
different substrings of S, are constructed.

In Algorithm 3.6 for discovering the frequent substrings, all the position lists
of the nodes at the same level in the trie were disjoint. Now, allowing group
characters, different patterns can match exactly the same substrings of S. It means
that the catenation of the position lists at the same level of the trie could grow
exponentially in the number of group positions in the patterns.

In the breadth-first search these overlapping positions would all have to be
stored. However, if the search for patterns is performed in the depth-first order,
only the position lists of the nodes (and the immediate siblings of these nodes)
along a single path from the root would be needed. The position lists of siblings
do not overlap, hence at most n positions are stored in them. This means that
during the construction of the trie of depth l, only O(ln) positions are stored in
the nodes along the path from the root to the leaf at depth l. Hence, the space
requirement of Algorithm 3.10 is O(T + ln), where T is the size of the trie of
frequently occurring patterns and ln is the amount of memory used for storing the
position lists along any single path from the root to leaf at depth l (the length of
the longest pattern).

3.3 Patterns with unrestricted length wildcards (P3)

Given a string S, patterns with unrestricted length wildcards matching S are com-
monly called subsequences1 of S. Hence, the patterns from class P3 can also be
referred to as subsequences. In this section we consider the discovery of patterns
of form � 2 �+(��+)�, i.e. the patterns whose first and last symbol are in �.

In order to identify frequently occurring subsequences we need to be able to
count the number of occurrences of each subsequence. As previously, we will

1Note that subsequence and substring are not the same concept although the string and sequence
in general are used interchangeably. See also (Gusfield 1997).
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identify the occurrence of a pattern by the location of the last position of the
pattern in the sequence S. This definition is not free of problems though.

Example 3.12 Given a string S =ABAACA some of the subsequences of S are,
for example, AB*C, A*A*C, and A*A. According to our definition, A*A has
three occurrences in S and A*A*C and AB*A*C only one. The two different sub-
sequences A*C and B*C are different patterns even though they “occur” at exactly
the same positions. Note that pattern B occurs once in S, while its refinement B*A
has three occurrences.

Example 3.13 Let S be a string S 2 �� of length n. Let us consider the string
S0 = Scan, such that c occurs only once in S0. Every pattern � � c � a, where �
is a substring of S occurs n times in S0 even though � � c occurs only once.

It is clear from these examples that a prefix of the subsequence pattern � (see
��c above) may have fewer occurrences than the pattern � itself (��c�a). Hence,
the definition of the frequency of occurrences is perhaps not so intuitive any more.
In practice our pattern discovery algorithm requires all prefixes of a pattern to be
frequent.

For multi-sequence inputs we can use a different criteria for counting occur-
rences. Namely, we can count the number of sequences that contain a match (one
or more occurrences) by the pattern �. Then the ambiguity of counting pattern
match locations is avoided. First, however, we consider a single-sequence input.

3.3.1 Frequent subsequences of a string S (P3:A)

Problem P3:A Given a string S 2 �� and an integer K , construct all patterns
� with unrestricted length wildcards (patterns of type P3) such that � has at least
K occurrences in S.

We will extend our pattern trie construction algorithms so that symbols of
the type �c, c 2 �, can also be used as labels for nodes. When the wildcard is
used to extend the pattern, it is immediately followed by a character from �. For
example, if � = fA; C; G; Tg, the pattern trie is built over the set of node labels
fA; C; G; T; �A; �C; �G; �Tg.
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Algorithm 3.14 (P3:A)Frequent subsequence generation
Input: Input stringS, thresholdK
Output: All frequently occurring subsequences (patterns over� [ f�cjc 2 �g)
Method:
1. Root new node

2. Root:label �

3. Root:pos  (1; 2; : : : ; jSj)

4. enqueue(Q;Root)

5. while N  dequeue(Q)

6. foreach p 2 N:pos

7. addp+ 1 to Set(S[p])

8. if N 6= Root then // Create position lists for ’*c’ extensions

9. p smallest value fromN:pos

10. w  0

11. while p+ w < jSj

12. addp+ w + 1 to Set(0�S[p+ w]0)

13. w  w+1

14. foreach c 2 (� [0 ��0) wherejSet(c)j � K

15. P  new node

16. P:char  c

17. N:child(c) P

18. P:pos Set(c)

19. enqueue(Q;P; front) // Enqueue to the front of queue

20. foreach c 2 (� [0 ��0)deleteSet(c)

21. deleteN:pos

22. end

Every position of S is considered as a possible first character of pattern � in
Algorithm 3.14. During the process of extending patterns, first all single character
extensions are considered (see line 7). Next, all extensions with a wildcard fol-
lowed by a character from the alphabet of S are added. Note that the test on line
8 does not allow to start a pattern with a wildcard �.

When we add nodes corresponding to wildcards followed by a fixed character,
only the first occurrence of a pattern prefix needs to be considered (lines 9 – 13).
This is enough for creating the maximal set of occurrences.

There is an exponential number of subsequences of S (in the length of S). This
is easy to see by noting that each of the positions of S can be either represented
in pattern � by the character itself or a wildcard. Additionally, for each pattern
potentially all its occurrences need to be enumerated. Hence, the worst case time
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complexity of Algorithm 3.14 is O(n2n).
The problem statement P3:A required to enumerate only the frequently occur-

ring subsequences of S. Note that we require each prefix of a subsequence pattern
to be a frequent subsequence pattern as well, as we think it is more intuitive in
this case.

The space complexity. The maximum number of occurrences of any pattern
� is O(n). The sum of the total number of occurrences of all the extensions to a
pattern � of type � � c is O(n), as the occurrences must be mutually exclusive.
Hence, the total number of occurrences of all the extensions �X is O(n). Note
that the search is performed in a depth-first order, and hence only the positions
along a single search path need to be stored at any given moment. Therefore
the maximum number of positions needed to store during the search is O(ln)
where l is the length of the longest path in the tree corresponding to the longest
commonly occurring pattern. The pattern trie size itself accounts for the rest of the
space requirement. If the traversed paths are deleted immediately this space can
be reduced. Otherwise the trie size is proportional to the total number of frequent
subsequences.

3.3.2 Subsequences common to multiple input strings (P3:B)

The problem statement P3:A at the first glance seems impractical for both the
practical relevance as well as the time complexity analysis point of view. Note that
the main complexity of the algorithm is due to the length of the input sequence S.
If the input data consists of a set of sequences Si, we get the following problem
statement.

Problem P3:B Given a set of strings Sn = fS1; S2; : : : ; Sng, Si 2 ��,
and an integer K , construct all patterns � of type P3 such that � has at least one
occurrence in at least K of the sequences S1; S2; : : : ; Sn.

Note that the longest common subsequence problem is directly related to
the sequence alignment problem (Gusfield 1997). Hence, Problem P3:B can be
viewed as a multiple sequence alignment problem where all local alignments com-
mon to at least K input sequences are searched for.
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Algorithm 3.15 (P3:B)Frequent subsequences common to a set of sequences
Input: Input stringsSn = fS1; : : : ; Sng , thresholdK
Output: Patterns over� [ fc � jc 2 �g that occur in at leastK different strings from
Sn

Method:
1. S  S1# : : :#Sn#

2. Generate a mappingf1; 2; : : : ; jSjg ! f1; 2; : : : ; ng for countseq(Set)

3. Root  new node

4. Root:label �

5. Root:pos  (1; 2; : : : ; jSj)

6. enqueue(Q;Root)

7. while N  dequeue(Q)

8. s 0 // for keeping track of sequence numberSs

9. foreach p 2 N:pos

10. addp+ 1 to Set(S[p])

11. if N 6= Root and p 2 Si and i > s // if p is within a new sequenceSi
12. s i // Remember which sequenceSi is being studied

13. w  0

14. while S[p+ w] 6=0 #0

15. addp+ w + 1 to Set(�S[p+ w])

16. w  w+1

17. foreach characterc 2 (� [ f�cjc 2 �g) wherecountseq(Set(c)) � K

18. P  new node

19. P:char  c

20. N:child(c) P

21. P:pos Set(c)

22. enqueue(Q;P; front) // Enqueue to the front of queue

23. foreach c 2 (� [ f�cjc 2 �g) deleteSet(c)

24. deleteN:pos

25. end

Algorithm 3.15 does not generate subsequences that would cross delimiters
between original strings Si. Otherwise it is only a small modification from Algo-
rithm 3.14, and constructs all possible subsequences common to at least K input
sequences Si.

Note that no extension to a subsequence � can be more frequent than � itself,
as we only count the number of sequences � matches, not the positions (how
many occurrences in total). The subsequences that are not common to enough
many original sequences Si are eliminated.
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The space required to store position lists at any time during the algorithm
execution is potentially the same as for Algorithm 3.14. However, the number of
all potential subsequences is O(n2max(jSij)).

The time complexity of the Algorithm 3.15 is O(n22max(jSij)).

3.4 Patterns with restricted-length wildcards �(k; l) (P4)

As shown for pattern language P3, the wildcards of unrestricted length may be
considered impractical, especially for analyzing longer sequences. By restricting
the length of a wild-card to a “reasonable” range, a more practical pattern lan-
guage can be defined. As for unrestricted wildcards in the previous section, we
consider here the problem types A and B only.

Problem P4:A Given a string S 2 �� and an integer K , construct all sub-
string patterns � with restricted-length wildcards �(k; l) (patterns of type P4) such
that � has at least K occurrences in S.

Problem P4:B Given a set of strings Sn = fS1; S2; : : : ; Sng, Si 2 ��,
and an integer K , construct all patterns � of type P4 such that � has at least one
occurrence in at least K sequences of S1; S2; : : : ; Sn.

These two problems are directly related to the problems P3:A and P3:B, only
we need to handle the wildcards of restricted length between k and l positions
instead of unrestricted wildcards. Other problem types C, D, and E can be solved
by straightforward generalizations of these algorithms.

The modifications required are necessary to the loops that add wildcard posi-
tions, as now only the positions within a range from k to l have to be considered.
In the algorithms for solving problems P3:A and P3:B we considered only the first
occurrence of �, as the wildcard could span to the end of the sequence. Now we
can restrict ourselves to gaps of length from k to l characters. Note that these gaps
can still overlap for different occurrences of pattern prefixes. To avoid repeated
work on these gap areas, we maintain a pointer to the rightmost position of the
previously inserted gaps, and based on that increase the start of a leftmost gap
position k for the next pattern occurrence, if necessary (see lines 11 and 15). We
illustrate this in the Example 3.17, where the calculation of the second block of
occurrences is redundant and can be avoided.
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Algorithm 3.16 (P4:A)Discovery of patterns with wildcards of restricted length
Input: Input stringS, thresholdK, integersk andl
Output: All patterns over� [ f�(k; l)cjc 2 �g that occur in at leastK positions
Method:
1. Root new node

2. Root:label �

3. Root:pos  (1; 2; : : : ; jSj)

4. enqueue(Q;Root)

5. while N  dequeue(Q)

6. foreach p 2 N:pos

7. addp+ 1 to Set(S[p])

8. if N 6= Root then // Create position lists for ’*c’ extensions

9. lastpos �1

10. foreach p 2 N:pos

11. w  if lastpos > p+ k then lastpos� p else k

12. while p+ w < jSj and w � l

13. addp+ w + 1 to Set(0�S[p+ w]0)

14. w  w + 1

15. lastpos w � 1

16. foreach c 2 (� [ f�(k; l)djd 2 �g) wherejSet(c)j � K

17. P  new node

18. P:char  c

19. N:child(c) P

20. P:pos Set(c)

21. enqueue(Q;P; front) // Enqueue to the front of queue

22. foreach c 2 (� [ f�(k; l)djd 2 �g) deleteSet(c)

23. deleteN:pos

24. end
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Example 3.17 Consider a sequence AATACAATACAAAAC and occurrences of a
pattern AT and its extensions AT.f1,8gx where x is one of the alphabet charac-
ters.

AATACAATACAAAAC
|| | |||| All occurrences of AT.{1,8}A

| | | All occurrences of AT.{1,8}C
| Single occurrence of AT.{1,8}T

AT.C
AT..A
AT...A
AT....T
AT.....A
AT......C
AT.......A
AT........A

AT.C
AT..A
AT...A

AT....A
AT.....A
AT......C

The first occurrence of AT, when expanded, produces the first block of 8
matches of patterns of type AT.f1,8gx. The second occurrence of AT produces
additional 6 matches, of which the first three are already covered in the first block.
We can avoid repeating that work, by considering for the extensions of the second
occurrence of AT effectively only the patterns of type AT.f4,8gx.

In practice, the discovery of patterns of type P3 can be simulated by patterns
of type P4 by choosing appropriate k and l for �(k; l) wildcards, e.g. k = 0 and
l > jSj .

3.4.1 Minimizing the flexibilities in restricted length gaps

The aim of the pattern discovery is to find previously unknown patterns. Hence, it
is probable that users do not know much about the possible flexibilities X(k; l) in
the patterns. We would like to know what are the real lengths of each of the gaps so
that their exact boundaries would make them as specific as possible. The question
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is, given a pattern with restricted length wildcards, what is the most conserved
form of that pattern? For that we need to have a mechanism for minimizing the k
and l values for each X(k; l) position individually so that the discovered patterns
would be the most conserved ones.

Intuitively, this is a question about the maximality of the patterns in the sense
of the maximum information that the patterns can contain (being most specific)
without losing any significant hits in the sequences.

More formally, assume that we have a pattern of type � = a1 � fk; lga2 �
fk; lg : : :�fk; lgan (or � = a1�a2� : : :�an ). We want to modify this pattern into
the form of �0 = a1:fk1; l1ga2:fk2; l2g : : : :fkn�1; ln�1gan in the way that the
pattern �0 is the most restricted representation of �. We want the total flexibility
of the pattern �0 to be as small as possible. For this we need to minimize the
�i=1::n�1(li� ki). At the same time the modified pattern �0 should still match all
the same sequences of the input as the � does.

As the pattern � can match a sequence in many different locations, a more
restrictive form of the problem is to minimize the flexibilities such that the pattern
�0 will match all the same locations within the input sequences, where pattern �
matched.

In general, the solution to this problem can be achieved for the X(k; l) rep-
resentation of restricted length wildcards by counting the actual lengths of the
wildcard-spanning regions in the text and replacing each wildcard symbol by a
more restricted wildcard symbol X(ki; li).

Consider the zinc finger motif from the Introduction
C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-H-x(3,5)-H. By re-
moving the middle character group it becomes slightly more gen-
eral C-x(2,4)-C-x(12)-H-x(3,5)-H. As we can see, the gap-
lengths between 2 and 12 would be required to discover the pattern
C-x(2,12)-C-x(2,12)-H-x(2,12)-H, which is not as specific as
C-x(2,4)-C-x(12)-H-x(3,5)-H, which we would like to discover.

Before discussing some of the possible approaches for solving the gap-
minimization problem, let us consider a few more examples that illustrate the
non-triviality of this problem.

Let the pattern be A*A*A and assume that we know that in the construc-
tion phase the gap * was actually a gap of length between 0 and 5 positions,
.f0,5g. Then we could use these lengths 0 and 5 to come up with a pattern
A*f0,5gA*f0,5gA.

If the two sequences in the input matched by that pattern were ATTATTTA
and ATTTATTA, then clearly the most specific pattern � should be unambiguously
A.f2,3gA.f2,3gA .

If the two sequences were ATTATTTATTA and ATTTATTATTA, then there
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are more choices to match pattern A.f0,5gA.f0,5gA. If the requirement was
that one match per sequence is enough, the restricted length gaps can be replaced
by fixed length gaps: A...A..A that matches once in both sequences. On the
other hand, if all the original match positions should be preserved, the modified
pattern should be A.f2,3gA.f2,3gA .

Ambiguity also comes from the question of what is meant by a “more re-
stricted” version of the pattern. Let us consider two sequences CATTTATTTTA
and CTTTATTTA, and a pattern C*A*A. There are two options to match this pat-
tern: C.f0,3gA...A and C.f3,4gA.f3,4gA . Which pattern of the two is
better? Note that the sum of the lengths for flexibilities is the same for both of the
variants.

These examples show that in order to give any algorithms we first have to
define the criteria for comparing the patterns. First, do we require the pattern in
its limited form to match all the original input sequences, or do we require that
the pattern should match all the locations where the original pattern matched?
Second, what is the optimization function, how do we tell which presentation of
the pattern is better than other? And third, how do we find the pattern with the
highest score that occurs in all the required locations of the sequences?

These questions are not trivial as the answers may depend on the input data.
In some cases it is sufficient to have only one motif per sequence, sometimes the
motif should be repeated many times in sequences. Our task is to restrict the
flexibilities of each pattern so that all the (biologically relevant) occurrences of
the patterns can still be found. This gives us the formulation of the two problems:

1. Find a pattern with minimal total number of flexibilities that covers all the
sequences it occurs in.

2. Find a pattern with minimal total number of flexibilities that covers all the
matches within the sequences it occurs in.

The second formulation can be useful when dealing with sequences with mul-
tiple occurrences of the same motif. E.g. many of the Zinc finger proteins have
up to ten repetitions of the same Zinc finger motif. However, is it biologically
relevant to require all of these matches, or only the majority of them (assuming
that other “hits” are just due to random features of the sequences).

As known from the studies in proteins and DNA, it is often the case in biology
that the gap penalty should not be linear in the length of the gap but logarithmic.
This is due to the fact that once there is an insertion or deletion, then it is more
probable to extend an existing gap than to introduce a new one in a different place.
Instead of the sum above we might want to minimize some other function, as for
example �i=1::n�1 log(li � ki). The different cost function models for penalizing
different gaps should be developed together with the algorithms for finding them.
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We do not propose at this stage any definite solutions to the problem of mini-
mizing the gaps in patterns (as matched against the set of sequences). We propose
this as an open problem that can have alternative interpretations and solutions.

3.5 Patterns with groups and unrestricted wildcards (P5)

We have moved to the pattern classes that combine different features. First, we
consider a class of patterns that combines the group positions and unrestricted
length wildcard positions.

Problem P5:B Given a set of strings Sn = fS1; S2; : : : ; Sng, Si 2 ��, and
an integer K , construct all patterns � of type P5 ( � 2 (� [ �)+(�(� [ �)+)� )
such that � has at least one occurrence in at least K sequences of S1; S2; : : : ; Sn.

The Algorithm 3.18 that implements the discovery of patterns for problem
type P5:B, essentially combines the implementation ideas from the pattern classes
P2 (how to handle group positions) and P3 (how to handle unrestricted wildcards).

The correctness follows from the correctness of the original algorithms, and
the complexity analysis follows the ideas from the previous analysis.
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Algorithm 3.18 Frequent subsequences with group positions from a set of sequences
(P5:B)
Input: StringsSn = fS1; : : : ; Sng , thresholdK, character groups�
Output: Pattern trie with nodes defining patterns over(�[�)((�[�)[ f�(�[�))�g
that occur in at leastK different strings fromSn

Method:
1. S  S1# : : :#Sn#

2. Generate a mappingf1; 2; : : : ; jSjg ! f1; 2; : : : ; ng for countseq(Set)

3. Root  new node

4. Root:char  �

5. Root:pos  (1; 2; : : : ; jSj)

6. enqueue(Q;Root)

7. while N  dequeue(Q)

8. s 0

9. foreach p 2 N:pos

10. addp+ 1 to Set(S[p])

11. foreach 
 2 �, s.t.S[p] 2 
 addp+ 1 to Set(
)

12. if N 6= Root and p 2 Si where i > s // Only if p is within a new sequenceSi
13. s i // Remember which sequenceSi is being studied

14. w  0

15. while S[p+ w] 6=0 #0

16. addp+ w + 1 to Set(0�S[p+ w]0)

17. foreach 
 2 �, s.t.S[p+ w] 2 
 addp+ w + 1 to Set(
)

18. w  w+1

19. foreach characterc 2 (� [ � [ f�djd 2 �g [ f�gjg 2 �g) wherecountseq(Set(c)) � K

20. P  new node

21. P:char  c

22. N:child(c) P

23. P:pos Set(c)

24. enqueue(Q;P; front) // Enqueue to the front of queue

25. foreach characterc 2 (� [ � [ f�djd 2 �g [ f�gjg 2 �g) deleteSet(c)

26. deleteN:pos

27. end
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3.6 Patterns with groups and restricted-length wildcards
(P6)

Finally, consider the pattern discovery problem where group character positions
and wildcards of restricted length are allowed in the pattern language.

Problem P6:B Given a set of strings Sn = fS1; S2; : : : ; Sng, Si 2 ��,
and an integer K , construct all substring patterns � with restricted-length wild-
cards �(k; l) and group character positions (patterns of type P6, � 2 (� [
�)+(�(k; l)(� [ �) [ (� [ �))� ), such that � has at least one occurrence in
at least K sequences of S1; S2; : : : ; Sn.

As with previous pattern language types, we can combine algorithms for creat-
ing more complex pattern tries. The computational complexity grows proportion-
ally to the number of potential patterns, hence the time and space complexities of
the combined algorithms also increase. In practice, however, these pattern classes
are interesting and useful. For carefully selected input data sets the limited ver-
sions of these pattern classes can be used for practical pattern discovery purposes.

The complexity of the algorithms increases both in the number of group posi-
tions allowed in the pattern, as well as the number and lengths of the wildcards. As
the search is exhaustive, the worst case time complexity can grow exponentially.

3.7 General representation of the SPEXS algorithms

To summarize the algorithms of this Chapter, we present a more general version
of the pattern discovery problem.

General pattern discovery problem Given a set (or possibly several sets)
of input strings, a pattern representation language P , threshold K for the fre-
quency of the patterns, a pattern “fitness” function F , possible thresholds accord-
ing to the fitness, frequency or other criteria, discover and output the patterns
that have the highest fitness, are frequent in input and satisfy all the other criteria
specified by users.

The general solution is to generate a pattern trie according to the pattern lan-
guage while efficiently tracking the occurrences of patterns in the input sequences
for speeding up the pattern extension steps.
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Algorithm 3.19 The SPEXS algorithm
Input: StringS, pattern classP , output criteria, search order, and fitness measureF
Output: Patterns� from pattern classP fulfilling all the criteria, and output in the order
of fitnessF
Method:
1. Convert input sequences into a single sequence, initiate the data structures

2. Root  new node

3. Root:label = �

4. Root:pos  (1; 2; : : : ; n) // Assume empty pattern to match everywhere

5. enqueue(Q;Root; order)

6. while N  dequeue(Q)

7. Create all possible extensionsP 2 P ofN usingN:pos andS

8. foreach extensionP ofN

9. if patternP and position listP:pos fulfill the criteria

10. then

11. N:child P

12. calculateF(P; S)

13. enqueue(Q;P; order) // Insert toQ for further extensions

14. if P fulfills the output criteria storeP into output queueO

15. end

16. Report the list of top-ranking patterns from output queueO

Only the patterns that fulfill the output criteria are output in the order of fitness
F .

Note that the pattern generation (search) order is usually different from the
output order. Alternative search orders can be used, like

1. Breadth first (from shorter to longer patterns)

2. Depth first (e.g. alphabetic order)

3. Most frequent motifs first

4. Greedy search heuristics based on fitness measure (expand the most promis-
ing patterns first).

For example, the breadth-first order is achieved by a FIFO queue, the depth-first
order is achieved by a LIFO queue (stack). These can be easily implemented by
priority search queues.

Different search orders may change the size complexity of the algorithm, de-
pending for example on how much of the unnecessary information can be deleted
during the search.
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In practical applications we have found it useful to assume that the most inter-
esting patterns are those that are common to many sequences. Using the SPEXS
algorithm it is easy to generate patterns that are required to occur in all the input
sequences, all except one, all except two, etc. As the most frequent patterns are
the short ones that are not interesting as such, the SPEXS algorithm can be asked
not to report those.

For multiple input sequence sets the frequency can also be based on any in-
dividual subset of input sequences. Then the search can proceed so that first all
patterns that are common to all sequences in one set of the input sequences, in one
minus two, etc., regardless how frequent or infrequent they are in other sets. Then
the most discriminative patterns can be found relatively quickly as they should
usually be frequent in one set and not frequent in other sets of input sequences.

3.8 Practicalities and discussion

In this study we have not discussed the maximality of the patterns. For better
coverage on the subject see (Rigoutsos & Floratos 1998a). In our algorithms we
expand patterns always to the right, and in that way the maximality would be
harder to achieve. This is not a restriction however, as each “interesting” pattern,
before it is output, can be expanded to its maximal variant in both directions so
that no occurrence would be lost and each group position would contain only the
minimal number of characters. This can be done essentially in a time proportional
to the number of matches of the pattern and the length of the pattern span. For
gap minimization the problem is harder however, as noted in previous sections.

With our pattern discovery approach it is possible that two different pattern
prefixes (branches in the pattern trie giving alternative pattern representations)
have exactly the same set of occurrences. As each branch would be expanded
independently, the subtrees below these branches would be identical. In general,
it is not possible to discover such patterns without comparing the sets of occur-
rences. In our algorithm we maintain the lists of locations of each pattern, and
the problem can be solved by keeping track of which sets of positions have been
studied earlier. This can be done by maintaining the set of position lists in the
data structure, from where the lookups (whether exactly the same set of positions
has occurred elsewhere in the pattern trie) can be made. We have experimented
with this feature and found that for some data sets with conserved complex motifs
we can get a considerable speedup to the pattern discovery process. This area of
research will need to be investigated further.
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Chapter 4

Pattern discovery from suffix trees

In this chapter we consider a slightly different pattern language. First we present
a biological motivation.

Consider a DNA-binding protein that is able to recognize specific stretches of
DNA. Assume that this stretch is represented by a substring pattern. The protein,
however, is also able to recognize variants of the motif where one or a few posi-
tions have changed. We could define the binding site in the DNA as the most fa-
vorable for the protein. At the same time also all other reasonably similar stretches
of the DNA would be potential binding sites. It may not be so significant in which
positions exactly the bases of the DNA are different, as long as there are not too
many of them. These changes can not be covered by group character positions
within the motif.

To facilitate finding these patterns, we first define the approximate occurrences
of a pattern allowing some characters to be changed, deleted, or added. These
“near-perfect” matches cannot be captured by the regular patterns considered in
Chapters 2 and 3.

We define two more pattern classes:

� Substring patterns with mismatch distance at most D

� Substring patterns with edit distance at most D

By restricting ourselves to substrings of S, we are not able to find patterns that
occur only approximately and never as exact substrings of S. This harder prob-
lem is described and studied in (Pevzner & Sze 2000), who call it the Challenge
Problem:

Challenge Problem. (Pevzner & Sze 2000) Find a signal in a sample of
sequences, each 600 nucleotides long and each containing an unknown signal
(pattern) of length 15 with 4 mismatches.

A quote from (Pevzner & Sze 2000): Why is finding a rather strong (15;
4)-signal so difficult? The problem is that any two instances of the mutated (l;

67
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d)-signal may differ in as many as2d positions. As a result, any two instances
of the signal in the Challenge Problem may differ by as many as 8 mutations, a
rather large number. The numerous spurious similarities with 8 mutations in 15
positions disguise the real signal and lead to difficulties in signal finding.

The Challenge Problem can be solved by first generating all the possible
strings and then matching them approximately against S. The number of such
patterns is lj�j, where l is the length of patterns. There is over 1 billion such
15-mers over four-letter DNA alphabet.

We make a key simplification that the signal is present in at least one of the
sequences. Other matches are then identifiable by an approximate matching of
that exact motif.

A simple solution to the discovery of the above pattern classes would be to
extract all substrings of S and match them approximately against the whole S.

We introduce a new all against all approximate matching procedure that is
essentially a pattern discovery approach for approximately matching substrings.
At the end of the chapter we describe how patterns with group characters (P2)
defined in Section 2.1 can be discovered from a preconstructed suffix trie of S.

First, we formalize the notion of approximately matching (sub)strings.

4.1 Edit and mismatch distances and approximately
matching patterns

The edit distanced(S; T ) between two strings S and T is defined as the minimum
number of edit operations needed to transform a string S into T . The allowed
edit operations are insertion, deletion, and change. An insertion operation inserts
a character into the string, i.e. it replaces the empty string by a character from
�. A deletion removes one character from the string. And a change replaces a
character by a different one. The edit distance d(S; T ) can be calculated by the
following recursive formula:

d(S; �) = d(�; S) = jSj

d(S; T ) = d(S0c; T 0b) = min(d(S0; T 0b)+1; d(S0c; T 0)+1; d(S0; T 0)+ t(c; b));

where S = S0c and T = T 0b, and

t(c; b) =

(
0 if c = b
1 otherwise

The mismatch distance, also called the Hamming distance, is a special case
of the edit distance with change as the only edit operation allowed. Mismatch
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distance d(S; T ) between two strings S and T of equal length can be calculated
by the recursion

d(�; �) = 0

d(S; T ) = d(S0c; T 0b) = d(S0; T 0) + t(c; b);

where S, S0, T , T 0, and t(c; b) are defined as for the edit distance.
Given a substring � of S and a distance D, the pattern � matches the string�

approximatelywith distance at most D if there exists a substring � of � such that
d(�; �) � D. We define the language of approximate pattern occurrences as

L(�;D) = f � � 2 ��; and d(�; �) � D g:

4.2 Approximate matching in suffix trees

The suffix trie data structure enumerates all the possible substrings of the sequence
S. First we provide a framework for matching a single string approximately
against the suffix trie, and then we generalize it for the all against all matching
of all the substrings of S against all other substrings of S. Note that the algorithm
works in a similar way also for the compact suffix tree version, where more care
is needed in the implementation.

Consider a substring pattern P and a problem of finding its exact occurrences
in S. This matching is achieved by simply following a unique path in the trie
defined by P .

The approximate matching of pattern P under edit distance measure takes
O(jP j�jSj) time by straightforward dynamic programming approach. By building
a suffix tree for S the search can be improved by avoiding possible repeat regions
in S (Ukkonen 1993). The approximate search of the pattern P against suffix tree
T is usually performed by the depth-first dynamic programming approach against
all the branches of the tree (Ukkonen 1993; Hunt, Atkinson, & Irving 2001). As
the string-length of the suffix tree can be quadratic in jSj, it is not obvious that
this matching can always outperform the trivial O(jP j � jSj) algorithm.

We propose an alternative algorithm for matching P approximately against
suffix tree T . We perform a single search over T that follows the approximate
matches of P to all the branches of the tree T , where the distances from the
prefixes of P stay below the threshold D. Dynamic programming is simulated by
maintaining lists of nodes organized according to the distance from the pattern P .
We call this approach the generalized traversalof the tree.

We use the node identifier N also to represent the string associated with that
node, N:pattern(). In this notation, d(P [1::i]; N) is the edit distance between
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the prefix of P and a substring N:pattern() of S. For a string P we denote nodes
N in suffix trie T such that d(P;N) � D as follows:

Q(P ) = fN N 2 T; d(P;N) � Dg:

We divide Q(P ) further into subsets

Qi(P ) = fN N 2 T; d(P;N) = ig:

Obviously,

Q(P ) =
D[
i=0

Qi(P ):

The generalized traversal is given in Algorithm 4.1. We assume that
Q(P [1::i]) can be calculated efficiently from Q(P [1::i � 1]) and the new char-
acter P [i]. We denote this by function newdistances(Q(P [1::i � 1]); P [i]) on
line 3 of the algorithm.

Algorithm 4.1 Find approximate occurrences of stringP in S

Input: Suffix trieT for stringS, patternP , distanceD
Output: All substringss ofS such thatd(P; s) � D.
Method:
1. Q(�) fN N 2 T; d(�;N) � Dg

2. foreach i 2 f1::jP jg

3. Q(P [1::i]) newdistances(Q(P [1::i� 1]); P [i])

4. if Q(P [1::i]) = ; then return ”No match”

5. foreach N 2 Q(P )

6. print N:pattern() // A substring represented by nodeN

Using this generalized traversal, we can introduce the all-against-all approxi-
mate matching algorithm that finds for each substring p of S all other substrings
s of S such that d(p; s) � D. Algorithm 4.2 traverses the tree T in a depth-first
manner and computes for each node in the tree the lists of nodes that are within
the distance D.
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Algorithm 4.2 General approximate all against all matching
Input: Suffix trieT for stringS, distance thresholdD
Output: All substringsp of S, with all substringss ofS such thatd(p; s) � D.
Method:
1. procedure Match(P;Q)

2. Output the patternP and its approximate occurrencesN ,N 2 Q

3. foreach P:child(c)

4. Q0  newdistances(Q; c)

5. Match(P.child(c), Q’) unless Q0 = ;

6. end

7. begin

8. Q fN j N 2 T and d(�;N) � D g

9. Match(T:root;Q )

10. end

Next we show how to implement Algorithms 4.1 and 4.2 efficiently for the
mismatch distance and the edit distance.

4.3 Substring patterns with D mismatches

Problem P1:A:mismatch Given a string S 2 ��, and two integers K;D, con-
struct all substring patterns � (patterns of type P1) such that � has at least K
approximate matches in S with mismatch distance at most D.

The proposed Algorithm 4.3 traverses the trie T in depth-first manner. For
each node P 2 T , a list of nodes Q(N) is generated such that d(P;N) � D.
The lists Q(P ) are organized into sublists Qi(P ) based on distance i from P , as
defined in the previous subsection.

The extension of the pattern P by one character c at a time is given on lines 4–
10, which essentially implement the function newdistances(Q(P ); P:child(c))
of Algorithm 4.2. The temporary lists of nodes Ri are used to collect the results
during the extension by c.



72 4 PATTERN DISCOVERY FROM SUFFIX TREES

Algorithm 4.3 All-against-all matching under mismatch distance
Input: Suffix trieT for stringS, and integerK and distanceD
Output: Substrings ofS that have at leastK approximate matches inS with mismatch
distance at mostD.
Method:
1. procedure Match(P;Q)

2. Output patternP and all its matchesN , N 2 Q = [Di=0Q
i

3. foreach P:child(c)

4. foreach i 2 f0::Dg

5. foreach M 2 Qi

6. foreach M:child(e)

7. if e = c

8. then enqueue(Ri;M:child(e) )

9. else enqueue(Ri+1;M:child(e) ) unless i+ 1 > D

10. R 
SD
i=0 R

i

11. if
P

r2R jr:posj � K then Match(P:child(c); R)

12. end

13. begin

14. R0  T:root

15. Match(T:root; R0)

16. end

The mismatch distance is defined only for sequences of the same length. The
occurrences of different substrings of equal length are disjoint. Hence, the number
of approximate occurrences of a pattern is the sum of the number of occurrences of
each approximately matching substring and the test on line 11 correctly calculates
the number of approximate matches by pattern N:child(c):pattern.

Under mismatch distance there can be at most D possible character changes
from the pattern. For a string P of length l there is a total of

PD
i=1

�l
i

�
� (j�j � 1)i

strings � of length l with 1 � d(P; �) � D: if there is i changes, they can be in
any i positions out of l possible ones. Each mismatch can replace a character in
P by any of the j�j � 1 remaining characters. Each list Q can contain only the
nodes at the same depth in the tree, thus the worst case estimate for the number of
nodes in all different lists during the depth-first trie traversal is the size of the trie.
This gives us the worst-case space requirement for the Algorithm 4.3.

Algorithm 4.3 reports all the substrings p of S, and for each p a list of all other
substrings s of S with distance d(p; s) � D. For this the algorithm visits each
node P in the trie T and outputs the substrings from the list Q containing nodes
with edit distance at most D from P . In order to output a substring corresponding
to a child P:child(c), the new list R needs to be constructed from Q first. Poten-
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tially every child of every node in Q needs to be considered for inclusion into R.
There are at most min(jQj � j�j; w) such nodes, where w is the width of the trie at
that level. For constructing the new list R the algorithm visits the nodes in the list
Q and each of their children. As the alphabet size j�j can be considered constant,
the running time of the Algorithm 4.3 is linear in the size of output.

Algorithm 4.3 avoids visiting subtrees where respective substrings are known
to occur less frequently than K times in S (see line 11). If the substring �, rep-
resented by a node N(�), occurs in K different locations with mismatch distance
of at most D, then any extension �c can occur in no more than K locations with
distance D. If the number of approximate occurrences of � drops below K , we
can skip the study of the subtrees of N(�).

The number of all possible strings with mismatch distance at most D grows
exponentially with the length of the string and number of mismatches allowed.
However, in the suffix trie the width of the trie determines the possible size of lists
Q.

4.4 Substring patterns with edit distance D

In this section we generalize approximate patterns from using the mismatch dis-
tance to the more general edit distance, allowing also insertions and deletions.

Problem P1:match:edit Given a pattern P 2 ��, a string S 2 ��, and
distance threshold D, find all the approximate matches of P in S with edit distance
at most D from P .

For each prefix p of P we generate a list of nodes in the trie that have distance
at most D to the prefix p, i.e.Q(p) = (Q0(p); Q1(p); : : : ; QD(p)) and R 2 Qi(p)
if d(p;R) = i. The sublists Qi(p); Qj(p) are disjoint when i 6= j.

Given a pattern P and the suffix trie T of S we want to find all the nodes
corresponding to substrings s of S with edit distance d(P; s) � D. We use the
generalized tree walk approach for matching the pattern P against all the branches
of the trie simultaneously. The algorithm proceeds by identifying all the nodes
from T that correspond to substrings with edit distance of at most D to prefixes
P [1::1]; P [1::2]; : : : ; P [1::jP j] of P . The nodes corresponding to substrings with
an edit distance i are kept in lists Qi.

Edit distance has been defined as the minimum number of edit operations
needed to transform one string to another. There can be many other ways as well,
which are not necessarily optimal. For example, the string AG can be converted to
ATG by first substituting G to T and then inserting G. In a more effective way, it
is enough to insert T between A and G. To make sure that the minimal distance is
always considered, we perform the minimization step (lines 11 to 13). Essentially,
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the node N is removed from a list Qj if it already belongs to a list Qi where i < j.

Algorithm 4.4 Algorithm for finding approximate occurrences of stringP in S
Input: Suffix trieT for stringS, patternP , edit distance thresholdD
Output: Substringss ofS such thatd(s; P ) � D.
Method:
1. foreach (i 2 f0::dg) Qi  fN j d(�;N) = ig

2. Q 
SD
i=0Q

i

3. foreach j 2 f1::jP jg

4. c P [j]

5. foreach i 2 f0::Dg

6. Qi(P [1::j]) fN jN:parent 2 Qi(P [1::j � 1]); N:label = cg// Identity

7.
S
fN N:parent 2 Qi�1(P [1::j � 1]); N:label 6= cg // Change

8.
S
fN N:parent 2 Qi�1(P [1::j])g // Insertion

9.
S
fN N 2 Qi�1(P [1::j � 1])g // Deletion

10. Q(P [1::j]) 
SD
i=0Q

i(P [1::j])

11. foreach N 2 Q(P [1::j])

12. if 9m < i suchthat N 2 Qm(P [1::j])

13. then removeN fromQi(P [1::j])

14. if Q(P [1::j]) = ; then return ”No match”

15. Report all approximate occurrences of patternP fromQ(P )

Problem P1:A:edit Given a string S 2 ��, and two integers K;D, con-
struct all substring patterns � (patterns of type P1) such that � has at least K
approximate matches in S with edit distance at most D.

All-against-all matching of substrings of S can be done by traversing the suf-
fix tree T of S and computing for each node N the set of nodes in T that are
within distance d from N . We present a procedural implementation for finding
the approximately matching substring patterns in Algorithm 4.5 .
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Algorithm 4.5 Approximate all-against-all matching under edit distance measure
Input: Suffix trieT for stringS, integersK and edit distance thresholdD
Output: Substrings ofS with at leastK approximate matches inS with distance at most
D

Method:
1. procedure Match(P;Q(P ))

2. Output the patternP and its approximate occurrencesN ,N 2 Q(P )

3. foreach P 0  P:child(c)

4. foreach i 2 f0::Dg

5. foreach M 2 Qi(P )

6. enqueue(Qi+1(P 0);M) unless i+ 1 > D // Deletion ofc

7. foreach M:child(e)

8. if e = c then enqueue(Qi(P 0);M:child(e)) // Identity

9. else enqueue(Qi+1(P 0);M:child(e)) unless i+ 1 > D // Change

10. foreach M 2 Qi(P 0)

11. foreach M:child(e)

12. enqueue(Qi+1(P 0);M:child(e)) unless i+ 1 > D // Insertion ofe

13. Q(P 0) [di=0Q
i(P 0)

14. foreach M 2 Q(P 0)

15. removeM fromQi(P 0) if 9j < i;M 2 Qj(P 0)

16. Match(P 0; Q(P 0)) if number of matches ofM 2 Q(P 0) � K

17. end

18. begin

19. foreach i 2 f0::Dg

20. Qi  fN j d(�;N) = Dg

21. Q [Di=0Q
i

22. Match( T.root , Q )

23. end

The complexity of Algorithm 4.5 for string S of length n can be estimated as
follows. First, the full suffix tree is traversed. At each node P the work is propor-
tional to the time used to calculate new lists for its children P 0, in other words, to
calculate Q(P 0) from Q(P ), such that d(P 0; N) � D for all N 2 Q(P 0). This
is done by minimizing over 4 possible edit operations (identity, change, insertion,
and deletion) from lists of nodes Q(P ) and Q(P 0).

The list of nodes Q(P ) contains only those nodes N , for which d(P;N) � D,
which is also the size of the output for substring N:pattern(). Thus, the work is
proportional to the size of the output.

The lengths of the strings that have edit distance at most D to a string s of
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length l, cannot differ by more than D from l. Suffix trie T for the string S of
length n can have at most n�l+1 nodes representing different substrings of length
l. Thus for any substring of S there can be at most (2D + 1)(n � l) = O(Dn)
substrings of S within the edit distance D. The size of the trie can be quadratic
O(n2) hence the algorithm has worst case time complexity O(Dn3).

An all-against-all sequence matching algorithm that aims at finding pairwise
distances for all possible substring pairs has been proposed before (Baeza-Yates
& Gonnet 1990; 1999). If a database has N sequences, each with an average
of m characters (a total of Nm characters), a naive approach would require
O(N2m4) operations. The solution in (Baeza-Yates & Gonnet 1999) provides
an O((Nm)�m log(Nm)) average time solution, where � is a real number be-
tween 0 and 2, depending on the similarity matrix used. The same problem can be
studied for two strings P and S of lengths m and n respectively. The all-against-
all approximate matching problem can call for a total output of size n2m2. A
trivial algorithm that does not use suffix trees can be used to achieve the calcula-
tion time of O(n2m2) by simply matching each of the substrings of shorter string
P against longer sequence S. The suffix-tree based solution of (Baeza-Yates &
Gonnet 1999) has a worst-case time complexity O(C + R) where C is the time
used for computations and R is the size of the output (Gusfield 1997). The com-
putation time C is the suffix-tree length of the suffix tree for string S times the
length of the suffix tree for string T .

Our approach has a similar time complexity to that of (Baeza-Yates & Gonnet
1999), but as the method is presented in quite a different form, it may be easier
to implement with all the required modifications necessary for efficient frequent
pattern discovery. The evaluation of the two methods would need to be measured
in practical applications.

4.5 Patterns with group characters

In Section 3 we studied the systematic construction of patterns from a predefined
pattern class by creating a pattern trie. Here we study the same problem of pattern
discovery based on the suffix trie T of S.

Generalized regular patterns can be searched from T by comparing them
against all possible branches of T . For example, occurrences of [AB]ABA are found
by looking for nodes N(A) and N(B) and then following the paths ABA from
both of these. The result contains two substrings AABA and BABA if they are both
present in the data. Instead of building a pattern trie as in Chapter 3 it is possi-
ble to use an implicit search over the pattern language to perform the generalized
tree-walk in the precomputed suffix trie.

For the generalized tree-walk we use the list of nodes as a generalization of
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a single node. For example to follow the path labeled by character ’A’ from this
generalized node, we follow the paths labeled ’A’ from all nodes in the corre-
sponding list. To insert a group character [AB] in the pattern � we need to follow
all potential branches, i.e. the labels A and B from all nodes in the list.

In our example, given a list of nodes (generalized node, which we represent
by pattern prefixes) N([AB]), the tree-traversal algorithm traverses at first nodes
N([AB]A), then N([AB]B) etc. After traversing paths with single-character labels,
also the group characters can be followed. Thus, the generalized nodeN([AB][AB])
corresponds to a list of four nodes: N(AA), N(AB), N(BA), and N(BB).

Algorithm 4.6 Generate patterns with group characters
Input: Suffix trieT for stringS, integerK, character groups� = fg1; : : : ; gj�jg
Output: All substring patterns with group characters that occur at leastK times inS
Method:
1. procedure tree-walk(P;L)

2. // PatternP matches all substrings ofS defined by nodes in listL

3. OutputP and combined information about it from nodes inL

4. foreach c 2 �

5. Q fN N:parent 2 L;N:label = cg

6. tree-walk(Pc;Q) if
P

N2Q jN:posj � K

7. foreach g 2 �

8. Q fN N:parent 2 L;N:label 2 gg

9. tree-walk(Pg;Q) if
P

N2Q jN:posj � K

10. end

11. begin

12. Q fT:rootg

13. tree-walk(�;Q)

14. end

Algorithm 4.6 is similar to the algorithms presented in Section 3.2. Here
the explicit construction of the pattern trie is replaced by an implicit search over
the pattern space while using a suffix trie for evaluation of the frequency of the
occurrences of each pattern. When pattern occurrence frequency drops below K ,
the search is stopped and no other extensions of the pattern are attempted.

Similarly to the Algorithm 4.6 it is possible to modify all algorithms from
Chapter 3 to use the search over the pattern space combined with efficient pruning
of that space by using the preconstructed suffix trees. The time complexity of the
algorithms will not change, although depending on the frequency thresholds K
the search can consume less memory (if threshold K is very low). On the other
hand, for large K the construction of the suffix tree can be time-consuming and
could be avoided.
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Chapter 5

Post-processing discovered patterns

In the previous chapters we studied several pattern discovery problems and algo-
rithms for solving them. In practical applications for novel data sets, users need
to make decisions (educated guesses) about the ways they approach the pattern
discovery problem. The obvious questions are the choice of pattern language, the
fitness functions, and significance cut-off values.

When analyzing a novel data set it is not known in advance whether the data
contains any patterns that would be described as interesting by the domain experts.
Some of the findings may be trivial in the sense that they are well-known, or they
are just some artifacts of the data like simple repeats, for example. Some of the
interesting features in the real data may occur in the twilight zone, where their
significance is obscured by occurrences of many irrelevant patterns.

It is quite common that pattern discovery tools report hundreds or thousands
of patterns, which need to be summarized in order to make them useful for the re-
searchers. For example, it is common that pattern discovery is performed to many
sets of sequences independently, and the results need to be collected and summa-
rized across these analyses. Some of the discovered patterns may be variants of
each other. They may differ only in one position or add a few extra positions to
the left or right of the pattern.

In this chapter we discuss some techniques that help to deal with the problem
of managing the size of the output by postprocessing the discovered patterns. We
do not attempt to be complete or even describe all the approaches in detail. Rather
we want to present and discuss some of the practical approaches which we have
found useful ourselves while analyzing real data sets.

79



80 5 POST-PROCESSING DISCOVERED PATTERNS

5.1 Clustering of patterns by their mutual similarity

In a recent study (Vilo et al. 2000) (see also Chapter 6.1), we applied pattern
discovery for many sets of sequences, partly overlapping with each other. The
patterns were discovered by independent analysis tasks, often revealing either ex-
actly the same or only slightly different representations of the same motifs. When
we combined the results from these independent pattern discovery tasks we had
an excess of interesting patterns, too large for human inspection.

We used a clustering technique to group together patterns that were likely to
represent the same biological motifs. Most of the common clustering procedures
use the pairwise similarity between the objects to be clustered, and perform the
clustering based on these distances. The following distance measures can be used
for clustering patterns.

5.1.1 Pattern similarity measures

5.1.1.1 Similarity based on edit and mismatch distances

The two simplest measures are based on the mismatch distance and edit distance
defined in Chapter 4. These measures however are not directly usable, as the
distance is not normalized by sequence length. For example, the following two
pairs of sequences both have the same edit distance between them d(AT; CG) = 2,
and d(ATCGATCGATCG; ATCGAAGGATCG) = 2, although the first pair clearly does
not represent similar motifs. By normalizing the edit distance by the length of the
shorter sequence, a distance measure that is also a metric, can be defined:

dd(�; �) =
d(�; �)

min(j�j; j�j)
:

This distance can be used for comparing substring patterns. It is possible to gen-
eralize edit and mismatch distances for patterns with group character positions.

5.1.1.2 Pattern similarity based on mutual information content

Consider patterns with character group positions i.e. the patterns of the form
� = a1a2 : : : ap, where each ai is a non-empty set of nucleotide letters, i.e. ,
ai � fA;C; T;Gg. For this case the similarity can be measured using a definition
of information content I(�) of a pattern � (Jonassen, Collins, & Higgins 1995).
Let �1;2 be a pattern from the predefined pattern class that is a generalization
both of �1 and of �2 maximizing the information content I(�1;2). The similarity
between pattern �1 and �2 is then defined as

dI(�1; �2) =
I(�1;2)

min(I(�1); I(�2))
:
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In our experiments with yeast (Vilo et al. 2000) (see also Section 6.1.3) we
clustered substring patterns using substring patterns also as the class of general-
izations of the two substring patterns �1 and �2. The similarity of two substring
patterns is then the ratio of the length of the maximum overlap between �1 and �2
divided by the length of the shorter pattern.

This distance can not be directly used for patterns with wildcards as the pattern
generalization �1;2 is not well defined.

5.1.1.3 Distance measures based on the match content

For complex pattern classes the similarity of the patterns may be hard to deter-
mine from the patterns themselves. Wildcards, for example, can hide important
regions that would allow to determine the similarity. In order to compare patterns
it is sometimes useful to measure the similarity between the original sequence
stretches matched by the patterns, not the patterns themselves. Note that each
pattern may define a large set of matched substrings in input sequences, hence
the similarity measure should be based on the similarity between two sets of se-
quences. This is a rather generic approach, as it can be used even when original
patterns are allowed to match approximately.

5.1.2 Clustering of patterns

Given a distance measure for comparing pairwise similarities between the pat-
terns, any clustering procedure that relies on pairwise distances can be used for
clustering the patterns. A standard hierarchical clustering that merges smaller
clusters (initially consisting of single objects) into larger ones. This tree hierar-
chy can be explored for example by cutting the tree at a certain height, or used
interactively by looking at smaller and more restrictive clusters. The hierarchical
clustering of substring patterns has been implemented in the EPCLUST package
of Expression Profiler (see Section 7.1).

Partitioning based clustering methods are an alternative to hierarchical clus-
tering. Many of these standard methods (K-means, Self Organizing Maps, etc) use
the Euclidean properties of the object space, for example for defining the cluster
centers. This is not appropriate for sequence patterns. Alternatively, graph theory
based methods could be used, for example.

The K-medoids clustering could also be readily used for pattern clustering.
K-medoids is similar to K-means, only it uses as cluster centers the original data
objects. Instead of moving cluster centers to the center of gravity of a particular
cluster, the object which appears to be most central to the cluster is chosen.

Once the patterns are clustered, a report about each cluster is shown to users.
The report may simply be a list of all original patterns in each cluster, an align-
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ment of patterns, a consensus sequence representing all patterns in a cluster, a
list of sequences matched by patterns, an alignment of the sequences matched by
patterns, a position weight matrix generated from that alignment, or its graphical
representation by sequence logos. These features are implemented in Expression
Profiler with a combination of EPCLUST, URLMAP, and SEQLOGO packages.
The position weight matrices are described in the next subsection and a strategy
for identifying them is outlined.

5.2 Approximate patterns and probabilistic profiles

In biological applications the discovered patterns identify certain features and
characters on sequences corresponding to regions and atoms in real physical
molecules. Often the real physical properties are not as deterministic on-off prop-
erties as the discrete patterns that either match or do not match the sequence.
For example, the proteins that recognize certain features of DNA may recognize
”fairly similar” sequences of DNA. The concept of similarity is usually more com-
plex than a simple edit or mismatch distance used in Chapter 4. Usually the cost of
the mismatch is context-dependent, i.e. in some positions the change is more per-
missible than in others. An elegant way to capture this is based on position weight
matrices, which assign a different weight or cost to every position of a motif. For
the history of DNA binding site representation and discovery see (Stormo 2000).

The most commonly used weighting scheme for position weight matrices is
to use the information content of each position normalized based on the base fre-
quency of each site.

I(i) =
X

b2fA;C;G;Tg

fb;i log2
fb;i
pb

In the above formula fb;i is the observed frequency of character b in position
i of the set of aligned sequences. The base probability pb corresponds to the
probability of occurrence of a character in the entire genome. When matching the
position weight matrix against a sequence, the weights fb;i log2

fb;i
pb

are summed
over the length of the sequence for each position i based on the base b occurring at
that position. Depending on the cut-off threshold one can then determine whether
the matrix matches the sequence or not.

The most common methods for identifying these position weight matrices are
based on Expectation Maximization which is computationally intensive. Here
we propose an alternative algorithm based on the previously identified discrete
pattern.

Assume that we are given a set of positive sequences S+ and a set of negative
sequences S� and a pattern � that is more frequent in S+ than in S� based on the
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ratio or probability as defined in Sections 6.1.1 and 6.1.3.2 respectively. The task
is to modify � into a position weight matrix representation while increasing the
sensitivity of the pattern and not losing the specificity.

Algorithm 5.1 (Pattern2Motif) Position weight matrix generation
Input: Two sets of stringsS+, S�, fitness measureF , pattern�
Output: Position weight matrixPWM�;d

Method:
1. for d = 1; 2; : : :D // D is usually small, 2-5

2. Match� against sequences ofS+ using approximate matching
allowing ford mismatches

3. Create a position weight matrixPWM�;d based on the matched regions

4. Estimate the fitnessF(PWM�;d; S+; S�)

5. Output thePWM�;d that gave the bestF(PWM�;d; S+; S�)

We show in Section 7.2 how this simple procedure, applied in a manual man-
ner, has allowed us to improve the quality of the prediction of the DNA binding
site. The full capability of such an approach needs to be investigated further.

This approximate matching based approach uses discrete patterns for speeding
up the search for the most interesting probabilistic weight matrices. Usually the
techniques for identifying these probabilistic profiles are time-consuming. The
discovered matrices can be used as such or they can be further refined by seeding
them as an input to Expectation Maximization based methods.

Position weight matrices however are not able to handle insertions and dele-
tions (indels), hence that representation may not be appropriate for patterns with
flexible wild-card positions or regions matched by patterns approximately, if the
approximate matching allowed for indels.

5.3 Secondary pattern discovery - patterns from patterns

A strong recurring feature that is common to many of the interesting patterns
may be the core of the discovered patterns. Thus, it may be useful to repeat the
pattern discovery on a set of interesting patterns. A pattern that covers a large set
of interesting motifs, and the respective alignment of these motifs based on the
common pattern can be shown to end-users.

Given a list of interesting patterns we are faced with a family characterization
problem. In a separate study (Brazma et al. 1996; Brazma, Ukkonen, & Vilo
1996) we developed a general pattern fitness criteria for the pattern conservation
problem based on the Minimum Description Length (MDL) and demonstrated
how this measure can be used directly both for finding the patterns as well as for
producing the grouping of the sequences based on these patterns (see Section 6.3).
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This approach would be suitable for pattern discovery from interesting patterns
providing a conceptual clustering type of approach where each cluster is described
by a suitable concept, the consensus pattern.

5.4 Visualization techniques

The list of patterns, even if summarized by the methods described above, does
not tell the context in which these patterns occur. For users, it is often more
useful to see where along the sequences the patterns occur. Visualization allows
to determine the relationships between the important regions in the sequences. An
effective visualization technique is to display sequences graphically and visualize
the regions that are matched by each pattern by color-coding.

We have developed methods and tools that allow to visualize the sequences
and occurrences of motifs on these sequences alongside with other information
about these sequences. Most notably, we have combined the visualization of the
gene expression profiles and gene regulatory sequences with potentially important
regulatory signals along these upstream sequences (see Section 7.1, and Figures
7.2, 7.3). Through such a combined visualization a new quality in understanding
the significance of discovered patterns can be achieved.

Another example of the usefulness and applicability of these visualization
methods is discussed in Section 6.2. There, the visualization shows the protein
topology (all the start positions of intracellular loops are aligned) and occurrences
of patterns on the different regions (intracellular loops) along these sequences.



Chapter 6

Applications and experimental results

6.1 Discovery of the putative transcription factor binding
sites

The 12 million character long complete genome of the yeast S.cerevisiaehas been
publicly available for a while (Goffeau et al. 1996), thus making it one of the
first major model organisms for data analysis methods development. It has been
estimated that yeast contains about 6000 genes, i.e., fragments of the DNA that
encode the proteins. The putative genes (so-called open reading frames - ORFs)
have been annotated in several yeast databases (MIPS, SGD, YPD).

A major role in gene regulation in eukaryotic organisms is played by specific
proteins, called transcription factors. By binding to sequence-specific sites in the
DNA, called transcription factor binding sites, they influence the transcription of
a particular gene. The transcription factor binding sites are located in promoter
regions. In yeast these regions are predominantly (but not exclusively) in the
immediate vicinity of the gene (typically less than a thousand basepairs upstream
of the translation start site). These sites are specific DNA sequences of length
from about 5 to 25 nucleic acids, and in yeast they are usually located within a
few hundreds of nucleotides upstream from the gene. For the schematic overview
of information flow inside the cells, see Figure 6.1.

Recently many surveys about transcription factor binding site representation
and discovery methods have been published. The history of these methods has
been discussed in (Stormo 2000), mathematical and algorithmic models for pro-
moter sequence analysis with the emphasis on prokaryotic promoter sequences
in (Vanet, Marsan, & Sagot 1999), and combining the gene expression data and
promoter analysis in (Zhang 1999; Vilo & Kivinen 2001; Ohler & Niemann 2001;
Werner 2001).

We describe here computational experiments on yeast Saccharomyces cere-
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visiaethat are aimed at discovering the binding sites. The first method is based on
direct comparison of upstream sequences (putative promoter regions) to genomic
DNA; and the second one utilizes the gene expression microarray data for first
grouping together genes that are coexpressed and then identifying the motifs in
the upstream sequences of the coexpressed genes.

Figure 6.1: Schematic view of the information flow in the cell and the microarray
technology measuring the mRNA expression levels. Genes in the DNA encode
the proteins, which are produced by first transcribing the DNA into mRNA taking
into account the intron-exon structure of the gene, and then translating the mRNA
into amino-acid sequences of proteins. Microarray holds the fingerprints of genes,
the single-stranded DNA complementary to the mRNA molecules. The mRNA
from the two samples are then extracted, labeled by different fluorescence labels
(e.g. red and green respectively), mixed together and hybridized competitively
on the microarrays. The relative abundances of the mRNA in two samples are
quantified by comparing red and green channel intensities on the two channels.
Spot measurements and possible replicate experiments are then normalized and
transformed into gene expression data matrix where gene expression levels (rows)
in different samples (columns) are represented.
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6.1.1 Comparison of upstream sequences to random genomic regions
on a full genomic scale

One of the first questions when analyzing full genomes is whether there are any
particular features in the putative promoter regions that would make them dif-
ferent from the rest of the genome. If there are, then we could identify putative
transcription factor binding sites by purely comparing the upstream regions to
other genomic regions. We have performed this analysis in a systematic manner
for the yeast Saccharomyces cerevisiae(Brazma et al. 1998b).

The motivation is to find the patterns that are more often observed in the up-
stream regions than in the genome in general. To evaluate the patterns we use as
the fitness function F the ratio of the number of positive examples matching the
pattern divided by the number of negative examples matching the pattern. Intu-
itively, this ratio tells how much more frequent are the occurrences in the upstream
sequences as compared to the genome in general. Additionally, we require that
the pattern matches some minimal number t of upstream sequences. We say that
the upstream sequences form the positive examples and random genomic regions
form the negative examples, and define the ratio as follows.

Rt(�; S+; S�) =

8><
>:

jS+\L(�)j
jS
�

\L(�)j ; if jS+ \ L(�)j � t and jS� \ L(�)j > 0

1; if jS+ \ L(�)j � t and jS� \ L(�)j = 0
0; otherwise

(6.1)
A normalized version of this ratio takes into account the possible differences

in the sizes of sets S+ and S�. Additionally, by adding two small constants c1
and c2 to the numbers of occurrences in each input set, we can eliminate the
“division by zero” problem and the problem of having possibly very high ratios
when numbers of pattern occurrences are very small.

R0(�; S+; S�) =
(jS+ \ L(�)j+ c1)(jS�j)

(jS� \ L(�)j+ c2)(jS+j)
(6.2)

We selected all sequences of length 100, 300 and 600 nucleotides upstream to
every annotated gene. For each upstream region we also extracted a random re-
gion of the same length from the genome. We searched these sets of sequences for
all the patterns from the classes P1 and P2 (allowing only for a limited number
of single-position wildcard characters, i.e. allowing only for one character group
g = � for no more than in a few positions in �) that occur in at least some given
number (in practice 10) of upstream sequences, and rated these patterns according
to the fitness function Rt(�; S+; S�) given in equation (6.1), treating the random
genomic regions as the negative examples. We compared the distribution of pat-
tern occurrences in upstream sequences to the distribution in the random regions.
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The results from the control experiments comparing two sets of random regions
show a clear difference between upstream and random sequences, suggesting that
there are specific sequence patterns distinguishing the upstream regions from ran-
dom ones, and that this cannot be explained as a statistical coincidence. See Figure
6.2 for an overview of the results.

The inspection of the patterns that occur substantially more frequently in up-
stream regions than in random (i.e., having a high rating R(�; S+; S�)) showed,
that many of these can be regarded as “simple” (i.e., easily compressible) se-
quences (e.g., AAAAAAATA). This is not unexpected, as upstream regions have
higher A-T content, while genes rarely contain long simple sequences. Among
other patterns, one of the top scoring was a pattern AAAGCGAAA. Matching this
pattern against the transcription factor database TRANSFAC (Wingender et al.
1996) we found that it was similar to the binding site for the yeast transcription
factor URS1 (Turi & Loper 1992). The pattern given for URS1 in TRANSFAC
is AAACGAAACGAAACGAAACTAA. This pattern has only one single match in the
entire yeast genome, which means that it cannot be a generic actual binding site.
The pattern AAAGCGAAA, on the other hand, has 119 matches in the upstream re-
gions of length 600, and a total of 222 matches in the full yeast genome of 12Mbp.
For more detailed analysis and patterns see (Brazma et al. 1998b).

The study shows that, given a new genome with computationally predicted
genes, some putative transcription factor binding site descriptions can be gener-
ated automatically, without any other background knowledge about the real tran-
scription factors or their binding sites for the given organism. We have made
similar observations also for another yeast S. pombeand the worm C. elegans
(unpublished results).

6.1.2 Gene expression data analysis and putative transcription factor
binding site prediction

Microarray technologies for measuring mRNA abundances in cells allow moni-
toring of gene expression levels for tens of thousands of genes in parallel. By
measuring expression responses across hundreds of different conditions or time-
points a relatively detailed gene expression map starts to emerge.

A collection of gene expression level measurements taken under various ex-
perimental conditions by microarray or any other technology, define expression
profiles of the respective genes. There are many surveys of the technology
and analysis in general (The Chipping Forecast 1999; Brazma & Vilo 2000;
Celis et al. 2000; Hegde et al. 2000; Dopazo et al. 2001; Quackenbush 2001).
The simple query “review microarray analysis” from PubMed revealed 72 articles
from Medline in April 2001 and 117 in August 2001.

It seems reasonable to hypothesize that genes with similar expression profiles,
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Figure 6.2: The distribution of all patterns (of unrestricted length) with at most
one wildcard symbol in the regions �250:: � 150 (upstream from the ORFs) and
randomly chosen genomic regions of length 100 bp. Dots in the left column cor-
respond to patterns that occur in x sequences from the random regions (along
horizontal axis) and y sequences from the upstream regions (vertical axis). In the
right column the upstream regions are replaced by another set of random regions,
therefore these plots show the expected statistics if the regions are chosen at ran-
dom. Top row – all patterns with at least 10 occurrences. Second row – the subset
of the patterns in the top row containing at least two characters C or G and not
containing any of the substrings AAAA, TTTT, ATAT, or TATA. Bottom row –
the same plot as in the second row, but only including patterns with at most 200
occurrences in upstream or random regions (i.e., zoomed to the lower left corner).
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i.e., genes that are coexpressed, may share something common in their regulatory
mechanisms, i.e. may be coregulated. Therefore, by clustering together genes
with similar expression profiles we find groups of potentially coregulated genes
allowing one to search for putative regulatory signals.

The first whole-genome microarray gene expression data set published was
a diauxic shift experiment performed on yeast Saccharomyces cerevisiae, where
expression levels for all genes during a metabolic shift from fermentation to respi-
ration due to glucose starvation were measured in two-hour intervals (DeRisi, Iyer,
& Brown 1997). The authors identified several distinct clusters in the gene expres-
sion profiles, and were able to show the presence of several previously character-
ized transcription factor binding sites (for example the stress responsive element
CCCCT) located upstream to many of the genes in those clusters. Fascinated by
these results, many researchers asked the following quite natural question - ”can
we identify novel putative binding sites automatically by combining gene expres-
sion data clustering and sequence pattern discovery methods?”

The same data set of diauxic shift was soon analyzed by several other groups
(van Helden, André, & Collado-Vides 1998; Brazma et al. 1998b). Van Helden
et al. (van Helden, André, & Collado-Vides 1998), searched for oligonucleotides
overrepresented upstream to potentially coregulated genes (clusters from the pa-
per of (DeRisi, Iyer, & Brown 1997)) and showed that potential new transcription
factor binding sites can be found in this way.

We used the information about the gene expression profiles to extract smaller
sets of genes that potentially share similar regulation mechanisms and maybe also
transcription factor binding sites (Brazma et al. 1998b). We used the data from
the yeast gene expression studies reported in (DeRisi, Iyer, & Brown 1997)1 and
clustered the genes by similarities in their expression profiles in several alternative
ways. These clusters were used for the discovery of patterns “characteristic” to the
upstream regions of these clusters, i.e., patterns with high rating Rt(�; S+; S�),
where S+ are the sequences from the cluster, and S� are the other upstream se-
quences. Some of the patterns with a high rating Rt(�; S+; S�) were already
known transcription factor binding sites. Some examples of the discovered pat-
terns are CCCCTmatching 64% (35 out of 55) of sequences in the respective clus-
ter and 21% (1280 out of 5921) of remaining upstream regions (and thus getting
a score of 2.95), C..CCC.T (score 2.88), T.C..CCC (score 2.85), and T.AGGG
(score 2.27). Moreover, it was shown that many of these binding sites could not be
discovered from the global comparison of all upstream sequences against random
genomic regions.

Later, more expression studies have been carried out under various condi-

1J. F. DeRisi et al. studied the relative expression rate changes of all (over 6000) genes of yeast
during the diauxic shift from anaerobic (fermentation) to aerobic (respiration) metabolism.
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tions (e.g. sporulation (Chu et al. 1998) and cell cycle studies (Cho et al. 1998;
Spellman et al. 1998) and the amount of the expression data is increasing
rapidly. Simultaneously, pattern discovery methods have been developed and ap-
plied. Surveys of these studies have appeared (Zhang 1999; Vilo & Kivinen 2001;
Ohler & Niemann 2001; Werner 2001).

As noted by several authors, the task of identifying promoter sequences can
be very difficult (Vanet, Marsan, & Sagot 1999; Sinha & Tompa 2000; Vilo et
al. 2000). The reasons include the uncertainty in promoter region prediction,
the noise level in microarray expression measurements, the question about what
the appropriate motif description language is, and the algorithmic problems of
identifying subtle signals from sets of sequences that do not even need to share
the same motifs. Algorithms used for transcription factor binding site prediction
may have to detect only marginally overrepresented patterns in sets of hundreds
or thousands of sequences of length of thousands of nucleotides (Vilo et al. 2000).

The transcription factor binding sites do not usually act alone. It is assumed
that genome-wide control is achieved by a combinatorial use of multiple sequence
elements (Werner 1999).

The aim of our studies is to mine automatically for new, statistically significant
patterns in putative regulatory regions of genes. Such data mining experiments are
not a substitute for “conventional single-gene dissections” (Zhang 1999). Their
aim is instead to explore simultaneously thousands of genes in silico (which can-
not be done by conventional methods) to generate targets for conventional studies
in vitro.

6.1.3 A systematic analysis of yeast Saccharomyces cerevisiae

Here we discuss the results for automatic transcription factor binding site predic-
tion, the method published in (Vilo et al. 2000). First we present a short outline
of the study and then discuss the details.

We clustered systematically all yeast genes based on their expression re-
sponses to 80 experimental conditions (Eisen et al. 1998) by K-means clustering,
evaluating simultaneously the “goodness” of each cluster by average silhouette
value. By choosing different K values and varying the initial partitioning, we ob-
tained over 52 thousand different clusters (many of these overlapping). For each
of the clusters we retrieved the 600 bp DNA sequences upstream of the respec-
tive gene, and exhaustively searched for all the sequence patterns of unrestricted
length that are overrepresented in the sequences of the cluster. Patterns were rated
for each cluster according to a binomial distribution with expected probability cal-
culated from occurrence frequency in all upstream sequences. Pattern discovery
was repeated for randomized clusters to assess the significance threshold for such
patterns. Of the over 6000 significant patterns we excluded the ones discovered
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only from the clusters containing highly homologous upstream sequences. In this
way we could list 1498 of the most interesting patterns for further studies. We
clustered these patterns into 62 groups. For all of these groups an approximate
alignment and consensus pattern were generated. To assess the quality of the
patterns we matched all 1498 patterns against the experimentally verified yeast
binding sites as given in the SCPD database (Zhu & Zhang 1999). Of the 62
groups 48 had patterns matching some sites in SCPD database.

6.1.3.1 Clustering the gene expression profiles

The result of the expression profile clustering is sensitive to the choice of the
distance measure in the expression profile space, as well as on the clustering algo-
rithm itself. Apparently there is no single “right way” of clustering the expression
profiles, since various elements in each profile may be influenced by some par-
ticular regulation aspects and regulation is usually not based on a simple on/off
switching. It has been generally acknowledged that currently we do not know
what the most appropriate distance measure or clustering method is.

An alternative to selecting a particular clustering method is to study a number
of different clusterings in parallel. To avoid manual intervention or setting the ar-
bitrary thresholds required to get clusters from hierarchical clustering methods we
used K-means clustering algorithm. By repeating clustering for many different K
values as well as varying the initial cluster center choices, we were able to create
many clusters together with the formal “goodness” measure for each.

The “goodness” of a cluster depends on how close its elements are to each
other, and how far they are from the next closest cluster. One such measure has
been proposed by Rousseeuw (Rousseeuw 1987) based on the notion of a silhou-
ette plotand an average silhouette value of a cluster (for a detailed definition see
(Rousseeuw 1987)) defined as follows.

For each two objects i and j, we denote by d(i; j) the distance between i and
j. For a set A, we denote by jAj the number of elements in A. For each object i
we denote by A the cluster to which it belongs and define a value

a(i) =
1

jAj � 1

X
j2A;j 6=i

d(i; j);

the average distance to elements within A. For any cluster C different from A we
define

d(i; C) =
1

jCj

X
j2C

d(i; j);

an average distance of i to objects in C , and

b(i) = min
C 6=A

fd(i; C)g;
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the average distance to the members of the closest cluster. The silhouette value
s(i) of the object i is defined as

s(i) =
b(i)� a(i)

maxfa(i); b(i)g
:

The silhouette value s(i) for each object i lies between -1 and 1. If s(i) = 1,
the object is well classified, if s(i) < 0, the object is badly classified, in fact it
is on average closer to members of some other cluster. The average silhouette
value for a cluster can be used as a measure of the “goodness” of that cluster. The
silhouette value characterizes not only the “tightness” of the given cluster, but also
how far each element of the cluster is from the next closest cluster.

6.1.3.2 Rating of patterns based on the probability of occurrences

Given a set S ofN sequences, a subset C � S of size n, and a pattern � that occurs
in k sequences from C , we can calculate the probability of such an event from the
binomial distribution. Note that in this application we count as an occurrence
only the fact that pattern matches a sequence, regardless in how many places it
matches. Thus the number of occurrences in a set of sequences is the number of
sequences from that set that contain at least one match by pattern. We estimate
the background probabilityp that pattern � matches an individual sequence of C
from the observed total number of sequences K that have an occurrence of that
pattern in the set of all N sequences, p = K=N . Given k occurrences in the set
C , we ask how probable this is given the background distribution p? According
to the binomial distribution, the probability of a pattern occurring in exactly k
sequences “by chance” is

P (k; n; p) =

 
n

k

!
pk(1� p)n�k:

The probability of a pattern � occurring k or more times in a set of C sequences
is

P (�;C) =
nX
i=k

P (i; n; p):

The probability of the pattern occurrences as such however does not tell about
the significance of the findings. Due to the fact that there are many possible ways
to select a subset C and a large number of patterns that match sequences in each
subset, there must be patterns which have small probabilities even if sets C are
chosen randomly.

To tell which probabilities ps are “significant”, we can apply randomization
techniques in order to determine how often we can observe patterns with score ps
when the set C is chosen randomly.
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6.1.3.3 Grouping patterns by similarity

Having defined the similarity measure between patterns as in Section 5.1.1.2, we
used an average linkage hierarchical clustering algorithm to group them. For gen-
erating the alignments of patterns within each cluster we used the pattern discov-
ery algorithm SPEXS to find the consensus pattern common to a high percentage
of the patterns in each group. This pattern was used as an anchor for guiding the
alignment of the group (see Table 6.3).

6.1.3.4 A computational experiment

We performed an experiment analyzing yeast expression and sequence data. We
used the public data set combining various yeast expression experiments from
Stanford University (Eisen et al. 1998). The data set consists of gene expres-
sion levels for 6221 yeast genes with a total of 80 experimental conditions. These
80 measurements are related to time course analysis of yeast cell cultures dur-
ing the cell cycle, sporulation, and diauxic shift experiments. The data has been
downloaded from P. Brown’s laboratory (http://rana.stanford.edu/).
We implemented the following computational experiment. Note that the steps
described below have been performed in a highly automated way and formal se-
lection criteria were applied in each step.

1. Clustering the expression data. We clustered 6221 genes based on their ex-
pression profiles by the K-means clustering algorithm using Euclidean dis-
tance in 80-dimensional space. We varied the value of K (the number of
clusters) between 2 and 1000 and repeated the clustering for each selected
K ten times with different random sets of initial cluster centers. In total we
did over 900 separate clusterings. For each cluster we computed the average
silhouette (Section 6.1.3.1) value. We selected the clusters of size between
20 to 100 genes and obtained in this way over 52,100 different clusters.

2. Sequence pattern discovery. For each cluster we took the set of gene up-
stream sequences of length 600 bp and enumerated all patterns occurring
in at least 10 of these. We scored all patterns according to the probability
of their occurrences in the cluster using a binomial distribution and back-
ground probability estimation as described in Section 6.1.3.2.

3. Finding the significance threshold by control experiment. To determine
the statistical significance threshold for the patterns, we repeated step 2 on
randomized data by replacing the cluster contents by upstream sequences
from random sets of genes. We plotted the average silhouette value and
the score of the best pattern of each real cluster on a two-dimensional plot
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in Figure 6.3 (top left), and for the randomized data similarly Figure 6.3
(top right). The threshold 10e-8 was chosen and all patterns less probable
(from step 2) were reported.

4. Pattern selection. There were in total over 6000 significant patterns (see Table
6.1 for the 30 most significant patterns). The distribution of the number
of patterns discovered in each cluster suggested that the clusters can be
divided into two groups: ones producing more than 600 patterns, and others
producing less than 600 patterns. The reason for cutoff at 600 was set based
on the “jump” in the number of good patterns found in one cluster. Up to
218 patterns this number was almost continuous, then the next values were
336 and 746 “good” patterns from one cluster. The 508 clusters producing
more than 600 patterns each contained only 169 different ORFs (see Figure
6.3 bottom).

A study by ClustalW (Thompson, Higgins, & Gibson 1994) showed that
the upstream sequences of these 169 ORFs were highly homologous, thus
distorting the pattern statistics. The homology of sequences in the clusters
that produce a smaller number of patterns is low, therefore the significant
patterns in these clusters (containing together 3727 ORFs) are candidates
for regulatory signals. There were 1498 such patterns, which is still too
many for human study one by one.

5. Grouping the patterns. We clustered these 1498 patterns by an average link-
age hierarchical clustering algorithm using a similarity measure based on
common information content (Section 5.1.1.2). This produced 62 clusters
of similar patterns.

6. Aligning and summarizing each pattern group. For each cluster we gener-
ated an approximate alignment and a consensus pattern (see Table 6.2 and
6.5). For generating the alignments of patterns within each cluster we used
the pattern discovery algorithm SPEXS to find the consensus pattern com-
mon to a high percentage of the patterns in each group. This pattern was
used as an anchor for guiding the alignment of the group (see Table 6.3).

7. Comparing the discovered patterns to known transcription factor binding sites.
We matched all 1498 interesting patterns against experimentally verified
DNA binding sites of yeast as given in SCPD (Zhu & Zhang 1999).

We say that a pattern matches a site if the pattern is a substring of a mapped
site. The opposite, matching of sites against patterns, is also possible, but
some of the sites in SCPD are rather short and can have matches by chance
(in fact there are many sites consisting of a single nucleotide, and these
should be excluded before such matching). We say that a cluster of patterns
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Pattern Probability Cluster Occurrences Total K
size in cluster occurrences

AAAATTTT 2.59075e-43 96 72 830 60
ACGCG 6.41023e-39 96 75 1088 50
ACGCGT 5.23109e-38 94 52 387 40
CCTCGACTAA 5.42764e-38 27 18 23 220
GACGCG 7.88674e-31 86 40 284 38
TTTCGAAACTTACAAAAAT 2.08201e-29 26 14 18 450
TTCTTGTCAAAAAGC 2.08201e-29 26 14 18 325
ACATACTATTGTTAAT 3.80588e-28 22 13 18 280
GATGAGATG 5.59927e-28 68 24 83 84
TGTTTATATTGATGGA 1.8998e-27 24 13 18 220
GATGGATTTCTTGTCAAAA 5.04076e-27 18 12 18 500
TATAAATAGAGC 1.51458e-26 27 13 18 300
GATTTCTTGTCAAA 3.40261e-26 20 12 18 700
GATGGATTTCTTG 3.40261e-26 20 12 18 875
GGTGGCAA 4.17788e-26 40 20 96 180
TTCTTGTCAAAAAGCA 5.09734e-26 29 13 18 250
CGAAACTTACAAA 5.09734e-26 29 13 18 290
GAAACTTACAAAAATAAA 7.9186e-26 21 12 18 650
TTTGTTTATATTG 1.73752e-25 22 12 18 600
ATCAACATACTATTGT 3.62348e-25 23 12 18 375
ATCAACATACTATTGTTA 3.62348e-25 23 12 18 625
GAACGCGCG 4.47204e-25 20 11 13 260
GTTAATTTCGAAAC 7.22797e-25 24 12 18 400
GGTGGCAAAA 3.37381e-24 33 14 31 475
ATCTTTTGTTTATATTGA 7.18849e-24 19 11 18 675
TTTGTTTATATTGATGGA 7.18849e-24 19 11 18 475
GTGGCAAA 1.13567e-23 28 18 137 725
CGAACTGCCAT 1.74392e-23 20 10 10 92
CGAACTGCCATCTC 1.74392e-23 20 10 10 190
CCTCGAACTGCCATCT 1.74392e-23 20 10 10 170

Table 6.1: The 30 highest scoring patterns discovered in the genome regions up-
stream from genes of the clusters. Note that the smallest probability of a pattern
discovered in the randomized data is 1.74434e-09. The last column shows the
number of clusters in the respective clustering by K-means.

Tables 6.2 and 6.5 show consensus patterns (used here for naming of the pat-
tern clusters only) that have been calculated from pattern alignments. The nu-
cleotide groups have been introduced when the frequency of the less frequent nu-
cleotide in respective column is over 25% of the frequency of the more frequent
nucleotide. Inside the groups nucleotides are ordered based on their frequency.
The lower case letters are used when the majority of the patterns does not have
any nucleotide in that position i.e., when the most frequent nucleotide in the re-
spective column is a dash.
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Nr Consensus pattern Factors that have matching binding sites
1 tctcaTCTCA[TC][CT][tag]catc ABF1 ABF1,BAF1 UASPHR
3 cctcGAA[CG]TGCCATCtca BAS1 BAS1,PHO2 CCBF,SCB,SWI6 HSE,HSTF

HSE,HTSF SCB UASH UASPHR XBP1
4 a[ta][CG]CCTA[AT]Aat MCM1
6 acc[ac]CCCC[CT][CGT][ag]a MIG1 RAP1 RAP1,EBF1
7 gT[TA][CA]TCCT[CG]g BAS1 BAS1,PHO2 UASPHR
9 a[ct][at]GTGACA[GTC][cta]t ADR1 MATalpha1 MATalpha2 MCM1 UASH

10 tt[tc]ACAGT[GT][AT][tc]g ABF1 ABF1,BAF1 ADR1 BAS1 BAS1,PHO2 GAL4 GCN4
GCN4,GCRE GCRE,GCN4 PHO2 RAP1 RAP1,EBF1

11 [at][ATC]TACACAt MATalpha2
12 tttGTCACA[GAT]gg ABF1 ABF1,BAF1 PAE UASH
13 t[gc]ACATT[GC][CT]tg HSE,HSTF HSE,HTSF PAE RAP1 RAP1,EBF1
14 ata[TC]TGGTTCt ROX1 URSSGA
15 acaTCCGTAC[acg]tt HSE,HSTF HSE,HTSF RAP1 RAP1,EBF1
16 a[gca][atc]TAAG[CG][TAG][tga]a ABF1 ABF1,BAF1 GATA GLN3 MCM1 URS1ERG11
18 t[ct][at][AG]AAGT[AT][TA]c PRP1 URSPHR
19 gtT[AG]TTA[CT][TG][AG]ca GRF2 MATalpha2 MCM1 REB1 UASH
22 t[ACT]CGCTTA[AT] UASGATA
23 gaa[ca][gat][acg][AG]CGCG[cta][gat][ca]gc ABF1 ABF1,BAF1 CCBF,SCB,SWI6 DAL82 GAL4 HAP1 HAP2

HAP2;HAP3;HAP4 HAP3 HAP4 LEU3 MAL63 MCB PDR1 PDR3 PHO4
RAP1 RAP1,EBF1 REB1 SCB SWI4 SWI6 UASGABA repressor of CAR1

24 [ac][at][GT]ACGCcaa ABF1 ABF1,BAF1
25 GGTCG[CT]Ac UASPHR URS1ERG11
27 tgtTAACGAATCGTTtaa GFI,TAF MCM1 TAF
28 ga[at][TC]CGTTTA[ag]g ABF1 ABF1,BAF1 MAL63 MCM1
30 aA[CAG][AT]GAATCttc ADR1
31 t[ac][tc][at]CGACT[CA][ca][cg]aa BAS1 BAS1,PHO2 GAL4 GCN4 GCN4,GCRE

GCRE,GCN4 GFI,TAF PHO2 TAF URSSGA
32 tcCACGAA[gc][ta]g ABF1 ABF1,BAF1 BAS1 BAS1,PHO2 CCBF,SCB,SWI6

GA-BF GFI,TAF HSE,HSTF HSE,HTSF PDR1
PDR3 PHO4 SCB SWI4 SWI6 TAF URS1ERG11

33 c[ga][ctg][ACG]TACG[AT][atc]tat ABF1 ABF1,BAF1 PHO4 URS1HO
34 aC[CA]CATAC[AT]t MCM1 RAP1 RAP1,EBF1
35 atat[CT][AG]GCAC[TC][ac]a GAL4 MCM1 PHO4 RAP1 RAP1,EBF1 URSSGA
36 taGCGCA[GT][ga]cc ABF1 ABF1,BAF1 ARC CUP2 SWI5 UASPHR repressor of CAR1
37 cgGTGGCAA[AC][ag] ABF1 ABF1,BAF1 HAP2 HAP2;HAP3;HAP4 HAP3 HAP4

RAP1 RAP1,EBF1 UASCAR UASPHR repressor of CAR1
38 t[ca][ga][GA]CGGC[TG][GTA][cta]tttt ABF1 ABF1,BAF1 GAL4 HAP1 LEU3 MCM1 PHO4 QBP

RP-A SWI5 UASGABA URS1H URSF URSINO repressor of CAR1
39 a[cat][AGC]AGGG[GT][ctg][ac]a 13nt repeat BUF GAL4 HAP1 IRE MCM1 MIG1 PHO4 RAP1 RAP1,EBF1

RC2;RC1 UAS1ERG11 UAST52,ORE URS1ERG11 URSSGA
40 gcg[ag][at][ga][ac]GATGAG[AC]t[ag][at]g BUF HAP1 HSE,HSTF HSE,HTSF PQBOX REB1 SWI5 UASH UASPHR
41 aTGGATGCc MOT3
44 gc[TAG]TATAT[ATC][gat][ag][tg]gg TATA,TBP
47 gtaTAAATAGAGCtgct QBP TATA,TBP UIS URS1H URS1HSC82
48 [at]a[ag][TG][AT]GCC[CG][ac][ac]ga BUF GAL4 GCFAR QBP UME6 URS1H URS1HSC82 repressor of CAR1
49 aC[CT]CAAT[AT][tg]t MATalpha1 MCM1
51 aaacaAAACAAA[AT][ca][ac]aata GCR1 GCR1,CTBOX MCM1 MSE ROX1 UASPHR
52 tgtGTAAA[TC]ATtt SFF UAS2CHA URS1ERG11
53 ataaaa[gt][CA][GT]AAAA[GA][cg][gac]aaaag BAS1,PHO2 CCBF,SCB,SWI6 MAL63 MCM1 MIG1

PHO2 SCB SWI4 SWI5 SWI6 TATA,TBP UASPHR
54 t[gt][TC]GAAAG[AG]Tt XBP1
55 [at][tac]t[gta][ag]AAAATTTT[tg][tc][at]tt ABF1 ABF1,BAF1 CSRE DAL82 MAL63 MATalpha2

MCM1 NBF UASH UASINO UIS
56 ga[at][acg][CA]GGAA[AG]T[gt]gaa GAL4 MCM1 UAS2CHA UASH
57 t[tc][cat][AT][TC]TTC[GA][ACT][ga]t GAL4 GCR1 GCR1,CTBOX REB1
58 cgg[ct][ctg][gct][ctg]CTTTTT[CTG][TC][atc][tg]cc ACE1 CUP2 DAL82 GAL4 HSE,HSTF HSE,HTSF

LEU3 RAP1 RAP1,EBF1 UASCAR URSSGA
60 t[ta][gta][gtc][TG]TCTA[TG][GTC]a[at][ct] HSE,HSTF HSE,HTSF ROX1
61 taaat[AT]TTTGTG[ta]ca MATalpha1 MATalpha2 MCM1 MIG1 UASH
62 t[acg]CTGTG[CT]a[ac] UASH

Table 6.2: Results of the automatic matching of the discovered patterns against
SCPD.

We also studied how our discovered patterns compare to experimentally
proven binding sites in yeast by comparing them to SCPD database. For in-
stance, two of the pattern clusters (cluster nr. 15 and 34 in the numeration pro-
duced by the clustering algorithm) have matches in the “RAP1,EBF1” binding
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-----------------ACCCAGACATCGGGCTTCCAC-
---------------ACACCCAGACATC-----------
---------------ACACCCAGACATC-----------
---------------GAACCCATACACT-----------
---------------ACACCCAGACCGCG----------
---------------GCACCCACACATTT----------
------------GCTAAACCCATGCACAGTGACT-----
-----------------ACCCAGACACGCTCGA------
-------------CTTCACCCTCATAC------------
---------------ACACCCCTTTTCT-----------
---------------GCACCCAGTCTT------------
---------------GCACCCAAACACCTGCATATTTGG
---------------GCACCCAATCACC-----------
---------------ACACCCAGACCTC-----------
---------------AAACCCACACAT------------
--------------TGCACCCATACCTT-----------
--------------AACACCCAAGCACAG----------
-ATCTCTCGCAACG-------------------------
ACCTCCGTACATTC-------------------------
ACACCTGGACACC--------------------------
ACATCCGTACAACGAGAACCCATACATTA----------

---TCCGTAC--- ACCCATAC--
-CATCCGTAC--- ACCCATACA-
--ATCCGTA---- ACCCATACAT
--ATCCGTACA-- -CCCATAC--
----CCGTAC--- -CCCATACA-
----CCGTACA-- --CCATACAT
---TCCGTACAT- -CCCATACAT
--ATCCGTACAT- --CCATACA-
---TCCGTACA-- -AACATAC--
----CCGTACAT- --ACATACT-
---TCCGTA---- ---GATACT-
--ATCCGTAC--- --AGATACT-
----CCGTACC--
---ACCGTACC--
---ACCGTAC---
--CACCGTAC---
----CCGTACATT
----GCGTAG---
----GCGTAGG--
-----CGTAGG--
-CATCCGTA----
ACATCCGT-----
-CATCCGT-----

Table 6.3: The upper part of the table shows the alignment of experimentally proved
RAP1,EBF1 binding site taken from SCPD database. We excluded the sites ATGCCCGTGCAC
and GTCACTAACGACGTGCACCA, which did not give a good alignment. The alignments below are
produced automatically by our pattern grouping algorithm. Left is from cluster 15 and right is from
cluster 34. Patterns GTACATT, AACATCCG, TACATCC, ACATCC, ACATCCG and ACCCA,
ACCCAT, ACCCATA were left out from these clusters respectively as the alignment was done by
simple heuristics based on one conserved block.

sites. The first consists of 29 patterns, 20 of which match “RAP1,EBF1” sites.
The second one consists of 15 patterns and has 11 matches. Both alignments
match different parts of the “RAP1,EBF1” site as illustrated in Table 6.3. The
site names have been automatically downloaded and analyzed from the SCPD
database http://cgsigma.cshl.org/jian/.

Potentially the most interesting patterns however are the ones that do not have
matches in the known binding sites, and they can be targets for further research
(see Table 6.5).
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ORF Cytoplasmic Gene Length Disruption Description from MIPS
degradation

YBL041W ? PRE7 241 lethal 20S proteasome subunit(beta6)
YBR170C NPL4 580 lethal nuclear protein localization factor and ER translocation component
YDL126C ? CDC48 835 lethal microsomal protein of CDC48/PAS1/SEC18 family of ATPases
YDL100C 354 similarity to E.coli arsenical pump-driving ATPase
YDL097C ? RPN6 434 lethal subunit of the regulatory particle of the proteasome
YDR313C PIB1 286 phosphatidylinositol(3)-phosphate binding protein
YDR330W 500 similarity to hypothetical S. pombe protein
YDR394W ? RPT3 428 lethal 26S proteasome regulatory subunit
YDR427W ? RPN9 393 viable subunit of the regulatory particle of the proteasome
YDR510W SMT3 101 lethal ubiquitin-like protein
YER012W ? PRE1 198 lethal 20S proteasome subunit C11(beta4)
YFR004W ? RPN11 306 lethal 26S proteasome regulatory subunit
YFR033C QCR6 147 viable ubiquinol–cytochrome-c reductase 17K protein
YFR050C ? PRE4 266 lethal 20S proteasome subunit(beta7)
YFR052W ? RPN12 274 lethal 26S proteasome regulatory subunit
YGL048C ? RPT6 405 lethal 26S proteasome regulatory subunit
YGL036W MTC2 909 viable Mtf1 Two hybrid Clone 2
YGL011C ? SCL1 252 lethal 20S proteasome subunit YC7ALPHA/Y8 (alpha1)
YGR048W ? UFD1 361 lethal ubiquitin fusion degradation protein
YGR135W ? PRE9 258 viable 20S proteasome subunit Y13 (alpha3)
YGR253C ? PUP2 260 lethal 20S proteasome subunit(alpha5)
YIL075C ? RPN2 945 lethal 26S proteasome regulatory subunit
YJL102W MEF2 819 translation elongation factor, mitochondrial
YJL053W PEP8 379 viable vacuolar protein sorting/targeting protein
YJL036W 423 weak similarity to Mvp1p
YJL001W ? PRE3 215 lethal 20S proteasome subunit (beta1)
YJR117W STE24 453 viable zinc metallo-protease
YKL145W ? RPT1 467 lethal 26S proteasome regulatory subunit
YKL117W SBA1 216 viable Hsp90 (Ninety) Associated Co-chaperone
YLR387C 432 similarity to YBR267w
YMR314W ? PRE5 234 lethal 20S proteasome subunit(alpha6)
YOL038W ? PRE6 254 20S proteasome subunit (alpha4)
YOR117W ? RPT5 434 lethal 26S proteasome regulatory subunit
YOR157C ? PUP1 261 lethal 20S proteasome subunit (beta2)
YOR176W HEM15 393 viable ferrochelatase precursor
YOR259C ? RPT4 437 lethal 26S proteasome regulatory subunit
YOR317W FAA1 700 viable long-chain-fatty-acid–CoA ligase
YOR362C ? PRE10 288 lethal 20S proteasome subunit C1 (alpha7)
YPR103W ? PRE2 287 lethal 20S proteasome subunit (beta5)
YPR108W ? RPN7 429 subunit of the regulatory particle of the proteasome

Table 6.4: The 40 genes from the GGTGGCAA-cluster. The annotations
are taken from the MIPS database. Note that many of the genes are
related to proteasome. The 25 ORFs marked with ? belong to the func-
tional class of “cytoplasmic degradation” containing 93 ORFs in total ac-
cording to the Functional Catalogue of Saccharomyces cerevisiae(MIPS,
http://www.mips.biochem.mpg.de/proj/yeast/catalogues/funcat/.)

6.1.4 Discussion on gene regulatory motif discovery

Our observation that the pattern and cluster scores correlate is consistent with
the observation of Tavazoie et al. (Tavazoie et al. 1999). We have performed a
more systematic experiment for precisely defined pattern and cluster “goodness”
measures for considerably more clusters and reported the numeric evidence. Al-
though the observation is not surprising, it suggests that the fast and simple K-
means clustering algorithm can be used in the large scale analysis of all genes of
an organism. It enables the finding of coexpressed genes based on the expression
profiles allowing the consecutive search for coregulated genes.
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Cluster Nr. Consensus pattern
2. aaTCTTCATGt
5. cgTACCTCTa
8. gACAGCTAc

17. tAT[TAC]GTTAAgc
20. ACTTTATTT
21. [ag]TAACTT[AT]Ca
26. TATCGAG (singleton)
29. t[ta]CGAATA[AG]aaaa
42. [ta]TGCATGAAc
43. a[TG][GC]GTATAc
45. g[ag][ga][ag][AG][TAG]AT[GA]TG[agt][ga][ag]
46. tag[AG]TAGA[TA]A[ga]aaaa
50. ATCCAAGAg
59. tTTTTCTG[CT][TA]c

Table 6.5: Consensi of the pattern clusters that do not have matches in SCPD
database. See text for explanations and Table 6.2 for other consensi.

Promoter analysis using gene expression experiments is a difficult problem
due to limited knowledge about gene regulation in eukaryotic organisms and the
many steps involved in the analysis while no step is straightforward and error-free.

First, the expression data itself is hard to analyze due to the amount of data
combined with the inherent fuzziness and low accuracy of the measurements. It
is unlikely that a single best method for expression data clustering exists, and for
each clustering method the strict cluster boundary detection remains a challenge.
Thus for a systematic analysis of gene expression data one should be able to com-
bine different expression profile clustering methods and perform pattern discovery
for large numbers of clusters. Although in a couple of studies it has been shown
that the clustering of the gene expression data is not necessary for pattern discov-
ery, simple sorting may be sufficient together with an application of some test,
like for example the Kolmogorov Smirnov rank test for detecting the “cluster”
boundaries (Jensen & Knudsen 2000).

Second, the challenge to pattern discovery approaches is the right choice of
pattern representation languages combined with the statistical and computational
problems of detecting subtle signals from many clusters of sequences.

Third, the analysis and interpretation of all discovered significant patterns can
still be a big problem, as there can be too many of them for human inspection.
This is a typical second order data mining problem, where the vast amount of
simple patterns or rules needs to be summarized further. Using a restrictive pattern
class for which there exist fast pattern discovery methods allows the analysis of
large sets of sequences. For these simple pattern classes, however, good post-
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processing is needed to obtain patterns of a more general class. Large numbers
of simple patterns can be clustered based on either their mutual similarity or on
the locations of their occurrences. From these groups it is possible to build more
general sequence profiles and consensi to produce “executive summaries” of the
discovered patterns. These pattern groups as well as areas of high density of
occurrences of improbable patterns can be analyzed further by computationally
more demanding methods, for example by a multiple local alignment program
such as MEME (Bailey & Elkan 1995) or Consensus (Hertz & Stormo 1994).

Individual regulatory sites in isolation do not provide enough information
about gene regulation, as most of the motifs representing these sites occur al-
most randomly over all chromosomes (Werner 1999). Approaches where combi-
nations of individual patterns are analyzed (Brazma et al. 1997; Wagner 1999) or
methods that allow to discover combinations of sites during the pattern discovery
phase, may become very useful in solving the need for higher-level organization
of individual sites. The data mining techniques to discover frequent combinations
(Mannila, Toivonen, & Verkamo 1994), association rules (Mannila, Toivonen, &
Verkamo 1994) and episode rules (adds order to association rules) (Mannila, Toi-
vonen, & Verkamo 1997) could be directly applied to binding site combination
studies (Brazma et al. 1997).

Combination of binding sites can be evaluated for example based on the fol-
lowing parameters (Brazma et al. 1997):

1. Coverage: The number of its occurrences in upstream regions

2. Goodness: The ratio of the number of its occurrences in the upstream
regions vs the number of occurrences in random regions (of the same length
and number)

3. Unexpectedness: The ratio of its occurrences vs the expected number of
occurrences based on the individual sites.

One has to be careful in using these criteria though. Most importantly because
we lack good models for representing binding sites, thus they may not be indepen-
dent occurrences. Also, the precision used for describing “known” binding sites
can vary and hence the frequencies of their occurrences on the full genome can be
very different.

Expression analysis with DNA microarrays is unable to distinguish direct reg-
ulatory effects from indirect effects and thus our ability to identify genes that are
controlled by specific regulatory factors is limited. Genome-wide location analy-
sis that combines chromatin immunoprecipitation procedure with DNA microar-
ray analysis, provides information on the binding sites at which proteins reside
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through the genome under various conditions in vivo. This novel microarray anal-
ysis method will allow to distinguish binding sites that are active in vivo from oth-
ers, thus enabling more direct dissection of regulatory networks (Ren et al. 2000;
Iyer et al. 2001).

Identifying regulatory sequences in the human genome presents new chal-
lenges as compared to yeast. First, the sheer size and complexity of the human
genome makes predictions more difficult. Gene regulatory elements in humans
are frequently found much farther away than with yeast, and can easily be hidden
in the bulk of non-coding sequences. There are some strategies which could be
used (Zhang 1998), and intensive research continues on the subject. A review on
identification of mammalian regulatory sequences was published recently (Rubin
& Rubin 2001). Annotation systems for large-scale annotation of human promot-
ers have also started to emerge (Scherf et al. 2001).

One way to succesfully identify regulatory elements in the human genome
would be to compare human gene upstream sequences with upstream sequences
from other species, e.g. other mammals or birds. So far, most studies have com-
pared partly sequenced human and mouse genomes, but it has become clear that
no single species can be completely informative, mainly due to different mutation
rates of genes and genomes. Thus, it has been suggested that several organisms
should be used to aid prediction of regulatory elements in the human genome.

Many researchers have been successful in discovering known as well as novel
putative binding sites. The maturation of the field will be proven only by car-
rying out systematic follow up studies in wetlabs. To assist this goal, promoter
databases should be developed further so that verifications of in silico predictions
will become easier. The information stored in these databases will help us build up
the knowledge base of known and hypothesised gene regulatory network models,
and they can be invaluable in assisting biologists in experiment design.

6.2 Prediction of the GPCR and G-protein coupling
specificity

6.2.1 G-protein coupled receptors

G protein coupled receptors(GPCR) are the biggest single class of receptors in
biology, playing key roles in a remarkably wide range of physiological and patho-
physiological conditions. The actions of a large and structurally diverse range
of hormones, neurotransmitters, tastants, odourants, photons, and peptidases, are
initiated by their binding to GPCRs located on the cell surface (Bockaert & Pin
1999). Such binding activates the receptor, causing helical rearrangements within
the receptor, which (by way of unmasking binding sites) transmits the activation
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signal to a guanine nucleotide-binding protein (G protein) located on the cyto-
plasmic surface of the membrane, closely apposed to the receptor (Schoneberg,
Schultz, & Gudermann 1999; Gether 2000).

Activation of the heterotrimeric G protein (consisting of �, �, and 
 sub-
units) promotes exchange of the guanosine diphosphate (GDP), bound to the �
subunit, for guanosine triphosphate (GTP). This allows the dissociation of the �
subunit (with GTP bound) from both the receptor and �
 complex. The separate
moieties can then modulate several cell signalling pathways, and the activities of
certain ion channels. Termination of the response occurs as a result of the in-
trinsic catalytic activity of the � subunit, which hydrolyses the bound GTP to
GDP. Subsequently the �-GDP then re-associates with the �
 complex to form
the inactive heterotrimer. Amongst the biochemical responses that have been ob-
served following receptor activation (LeVine 1999) are both stimulation and in-
hibition of adenylate cyclase activity. The Gs class, and the Gi=o class of the
G proteins, respectively, mediate these opposing effects. The Gq11 family acti-
vate phospholipase C enzymes, resulting in phosphatidylinositol hydrolysis. To-
gether these three families constitute the major functional classes of G proteins,
and studies have revealed this specificity is determined by the particular subtype
of the � subunit, making up the G protein (Simon, Strathmann, & Gautam 1991;
Bourne 1997).

Characteristically each GPCR subtype appears to couple only to a subset of
the G proteins that may be found in a particular cell. Elucidation of the mech-
anism(s) underlying this coupling specificity has been a central theme in GPCR
research over the last 15 years. Together the large number of studies have revealed
that the selectivity of G protein recognition (and hence coupling) is determined by
multiple intracellular receptor regions. The most important regions appear to be
the second intracellular loop, and the start and end of the third intracellular loop,
which are close to the cytoplasmic surface of the membrane (Wess 1999).

6.2.2 Predicting the coupling specificity

We selected receptors that had apparently non-promiscuous coupling properties,
i.e. typically couple to only a single type of G-proteins, and grouped them into
the three functional classes of Gi=o , Gs and Gq11 . These classes are known to
inhibit or stimulate adenylate cyclase, and stimulate phosphatidylinositol hydroly-
sis, respectively. The membrane topologies of the receptors were computationally
predicted, allowing the extraction of just the putative intracellular loops and C-
termini from the receptor sequences.

Our strategy to predict the coupling specificity of GPCRs for their G proteins
was to attempt to find patterns of amino acid residues in their sequences that ap-
peared to be specific to a particular class of the G proteins. In order to do this
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Figure 6.4: The schematic mechanism of GPCR G-protein coupling. The signal
is transferred from extracellular domain to intracellular domain. The �-subunit of
the G-protein dissociates and forwards the signal to other processes.

we retrieved 103 diverse receptor sequences from SWISS-PROT and TrEMBL
for which an apparently non-promiscuous coupling had been determined and was
summarized in the TIPS Nomenclature Supplement (TiPS 2000). These were
grouped into the three functional classes Gi=o , Gs , and Gq11 .

To constrain the search for patterns to the putative intracellular domains of the
sequences, we required an accurate membrane topology prediction. In a previous
study it has been shown that TMHMM is the best currently available topology
prediction method for determining the membrane spanning regions (MSRs) of
GPCR sequences (Möller, Croning, & Apweiler 2001). Here, we used a modified
version of this program, called 7TMHMM, which was designed specifically to
predict the MSRs of GPCRs. The model employed assumes exactly 7 MSRs, with
extracellular and intracellular, N- and C-termini, respectively (Möller, Croning, &
et al. 2001).

We used SPEXS for discovering patterns specific to each of the input
data sets. For group characters we used amino acid grouping by proper-
ties as described in (Barton & Livingstone 1993). We used groups � =
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f�; fRKg; fEDg; fAGSg; fILVg; fFWYg; fCMgg, where � consists of all amino
acids and the respective group, denoted by a single dot : in the pattern, repre-
sents a single position wildcard. For restricted length wildcards we used SPEXS
repeatedly with different settings and then combined the answers. This produced
a large number of patterns (>4000) which we then evaluated for their useful-
ness. The most discriminative patterns are those that occur in large number of se-
quences of one receptor-G protein coupling group and infrequently in the others.
The specificity of all the patterns occurring in each group of receptor sequences
were determined using the binomial probability as described in Section 6.1.3.2.
Background probabilities were identified by combining sequences from two other
groups respectively.

A visual inspection of the patterns revealed the significance of the patterns.
The tool PATMATCH (see Chapter 7) allowed us to visualise pattern matches
upon the sequences, having grouped the latter by their G protein coupling speci-
ficity (see Figure 6.5). Most of the patterns were seen to match in just one
of the three groups of receptor sequences, with few matches to the other two
groups, demonstrating their specificity. Additionally all of the GPCR sequences
were matched by at least a few patterns. PATMATCH also allowed us to de-
termine where the patterns matched onto the intracellular domains of the recep-
tor sequences, and from this to deduce whether match positions are conserved
both within a particular receptor-G protein coupling group, and between the three
groups. Moreover, by visualizing patterns individually, we could establish imme-
diately that some of the patterns have very strict preferentiality to occur only in
certain intracellular loops, even though that information was not used during the
pattern discovery phase. This is one more implication that the patterns discovered
have real biological significance and are not just a statistical coincidence.

We hypothesised that we might improve the classification of the receptor-
G protein coupling groups (and thus subsequent prediction of the coupling for
a novel sequence) if we considered the specificity of combinations of patterns,
rather than just single patterns. This is similar to the concept of collections of mo-
tifs (called fingerprints) that are found in the secondary protein database PRINTS
(Attwood et al. 2000), or the analysis of the regulatory regions in DNA (Scherf,
Klingenhoff, & Werner 2000). Derived pairs and triplets of patterns that are spe-
cific for the binding to G proteins are used in conjunction to act as a classifier.

If all the patterns making up a particular combination were found in a se-
quence, the combination was said to match as a whole. For each sequence pre-
sented to the classifier we report the total number of combinations found, and if
30% or more of the matches happened to belong to a specific receptor-G protein
coupling group, then this coupling was assumed to be a putative prediction. This
potentially allows one to predict promiscuous receptor-G protein coupling.
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Figure 6.5: Visualisation of the intracellular positions of pattern matches. On the
right side of figure 1 the sequences of all intracellular loop regions are displayed
as black horizontal bars, proportional their sequence length, ordered in their cou-
pling specificity. The left side shows all patterns that match a specific sequence,
identified by their position, again ordered and coloured according to their cou-
pling specificity. Ic1, ic2, ic3 and C-terminus stand for the respective intracellular
domains. The formation of blocks on the left side is evidence for the quality of
the patterns.

The classifier was applied to the sequences of 10 receptor subtypes not present
in the training set, as shown in Table 6.6. Pairwise alignments revealed that these
test sequences were in general 30-40% identical to their most similar paralogue
in the training set. All 10 predictions appeared to be correct when we consulted
the primary literature. We were surprised that the predictions for both P41180 and
P25105 were correct given that they resulted from a rather low number of matches.
Further we have applied the prediction to other GPCR sequences and observed
the predictions to fit the biochemical responses observed upon their activation
(unpublished results).

The tables 6.7, 6.8, and 6.9 summarize the most distinguishing motifs for three
classes of G-protein coupling mechanisms.
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Accession Class Hits (class/total) Protein description
P49190 Gs 123 / 124 PARATHYROID HORMONE RECEPTOR
Q03431 Gs 123 / 132 PARATHYROID HORMONE/PARATHYROID

HORMONE-RELATED PEPTIDE RECEPTOR
Q02643 Gs 123 / 124 GROWTH HORMONE-RELEASING HORMONE RECEPTOR
O95838 Gs 181 / 192 GLUCAGON-LIKE PEPTIDE 2 RECEPTOR
P41180 Gq11 11 / 14 EXTRACELLULAR CALCIUM-SENSING RECEPTOR
P47872 Gs 123 / 124 SECRETIN RECEPTOR
P43220 Gs 125 / 142 GLUCAGON-LIKE PEPTIDE 1 RECEPTOR
P48546 Gs 124 / 140 GASTRIC INHIBITORY POLYPEPTIDE RECEPTOR
P25105 Gq11 4 / 7 PLATELET ACTIVATING FACTOR RECEPTOR
O43613 Gq11 52 / 56 OREXIN RECEPTOR TYPE 1

Table 6.6: The classification of unseen proteins using discovered patterns shows
that the method is able to predict correct coupling spoecificity.

6.2.3 Discussion

In order to determine whether pattern discovery was strictly necessary for correct
prediction, we also took the simpler approach of building a dendrogram from a
multiple sequence alignment of the inner domains of the training set sequences.
We did observe some propensity for receptors with the same coupling preference
to be near each other in the tree, however, the delineation between the three groups
of receptors was far from distinct.

The dependency of the classification on a prior determination of the topol-
ogy of analysed protein sequences (whether GPCR or not, and whether the ex-
tracellular loops, transmembrane spanning regins, or intracellular loops) implies
a context-dependence for the usage of the patterns. This a priori knowledge can
be derived from protein domain databases like PRINTS or PFAM, from the re-
sults of similarity searches, or can be read directly from the manual annotations
present in databases such as SWISS-PROT. With the increasing modularity of
large-scale annotation efforts (Fleischmann et al. 1999; Moller et al. 1999;
Rust, Mongin, & Birney 2002) such contextual information can now be techni-
cally incorporated into genome annotation. The present study thus represents an
early example of a new breed of context-dependent protein domain annotation.

Clearly many aspects of the interaction between a receptor and its G protein(s)
remain to be investigated. Our method of modelling whether a receptor is likely to
be promiscuous in G protein coupling is straightforward. It would be worthwhile
to determine whether unique interaction motifs exist for promiscuous coupling
in receptors that have been demonstrated to lack selectivity in their G protein
interactions. We did not try to construct patterns for the exclusion of certain G
protein couplings, i.e. a pattern to represent an exception to a rule. Our approach
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Pattern Gi=o Gq11 Gs Sensitivity Specificity Best
(55) (33) (25)

[ILV]...SG.f0,10gR 15 0 0 0.273 1 Gi=o

N..R.f1,4gR 15 0 0 0.273 1 Gi=o

Y.A.f1,8gA[ILV] 15 0 0 0.273 1 Gi=o

A[ILV].f2,5gRT 15 0 0 0.273 1 Gi=o

N..[RK]..R 17 1 0 0.309 0.9444 Gi=o

K.[RK].f0,10gK.[ILV] 17 1 0 0.309 0.9444 Gi=o

V...[RK]....R 17 1 0 0.309 0.9444 Gi=o

[RK]...[CM][RK] 23 1 2 0.418 0.8846 Gi=o

V[RK].f1,10gSG 16 1 0 0.291 0.9412 Gi=o

K.[RK].f1,4gL[RK] 16 1 0 0.291 0.9412 Gi=o

[FWY][ILV]..V.f2,10gR 15 1 0 0.273 0.9375 Gi=o

Y.[RK].[RK].f0,9gT 15 1 0 0.273 0.9375 Gi=o

[ILV].A[AGS].f1,4gR 15 1 0 0.273 0.9375 Gi=o

FR....[RK].f0,3gL 15 1 0 0.273 0.9375 Gi=o

DRY.[AGS].f3,6gA 15 1 0 0.273 0.9375 Gi=o

F[RK]....K.f1,7gC 15 0 1 0.273 0.9375 Gi=o

A....[ILV].f1,8gRT 15 1 0 0.273 0.9375 Gi=o

[RK]....R.f0,9gEK 15 0 1 0.273 0.9375 Gi=o

[RK]R.f0,3gTR 15 1 0 0.273 0.9375 Gi=o

KA.f3,6gT 15 1 0 0.273 0.9375 Gi=o

DR.f4,11gH...[AGS] 15 1 0 0.273 0.9375 Gi=o

R....K.f0,8gT[AGS] 15 1 0 0.273 0.9375 Gi=o

[RK][FWY][ILV].f2,5gV 18 1 1 0.327 0.9000 Gi=o

N.f2,5gR.[FWY] 18 1 1 0.327 0.9000 Gi=o

Y.[AGS].f1,8gA[ILV] 18 2 0 0.327 0.9000 Gi=o

N..[RK].f1,4gR 23 3 1 0.418 0.8519 Gi=o

[ED].f0,3gN..[RK] 23 2 2 0.418 0.8519 Gi=o

Y.f2,5gI..[AGS] 23 0 4 0.418 0.8519 Gi=o

N..[RK].f1,11gR 30 6 2 0.545 0.7895 Gi=o

[RK].R.f2,12gK[RK] 20 4 0 0.364 0.8333 Gi=o

[ILV]...SG 20 1 2 0.364 0.8696 Gi=o

[AGS][RK]..[ED].f0,10gR 17 1 1 0.309 0.8947 Gi=o

[FWY].A.f1,9gA[ILV] 17 2 0 0.309 0.8947 Gi=o

R[FWY].[AGS][ILV].f0,7gA[ILV] 17 2 0 0.309 0.8947 Gi=o

[ILV].R....V 17 0 2 0.309 0.8947 Gi=o

[RK]Y.[AGS].f3,5gA 17 0 2 0.309 0.8947 Gi=o

[ILV]...SG.f0,8gE 17 0 2 0.309 0.8947 Gi=o

[FWY].[AGS][ILV]..A 17 1 1 0.309 0.8947 Gi=o

[RK]..[RK].f0,3gR[ILV] 32 8 2 0.582 0.7619 Gi=o

[ED]A.f0,3gE 19 3 0 0.345 0.8636 Gi=o

Table 6.7: The 40 best patterns found for each receptor-G protein coupling group,
together with the number of times they match in each of the three training set
groups, and their calculated sensitivity and specificity.

could eventually be improved by ignoring any pattern combination that does not
span at least two inner loops, since from prior biochemical investigations it is
unlikely this would be sufficient to provide an effective and selective G protein
interaction (Wess 1998).
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Pattern Gi=o Gq11 Gs Sensitivity Specificity Best
(55) (33) (25)

T..[RK].f0,10gS..T 0 11 0 0.333 1 Gq11

A.f3,6gV[ILV][RK] 0 11 0 0.333 1 Gq11

P..[AGS]T.f0,10gS 0 10 0 0.303 1 Gq11

[AGS][ILV][ILV][RK].f2,10gS 0 10 0 0.303 1 Gq11

S[FWY].f1,11gQ[ILV] 0 10 0 0.303 1 Gq11

[AGS].f0,3gS..T[ILV] 0 10 0 0.303 1 Gq11

S...L.f2,9gTL 0 10 0 0.303 1 Gq11

[RK]F....K 0 10 0 0.303 1 Gq11

[AGS].[ILV].f0,10gK.F 0 10 0 0.303 1 Gq11

[AGS].S.[RK].f0,10gF 1 13 0 0.394 0.9286 Gq11

S...L.f1,10gT[ILV] 1 12 0 0.364 0.9231 Gq11

[RK].T.f0,10gQ[AGS] 0 12 1 0.364 0.9231 Gq11

[AGS]...L.f1,10gTL 1 12 0 0.364 0.9231 Gq11

[AGS][ILV][ILV][RK] 0 12 1 0.364 0.9231 Gq11

A.f0,10gV[ILV][RK] 1 14 1 0.424 0.8750 Gq11

[AGS].f0,3gV[ILV][RK] 1 14 1 0.424 0.8750 Gq11

F.f0,10gY...[RK] 0 14 2 0.424 0.8750 Gq11

[CM].[FWY].f3,12gP 1 11 0 0.333 0.9167 Gq11

S.[AGS].f3,13gTL 1 11 0 0.333 0.9167 Gq11

V[AGS].f0,10gS.[AGS].[ILV] 1 11 0 0.333 0.9167 Gq11

Y....[RK]P.f2,10gA 0 11 0 0.333 1 Gq11

[ILV]......A.T 1 11 0 0.333 0.9167 Gq11

S...L.f1,11gY 1 11 0 0.333 0.9167 Gq11

A.f3,12gV[ILV][RK] 0 11 1 0.333 0.9167 Gq11

[AGS].f2,5gV[ILV][RK] 1 11 0 0.333 0.9167 Gq11

[FWY].f4,7gKP 1 11 0 0.333 0.9167 Gq11

R.[RK].f0,10gK[AGS][AGS] 1 11 0 0.333 0.9167 Gq11

[ILV]A.f2,4gS.[ILV] 1 11 0 0.333 0.9167 Gq11

[AGS].[ILV].f2,10gL.[FWY] 0 11 1 0.333 0.9167 Gq11

[AGS][FWY]..[FWY] 1 11 0 0.333 0.9167 Gq11

S.S.f1,11gL.S 0 11 1 0.333 0.9167 Gq11

[ILV].L.f6,11gA.T 1 11 0 0.333 0.9167 Gq11

K.f0,3gN.P 1 11 0 0.333 0.9167 Gq11

[ILV].L.f6,10gA.T 0 11 0 0.333 1 Gq11

[RK][FWY]....K 2 13 0 0.394 0.8667 Gq11

[AGS].S.[RK].f2,10gF 1 13 0 0.394 0.9286 Gq11

[ILV].f3,6gS.Q 3 18 3 0.545 0.7500 Gq11

C.[FWY].f2,11gK 0 10 1 0.303 0.9091 Gq11

C.[FWY].f2,12gK 0 10 1 0.303 0.9091 Gq11

S....[RK]A.f3,10gS 1 10 0 0.303 0.9091 Gq11

Table 6.8: The 40 best patterns found for each receptor-G protein coupling group,
together with the number of times they match in each of the three training set
groups, and their calculated sensitivity and specificity.

Receptor-G protein recognition is known to be regulated by both post-
transcriptional and post-translational modifications, likely of both the GPCR and
the G-protein heterotrimer (Wess 1998). Analysing just the translated receptor
coding sequence does not allow us to model such events. In spite of these issues,
the discovered patterns are sensitive and selective, enabling our construction of a
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Pattern Gi=o Gq11 Gs Sensitivity Specificity Best
(55) (33) (25)

A[ILV].f1,5gY..[ILV].T 0 0 10 0.400 1 Gs

A.f1,5gRY....T 0 0 10 0.400 1 Gs

I....RY.f1,10gR 0 0 9 0.360 1 Gs

I....RY.f4,6gT 0 0 9 0.360 1 Gs

LR.f1,9gT...[ILV] 0 0 9 0.360 1 Gs

RS.f3,13gC[AGS] 0 0 9 0.360 1 Gs

[ILV].[FWY]H.f1,3gI 0 0 9 0.360 1 Gs

F.f1,4gY....T 0 0 9 0.360 1 Gs

I....RY.f4,4gT 0 0 9 0.360 1 Gs

I....R[FWY] 0 0 9 0.360 1 Gs

I....RY....T 0 0 9 0.360 1 Gs

I....RY 0 0 9 0.360 1 Gs

[FWY].A.f2,6gY..[ILV] 0 0 9 0.360 1 Gs

I.[AGS].f1,10gS...R 0 0 8 0.320 1 Gs

[ILV].[FWY]H.f3,12gT 0 0 8 0.320 1 Gs

L..H.[ILV] 0 0 8 0.320 1 Gs

[ILV].[FWY]H.[ILV] 0 0 8 0.320 1 Gs

[ILV].[FWY]H.I 0 0 8 0.320 1 Gs

A....[RK][RK]I 0 0 8 0.320 1 Gs

[AGS].f0,10gL..H.[ILV] 0 0 8 0.320 1 Gs

[ILV].[FWY]H.f3,10gT 0 0 8 0.320 1 Gs

[FWY]H.I.f0,3gT 0 0 8 0.320 1 Gs

S.f5,12gS.L.[RK] 0 0 8 0.320 1 Gs

S.f5,9gS.L.[RK] 0 0 8 0.320 1 Gs

Q.f0,9gS.L.[RK] 0 0 8 0.320 1 Gs

A.f1,5gRY..[ILV].T 0 0 8 0.320 1 Gs

F.f1,10gA...H 0 0 8 0.320 1 Gs

[ILV]..H.[ILV].f1,3gT 0 0 8 0.320 1 Gs

[FWY]H.I.f0,10gV 0 0 8 0.320 1 Gs

A..[FWY].f0,3gH 0 1 10 0.400 0.9091 Gs

I....[RK]Y.f4,6gT 0 0 10 0.400 1 Gs

A.f1,5gR[FWY]....T 1 0 10 0.400 0.9091 Gs

A.f2,6gY..[ILV].T 0 1 10 0.400 0.9091 Gs

A..[FWY].f0,8gH 1 1 11 0.440 0.8462 Gs

[AGS].f1,5gRY....T 0 2 11 0.440 0.8462 Gs

I....[RK]Y.f1,10gR 0 1 9 0.360 0.9000 Gs

R[FWY]H.f5,14gR 0 1 9 0.360 0.9000 Gs

[RK]S.f3,13gC[AGS] 1 0 9 0.360 0.9000 Gs

[RK].[ILV].C.R 1 0 9 0.360 0.9000 Gs

[RK].[ILV].C.[RK] 1 0 9 0.360 0.9000 Gs

Table 6.9: The 40 best patterns found for each receptor-G protein coupling group,
together with the number of times they match in each of the three training set
groups, and their calculated sensitivity and specificity.

useful predictor, allowing us to address a problem that has repeatedly been stated
to be a rather difficult one (Wess 1998; Sautel and Milligan 2000; Horn, Vriend et
al. 2001).
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6.3 Simultaneous discovery of patterns and subfamilies

In Chapters 1 and 2 and previous subsections of Chapter 6 we used some relatively
straightforward fitness measures for identifying the interestingness of patterns.
These measures were based on the occurrences in one set versus another. For
example, the specificity and sensitivity of the patterns, the ratio of occurrences
in two different subsets of sequences, or the probability of observing the given
number of patterns in the set of input sequences.

If the pattern discovery task is to find interesting patterns from a single set of
input sequences, the question of what is “interesting” becomes trickier. We can
say that a pattern is interesting if it occurs more often than expected. It is possi-
ble to estimate the number of expected occurrences by assuming some generative
model and calculating the expected number of occurrences (and the standard de-
viation) either analytically or estimating it from data. Usually, the more complex
the pattern is, the less occurrences it should have in a random text, and hence the
more interesting the pattern is if it does occur frequently in the data. Hence, usu-
ally the aim is to find the patterns that occur in as many of the input strings as
possible (Bairoch 1992; Jonassen, Collins, & Higgins 1995).

Here we show how a novel fitness measure based on the Minimum De-
scription Length (MDL) principle (Li & Vitanyi 1993; Rissanen 1978) can be
used for discovering biologically meaningful patterns (Brazma et al. 1996;
Brazma, Ukkonen, & Vilo 1996; Brazma et al. 1998c).

The MDL principle means in the pattern discovery context that the best pattern
is the one which minimizes the sum of

� the length (in bits) of the pattern; and

� the length (in bits) of the data when encoded with the help of the pattern.

Let us describe the application of the MDL principle in more detail for unions
of substring patterns.

Let B1; : : : ; Bk be a partition of a set of sequences S = f�1; : : : ; �ng (i.e. ,
B1; : : : ; Bk are disjoint and their union is S) and let � = f�1; : : : ; �kg be a set of
patterns such that the pattern �j matches all the sequences of the set Bj . We call

 = f(�1; B1); : : : ; (�k; Bk)g a coverof S. We call � the pattern setof 
. We
define kSk =

Pn
j=1 j�j j, and jSj = n. Let us assume that we want to transmit

the set of sequences S over some channel. A trivial way would be to transmit
�1; : : : ; �n one after another. If we abstract from the fact that some delimiters
between sequences also have to be transmitted, the message length (in characters)
would be kSk. Suppose that a substring pattern �"� is present in all the sequences,
i.e. , �i = Æi"�i, for some Æi; �i 2 ��. Then we can compress the message by
first transmitting ", and then Æ1; �1; : : : ; Æn; �n. Similarly, if 
 = f(�"j�; Bj)jj =
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1; : : : ; kg is a cover of S (i.e. , Bj = fÆji "j�
j
i jj = 1; : : : ; kg) , then S can be

transmitted using 
, as:

for j = 1 to k do
send "j
for i = 1 to jBjj do

send Æji , send �ji

The message length obtained this way isM(
) = kSk�
Pk

j=1 (jBj j � 1)j"j j:
The MDL principle suggests that the best pattern set � is the pattern set of a cover

 that minimizes the message length M(
). The second term

C(
) =
kX

j=1

(jBj j � 1)j"j j

in the expression can be considered the compressionin comparison to kSk. Min-
imizing M(
) equals maximizing C(
) and thus C defines a rating function for
pattern set � in respect to S.

For generalized regular patterns, when we take into account the frequencies
of different alphabet characters and the delimiter problem, these MDL considera-
tions lead to the rating function of the type

R(
) =
kX

j=1

(uj jBj j � wj); (6.3)

where uj and wj are parameters (positive numbers) that depend on the pattern �j
and assumptions about various probability distributions. We have shown that un-
der a certain Bayesian assumption this rating function maximizes the probability
that the particular union of patterns is the “source” of the examples (Brazma et al.
1996; Brazma, Ukkonen, & Vilo 1996).

We have developed a program called MDL-Pratt by modifying the tool Pratt
(Jonassen 1997), which allows us to discover and rate patterns using the developed
MDL measure.

To test the MDL based measure in practice, we collected a set of 31 protein
sequence segments, each of which is believed to contain a chromo domain (Paro &
Hogness 1991). Aasland and Stewart identified two subfamilies (subsets); (1) the
classical chromo domains linked to chromo shadow domains and (2) the chromo
shadow domains (Aasland & Stewart 1995). Our sample set contained 8 members
of each subfamily.

MDL-Pratt, when run on this set of 31 sequences, produced three patterns
given in Figure 6.6, covering subsets of sizes 7, 6, and 8 respectively (the remain-
ing 10 sequences were included in the union individually). The first two sets pro-
duced by MDL-Pratt correspond closely to the two subfamilies given in (Aasland
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& Stewart 1995). Compared to these subfamilies, one segment is missing from
the first set, and two segments are missing from the second (see Figure 6.7).

The result indicates that MDL-Pratt can be used to discover family- and
subfamily-relationships in a set of sequences and filtering out the “noise”.

1. E-x(0,1)-E-E-[FY]-x-V-E-K-[IV]-[IL]-D-[KR]-R-x(3,4)-G-x-V-x-Y-x-L-K-
W-K-G-[FY]-x-[ED]-x-[HED]-N-T-W-E-P-x(2)-N-x-[ED]-C-x-[ED]-L-[IL]

common to: DmHP1_A DvHP1_A HuHP1_A MoMOD1_A MoMOD2_A PcHET1_A PcHET2_A

2. L-x(2,3)-E-[KR]-I-[IL]-G-A-[TS]-D-[TSN]-x-G-[EDR]-L-x-F-L-x(2)-[FW]-
[KE]-x(2)-D-x-A-[ED]-x-V-x-[AS]-x(2)-A-x(2)-K-x-P-x(2)-[IV]-I-x-F-Y-E

common to: DmHP1_B DvHP1_B HuHP1_B MoMOD1_B MoMOD2_B PcHET1_B

3. Y-x(0,2)-L-[IV]-K-W-x(6)-[HE]-x-[TS]-W-E-x(4)-[IL]

common to: DmPc MoMOD3 HuMG44 CfTENV FoSKPY MoCHD1_A MoCHD1_B ScYEZ4_B

Figure 6.6: The patterns obtained when running MDL-Pratt on the 31 chromo
domain sequence segments. The patterns are given in PROSITE notation, and
are followed by the names of the set of sequences (among the initial set of 31
sequences) matching this pattern. The remaining 10 sequences were represented
by singleton sets in the cover.
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Figure 6.7: Estimate of the phylogenetic tree for the chromo domain segments
included in the analysis. The tree was produced using Clustal W (Thompson,
Higgins, & Gibson 1994) which uses the neighborhood joining method (NJ) for
estimating phylogenetic trees (Saitou & Nei 1987), and was taken from the ‘offi-
cial’ World-Wide-Web pages for (Aasland & Stewart 1995). The dashed ellipses
show the two most important subsets identified by MDL-Pratt.
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Chapter 7

Software tools

Bioinformatics research is often application-driven requiring novel practical tools.
This Chapter describes briefly a set of tools that have been implemented based on
the methods developed in this thesis and that have been used to achieve most of
the practical results described.

7.1 Expression Profiler

Expression Profiler (EP, http://ep.ebi.ac.uk/) is a set of tools for the analysis and
interpretation of gene expression and other functional genomics data. For exam-
ple, the tools enable the integration of expression data with protein interaction
data and functional annotations, like Gene Ontology (The Gene Ontology Con-
sortium 2000), or the analysis of promoter sequences for predicting transcription
factor binding sites. The developed tools are:

EPCLUST for gene expression data clustering, analysis, and visualization,

SPEXS for sequence pattern discovery,

URLMAP for integrating tools and databases over the Internet,

EP:GO for using Gene Ontology ontologies,

EP:PPI for integrated analysis of protein protein interaction and gene expression
data sets,

GENOMES for storage and retrieval of genomic DNA (e.g. upstream sequences)
and gene annotations,

PATMATCH for matching and visualization of sequence patterns with the added
possibility to combine gene expression and sequence data analysis results,

SEQLOGO for visualization of sequence alignments and position weight matri-
ces using sequence logos.

117
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Several clustering analysis methods of EPCLUST and sequence pattern dis-
covery methods of SPEXS, PATMATCH and SEQLOGO provide a rich data
mining environment for various types of biological data. All the tools are
web-based with minimal browser requirements. Analysis results are cross-
linked to other databases and tools available on the Internet. This enables
further integration of the tools and databases, for instance with such public
microarray gene expression databases as ArrayExpress (Brazma et al. 2000;
2002). Expression Profiler is described in more detail in (Vilo et al. 2003) and
in the on-line documentation of Expression Profiler (Vilo, Kapushesky, & Kem-
meren 2002).

We started the development of Expression Profiler originally for identifying
sets of co-expressed genes and predicting their potential co-regulation mecha-
nisms (Vilo et al. 2000). The main design principle of Expression Profiler has
been rapid prototyping of new analysis methods and integration of different data
types and tools for analyzing these data. More recently we have focused on pro-
viding a reliable service by offering a web-based access to different analysis meth-
ods. Access to the tools over the web allows users to share their data and analysis
results with other people and to create their own collaborative research environ-
ments.

7.1.1 SPEXS - Sequence Pattern EXhaustive Search

SPEXS is a software tool that implements the main algorithmic ideas from Chap-
ter 3. The command-line parameters determine the pattern language and elemen-
tary requirements that pattern should satisfy, as well as the choice of the search
order and method for pattern discovery. Some of the pattern language definition
parameters are the maximum motif length, the number of allowed group charac-
ter positions, number and length of allowed wild-card characters. Configuration
files are used to represent the character set �, character groups �, and some extra
information like stop-characters.

The fitness measures used for outputing the discovered patterns correspond
to elementary goodness criteria based on the ratio and probability based statistics
discussed in Sections 6.1.1 and 6.1.3.2. Users can set the thresholds for the fitness
measure, according to which all patterns that are at least as good are output.

Patterns can be output together with the counts of occurrences in each input
set, as well as all the positions of matches, if needed. Using this output users
can further analyse the discovered patterns and apply their own fitness criteria to
further select the most interesting patterns.

When SPEXS searches for patterns, it follows strictly the pattern language
specified by a collection of parameters describing the acceptable patterns. The
different search orders (depth-first, breadth-first, frequent patterns first, etc. ) al-
low for flexible search strategies.
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7.1.1.1 WWW-interface

We have developed a WWW-interface that allows to use different parameter set-
tings in a more user-friendly manner. It has been developed in conjunction with
the Expression Profiler that is described in the next section. The development
of Expression Profiler is an ongoing project and will also affect the SPEXS in-
terfaces. They share the same code for data and folder handling, as well as the
tools need to be integrated into joint analysis flows. The SPEXS interface can be
roughly divided into three larger parts:

� Data upload and folder handling

� Interface to the pattern discovery algorithm parameters

� Sorting and analysis of the discovered patterns, links to other tools

The data sets can be either uploaded from the end-user machine or extracted
from other tools (GENOMES) of Expression Profiler. Data files are stored in data
folders, i.e. containers of related data sets. Within the folder the users can perform
the analysis, results are stored in the same folder.

Parameters for describing the pattern language and fitness measures can be
chosen from pulldown menus or inserted in text fields. The parameters are pre-
sented on a single page, which can be modified until the user is sure that the
pattern discovery process is ready to be launched.

The results, i.e. the reported discovered patterns, can be sorted according to
different sort criteria. Patterns are directly linked to PATMATCH tool that allows
to visualize the locations of each pattern in the input (or other) data.

7.1.1.2 Performance measurements

We have measured the time to run SPEXS using different data sets and parameter
settings.

First, the construction of the most frequent substring patterns as discussed in
Section 3.1.2. We used the file Yeast -600 +2 W all.fa1 containing all up-
stream sequences (6423 sequences) of length 600bp (plus the start codon marked
ATG ) as the input data set. We varied the threshold K and the pattern search

order. The input sequences when appended one after another form a sequence of
3.89 million characters. Measurements are given in Table 7.1.

1We have used this file commonly for yeast Saccharomyces cerevisiaeupstream se-
quence analysis, it can be extracted from the GENOMES, and is available from
http://ep.ebi.ac.uk/EP/PATMATCH/SEQUENCES/Yeast -600 +2 W all.fa
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K breadth-first depth-first frequent first
6000 7.1 7.1 7.1
4000 7.9 7.7 7.9
1000 9.9 9.1 9.9

100 13.9 11.4 13.8
10 19.5 14.6 20.3

Table 7.1: Speed measurements for problem type P1:B, i.e. substring patterns
common to at least K sequences (of length 605 characters) out of 6423. The times
are real wallclock times in seconds, measured on Compaq Alpha ES40 server
running a True64 Operating system. The different columns show the times for
different search orders.

Next, we measured the time for finding the most overrepresented patterns
(problem type E) for different pattern classes. We used as the first set of se-
quences the set of 98 upstream sequences belonging to a cluster of co-expressed
genes (see Section 7.2) and compared it to all upstream sequences in the file
Yeast -600 +2 W all.fa. We used a binomial probability based measure
(Section 6.1.3.2) to estimate the proability of a pattern to be overrepresented. We
asked SPEXS to report all patterns that have probability less than 10�5 to be
present in at least that number of times in the cluster of 98 sequences.

Pattern language K=90 K=50 K=20
Substrings 9.0 11.0 12.6
Subsrings with 1 single-character wildcard 38.0 51.4 66.4
Subsrings with 2 single-character wildcards 97.1 150.6 262.1
Subsrings with 3 single-character wildcards 200.2 343.9 553.0
Substrings with 2 of any 2-character groups 489.3 757.0 914.7
Substrings with one restricted wildcard �(0; 15) 200.8 312.4 469.0

Table 7.2: Speed measurements for finding patterns overrepresented in a cluster
of 98 sequences vs. in all upstream sequences of yeast. Different columns show
the effect of changing K , the number of sequences in a cluster, where the pattern
should be present. The times are real wallclock times in seconds, measured on
Compaq Alpha ES40 running True64 Operating system.

Finally, for protein sequences, we measured the time for the pattern discovery
task described in Section 6.2, i.e. the pattern discovery for finding patterns more
frequent in one set of internal loop containing sequences vs. two other sets. The
running times varied between 17 and 25 seconds for patterns containing up to 5
group character positions � = f�; fRKg; fEDg; fAGSg; fILVg; fFWYg; fCMgg and
one restricted wildcard of length between 0 and 3.
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The similar task, when allowing for up to three occurrences of restricted wild-
cards of length between 0 and 7 positions, took about 18 minutes. The number
of patterns generated was over 7 million and of those with a probability less than
10�5 about 11000. Note that this pattern language is more complex than that used
in Section 6.2. For predicting the Gi=o membership, for example, it revealed a
pattern R[FWY].[AGS].f0,7gA...f0,7gR.f0,7gR that occurs in 19 se-
quences from class Gi=o and not a single time in other sets. Of the 19 occurrences
in Gi=o all except one are in the short second intracellular loop (one occurrence is
in the third loop).

For smaller sets of sequences, as is the case for predicting the coupling speci-
ficity for GPCR proteins, we have experimented with eliminating the construction
of multiple equivalent pattern subtries. This is achieved by keeping track where
exactly are all the occurrences for each pattern. If another pattern during the con-
struction has exactly the same set of occurrences, then that particular subtree is
not constructed.

7.1.1.3 Discussion

The challenge for postprocessing the SPEXS results remains an open research
area. Given the large number of potentially reported patterns there is a need for
mechanisms that are able to reliably identify the most important patterns that cover
all the ”interesting” cases. Some approaches have already been discussed in Chap-
ter 5. More are needed. For example, for showing the patterns in different levels
of detail and allowing users to dig in deeper into more interesting pattern types.

7.1.2 EPCLUST

EPCLUST (Expression Profile data CLUSTering and analysis) is the module for
gene expression data matrix analysis, including data selection and filtering, clus-
tering, visualization, and similarity searches. Additionally, it supports missing
data imputation, data randomization, and data rescaling.

EPCLUST provides a folder-based analysis environment to operate with data
sets in server-side folders. The folders serve as secure data authoring, analysis and
publishing environments with multi-user access capability over the web, allowing
distributed collaboration.

Raw data may be uploaded to EPCLUST in a number of different formats,
either from the users’ own computers or from gene expression databases available
on the web. These raw data then should be filtered to create an analysis data set.

Upon the transfer of a large data set to an EPCLUST server, the user will often
select only part of the data for a particular purpose. For example, after uploading
the data set of the expression of an entire genome in a time-course experiment
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with numerous measurements, the user may desire to focus on specific time-points
or experiments, and only on those genes that have shown significant differential
expression under certain specified conditions.

The rows and columns of data have tags by which they can be identified. The
row annotations are read from a file that provides a description for every row ID.
These descriptions may contain HTML markup, to link to corresponding entries
in a database, or to highlight the key biological roles known for the genes. The
annotations will be shown together with the clustering results, facilitating data
interpretation, if the annotations were created carefully and with detail.

The prepared data files are stored in data folders, where various analysis can
be performed. The intermediate (e.g. the all against all distance matrices) as well
as the final analysis results (clustering results and visualizations) are also stored in
the same folders, where they can be viewed later without having to redo the same
analysis steps.

Distance measures
Cluster analysis is a type of classification algorithm that is intended to orga-

nize a collection of objects into meaningful structures. This meaning is given by
the relative proximity of objects within one cluster in comparison to objects in
other clusters. There exist many different distance measures for the comparison
of expression profiles. These measures are grouped in EPCLUST on the basis of
their general properties.

The first group consists of the standard metric distances: the Euclidean dis-
tance, the Manhattan distance, and the average distance (Euclidean distance that
has been normalized by the vector length).

The second group consists of distances that essentially measure the correlation
(or angle) between vectors. Note that these distances capture the idea that the
direction and relative intensity of the values are what is important, and not the
absolute values and magnitudes of the change. This corresponds well with the
tasks of expression analysis where the absolute change can be meaningless, while
the direction and relative scale of the change are crucial.

The third group is based on measures that work on ranked expression vectors
instead of on the original values (rank correlation), or measures that are applicable
only to discrete (e.g.binary vectors) data.

Clustering methods
We implemented fast versions (see Table 7.3) of standard agglomerative (bot-

tom up) hierarchical clustering methods and partitioning-based K-means methods,
and incorporated them into the web interface with extensive visualization options.

The hierarchical clustering method requires that all pairwise distances are cal-
culated first. For longer vectors, e.g. for many hybridizations analyzed simulta-
neously, this can be the most time-consuming step of the analysis. The distance
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Vector length 10 10 100 100 1000 1000
Number clustering distances clustering distances clustering distances

10 0.00 0.00 0.00 0.00 0.00 0.00
100 0.00 0.00 0.00 0.00 0.00 0.03
500 0.05 0.02 0.05 0.09 0.05 0.78

1000 0.19 0.08 0.20 0.35 0.21 3.12
2000 0.82 0.31 0.87 1.40 0.91 12.57
3000 2.41 0.71 2.60 3.17 2.67 28.46
4000 4.77 1.26 5.15 5.65 5.34 50.61
5000 8.02 1.95 8.70 8.81 9.04 79.58
6000 12.28 2.79 13.23 13.42 13.85 114.64
7000 17.08 3.80 18.45 17.94 19.43 156.53
8000 22.78 5.31 24.76 23.75 26.29 204.28
9000 31.52 6.53 34.87 31.26 34.97 270.30

10000 40.03 8.16 43.02 35.80 43.74 319.52
15000 96.46 27.03 101.33 82.23 108.99 719.68
20000 195.09 51.92 194.81 148.97 201.31 1279.05

Table 7.3: Times of all-against-all distance comparisons and hierarchical cluster-
ing for up to 20,000 vectors of length 10, 100, and 1000 numeric attributes. Times
are in seconds, as measured on an Alpha ES40 ev64 server on a single processor.

matrices are reused by different clustering methods. The hierarchical clustering
methods include:

complete linkage using maximum distance between members of two clusters for
defining the distance between clusters;

average linkage using weighted and unweighted group-wise average methods
WPGMA and UPGMA;

single linkage using minimum distance;

The K-means clustering method requires users to provide the number of clus-
ters as well as a method for choosing the initial cluster centers. Starting from po-
tential cluster centers the K-means procedure assigns all genes to their respective
clusters (the cluster to whose center they are closest) and refines cluster centers
to be the geometric centers of gravity for each defined cluster. This process is
repeated until the clustering stabilizes or the number of allowed cycles is reached.

Other clustering methods are currently being added to EPCLUST. These in-
clude the linear-time top-down divisive hierarchical clustering method SOTA (Self
Organizing Trees (Herrero, Valencia, & Dopazo 2001)), and some variants of the
standard Self Organising Map (SOM) algorithms (Kohonen 1997). For extensive
coverage of clustering methods see, for example, (Legendre & Legendre 1998;
Everitt, Landau, & Leese 2001).



124 7 SOFTWARE TOOLS

Similarity searches
Similarity searches provide users with alternative straightforward ways to

study gene expression without requiring to cluster the whole data set first.
The user can select genes of interest by typing in their IDs or by querying

from data set annotations and then use these genes to query the entire data set for
similar ones.

Genes whose expression profiles are similar under a chosen distance measure
(a variety are available) are reported. To reduce the size of the meaningful an-
swer, users can set cut-off thresholds for the number of genes to be displayed or
for the maximal distance that is relevant to their query (e.g. the estimate of the
significance threshold for a particular data set (Kruglyak & Tang 2001)).

There exists also an “opposite” search, in the sense that only the farthest dis-
tance genes are displayed in the result set. This way the user can study the genes
that are anti-correlated with the gene of interest.

The similarity search can be performed either on one gene at a time, or on a set
of genes simultaneously. If many genes are used in the search together, the results
can be displayed either for each one individually, or as a combined result merging
all the individual results. This way, for example, starting from a tight cluster of
co-expressed genes, one can search for other genes that have similar profiles to
any of the original ones. This can be seen as generating a “supercluster”.

Visualization methods
The results of the cluster analysis and similarity searches are presented visu-

ally in the heat-map format, made popular in the microarray community by Mike
Eisen (Eisen et al. 1998). The results are presented in PNG (Portable Network
Graphics) or GIF formats, with clickable regions for drilling into the expression
data - e.g.exploring subtrees in a hierarchical clustering.

7.1.3 URLMAP: integrating the web applications

URLMAP is a tool for integrating different web based tools and databases by
providing a mechanism for cross-linking data or results from one application to
others. Links are provided in a hierarchical structure managed by the tool ad-
ministrator, thus enabling for example the thematic categories for improved us-
ability. URLMAP takes as an input the data (for example the gene id’s) from the
source application and creates as an output the ready-made HTML form based
links that are tailored automatically for the target application. Link descriptions
in URLMAP contain information about the necessary fields for the target appli-
cation and possible rules (expressed as perl code) for modifications to the data
content, enabling for example the replacing of gene id’s by their synonyms used
in the target application.
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From the very early days of development of EPCLUST it was obvious that
expression data analysis, however important, can not be viewed in isolation from
other available data and information about the genes and experiments. The ques-
tion is how to integrate expression data analysis results (e.g. the list of genes in
a particular cluster) to genomic databases, metabolic pathways, available annota-
tions, putative promoter sequences and their analysis, i.e. to all the resources avail-
able on the Internet, scattered between many different sites and locations. Rather
than trying to build into the EPCLUST clustering tool all the possible cross-links,
we wanted to concentrate the cross-linking functionality into one central tool.

The main problem is that all these resources have different web interfaces and
users often need to copy-paste the gene id’s. Moreover, each of these interfaces
have different parameters and choices that need to be filled in for the queries to
be meaningful. Finally, different databases often use different naming conven-
tions for the same genes, so semi-automatic translations between these id’s are
necessary. URLMAP handles query generation automatically; users are presented
with pre-configured hyper-links and/or buttons, making it easy to try out different
database queries and tools.

URLMAP is configurable on the server side with simple text file formats.
End-users, however, can assist in developing and maintaining these lists. For
example, one can design and test custom-made mappings and suggest them to
server administrators for inclusion in URLMAP.

Currently the URLMAP tool provides mainly links for major yeast Saccha-
romyces cerevisiae, Saccharomyces pomberelated tools and databases, and links
for integrating different modules of Expression Profiler.

Most databases do not allow queries with multiple IDs simultaneously, yet
this is the typical case when studying gene clusters. For these cases URLMAP
creates multiple individual queries and users can click on each one separately.

A more serious problem is if the databases use different names for the same
objects. Sometimes there exists a one-to-one mapping between these different
naming conventions. For example, the yeast community has been standardizing
gene identifiers: the yeast ORF names provide the most commonly used refer-
ences for each gene (although even the ORF names may contain synonyms or
homonyms). In SwissProt, for example, the proteins corresponding to yeast genes
also have SwissProt accession numbers. The Stanford Saccharomyces Genome
Database (SGD) uses its own unique IDs, which are also used as primary identi-
fiers in the S. cerevisiaeGeneOntology association files.

URLMAP provides ways to map between different identifiers. If the site ad-
ministrator knows which of these naming conventions is most appropriate for the
given database, (s)he may provide an automatic mapping to that naming con-
vention before creating the query. Currently, for example, there exist mappings
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between yeast ORF names, gene names, SwissProt IDs, and SGD identifiers in
URLMAP.

7.1.4 EP:GO Gene Ontology browser

EP:GO is a tool for browsing and using the ontologies developed by the Gene
Ontology consortium (The Gene Ontology Consortium 2000). EP:GO allows to
study the ontology by searching for specific entries and by traversing the ontol-
ogy directly. It provides cross-links to other databases, mapping the IDs when
necessary. For example EP:GO maps GO entries to enzyme databases by the EC
numbers.

EP:GO incorporates information about gene associations, i.e. the lists of genes
corresponding to each ontology entry for each annotated organism. Thus it be-
comes easy to extract expression information for all genes in any particular GO
category. To get all the genes in any particular category, all the subcategories
have to be queried and combined. These extracted gene lists can then be analyzed
by other methods; for example, their expression profiles can be looked up with
the EPCLUST tool, or their respective upstream sequences can be analyzed for
identifying GO category-specific transcription factor binding site motifs. Links
between these analysis tools are provided by URLMAP.

Gene associations are also useful in another respect, namely, in trying to un-
derstand the biological relevance of a cluster of co-expressed genes. Given a list of
genes it is natural to ask in which processes these genes are involved, what are the
possible common functions of the genes, and whether they might be expressed in
the same subcellular locations. EP:GO takes as input a list of genes and ranks the
GO categories based on how well they correlate with the genes from the cluster.

7.1.5 EP:PPI: comparison of protein pairs and expression

EP:PPI is a tool for analyzing protein-protein interaction data in the context of
gene expression data.

High-throughput functional genomics are generating a wealth of information.
Inherent is the artificial nature of many of these assays and the heterogeneity in
data quality. Therefore, additional verification is necessary to reduce the number
of false positives and to provide a more accurate functional annotation.

Using EP:PPI, protein-protein interactions (PPI) can be compared with mRNA
expression data. This comparison enables the prioritization of protection-protein
interactions. A more reliable functional annotation can then be obtained for
uncharacterized proteins, using a significance threshold, based upon previously
known protein interactions (Kemmeren et al. 2002).
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EP:PPI uses existing PPI data sets and compares these with mRNA expression
data sets in EPCLUST. The protein pairs are ranked according to their expression
distance and plotted on a graph. Other genes that show a similar pattern in mRNA
expression levels can be obtained using the similarity-based search (a direct hyper-
link to EPCLUST similarity search). This allows to observe whether genes closely
related according to mRNA expression also belong to the same functional class.

Another advantage of using mRNA expression data to prioritize the PPI is
that it gives insights into particular conditions under which these proteins are co-
expressed. In the future EP:PPI will be expanded to include more different types
of functional genomics data, so that these can be used to pinpoint false positives
i.e. the protein pairs that are not likely to interact although present in the data,
as well as to speed up the functional annotation efforts. The method has been
described in more detail in (Kemmeren et al. 2002), where the predictions are
also supported by biological experiments.

7.1.6 SPEXS, PATMATCH, and SEQLOGO: Pattern discovery, pat-
tern matching and visualization tools

The numerical data analysis methods for gene expression data are complemented
within Expression Profiler with the sequence analysis tools. In the context of gene
expression data analysis these tools facilitate primarily the discovery, analysis,
and visualization of putative transcription factor binding site motifs. This type of
analysis is illustrated in the example in the next section. Here we provide a brief
description of the available tools.

SPEXS (Sequence Pattern EXhaustive Search) is a tool for discovery of novel
patterns from sets of unaligned sequences. The SPEXS algorithm has been
described in Chapter 3 and the tool has been discussed in Section 7.1.1.

PATMATCH is a tool for pattern matching and visualization, used for match-
ing regular expression patterns in sequences and for visualizing the results.
PATMATCH also facilitates approximate matching of patterns for certain
pattern classes. Visualization of PATMATCH shows the sequences and the
matches within them. Sequence and pattern visualization can be combined
with gene expression clustering and heat-map visualizations, thus allowing
to see the correlations between sequences, sequence motifs, and respective
gene expression profiles.

SEQLOGO is a pattern visualization tool for DNA and protein motifs (position
weight matrices) that can be used in combination with PATMATCH and
SPEXS. It takes as input a set of sequences or a position count matrix and



128 7 SOFTWARE TOOLS

outputs a visual representation of the respective position weight matrix in
the form of a sequence logo (Schneider & Stephens 1990).

7.2 Data analysis and visualization example with Expres-
sion Profiler

Here we present an example that illustrates how the web-based tools in Expression
Profiler can be used for analyzing the various aspects of gene expression.

Consider a yeast gene, YGR128C; it was recently given a reserved name
UTP8. This gene has been classified as of unknown function, deletion of this
gene, however, results in a lethal phenotype (Winzeler et al. 1999), suggesting
that this gene plays an important role .

Searching for profiles by similarity
As has been suggested before (Eisen et al. 1998), proteins with related func-

tions often show coexpression on the mRNA level. In this case we want to identify
genes that are possibly functionally related, i.e. have similar expression profiles
to YGR128C. For that we use the data set from (Eisen et al. 1998), available in
EPCLUST in the folder All PB. In EPCLUST, we first go to the folder named
All PB, then, after choosing the data set called All genes, we select the action
“Search profiles by their similarity”.

Upon entering the gene name YGR128C, and searching for the 100 most simi-
lar genes using correlation distance (non-centered), we receive a list of 101 genes:
YGR128C and 100 other genes whose expression profiles are most similar to it.
These can be viewed in the results, under the expression heat map and the pro-
file graph, where there will be a listing of 101 genes, with YGR128C at the top.
It should be noted that the majority of these have been annotated as of unknown
function. The heat map of the expression of these 101 genes is presented in Figure
7.1.

Analyzing annotations
To analyze this set further, we click the “Submit to URLMAP” button below

the brief annotations. We choose the category “Bioinformatics for yeast ORF-
names” from URLMAP and press “Redirect” to get the links to different databases
for these 101 genes.

We select “Annotate a cluster of yeast ORFnames by GO”. This analysis
shows that the genes in the cluster of 101 that have annotated functions are mostly
related to ribosomal RNA, transcription, the Pol I promoter; rRNA processing;
ribosome biogenesis; RNA binding; RNA processing; RNA metabolism and cy-
toplasm organization.
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Figure 7.1: Expression profiles of the 100 genes most similar to YGR128C as
heat-map and line plot.

Promoter analysis
We demonstrate how to analyze the promoter region of the gene YGR128C

and provide evidence for two independent binding sites that possibly regulate the
expression of this particular gene.

Sequence extraction
We choose “Genome tools: Yeast, full table” to get to the GENOMES tool

where we can study the MIPS annotations for these genes, and extract suitable
length upstream sequences (start- and end-positions of the sequences can be de-
termined relative to the ORF start position). These extracted sequences can be
analyzed with SPEXS for identifying the patterns that are overrepresented in the
sequence set.

Pattern discovery
We choose “SPEXS pattern discovery” to start the pattern discovery process.

SPEXS can see the sequences extracted by the GENOMES tool; we recommend
using the 600bp-long sequences, upstream relative to the ORF start, i.e. the data
set Yeast -600 +2 W all.fa. In our example only 98 genes were found in
the genome instead of 101. This may be due to lack of knowledge or simply
inconsistencies at the time of producing an array. These 98 sequences will be
stored in a new folder of SPEXS.

SPEXS is able to study two data sets simultaneously and we want to dis-
cover motifs that occur more frequently in the set of 98 upstream sequences of
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co-expressed genes than in the set of all upstream sequences in the yeast genome.
In fact, a random sample of, say, 1000 upstream sequences would be sufficient
for this analysis, so for the background data set users may want to use 600bp up-
stream sequences of 1000 randomly chosen genes, all mapped to the same sense
strand (data set Yeast -600 +2 W random 1000 all.fa).

For the current data set we require SPEXS to search for unrestricted length
patterns that occur in at least 20 sequences within the cluster, allowing up to 2
wild card characters within a motif, and to report the patterns that are signifi-
cantly overrepresented. For overrepresentation we require it to be at least twice as
frequent within the cluster as in the random set of sequences, with the respective
binomial probability less than 1e-08.

Here is the list of the top ten most significant patterns, as provided by the
SPEXS pattern report:

Pattern Cluster Background Ratio Binomial Prob.
1. G.GATGAG.T 1:39/49 2:23/26 R:17.3026 BP:1.12008e-37
2. G.GATGAG 1:45/60 2:44/50 R:10.436 BP:1.61764e-34
3. GATGAG.T 1:52/70 2:72/78 R:7.36961 BP:2.79148e-33
4. TG.AAA.TTT 1:53/61 2:79/84 R:6.84578 BP:1.83509e-32
5. AAAATTTT 1:63/77 2:137/154 R:4.69239 BP:1.19109e-30
6. TGAAAA.TTT 1:45/53 2:59/61 R:7.78277 BP:3.86086e-29
7. AAA.TTTT 1:79/145 2:264/392 R:3.05349 BP:5.66833e-29
8. G.AAA.TTTT 1:51/62 2:84/94 R:6.19534 BP:5.69933e-29
9. TG.GATGAG 1:30/35 2:19/22 R:16.1117 BP:9.35765e-28
10. TG.AAA.TTTT 1:40/43 2:46/48 R:8.87311 BP:1.11240e-27

This output means that, for instance, the top-ranking pattern G.GATGAG.T
occurs in 39 sequences in the first data set of 98 sequences with 49 matches in
total. i.e. some sequences have multiple occurrences of the motif. It also occurs
in 23 out of 1000 sequences in the second, background, dataset, hence the relative
ratio being 39=98 � 1000=23 = 17:3. The probability 1.12008e-37 is the binomial
probability to observe 39 sequences out of 98 to contain the pattern given the
background probability that on average only 23/1000 (i.e. 2.3%) of the randomly
chosen sequences would contain that very motif.

From this list the first and the fourth patterns represent the most significant
distinct motifs (the second and third are variations of the first). These two motifs
have been identified previously as the PAC and RRPE motifs respectively and
thought to be involved in rRNA transcription and processing (Pilpel, Sudarsanam,
& Church 2001).

Matching discovered patterns to sequences
To analyze further the discovered motifs we use the pattern matching and

visualization tool PATMATCH. The significance of the PAC and RRPE motifs is
well supported, as PATMATCH shows that both of them are in fact well-conserved
and occur on average between 50 and 250bp upstream from the ORF start (see
Figure 7.2).
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A)

B)

Figure 7.2: A) A cluster of 98 genes based on the expression data (middle) and the
two SPEXS-found motifs G.GATGAG.T and TG.AAA.TTT specific to the clus-
ter (clustering on the right), matched to promoter regions of respective upstream
sequences (left). B) Hierarchical clustering (right) of all the yeast genes where
the same two motifs occur within 40bp on their 600bp upstream sequences (left).
It shows that all the 52 genes where these two motifs are in close vicinity to each
other have an almost unique expression response (middle).

In PATMATCH the users can search the sequence data for specific regular
expression type patterns and see the graphic visualizations of the occurrences
of these patterns on the sequences. Several patterns can be matched simultane-
ously and the occurrences of each pattern visualized by a different color. For
simple patterns approximate matching is implemented: executing a match for
-1:TGAAAA.TTT is equivalent to matching the pattern TGAAAA.TTT and al-
lowing one mismatch.

The sequence visualizations by PATMATCH can be combined with gene ex-
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pression data visualization from the EPCLUST. This is illustrated in Figures 7.2
and 7.3.

Figure 7.3: The combined visualization of microarray gene expression data clus-
tering (right), the respective upstream sequences (middle), and several different
patterns and their occurrences on these upstream sequences (left, middle). This
illustrates that PATMATCH, in combination with EPCLUST and SPEXS, can un-
cover motifs that are specific to certain gene expression clusters and are often also
conserved relative to the ORF start position. Note the grouping of motifs near the
bottom right corner of the left images, corresponding to the highly co-expressed
genes in the middle. Hierarchical clustering verifies these findings. The signif-
icant sequence patterns visualised each by a different colour code are from left
to right: GGTGGCAA, CCGTACA, G.GATGAG, TGAAA..TTT, CGCGAAAA,
ACGCG, ACCAGC, CGG...........CCG, TGA[CG]TCA.

Sequence Logos
The motif-matching regions extracted from PATMATCH can be submitted to

EP:SEQLOGO, a tool that creates position weight matrices and respective se-
quence logos from the aligned or unaligned sequences. Alignments are made by
looking for conserved motifs, if necessary. The position matrix is then formed
by taking counts of occurrence of each nucleotide in each of the motif’s positions
within the matching sequence regions.

To test the goodness of weight matrices derived in such a way, we used the
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tool ScanACE (Hughes et al. 2000) with default options to match the generated
position weight matrix against the sequences in the cluster as well as against all
the upstream sequences, to obtain comparable statistics for top three motifs above.
The results are summarized in Figure 7.4.

Assessing the quality of the motifs
By visual inspection it seems that most sequences have occurrences

of both patterns. The query G.GATGAG.T W/40 TG.AAA.TTT (pattern
G.GATGAG.T within at most 40bp from TG.AAA.TTT) performed against the
upstream sequences of all yeast genes shows that there are only 52 yeast genes
that have both of these motifs within 40bp from each other in their upstream se-
quences. See Figure 7.2 for the query results, showing also the gene expression
profiles for these 52 genes. We can hypothesize that the presence of both motifs
together determines the majority of the gene expression responses for this set of
genes, including the YGR128C (Figure 7.2). This has also been suggested previ-
ously by Pilpel et al.(Pilpel, Sudarsanam, & Church 2001), who report strong cor-
relation between these two motifs during the cell cycle, sporulation, heat shock,
and DNA-damage experiments.

7.3 Integration of Expression Profiler to public microar-
ray databases

ArrayExpress is a public repository for microarray gene expression data housed
in the EBI (see http://www.ebi.ac.uk/arrayexpress/). It can ac-
commodate microarray design descriptions, experiment annotations and experi-
ment results, satisfying the requirements posed by MIAME (Minimal Informa-
tion About Microarray Experiments, (Brazma et al. 2001)). An interface has
been implemented that allows Expression Profiler to import experiment results
from ArrayExpress for analysis.

ArrayExpress is based on the MAGE object model, which is a
standard model for microarray gene expression experiment domain; See
http://www.mged.org/ and (Brazma et al. 2002) for the details. In MAGE
the experimental data are represented as 3-dimensional matrices, with every mea-
surement having a corresponding:

� microarray design element (feature or group of features);

� bioassay, i.e. , hybridization (for data coming out of feature extraction soft-
ware) or data transformation (for derived data)

� quantitation type, i.e. , intensity, ratio, present/absent call etc.
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Pattern In cluster Total nr Ratio Probability
G.GATGAG.T 39 193 13.24 2.490e-33
TG.AAA.TTT 53 538 6.46 3.248e-31
TGAAAA.TTT 45 333 8.86 1.699e-31
-1:G.GATGAG.T 61 1295 3.09 1.441e-19
-1:TG.AAA.TTT 89 3836 1.52 6.126e-12
-1:TGAAAA.TTT 76 2190 2.27 1.654e-18

62 395 10.29 6.909e-50

83 1227 4.43 1.703e-44

69 593 7.63 1.585e-48

Figure 7.4: Putative yeast transcription factor binding site motifs and statistics of
their occurrences in the 600bp ORF upstream regions. The second column shows
the number of sequences in the cluster that match the pattern. The third column
shows the total number of upstream sequences matched by the motif (including
the cluster). The last two columns show the relative frequency of matches in the
cluster vs. the genome, and the probability of such events, respectively. The re-
sults are grouped by matching patterns exactly as found by SPEXS (the top three),
matching the same patterns with one mismatch (the middle three), and finally, by
matching of position weight matrices derived using approximate matching within
the cluster (represented by the sequence logos). Note that with one mismatch,
the number of motif occurrences increases dramatically, creating also many false
matches. When approximate matching within the sequences of one cluster is used
to create position weight matrices, false positive matches are reduced and the
probability scores are actually improved over those of the exact patterns, discov-
ered by SPEXS.

Expression Profiler operates with data as two-dimensional matrices. The de-
sign element dimension is transferred one-to-one from ArrayExpress to Expres-
sion Profiler. In order to specify the other dimension, the user can select which
bioassays (s)he wants to analyze and which quantitation types should be used.
The simplest case is to select all bioassays in the experiment and just one quan-
titation type, typically log-ratio (see Figure 7.5). However, it is possible to select
more than one quantitation type and not all bioassays.
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For a fixed quantitation type

Design Elements (spots)Design Elements (spots)

Quantitation Types (signal intensity, ratio etc.)

Bio Assays (hybridizations) All Bio Assays (hybridizations)

Figure 7.5: The schematic view of selecting a subset of data from the ArrayEx-
press into Expression Profiler for the analysis.

7.4 Development challenges for Expression Profiler

There are many standalone programs that do some combinations of what Expres-
sion Profile offers. Expression Profiler stands out from these by providing a simple
web-based interface to a sophisticated, integrated collection of modules that span
the needs of expression data analysis from initial data retrieval and filtering, to
data manipulation, and various means of analysis and cross-comparison.

An important distinguishing feature of this collection of tools is their flexi-
bility: the tools are implemented as server-side components, which means that
they can easily be scaled up to suit heavier computational means, they can be
used concurrently by multiple users in a collaborative fashion, and, perhaps most
significantly, every tool in Expression Profiler was designed with extensibility in
mind. When new algorithms and databases become available, they can be added
to Expression Profiler seamlessly, fitting neatly into the existing framework.

Furthermore, as we are designing Expression Profiler for future use, it is be-
coming more and more apparent that there is a need for the support of a canonical,
open interface for the exchange of experimental expression data between software
tools. We tackle this by providing a number of simple ways for data import/export
and also by working closely with the ArrayExpress database team on implement-
ing the support for the MAGE-ML data format and linking directly to this standard
repository of expression experiment data.

It is already evident that expression data analysis is not a simple matter of fol-
lowing a cookbook recipe in a step-by-step fashion. There are no algorithms that
lead to a full, unambiguous, analytical description of the experiment - instead the
user should be able to choose from an overwhelmingly large number of methods
and specialized algorithms and, importantly, often by way of experiment, arrive
at conclusions, and then validate them through further analysis yet. We hope to
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continue to extend Expression Profiler in such a way that the numbers of available
approaches will be accessible to users at every level of bioinformatical sophistica-
tion and that it will guide them through the data analysis maze. Future releases of
Expression Profiler will not only concentrate on improving and adding analytical
algorithms but also on improving the user interface, developing a collaborative
environment and offering ways to integrate disparate but complementary data for
analysis.



Chapter 8

Conclusions

In this thesis we have considered application-driven algorithm design where we
are often first presented with the challenge to analyze real-world data without
the tools for doing so. The challenge may come from the biologists or from the
bioinformatics researchers themselves when thinking about what one could do
in principle with the available data. To solve the challenge, the computational
method needs to be designed and implemented, the analysis of the data needs to
be performed, and the appropriateness of the developed methods verified. The
developed algoriths need also to be analyzed from the computational point of
view (correctness and complexity) and made as efficient as possible (with the
reasonable effort).

We have demonstrated in this thesis how theoretical and practical results of
algorithm design can be applied in the fields of molecular biology and bioinfor-
matics. The software tools SPEXS and Expression Profiler have been developed
and used for solving practical data analysis tasks in order to solve real biological
problems.

The future challenges include the better integration of the tools into graphical
user interfaces for average biologists’ use, as well as into analysis pipelines. These
pipelines should allow to combine different analysis methods so that the results of
one analysis are directly submitted as an input for another. This way large sets of
data can be analyzed without human intervention at every single step as would be
required in most graphical user interfaces. The analysis steps can also be repeated
when more data is available or some methods have been improved.

The results of the analysis of biological data need to be disseminated to the bi-
olocal research community in the form of new information and knowledge. This
requires substantial effort on tool, database, and interface development, not to
mention the publications in the relevant publications aimed for people with differ-
ent research background.

For promoter analysis and prediction of putative gene regulatory elements,

137



138 8 CONCLUSIONS

one of the main applications described in this thesis, we see the real challenges
in applying the developed methods to higher organisms, including humans. The
problem is at first perhaps not even so much algorithmic (due the larger data sets)
but instead biological. For example, how to collect biologically meaningful sets
of sequences for the promoter analysis. Current gene prediction methods relying
either on ab initio methods or mapping of EST or protein sequences back to ge-
nomic DNA are not guaranteed to identify even the first exons or 5’ untranslated
regions (UTR’s) that would help to identify the actual transcription start sites and
putative promoter regions. Also, the regulatory signals are not present only in up-
sream sequences but also within the genes (exons and introns), and in downstream
sequences. Also, it is known that some of the signals can be quite far from the
actual genes. This area of research, however, remains to be a hot topic in studies
aiming at interpreting the human DNA sequences.
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