
Department of Computer Science

Series of Publications A

Report A-2009-1

Data mining for telecommunications network log

analysis

Kimmo Hätönen

To be presented, with the permission of the Faculty of Science
of the University of Helsinki, for public criticism in Auditorium
CK112, Exactum, Gustaf Hällströmin katu 2b, on January 30th,
2009, at 12 o’clock.

University of Helsinki

Finland

Contact information

Postal address:
Department of Computer Science
P.O.Box 68 (Gustaf Hällströmin katu 2b)
FI-00014 University of Helsinki
Finland

Email address: toimisto@cs.Helsinki.FI

URL: http://www.cs.Helsinki.FI/

Telephone: +358 9 1911*

Telefax: +358 9 1915 1120

Copyright c© 2009 Kimmo Hätönen

ISSN 1238-8645
ISBN 978-952-10-5195-1 (paperback)
ISBN 978-952-10-5196-8 (PDF)
URL: http://urn.fi/URN:ISBN:978-952-10-5196-8

Computing Reviews (1998) Classification: H.2.8, H.3.3, I.2.1, I.2.6

Helsinki 2009
Helsinki University Printing House

Data mining for telecommunications network log analysis

Kimmo Hätönen

Nokia Siemens Networks
P.O. Box 6 (Linnoitustie 6, 02600 Espoo)
FI-02022 Nokia Siemens Networks, Finland
Kimmo.Hatonen@NSN.COM

PhD Thesis, Series of Publications A, Report A-2009-1
Department of Computer Science, University of Helsinki, Finland
Helsinki, January 2009, 153 pages
ISSN 1238-8645
ISBN 978-952-10-5195-1 (paperback)
ISBN 978-952-10-5196-8 (PDF)
URL: http://urn.fi/URN:ISBN:978-952-10-5196-8

Abstract

Telecommunications network management is based on huge amounts of
data that are continuously collected from elements and devices from all
around the network. The data is monitored and analysed to provide infor-
mation for decision making in all operation functions. Knowledge discovery
and data mining methods can support fast-pace decision making in network
operations.

In this thesis, I analyse decision making on different levels of network op-
erations. I identify the requirements decision-making sets for knowledge
discovery and data mining tools and methods, and I study resources that
are available to them. I then propose two methods for augmenting and
applying frequent sets to support everyday decision making. The proposed
methods are Comprehensive Log Compression for log data summarisation
and Queryable Log Compression for semantic compression of log data. Fi-
nally I suggest a model for a continuous knowledge discovery process and
outline how it can be implemented and integrated to the existing network
operations infrastructure.

Computing Reviews (1998) Categories and Subject Descriptors:
H.2.8 Database Applications [Database Management]: Data Mining
H.3.3 Information Storage and Retrieval: Information Search and Re-

trieval
I.2.1 Artificial Intelligence: Applications and Expert Systems
I.2.6 Artificial Intelligence: Learning

General Terms:
Algorithms, Design, Experimentation

Additional Key Words and Phrases:
Knowledge discovery process, Telecommunications, Frequent sets, Closed
sets, Semantic compression, Inductive databases, Decision support systems

ii

Acknowledgements

I am deeply grateful to my supervisors, Prof. Heikki Mannila and Prof.
Hannu Toivonen. Heikki introduced me to an interesting area of data min-
ing and sent me to this journey, whereas Hannu made me to reach the
destination and finally finish the work. The thesis at hand has also bene-
fitted from the insightful comments of Dr. Jaakko Hollmén and Dr. Jukka
Teuhola and its language from gentle advices of MA Marina Kurtén.

I would like to thank my co-authors Dr. Mika Klemettinen, M.Sc.
Markus Miettinen, Prof. Jean-François Boulicaut, M.Sc. Techn Perttu
Halonen, Dr. Pekko Vehviläinen, M.Sc. Techn Pekka Kumpulainen and
Prof. Risto Ritala, who have shared the painful process of clarifying and
formulating ideas and results presented in this thesis.

This research has been carried out at Nokia Reseach Center, Nokia
Networks and Nokia Siemens Networks, in each of which my acclaimed
collegues have created the most inspiring atmosphere. I wish to express
my gratitude especially to Dr. Olli Karonen and Mr Jouko Ahola who gave
room for ideas, fostered the research to grow them up and saw that the ideas
were able to mature and incarnate as a product. The financial support of
Nokia Foundation and consortium on discovering knowledge with Inductive
Queries (cInQ) is gratefully acknowledged.

The co-operation with colleques in industry and academy has been in-
valuable in searching for understanding of the challenges that the real world
sets for data analysis. Great many thanks to you: Dr. Jukka Nurminen, Dr.
Pirjo Moen, Prof. Erkki Oja, Dr. Albert Höglund, M.Sc. Tero Tuononen,
M.Sc. Techn Antti Sorvari, Prof. Olli Simula, Dr. Jaana Laiho, Dr. Kimmo
Raivio, Dr. Pasi Lehtimäki, Dr. Sampsa Laine, M.Sc. Techn Timo Similä,
M.Sc. Mikko Kylväjä and all the others.

This long journey has contained many light and enthusiastic periods
but sometimes it has lead through long and dark shadows. The support
of my dear wife Tuija and the joy that our children Vili and Riia have
brought have been the most important facilitators for this work. I also
have to thank the teams P94 and KKI-35/40 of IF Gnistan that have kept
me going.

Finally, I wish to thank my parents Hele and Ossi who lit the spark, set
the example and who encouraged and supported me all the way with this
dream that has come true.

Helsinki, January 2009, Kimmo Hätönen

Contents

1 Introduction 1

2 Telecommunications networks 5
2.1 Telecommunications network operation 5
2.2 Telecommunications network data analysis 14

3 Frequent pattern mining on logs 23
3.1 Knowledge discovery process 23
3.2 Frequent patterns . 25
3.3 Telecommunication Alarm Sequence Analyser (TASA) . . . 30
3.4 Lessons learned . 32

4 Industrial environment of data mining applications 37
4.1 Process information system 37
4.2 Decision support model . 40
4.3 Decision support on different operation levels 43
4.4 Users and resources of applications 47
4.5 Summary of requirements 53

5 Comprehensive Log Compression (CLC) 55
5.1 Overview of the method . 55
5.2 Formalisation . 57
5.3 CLC usage scenarios . 60
5.4 Experiments . 62
5.5 Applicability and related work 81

6 Queryable lossless Log data Compression (QLC) 87
6.1 Background and method overview 87
6.2 Definitions and algorithms for QLC 89
6.3 Experiments . 93
6.4 Conclusions and related work 109

7 Knowledge discovery for network operations 113
7.1 Decision making in network operation process 114
7.2 Knowledge discovery for agile decision support 115
7.3 Adaptive knowledge discovery solution 119
7.4 Use of knowledge discovery 121

8 Concluding remarks 123

References 125

Appendices

A Requirements for knowledge discovery tasks 145

B QLC Queries 149

Chapter 1

Introduction

Telecommunications network management requires rapid decision-making,
which can be supported by data mining methods. The decision-making
is based on information extracted from large amounts of data that are
continuously collected from networks. What is required from data mining
methods, how can they address the requirements, and how should they be
integrated to the existing systems and operation processes?

The complexity of networks and the amount of monitoring data they
provide are rapidly growing. The mobile telecommunications industry has
rapidly developed during the end of the last millennium and the beginning
of the new one. Twenty years ago mobile phones started to spread to all
population groups in the western world. In 2007 about 1150 million mobile
devices were sold [45]. All around the world operators are updating and
developing their networks to increase their capacity and to facilitate new
kinds of services.

Telecommunications network operation and management is based on
the data that network elements provide [66, 119, 150]. The elements create
log entries and alarms about events, system states and disturbancies and
record time series about their performance. Network management systems
collect data to the operation centers, where it is monitored and analysed to
detect any defects or suboptimal states in performance or service quality.
A middle-sized network can produce several thousands of alarms and tens
of gigabytes of log and performance data per day. This data contains
information about the performance of all network elements and services
that the operator offers.

The volume of collected data sets a challenge for analysis methods and
tools supporting network management tasks [44]. For example, how to
recognise and identify immediately sudden problems that prevent large
amounts of customer traffic, and how to find network regions and elements
that require optimisation? These and many other data inspection problems
are encountered continuously from day to another in network management
processes.

Roughly at the same time with the growing popularity of mobile com-
munications, in the 1990s, began a rapid and enthusiastic development in

2 1 Introduction

the research community: a new paradigm called data mining (DM) and
knowledge discovery (KD) was developed [40, 54, 53]. This paradigm com-
bines several research areas like databases, on-line data analysis, artificial
intelligence, neural networks, machine learning and statistics, to name a
few. Telecommunications systems that produce large amounts of data were
among the first application domains of data mining methods [18, 59, 61].
Since then, many methodologies have been developed and applied to man-
agement and operation of telecommunications systems [98, 103, 108, 155].

Telecommunications network operation is a promising target for data
mining applications. The network operation business consists of several ac-
tivities, like network operation and management, customer care and billing,
marketing, business management and so on [66, 119, 150]. These activities
are closely related. They form a large dependency network where a change
in one place affects everything else. Their management requires thorough
understanding of network infrastucture, communication technologies, cus-
tomers and their behaviour. New up-to-date information about networks
and their development is needed all the time.

Knowledge discovery and data mining technologies have been applied
in several related application areas like churn analysis [51, 94, 120], fraud
detection and prevention [71, 10], network planning and optimisation
[98, 104, 108, 155] and fault management [35, 58, 88, 146]. Most of the
reported activities have been executed as separated data mining projects,
whose results are then utilised in decision making. One of the greatest
challenges for the knowledge discovery and data mining technologies seems
to be how to support the continuous processes, like network maintenance
where the same tasks are repeated day after day [104]. In these tasks the
daily analysed data sets are large and time frames tight. They challenge
the idea of iterative exploration, since there is no time for that.

Contributions of this thesis

In this thesis I study the application of data mining and knowledge discov-
ery methods and processes in telecommunications network operations. The
objective of the thesis is to find ways to assist operators in solving everyday
problems in decision-making.

The thesis begins with an overview of the telecommunications network,
its components and operation processes in Chapter 2. The chapter also re-
views different types of data that the networks provide, especially different
types of event data, which are the target data of this thesis. Chapter 3
discusses previous work on the knowledge discovery process and methods

3

for monitoring telecommunications processes. It reviews definitions of fre-
quent sets and their derivatives as a starting point for the contribution of
this thesis.

The contribution of this thesis is threefold.

• Analysis of industrial requirements — Chapter 4

I study industrial decision making as a target for data mining to sup-
port. First I analyse the decision making tasks and derive knowledge
discovery tasks that support decision making. I also study the or-
ganisation and environment of a telecommunications operator to un-
derstand requirements they set for any new data analysis tool. This
model clearly shows how some of the knowledge and assets like data
mining expertise that is needed to apply data mining methods, are
missing from the industrial environment. On the other hand, useful
domain knowledge is often missed by method developers.

• Methods for industrial applications

I introduce two methods that better address the operator environment
needs in event log analysis.

– Summarising and reducing analysed log data — Chapter 5
The proposed method uses statistical features of the log entries
to identify and remove repeating patterns from the logs. These
patterns often form a large portion of the log volume, and their
removal helps to make the log more comprehensible.

– Reducing size of stored data — Chapter 6
The summarisation method presented in the previous chapter is
extended to compress data so that the original data can still be
efficiently queried and analysed.

The presented methods have been implemented and evaluated ex-
tensively. The summarisation method has been implemented in
NetActTMAudit Trail — a security-log-monitoring tool of Nokia
Siemens Networks.

• The knowledge discovery process in industrial environment — Chap-
ter 7

Based on the results of Chapters 4 – 6 and my experience with using
them and integrating them into commercial products, I discuss how
knowledge discovery can be integrated into industrial decision mak-
ing in practice. I introduce a continuous knowledge discovery process

motivated by the everyday decision making in network operations.
I outline how this process can be implemented in the telecommuni-
cations operator information system and illustrate how the methods
presented in this thesis integrate into an implementation.

Finally, Chapter 8 summarises the work and gives concluding remarks.

Contributions of the author

The contributions of this thesis have been published in several separate
publications. The analysis of industrial decision making tasks (Chapter 4)
is joint work with Tampere University of Technology [65]. In this, my
contributions were the analysis and development of the model of knowledge
discovery tasks and its application to telecommunications operation. The
model of the industrial environment is based on joint work at the Nokia
Research Center (NRC) and was first reported as publication [62]. My
contribution was the creation and application of the model.

Chapters 5 and 6 are based on joint work at NRC and have been re-
ported in two publications [55, 56]. My contribution in them was method
development, validation and experimentation. In addition, I have greatly
extended their experimental evaluation for this thesis. The results con-
cerning the knowledge discovery process and its application to everyday
decision tasks in industry (Chapter 7) are again joint work with Tampere
University of Technology. Parts of the work have been reported in confer-
ences [63, 156] or prepared as manuscript [65]. My contributions in these
were the analysis and development of the knowledge discovery process and
its application and integration to telecommunications network operations.

The research represented in this thesis has produced one filed patent
application: “WO2003081433, Kimmo Hätönen and Markus Miettinen:
Method and apparatus for compressing log record information.” The sum-
marisation method has also been implemented in NetActTMAudit Trail —
a security-log-monitoring tool of Nokia Siemens Networks.

Chapter 2

Telecommunications networks

To understand the data mining needs of telecommunications monitoring
tasks, we need to know how telecommunications networks are built up and
operated. As an example I present the architecture of Global System for
Mobile communications (GSM) networks [119, 67, 129, 152].

This chapter begins by a presentation of GSM network components and
organisation in Section 2.1. After that I will introduce network operation
processes and functions. I will discuss different monitoring data types, their
properties and roles in Section 2.2. The section also shortly introduces test
data sets used in evaluating the methods presented in this thesis.

2.1 Telecommunications network operation

2.1.1 Overview of the network

A telecommunications network provides mobile services for a large geo-
graphical area. This area can cover, for example, a whole country. A
mobile-phone user can move around the area without losing his connec-
tion to the network. This is achieved by placing Base Tranceiver Stations
(BTS) to give continuous coverage all over the area [119]. Figure 2.1 de-
picts a country that is covered by a network of some operator. On the left
hand side of the figure there is a more detailed view that has been zoomed
in to a small town. The view shows how BTSs have been distributed over
the area.

A BTS has one or more transmitter-receiver pairs called Tranceivers
(TRX). Tranceivers beam through BTS antennas, which are pointed to
cover an area called a cell [155]. Figure 2.2 shows how the cells are placed
around some of the BTSs of the network.

When a mobile phone makes a call, it creates a radio connection to
a BTS. From the BTS the call is typically forwarded to a transmission
network, which connects all the BTSs to other network elements and to
outside networks like Public Switched Telephone Networks (PSTN) [119].
Figure 2.3 depicts a connection between two mobile phones as a black line
connecting two BTSs that transfer the call. The dark grey lines between

6 2 Telecommunications networks

Figure 2.1: A country and a closer look at a small town, which is covered
by a GSM network.

Figure 2.2: Cells of the network in a small town.

BTSs depicts the transmission network setup.
There are three separated subsystems in a GSM network architecture.

These are the Base Station SubSystem (BSS), the Network and Switching

2.1 Telecommunications network operation 7

Figure 2.3: Call routing between two mobiles in the network.

SubSystem (NSS) and the Operating SubSystem (OSS) [119]. This subsys-
tem division is depicted in Figure 2.4. The BSS is in charge of providing
and managing transmission paths between the Mobile Stations (MS) and
NSS machines, including in particular the management of the radio inter-
face between mobile stations, like mobile phones, and the network. The
NSS must manage the communications and connect mobile stations to the
relevant networks or to other mobile stations. The MS, BSS and NSS form
the operational part of the system, whereas the OSS provides means for
the operator to control them.

As mentioned above, a BTS contains one or more TRXs [119]. Each
BTS, in its turn, is controlled by a Base Station Controller (BSC), which
can control several BTSs. For example, Figure 2.5 shows one BSC with
BTSs associated to it. These BTSs have been grouped together, since they
are close to each other, and the MSs move most often from one cell to
another inside the BSC group.

BSCs in turn are grouped into a Mobile Switching Center (MSC) [119].
MSCs are the key elements of the NSS, whose main function is to co-
ordinate the setting-up of calls and which is a bridge between the GSM
network and an outside network such as a PSTN [129, 155]. The NSS
also makes connections within the GSM network. Further elements of the
NSS areVisitor Location Register (VLR), Home Location Register (HLR),
Authentication Center (AuC), and Equipment Identity Register (EIR).

8 2 Telecommunications networks

Figure 2.4: Subsystem division of a GSM architecture.

Figure 2.5: A BSC group.

The main tasks of the OSS are to operate and maintain the network
and to manage both subscriber information and mobile stations [119]. The
key element of the OSS is the Operations and Maintenance Center (OMC),
which is used to operate the network by monitoring the network, managing

2.1 Telecommunications network operation 9

Figure 2.6: An OMC setup for BTS data transfer and monitoring.

changes in the network, maintaining the network stability and, whenever
problems occur, to solve them [129, 155]. The OMC’s main tasks are setup
and change of network element parameters, monitoring the elements, and
installation of software. In the heart of the OMC is a network management
system (NMS) that is used to operate the network [100]. It is a software
system, with which the operator personnel can monitor and access the
network elements. An NMS is connected to the network’s BSS and NSS
via a telecommunication management network (TMN) [78]. Via TMN, the
NMS acquires, transferes, stores and analyses alarms, measurement data
and different types of network element logs. The NMS system servers are
often protected with firewalls (FW).

The connection between BTSs and the OMC is depicted in Figure 2.6.
The BSC collects the data from BTSs [119, 129]. From there the data is
transferred to the OMC. As can be seen, data from several BSC groups
is transferred to a database, which is then used for on-line and off-line
analysis. The number of BTSs that are monitored at one OMC can be
several thousands. Typically they are spread all over the area covered by
the operator network. To be able to manage the whole network it is common
that the network has been divided to regional clusters [79]. Each of these
clusters is responsible for managing the network, for example, of a certain
area as is depicted in Figure 2.7. In a large operator’s organisation, the
regional clusters can in turn be connected to a so-called global cluster as is

10 2 Telecommunications networks

Figure 2.7: A cluster hierarchy of an operator business model and respon-
sibility areas.

shown in the figure. Each operator divides responsibilities between regional
and global clusters so that the division supports their own business model.
Also the security solutions, for example, placement and configuration of
firewalls, are operator specific [81].

2.1.2 Network management

In his thesis [155], Vehviläinen crystallises the telecommunications manage-
ment network model [76, 151]:

The Telecommunications Management Network (TMN) model
(Figure 2.8) is a collection of standards to provide a frame-
work for managing the business of a telecommunications ser-
vice provider. The model consists of four layers — business,
service, network, and element management — which commu-
nicate information to one another. The purpose of the infor-
mation transfer is to manage the telecommunications network.
The model’s top layers need information from the layers below
to support decisions. Operational processes in each layer are
documented in the Telecommunications Operations Map (TOM)
[100, 149, 150].

On the network management layer the TMN model identifies manage-
ment functions. These functions are implemented in management pro-

2.1 Telecommunications network operation 11

Figure 2.8: Network management infrastructure layers.

cesses. The network management functions can be grouped to three cat-
egories [119]: subscriber management, mobile station management and
network maintenance. Subscriber and mobile station management share
similar types of functions [66]. Examples of such functions are subscriber
and equipment administration and subscriber and equipment tracing. Sub-
scribers have to be activated or deactivated in HLR and their service profiles
have to be downloaded and updated. Similarly, the EIR databases have to
be administrated. Tracing of subscriber or equipment also share informa-
tion and methods from both functions. In the case of stolen equipment or
subscribers engaged in criminal activities, tracing of the affected handsets
or subscriber identity module (SIM) cards has to be feasible throughout
the network.

Charging administration is at the heart of the subscriber administration
[119]. After each call, data, such as calling and called number, and time
stamps, are recorded by the MSC and later sent to the billing system. In
the case of some services, additional records may be generated, for example,
by short message service (SMS) centres.

The network management is a larger set of functions [80]. It includes
[66]:

• Alarm handling and fault management; Indications of malfunctions
or outages of any network component are transferred back to the NMS

12 2 Telecommunications networks

system. The technician can then remotely interact with the network
component in question and try to repair the problem.

• Configuration management; Parameters necessary for network con-
figuration such as frequency plans, next neighbour relationships or
handover algorithms are sent from the NMS to all network elements.
Configuration management also includes downloading of new software
into the network and tracking software versions of all network ele-
ments.

• Performance management; All network elements generate a large va-
riety of performance data. These data need to be collected by the NMS
for further processing and analysis.

• Security management; This includes the handling of normal network
security measures such as access control or system logs, but also the
administration of GSM-specific security functions like authentication
algorithms.

From an end-user perspective, between him and the physical network
implementing the requested service, there are several processes (see Fig-
ure 2.9) [100]. Together they aim to support the operator to deliver ser-
vices, which are reasonably priced and well performed, so that the customer
is kept satisfied. If any of these processes fails to provide other processes
with information that they need or to maintain the part of the infrastruc-
ture that is under its supervision, the problem may propagate all through
the organisation to the customer.

2.1.3 Network data

Network management is based on the data that the elements are generating
[80, 66, 119, 129]. The NMS collects the data from BSS and NSS for further
analysis and use on different functions. Each network management function
handles data that it uses to generate information for consumption and use
in maintenance processes.

The data can be divided into three categories: system configuration
data, system parameter data and dynamic data that describes operation of
network functions. System configuration data tells us how the network has
been constructed and organised. For example, BTS locations and trans-
mission network topology are included in such data. System parameter
data defines how different system functions are implemented in the net-
work and how they operate. Examples of such data are how BTSs have

2.1 Telecommunications network operation 13

Figure 2.9: Network management processes.

been grouped under BSCs and the BTS threshold for the number of ac-
cepted simultaneous connections. These parameters can either be adjusted
by operator personnel or by autonomous processes that adapt to different
traffic conditions in the network.

Dynamic data consist of measurement value and statistical time series,
Call Detail Records, alarms and other events, system logs to name a few
possible types of data. These describe the dynamic use of the network and
processes implementing network functions.

The three given categories correspond to three description axes that
are used to define GSM networks: static equipment view, static functional
view and dynamic view [119]. The static equipment view shows the phys-
ical grouping of machines, the static functional view shows how network
functions have been implemented in the physical network and the dynamic
view describes the use of the network: how different functions are used and
how they operate.

Subscriber and equipment management is based on the registers of
known users and equipments [80, 66, 119]. These registers are updated
when new users are added to the network or new equipment accesses the
network. The user behaviour is recorded with Call Detail Recods (CDR),
sometimes also called toll tickets [38, 119]. Every time a subscriber makes
a call, the system creates a CDR. These CDRs are collected to a billing

14 2 Telecommunications networks

system and the system computes the value that can be charged from the
subscriber. Charging of other services like MMS messages and data connec-
tions, is based on corresponding records. These records form the dynamic
part of the information for subscriber and equipment management.

For performance management — network optimisation, maintenance,
development and planning — the network elements count and record
hundreds or thousands of measurement values or statistical time series
[80, 148, 104, 152]. These time series are analysed in order to identify
sub-optimal configurations, overload situations, radio interface quality and
so on. An operator selects those time series, which describe the functions
that are important in proper detail.

Configuration management handles the system parameter data [80]. Pa-
rameters are defined in planning software in the OMC and when the plan
is considered ready, it is loaded to the network elements [104].

For alarm handling and fault management the system constantly mon-
itors its functions and elements[80]. If the system recognises a malfunction
or outage, it generates an alarm that is sent to the on-line operation room
as an indication of a fault that should be fixed. The operator personnel
can then remotely interact with the problem or send a technician to visit
the alarm site.

The security function analyses access system logs to see whether the sub-
scribers or operator personnel have misused their rights or whether there
have been any intruders in the system [80]. These logs are recently aug-
mented with logs provided by various security tools like virus scanners,
firewalls and intrusion detection and prevention systems.

2.2 Telecommunications network data analysis

2.2.1 Event log analysis

A log data consists of entries that represent a specific condition or an event
that has occurred somewhere in the system. The entries have several fields,
which are also called variables. The entry structure might change over
time from one entry to another, although some variables are common to all
of them. Each variable has a domain of possible values. A small example
fragment of log data is given in Figure 2.10. It is produced by CheckPoint’s
Firewall-1.

Firewall logs are a growing problem for operators [29, 28, 30, 43]. They
can be huge. During one day, millions of lines might accumulate into a log
file. Logs are used typically for two different purposes: either to find out
why some connections or services do not work or to find out whether there

2.2 Telecommunications network data analysis 15

...

777;11May2000; 0:00:23;a_daemon;B1;12.12.123.12;tcp;;

778;11May2000; 0:00:31;a_daemon;B1;12.12.123.12;tcp;;

779;11May2000; 0:00:32;1234;B1;255.255.255.255;udp;;

780;11May2000; 0:00:38;1234;B2;255.255.255.255;udp;;

781;11May2000; 0:00:43;a_daemon;B1;12.12.123.12;tcp;;

782;11May2000; 0:00:51;a_daemon;B1;12.12.123.12;tcp;;

...

Figure 2.10: An example firewall log fragment.

are signs of security incidents. These signs can be monitored continuously
day by day or they can be searched for on demand. In order to be able to
track down incidents that have occurred a while ago, the logs have to be
stored for quite a long time.

Firewall log entries may contain several tens of fields. Entries have date
and time stamps specifying their creation time and they may be numbered
with a unique entry id. They might also identify the firewall machine that
actually created the entry. As an addition to these system information
fields, entries contain information about the protocol used, source and des-
tination addresses of the inspected packets, services used, users or processes
involved and so on, i.e., everything that might affect the decision whether
or not to let the packet pass through the firewall. For example, Figure 2.10
shows a small set of log entries. In the figure, only a subset of all possible
fields is shown. Each entry contains an entry id, date and time stamp, the
name of a destination service, a name and an IP address of the destination
machine and the name of the protocol used, and finally one empty field.

When an expert needs to analyse firewall logs, he approximates the time
range and selects values or strings that he assumes point to the information
he needs. He starts to query them from the log database. This can be very
laborious and slow, if the log files and database are huge. The query results
easily become overwhelmingly large, when the selected query criteria are
too wide. To focus on the essential data, the expert has to iterate with
the query to find what corresponds to his information need. It may also
happen that the query criteria are too strict or even totally misleading,
and the answer does not contain any relevant data. Thus the expert has to
reconsider the query and restart the exploration.

To decide whether the data respond to his information need, an expert
has to check the found log entries by hand. He has to return to the original
log file and iteratively check all those probably interesting entries and their
surroundings. There are not many attacks that can be identified by one
firewall log entry, but many that cause a known entry sequence pattern

16 2 Telecommunications networks

...

11234 NE321 8.7.1997 020936 1234 2 Link_failure

11234 NE321/TRX1 8.7.1997 020936 5432 1 Call_channel_missing

11234 NE321/TRX3 8.7.1997 020937 5432 1 Call_channel_missing

11234 NE321/TRX1 8.7.1997 020937 6543 3 Link_access_failure

11234 NE321/TRX3 8.7.1997 020939 6543 3 Link_access_failure

11234 NE321/TRX2 8.7.1997 020940 6543 3 Link_access_failure

12345 NE123 8.7.1997 020942 8888 2 XXX/YYY:_alarm_indication_signal_received

12345 NE123 8.7.1997 020942 8888 2 XXX/YYY:_alarm_indication_signal_received

...

Figure 2.11: An example alarm log fragment.

in the log. Often, the most dangerous attacks are also unknown for an
enterprise defense system. Therefore, if the data exploration is limited
only to identified entry patterns, it may be impossible to find any new
attacks.

In the network there are plenty of independent processes going on all the
time. These processes emit alarms when they get disturbed by faults [119,
77, 58]. It often happens that many processes get affected simultaneously
by a fault and they all start to send out alarms, not necessarily about
the fault itself, but about its secondary reflections. Thus, the alarms and
log entries that are sent actually carry second-hand information about the
incident. They do not necessarily identify the primary fault at all.

Alarms that network processes emit are collected to some central mon-
itoring applications [58]. This makes the analysis even more difficult, be-
cause at each monitoring application, there are alarms from several simulta-
neous sources merged in one stream. The volume of alarms flowing through
the application grows and information is hidden under the masses. Connec-
tions between separate events — which are always difficult to identify — are
lost, while the symptoms and reflection of separated problems merge into
one information flow. For example, in Figure 2.11 there are alarms from
two different network elements that probably have nothing to do with each
other. The combined flow also contains noisy information caused by natural
phenomena like thunderstorms or by normal maintenance operations.

A starting point for a network analyst in a fault situation is always
localisation and isolation of the fault [119, 77], i.e., finding the area where
the problem is located and identification of all network elements that are
affected by the fault. Localisation and isolation are based on the assumption
that it is probable that the fault itself is local although its reflections are
widespread. In this situation alarms coming from the same network element
or its direct neighbours are related to one reflection of the fault. After the
localisation has been done it is easier to do the actual fault identification.

2.2 Telecommunications network data analysis 17

...

PRG1;1234;20040403;00:43:27;Module shutting down;

PRG1;1234;20040403;00:43:28;Start_operation received from element C1;

PRG2;3465;20040403;00:43:38;The Query application was started.;

PRG2;3456;20040403;00:43:40;Upload started;

PRG3;3678;20040403;00:43:52;The supervision application was started.;

PRG3;3678;20040403;00:43:57;The supervision application was ended.;

...

Figure 2.12: An example of an application log.

The alarm system can also be used to pass information about the normal
operation [77]. A critical element can send notifications at regular intervals
as a sign that it is up and running. If this heartbeat stops coming, the
system can automatically start restoration of the element.

While alarm logs mostly contain signs of malfunctions and other prob-
lems, application logs record the normal system operation [43, 37]. As can
be seen in Figure 2.12, Application logs are mostly created for debugging
and maintenance purposes. They are analysed to identify the reasons for
problems when they have been detected through alarms. In a normal situa-
tion, the same operations are repeated constantly from one day to another.
Therefore, application logs contain a lot of redundant data patterns. All
the signs of anomalous behaviour are buried under redundant normal entry
patterns.

The same applies to the security logs. They contain a lot of redundant
signs of normal behaviour and prevented incidents. If something anoma-
lous happens, it is manifested in between normal entries. If the security
monitoring system detects an unprevented incident, the operator needs to
localise it and analyse what went wrong in prevention. There he needs to
analyse not only security logs but also application logs to see what has been
done in the network. Again, the user will benefit, if the redundant masses
are removed and anomalous events are shown in all detail.

Alarms, application logs, system logs and security tool logs are the main
application domain of the methods presented in this thesis. They all are
lists of different entry types carrying information from network processes.
As has been depicted with examples given in Figure 2.13, the entries can
be divided into four categories based on the information that they carry.
These categories are

1. Entries as signs of normal operation

2. Signs of prevented problems

3. Signs of known problems

18 2 Telecommunications networks

Figure 2.13: Different types of events marked with the numbers of the
corresponding information categories.

4. Signs of previously unknown problems

Sometimes the categories of prevented problems and signs of normal oper-
ation are combined [28].

Event data analysis is a constantly repeated task. The events and logs
are generated all the time that the network is operational. When the num-
ber of elements in BSS, NSS and OSS is growing, the amount of analysed
data is increasing. Large pieces of data — especially those entries that are
signs of normal operation — are repeating similarly from day to day. Also
signs of problems — like the footprint of a prevented port scan depicted
in Figure 2.13 — also contain large numbers of repetitive entries or entry
sequences. The more valuable details, especially signs of hidden problems
like intrusions, are hidden under these masses.

2.2.2 Data sets used in this thesis

In this thesis, several data sets from GSM networks have been used for
testing and verifying the provided algorithms and their derivations. Data
sets have been extracted from different types of networks and produced by
different versions of network management systems and accompanied tools,
during the ten-year period.

The set of data sets used in extensive experiments reported in this thesis
include two sets of firewall logs. They were collected from two sources: a
set of firewalls guarding an enterprise network and producing hundreds of

2.2 Telecommunications network data analysis 19

thousands log entries per day, and a firewall standing between the Internet
and a research network producing some thousands of entries per day. The
time between collection of these data sets was four years. Each continuous
subset covers a time period that varies from two weeks to some months. The
same kind of firewall is used in commercial telecommunications networks
in several places. A more detailed description of the test data sets is given
in Section 5.4.4.

2.2.3 Performance data analysis

Telecommunications network monitoring is done with the data that is gen-
erated in the network elements (NEs). The elements count all the opera-
tions that they perform to establish a data or voice connection [148, 104].
These operations vary from voice connection or data context reservation at-
tempts to handovers or connection shutdowns. The elements also monitor
and record the validity of connections by recording detected error rates, the
signal strengths used and other physical quantities describing connection
quality. The counters and quality factors — called indicators from now on
— are summed or averaged over a given time period. For monitoring pur-
poses the time period length typically ranges from some minutes to some
hours. As a result, elements provide a continuous series of values for each
observed indicator. This time series data complements the alarm and log
data. I introduce the performance data and its analysis briefly here but the
detailed analysis methods are outside of the thesis scope.

Operators use the network performance data for several purposes in-
cluding, for example, on-line trouble shooting, performance optimisation,
and — for planning purposes — estimation of long-term development in
traffic and service usage. For each operator and network the operators
have their individual ways to judge whether the indicators in the network
show that the cells are performing as expected and whether they are in
their normal or optimal state [155].

The troubleshooting and network optimisation starts with detection of
problematically behaving network elements, users or services. This can be
done either by analysing the collected time series data and detecting val-
ues that are known to be outside the allowed value ranges or by detecting
changes in the behaviour of network elements, users or processes. Visuali-
sation of user behaviour or process states [69, 101, 157, 68] and KD methods
like anomaly detection (or novelty or outlier detection) [70, 95, 97] or un-
supervised clustering [134, 109, 101, 96] have all been used for detection of
unwanted behaviour in telecommunications systems. These methods can
be based, for example, on use of neural networks like self-organising maps

20 2 Telecommunications networks

(SOM) [92], decision trees [19, 132] or rough sets [127]. These methods have
been used to learn rules like indicator value range combinations that are
typical for some problem situations [157, 105, 155, 99, 98, 103].

All the above-mentioned approaches need the scaling to find a task-
specific balance between indicator value ranges [103]. In most cases the
methods are very sensitive for scaling of data. Analyses can reveal totally
different results depending on how the scaling has been done [63]. For ex-
ample, the cluster analysis results can either emphasise the types of normal
behaviour or reveal abnormal or problematic states of the process [64].

2.2.4 Knowledge discovery for network data analysis

As was discussed earlier, networks do effective self-monitoring and provide
a lot of data in different forms about their behaviour. This data is the basis
for all decision-making at all levels of their operation. The data contains
information about the technical functioning of the network infrastructure,
subscriber behaviour and use of services. An operator must know all these
aspects well to be able to optimise its network and to gain maximal profit
out of it.

The largest problem in many decision-making tasks, on all levels of the
network operations, is the huge amount of data that needs to be analysed.
The knowledge discovery process and data mining methods provide promis-
ing tools to assist in this. They are planned for analysis of large data masses
that are available in some regular format. Telecommunications networks
provide such data, which is collected to its operations and maintenance
center, from which it can be transferred further to analysis systems.

For example, handling and analysis of alarm data has been a target
of knowledge discovery. The number of alarms produced in a telecommu-
nications network varies greatly, but typically there can be about 1000 –
10, 000 alarms a day, in the worst cases even more than 100, 000. The oper-
ations and maintenance center (OMC) of the telecommunications network
management system receives all the alarms. OMC stores them in an alarm
database, may filter them, but most importantly it displays the alarms to
an operator, who then decides what has to be done with them. Analysis of
the alarm flow is a difficult task, because

• The size of the networks and the diversity of alarm types mean that
there are a lot of different situations that can occur.

• The alarms occur in bursts, and hence there is only little time for
operators to decide what to do with each alarm. However, when a lot
of alarms occur within a short time the operators should intervene.

2.2 Telecommunications network data analysis 21

• The hardware and software used in telecommunications networks de-
velop quickly. As new elements are added to the network or old ones
are updated, the characteristics of the alarm sequences are constantly
changed.

To alleviate the problem of processing the alarms, alarm filtering and
correlation [83, 82] was introduced to reduce the number of alarms that
actually are shown to the operators and to raise the abstraction level of
the information shown. Alarms are filtered at each level of the hierarchical
network: a node sends forward only part of the alarms it receives from its
subnodes. Alarm correlation means the combination and transformation
of alarms so that several alarms are replaced by one alarm of better infor-
mation value, which is sent further. Alarm filtering and correlation require
stored knowledge about the processing of the alarm sequence.

Filtering and correlation serve to diminish the number of alarms that
the operator sees. However, the alarm-handling software should ideally also
be able to predict the behaviour of the network, i.e., to be able to warn
the operator beforehand of severe faults. Such faults typically arise from
or can be located in interconnected network component failures. While
prediction of severe faults is a difficult task, the economic benefits that
would be obtained from such predictions would be significant.

Another example of a growing problem in network data analysis where
knowledge discovery methods can help, is the analysis and management
of security related event data. Unlike alarms that have predefined type
and classification taxonomies, security events may have a message text on
some natural language like in most application logs, or have several fields
of system parameter values like firewall logs, or are a combination of these
two approaches like system logs. Event contents are application and system
specific and targeted for engineers that are experts on the system.

Several security information and event management (SIEM) software
and appliance systems have been developed recently [121]. They are large
expert systems that store, parse, type, classify and correlate events in in-
coming event flow and alarm about detected known incidents. They use
pre-defined rules often grouped by their functional modules. They typi-
cally have central server, to which all events from around the network are
collected and where they are analysed.

Generating rules for alarm correlation engines [59, 60, 61, 58, 146, 35]
and SIEM systems are a good example of what kind of problems know-
ledge discovery can be applied to. The knowledge discovery can also be
used to support expert analysis work by summarising data and grouping
elements by the data that they provide. It can offer tools for an expert to

22 2 Telecommunications networks

interactively explore the set of alarms or log entries, when manual fault
or security incident identification and analysis is needed. Examples of
resembling systems are found in a field of performance analysis, where
knowledge discovery and data mining have been applied to radio network
analysis [134, 101, 156, 99, 98, 103] and fraud detection in customer care
process [71].

Chapter 3

Frequent pattern mining on logs

In this thesis I focus on applying knowledge discovery methodologies to
analysis, use and storage of telecommunications log and event data. To
facilitate that I present the knowledge discovery process in Section 3.1.

In data analysis, the thesis builds on frequent sets and episodes and
their derivatives closed sets and episodes, which are defined in Section 3.2.

An early example of application of association and episode rules to
network data analysis — the TASA system — is briefly described in Section
3.2.4. The lessons learned from it and other early industrial data mining
trials are discussed in Section 3.4. As a conclusion the section outlines
enhancements to TASA to support daily analysis of event logs better.

3.1 Knowledge discovery process

The purpose of Knowledge Discovery in Databases (KDD or KD in this
thesis) is to find new knowledge in large data collections [90]. KD consists
of consecutive tasks that are iterated to gain information to be translated
into knowledge [90, 39, 53, 54, 161]. I follow the definition that the KD
process consists of five steps: knowledge requirement setting, data selection,
data mining, result interpretation, and knowledge incorporation [156]. Here
the concept of data mining is limited to extraction of patterns or models
from data.

In the Knowledge Requirement Setting task analysts together with man-
agement and domain experts set objectives for a knowledge discovery task.
The objectives include requirements for information to be extracted from
the data. A priori knowledge of the application domain is a prerequisite
for specifying knowledge requirements [17]. While the KD proceeds, and
more information has been extracted from the data, the knowledge require-
ments are further refined and expanded introducing changes in the settings
of other tasks. If the requirements for the knowledge are vague, it is most
probable that also the results of KD are not satisfactory.

The next step after data selection, the data mining process, described
in Figure 3.1, is an iterative process itself. The black lines describe the
constraints for selecting setup at different steps of the process and the grey

23

24 3 Frequent pattern mining on logs

Figure 3.1: Structures of data mining process.

lines give the order of execution of the steps and flow of the data and
information.

The data mining begins with preprocessing which reduces noise, copes
with extremes, deals with missing values, and balances variables and their
value ranges. Preprocessing is also an iterative process of analysing and
modifying distributions of the data. The objective of the preprocessing
phase is to enable the analysis methods to extract accurate and relevant
information from the data [102].

Preprocessing is followed by the choice of analysis methods. The se-
lection is based on statistical information and overall goals of the analysis
task. After the methods are chosen, the desired features can be extracted.
Feature extraction ensures that data is prepared in such a way that the
selected analysis methods are able to provide the required knowledge from
it.

The phase following the analysis consists of interpretation, presenta-
tion and validation of information and knowledge. The importance of user
interface (UI) and form of results of the knowledge extraction system are
emphasised. For a human analyst an understandable and plausible presen-
tation is important. He must be supported in verifying the results against
the data and domain knowledge. Only then the whole process has added
value to decision making. The analyst has to verify whether the know-

3.2 Frequent patterns 25

ledge requirement has been completely met. Several iterations of the whole
process are often needed before acceptable results are gained. Should it ap-
pear to be impossible to reach satisfying results, the knowledge requirement
specification, selected method(s) or data set(s) have to be reviewed.

The knowledge discovery process was originally designed to support
tasks, where a large and stable data collection that might contain valuable
information is studied [17, 18]. Running the process requires strong domain
and data mining expertise to succeed. It is iterative by definition and typ-
ically experts must make many selections based on the domain and data
before they can achieve results that answer to the information need. Iter-
ation takes time. As such the process is well suited to tasks, where history
data is explored to find out information that helps operators to optimise
the network or parameterise its subsystems. A good example of this kind
of task is the alarm correlation example, introduced in Section 2.2.4.

In the following section, I will present the concepts that are in the focus
of this thesis. After that, I will introduce the knowledge discovery tool
Telecommunications Alarm Sequence Analyser (TASA) that was a starting
point for this research. It is based on the presented concepts and uses them
to study and develop data mining methods and systems for the knowledge
discovery process for telecommunications data.

3.2 Frequent patterns

Frequent patterns are value or event type combinations that often occur
together in the data. They provide information, which can be used to find
rules or patterns of correlated or otherwise searched value combinations.
A pattern is called frequent if the number of its occurrences in the data is
larger than a given threshold.

In this thesis I discuss two kinds of frequent patterns: frequent sets
[3, 115, 4] and frequent episodes [117]. Frequent sets consist of value com-
binations that occur inside data records like log entries. For example, with
a frequency threshold 4 the firewall log sample in Figure 2.10 contains a
frequent set (a daemon, B1, 12.12.123.12, tch). Frequent episodes, on the
other hand, describe common value sequences like log message types that
occur in the network. For example, in an alarm log sample in Figure 2.11
an expert can identify alarm sequence (5432, 6543) that occurs twice and
is sent almost simultaneously by two TRX-elements attached to one base
station.

26 3 Frequent pattern mining on logs

3.2.1 Frequent sets

This section gives definitions for frequent sets in the context of the telecom-
munications network event logs [55].

Definition 3.1 (Items) Items is a finite set of items that are field : value
pairs, i.e., Items= {A : ai, B : bj, C : ck, . . .}, where field is one of the fields
in log entries and value attached to each field belongs to the domain of
possible values of the field.

Definition 3.2 (log entry) A log entry e is a subset of Items such that
∀ F : u,G : v ∈ e : F �= G.

Definition 3.3 (log) A log r is a finite and non-empty multiset r =
{e1, e2, . . . , en} of log entries.

In practice, log storage applications ensure the order of received log
entries by numbering the log entries in arrival order and attaching the
number to the entry. However, as the number field values are unique, they
are generally not interesting in finding associations between log entry field
values.

In a log entry, several fields may have overlapping value sets. For exam-
ple, in a firewall log the Source and Destination fields may contain an IP ad-
dress but the semantics of the values are different. The form of field : value
pairs makes it possible to include both IP addresses in the entries without
the danger of mixing them up.

Frequent patterns are designed for symbolic data. However, numeri-
cal values can be included in the analysis if their value ranges have been
discretised and they have been converted to categorial values.

Definition 3.4 (itemset) An itemset S is a subset of Items.

The main properties that an itemset has with respect to a given log are
a set of entries in which it occurs, i.e., of which it is subset, and the number
of those entries.

Definition 3.5 (itemset support) A log entry e supports an itemset S
if every item in S is included in e, i.e., S ⊆ e. The support (denoted
supp(S, r)) of an itemset S is the multiset of all log entries of r that support
S. Note that supp(∅, r) = r.

Definition 3.6 (itemset frequency) The absolute frequency of an item-
set S in a log r is defined by freq(S, r) = |supp(S, r)| where |.| denotes the
cardinality of the multiset.

3.2 Frequent patterns 27

Input: A log r, frequency threshold γ
Output: The γ-frequent sets of r

1. FE1 = the γ-frequent sets of size 1.
2. For (k = 2;FEk−1 �= ∅; k++) do
3. Ck = all itemsets of size k, all of whose k subsets

of size k − 1 are γ-frequent.
4. For all itemsets c ∈ Ck do
5. c.count = |{e ∈ r | c ⊆ e}|
6. FEk = {c ∈ Ck | c.count ≥ γ}
7. od
8. Output

⋃
1≤i≤k FEi

Figure 3.2: Apriori algorithm for computing itemset frequencies.

Constraints are used to define interesting patterns. What is interest-
ing depends on the task at hand, data and already available information.
Originally only minimum frequency was used for this purpose [3, 115, 116];
later several other constraints have also been studied [16, 11, 133].

Definition 3.7 (itemset constraint) If T denotes the set of all logs and
2Items the set of all itemsets, an itemset constraint C is a predicate over
2Items × T . An itemset S ∈ 2Items satisfies constraint C in log r ∈ T iff
C(S, r) = true.

Definition 3.8 (minimum frequency) Given an itemset S, a log r, and
a frequency threshold γ ∈ [1, |r|], we define Cminfreq(S, r) ≡ freq(S, r) ≥ γ.
Itemsets that satisfy minimum frequency constraint Cminfreq are said to be
γ-frequent or frequent in r and they are called frequent sets.

The Apriori algorithm [4] (Figure 3.2) finds all the itemsets whose
frequency is larger than the given frequency threshold. The algorithm is
based on the observation that all subsets of a γ-frequent set are also γ-
frequent. Therefore, the algorithm needs to study only those itemsets of
size k, all of whose k subsets of size k − 1 are frequent. Such itemsets are
candidates for the next frequency calculation round. The candidates are
generated on Line 3.

3.2.2 Association rules

Frequent sets were originally developed for calculation of association rules
[3]. An association rule A ⇒ B describes association “if A occurs in an

28 3 Frequent pattern mining on logs

entry then also B occurs in the entry”. A confidence of the association
rule gives the observed probability P(”B occurs in an entry” | ”A occurs
in the entry”). The confidence of the rule is calculated from a data set r
as P (B|A) = freq({A,B}, r)/freq({A}, r).

A set of potentially interesting rules can be selected with minimum
confidence constraint. According to it, rules with probability below the
given confidence threshold are pruned.

3.2.3 Closed sets

A telecommunications network log can be seen as a sparse transactional
database [15]. For example, in firewall logs fields potentially have a very
large set of possible values, e.g., the value of the Destination field that
contains the requested destination address, can be any IP address in the
Internet. However, probably in most of the entries, the field contains ad-
dresses of those servers in an intranet, which are hosting services like web
and mail that are open to the Internet. In practice many fields are very
dense; they have only a few values from which one or a few are much more
common than the others. This means that the encountered field value
frequencies follow a very skewed distribution.

There are also lots of local correlations between field values. A high
correlation together with the skewed exponential value distribution cause
the number of frequent sets to increase dramatically compared to more
evenly distributed data.

The Apriori algorithm works fine when the number of candidates is
not too large. In a sparse database, the number of candidates usually
starts to decrease after the frequent sets of size two or three have been
computed. With data like firewall logs, which are dense, this does not
happen. On the contrary, when there are many local correlations between
field values, the number of candidates and frequent sets starts to expand
quickly. This problem of a large number of closely related frequent sets
can be solved with so-called closed sets [126, 12], which can be used as a
condensed representation of a set of frequent sets.

Definition 3.9 (itemset closure) The closure of an itemset S in log r,
denoted by closure(S, r), is the largest (w.r.t. set inclusion) superset SS
of S that has the same support as S, i.e., closure(S, r) = SS s.t. S ⊆ SS
and supp(S, r) = supp(SS, r) and there is no itemset T s.t. SS ⊂ T and
supp(T, r) = supp(SS, r).

In other terms, the closure of S is the set of items that are common to
all the log entries, which support S.

3.2 Frequent patterns 29

Definition 3.10 (closed set and closure constraint) An itemset S is
a closed set if it is its own closure in r, i.e., S satisfies the closure constraint
Cclose(S, r) ≡ closure(S, r) = S.

The collection of all closed frequent sets contains the same information
as the collection of all frequent sets, in particular, the identities and fre-
quencies. If we consider the equivalence class that groups all the itemsets
that have the same closure and thus the same frequency, the closed sets are
the maximal elements of each equivalence class. Closed sets can be used to
regenerate efficiently the whole collection of frequent sets without scanning
the data again [126, 12]. Conversely, if the whole frequent set collection
is available, a simple postprocessing technique can be applied to compute
only the frequent closed sets.

Closed sets can also be extracted directly from highly correlated and/or
dense data, i.e., in contexts where the approaches that compute the whole
frequent set collection are intractable [126, 12, 164, 128]. Several algorithms
can compute efficiently the frequent closed sets [13, 14].

3.2.4 Frequent episodes

The notion of association rules was generalised for sequences by defining
episode rules [117, 114]. Episode rule A ⇒ B describes association “if A
occurs in a sequence also B occurs in the sequence”. The confidence of the
episode rule gives a probability P(”B occurs in a sequence” | ”A occurs in
the sequence”) The probability can be computed from data by computing
frequent episodes, which reveal items occurring close to each other in a
sequence and correspond to frequent sets.

The sequences in the log domain consist of log event types — for exam-
ple, alarm numbers or message texts — which are ordered by their record-
ing or creation times. The patterns, the so-called episodes, are ordered or
unordered sequences of entry types of log entries occurring within a time
window of specified width.

In telecommunications management systems, event creation, transfer
and logging mechanisms introduce variation to the order in which entries
are inserted into the log. Therefore, it has proven in practice that the most
useful analysis approach is to use no order at all or some canonical order
between the types inside windows.

The Apriori algorithm for frequent sets (Figure 3.2) can be modified
to compute frequent unordered episodes [114]. The modifications needed
are minimal. Instead of a log with entries as input, the algorithm gets a
set of log sequence windows.

30 3 Frequent pattern mining on logs

3.3 Telecommunication Alarm Sequence
Analyser (TASA)

The Telecommunication Alarm Sequence Analyser (TASA) system [59,
61, 60] was one of the first ever KD applications in industry [18]. It was built
to support knowledge extraction from telecommunications network alarm
databases. It extracted rules for incorporation into the expert system for
alarm correlation and filtering. I describe findings that were made while the
TASA system was applied to real-world problems. I also discuss experiences
and possibilities for improvements in methods and technologies.

The purpose of TASA was to provide a data mining solution for
analysing alarm sets collected from GSM networks. The objective was
to find such alarm combinations that could be used in creating rules for
correlation and filtering of related alarms and predicting forthcoming mal-
functions.

The TASA system incorporated components for two parts of the KD
process: pattern discovery and postprocessing. The knowledge discovered
in TASA was expressed in terms of association and episode rules. The sys-
tem located frequently occurring episodes from sequential alarm data with
algorithms presented by Mannila and his collegues [117]. The algorithms
were used to effectively find large pattern sets, typically thousands of rules.
By finding a large rule collection, a large part of the iterative nature of the
KD process was replaced by iteration in the rule postprocessing stage.

For postprocessing the TASA system offered a variety of selection and
ordering criteria, and supported iterative retrieval from the knowledge dis-
covered. The users could manipulate the discovered rule collection using
selection and ordering operations, as well as more complex operations for
including or excluding certain rule classes.

The user interface of the TASA system was implemented as HTML
pages that were linked to each other. The pages provided interface forms
for all the implemented selection and filtering primitives. They provided
several views to the data, statistical figures and graphics describing it,
and mining results so that the user could see how the data supported the
extracted rule set.

The Home Page of a data set analysed with the TASA system (left-
hand side of Figure 3.3) contains a brief overview of the most descriptive
parameters of the data as a whole. These parameters include, for example,
the time span of the data, number of alarms, average frequency of alarms,
and so on. In addition, there are links to histograms that characterise the
whole alarm data set as well as links to HTML pages that show the analy-

3.3 Telecommunication Alarm Sequence Analyser (TASA) 31

Figure 3.3: A home page of the TASA system and an alarm description
page from the system.

Figure 3.4: A selected list of episode rules from TASA.

32 3 Frequent pattern mining on logs

sis results. Figure 3.3 also shows a basic description of the analysed alarm
types included in the data. Figure 3.4 shows a list of rules related to the
alarm type 1234 selected from a larger set of extracted rules.

3.4 Lessons learned

Research and development of TASA at the University of Helsinki were
a starting point for the work reported in this thesis. TASA was later
used at Nokia Research Center to analyse network log data collected from
operational networks. Experiences with TASA proved the applicability
and usefulness of the frequent pattern mining and knowledge discovery in
general. The experiences also revealed limitations in TASA and assisted in
identifying some problems in the methodologies.

3.4.1 Useful methodology

An alternative to gain more out of data Data mining and know-
ledge discovery methods are an alternative for operators to gain more
out of their data [88]. Episode and association rules have been used in
semi-automatic knowledge acquisition from alarm data in order to collect
the required knowledge for knowledge-based systems like alarm correlators
[61, 83, 82]. Given such rules derived from an alarm database, a fault man-
agement expert is able to verify whether the rules are useful or not. Some
of the rules may reflect known causal connections, and some may be irrel-
evant, while some rules give new insight to the behaviour of the network
elements. Selected rules can be used as a basis for correlation patterns for
alarm correlation systems.

Iterative exploration A KD process includes a lot of iteration. Iteration
is needed when searching for proper methods and their parameterisation to
find the required information from the data. In TASA this means iteration
with different thresholds and data selections. As a result the system reveals
a set of selected informative rules.

As a by-product of the KD process experts can learn quite a lot from
their data: “Which elements emit alarms?”, “What are the distributions
of alarms types?”, “What are the most common alarm combinations?”, “Is
there any correlation between the alarm sequences coming from different
sources?”, and so on. This kind of information and knowledge about the
network and its processes can be even more valuable than the rules found
in the data. Such information can relatively easily be interpreted and con-
nected to the experts’ mind maps about the domain.

3.4 Lessons learned 33

3.4.2 Limitations of TASA

Large amounts of results The biggest problem with algorithms search-
ing for rules is that they easily provide an overwhelming amount of them,
especially if there are some alarms in the data that occur often throughout
the studied time period. Together with more seldom but frequently oc-
curring alarms they form plenty of rules where the more seldom occurring
alarm type implies the more frequent alarm with high probability.

Another type of data that produces plenty of rules is such, where a
group of alarms (for example, A,B,C) always occur together. In such a
case the rule set contains a rule between each subset of the correlating alarm
set (for example, {A => B, A => C, B => C, A => BC, B => AC,
C => AB, AB => C, AC => B, BC => A}).

The network is large and lots of processes are going on in separate
corners of it. The alarms from all the processes are collected to a few mon-
itoring applications and signs of problems in different parts of the network
are mixed. When episode rules are mined from this data, alarms from
simultaneous but separate faults are correlated to each other. This cor-
relation is statistically true, they occur during the same time period, but
due to network structure, the faults causing these alarms probably have
nothing to do with each other.

Interestingness and relevance of the results It is a tedious task to
find interesting rules that reveal new information about the domain from
the set of thousands or tens of thousands of rules. In many cases most of the
rules found repeat the same newly found or already familiar information.

Different types of methods, like statistical descriptors or interactive
browsing environments have been suggested in order to simplify identifi-
cation of interesting rules [130, 74, 52, 144, 89, 131, 34].

The simplest way to reduce the amount of rules is to set thresholds
higher. This restricts the search space. Clearly, the thresholds that can be
used are not necessarily the ones that denote objective interestingness from
the user point of view. Indeed, rare combinations can be extremely interest-
ing. When considering previously unknown domains, explicit background
knowledge is missing, e.g., the possible or reasonable values of attributes
and their relationships.

Based on hands-on experience, simple-minded use of discovery algo-
rithms poses problems with the amount of generated rules and their rel-
evance. In the KD process it is often reasonable or even necessary to
constrain the discovery using background knowledge. If no constraints are
applied, the result set of, say, episode rules might become huge and contain

34 3 Frequent pattern mining on logs

mostly trivial, uninteresting or even impossible rules.

Intractable computation of frequent sets The execution of algo-
rithms for finding frequent patterns easily becomes intractable. Algorithms
try to overcome this by using effective methods to prune and limit the
search space. Unfortunately, however, the log data contains a lot of redun-
dant value combinations that make most of these algorithms reach their
limits very soon. This happens especially when the interesting patterns are
not those that occur most often in the data.

Fragmented information Association and episode rules show local cor-
relations between data items. At their best, they provide small pieces which
together — like pieces of a mosaic — form a big picture of the network and
its processes. Unfortunately, when there are too many pieces and their
relations are unclear, the big picture remains unclear or very fragmented.

3.4.3 Open problems

Lost environment information Many times, when the results of the
TASA system were introduced to domain experts, the first question was
“Where did these alarms come from and what happened around them?”
The rule formalism extracts correlations, but at the same time it cuts off the
connection between the correlation and the environment or situation where
the occurrences of the rule were detected. It appeared that to be able to
evaluate and validate any rule, experts needed to see as much information
as possible about the network elements that were alarming. This informa-
tion included not only alarms, but also measurements from the elements
and their neighbours, geographical distribution of the elements sending the
alarm, and so on. Even information about weather conditions were asked
for.

Limits of knowledge discovery process model When the results of
the research were applied to real-world systems, it became evident that
also the knowledge discovery process that was identified in the research
community was not applicable as such to the use of data mining methods
in every-day work. Knowledge discovery is often defined [17, 39] as an
iterative and interactive process, where a data set is analysed in the hopes
to discover novel information to solve a real world problem [17]. This
definition seemed to suit the separate academic and industrial data mining
projects, where there are fixed data sets, resources with various types of
expertise and a time frame from some months to some years. When the

process itself is based on the iteration — or to put it in other words: on
a trial and error principle — it takes too much time and effort to repeat
it from the beginning day after day with new data sets and problems,
especially when the main target and expertise of the people applying the
methodology is to maintain an industrial process, not to develop new data
mining technology.

Still, after more than ten years and several developed and applied data
mining methods, there remains the challenge on how to assist operator
personnel in their daily work. The networks are a rapidly changing and
growing heterogeneous environment, where most of experts’ time is spent
in the routine tasks of searching and analysing faults and optimisation pos-
sibilities. In this environment, huge amounts of data are collected from
the network every day, a priori knowledge tends to change, and the tasks
have very tight time frames. This thesis focuses on developing method-
ology to bridge the gap between academic research results and industrial
applications in this field.

36 3 Frequent pattern mining on logs

Chapter 4

Industrial environment of data
mining applications

Next, I will address decision tasks that are likely to arise in the opera-
tion of industrial processes, especially telecommunications networks [65].
I will identify decision tasks, study their properties and derive supporting
knowledge discovery tasks. I will also characterise the users of the discov-
ered knowledge and study the requirements they set for the knowledge and
discovery tasks.

The development and application of data mining methods for industrial
processes requires that they can be integrated to existing legacy software
and used by the people that are experts in their own area, like network
management, but who do not know much about data mining and analysis.
In the latter half of this chapter, I will consider assets and resources that
are available in industrial environments and derive requirements for data
mining methods and tools [62]. I will also compare the environments of
tool and method developers and users, to understand why some suggested
solutions look fine in the laboratory, but do not succeed in everyday work.

4.1 Process information system

An operational telecommunications network can be seen as a service pro-
cess, whose outcome are the communication connections between end users,
or between end users and some services. Most decisions in a network oper-
ator organisation are based on the information collected from the network
and stored in the process information system. The process information
system acts on information and knowledge about the process state, pro-
cess management, the system hosting the process, maintenance actions,
and information system development. In a telecommunications network
the data in the system consists of several registers, databases and log files
as introduced in Chapter 2.

In general, an industrial process produces data through measurements
about the volume or capacity of process functionalities, variations in raw
materials, process state, services or products produced by the process (Fig-

38 4 Industrial environment of data mining applications

Figure 4.1: Process information system with assisting knowledge discovery
process.

ure 4.1). By interpreting the measurements with a priori knowledge —
often called background knowledge or domain knowledge in data mining
literature — the process operator decides on the actions that optimise the
process performance in terms of the utility of the process owner.

The a priori knowledge about the industrial process before it is in op-
erational use ranges from general knowledge about the domain to detailed
structural data. The general knowledge consists of several components, of
which the most general are the so-called laws of nature, such as physical,
chemical, and sociological facts about the process and its dynamics. Indus-
try and regulators have agreed on standards and laws guiding the process
implementation. Finally, manufacturers provide specifications about their
implementation of industrial process structure, functions, their adjustments
and management.

During the lifespan of the industrial process additional a priori know-
ledge is accumulated [125]. Traditionally this is based on expert insights of
data and indicators derived from it. Separate knowledge discovery processes
can also take place, for example, for better understanding of customers or
some process states.

The a priori knowledge must be maintained. Maintenance actions are
needed after either new industrial process setups or previously unknown
process states are found during the operation of the processes. New ser-
vices, products, process components, and technologies are taken into use

4.1 Process information system 39

during the lifespan. Unpredicted market trends may force changes on op-
erational policies and service portfolios. As a result, some of the original a
priori knowledge may become invalid and a need for generating the corre-
sponding knowledge for the new environment arises and initiates a separate
knowledge discovery process.

As Figure 4.1 suggests, the use of measurement data is two-fold. In
addition to interpreting the data with a priori knowledge for operational
decision support, the data can be used for accumulating knowledge for
future use in knowledge discovery process. The information can be repre-
sented in forms ranging from mathematical models to unstructured natural
language expressions [17]. The context and time span in which the a priori
knowledge extracted from the data can be applied are limited to similar
environment and process states in which the data has been produced. For
example, if the industrial process is producing good products with a cer-
tain process setting and configuration parameters, it does not guarantee
that the product output quality is good after the process components have
been updated to a newer version.

The applicability of past data is further limited by the assumptions
made in the analysis of data. During the knowledge discovery process, for
example, the expert must make plenty of choices and fix several parameters
based on assumptions of the data and its origin. Therefore it is rather
tedious in practice to maintain data-generated a priori knowledge — in
particular, to detect when it is outdated — and to validate it in order
to avoid erroneous decisions [17]. Obviously, if the time spent in doing
the analysis is longer than the validity period, the information provided is
useless.

Separation of knowledge discovery and data intepretation processes is
often a non-optimal solution. The processes require similar resources and
expertise. To avoid doubling the effort an integration of the processes
would be needed. The integration should simultaneously benefit the deci-
sion making and the accumulation and maintenance of accurate a priori
knowledge.

The results and process of any data mining or knowledge discovery task
have to be adapted to the needs of the users. The users, or consumers of
information can be categorised to automatic control functions, expert sys-
tems, human experts and decision support systems assisting the experts.
Each such consumer sets its own requirements for the form of information
and knowledge (Appendix A, Table A.1). The requirements also depend
on the decision level at which the user operates. Decision time frames,
goal settings, and possibilities and abilities to make subjective choices are

40 4 Industrial environment of data mining applications

different. The users prefer different knowledge formats and differ in their
ability to estimate and handle incomplete or uncertain information. Auto-
matic control functions and expert systems have an inbuilt data processing
engine. Human experts require additional data analysis and processing
systems to make use of the information that is in the data streams. For
experts the analysis results must be translated back to semantic meanings
through interpretation of results.

The decisions that automatic control functions and human experts make
are based on subjective choices integrated to a priori knowledge. Subjective
choices concern the attitude towards risks and values (ethics, environmental
impact, societal issues) [118]. In the decisions about the system operation
the values can be reflected in the goal setting. For example, instead of sim-
ply maximising expected economic benefits, the decision-maker optimises
the process under subjectively chosen constraints about the risk related
to the chosen action and on environmental values. Although goals have
subjective components the decision making is rational and consistent if the
goals and values do not change over time. Making the goals and values ex-
plicit promotes a good decision-making practice and consistent operation
of the organisation.

4.2 Decision support model

In order to assist in a decision-making process, the decision support system
provides a model by which to predict the evolvement of the system state
under any set of allowable actions, given the present and earlier states. A
schematic decision support model is shown in Figure 4.2. The formalism
has been adopted from Bayesian belief networks sometimes also called prob-
abilistic networks [32]. The presented model is an abstraction that is used
to illustrate the decision tasks and requirements that they set for support-
ing knowledge discovery. The model is not intended to be implemented
as such. Due to the complexity of the information, many of its compo-
nents cannot be easily expressed and computed. However, application of a
related decision model to a limited set of every day decision tasks in pa-
per industry has recently been studied further [136, 84]. On the field of
reinforcement learning [86, 147], the presented model relates to partially
observable Markov decision processes (POMDPs) [112, 1] that also could
be studied as an option to implement the model.

The model consists of stochastic variables describing operator actions,
system states, external trends and costs. The arcs in the model describe
the conditional dependencies between the variables. The purpose of the

4.2 Decision support model 41

Figure 4.2: A schematic overview of a model for decision support system.

decision support system model is to identify and describe how observed or
suspected changes in variables affect the other parts of the model. The
knowledge discovery tools and methods are used to identify the current
states and to support effect estimation.

The main task described in the model is to optimise the expectation of
the utility function υ(Ufuture,Xfuture, Cfuture; d), where Ufuture is a set of
actions chosen from the set of allowable actions, Xfuture the prediction of
future system states, Cfuture the prediction of costs in the future and d a
set of continuous and discrete fixed system parameters.

In Figure 4.2 past system states (Xpast) and actions (Upast) affect sys-
tem states in the future (Xfuture). It is important to notice that past
system states are not observable as such for the support system but via
measurements (Y ′) on them. The measurements do not give a complete
picture about the state, furthermore they are uncertain. The description
of the external world (Ŝ) affects external scenarios (Sfuture) on process
state evolvement, and cost evolvement. Observed cost histories (Cpast) are
the basis of estimating future costs (Cfuture). The decision making selects
actions (Ufuture) from the set of possible actions. In optimal decision mak-
ing the selected actions maximise the utility function υ under inequality
constraints on future states Xfuture.

For example, in the telecommunications domain there are plenty of data
sources, which provide information about the variables of the model. The
alarm and measurement data collected from a network is a good example of

42 4 Industrial environment of data mining applications

measurements Y ′. They provide information about the past system states
Xpast. Maintenance logs and trouble-shooting diaries provide information
about the past actions Upast. The other sources for Upast are customer
databases and external sources revealing information, e.g., about the num-
ber of sold mobile phones. The mass media and economical institutes doing
studies on consumer behavior and needs provide the description of the ex-
ternal world Ŝ. On the other hand, academic publications, standardisation
organisations and manufacturers provide information about the external
technology scenarios Sfuture. The costs in the past Cpast are summarised
several times a year from internal accounts to interim reports. Based on
those figures and a description of the external world, the reports make esti-
mations about future costs Cfuture. Together with selected actions Ufuture

and the network infrastructure operator organisation, which are included
in fixed system parameters d, all the information affects the utility function
through some variables.

The analysis of decision-making above logically leads to four decision
subtasks and to corresponding tasks for the knowledge discovery process im-
plemented in decision support applications. The knowledge extraction tasks
estimate and learn conditional probabilities based on stochastic variables
given in model nodes. For these tasks, the source data is the measurements
and the logged configuration changes and other actions in databases and
system logs or in an external source data. The decision subtasks are system
state identification, system state prediction, cost estimation, and estimation
of external actions. The corresponding knowledge extraction tasks are to
identify the conditional probabilities and to analyse how observed process
conditions affect these probabilities.

Derived from Figure 4.2 the system state identification task can be de-
fined as determining the conditional probability of system state, given the
measured values: P (Xpast|Y ′) [137]. It defines how much of the past system
state is known, given the measured values. The identification here means
the ability to separate system states from each other, provision informa-
tion about their properties and discovery of similar system states from the
history data or system state description library. Fault identification and
analysis, which is based on alarm logs, is an example of a system state
identification task.

The conditional probability P (Xfuture|Ufuture, Upast,Xpast, Sfuture)
defines probabilities of possible system states in the future, given any
allowable future actions, past actions, past system states and estimated
external scenario. Thus it is the system model. The task of evaluating
P (Xfuture|Ufuture, Upast,Xpast, Sfuture) is called system state prediction.

4.3 Decision support on different operation levels 43

For example, when an expert in an operation room recognises a set of crit-
ical alarms coming from the network, he has to identify the cause and its
effects to the network, estimate the costs of the damage, and decide what
needs to be done. One of the first things is to check whether there is any
network management operation ongoing in elements giving the alarm and
if not, has there recently been any and so on.

The task of cost estimation is to estimate the probability
P (Cfuture|Cpast, Ŝ) that is the cost model. The cost model estimates
probabilities of future costs by studying past costs and external scenar-
ios. Estimation of external actions is simply the estimation of probability
P (Sfuture|Ŝ), in which external scenarios are related to the detected in-
formation about the external world. Both of these tasks require source
information from external sources achieved, for example, by a business in-
telligence function of the operator, but also benefits from the analysis of
user behavior inside the current network.

When all the four conditional probabilities are identified and thus the
knowledge discovery tasks are completed, the operational decision-making
under uncertainty can be formally expressed as a stochastic dynamic op-
timisation problem with, for example, the expected utility or the worst
scenario utility (max-min) as the objective to be maximised [42]. Most of
the knowledge discovery research has concentrated on supporting the sys-
tem state prediction task. However, unless all the four tasks identified are
covered, the decision support does not create value in the operation of the
process (see [42] for a general discussion about value creation, and [85] for
an industrial-specific case discussion). Obviously, some of the tasks can
be left for the decision maker, but then this design decision must be made
explicit.

4.3 Decision support on different operation levels

The three traditional levels in decision making have the following tasks.
On the strategic level strategic scenarios are defined and the long term
goals are set so that the industrial process structure can be designed, and
the operational requirements and limits for tactical decisions can be set.
On the tactical level the process performance with respect to operational
requirements is optimised. On the automatic level the tactical decisions
are implemented and their consequences monitored and controlled. The
categories are somewhat overlapping and form a continuum [142, 46].

44 4 Industrial environment of data mining applications

4.3.1 Strategic process decision support

On the strategic level the decisions concern the design of large and ab-
stract entities and systems (Appendix A, Table A.1). A strategic decision
aims to find the design of the operations (d), including the knowledge dis-
covery and other information systems that will optimise the net present
value (NPV, expected utility) of the process, subjected to scenarios about
product portfolio, price and competition dynamics (Cfuture, Ŝ). The net
present value consists of accumulated and discounted revenues and costs
over the lifespan of the industrial process. The two main strategic decision-
making situations are the design of an entirely new industrial process, and
a major restructuring of an existing one. The two cases differ in that dur-
ing the restructuring some directly usable measurement information exists,
whereas in the design phase of an entirely new industrial process, such as
a telecommunications network, no measurement information exists.

The information, on which the strategic decision-making is based, comes
from a multitude of sources and includes both abstract and intuitive com-
ponents. Many of the sources are external and as such cannot be adjusted
by the decision maker. The maximisation of NPV includes prediction of
the future and the analysis of adaptivity of industrial process requirements.

For decision making on the strategic level many of the problems and
scenarios are analysed in a conceptually or numerically simulated industrial
process instead of a real one. Decision tasks may share some characteristics
of similar existing operations, but the motivations and mechanisms are
case specific anyhow. In strategic decisions not only the scenarios but also
their frequency of occurrence must be specified. As a result the risks and
uncertainty are quite high in strategic decision making.

Systematic strategic decision making must address the optimised tacti-
cal decision making under the scenarios defined, i.e., find optimal Ufuture

for fixed Cfuture, Ŝ for each d. Strategic decisions aim to optimise per-
formance over the long term. The knowledge discovery analysis tasks for
strategic state identification and state prediction must be performed with
limited or no measurement data about the target.

In the cost estimation, information gathered from similar systems and
market information sources is combined. Cost estimation is tightly con-
nected to prediction of external trends. Prediction of external trends com-
bines mostly information from external sources with the intuition of the
management. These two tasks are not sensitive to changes in the system
setup but rather to major changes in the external world, like market devel-
opment, demography, conflicts, and natural catastrophes in the world.

The challenge in making knowledge discovery to support decisions at the

4.3 Decision support on different operation levels 45

strategic level is making the pieces of information, which are in multitude
of forms, commensurate. Two parts of the organisation can record the
same types of events differently or use different formulas for calculation of,
for example, a performance value [113]. Furthermore, the meaning of the
terms and names vary from one department to another. A human expert
is quite good at interpreting information from various sources but the task,
if made with a computer, needs to be designed very carefully and results
have to be cross-validated with results obtained with different tools.

4.3.2 Tactical process decision support

The role of knowledge discovery in supporting tactical decision making
is to provide information about the process and the surrounding world
affecting it (Appendix A, Table A.1). Information needs vary over the
industrial process life span. The vital decision tasks to be supported by
knowledge discovery during the industrial process start-up are the system
state identification and system state prediction. In the industrial process
start-up phase data and information are gathered extensively for both tasks,
and, as a result of the data gathering, we gain knowledge of how different
control actions affect the industrial process states. For example, in the
start-up phase of a telecommunications network, alarm and event logs are
collected. From them the operator tries to figure out, what the critical
alarms or alarm combinations are and what actions should be taken when
those are detected. Simultaneously the operator has to learn what entries
can be filtered out without losing too much information.

Cost estimations and profit scenarios defined during strategic decision
making will also be verified against the gathered data and information
retrieved from it during the start-up period. The start-up period of the
industrial process ends when the process is in a stable production mode.

In an industrial process production mode, a decision has to be made
every time a process setup, parameters, utility function, or products change.
In the changed state the knowledge must be updated. The update task
is similar to knowledge discovery tasks during the start-up phase, when
the operator learns characteristics and causes of the change. The needed
updates mainly concern knowledge about the system state identification
and system state prediction. Those parts of the knowledge that need to
be re-evaluated depend on the nature of the change and how it affects
the system. For example, if changes in system parameterisation cause the
system to evolve into a state that is already known, only the prediction
probabilities are affected. This may be the case, for example, when a
new version of a software is loaded into the system. On the other hand,

46 4 Industrial environment of data mining applications

if the system enters an unknown state then both the state identification
knowledge and the estimation probabilities must be updated. This might
happen, for example, when there is a new bug in the updated software.

At the tactical level the external actions are usually estimated only
locally with the granularity corresponding to the responsibilities of the
supported decision maker. The granularity of the knowledge discovery tasks
is typically limited to support tasks and responsibilities according to the
structure of the operating organisation. The view to data probably differs
if we are optimising a radio frequency plan of a small geographical area or
ensuring the quality of end-to-end connections that a user experiences when
moving around the entire country-wide network. However, organisational
structures are rapidly changing and there is a real threat that a large part
of knowledge, which is granularised according to organisational structure,
becomes irrelevant in the reorganisation.

The data has to support the knowledge discovery task. As the defini-
tions of decision tasks in Section 4.2 indicate, the available data for know-
ledge discovery must contain — in addition to measurements — a log of
performed actions, history of system parameters and settings, estimation
about future scenarios, and a definition of the set of allowable future ac-
tions. In many systems, unfortunately, only measurement value time series
are available for knowledge discovery.

The system state identification and system state prediction tasks rely
totally on the measurements and logs. If they do not contain information
about the system state, it is impossible for the knowledge discovery process
to generate it. On the other hand, after a change in the measurement
set or in the measurement semantics, the gathered knowledge must be re-
evaluated and validated.

4.3.3 Automated process decisions

The automatic control functions monitor incoming data flow and, if the
defined antecedents apply, take actions that have been defined to be a cor-
responding consequence (Appendix A, Table A.1). The actions can either
be active functional changes of, for example, the configuration parameters
of the system, or they can be passive, in which the function identifies the
industrial process state and signals results of its deductions to operator
personnel.

For an operative automatic industrial process the quality of automated
decisions has to be very high — there is no room for wrong decisions that
cause the industrial process to fail. The decision tasks vary, starting from
very fast optimisation with a decision period of milliseconds, for example,

4.4 Users and resources of applications 47

a decision when the system has to do handover for a call, and ending up
in error detection and analysis tasks lasting days. Supporting knowledge
discovery tasks can be classified as system state identification and system
state prediction tasks. Applications making automated decisions solve ei-
ther a high number of frequently occurring simple problems or very difficult
and tedious problems requiring a lot of expertise [123].

When an implementation decision of an automatic control function is
made, the following elementary questions must be considered: is it clear
what the validity scope of the knowledge is, how fast the knowledge will be
outdated, is it possible to detect the problems with the knowledge, what is
needed to maintain and upgrade the functions, and will resources be avail-
able for knowledge maintenance? The assumptions made when building
the control models have to be easily available for the operator. Either the
industrial process or the operating personnel have to check whether the
assumptions are satisfied in a manner applicable to the task: the validity
scope of the model must be checked and monitored frequently.

4.3.4 Tactical decision support in network operations

The traditional knowledge discovery process model has been designed with
the strategic decision making in mind. The knowledge extraction is done
off-line, results are evaluated carefully and analysis has been repeated if
needed. The model can also be applied to support the off-line knowledge
extraction for automated decision making. However, the model does not fit
to on-line decision making on tactical level in network operations. There de-
cision tasks have tight deadlines, tasks themselves are repeating and based
on data that is continuously collected from the network (Appendix A, Ta-
ble A.1). Therefore, in this thesis I am focusing on knowledge discovery for
decision support in two cases:

• situations in which decisions about design and operational require-
ments are made at such a fast pace that strategic-level decisions and
tactical decisions can no longer be separated, and

• tactical decision making when there is a clear distinction between the
levels.

4.4 Users and resources of applications

In order to derive requirements for knowledge discovery tools and appli-
cations, we present a model that describes and contrasts a tool provider

48 4 Industrial environment of data mining applications

Figure 4.3: Interactions between data mining application issues from the
developer perspective.

and a tool user environment in the telecommunications domain. To model
these two environments we use Leavitt’s diamond model [107]. It describes
organisations as four interrelated components: tasks, technology, persons
and structure, where structure represents the organisation as well as ex-
ternal stakeholders such as competitors. The interdependence between the
different components of the model is strong. For example, changes in tech-
nology affect the way in which individuals relate themselves to the tasks
they are responsible for and to the organisational structure. The model
has been used as an analysis framework for, e.g., information systems [87],
information system personnel and their roles [122], telecommuting [20], and
telecommunications network planning tool implementation [124].

For this study the model has been divided into two views [124]: a devel-
oper view and a user view. The developer view illustrates a tool provider
or developer organisation who selects whether DM methods are going to be
used in tools. In the user view, a user organisation can be a telecommuni-
cations network operator or an IT department of an enterprise. The views
are presented in Figures 4.3 and 4.4. The views and their comparison are
used to derive the requirements for data mining tools.

Figure 4.3 shows the application of Leavitt’s diamond model to develop-
ment of the DM domain from the developer perspective. The tasks consist
of requirements management, test data acquisition, method development,

4.4 Users and resources of applications 49

Figure 4.4: Interactions between data mining application issues from the
user perspective.

method and tool verification and tool maintenance. The directly involved
persons are analysis experts and tool developers. The technology consists
of models, methods, algorithms, DM tools and environments, programming
languages and environments, software components, data collection and stor-
age solutions, legacy data management and reporting solutions, graphical
user interface solutions and, finally, of the analysed network and hardware.
The structure contains tool users, domain experts, decision makers, and
software tool, component and platform vendors.

Figure 4.4 shows the model from the user perspective. The essential
tasks — making decisions in different types of situations — are related
to network operation and development. Such tasks include, for example,
configuring a new network segment, optimising the services in some cells
or fixing acute and critical faults. The technology component consists of
numerous items of the application domain and the monitored network, its
structure and parameterisation. Data mining methods are seen as technol-
ogy embedded in domain-specific tools. From the user’s perspective, these
tools should be integrated to the legacy data management and reporting
solutions that still offer the major functionality of the monitoring system.
From the user perspective, the structure contains analysis experts, tool
developers, customers and competitors.

These two contrasting views are interdependent. For example, the tech-

50 4 Industrial environment of data mining applications

nology component of the user view is linked with the task component of
the developer view as the developed methods and tools are the key results
that are used by the users. Furthermore, the analysis experts and tool de-
velopers of the persons component in the developer view can be modeled
to be in the structure component of the user view, and vice versa.

The non-trivial interdependence between the two views is a reason for
conflicts since the needs of developers and users are contradictory [124]. For
example, from the user point of view the tools should make the execution
of simple network analysis tasks very fast whereas from the developer point
of view the tools should be easy to implement and maintain.

The successful exploitation of DM tools requires understanding of the
requirements set for the tools from the user point of view. If those re-
quirements are not met, then the users very easily just do not use the new
technology but stick with the existing solutions and their direct enhance-
ments.

When users are selecting their tools, they set requirements for the pos-
sible candidates. For applications in industrial production these require-
ments are quite strict and technological excellence is only one aspect in
the selection process. Other requirements are set for understandability, in-
tegrability, effectiveness, continuation of development, guaranteed support
and maintenance, and so on. If these requirements are not met by the tool
and its provider, the method or tool might be abandoned without a second
look at its technological achievements.

In the diamond model of user environment, data mining tools are in-
cluded in the technology component. To understand how other interrelated
components of the model affect the acceptability of new technologies like
data mining, we study the connections between them and the technology
component in the user view. These are connections between

• technology and persons,

• technology and tasks, and

• technology and structure.

4.4.1 Technology and persons

Persons who use DM in operator organisations can be, e.g., technicians, top
level domain experts or top managers with a lot of experience in the busi-
ness. A common factor among all of them is that they are typically skilled
in what they are doing, namely in running telecommunications networks.
They probably do not know too much about statistics or data mining.

4.4 Users and resources of applications 51

This sets a requirement for any proposed tool or method: it must pro-
vide results using the terminology and semantics of the application domain.
For example, pure statistical figures without a good explanation about what
causes them and what they tell an analyst are not necessarily understand-
able for a domain expert. In other words, the tool provider has to attach
a semantic interpretation in application domain terms to each statistical
figure used.

As observed, experts are willing to assist in the development and adopt a
planning tool if it provides immediate and accurate results to them already
during the development period [124]. This is most probably true also with
any DM tool. This is essential, since without the domain knowledge that
the experts provide, the developer is not able to do the needed semantic
localisation of the tool to the application domain. If the method is easy
to understand and provides accurate results, experts will use it to assist
them in their daily tasks, to play around with it and provide the semantic
connection by themselves. This will also require a good user interface for
the method.

4.4.2 Technology and tasks

DM tools

In network operation there are plenty of different tasks with different time
constraints. The most urgent task is to fix critical faults that disturb the
communications of a large number of mobile phones. These faults are
monitored and, if detected, analysed on-line 24 hours per day. Less critical
faults are analysed in priority order based on daily fault and performance
reports. Every now and then the operator personnel go through the whole
network in order to detect cells that are not working optimally.

For all of the above-mentioned analysis tasks the operator has numerous
monitoring and reporting tools that follow up different parts and functions
of the network. Any DM tool is an enhancement for the existing tools. They
should assist the persons in their tasks, which they are used to perform
based on the information provided by the existing tools. These tools are
typically tightly linked to different management applications, with which
the operators tune and fix the network remotely. This setup requires proper
input and output interfaces to the new enhancements, which have to be
integrated to the existing infrastructure.

52 4 Industrial environment of data mining applications

Network structure

The structure and parameterisation of the network evolves constantly.
Quite a large number of cell configurations — e.g., one percent out of
thousands of cells — are updated on a weekly basis. This sets a challenge
for the personnel: the so-called normal or optimal value ranges of several
indicators derived from a cell or a BSC group are constantly changing.
These changes have to be identified from the measurement value series and
verified against domain knowledge.

4.4.3 On-line exploration vs. off-line DM

The shortest decision-making loops have been automated. There are closed
control loops that monitor one or more indicator time series and adjust
process parameters as a response to the incoming data. For these control
functions the DM applications can provide information about the effects of
different traffic and configuration combinations. This information can be
extracted off-line either from a history data set or a simulated laboratory
data set.

Another natural target for support are strategic decisions, which are
based on data and information in various formats coming from several
different sources. Analysis of this information closely resembles a classical
KD process, where also analysis experts are involved.

Probably the hardest target for decision support are the tactical and
short-term strategic decisions, where the time to make the decision is lim-
ited, the problem occurs either very seldom or is totally new and for which
no analysis expert is available. In these tasks the DM tools have to be so
easy to use that a domain expert is able to quickly extract the necessary
information by himself. There is no room for iteration or full-scale data
exploration, but in spite of that the analysis has to be well focused and
straightforward to use.

4.4.4 Technology and structure

Analysis experts

One of the most critical differences between the developer and user views
is in the role of analysis experts. They are DM experts that develop the
methods used. In the developer view they are in the persons component.
This means that they are available inside the organisation and actively
taking part in different tasks.

4.5 Summary of requirements 53

In the user view, analysis experts are in the structure component. They
are not part of the organisation using the tools and methods but rather ex-
ternals, probably personnel of a tool provider or some consulting company.
This makes them temporary options for any continuous analysis task. They
might be used for giving training in the roll-out phase of a tool, but later
it is usually an expensive option to use constant consultations.

Legacy solutions and Competitors

A basis for all the operator organisation acquisitions is the amount of ex-
pected utility. The utility can be in a form of more effective operations
and cost savings, improved product quality, new and impressive services
and so on. If it is possible to manage the business with the old existing
infrastructure and the expected advantage that could be gained with the
new solutions is less than what is required to update the old system and
maintain the new one, then the acquisition will not be made. For example,
if updating the legacy solution would require re-programming some of the
central building blocks of the existing system and thus re-testing and de-
bugging of all the solutions depending on it, the expected utility gain has
to be very large before the organisation is willing to consider taking the
risk of updating the system.

One element in the structure component — competitors — is the source
for the need to upgrade operation solutions. If competitors are able to
achieve lower maintenance costs by using more efficient analysis tools, this
probably drives the organisation towards considering them. Otherwise, if
their running costs are higher than those of the competitors, it will mean
losing profits in the long run.

4.5 Summary of requirements

With knowledge discovery tasks in mind, I derived requirements that the
network operator organisation and infrastructure set for data mining and
knowledge discovery tools and methods. Below is a list of identified re-
quirements.

• Application domain terminology and semantics used in user interface
(Sections 4.4.1 and 4.4.4)

• Immediate, accurate and understandable results (Section 4.4.1)

• Easy-to-use methods (Sections 4.4.1 and 4.4.4)

• Interfaces and integrability towards legacy tools (Section 4.4.2)

• Adaptability to process information (Section 4.4.2)

• Use of process information (Section 4.4.2)

• Efficiency and appropriate execution time (Section 4.4.3)

• Reduced iterations per task (Section 4.4.3)

• Easy to learn (Section 4.4.4)

• Increases efficiency of domain experts by reducing time spent per task
(Section 4.4.4)

These requirements have been guidelines when we have developed the meth-
ods presented in the following chapters of this thesis. The most essential
requirement can be summarised as a need to support domain experts in
their own language.

The TASA system fulfilled some of these requirements. It provided un-
derstandable results in feasible time and was relatively easy to use. It also
had an interface to legacy tools that provided the source data. However,
it also had some drawbacks: it was not able to adapt to any other pro-
cess information, the use of it required understanding of probabilities and
statistical concepts, it had several tens of parameters, it required iteration
and lacked ability to collect history information and adapt to it.

Chapter 5

Comprehensive Log Compression
(CLC)

Log file analysis is a part of many system state identification sub-tasks of
tactical decision-making in telecommunications network operation. It is
often very tedious to do. In many cases the logs are huge and filled with
constantly re-occuring entries or entry patterns.

When results of the TASA system (Section 3.2.4) were evaluated by do-
main experts, it appeared that an expert did not want to know all associa-
tion rules of the instances of frequently occurring entries or entry patterns,
but he rather wanted to filter the most frequent entries away. Frequent
patterns capture information in these repetitive entries. The Comprehen-
sive log compression (CLC) method uses frequent patterns to summarise
and remove repetitive entries from log data [55]. This makes it easier for a
human observer to analyse the log contents.

5.1 Overview of the method

Automated filtering of uninteresting log entries is used, for example, in
alarm correlation. It is based on pre-defined knowledge about correlations
and importance of events. Before the system is usable, the operator has
to acquire and define this knowledge and also continuously maintain it.
The TASA system was designed to support knowledge acquisition for this
automated decision-making.

As was described in Section 3.2.4, frequent episodes and association
rules can be used to assist in defining rules for an alarm-correlation engine.
This is possible since the set of alarm types is well defined and known. Each
type has a semantic interpretation in a network domain and an attached
representative, like a number or a constant alarm text.

The same method can not be applied to the maintenance and security
logs as such. In these logs, the set of event types is much larger, some
of the event types are unknown and new types keep appearing, when new
components are added to the network. In some cases, for example, in
firewall data, it can be difficult or even impossible to attach a unique type

56 5 Comprehensive Log Compression (CLC)

Figure 5.1: The CLC method creates a summary of a log and removes
summarised entries.

to an entry.
The method that addresses this kind of changing data set, can not rely

on a pre-defined knowledge base only. The maintenance of such knowledge
would be too tedious. Instead, the method must rely on the data itself as
much as possible. The method can not provide deep semantic interpreta-
tions since it is able to extract only statistical and syntactic information
from data. With such information, however, the method can support a
network expert to do the required semantic interpretations.

The CLC method dynamically characterises and compresses log data
before it is shown to a human observer. The idea of the method is depicted
in Figure 5.1. The CLC method analyses the data and identifies frequently
occurring value or event type combinations by searching for frequent pat-
terns from the data. The set of closed frequent patterns is presented as a
summary of the log. Log entries that contain a closed set are hidden or
removed from the log and only the remaining entries are shown to the user
as a compressed log A′

The CLC method does not need any prior knowledge about the domain
or the events. For example, no predefined patterns or value combinations
are needed.

Making the summaries of the data benefits an expert in many ways. The
frequent patterns included in the summary capture a lot of information.
The information can include statistical factors — like how many entries
contain the pattern — and descriptive factors — like when the first entry

5.2 Formalisation 57

including the pattern appeared and how long these entries kept coming.
It is also possible to compute information about the value distributions of
those fields, which were not included in a pattern. This is useful, since
when there is a massive burst of some event, for example, 100,000 entries,
the operator is not interested in each individiul entry but the description
of the whole set. On the other hand, when such bursts are removed from
the log, other details, which were hidden between removed entries, become
visible.

For example, beside user activity a firewall logs connections made by
network elements and the network management system. In some firewalls
most of the entries are caused by the system itself. Such entries typi-
cally contain plenty of repeating information with strongly correlated field
values. Such entries can be effectively summarised by the CLC method.
These summaries should reveal information, which is in line with other
performance and log data collected from the network.

5.2 Formalisation

Definitions for frequent sets, closures and closed sets were given in Sec-
tion 3.2.1. Those definitions have to be augmented with concepts that are
needed for CLC. These concepts include notions of coverage and perfectness
and the corresponding itemset constraints.

There are at least three possible measures that can be used to sort the
patterns: frequency, i.e., on how many entries the pattern exists in a data
set; perfectness, i.e., how perfectly the pattern covers its support set; and
coverage of the pattern, i.e., how large a part of the database is covered
by the pattern. Coverage balances the trade-off between patterns that are
short but whose frequency is high and patterns that are long but whose
frequency is lower.

Definition 5.1 (coverage) The coverage of an itemset S in a log r is
defined by cov(S, r) = freq(S, r) · |S|, where |.| denotes the cardinality of
the itemset S.

Definition 5.2 (perfectness) The (relative) perfectness of an itemset S
in a log r is defined by perfr(S, r) = cov(S, r)/

∑
e∈supp(S,r) |e|, where |e|

denotes the cardinality of log entry e.

If the cardinality of all the log entries e ∈ r is constant |e|, then
perfr(S, r) = cov(S, r)/(freq(S, r) · |e|) = |S|/|e|.

58 5 Comprehensive Log Compression (CLC)

Definition 5.3 (minimum coverage) Given an itemset S, a log r, and
a coverage threshold κ ∈ [1,

∑
e∈r |e|], the minimum coverage constraint is

defined as Cmincov(S, r) ≡ cov(S, r) ≥ κ. Itemsets that satisfy Cmincov are
called covering in r.

Definition 5.4 (minimum perfectness) Given an itemset S, a log r,
and a (relative) perfectness threshold πr ∈ [0, 1], the minimum perfectness
constraint is defined as Cminperf(S, r) ≡ perfr(S, r) ≥ πr. Itemsets that
satisfy Cminperf are called perfect in r.

If the cardinality of all the log entries e ∈ r is constant |e|, then the
minimum perfectness threshold can be specified as an absolute size of a
pattern: π ∈ {0, 1, . . . , |e|}, or as a difference from the entry size πd ∈
{0, 1, . . . , |e|}. Thus the minimum perfectness constraint can be equally
defined as Cminperf(S, r) ≡ |S| ≥ π, or Cminperf(S, r) ≡ |S| ≥ (|e| − πd)
correspondingly.

Definition 5.5 (filtering pattern) A closed set S is a filtering pattern if
it satisfies constraint Cfilt, where Cfilt(S, r) ≡ Cminfreq(S, r) ∧ Cmincov(S, r) ∧
Cminperf(S, r).

Definition 5.6 (summary) A summary FF of log r is the set of its fil-
tering patterns, i.e., FF = {S | Cfilt(S, r)}.

An algorithm for finding the summary FF of log r is given in Figure 5.2.
The algorithm first computes the collection of closed frequent sets CFS
(Line 1) from the log r. The summary FF is then the set of filtering
patterns (Line 2) filtered from CFS by applying the constraint Cfilt.

If a filtering pattern S is a specialisation of a more general filtering
pattern T , i.e., T ⊂ S (Line 5), then the support of S is a subset of the
support of T . Thus S would not filter out any entries that T would not
already remove and S can be removed from the summary (Line 6). However,
S is a specialisation of T and this relation could be recorded to be used by
a tool to browse the summary.

The algorithm compresses the original log r by removing log entries that
are in the support of any of the filtering patterns (Line 8). This is called
data reduction. The algorithm outputs the summary FF and the uncovered
entries of log r, denoted with runcovered.

Figure 5.3 provides a sample of frequent sets extracted from the data
introduced in Figure 2.10 on page 15. The first number in the row gives
a unique reference of a frequent set and the last number its frequency. In
Figure 5.3, the last two patterns (Frequent sets 14 and 15), which contain

5.2 Formalisation 59

Input: Log r, frequency, coverage and perfectness thresholds γ, κ, πr

Output: Summary FF and uncovered entries runcovered of log r,

1. Find the collection CFS of closed frequent sets w.r.t. the frequency
threshold γ

2. Select summary FF = {S | S ∈ CFS ∧ Cfilt(S, r)} w.r.t. the coverage
threshold κ and the perfectness threshold πr

3. For all S ∈ FF do
4. For all T ∈ FF \ {S} do
5. if T ⊂ S then
6. FF = FF \ {S}
7. fi
8. runcovered = {e ∈ r | � ∃S ∈ FF such that S ⊆ e}
9. output FF, runcovered

Figure 5.2: An algorithm for Comprehensive Log Compression.

...

5 {Destination:123.12.123.12, SPort:xx, Service:a_daemon, Src:B1} 10283

6 {Destination:123.12.123.12, Proto:tcp, Service:a_daemon, Src:B1} 10283

7 {Destination:123.12.123.12, Proto:tcp, SPort:xx, Src:B1} 10283

8 {Destination:123.12.123.12, Proto:tcp, SPort:xx, Service:a_daemon} 10283

9 {Destination:123.12.123.13, SPort:xx, Service:a_daemon, Src:B1} 878

10 {Destination:123.12.123.13, Proto:tcp, Service:a_daemon, Src:B1} 878

11 {Destination:123.12.123.13, Proto:tcp, SPort:xx, Src:B1} 878

12 {Destination:123.12.123.13, Proto:tcp, SPort:xx, Service:a_daemon} 878

13 {Proto:tcp, SPort:xx, Service:a_daemon, Src:B1} 11161

14 {Destination:123.12.123.12, Proto:tcp, SPort:xx, Service:a_daemon, Src:B1} 10283

15 {Destination:123.12.123.13, Proto:tcp, SPort:xx, Service:a_daemon, Src:B1} 878

...

Figure 5.3: A sample of frequent sets extracted from a firewall log.

five attributes each, have five subpatterns (Frequent sets 5 – 8 and 13,
and Frequent sets 9 – 13). Figure 5.4 gives the corresponding closed sets.
Let us assume that they all satisfy the constraint Cfilt and they are initially
included to the summary. However, closed sets 14 and 15 are specialisations
of set 13 and thus linked to it according to inclusion lattice and removed
from the summary. Only the set 13 is finally a filtering pattern.

There are several algorithms [55] that can be used for finding closed sets
(Figure 5.2, Line 1). We have adopted a solution that first finds so-called
frequent free sets and then produces their closures [13, 14]. This is efficient
since the freeness property is anti-monotonic, i.e., a key property for an
efficient processing of the search space. Also, if compared to Apriori-like

60 5 Comprehensive Log Compression (CLC)

13 {Proto:tcp, SPort:xx, Service:a_daemon, Src:B1} 11161

14 {Destination:123.12.123.12, Proto:tcp, SPort:xx, Service:a_daemon, Src:B1} 10283

15 {Destination:123.12.123.13, Proto:tcp, SPort:xx, Service:a_daemon, Src:B1} 878

Figure 5.4: A sample of closed sets extracted from a firewall log.

Table 5.1: Three selected frequent sets found from a firewall log.
No Destination Proto SPort Service Src Frequency

1. * tcp xx a daemon B1 11161
2. 255.255.255.255 udp xx 1234 * 1437
3. 123.12.123.12 udp xx B-dgm * 1607

algorithms [4], with this algorithm it is possible to minimise the number of
data base scans [126, 12].

Furthermore, other condensed representations have been proposed [25]
including the δ-free sets [33], the ∨-free sets or the Non Derivable Itemsets
[14, 23, 24]. They could be used in even more difficult contexts (very dense
and highly-correlated data). Notice however, that from the end user’s point
of view, these representations do not have the intuitive semantics of the
closed sets.

5.3 CLC usage scenarios

An example of the summary created by the CLC method from a firewall
log can be seen in Table 5.1. It shows three patterns with high frequency
values in the firewall log introduced in Figure 2.10 on page 15. The union of
the supports of these patterns covers 91% of the data in the log. The fields
marked with ’*’ do not have a value in the pattern and match all values in
the data. For example, in Table 5.1 the field ’Destination’ of Pattern 1 gets
two different values on entries matched by it. These values are included in
the specialisations of the corresponding closed set of Pattern 1 (Figure 5.4,
Closed sets 14 and 15). The supports of the specialisations fully cover the
support of Pattern 1.

In Table 5.2 the filtering pattern, Pattern 1, has been expanded by
showing its specialisations as patterns 1.1 and 1.2. In a graphical browser,
the patterns could also be drawn as nodes with appropriate connections.

A filtering pattern or its specialisation can be linked to its support
set in original log r. The link can be implemented, for example, as a
query, which fetches the support of the pattern. For example, a query for
Pattern 2 of Table 5.1, would fetch entries that include field-value pairs

5.3 CLC usage scenarios 61

Table 5.2: The most covering pattern expanded to show its subpatterns.
No Destination Proto SPort Service Src Frequency

1. * tcp xx a daemon B1 11161
— 1.1. 123.12.123.12 tcp xx a daemon B1 10283
— 1.2. 123.12.123.13 tcp xx a daemon B1 878

2. 255.255.255.255 udp xx 1234 * 1437
3. 123.12.123.12 udp xx B-dgm * 1607

Destination:255.255.255.255, Proto:udp, SPort:xx, and Service:1234. The
answer contains 1437 entries, which could be analysed further. For example,
an expert might want to know the values in field Src and their frequencies
in the answer and in the whole database.

An objective of the CLC method is to select the most informative pat-
terns as starting points for navigating the log and its summary. What the
most informative patterns are depends on the application and the task at
hand. The filtering patterns are informative in the sense that they repre-
sent large amounts of entries and can be used to provide information about
value distributions of varying fields in these entries. For example, a port
scan might be captured by a closed set containing quite a lot of constant
information, e.g., the source address in the Source field and label ”rejected”
in the status field. The entries in the support set of the port scan closed
set contain varying values in field DPort, i.e., the destination port. These
values cover the numbers of ports in the destination computer.

On the other hand, entries that are left to the compressed log, are
possible signs of single anomalous or intrusive events and may be interesting
as such. For example, if the values of field DPort in the entries in the
support of the closed set related to a port scan do not contain all the port
numbers, and if in the compressed log there is an entry that contains the
same source address, the label accepted and one of the missing port numbers
in field DPort, it might be an indication that the scan found an open port.
In such a case, an expert should verify whether there is any more traffic
between the port scan source and the server where the open port was found.

The summary may contain several patterns, whose supports overlap.
Some of the supports of such patterns may be even totally covered by the
others, and the redundant patterns could be removed without affecting the
compression. The set of filtering patterns is not further optimised with
respect to its size or coverage; all the filtering patterns found are included
in the summary for browsing. The optimisation would be possible but
tedious due to constraints that are applied in computation of frequent sets.

62 5 Comprehensive Log Compression (CLC)

Minimum coverage and perfectness seem to be useful constraints to find
good and informative filtering patterns for log summaries. The supports of
selected patterns must be large to achieve good filtering effectiveness and
the selected patterns must be perfect to be understandable for an expert
and to lose as little information as possible, when the pattern is applied
in filtering. If the perfectness of the pattern is 100%, it does not lose any
information.

Selection of the most informative sets can also be based on the opti-
mality with respect to coverage. It is possible that an expert wishes to see
only the n most covering patterns or most covering patterns that together
cover more than m% of the data. Examples of optimality constraints are
considered in [139, 140].

5.4 Experiments

5.4.1 Experiment objectives

The purpose of these experiments is to evaluate the performance of the
CLC method. The evaluation addresses the following questions:

• Is it possible to obtain useful results with the CLC method?

• How robust is the CLC method — or is it sensitive to parameter
values or their combinations?

• How do changes in individual parameters affect the performance?

• How good are the results compared to some simpler alternative?

• How fast is the algorithm and how do different factors affect running
times?

• How usable is the algorithm from the end user’s point of view?

5.4.2 Method evaluation criteria

To evaluate CLC compression power experimentally, I define indicators to
describe the size of the output. The output consists of a summary — i.e.,
the set of filtering patterns — and entries that are not covered by any of the
filtering patterns. The indicators count patterns and entries in the output
and make those relative by comparing them to the size of the original log.
The relative result size allows comparison of results between data sets and
throughout the experiment series.

5.4 Experiments 63

Definition 5.7 (size of summary) The size of summary FF is |FF|, the
number of filtering patterns in FF.

Definition 5.8 (support of summary) The combined support of sum-
mary FF of log r is defined as SSupport(FF, r) = {e e ∈ supp(S, r) for any
S ∈ FF}.

Definition 5.9 (uncovered entries) The set of uncovered entries
runcovered of log r with summary FF is defined as runcovered = {e ∈ r e �∈
SSupport(FF, r)} = r \ SSupport(FF, r). The number of uncovered entries
is |runcovered|.

Definition 5.10 (result size)) Given a log r and summary FF produced
by CLC for r, the result size is size(FF, r) = |runcovered|+ |FF|. The relative
result size is rsize(FF, r) = size(FF, r)/|r|.

In the compression phase of CLC, the algorithm removes all the entries
that are in the support of some of the filtering patterns in the summary.
If the largest of such filtering patterns does not include some field : value
items of a removed entry, then information related to such items is lost.
This is measured with information loss. A definition of maximal cover of
an entry is used to formally define information loss.

Definition 5.11 (maximal cover) The maximal cover of an entry e by
summary FF is defined as maxCover(e,FF) = max(|S| S ∈ FF ∧ S ⊆ e).

Definition 5.12 (information loss) The information loss of CLC, with
respect to given log r and its summary FF, is defined as iloss(FF, r) =
(
∑

e∈SSupport(FF,r)(|e| − maxCover(e,FF)))/
∑

e∈r |e|.

5.4.3 Method parameters

The CLC method requires three parameters: thresholds for frequency, cov-
erage and perfectness. A pattern is included in the summary only if it fills
the corresponding three minimal constraints. Possible value ranges for the
thresholds are

• Frequency threshold γ ∈ {1, 2, . . . , |r|},

• Coverage threshold κ ∈ {1, 2, . . . ,
∑

e∈r |e|}, and

• Relative perfectness threshold πr ∈ [0, 1].

64 5 Comprehensive Log Compression (CLC)

...

56773;6May2000; 0:00:15;eth-s2p1c0;fw.xyz.com;log;accept;ser1;ABC2;123.123.123.123;udp;;;;;;;;;;;

56774;6May2000; 0:00:38;eth-s2p1c0;fw.xyz.com;log;accept;ser1;ABC18;123.123.123.123;udp;;;;;;;;;;;

56777;6May2000; 0:01:27;eth-s2p1c0;fw.xyz.com;log;accept;ser1;ABC19;123.123.123.123;udp;;;;;;;;;;;

56779;6May2000; 0:02:18;eth-s2p1c0;fw.xyz.com;log;accept;ser2;ABC2;123.123.123.123;udp;;;;;;;;;;;

56780;6May2000; 0:02:40;eth-s2p1c0;fw.xyz.com;log;accept;ser1;ABC2;123.123.123.123;udp;;;;;;;;;;;

56781;6May2000; 0:02:59;eth-s2p1c0;fw.xyz.com;log;accept;serABC;ABC10;255.255.255.255;udp;;;;;;;;;;;

56782;6May2000; 0:03:01;eth-s2p1c0;fw.xyz.com;log;accept;serABC;ABC18;255.255.255.255;udp;;;;;;;;;;;

56783;6May2000; 0:03:21;eth-s2p1c0;fw.xyz.com;log;accept;abc_daemon;ABC10;321.321.321.321;tcp;;;;;;;;;;;

56784;6May2000; 0:03:21;eth-s2p1c0;fw.xyz.com;log;accept;abc_daemon;ABC10;321.321.321.321;tcp;;;;;;;;;;;

56786;6May2000; 0:04:26;eth-s2p1c0;fw.xyz.com;log;accept;ser3;ABC2;123.123.123.123;udp;;;;;;;;;;;

56787;6May2000; 0:04:31;eth-s2p1c0;fw.xyz.com;log;accept;ser1;ABC2;123.123.123.123;udp;;;;;;;;;;;

56790;6May2000; 0:05:35;eth-s2p1c0;fw.xyz.com;log;accept;ser1;ABC12;123.123.123.123;udp;;;;;;;;;;;

56794;6May2000; 0:07:43;eth-s2p1c0;fw.xyz.com;log;accept;ser1;ABC10;123.123.123.123;udp;;;;;;;;;;;

56795;6May2000; 0:08:19;eth-s2p1c0;fw.xyz.com;log;accept;ser3;ABC18;123.123.123.123;udp;;;;;;;;;;;

56796;6May2000; 0:08:28;eth-s2p1c0;fw.xyz.com;log;accept;ser1;ABC12;123.123.123.123;udp;;;;;;;;;;;

56798;6May2000; 0:08:59;eth-s2p1c0;fw.xyz.com;log;accept;serABC;ABC10;255.255.255.255;udp;;;;;;;;;;;

56799;6May2000; 0:09:01;eth-s2p1c0;fw.xyz.com;log;accept;serABC;ABC18;255.255.255.255;udp;;;;;;;;;;;

...

Figure 5.5: An example of test data.

If the number of fields, i.e., cardinality of entries, is constant throughout
a log, then the coverage threshold κ ∈ {1, 2, . . . , |r| · |e|} and the absolut
perfectness threshold π ∈ {0, 1, . . . , |e|}. In the test data the number of
fields changes over time between daily logs but it is constant in each log file.
In the following experiments perfectness threshold is given as a minimum
size of a filtering pattern π or as a maximum difference from the size of the
entry πd. For example, in a case where the entry size is 21 and at least
19 field : value pairs are required for filtering patterns, the perfectness
threshold can be given in one of the forms π = 19 (absolute), πr = 90%
(relative) or πd = 2 (difference).

5.4.4 Datasets

The performance of CLC was experimentally evaluated with firewall log
sets. Firewall log data was chosen as a test data for many reasons: There
is plenty of data, the data is recorded for human experts, the data contains
deterministic value combinations and the data needs to be stored for and
analysed after a longer time period.

Firewalls have been protecting all business domains for a decade and
personal firewalls are also spreading to home computers. In an enterprise,
firewalls also separate network segments which are used for different pur-
poses like factory network, research networks and financial networks. Each
firewall produces thousands or even millions of log entries per day. This
data needs to stored, for example, for after-the-fact analysis purposes, if a
security incident takes place.

Figure 5.5 gives an anonymised sample slice of the data. Each data
entry contains fields like entry number, date, time, interface, origin of the

5.4 Experiments 65

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Lo
g

fil
e

si
ze

 (

of
 e

nt
rie

s)

Day

Figure 5.6: Daily log entry frequencies of data from small firewall.

entry, type, firewall action, attended service, packet source, packet desti-
nation, used protocol, and so on. The logs were dumped from a Firewall-1
proprietary database to ASCII files where the fields were separated by semi-
colons. As can be seen in Figure 5.5, there can be several fields that are
empty. Different firewall rules and actions log different fields.

Each firewall log entry contains several values, which can be determin-
istically connected via firewall and system parameters. For example, in
Figure 5.5, there is a functional dependency of attended service and pro-
tocol used. However, this does not apply in general, because the service
might use several protocols, depending on its operation. Moreover, these
dependencies change over time since system parameter values and firewall
rules are changed.

Many of the attacks against information systems, especially the most
interesting and dangerous ones, are unique. They take advantage of previ-
ously unknown vulnerabilities in the system. Therefore firewalls are often
configured to store all the possible data in detail.

I evaluated the methods developed in this work with two data sets from
two separate firewalls.

The first one, called small firewall data or small data, was recorded
by a firewall protecting a small research network used for testing network
applications. The data contains all entries collected during one month. The
data has been divided into files, one file per day. Figure 5.6 depicts the
number of entries per day. As can be seen, most of the time the number of
entries is in the range from 5000 to 6000. Exceptional activity has occured
during days 10, 11 and 12. The maximum frequency has been achieved on
day 11 and is 15, 587. There have also been some low-activity days where
the frequency has been under 4000 entries.

66 5 Comprehensive Log Compression (CLC)

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Lo
g

fil
e

si
ze

 (

of
 e

nt
rie

s)

Day

Figure 5.7: Daily log entry frequencies of data from large firewall.

The other data set, called large firewall data or large data, was generated
by a set of firewalls guarding an enterprise network. If compared to the
small firewall data, the volume and heterogeneity of traffic was much larger.
This can be seen in Figure 5.7. The number of entries per day ranges from
77,674 to 1,119,850. The activity has a strong weekly cycle. It is lower on
weekends (days 2, 3, 9, 10 and so on) and higher throughout working days.

In the large data set, the entries have similar fields to the small data
set (Figure 5.5). However, each field has a much larger variety of values,
and in general there are no systematically empty fields. Here, the volume
and heterogeneity of the data challenge the CLC method and therefore the
large data set is used as a stress test for the method.

5.4.5 Example of performance

The experiments begin by ensuring that the method works at least in some
cases. First the CLC method is applied with a reasonable parameter com-
bination to both data sets and results are evaluated.

For the small data set the following threshold values were selected:

• Frequency threshold γ = 100 — If a pattern occurs four times an hour
on an average, it is so frequent that it is included into a summary.

• Coverage threshold κ = 5000 — If the pattern has 20 items it has to
occur in 250 entries to be included into a summary. Correspondingly
for a pattern of 10 items occurences in 500 entries and a pattern of 5
items occurences in 1000 entries are required.

• Perfectness threshold π = 19 — In small firewall data the threshold
value lets values in two fields to be left open in filtering patterns.

5.4 Experiments 67

 0

 5

 10

 15

 20

 1 8 15 22 29

R
el

at
iv

e
re

su
lt

si
ze

 (
%

)

Day

(a)

 0

 200

 400

 600

 800

 1000

 1 8 15 22 29

U
nc

ov
er

ed
 e

nt
rie

s

Day

(b)

Figure 5.8: Relative result sizes (a) and the number of uncovered entries
(b) of the small data set compressed with γ = 100, κ = 5000 and π = 19.

In all of these experiments, I have left out fields for the entry number
and entry time. By definition they are changing so that they will not
be included in the frequent sets. Leaving them out makes the algorithm
execution more efficient.

The relative result sizes of daily data in small data set are depicted
in Figure 5.8(a). The average relative result size of daily data files is 7%,
the lowest is 1% and the largest 23%. The method compresses days 10, 11
and 12 quite effectively also in terms of uncoverd entries (Figure 5.8(a)).
These days contain the peak in the number of log entries. The log entry
burst is caused by a misconfigured or broken process. It causes the firewall
to record more than 500 almost identical entries in an hour. After CLC
identifies and removes those entries, the rest of the data is quite similar to
all the other days.

All the summaries except one contain just 3 or 4 filtering patterns (not
shown). The only exception is the summary of day 31, which contains
only one filtering pattern. The number of uncovered entries is depicted
in Figure 5.8(b) Interestingly, when the entries covered by the summaries
have been removed, the weekly activity cycle can be seen. The weekend
days (6 and 7, 13 and 14 and so on) have fewer uncovered entries left in the
data. A clear exception to this is Sunday the 21st, for which the relative
result size was also the worst. This is due to an efficiently distributed port
scan, in which not only the scanned port is changing, but it is implemented
by several tens of IP addresses in different parts of internet address space.
CLC does not summarise it with perfectness threshold π = 19 since there
are more than two varying fields in these entries. However, it is clearly

68 5 Comprehensive Log Compression (CLC)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

U
nc

ov
er

ed
 e

nt
rie

s

Day

Figure 5.9: Number of uncovered entries of the large data set compressed
with γ = 100, κ = 5000 and πd = 2.

visible in the result for a human observer. Similar kinds of attacks can also
be found in logs of days 4, 12 and 17, each of which has more than 700
uncovered entries.

Corresponding experiments were carried out also with the large data
set. The relative result sizes of the large data set (not shown) comply with
those of the small data set. The average relative result size of the large data
is 7% and the range is [3%, 15%]. Again the most effective compression is
achieved on those days (4, 6, 12, 21 and 28) that contain a peak in the
number of log entries. The reason for the peaks is partly the same as in
the small data, i.e., a misconfigured or broken process. However, in each
peak there are also signatures of prevented attacks.

As with the small data, the uncovered entries reveal a weekly cycle
in the logging activity, which reflects the user activity in the monitored
network (Figure 5.9). The CLC results of the large firewall data with these
parameters contain more than 10, 000 uncovered entries. However, the set
of uncovered entries still contains regularities that could be summarised
with patterns by setting the thresholds lower. The effects of parameter
values will be evaluated shortly.

5.4.6 Robustness of the CLC method

For practical applications it is important that the method always returns
some results, even with an arbitrary parameter value combination. How
CLC copes with this requirement is studied by executing CLC with param-
eter combinations that cover the possible value ranges.

The possible parameter ranges were defined in Section 5.4.3. In the case

5.4 Experiments 69

of the small data set, the selected parameter values were

• Frequency threshold γ ∈ {1, 10, 50, 100, 1000},

• Coverage threshold κ ∈ {1, 100, 500, 1000, 5000, 10000, 20000, 50000},
and

• Perfectness threshold π ∈ {1, 15, 17, 19, 20, 21}.
The method was executed with all the parameter value combinations on
each file. There were 7812 test runs altogether. In daily files there were
9 − 11 entry fields which had constant values and 8 − 10 fields which had
several values. The time and entryId fields were left outside the analysis.

All the test runs returned with some results. At worst the method
could not find any filtering patterns or it found few very short ones, which
removed all the entries but represented only a small part of the informa-
tion that the entries contained. Figure 5.10 shows the relative result sizes
(Definition 5.10) for all the 7812 runs as a function of the three parameters.

The relative result size as a function of the frequency threshold is de-
picted in Figure 5.10(a). The average relative result size is around 20%
with low frequency values. From there, the average increases and almost
doubles at 1000. The number of filtering patterns drops since the relative
frequencies then are very high. A common data file size in the small data
is around 5500 entries. In a set of that size, if an item frequency is more
than 100 it occurs in 2% of the entries and if it is 1000, in 20% of the en-
tries. With such a threshold there are only short frequent patterns, which
— in most test cases — are pruned from the summary by the perfectness
threshold.

The median of the relative result size of all experiments grouped by
the frequency threshold is significantly lower than the average. Since the
data points contain results of all the possible threshold value combinations,
the results of unreasonable parameter value combinations are included and
degenerate the average.

As was said earlier, the coverage and frequency thresholds are closely
related. With small coverage thresholds the average relative result size is
around 10% (Figure 5.10(b)). When the threshold is increased to 5000, the
relative result size begins to climb up fast. Coverage threshold value 5000
corresponds to frequency threshold value 263 with perfectness threshold 19.
Test cases executed with large coverage threshold values are the main reason
for the large difference between median and average of results grouped by
the frequency or the perfectness threshold.

With regard to perfectness, the best compression is achieved when the
threshold is low (Figure 5.10(c)). This is because the algorithm is then

70 5 Comprehensive Log Compression (CLC)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 100 1000

R
el

at
iv

e
re

su
lt

si
ze

 (
%

)

Frequency

Relative size
Average
Median

(a)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 100 1000 10000

R
el

at
iv

e
re

su
lt

si
ze

 (
%

)

Coverage

Relative size
Average
Median

(b)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20

R
el

at
iv

e
re

su
lt

si
ze

 (
%

)

Perfectness

Relative size
Average
Median

(c)

Figure 5.10: Relative result sizes of all the test runs of the small data set as
a function of the frequency (a), coverage (b) and perfectness (c) thresholds.

allowed to select short filtering patterns to the summary. This kind of
pattern easily represents a large part of the data. For example, a set of
three simple filtering patterns each including only one item {protocol :
udp}, {protocol : tcp}, {protocol : html}, would filter away most of the
entries from almost any firewall log. Such a summary is not informative. A
human observer can not get any idea of what has happened in the firewall.

The large data set was then analysed with parameter value combinations
which covered the ranges of frequency and perfectness thresholds. Based
on the results with the small firewall data (Figures 5.10(a) and 5.10(b))
the effect of coverage threshold correlates with the effect of the frequency
threshold. Therefore, the coverage threshold was left out from the tests by
letting its value be constantly κ = 1.

• Frequency threshold γ ∈ {50, 100, 500, 1000, 5000, 10000, 50000,

100000},

5.4 Experiments 71

• Coverage threshold κ = 1, and

• Perfectness threshold πd ∈ {6, 4, 2, 0}.

Because the entry size varies from day to day in the large data set, it is
more useful to give the perfectness threshold as the distance from the full
entry size.

The frequency threshold values start from 50. This is quite low
compared to the size of the data files. It varies in relative range
[0.004%, 0.064%]. (Correspondingly, the absolute frequency threshold 1
of small data was in relative range [0.006%, 0.029%].) Smaller thresholds
would have represented only small fragments of the data and they would
probably have required quite long execution times. The algorithm searching
for frequent closed sets is inherently sensitive to low frequency thresholds
which often exponentially increase the amount of frequent sets found.

The method was executed with all the parameter value combinations
for each file. In total there were 992 test runs. The time and entryId fields
were again left out from the analysis. In daily files there was only one entry
field which had a constant value.

As in the case of the small data set, all the test runs returned with some
results. The results were well in line with the small data set (Figure 5.11).
When the frequency threshold was high, the method lost much of its com-
pression power that it had with small frequency threshold values. On the
other hand, with frequency threshold γ ≤ 500 and perfectness threshold
πd ≥ 2, the average relative result size is less than 10.5%.

When the perfectness requirement was loosened, the method produced
better compression results. An interesting step in improvement of relative
result size can be seen when the perfectness is released from πd = 0 to
πd = 2. The average relative result size drops even with large frequency
threshold values from 100% to 40%. A reason for this is that the method
identifies in this data set a small pattern set representing filtered snmp
traffic. The frequency of these entries is more than one entry in a second
and they represent a significant fraction of entries.

As a conclusion, the method appeared to be robust with respect to the
data sets used. It was nearly always able to provide some kind of summary
and reduction of data. At worst, when the frequency or coverage thresholds
were high, the method could not find filtering patterns and did not achieve
any compression. The execution times were decent and the laptop used had
no difficulties of any kind to handle the processes. Only when the frequency
threshold was set low, the execution time increased remarkably. Execution
times and memory usage are discussed in more detail in Section 5.4.9.

72 5 Comprehensive Log Compression (CLC)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 1000 10000 100000

R
el

at
iv

e
re

su
lt

si
ze

 (
%

)

Frequency

πd=0
πd=2
πd=4
πd=6

Figure 5.11: Average relative result sizes of the large data set as functions
of the frequency threshold with different perfectness threshold values (πd)
given as difference from the full entry.

5.4.7 Effects of parameters

The results generated in the robustness tests were studied in more detail
to find out how changes in parameter values affect the quality of results.
In robustness testing the method was executed with all parameter value
combinations. For evaluation of effects of parameter values, an analysis
perspective was changed: the analysis was done for each threshold at a
time. The values of the other two thresholds were fixed to some reasonable
value combination and the analysed threshold was allowed to change in
the range of possible values. This corresponds more closely to the real
world use cases of the method. The relative result size and information loss
(Definition 5.12) are used to analyse the results. Recall that information
loss is defined as the relative amount of discarded items when compared to
the original log.

The frequency threshold clearly affects the result size (Figure 5.12(a)).
When the frequency threshold grows, the result becomes larger, since higher
thresholds prune out more potential filtering patterns. The effect on the
information loss is slighter: the information loss decreases with larger fre-
quency thresholds (Figure 5.12(b)). The explanation for both observations
is that with larger frequency threshold values there are fewer filtering pat-
terns and more uncovered entries included in the result.

A growing coverage threshold also increases the result size (Fig-

5.4 Experiments 73

 0

 10

 20

 30

 40

 50

 60

 1 10 100 1000

R
el

at
iv

e
re

su
lt

si
ze

 (
%

)

Frequency

(a)

 0

 2

 4

 6

 8

 10

 1 10 100 1000

In
fo

rm
at

io
n

lo
ss

 (
%

)

Frequency

(b)

Figure 5.12: Relative result size (a) and information loss (b) of the small
data set as functions of the frequency threshold. The line connects averages
of each threshold. Coverage and perfectness thresholds were set to κ = 1
and π = 19.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 10 100 1000 10000

R
el

at
iv

e
re

su
lt

si
ze

 (
%

)

Coverage

(a)

 0

 2

 4

 6

 8

 10

 1 10 100 1000 10000

In
fo

rm
at

io
n

lo
ss

 (
%

)

Coverage

(b)

Figure 5.13: Relative result size (a) and information loss (b) of the small
data set as functions of the coverage threshold. The line connects averages
of each threshold. Frequency and perfectness thresholds were set to γ = 1
and π = 19.

ure 5.13(a)). As was mentioned earlier, it correlates with the effects of
the frequency threshold. The information loss has an inverse shape (Fig-
ure 5.13(b)). When the coverage threshold is low, result sizes are small
and information loss is at its highest. When the coverage threshold gets
high the information loss decreases towards zero. As with the frequency
threshold, this happenes since fewer filtering patterns and more uncovered

74 5 Comprehensive Log Compression (CLC)

 0

 5

 10

 15

 20

 25

 0 5 10 15 20

R
el

at
iv

e
re

su
lt

si
ze

 (
%

)

Perfectness

(a)

 0

 10

 20

 30

 40

 50

 0 5 10 15 20

In
fo

rm
at

io
n

lo
ss

 (
%

)

Perfectness

(b)

Figure 5.14: Relative result size (a) and information loss (b) of the small
data set as a function of the perfectness threshold. The line connects av-
erages of each threshold. Frequency and coverage thresholds were set to
γ = 1 and κ = 1.

entries are included in the result.
The perfectness threshold strongly affects the information loss. When

it is low, the algorithm produces small results with short filtering patterns
(Figure 5.14(a)). It also loses a lot of information (Figure 5.14(b)). When
the perfectness increases, less information is lost and results become larger.
This happens since a higher perfectness threshold enforces longer filtering
patterns. Thus fewer entries are removed and a larger portion of removed
entries is represented in patterns that pruned them.

The results with the large data set were well in line with those of the
small data. The similarity is evident for results obtained with identical
frequency threshold values (Figure 5.15). The only larger difference is in
relative result size with the frequency threshold γ = 1000. It appears to
be caused by the size of the small data set files. There were several days
where no patterns were found with that threshold, increasing the average
result size.

When the whole frequency threshold range of the large data is consid-
ered, the result size continues to increase and information loss to decrease
when the frequency threshold increases. The intersection point of relative
result size and information loss is at the frequency γ ≈ 240 (Figure 5.15). It
is a good candidate for a frequency threshold, as a compromise between the
contradicting objectives of achieving small results with small information
loss.

Information loss with different perfectness threshold values obtained

5.4 Experiments 75

 0

 5

 10

 15

 20

 25

 30

 1 10 100 1000
 0

 5

 10

 15

 20

 25

 30

R
el

at
iv

e
re

su
lt

si
ze

 (
%

)

In
fo

rm
at

io
n

lo
ss

 (
%

)

Frequency

Information loss - large data
Relative result size - large data

Information loss - small data
Relative result size - small data

Figure 5.15: Average relative result size and information loss of the large
and small data set as a function of the frequency threshold with perfectness
threshold πd = 2.

from the large data set is shown in Figure 5.16 as a function of frequency
threshold. When the perfectness threshold πd is relaxed — the difference
from the full entry size gets larger — the compression is done with shorter
filtering patterns. Thus the information loss increases. Simultaneously the
relative result size decreases (see Figure 5.11 on page 72). The ultimate
results are achieved when the perfectness πd = 0, when no information is
lost. These results correspond to those obtained from the small data.

5.4.8 CLC compared to a simple reduction

To study the general quality of the results, a simple baseline compression
was defined and the CLC results were compared to it. A reduct of each
daily log was used as a baseline.

The reduct of a log is the collection of all unique entries after the removal
of time and entryId fields. In the worst case it contains all the entries in
the data and at its best all entries are identical. Using the notation and
definitions of this chapter, the reduct can be defined as follows.

Definition 5.13 (reduct) A summary R is a reduct if γ = 1 ∧ πd = 0.

In general, relative reduct sizes were quite small with the small data
set, i.e., from 1% to 23%. From all the small data set results produced in

76 5 Comprehensive Log Compression (CLC)

 0

 5

 10

 15

 20

 100 1000 10000 100000

In
fo

rm
at

io
n

lo
ss

 (
%

)

Frequency

πd=0
πd=2
πd=4
πd=6

Figure 5.16: Average information loss of the large data set as functions
of the frequency threshold with different perfectness threshold values (πd)
given as difference from the full entry.

the robustness test, 55% were smaller than the reduct of the log. When the
parameter ranges were set to the values that seemed to produce the best
results, i.e.,

• Frequency threshold γ = 10, and

• Perfectness threshold π = 19

then all the result sizes were below the reduct size, the largest being 79%
of the reduct and 3% of the original log.

The relative reduct sizes of the large data set were higher: from 45%
to 94%. From all the robustness test results of the large data set, 71%
of results were smaller than the corresponding reduct. Again, all the best
results with

• Frequency threshold γ = 50, and

• Perfectness threshold πd = 2,

were smaller than the corresponding reducts. Now the largest result size
was only 10% of the corresponding reduct size and 6% of the log size.

In both cases the information loss was small. With logs in the small
data set, information loss was in the range [5.3%, 9.4%] and with logs in
the large data set in the range [5.7%, 7.0%].

5.4 Experiments 77

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 1000 10000 100000

E
xe

cu
tio

n
tim

e
(s

)

Frequency

πd=0
πd=2
πd=4
πd=6

Figure 5.17: Average execution time of the large data set as functions of
the frequency threshold.

The effects of the coverage threshold correlate with those of the fre-
quency threshold. Therefore, in both cases the coverage threshold was set
to so small a value that it did not affect the computation.

5.4.9 Efficiency

In practical applications the algorithm execution time and memory con-
sumption play an important role. To clarify the time and memory con-
sumption, I will study the execution of robustness tests in more detail.

All the tests were run on an IBM Thinkpad T43 laptop with an Intel
Pentium M 1.86 GHz processor provided with 2GB of main memory and
running Linux operating system v2.6.18.

The CLC execution time of the small data set was less than two seconds
with thresholds 10 ≤ γ. This is quite feasible for any on-line application.
The execution times were longer only with frequency threshold γ = 1, when
the algorithm extracted all possible patterns. Thus the average was around
four seconds and at the worst the extraction took twenty seconds. Changes
in coverage and perfectness thresholds had in practice no effect at all on
the overall execution times.

The same applies to the large data. The frequency thresholds have
an effect on the execution time when other parameters have only a minor
effect on it (Figure 5.17). Again a small frequency threshold introduces
longer execution times. The perfectness threshold has a major effect only

78 5 Comprehensive Log Compression (CLC)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

50 100 500 1000 5000 10000 50000 100000

E
xe

cu
tio

n
tim

e
(s

)

Frequency

Other
Data reduction

Closed sets
Preprocessing

Figure 5.18: Execution time of the large data divided to algorithm phases
with different frequency threshold values.

with small frequency threshold values, where the number of long patterns
is larger.

The absolute times of test runs with the large data — on the aver-
age from a couple of minutes to twenty minutes — are feasible for batch
processing but not for online applications.

When we analyse where the time is spent inside the algorithm, a reason
for the importance of frequency threshold becomes evident (Figure 5.18).
Most of the time is spent in pre-processing the data and in search for
closed sets in it. In preprocessing the implementation prepares the data
for the algorithm searching for closed sets: removes fields left out from
the analysis and fields with constant values, compiles field : value pairs
to unique integers, and so on. With lower frequency thresholds almost as
much time is spent in data reduction — i.e. removing all the entries in the
union of filtering pattern supports. When plenty of closed sets are found,
the set of possible filtering patterns becomes large, and matching patterns
against each of the entries takes longer time.

To reduce the time spent in data reduction the implementation could
be optimised. Currently it uses a sequental search to find a matching
filtering pattern for each log entry. An optimised solution could be built,
for example, on a trie structure of items in filtering patterns [41, 91] or
some sort of optimised automata [5].

The correspondence between execution time and number of filtering

5.4 Experiments 79

 200

 300

 400

 500

 600

 700

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
 0

 400

 800

 1200

 1600

S
um

m
ar

y
si

ze
 (

of

 p
at

te
rn

s)

E
xe

cu
tio

n
tim

e
(s

)

Day

Summary size
Time

Figure 5.19: Correspondence between CLC execution time and summary
size of the large data set.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 200000 400000 600000 800000 1e+006 1.2e+006

M
em

or
y

co
ns

um
pt

io
n

(K
B

)

Log entries (#)

Figure 5.20: Memory consumption as a function of the number of input
entries of the large data set.

patterns found is clearly visible (Figure 5.19). The CLC algorithm was
executed with parameters γ = 50, κ = 1 and πd = 2. The execution time
varies with the summary size.

The memory consumption of this implementation of the CLC algorithm
correlates almost linearly with the input size (Figure 5.20). A rough rule
of thumb states that with the large data each entry consumes about 1KB
of main memory.

80 5 Comprehensive Log Compression (CLC)

 0

 20

 40

 60

 80

 100

 120

 140

 1 8 15 22 29

U
nc

ov
er

ed
 e

nt
rie

s

Day

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 8 15 22 29

S
um

m
ar

y
si

ze
 (

of

 p
at

te
rn

s)

Day

(b)

Figure 5.21: The uncovered entries (a) and the summary size (b) of the best
results of the small data set, achieved with γ = 10, κ = 100 and π = 19.

5.4.10 Usability

The experiments are concluded by studying the best results produced in
robustness tests. The selection is based on a trade-off between compression
power, information loss and summary size.

The best results for the small data set in terms of compression power
and information loss are achieved with parameters γ = 10, κ = 100 and
π = 19. There the number of uncovered entries is below 100 in all except
one case (Figure 5.21(a)), which a human observer can easily analyse. The
average information loss was 7.5%, a minimum 5.3% and a maximum 9.4%.

The third aspect of the usability of the results is the size of the summary.
If it is very large, it just turns the problem of analysing a large log to a
problem of analysing a large summary. In case of the best small data
results, the summaries have at most 15 patterns (Figure 5.21(b)). This is
an understandable representation for an expert.

Considering the large dataset, a set of 1, 000, 000 entries is too large
for almost any log viewer tool to present and handle. When reduced to
4000 − 20, 000 entries, the tools can offer assistance in the analysis. This
compression for the large data set is achieved with the CLC method with
parameters γ = 50, κ = 1 and πd = 2 (Figure 5.22(a)).

The information loss was practically constant at 6% With such a loss,
an expert can see phenomena behind removed entries from the filtering
patterns.

The summary sizes vary from day to day reflecting the weekly activity
cycle (Figure 5.22(b)). The achieved summaries for week days, where the

5.5 Applicability and related work 81

 0

 5000

 10000

 15000

 20000

 4 11 18 25

U
nc

ov
er

ed
 e

nt
rie

s

Day

(a)

 0

 100

 200

 300

 400

 500

 600

 4 11 18 25

S
um

m
ar

y
si

ze
 (

of

 p
at

te
rn

s)

Day

(b)

Figure 5.22: The uncovered entries (a) and the summary size (b) of the
best results of the large data set, achieved with γ = 50, κ = 1 and πd = 2.

size varies in range 300 − 630 are quite large to analyse at a glance. With
proper browser, however, analysis is feasible.

The filtering pattern sets in summaries for different days are overlap-
ping. The re-occurring patterns found can be used as rules in, e.g., entry
correlation, where uninteresting entries are filtered away. They can also be
used in firewall rule design to decide whether or not a rule creates a log
entry when it fires. New and anomalous patterns can also be identified by
comparing the summaries to each other. These are probably the most in-
teresting patterns, since they might represent some new attack or network
disturbance to be dealt with.

5.5 Applicability and related work

The experiments show the usefulness of the CLC method. Its idea is simple,
its computation efficient and its filtering power remarkable. With a small
number of filtering patterns in a summary, it can represent the majority of
the data of a large log file. CLC representation gives a human expert or
a computationally more intensive algorithm a chance to continue with the
data that does not contain too common and trivial entries.

The scalability of the CLC method is good. Closed sets can be ex-
tracted from highly correlated and dense data, i.e., in contexts where the
computation of the whole collection of frequent patterns is intractable
[126, 12, 164, 128]. This enables the use of CLC in analysis of log files,
where many field values are highly correlated and frequent sets are long

82 5 Comprehensive Log Compression (CLC)

containing most of the items in entries.
A comparison of frequent and closed sets derived from some days of

small data set shows how much smaller a collection of closed sets is with re-
gard to a corresponding collection of frequent sets [55]. In the CLC method
the collection of closed sets is further diminished in number when the per-
fectness and coverage thresholds are used in selecting the most informative
and understandable sets to summary.

A collection of maximal frequent sets [48, 9, 111] that contains all most
specific frequent sets derived from the data can also be considered to be used
in CLC. The collection of maximal frequent sets is a subset of the collection
of closed sets [21]. As the maximal frequent sets can be computed without
extracting all the frequent sets or even all the closed sets, they can be
computed from the data that contains several tens of items in the largest
frequent sets [21].

A collection of closed sets contains also sets that are not maximal.
In some cases these non-maximal closed sets are more informative. For
example, in Figure 5.4 the two sets of length five are maximal and the
first set, whose specialisations they are, is not. When a collection of closed
sets and the CLC algorithm are used, the generalisation is selected to the
summary (see Table 5.1). If a collection of maximal frequent sets were
used, the summary would have contained the two maximal sets instead.

In data sets that contain several tens or even hundreds of items in the
largest frequent sets, the maximal sets may be a good choise for CLC.
Especially, if the items do not correlate and the closeness property does
not decrease the search space efficiently. In what conditions and with what
kind of data maximal frequent sets would challenge closed sets in CLC are
interesting questions that are left open for further studies.

CLC supports on-line analysis of large log files. This is often required
for a system state identication task that is common in many telecommuni-
cations management processes on the tactical level where signs of different
types of incidents are searched for. The idea of summarising frequently
repeating information is quite effective in an environment where lots of log
contents are signs of normal operation and thus repeated from day to day.
Normal operation is not interesting but the deviations from it are.

The CLC type of representation is general with respect to different log
types. Closed sets can be generated from most of the logs that have struc-
ture and contain repeating symbolic values in their fields; like, for example,
in Web Usage Mining applications [93, 145]. The main difference between
the CLC method and those applications is the objective of the mining task.
Most of the web usage applications try to identify and somehow validate

5.5 Applicability and related work 83

common access patterns in web sites. These patterns are then used to, e.g.,
optimise the site. The CLC method, however, does not say anything about
semantic correctness or relations between the frequent patterns found. It
only summarises the most frequent value combinations in entries.

Some related approaches have been published after the introduction of
the CLC method [55]. Most of them aim at approximating a collection of
frequent item sets with a smaller subset. Boundary cover sets [2], δ-clusters
and their representative patterns [162], and set of K -representatives [163]
all summarise a set of frequent patterns by grouping patterns to homoge-
neous sets and selecting a representative pattern for each set. The distance
measure and algorithm used in grouping and selecting the representative
pattern varies from one method to another. The difference between these
approaches and the CLC method is that instead of reducing analysed pat-
terns, the CLC method aims at reducing the amount of log entries, i.e.,
transactions that a human expert needs to study.

Collections of frequent itemsets have also been used to characterise clus-
ters produced by a probabilistic clustering using mixtures of Bernoulli mod-
els [72, 73]. In these works, data has been first clustered using probabilistic
clustering. A collection of frequent sets has been computed for each data
cluster from the data points included in the cluster. For each frequent set
collection, a set of maximal frequent sets is selected and used to represent
and describe the cluster. The cluster specific frequent set collections differ
from each other and characterise the data from which they were computed
[72]. The extracted maximal frequent sets summarise the marginal dis-
tributions in the clusters compactly and describe the clusters in domain
specific terminology, for example, in the naming scheme for chromosomal
regions used in literature [73].

Two related approaches summarise dense categorical transaction and
log data bases. The SUMMARY algorithm [159, 160] searches for each of
the transactions for the longest frequent itemset that is included in the
transaction. The set of these so called summary itemsets is called a sum-
mary set of the data base and presented as its summary. A summary set
may not be unique because a transaction may support more than one sum-
mary itemsets. However, the algorithm can be enhanced to find also the
alternative summary sets.

An approach for log data summarisation [26, 27] searches for an infor-
mative set of frequent sets that covers a set of selected suspicious log entries.
The approach turns the summarisation problem to a dual-optimisation
where a summary is characterised with information loss and compaction
gain. The summarisation can be done either by clustering log entries or

84 5 Comprehensive Log Compression (CLC)

using a greedy algorithm to find a suboptimal set of informative frequent
sets with respect to introduced measurements.

The log data summarisation method differs from the CLC also in the
search direction. The CLC computes the set of filtering patterns and re-
moves those log entries that are in support of at least one filtering pattern.
In the log data summarisation method of [26, 27], the method starts from
the data entries by attaching to each of them the most representing fre-
quent set and then optimising the set of these representatives. With large
log files this might become quite tedious.

Although CLC shares characteristics with these two approaches —
SUMMARY and log data summarisation — their objective is different.
These approaches aim at presenting a summary of a whole selected set of
data entries while CLC aims at finding sets of similar, common entries that
can be removed from the data since the frequency and other properties of
the entry sets are more interesting than the entries themselves.

Similarly as related approaches, CLC is a lossy compression method. It
loses information about entry times and order as well as values in fields not
covered by filtering patterns. However, if it is possible to store the original
data and the filtering patterns in the CLC summary can be linked to it, it
is possible to analyse those details, as well.

In CLC the set of selected patterns may contain many overlapping pat-
terns. Depending on the task and the information need, the interesting
patterns may differ. It is possible that the most frequent patterns filter
away information that would reveal an anomaly in less frequent field val-
ues. For example, if there are fewer servers than provided services in the
network, the most frequent patterns may contain values pointing to dif-
ferent servers. If a suspicion arises that a certain service is maliciously
misused, the user interface should also provide the possibility to view less
frequent selected patterns including pointers to services.

The use of the CLC method requires only setting of default values for
three thresholds when it is installed. It does not require any other kind
of a priori knowledge. The experiments also show that the CLC method
is not sensitive for non-optimal parameter values. From the experiments
one may suspect that, due to dependency between frequency and coverage
thresholds, two thresholds might be sufficient in many cases. Probably
importance of the coverage threshold would be higher, if the amount of
fields in entries would be larger.

The features that a user interface provides for browsing the summary
and the data are very important. However, they are left outside the scope
of this work.

CLC versus requirements The CLC method appears to fulfill require-
ments set for the data mining and knowledge discovery methods and tools
summarised in Section 4.5 quite well. The method does not require data-
mining-specific knowledge when it is used (Easy-to-use methods, Easy to
learn). On run time when the method is applied, the only statistical fig-
ure that is necessary to understand is the frequency of a pattern. When
the method is installed, default values have to be set also to the coverage
and perfectness thresholds. Otherwise the network expert operates on the
concepts and log contents that are specific for his own domain (Application
domain terminology and semantics used in user interface). The method
efficiently provides immediate answers: summaries and a reduced set of
analysed data (Immediate, accurate and understandable results, Efficiency
and appropriate execution time). This speeds up the analysis task and
reduces the iterations needed (Reduced iterations per task, Increases effi-
ciency of domain experts). The CLC method can be integrated into existing
tools, for example, as a new view or a report (Interfaces and integrability
towards legacy tools).

Only the requirements of Adaptability to process information and Use of
process information are not directly addressed. However, the CLC method
supports the domain expert in acquiring new information from the data.
He can then compare this information to his existing knowledge about the
system, its processes and their current state.

86 5 Comprehensive Log Compression (CLC)

Chapter 6

Queryable lossless Log data
Compression (QLC)

Large volumes of daily network log data enforce network operators to com-
press and archive the data to offline storages. Whenever an incident occurs
— in system security monitoring, for example — that immediately requires
detailed analysis of recent history data, the data has to be fetched from the
archiving system. Typically the data also has to be decompressed before it
can be analysed.

This kind of on-line decision-making tasks on the tactical level are
challenging for data mining methods and the knowledge discovery pro-
cess. There is not much time to iterate, data management requires a lot
of effort even before the analysis can take place, and the network expert
knows everything about, for example, network authentication server proto-
cols and unix tools but only little about statistics and data mining. Critical
resources available for data mining developers are missing (Figure 4.3).

As Chapter 5 already showed, it is possible to use closed sets to compress
data. This chapter further elaborates the idea and modifies the presented
methods to data archiving [56]. Closed sets can be used to create a repre-
sentation that reduces the size of the stored log by coding the frequently
occurring value combinations. The coding can be done without any prior
knowledge about the entries. The compression does not lose any informa-
tion and the original log file can easily be restored. The representation
can also be queried without decompressing the whole log file first. This
approach is more straightforward compared to the solutions proposed for
semantic compression of databases [6] and documents [110].

6.1 Background and method overview

Log files that telecommunications networks produce are typically archived
in compressed form. Compression is, in many cases, done with some
general-purpose compression algorithm like the Lempel-Ziv compression
algorithm (LZ) [165], Burrows-Wheeler Transform [22], or PPM (predic-
tion by partial matching) [36] or with some algorithm designed specifically

88 6 Queryable lossless Log data Compression (QLC)

;11May2000;;a_daemon;B1;12.12.123.12;tcp;; 4

;11May2000;;1234;*;255.255.255.255;udp;; 2

Figure 6.1: Two closed sets with frequencies derived from a firewall log
excerpt (Figure 2.10). The fields marked with ’*’ do not have a value in
the closed set. The last field of both sets contains an empty string.

for log data compression [135, 7, 143]. When the log files are restored and a
query or a regular expression search for relevant entries is made, the whole
archive must be de-compressed.

Another possibility to archive history logs is to insert them to a database
management system first and then, after a certain period, compress the
whole database table to a file that is inserted to a mass storage. Problems
arise, when there is a need to analyse old backups. An expert has to find the
correct media, de-compress the whole database and load it to the database
management system. This can be problematic because the amount of data
included in a database per day might be large. Thus its de-compression
and uploading takes a lot of time.

Without compression the problem is to fit the database to mass storage
media and still be able to manage the rapidly growing number of mass
storage media. Selecting carefully what is stored can reduce the problem,
but still there tends to be quite a lot of data written into archives. Selection
might also lose important information, which is not acceptable, for example,
in security application logs.

Figure 2.10 on page 15 shows an example excerpt from a database con-
taining transactions that store firewall log entries produced by CheckPoint’s
Firewall-1. As can be seen, the transactions are filled with entries that share
correlating value combinations but still there are some fields whose values
are varying; e.g., there are TIME and ID fields that are changing from
entry to entry.

Figure 6.1 lists closed sets that are used in data compression by QLC,
the method to be proposed in this chapter. They contain those items that
have the largest coverage, i.e., they cover the largest amount of field values
in the table. These sets are output as compression patterns (Figure 6.2,
first two lines). The method then goes through each entry. It compares
the entry to the compression patterns. If the entry supports any of the
patterns, values included in the pattern are removed from the entry and
are replaced by a reference to the pattern. In Figure 6.2 the compressed
data are shown by using an XML-tagged format. If the original table is
needed, the formulae can be used to restore it completely — no information

6.2 Definitions and algorithms for QLC 89

<define p0> *;11May2000;*;a_daemon;B1;12.12.123.12;tcp;; </define>

<define p1> *;11May2000;*;1234;*;255.255.255.255;udp;; </define>

777; 0:00:23;<p0>

778; 0:00:31;<p0>

779; 0:00:32;B1;<p1>

780; 0:00:38;B2;<p1>

781; 0:00:43;<p0>

782; 0:00:51;<p0>

Figure 6.2: Compressed firewall log excerpt (Figure 2.10), with two patterns
and six compressed entries.

will be lost.

6.2 Definitions and algorithms for QLC

6.2.1 Log compression

Here we define concepts that are needed in log compression and de-
compression phases.

Definition 6.1 (compression gain) The compression gain of a closed
set S in a log r is defined by cgain(S, r) = cov(S, r)− ((freq(S, r) ·n) + |S|)
where n denotes the size of the reference to the pattern and |.| denotes the
cardinality of the closed set S.

Definition 6.2 (compression pattern) A closed set S is a compres-
sion pattern in log r with respect to frequency, coverage and perfectness
thresholds γ, κ and π if it satisfies constraint Ccompr, where Ccompr(S, r) ≡
Cminfreq(S, r) ∧ Cmincov(S, r) ∧ Cminperf(S, r) ∧ cgain(S, r) > 0.

Definition 6.3 (compressed log) A compressed log rcompr derived from
log r with respect to frequency, coverage and perfectness thresholds γ, κ
and π consists of a set of compression patterns, i.e., compression for-
mulae rcompr.CF = {S | Ccompr(S, r)} and a set of compressed entries
rcompr.entries = {(e\p)∪{ref(p)} | e ∈ r∧p ∈ rcompr.CF ∧e ∈ supp(p))∧
(∀q ∈ rcompr.CF s.t. e ∈ supp(q) : |p| ≥ |q|)} ∪ {e ∈ r | � ∃p ∈ rcompr.CF
s.t. e ∈ supp(p)}.

The compressed log is not uniquely defined if there are several longest
compression patterns applicable to any entry.

Log compression is conceptually a straightforward operation (Fig-
ure 6.3). After the frequent closed sets in the given log have been iden-
tified, the algorithm selects those whose compression gain is positive. The

90 6 Queryable lossless Log data Compression (QLC)

Input: Log r, frequency, coverage and perfectness thresholds γ, κ and π
Output: Compressed log rcompr

1. Find the set of frequent closed sets CFS from r
2. Select compression formulae

CF = {S | S ∈ CFS ∧ Ccompr(S, r)}.
3. Output CF
4. Compress log (CF, r) and output the result // Figure 6.4

Figure 6.3: An algorithm for log compression.

Title: Compress log
Input: Compression formulae CF, log r
Output: Compressed entries rcompr.entries of log r

1. for each entry e ∈ r do
2. CFe = {p | p ∈ CF ∧ e ∈ supp(p)}
3. if CFe �= ∅ then
4. pcompr = p s.t. (p ∈ CFe) ∧ (∀q ∈ CFe) : |p| ≥ |q|
5. e′ = (e \ pcompr) ∪ {ref(pcompr)}
6. Output e′

7. else
8. Output e
9. od

Figure 6.4: An algorithm for compressing log entries.

compression gain is evaluated with respect to the original log r (cf. Defi-
nition 6.1). The order in which patterns are selected thus does not affect
the result. On the other hand, this process obviously can result in a set
of patterns where some patterns are redundant and could be removed with
no actual effect on the compression.

The compression formulae are then used to remove recurrent value com-
binations away from the log entries. The removed values are replaced with
a reference to the pattern that was used to identify them. The replacement
is the most specific, i.e., the longest compression pattern that applies to the
log entry is used as is shown in Figure 6.4. The compression pattern might
be ambiquous if there are more than one pattern that are as long as the
longest pattern. Also then, the algorithm selects only one as a compression
pattern.

6.2 Definitions and algorithms for QLC 91

The compression ratio of the algorithm is not optimal. This is because
it is not able to handle compression patterns that are partially overlapping.
The algorithm selects the most specific one, and makes the compression of
an entry with it. It would also be possible to use many patterns per entry.
In some cases this could lead to improved compression ratio and minimise
the size of compression formulae. However, the search for the best pattern
combination per entry would be more complex.

A simple modification that reduces the size of compression formulae is to
compress the log entries first, mark all the compression patterns that were
used and remove all those patterns that were not used. This would require
switching the order in which the entries and the compression patterns are
output (Figure 6.3, Lines 3 and 4).

A structure of a compressed file can also be optimised further in a do-
main like firewall logs where each entry contains a unique identifier and
entries are stored in an increasing order of the identifiers. A simple optimi-
sation could be that all the entries compressed with the same pattern are
grouped together. Thus it is enough to mark the entry groups and include
a reference to the compression pattern only in the beginning of each group.
The pattern references can be left out from the compressed entries. This
would require changes in the Compress log algorithm (Figure 6.4, Lines 6
and 8 and at the end) where the output of compressed entries should be
directed to the pattern specific buffers that are combined to output only
after all the entries have been processed.

The computational complexity of the algorithm mainly depends on the
algorithm that searches for closed sets and the algorithm that finds the
most specific compression pattern for an entry. With this in mind we have
done a series of experiments on factors that affect the execution of the
algorithm. The results of these experiments are reported in Section 6.3.

The de-compression of log data is as simple as the compression. The
algorithm goes through the compressed log entries and expands them with
the values of the compression pattern that was used for compression. The
entries may also be sorted if their order was changed due to structural
optimisation.

6.2.2 Queries to compressed logs

One of the main advantages of the proposed compression method is its
ability to support queries in compressed form.

Definition 6.4 (query) A query Q is a subset of Items.

92 6 Queryable lossless Log data Compression (QLC)

Definition 6.5 (query result) A query result RS of query Q on log r will
contain all those entries e ∈ r that match the query: RS = {e | Q ⊆ e}.

While evaluating query Q, we want to extract all log entries e ∈ r, such
that Q ⊆ e ⇐⇒ Q = Q ∩ e. In compressed log rcompr all log entries
e ∈ rcompr.entries are either stored as such or compressed by replacing
some pattern p ⊆ e with a reference ref(p) and storing (e \ p) ∪ {ref(p)}.
Thus we do not have to test all the entries whether the query is included
in them but we can take advantage of information whether the query is
subset of a pattern used to compress an entry.

Given an entry e ∈ r denote the compression pattern applied to it by
p. Thus p ⊆ e and further e = p ∪ (e \ p). Thus Q ⊆ e ⇐⇒ Q = Q ∩ e =
Q ∩ (p ∪ (e \ p)) = (Q ∩ p) ∪ (Q ∩ (e \ p)). We have four options when
evaluating query Q on entry e:

1. Q = ∅: Thus Q∩ p = ∅ and Q∩ (e \ p) = ∅ and an answer will be the
whole log r, since the ∅ ⊆ e for all entries e ∈ r;

2. Q ∩ p = Q: Thus all the entries e ∈ supp(p, r) are included to the
answer;

3. Q ∩ p �= ∅: Thus we need to evaluate the query against each of the
entries e ∈ supp(p, r) to see whether (Q ∩ p) ∪ (Q ∩ (e \ p)) = Q;

4. Q∩ p = ∅: Thus we need to evaluate the query Q against each of the
entries e ∈ supp(p, r) to see whether Q ∩ (e \ p) = Q

An algorithm for query evaluation is given in Figure 6.5. Query Q is
matched against each of the compressed entries e ∈ rcompr.entries. If the
entry is not compressed with any pattern, then the query is matched to the
entry, otherwise the algorithm needs to study both the compression pattern
and the compressed entry.

If the entry contains a reference to a pattern, which is a superset of the
query, then the entry is decompressed and included to the answer (Option 2,
Line 7). If the query is overlapping with the pattern but not completely
subset of it (Option 3, Line 9), the algorithm tests if the query is subset of
the union of the pattern and the compressed query. Finally, if the intersec-
tion between the query and the pattern is empty, it is enough to test if the
query is subset of the compressed entry (Option 4, Line 12).

Computational complexity of the algorithm is linear in the number of
entries. However, the algorithm can be optimised in many ways. For ex-
ample, the query can first be matched against each of the patterns and the
result of the intersection (subset, disjoint, overlapping) can then be hashed

6.3 Experiments 93

Input: Compressed log rcompr, Query Q
Output: Query result RS = {e ∈ r | Q ⊆ e}.

1. RS = ∅
2. for each entry e′ ∈ rcompr.entries do
3. e = NULL
4. if � ∃ pattern p ∈ rcompr.CF s.t. e′ ∈ supp(p) then
5. if Q ⊆ e′ then
6. e = e′

7. elsif pattern p ∈ rcompr.CF ∧ ref(p) ∈ e′ ∧ Q ⊆ p then
8. e = e′ \ {ref(p)} ∪ p
9. elsif pattern p ∈ rcompr.CF ∧ ref(p) ∈ e′ ∧ Q ∩ p �= ∅ then

10. if Q ⊆ (p ∪ e′) then
11. e = e′ \ {ref(p)} ∪ p
12. elsif pattern p ∈ rcompr.CF ∧ ref(p) ∈ e′ ∧ Q ∩ p = ∅ then
13. if Q ⊆ e′ then
14. e = e′ \ {ref(p)} ∪ p
15. if e �= NULL then
16. RS = RS ∪ {e}
17. return(RS).

Figure 6.5: An algorithm for query evaluation in a compressed log.

with the pattern reference as a key. Thus the algorithm does not need
to repeat set intersection testing between the query and the pattern with
every entry.

In a domain like firewall logs, where a field can have only one value
in each entry, a query never matches to an entry that contains another
value for the field included in the query. The algorithm can use this in-
formation for optimisation by identifying patterns containing field : value
items that disagree with the query. Entries that have been compressed with
such a disagreeing pattern can be left out from the result without further
inspection.

6.3 Experiments

6.3.1 Experiment objectives

The purpose of these experiments is to evaluate the performance of the
QLC method. The evaluation addresses the following questions:

• Is it possible to obtain useful results with the QLC method?

94 6 Queryable lossless Log data Compression (QLC)

• How do changes in individual parameters affect the performance?

• How good are the results compared to some simple alternative?

• How fast is the algorithm and how do different factors affect running
times? How sensitive is the QLC method to data size?

• How efficiently can the results be accessed?

6.3.2 Experiment arrangements

The effectiveness of QLC can be measured by the result size and execution
time. The QLC method does not lose any information, so the information
loss is not measured here. In the following experiments, the result size
has been measured by the resulting file size. Thus it is simple to compare
the QLC results to the results of the well-known compression algorithm
Lempel-Ziv [165] and its commonly used implementation named GNU zip
or gzip.

When a compression algorithm is evaluated then typically both com-
pression and decompression need to be studied. In the QLC case, the
querying of compressed results is analysed. This is because the main usage
for QLC is to archive data so that it can be accessed without decompression.

The analysed method parameters are the same as with the CLC: thresh-
olds for frequency, coverage and perfectness. Their possible value ranges
used here are also the same as with CLC (Section 5.4.3).

The QLC was evaluated using the same data sets as with CLC (Sec-
tion 5.4.4). All the experiments were also made on the same laptop as the
CLC experiments (Section 5.4.9).

6.3.3 QLC performance example

As an example of the QLC method performance it was applied with fixed
parameter values to the small and large data sets.

The parameter values were selected based on experiences with the CLC.
The intention was to ensure that the gain of each compression pattern was
positive. With the small data set the thresholds were set as follows:

• Frequency threshold γ = 10,

• Coverage threshold κ = 20, and

• Perfectness threshold πd = 16.

6.3 Experiments 95

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
el

at
iv

e
re

su
lt

si
ze

 (
%

)

Day

QLC
gzip

QLC-gzip

Figure 6.6: Relative sizes of QLC compressed and GNU zipped files and
GNU zipped QLC results of a small data set (γ = 10, κ = 20, πd = 16).

In contrast to the CLC experiments, here the perfectness threshold
as a difference from the full entry is higher and does not dominate the
analysis. This is because the compression formulae are not meant for a
human observer, but for optimising the compression of the data. Thus the
compression patterns do not need to be long and semantically meaningful.

First the QLC compression was performed with said parameters. The
result size was 16% of the original file size on an average (Figure 6.6).
As resulting files are in ASCII format it is possible to further compress
them with gzip. The combined QLC-gzip compression result size was
only 5% of the original size on an average — approximately one third of
the QLC-compressed file size. Such small files are easy to handle and in
most cases they fit into the main memory in the querying or decompression
process. For the querying the most essential part of the QLC compressed
file — the header with the compression patterns — is in the beginning of
the compressed file and relatively short with respect to the original file.
Decompression and query processing of the QLC-gzip compressed file is
easy and efficient as will be seen later in Section 6.3.7.

The QLC compression results — the plain and the combined QLC-gzip
compressed — of the small data set were compared to the compression re-
sults of gzip, v. 1.3.5 (Figure 6.6). As can be seen, the combined com-
pression result sizes are always the smallest. The average gzip compressed
file size is 7% of the original log file size. The relative improvement from
gzip to combined compression is 21% on an average.

The large data set was compressed with threshold values

• Frequency threshold γ = 500,

96 6 Queryable lossless Log data Compression (QLC)

• Coverage threshold κ = 1000, and

• Perfectness threshold πd = 16.

The results were in line with those of the small data set and thus not
shown. The average result sizes were 26% of the original log file size for the
QLC method, 8% for gzip and 5% for QLC-gzip combined. For example,
with an original log file of 135.1MB (day 21), the QLC compressed result
was 34.5MB, gzip result 8.6MB and combined result 5.9MB. The relative
compression improvement from the gzip to combined results was on average
34%. This is a considerable reduction, for example, in archiving.

6.3.4 Effects of parameters

The meaningful value ranges for thresholds were the same as those for
CLC evaluation (Section 5.4.6). The threshold values used for the large
data evaluation were as follows.

• Frequency threshold γ ∈ {50, 100, 500, 1000, 5000, 10000, 50000,

100000},

• Coverage threshold κ ∈ {100, 1000, 10000, 100000}, and

• Perfectness threshold πd ∈ {16, 6, 2}.

All the log files of the large data set were compressed with all the threshold
value combinations. Similarly as the CLC, the QLC method was able to
produce some results with all the threshold value combinations.

The compression ratio was at its best, when the thresholds were at their
lowest values. The effect of the frequency threshold is a good example of
this (Figure 6.7). The largest frequency threshold value (γ = 100, 000) is
larger than some log file sizes. In these cases the algorithm did not find
any compression patterns and the file was not compressed. These cases
have been omitted from the results and there are not so many data points
as with other frequency thresholds. Omission of the largest relative sizes
affects the average so that it does not increase from the preceding value.

As with the CLC method, an effect of increasing the coverage threshold
value corresponds to the effect of increasing the frequency threshold value
(not shown). Increasing the perfectness threshold value beginning from
πd = 2, did not have any effect to the result sizes (not shown). This is
probably characteristics for firewall data, where most of the variation in
the most common log entries concentrates to one or two fields at a time:

6.3 Experiments 97

 0

 20

 40

 60

 80

 100

 100 1000 10000 100000

R
el

at
iv

e
re

su
lt

si
ze

 (
%

)

Frequency

Figure 6.7: Relative sizes of QLC compressed results of the large data as a
function of a frequency threshold. The coverage and perfectness thresholds
are constants κ = 100 and π = 16.

for example, a port scan typically introduces entries where values in only
one field vary.

The small data set was tested with the threshold values

• Frequency threshold γ ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000},

• Coverage threshold κ ∈ {1, 20, 50, 100, 500, 1000, 5000, 10000}, and

• Perfectness threshold πd ∈ {16, 8, 6, 4, 2, 0}.

The QLC was applied to all the log files of the small data set with all the
value combinations. The compression results of the small data set were well
in line with the results of the large data set and are therefore not reported
in detail.

6.3.5 QLC compared to gzip

Sizes of the QLC compression result files were compared to those of gzip
and the sizes of the combined QLC-gzip compressed results, for all the
parameter combinations above (Figures 6.8 and 6.9). The combined QLC-
gzip compression always provides the smallest result files. Only with days
10, 17 and 30 of the large data set the size of gzip compressed file is inside

98 6 Queryable lossless Log data Compression (QLC)

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
el

at
iv

e
re

su
lt

si
ze

 (
%

)

Day

QLC
QLC-gzip

 5

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31R
el

at
iv

e
re

su
lt

si
ze

 (
%

)

Day

gzip
QLC-gzip

Figure 6.8: Average relative sizes of QLC and QLC-gzip compressed files
(upper pane) and QLC-gzip and gzip compressed files (lower pane) of
small data. 95% of data points are included inside error bars.

the value range that covers 95% of the QLC-gzip compression results of
all the test runs in large data experiments.

In the large data set, the worst compression results are caused by the
high threshold values (Figure 6.9). When the threshold values are too
high, the QLC method does not find effective compression patterns, and
outputs the input file as such. For days 10, 17 and 30, there are parameter
combinations with which QLC was not able to compress the log file. In
those cases in the combined compression, gzip was applied to the original
file and the result was identical to that of plain gzip compression. In the
experiments with small data there are no such combinations (Figure 6.8).

The results show that the QLC method is quite robust with respect to
the parameter combinations. Especially combined QLC-gzip compression
provides on average 26% better compression results than the plain gzip,
calculated over all the large data experiments.

6.3 Experiments 99

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

R
el

at
iv

e
re

su
lt

si
ze

 (
%

)

Day

QLC
QLC-gzip

 5

 10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30R
el

at
iv

e
re

su
lt

si
ze

 (
%

)

Day

gzip
QLC-gzip

Figure 6.9: Average relative sizes of QLC and QLC-gzip compressed files
(upper pane) and QLC-gzip and gzip compressed files (lower pane) of
large data. 95% of data points are included inside error bars.

6.3.6 Compression efficiency

In earlier tests [56], the possible sensitivity of QLC to the size of the input
data was studied. The QLC method was evaluated with logs of different
sizes that included entries with a varying number of fields. The data used
in these tests were a set of randomly selected daily logs from the small and
the large data sets.

The results of these tests showed that the execution time of the QLC
algorithm depends linearly on the number of fields and the number of log
entries.

For this thesis, the efficiency of the QLC algorithm was further evalu-
ated by applying it to the small and large data sets with all above mentioned
parameter combinations. With the small data and a frequency threshold
values γ ≥ 2, the average execution time was always around one second.
The largest maximum was 2.6 seconds with threshold γ = 2. Only with

100 6 Queryable lossless Log data Compression (QLC)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 100 1000 10000 100000

E
xe

cu
tio

n
tim

e
(s

)

Frequency

πd=2
πd=6

πd=16

Figure 6.10: Average QLC compression times of large data as functions of
frequency and perfectness.

the threshold value γ = 1, when all in data occurring item combinations
were considered, the average increased to 3.5 seconds and maximum to 21.5
seconds.

The effect that the frequency threshold has on the execution times can
be seen with the large data (Figure 6.10). The QLC implementation uses
plenty of time with small frequency thresholds but the time consumption
decreases rapidly with increasing threshold, and with a larger frequency
threshold it does not change much. The time consumption correlates with
the amount of closed sets. When there are more closed sets, the algorithm
needs more time to search for them and more importantly, to do the data
reduction, i.e., to find all instances of compression patterns (selected closed
sets) in log entries.

Lowering the perfectness threshold π (i.e., increasing πd, the difference
from the full entry) also increases time consumption. This is also due to
an increasing amount of compression patterns (Figure 6.10).

Data reduction is the most time-consuming part of the QLC algorithm
(Figure 6.11). The time to search for instances of patterns in log entries
seems to be almost exponential with respect to the number of selected closed
sets. When the longest compression pattern is searched for, the patterns are
matched to an entry in decreasing length order. When the algorithm finds
a matching compression pattern, it removes the corresponding field : value
pair sets and replaces them with a reference to the pattern. This kind of

6.3 Experiments 101

 0

 500

 1000

 1500

 2000

 2500

 3000

50 100 500 1000 5000 10000 50000100000

E
xe

cu
tio

n
tim

e
(s

)

Frequency

Other
Data reduction

Closed sets
Preprocessing

Figure 6.11: Average times of algorithm phases as a function of frequency.

sequential search for a matching pattern is inefficient. The matching fails
for most entries several times before the correct pattern is found.

The slight rise in execution times with the largest frequency threshold
(Figure 6.11) is explained by those logs, whose size was less than the largest
threshold. The QLC method did not compress them since it could not ex-
tract any compression patterns. Their compression times with the smaller
threshold values were much below the average.

The memory consumption (not shown) depends mostly on the number
of log entries. The QLC implementation uses approximately 1KB of main
memory per each log entry. This is inline with the observation made with
CLC.

6.3.7 Query evaluation

Query test setups

The QLC compressed data files can be queried without a separate decom-
pression operation. The efficiency of the query evaluation was tested by
defining a set of queries in the form of field:value pairs and evaluating them
on each of the QLC compressed data files. In evaluation an optimised
implementation of the query algorithm given in Figure 6.5 was used.

The queries were defined so that they

• produced answers of different size,

102 6 Queryable lossless Log data Compression (QLC)

Table 6.1: Query classes of large data set experiments. Detailed queries
are given in Appendix B, Table B.2.
Id Description Queries Queried Output size

in class items Min Median Max

A Miscellaneous queries 6 (1–6) 1 0 60 5092
with small output

B Small queries with large 4 (7–10) 1–3 1512 7456 1119850
and medium output

C Small query with empty 1 (11) 2 0 0 0
output

D Set of increasingly 2 (12,13) 1–2 29 280 5336
specific small queries
with regular expression

E Set of increasingly 5 (14–18) 1–6 20351 53469 128769
specific queries with large,
almost constant output

F Set of increasingly 4 (19–22) 1–5 0 2081 128769
specific queries
with reducing output

G Set of increasingly 3 (23–25) 1–3 295 890 32388
specific queries
with constant output

H Set of increasingly 5 (26–30) 1,3 11 331109 1038208
specific overlapping
queries with large output

I Set of increasingly 4 (31–34) 3–6 0 15913 212003
specific queries
with reducing output

• contained different amounts of queried field:value pairs, and

• contained both string literals and regular expressions in values.

For the large data, there were 34 defined queries, which can be grouped
into nine classes (Table 6.1; detailed queries are given in Appendix B,
Table B.2). Queries in classes A, B and C were not related to each other in
the sense that the results were not overlapping. In the rest of the classes,
the results of the queries are either partially overlapping or subsets of results
of previous queries.

Query answers can be partially overlapping if the queries are par-
tially overlapping. In class H, for example, queries action:drop AND
i/f dir:inbound AND proto:udp and action:drop AND i/f dir:inbound AND
service:XYZ may provide partially overlapping results.

If a query p is a superset of query q, then its answer is a subset of that
of q. In classes D-I most of the queries are formed by adding an item to

6.3 Experiments 103

Table 6.2: Query classes of small data set experiments. Detailed queries
are given in Appendix B, Table B.1.
Id Description Queries Queried Output size

in class items Min Median Max

a Miscellaneous queries 5 (1–5) 1,2 0 0 878
with a small output

b One item query with 1 (6) 1 3411 5132 15587
the entire log file as
an answer

c Set of partially overlapping 7 (7–13) 1–4 0 6 962
increasingly specific queries
with regular expression
and small output

d Set of increasingly specific 9 (14–22) 1–9 413 681 682
queries with constant output

e Set of increasingly specific 8 (23–30) 1–8 0 1516 2806
queries with medium reducing
output

f Set of increasingly specific 6 (31–36) 1–6 0 2338 4323
queries with medium reducing
output

some of the shorter queries in the class. For example, the queries in class
E are all specifications of the query action:reject, the second one being
action:reject AND i/f dir:inbound.

The size of an answer is a meaningful factor in query evaluation. There-
fore, the queries have been defined to provide answers of different sizes. The
median of the class shows the characteristic answer size in the class. In some
classes, like classes F and I, the answer size reduces when the query is more
specific.

Regular expressions can also be used in queries in place of field val-
ues. For example, in class D, we were interested in all the entries in
which the user field was not empty. Such entries were found with a query
user:[a-zA-Z0-9]+.

The corresponding query classification of the small data is given in
Table 6.2 (detailed queries are given in Appendix B, Table B.1).

In the following experiments the threshold values for the QLC compres-
sion of large data were

• Frequency threshold γ = 500,

• Coverage threshold κ = 50 or κ = 100, and

• Perfectness threshold πd = 16.

104 6 Queryable lossless Log data Compression (QLC)

The coverage threshold κ = 100 was used in measuring effects of different
frequency thresholds. In practice, those two threshold values are so close
to each other that there is no difference between their effects.

The corresponding values for the small data were

• Frequency threshold γ = 10,

• Coverage threshold κ = 20, and

• Perfectness threshold π = 5.

The QLC queries were compared to queries applied to the log files com-
pressed with gzip. For querying they were decompressed with zcat, for-
warded to the process executing the query and the results were output to a
file. The used search programs were egrep and a corresponding perl script.

A query fieldi : valuej was expressed to search programs as
a regular expression. In the file format used, fields are identified
by their position (column) in the file. To ensure that valuej was
matched for the correct field, the preceding fields were represented
with regular expression ’[^;]*;’, which represents any string in a
field and the field delimiter ’;’. For example, a query with two items:
action:reject AND proto:icmp, was expressed as a regular expression
’^[^;]*;[^;]*;[^;]*;[^;]*;[^;]*;reject;[^;]*;[^;]*;[^;]*;icmp’,
which was then given for egrep.

Query test results

The first observation was that the size of the query answer is the factor
that affects the evaluation time the most (Figure 6.12). The correlation
between average query time and the number of found entries is almost one.

The second observation about the performance of the QLC was that
the sorting of the entries to correspond with the original order in the log
file was time consuming. The overhead caused by sorting was minimal with
small answers and was more than 40% ot the total time with the largest
answers (Figure 6.13).

The querying on QLC-gzip compressed files was a bit slower than with
the QLC compressed files (Figure 6.13). The added overhead was intro-
duced by the zcat program that decompressed the gzip compressed QLC
file and forwarded it to the QLC query program.

Next, QLC was compared to the egrep-program that sequentially
searches for given regular expressions in the data. As egrep is a com-
piled program and the QLC-query implementation is made with Perl — an
interpreted script language — the setup could favor egrep. Therefore, I

6.3 Experiments 105

 0

 100000

 200000

 300000

 400000

 500000

 600000

 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

A
ns

w
er

 s
iz

e
(#

 o
f e

nt
rie

s)

A
ns

w
er

 ti
m

e
(s

)

Query

Answer size
Answer time

Figure 6.12: Average size of answers and QLC query times on large data.

also implemented a perl script lGrep that searches for given regular expres-
sions in the data and included that in the comparison. Results for both
are included in the figures since their behaviours turned out to be quite
different.

The QLC query providing unsorted answers was nearly always the
fastest option (Figure 6.14). When the answer was very large (queries
7 and 26 in the lower and query 31 in the upper pane of the figure), the
QLC query was slower than egrep and lGrep.

The behaviour of egrep was quite strange with some queries.
There is no single visible reason for its slow performance with queries
12, 24, 15, 28, 29 and 30. The reason can possibly have something to do with
the query evaluation, when the given value is further in the line (query 12)
the amount of queried items is increasing and the answer is not diminishing
(queries 27 − 30) or something else (queries 15 and 24).

lGrep behaves quite steadily. The execution time of lGrep increases
remarkably with seven queries (12, 7, 26 − 30). Probably the regular ex-
pression searched for is more demanding in those queries. However, the ex-
ecution time does not rise suddenly with any query as it does with egrep.
Probably the regular expression evaluation has been optimised better in
the perl interpreter than in egrep.

The results with a small data set were again well in line with those
of large data (Figure 6.15). The QLC query with unsorted answers is the
fastest, except when the answer is large.

106 6 Queryable lossless Log data Compression (QLC)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1
A

2
A

3
A

4
A

5
A

6
A

11
C

12
D

13
D

19
F

20
F

21
F

22
F

23
G

24
G

25
G

31
I

32
I

33
I

34
I

A
ns

w
er

 ti
m

e
(s

)

Query and Query class

QLC
QLC, unsorted

QLC-gzip

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

7
B

8
B

9
B

10
B

14
E

15
E

16
E

17
E

18
E

26
H

27
H

28
H

29
H

30
H

A
ns

w
er

 ti
m

e
(s

)

Query and Query class

QLC
QLC, unsorted

QLC-gzip

Figure 6.13: Average query times of sorted and unsorted QLC answers and
sorted answers on QLC-gzip compressed large data. The query classes
with small or medium output (A, C, D, F, G and I) are on the upper pane
and query classes with large output (B, E and H) on the lower pane.

Returning to the analysis of QLC, the effect of the frequency thresh-
old is interesting (Figure 6.16). With the small frequency threshold val-
ues the query times are slightly reducing when the frequency threshold is
increased. However, with the large frequency threshold values, the time
increases again. The reason is that with small frequency threshold values,
there are plenty of compression patterns and the algorithm spends time in
matching the query against them and entries in their supports. With large

6.3 Experiments 107

 0

 5

 10

 15

 20

 25

 30

1
A

2
A

3
A

4
A

5
A

6
A

11
C

12
D

13
D

19
F

20
F

21
F

22
F

23
G

24
G

25
G

31
I

32
I

33
I

34
I

A
ns

w
er

 ti
m

e
(s

)

Query and Query class

QLC, unsorted
egrep
lGrep

 0

 5

 10

 15

 20

 25

 30

7
B

8
B

9
B

10
B

14
E

15
E

16
E

17
E

18
E

26
H

27
H

28
H

29
H

30
H

A
ns

w
er

 ti
m

e
(s

)

Query and Query class

QLC, unsorted
egrep
lGrep

Figure 6.14: Average query times of QLC queries with unsorted answer,
egrep and lGrep on large data. The query classes with small or medium
output (A, C, D, F, G and I) on the upper pane and query classes with
large output (B, E and H) on the lower pane.

frequency threshold values, the number of compression patterns is small,
but the number of unmatched entries is large and the algorithm needs to
match the query against each of them.

Experiments with QLC queries show that the method speeds up query
evaluation on compressed data, especially when the size of the query answer
is less than a few thousand entries. For example, with queries in all the
classes resulting in a small or medium answer — i.e., large data queries in

108 6 Queryable lossless Log data Compression (QLC)

 0

 0.05

 0.1

 0.15

 0.2

a b c d e f

A
ns

w
er

 ti
m

e
(s

)

Query class

QLC,unsorted
QLC

egrep
lGrep

Figure 6.15: Average query times of QLC query with sorted and unsorted
answer, egrep and lGrep by query class of the small data.

 0

 1

 2

 3

 4

 5

 6

 7

 100 1000 10000 100000

A
ns

w
er

 ti
m

e
(s

)

Frequency

Small answers
Large answers

Figure 6.16: Average query times of QLC queries with sorted answers as
a function of the frequency threshold. The query classes with small or
medium output (A, C, D, F, G and I) have been included into small answers
and (B, E and H) into large answers.

classes A, B, C and D (Table 6.1) and small data queries in classes a, c, d
and e (Table 6.2) — QLC with unsorted answers is the fastest solution.

In classes that result in a large answer — more than several thousands

6.4 Conclusions and related work 109

of entries — QLC querying efficiency suffers from the size of the answer.
However, it is still feasible; at the longest of all cases a QLC query took less
than 40 seconds to execute. The query was Query 7 in large data query
class B. It returns an entire log file, i.e., more than 1, 100, 000 entries at
most.

QLC benefits from adding new field:value pairs to queries. For example,
as the queries on large data in classes C, D, E, F, G, H and I are enlarged,
the execution time reduces (Figure 6.14). The reason for this is that the
answer becomes smaller. egrep and lGrep may react in quite the opposite
way; their execution time increases with larger queries, for example, with
large data queries in class H.

6.4 Conclusions and related work

QLC compression together with the corresponding query mechanism pro-
vide tools to handle the ever-growing problem of log data archiving and
analysis. The compression method is efficient, robust, reasonably fast, and
when used together with, for example, the gzip program provides smaller
results than gzip alone.

QLC compressed files can be queried without decompressing the whole
file. QLC query evaluation is remarkably faster than the combination of
decompressing a log file and searching for the corresponding regular ex-
pression from the decompressed log; especially when the answer size is less
than a few thousand entries.

The query algorithm presented in Figure 6.5 is comparable to decom-
pression: it loops through all the entries and inspects the related pattern
and possibly also the remaining items. However, by cashing the results
of the intersection between the query and the patterns, the algorithm can
minimise the number of needed set comparison or pattern matching oper-
ations.

QLC shares many ideas with the CLC method (Chapter 5). Both meth-
ods use selected closed sets — filtering and compression patterns — to
summarise and compress the data. CLC is a lossy compression method: if
an entry is in the support of a filtering pattern, it is removed completely.
QLC is lossless: only the values overlapping with the matching compres-
sion pattern are removed from an entry and replaced with a reference to the
pattern. In QLC compression the main criterion is not understandability
as in CLC but storage minimisation and query optimisation. Therefore the
criterion for selecting a compression pattern is its compression gain. On
the other hand it is a straightforward task to generate a CLC description

110 6 Queryable lossless Log data Compression (QLC)

from a log database compressed with QLC.
As with the CLC, in the data that contain several tens or even hun-

dreds of items in the largest frequent sets, the maximal frequent sets may
be a good choise instead of the closed sets. However, as with the CLC,
the comparison between closed and maximal frequent sets is left open for
further studies.

A related approach that has been published after the original publi-
cation of the QLC method [56] also uses frequent patterns for database
compression [141, 8]. A method named Krimp [154] takes advantage of
minimum description length (MDL) principle [47] in selecting the best set
of frequent itemsets, i.e., “that set that compresses the database best” [141].
The method uses a greedy heuristic algorithm to search for the best set
of frequent patterns. The set is used as a code table to replace parts of
database entries that match with a selected frequent item set with shortest
possible codes.

The Krimp-method has many advantages: the patterns in the code
table can be used in classification [153, 154] or to characterise differences
between two data sets [158]. The method does not offer any means for
query evaluation on compressed data. However, it could be made with a
quite similar algorithm as QLC query evaluation.

All of the four decision subtasks defined in Section 4.2 need log file
analysis where archived or otherwise compressed log files are used. In op-
eration of a telecommunications network, system state identification and
prediction, cost estimation and estimation of external actions, all require
information from logs that the network provides. Especially the security
analysis is based on the data recorded in the logs about who did what
and when and where and how they came in and how often they used the
systems.

The QLC method supports analysis of compressed data on all operation
levels. It offers a fast and robust tool to do iterative querying on history
data in the knowledge discovery process on the strategic level as well as
enables analysis of a recent burst of log entries, which can be kept on the
disk only in a compressed format. The method speeds up the iteration by
answering queries faster than, for example, the zcat-egrep combination
commonly used on log files.

QLC versus requirements The QLC method answers well to the re-
quirements set for the data mining and knowledge discovery methods and
tools summarised in Section 4.5. The method does not require data-mining-
specific knowledge when it is used (Easy-to-use methods, Easy to learn).

From a telecommunications expert’s point of view, the data mining tech-
nology — frequent closed sets — may be integrated into an existing query
tool in such a way that the expert does not have to know anything about it
(Interfaces and integrability towards legacy tools). The technology supports
the expert, who can concentrate on identifying queried fields and their most
interesting values (Application domain terminology and semantics used in
user interface). The method shortens the time required to answer queries
on archived history data (Immeadiate, accurate and understandable results,
Efficiency and appropriate execution time). This speeds up the analysis
task (Increases efficiency of domain experts).

Only the requirements of Reduced iterations per task, Adaptability to
process information and Use of process information are not directly ad-
dressed. However, the amount of available data and efficiency of an expert
are increased. Thus the expert can better concentrate on and take advan-
tage of the information about the network.

112 6 Queryable lossless Log data Compression (QLC)

Chapter 7

Knowledge discovery for network
operations

During the research that began already during the TASA project at the
University of Helsinki, one of the main themes has been to bring data
mining and knowledge discovery tools and methods to an industrial en-
vironment where large amounts of data are being analysed daily. As was
described in Chapter 4, the telecommunications operation environment sets
requirements that differ from those set by the research environment. The
methods presented in Chapters 5 and 6 address many of those industrial
requirements.

Based on experiences of industrial applications of the CLC and QLC
methods and other data analysis methods on alarm and performance data
[59, 61, 60, 69, 70, 97, 96, 58, 63, 64, 98, 102, 103, 156] I will discuss,
in this chapter, decision-making and knowledge discovery as a part of an
everyday process of network operations [156]. I will outline how the pace
and dynamics of this process affects the execution of knowledge discovery
tasks, and present an enhanced model for the knowledge discovery process
[63]. I will also propose a setup for a knowledge discovery system that
better addresses the requirements identified in Chapter 4 [65].

The classical knowledge discovery model (Section 3.1) was designed for
isolated discovery projects. As the methods and algorithms presented in
this thesis were developed and integrated to network management tools,
it became evident that the process model does not fit real-world discovery
problems and their solutions. The model needs to be augmented for in-
dustrial implementation, where knowledge discovery tasks with short time
horizons follow each other continuously. The discovery tasks have to be car-
ried out in short projects or in continuous processes, where the discovery
tasks are mixed with other operational tasks.

The main information source for experts operating the networks is the
process information system. The system is implemented mainly with legacy
applications without data mining functionalities. The knowledge discovery
process needs to be integrated into these legacy applications. The integra-
tion can be done by including required data mining functionalities to the

114 7 Knowledge discovery for network operations

system. These functionalities have to support network operation experts
in their daily work

7.1 Decision making in network operation process

Operation of a mobile telecommunications network is a very quickly evolv-
ing business. The technology is developing rapidly; each technology gener-
ation lifetime has been less than ten years so far. For example, the benefits
of digital technology in the second-generation networks, such as Global
System for Mobile communications (GSM), overtook the first-generation
analogue systems such as Nordic Mobile Telephony (NMT) in the mid
nineties, General Packet Radio Service (GPRS) solutions began to extend
GSM networks around 2001 [138], and the third-generation networks such
as Universal Mobile Telecommunications System (UMTS) are widely used.

In this environment strategic planning is a continuous activity targeted
at the time frame from present to 5 or 10 years. Due to a continuously de-
veloping technology base many issues have to be left open when investment
decisions are made. While the new technology empowers users with new
services, it also changes consumption and communication patterns. The
change affects directly the profit achievable through strategic decisions.
Hence the effective time horizon of strategic decisions can be as short as
one to two years or even less. Their time horizons are shorter than those of
some tactical decisions, like planning and executing network infrastucture
updates, which can be from two to three years.

In many systems today the redesign cycle is also so rapid that the update
of knowledge obtained through knowledge discovery takes time comparable
to the redesign cycle time. This creates a swirl in which the strategic and
tactical levels can no longer be considered separately. For example, when
new network technology is added to the network, the resource planning and
redesign of networks are done continuously. All the time some part of the
system is under redesign.

At the tactical level of telecommunications network operation there are
several continuous maintenance cycles that operate on the same infrastruc-
ture. The fastest maintenance cycle is from some seconds to minutes. In
it operators try to detect and fix the most devastating malfunctions on the
network. The second cycle takes some days, during which operator per-
sonnel fix malfunctions that disturb the network capacity and quality of
service, but which are not urgent. The next maintenance cycle monitors
and audits the network elements and services on a monthly basis. Each
component is checked for any malfunctions. If there are needs for configu-

7.2 Knowledge discovery for agile decision support 115

ration optimisations they are also made in this cycle.
The quickly developing technology and continuously evolving set of ser-

vices also have another consequence: domain knowledge may lose its ac-
curacy rather fast. Configuration parameter updates, installation of new
hardware, and updates in existing software components change the struc-
ture of the system hence outdating a priori knowledge. Constant changes
in user behaviour patterns speed this degradation of a priori knowledge
further.

Knowledge discovery projects — if implemented according to the clas-
sical KD-process model (Section 3.1) — typically require quite a long time
to execute; at least some months. As most of the tactical decision tasks
have a much shorter time horizon, the classical KD-process model can not
be applied to their support.

The knowledge discovery efforts supporting these fast-pace strategic and
tactical decision-making tasks — agile decision making — have to cope with
these requirements;

• Decision task time horizons are short

• Decision tasks repeat constantly

• A priori knowledge outdates rather fast

These requirements lead to an idea of a continuous knowledge discovery
process that finds new information, integrates it to existing knowledge and
also evaluates the accuracy of it.

7.2 Knowledge discovery for agile decision sup-

port

A decision task always requires information and knowledge about the pro-
cess and its environment (Section 4.2). If the required information is avail-
able, it can be searched for from a priori knowledge, otherwise a knowledge
discovery task to the available data is needed. The knowledge discovery
task is executed in a knowledge discovery process (Figure 7.1).

The execution of a knowledge discovery process uses resources from
the existing information systems and applies appropriate data mining and
data analysis methods. The results of the knowledge discovery process
are interpreted by the expert executing the knowledge discovery task and
provided to the decision maker for further consideration.

A knowledge discovery process can be initialised specially for a decision
task if it is large and has a long enough time horizon. Typical examples are

116 7 Knowledge discovery for network operations

Figure 7.1: Each knowledge discovery task is implemented with a knowledge
discovery process utilising the data and legacy tools of process information
system and different data mining methods.

knowledge discovery for a strategical decision task or for an expert system
making automated process decisions; for example, a search for a covering
set of correlation patterns after a major system upgrade.

If the time horizon of a decision task is short, the knowledge discovery
task has to be executed in some existing knowledge discovery process. The
organisation has to have knowledge discovery tools integrated into the sys-
tem and available pre-defined processes on how to use them. An example of
such a task could be daily log analysis, which searches for security or mal-
function incidents that have not been detected and prevented by automatic
tools.

Knowledge discovery swirl

The current models for knowledge discovery (see Section 3.1) seem to suffer
from the division into phases. The proposed steps are overlapping and it
is seldom possible to say where one step ends and another begins [161].
On the other hand, decision tasks often arise sequentially, and for each
of them a corresponding knowledge discovery task is introduced as is de-

7.2 Knowledge discovery for agile decision support 117

Figure 7.2: While knowledge discovery tasks are evaluated in a row, they
are linking to each other by updating the a priori knowledge.

picted in Figure 7.2. Especially if these tasks are executed in one single
knowledge discovery process, for example, due to their smaller size or short
time horizon, the knowledge discovery tasks link together to form a con-
tinuous process, in which each task relies on the results of the previous
tasks.

A continuous knowledge discovery process is cyclic: it is a knowledge
discovery swirl [63] (see Figure 7.3). It is based on a notion of inductive
data analysis. Inductive data analysis is a process where data is repeat-
edly studied and transformed with a collection of methods. Either a priori
knowledge about the domain, or the results extracted with previous meth-
ods, are used for parameterising each method. Each method is applied
either to a combination of the results from previous steps or raw data. A
method can either extract new information or transform the data into a
new form. Every time a new method is selected, a group of functions that
are needed for its application are determined and executed.

Selection of accurate, subsequent methods and adjustment of their pa-
rameters is affected by the knowledge extracted from the data. The swirl
is terminated when the extracted and validated knowledge satisfies the re-
quirement set. If the knowledge is not adequate or new knowledge discovery
tasks have arisen, the swirl continues to cycle with new methods and ad-
justed parameters for previous methods. To validate the results, an expert

118 7 Knowledge discovery for network operations

Figure 7.3: Knowledge discovery swirl.

needs appropriate tools that link the results to the data and a priori know-
ledge. The swirl model emphasises the importance of the clearly defined
knowledge requirements and facilities to validate the results.

The daily log analysis task, for example, starts already during the sys-
tem start-up period. During it, the initial set of correlation patterns are
generated and deployed. Patterns may filter out entries or replace them
with a new entry. This reduces the number of entries, which changes the
statistical indicator distributions. The analysis tools have to be tuned ac-
cording to these changed figures. Every time some new process state is
reached, the system may produce a previously unknown, probably volu-
minous, set of log entries or feature value combinations and the pattern
collection must be updated. This is done repeatedly during the system life
time either periodically or when needed.

The intention-mining model (I-MIN) [50] gives a similar type of ap-
proach to the discovery process as the definition for inductive data anal-
ysis. The introduction of the accumulation phase of the model answers
particularly to needs of telecommunications network operation. However,
unlike the I-MIN process we emphasise the possibility not only to study
knowledge discovery concentrates [50] but also to query and analyse any
subsets of the original data. The cyclic model also gives a possibility to
integrate external knowledge to the process during any of the iterations.

7.3 Adaptive knowledge discovery solution 119

Figure 7.4: Role of interpretations between data and information in know-
ledge discovery process.

Both of the models have greatly been inspired by the work done within the
area of inductive databases [49, 75, 106].

7.3 Adaptive knowledge discovery solution

All the translations between data and knowledge require human interpre-
tation. A human expert makes the interpretation, for example, when he is
looking at the available data and making decisions about how the industrial
process should be adjusted. In order to be able to make the decisions, he
combines the acquired information with his mental model of the subject
[105, 31]. He often also verifies his jugdement against the collected his-
tory data. This history data must be large and covering. It must also be
accessible; such a data set is typically neither easy to store nor simple to
query. Here methods like queryable lossless compression QLC (Chapter 6)
can assist.

As is depicted in Figure 7.4, there are several places of the informa-
tion system where interpretation is made between usable information and
some formal representation like data, analysis results or formal information
request. First of all the log entries are defined in such a way that they
carry meaningful information. Knowledge requirements that are defined
must be formalised so that the knowledge discovery system is able to find
the required information and the knowledge discovery swirl can determine

120 7 Knowledge discovery for network operations

Figure 7.5: An adaptive knowledge discovery process integrated to infor-
mation system of a network operator.

when the requirements are met. Finally the analysis results revealed in
the knowledge discovery swirl need to be interpreted in domain-specific
semantic terms so that necessary decisions can be made.

An adaptive knowledge discovery process integrated to an information
system of telecommunications network operations is depicted in Figure 7.5.
The knowledge discovery process analyses the incoming data. Domain ex-
perts doing the analysis use background information, i.e., history data, do-
main configurations and a priori knowledge of the organisation to filter the
data, to select analysis parameters, to separate causally related phenomena
from each other [57] and to steer and focus analysis.

When the information request has been fulfilled, the knowledge discov-
ery process results are interpreted for the decision making. Again all the
appropriate background information is used. If the discovery reveals new
knowledge that will benefit the organisation, the knowledge is integrated
to the a priori knowledge. The integration is made only if the benefits of
the knowledge considerably exceed the integration cost.

In practice, especially in agile decision making on a tactical level, a
large part of the extracted information is never formalised and integrated
to the a priori knowledge. Reasons vary from haste to obscure or cumber-

7.4 Use of knowledge discovery 121

some knowledge formats. However, experts usually take advantage of that
information by learning and improving their own expertise.

The presented model brings the knowledge discovery process to the cen-
tre of the process information system given in Figure 4.1. The model con-
nects the knowledge discovery to data interpretation phase. Together with
legacy tools, designed for monitoring and interpreting the data, knowledge
discovery tools can provide more information and facilitate new insights of
experts. This improves also the update and maintenance of a priori know-
ledge. A prerequisite for integration of knowledege discovery process and
every day data interpretation is that the knowledge discovery tools fulfil
the requirements described in Chapter 4.

The presented knowledge discovery model (Figure 7.5) supports the
decision making model introduced in Section 4.2. The knowledge discov-
ery process gets required information about system states, actions and
costs from the on-line data, configuration databases and history model.
The description of the external world is acquired from network data, i.e.,
alarms, log entries, traffic measurements, service definitions and subscriber
databases of the management system.

7.4 Use of knowledge discovery

On the level of automated process decisions, closed loop control and error
detection are widely applied in industrial processes. They often operate in
a limited scope for which the KD process and knowledge discovery systems
can provide the necessary support. For example, for alarm correlation en-
gines, systems like TASA can be used to extract required knowledge. When
methods used in TASA are further augmented to use a priori knowledge
about the network structure [58], the quality of its results improves.

When the degree of freedom in decision making increases, only a human
expert can make decisions. The expert’s task starts when many closed
control loops are integrated together and the decisions concerning their
co-operation have to be made. For this the expert can also be helped by
knowledge discovery methods.

When previously unknown industrial process states are analysed, the
role of a knowledge discovery system is to filter the needed information and
discover structures in it. An expert has to be able to identify the causal
relations holding in the logged and measured industrial process. He has to
be able to make interpretation and mapping from the log entries and time
series to the domain semantics. The methods presented in Chapters 5 and
6 aim at this kind of support. Summarised and compressed logs (CLC and

QLC methods) improve the quality of information that is presented for an
expert and increase the amount of available data and information.

An adaptive knowledge discovery process versus requirements
The knowledge discovery swirl and its integration to process information
model supports well the requirements set for the data mining and know-
ledge discovery methods and tools summarised in Section 4.5. The model
facilitates use of domain specific terminology and semantics by connecting
the configuration and parameter information to the analysis process (Ap-
plication domain terminology and semantics used, easy to learn). It also
supports linking the analysis results to related process information (Use
of process information). Thus analysis results can be described directly in
system context and interpretation of results becomes easier (Easy-to-use
methods, Easy to learn). This simplifies integration of data mining and
legacy tools (Interfaces and integrability towards legacy tools) and makes it
possible for analysis methods to adapt current process information (Use of
process information, Adaptability to process information). The model facil-
itates the shortening of the time required to perform the analysis tasks and
interprete their results (Immeadiate, accurate and understandable results,
Efficiency and appropriate execution time, Increases efficiency of domain
experts). Only the requirement of Reduced iterations per task is left for data
mining tools.

Chapter 8

Concluding remarks

In this thesis I have studied application of data mining and knowledge dis-
covery methods and processes in telecommunications network operations.
The objective of the thesis was to find ways to assist operators in solving
everyday problems in decision-making.

First, I studied the telecommunications operations as an environ-
ment for data mining and knowledge discovery methods and tools (Chap-
ter 4). I introduced an operation information system and a decision-making
model, discussed decision making on different operational levels and stud-
ied decision-making resources and assets available for used methods and
tools.

When the requirements and resources for data mining applications were
defined, I introduced data summarisation (Chapter 5) and compression
(Chapter 6) methods based on closed sets and made an extensive set of
experiments with both methods. Finally, I defined a continuous knowledge
discovery swirl and outlined how that can be implemented to support know-
ledge extraction for repeating decision tasks from a continuous data flow
in a telecommunications operation environment (Chapter 7).

The methods introduced, especially CLC and its generalisation to
episode summarisation, have been accepted well among network experts.
CLC, for example, has been integrated to the security log management
and analysis software called NetAct TMAudit Trail by Nokia Siemens Net-
works. The use of domain structure data to improve the quality of episode
summaries [58] was one of the enablers for the acceptance.

In this thesis I have focused on log data. Another important type of
data are the measurement and counter time series that are continuously
collected from the network elements. An interesting question is what kind
of knowledge discovery methods could provide corresponding benefits for
time series data analysis. Unsupervised clustering and anomaly detection
seem to be promising candidates. Furthermore, how could one combine in-
formation extracted from both types of data? These questions are currently
under my consideration.

The results of this thesis and their acceptance among telecommunica-
tions experts show that the approach to support human expertise works

123

124 8 Concluding remarks

in practice. As has been shown elsewhere [123], expert systems and con-
trol loops are able to automate decisions that are either very frequent and
almost trivial, or hard but well defined. In other cases, especially in tac-
tical decision making, the more productive way is to prepare to support
the cognition of a human expert. At the tactical level we need support for
on-line decision making, which is quite a challenge for many of the know-
ledge discovery methods and tools. The tools should provide an easy-to-use
approach with minimal iterations that reveal understandable results for ex-
perts in the domain. The method should be robust, provide accurate and
reliable information and — what is most important — help the domain ex-
perts in their daily work. This is exactly what the CLC and QLC methods
do.

References

[1] Douglas Aberdeen. A (revised) survey of approximate methods for
solving partially observable Markov decision. Technical report, Na-
tional ICT Australia, 2003.

[2] Foto Afrati, Aristides Gionis, and Heikki Mannila. Approximating
a collection of frequent sets. In Ronny Kohavi, Johannes Gehrke,
William DuMouchel, and Joydeep Ghosh, editors, Proceedings of the
tenth ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 12 – 19, Seattle, Washington, USA,
August 2004. ACM.

[3] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining
association rules between sets of items in large databases. In Peter
Buneman and Sushil Jajodia, editors, Proceedings of ACM SIGMOD
International Conference on Management of Data (SIGMOD’93),
pages 207 – 216, Washington, D.C., USA, May 1993. ACM.

[4] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toi-
vonen, and A. Inkeri Verkamo. Fast discovery of association rules. In
Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and
Ramasamy Uthurusamy, editors, Advances in Knowledge Discovery
and Data Mining, pages 307 – 328. AAAI Press, Menlo Park, Cali-
fornia, USA, 1996.

[5] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princi-
ples, Techniques, and Tools. Addison Wesley, Reading, Massachusets,
USA, 1986.

[6] Shivnath Babu, Minos Garofalakis, and Rajeev Rastogi. SPARTAN:
A model-based semantic compression system for massive data tables.
In Walid G. Aref, editor, Proceedings of the 2001 ACM SIGMOD
international conference on Management of data, pages 283 – 294,
Santa Barbara, California, USA, May 2001. ACM.

[7] Raju Balakrishnan and Ramendra K. Sahoo. Lossless compression
for large scale cluster logs. Technical Report RC23902(W0603-038),
IBM Research Division, March 2006.

125

126 REFERENCES

[8] Ronnie Bathoorn, Arne Koopman, and Arno Siebes. Frequent pat-
terns that compress. Technical Report UU-CS-2006-048, Utrecht Uni-
versity, Department of Information and Computing Sciences, Utrecht,
The Netherlands, 2006.

[9] Roberto J. Bayardo. Efficiently mining long patterns from databases.
In Laura Haas and Ashutosh Tiwary, editors, SIGMOD 1998, Pro-
ceedings of ACM SIGMOD International Conference on Management
of Data, pages 85 – 93, Seattle, Washington, USA, June 1998. ACM
Press.

[10] Richard J. Bolton and David J. Hand. Statistical fraud detection: A
review. Statistical Science, 17(3):235 – 255, 2002.

[11] Francesco Bonchi, Fosca Giannotti, and Dino Pedreschi. A relational
query primitive for constraint-based pattern mining. In Jean-François
Boulicaut, Luc De Raedt, and Heikki Mannila, editors, Constraint
Based Mining and Inductive Databases, volume 3848 of LNCS, pages
14 – 37. Springer, 2006.

[12] Jean-François Boulicaut and Artur Bykowski. Frequent closures as
a concise representation for binary data mining. In Takao Terano,
Huan Liu, and Arbee L.P. Chen, editors, Proceedings of the Fourth
Pacific- Asia Conference on Knowledge Discovery and Data Mining
(PAKDD 2000), volume 1805 of LNAI, pages 62–73, Kyoto, Japan,
April 2000. Springer.

[13] Jean-François Boulicaut, Artur Bykowski, and Christophe Rig-
otti. Approximation of frequency queries by mean of free-sets. In
Djamel A. Zighed, Jan Komorowski, and Jan Zytkow, editors, Prin-
ciples of Data Mining and Knowledge Discovery, 4th European Con-
ference, PKDD 2000, volume 1910 of LNAI, pages 75 – 85, Lyon,
France, September 2000. Springer.

[14] Jean-François Boulicaut, Artur Bykowski, and Christophe Rigotti.
Free-sets: a condensed representation of boolean data for the approx-
imation of frequency queries. Data Mining and Knowledge Discovery
journal, 7(1):5 – 22, 2003.

[15] Jean-François Boulicaut and Baptiste Jeudy. Mining free-sets under
constraints. In Michel E. Adiba, Christine Collet, and Bipin C. Desai,
editors, Proceedings of International Database Engineering & Appli-
cations Symposium (IDEAS’01), pages 322 – 329, Grenoble, France,
July 2001. IEEE Computer Society.

REFERENCES 127

[16] Jean-François Boulicaut and Baptiste Jeudy. Constraint-based
data mining. In Oded Maimon and Lior conRokach, editors, The
Data Mining and Knowledge Discovery Handbook, pages 399 – 416.
Springer, 2005.

[17] Ronald Brachman and Tej Anand. The process of knowledge discov-
ery in databases. In Usama M. Fayyad, Gregory Piatetsky-Shapiro,
Padhraic Smyth, and Ramasamy Uthurusamy, editors, Advances in
Knowledge Discovery and Data Mining, pages 37 – 58. AAAI Press,
Menlo Park, California, USA, 1996.

[18] Ronald Brachman, Tom Khabaza, Willi Klösgen, Gregory Piatetsky-
Shapiro, and Evangelis Simoudis. Mining business databases. Com-
munications of the ACM, 39(11):42 – 48, November 1996.

[19] Leo Breiman, Jerome Friedman, R. A. Olshen, and Charles J. Stone.
Classification and Regression Trees. Chapman & Hall CRC Press
LLC, Boca Raton, Florida, USA, 1984.

[20] T. Bui, K. Higa, V. Sivakumar, and J. Yen. Beyond telecommut-
ing: Organizational suitability of different modes of telework. In
J.F. Nunamaker and R.H. Sprague, editors, Proceedings of the 29th
Annual Hawaii International Conference on System Sciences, pages
344 – 353, Maui, Hawaii, USA, January 1996. IEEE Computer Soci-
ety Press.

[21] Doug Burdick, Manuel Calimlim, and Johannes Gehrke. MAFIA: A
maximal frequent itemset algorithm for transactional databases. In
Proceedings of the 17th International Conference on Data Engineering
(ICDE’2001), pages 443 – 452, Heidelberg, Germany, April 2001.
IEEE Computer Society.

[22] M. Burrows and D. J. Wheeler. A block sorting lossless data com-
pression algorithm. Technical Report 124, Digital Equipment Corpo-
ration, Palo Alto, California, USA, May 1994.

[23] Artur Bykowski and Christophe Rigotti. A condensed representa-
tion to find frequent patterns. In Proceedings of the Twentieth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS’01), pages 267 – 273, Santa Barbara, California,
USA, May 2001. ACM Press.

[24] Toon Calders and Bart Goethals. Mining all non derivable frequent
itemsets. In Tapio Elomaa, Heikki Mannila, and Hannu Toivonen,

128 REFERENCES

editors, Principles of Data Mining and Knowledge Discovery, 6th Eu-
ropean Conference, PKDD 2002, volume 2431 of LNAI, pages 74 – 83,
Helsinki, Finland, August 2002. Springer.

[25] Toon Calders, Christophe Rigotti, and Jean-François Boulicaut. A
survey on condensed representations for frequent sets. In Jean-
François Boulicaut, Luc De Raedt, and Heikki Mannila, editors, Con-
straint Based Mining and Inductive Databases, volume 3848 of LNCS,
pages 64 – 80. Springer, 2006.

[26] Varun Chandola and Vipin Kumar. Summarization – compressing
data into an informative representation. In Proceedings of the fifth
IEEE International Conference on Data Mining (ICDM ’05), pages
98 – 105, Houston, Texas, USA, November 2005. IEEE Computer
Society Press.

[27] Varun Chandola and Vipin Kumar. Summarization – compressing
data into an informative representation. Knowledge and Information
Systems, 12(3):355 – 378, August 2007.

[28] D. Brent Chapman and Elizabeth D. Zwicky. Building Internet Fire-
walls. O’Reilly & Associates, 1995.

[29] William R. Cheswick, Steven M. Bellovin, and Aviel D. Rubin. Fire-
walls and Internet Security. Addison Wesley, 2003. 2nd edition.

[30] Theresa Chung and Steve Luc, editors. Check Point Security Admin-
istration NGX I, Student Handbook. Checkpoint Software Technolo-
gies Ltd., 2006.

[31] James Courtney. Decision making and knowledge management in
inquireing organizations: toward a new decision -making paradigm
for DSS. Decision Support Systems, 31(1):17 – 38, 2001.

[32] Robert G. Cowell, A. Philip Dawid, Steffen L. Lauritzen, and David
J. Spiegelhalter. Probabilistic Networks and Expert Systems. Statis-
tics for Engineering and Information Science. Springer-Verlag, Berlin,
1999.

[33] Bruno Crémilleux and Jean-François Boulicaut. Simplest rules char-
acterizing classes generated by delta-free sets. In Max Bramer, Alun
Preece, and Frans Coenen, editors, Proceedings of the twenty-second
SGAI International Conference on Knowledge Based Systems and
Applied Artificial Intelligence, ES 2002, pages 33 – 46, Cambridge,
United Kingdom, December 2002. Springer.

REFERENCES 129

[34] Gautam Das, K.-I. Lin, Heikki Mannila, G Renganathan, and Padraic
Smyth. Rule discovery from time series. In Rakesh Agrawal, Paul
Stolorz, and Gregory Piatetsky-Shapiro, editors, Fourth International
Conference on Knowledge Discovery and Data Mining (KDD’98),
pages 16 – 22, New York, USA, August 1998. AAAI Press.

[35] Ann Devitt, Joseph Duffin, and Robert Moloney. Topographical prox-
imity for mining network alarm data. In Proceedings of the 2005
ACM SIGCOMM workshop on Mining network data, pages 179 – 184,
Philadelphia, Pennsylvania, USA, August 2005. ACM.

[36] Milenko Drinić and Darko Kirovski. PPMexe: PPM for compressing
software. In Proceedings of 2002 Data Compression Conference (DCC
2002), pages 192 – 201, Snowbird, Utah, USA, April 2002. IEEE
Computer Society.

[37] Ian Eaton. The Ins and Outs of System Logging Using Syslog. InfoSec
Reading room. SANS Institute, 2003.

[38] European telecommunication standards institute ETS 300 616. Digi-
tal cellular telecommunications system (Phase 2); Event and call data
(GSM 12.05 version 4.3.1). European telecommunication standards
institute, February 1998.

[39] Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth.
From data mining to knowledge discovery: An overview. In Us-
ama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and
Ramasamy Uthurusamy, editors, Advances in Knowledge Discovery
and Data Mining, pages 1 – 34. AAAI Press, Menlo Park, California,
USA, 1996.

[40] Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and
Ramasamy Uthurusamy, editors. Advances in Knowledge Discovery
and Data Mining. AAAI Press, Menlo Park, California, USA, 1996.

[41] E. Fredkin. Trie memory. Communications of the ACM, (3):490 – 500,
1960.

[42] Simon French and David Rios-Insua. Statistical Decision Theory.
Kendall’s Library of Statistics. Arnold Publishing, 2000.

[43] Simson Garfinkel and Gene Spafford. Practical Unix & Internet Se-
curity, Second edition. O’Reilly & Associates, 1996.

130 REFERENCES

[44] Minos N. Garofalakis and Rajeev Rastogi. Data mining meets net-
work management: The NEMESIS project. In Online proceedings
of ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, DMKD 2001, Santa Barbara, California, USA,
May 2001. ACM.

[45] Gartner says worldwide mobile phone sales increased 16 per cent in
2007. Press Release. Gartner Inc., February 2008.

[46] G.Anthony Gorry and Michael S. Scott Morton. A framework
for management information systems. Sloan Management Review,
13(1):50 – 70, 1971.

[47] Peter D. Grünwald. Minimum description length tutorial. In Peter D.
Grünwald, In Jae Myung, and Mark A. Pitt, editors, Advances in
minimum description length, pages 23 – 80. MIT press, Cambridge,
Massachusets, USA, April 2005.

[48] Dimitrios Gunopulos, Heikki Mannila, and Sanjeev Saluja. Discover-
ing all most specific sentences by randomized algorithms. In Foto N.
Afrati and Phokion G. Kolaitis, editors, Database Theory - ICDT ’97,
6th International Conference, volume 1186 of LNCS, pages 215 – 229,
Delphi, Greece, January 1997. Springer.

[49] S.K. Gupta, V. Bhatnagar, and S. K. Wasan. User centric min-
ing of association rules. In Alipio M. Jorge and Pavel Brazdil, edi-
tors, Proceedings of Workshop on data mining, decision support, meta
learning and ILP (DDMI’00) co-located with PKDD’00, Lyon, France,
September 2000.

[50] S.K. Gupta, V. Bhatnagar, S. K. Wasan, and DVLN Somayajulu. In-
tension mining: A new paradigm in knowledge discovery. Technical
Report IITD/CSE/TR2000/001, Indian Institute of Technology, De-
partment of Computer Science and Engineering, New Delhi 110 016,
India, March 2000.

[51] John Hadden, Ashutosh Tiwari, Rajkumar Roy, and Dymitr Ruta.
Computer assisted customer churn management: state of the art
and future trends. Journal of Computers and Operations Research,
34(10):2902 – 2917, 2007.

[52] Jiawei Han, Yandong Cai, and Nick Cercone. Knowledge discovery
in databases: an attribute-oriented approach. In Le-Yan Yuan, edi-
tor, Proceedings of the Eightteenth International Conference on Very

REFERENCES 131

Large Data Bases (VLDB’92), pages 547 – 559, Vancouver, British
Columbia, Canada, August 1992. Morgan Kaufmann.

[53] Jiawei Han and Micheline Kamber. Data Mining: Concepts and
techniques. Morgan Kaufmann Publishers, San Francisco, California,
USA, 2000.

[54] David Hand, Heikki Mannila, and Padhraic Smyth. Principles of
Data Mining. The MIT Press, Cambridge, Massachusets, USA, 2001.

[55] Kimmo Hätönen, Jean-François Boulicaut, Mika Klemettinen,
Markus Miettinen, and Cyrille Masson. Comprehensive log compres-
sion with frequent patterns. In Yahiko Kambayashi, Mukesh K. Mo-
hania, and Wolfram Wöß, editors, Proceedings of Data Warehousing
and Knowledge Discovery, 5th International Conference, (DaWaK
2003), volume 2737 of LNCS, pages 360 – 370, Prague, Czech Re-
public, September 2003. Springer.

[56] Kimmo Hätönen, Perttu Halonen, Mika Klemettinen, and Markus
Miettinen. Queryable lossless log database compression. In Jean-
François Boulicaut and Sašo Džeroski, editors, Proceedings of th
2nd International Workshop on Knowledge Discovery in Inductive
Databases - (KDID’03), pages 70 – 79, Cavtat-Dubrovnik, Croatia,
September 2003. Ruder Boskovic Institute, Bijenicka cesta 54, P.O.B.
180 Zagreb, Croatia.

[57] Kimmo Hätönen and Mika Klemettinen. Domain structures in filter-
ing irrelevant frequent patterns. In Mika Klemettinen and Rosa Meo,
editors, Proceedings of the First International Workshop on Inductive
Databases (KDID), pages 50 – 60, Helsinki, Finland, August 2002.
Helsinki University Printing House, Helsinki.

[58] Kimmo Hätönen and Mika Klemettinen. Domain structures in filter-
ing irrelevant frequent patterns. In Pier Luca Lanzi, Rosa Meo, and
Mika Klemettinen, editors, Database support for data mining appli-
cations, volume 2682 of LNCS, pages 289 – 305. Springer, 2004.

[59] Kimmo Hätönen, Mika Klemettinen, Heikki Mannila, Pirjo Ronkai-
nen, and Hannu Toivonen. Knowledge discovery from telecommuni-
cation network alarm databases. In Stanley Y. W. Su, editor, Pro-
ceedings of the 12th International Conference on Data Engineering
(ICDE’96), pages 115 – 122, New Orleans, Louisiana, USA, Febru-
ary 1996. IEEE Computer Society Press.

132 REFERENCES

[60] Kimmo Hätönen, Mika Klemettinen, Heikki Mannila, Pirjo Ronkai-
nen, and Hannu Toivonen. Rule discovery in alarm databases. Tech-
nical Report C-1996-7, University of Helsinki, Department of Com-
puter Science, P.O. Box 26, FIN-00014 University of Helsinki, Fin-
land, March 1996.

[61] Kimmo Hätönen, Mika Klemettinen, Heikki Mannila, Pirjo Ronkai-
nen, and Hannu Toivonen. TASA: Telecommunication alarm se-
quence analyzer, or ”How to enjoy faults in your network”. In Pro-
ceedings of NOMS’96 - IEEE Network Operations and Management
Symposium (NOMS’96), pages 520 – 529, Kyoto, Japan, April 1996.
IEEE.

[62] Kimmo Hätönen, Mika Klemettinen, and Markus Miettinen. Remarks
on the industrial application of inductive database technologies. In
Jean-François Boulicaut, Heikki Mannila, and Luc de Raedt, editors,
Constraint-Based Mining and Inductive Databases, volume 3848 of
LNCS, pages 196 – 215. Springer, 2006.

[63] Kimmo Hätönen, Pekka Kumpulainen, and Pekko Vehviläinen. Pre-
and post-processing for mobile network performance data. In Reijo
Tuokko, editor, Proceedings of seminar days of Finnish Society of
Automation, (Automation 03), pages 311 – 316, Helsinki, Finland,
September 2003. Finnish Society of Automation.

[64] Kimmo Hätönen, Sampsa Laine, and Timo Similä. Using the logsig-
function to integrate expert knowledge to self-organizing map (SOM)
based analysis. In Proceedings of the 2003 IEEE International Work-
shop on Soft Computing in Industrial Applications, pages 145 – 150,
Binghamton, New York, USA, June 2003. IEEE.

[65] Kimmo Hätönen, Risto Ritala, and Pekko Vehviläinen. Knowledge
discovery in dynamic decision support: Linking strategy and tactics.
2006. (manuscript).

[66] Gisela Hertel. Operation and maintenance. In Friedhelm Hillebrand,
editor, GSM and UMTS. The Creation of Global Mobile Communica-
tion, pages 445 – 456. John Wiley & Sons, Ltd, Chichester, England,
2002.

[67] Friedhelm Hillebrand, editor. GSM and UMTS. The Creation of
Global Mobile Communication. John Wiley & Sons, Ltd, Chichester,
England, 2002.

REFERENCES 133

[68] Johan Himberg. From insights to innovations: data mining, visual-
ization, and user interfaces. PhD thesis, Helsinki University of Tech-
nology, Laboratory of Computer and Information Science, P.O.Box
5400, FIN-02015 HUT, Espoo, Finland, November 2004.

[69] Albert Höglund and Kimmo Hätönen. Computer network user be-
haviour visualisation using self organising maps. In Lars Niklasson,
Mikael Bodén, and Tom Ziemke, editors, Proceedings of ICANN98,
Eight International Conference on Artificial Neural Networks, pages
899 – 904, Skövde, Sweden, September 1998. Springer.

[70] Albert J. Höglund, Kimmo Hätönen, and Antti Sorvari. A computer
host-based user anomaly detction system using the self-organizing
map. In Shun-Ichi Amari, C. Lee Giles, Marco Gori, and Vincenzo
Piuri, editors, Proceedings of the IEEE-INNS-ENNS International
Joint Conference on Neural Networks IJCNN 2000, pages 24 – 27,
Como, Italy, July 2000. IEEE Computer Society Press.

[71] Jaakko Hollmén. User Profiling and Classification for Fraud De-
tection in Mobile Communications Networks. PhD thesis, Helsinki
University of Technology, Laboratory of Computer and Information
Science, P.O.Box 5400, FIN-02015 HUT, Espoo, Finland, December
2000.

[72] Jaakko Hollmén, Jouni K. Seppänen, and Heikki Mannila. Mixture
models and frequent sets: combining global and local methods for 0-1
data. In Daniel Barbará and Chandrika Kamath, editors, Proceedings
of the Third SIAM International Conference on Data Mining, pages
289–293, San Francisco, California, USA, May 2003. SIAM.

[73] Jaakko Hollmén and Jarkko Tikka. Compact and understandable
descriptions of mixture of bernoulli distributions. In Michael R.
Berthold, John Shawe-Taylor, and Nada Lavrač, editors, Proceed-
ings of the 7th International Symposium on Intelligent Data Analysis
(IDA 2007), volume 4723 of LNCS, pages 1–12, Ljubljana, Slovenia,
September 2007. Springer.

[74] Peter Hoschka and Willi Klösgen. A support system for interpret-
ing statistical data. In Gregory Piatetsky-Shapiro and William J.
Frawley, editors, Knowledge Discovery in Databases, pages 325 – 345.
AAAI Press, Menlo Park, California, USA, 1991.

134 REFERENCES

[75] Tomasz Imielinski and Heikki Mannila. A database perspective on
knowledge discovery. Communications of the ACM, 39(11):58 – 64,
November 1996.

[76] ITU-T, telecommunication standardization sector of ITU. Enhanced
Telecom Operations Map (eTOM) - Introduction. Number M.3050.0
in ITU-T recommendations. International Telecommunication Union
(ITU), March 2007.

[77] ITU-T, telecommunication standardization sector of ITU, Study
group 4. Maintenance philosophy for telecommunication networks.
Number M.20 in ITU-T recommendations. International Telecommu-
nication Union (ITU), October 1992.

[78] ITU-T, telecommunication standardization sector of ITU, Study
group 4. Overview of TMN recommendations. Number M.3000
in ITU-T recommendations. International Telecommunication Union
(ITU), February 2000.

[79] ITU-T, telecommunication standardization sector of ITU, Study
group 4. Principles for a telecommunications management network.
Number M.3010 in ITU-T recommendations. International Telecom-
munication Union (ITU), February 2000.

[80] ITU-T, telecommunication standardization sector of ITU, study
group 4. TMN management functions. Number M.3400 in ITU-
T recommendations. International Telecommunication Union (ITU),
February 2000.

[81] ITU-T, telecommunication standardization sector of ITU, Study
group 4. Security for the management plane: Overview. Number
M.3016.0 in ITU-T recommendations. International Telecommunica-
tion Union (ITU), May 2005.

[82] Gabriel Jakobson and Mark Weissman. Real-time telecommunica-
tion network management: extending event correlation with tempo-
ral constraints. In Adarshpal S. Sethi, Yves Raynaud, and Fabienne
Faure-Vincent, editors, Proceedings of the fourth international sympo-
sium on Integrated network management IV, pages 290 – 301, London,
United Kingdom, 1995. Chapman & Hall.

[83] Gabriel Jakobson and Mark D. Weissman. Alarm correlation. IEEE
Network, 7(6):52 – 59, November 1993.

REFERENCES 135

[84] Heikki Jokinen, Kimmo Konkarikoski, Petteri Pulkkinen, and Risto
Ritala. Operations’ decision making under uncertainty: case studies
on papermaking. Mathematical and Computer Modelling of Dynam-
ical Systems, X(X):000–000, Month 200X. Submitted.

[85] Heikki Jokinen and Risto Ritala. Value assessment of measurements
in large measurement information systems. In Eleftherios Kayafas
and Vassilis Loumos, editors, Technical Committee on Measurement
of Electrical Quantities. Proceedings of the 13th International Sym-
posium on Measurements for Research and Industry Applications and
the 9th European Workshop on ADC Modelling and Testing, vol-
ume 1, pages 367 – 372, Athens, Greece, September 2004. IMECO
and NTUA.

[86] Leslie Pack Kaelbing, Michael L. Littman, and Andrew W. Moore.
Reinforcement learning: A survey. Journal of Artificial Intelligence
Research, 4:237–285, 1996.

[87] P. Keen. Information systems and organizational change. Communi-
cations of the ACM, 24(1):24 – 33, 1981.

[88] Mika Klemettinen. Rule Discovery from Telecommunication Network
Alarm Databases. PhD thesis, Department of Computer Science, P.O.
Box 26, FIN-00014 University of Helsinki, Finland, January 1999.

[89] Mika Klemettinen, Heikki Mannila, Pirjo Ronkainen, Hannu Toivo-
nen, and Inkeri Verkamo. Finding interesting rules from large sets of
discovered association rules. In Proceedings of the Third International
Conference on Information and Knowledge Management (CIKM’94),
pages 401 – 407, Gaithersburg, Maryland, USA, November 1994.
ACM.

[90] Willi Klösgen and Jan Zytkow. Knowledge discovery in databases ter-
minology. In Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic
Smyth, and Ramasamy Uthurusamy, editors, Advances in Knowledge
Discovery and Data Mining, pages 573 – 592. AAAI Press, Menlo
Park, California, USA, 1996.

[91] Donald Knuth. The art of computer programming. In Volume
3: Sorting and Searching. Addison-Wesley, Reading, Massachusets,
USA, 1973.

[92] Teuvo Kohonen, editor. Self-Organizing Maps. Springer, Berlin, Ger-
many, 1995.

136 REFERENCES

[93] R. Kosala and H. Blockeel. Web mining research: A survey. SIGKDD:
SIGKDD Explorations: Newsletter of the Special Interest Group
(SIG) on Knowledge Discovery & Data Mining, ACM, 2(1):1 – 15,
2000.

[94] Dudyala Anil Kumar and V. Ravi. Predicting credit card customer
churn in banks using data mining. International Journal on Data
Analysis Techniques and Strategies, 1(1):4 – 28, August 2008.

[95] Pekka Kumpulainen and Kimmo Hätönen. Local anomaly detec-
tion for network system log monitoring. In M. Konstantionis and
I. Lazaros, editors, Proceedings of the 10th International Confer-
ence on Engineering Applications of Neural Networks., pages 34 –
44, Thessaloniki, Greece, August 2007. Publishing Centre, Alexander
Technological Educational Institute of Thessaloniki.

[96] Pekka Kumpulainen and Kimmo Hätönen. Compression of cyclic
time series data. In Eric Benoit, editor, Proceedings of the 12th
IMEKO TC1 & TC7 Joint Symposium on Man Science & Measure-
ment., pages 413 – 419, Annecy, France, September 2008. IMEKO.

[97] Pekka Kumpulainen and Kimmo Hätönen. Local anomaly detection
for mobile network monitoring. Information Sciences, (178):3840 –
3859, 2008.

[98] Mikko Kylväjä, Kimmo Hätönen, and Pekka Kumpulainen. Informa-
tion summarization for network performance management. In M. Las-
zlo and J.V. Zsolt, editors, Proceedings of the 10th TC-10 IMEKO
Conference on Technical Diagnostics, pages 167 – 172, Budapest,
Hungary, June 2005. IMEKO.

[99] Mikko Kylväjä, Kimmo Hätönen, Pekka Kumpulainen, Jaana Laiho,
Pasi Lehtimäki, Kimmo Raivio, and Pekko Vehviläinen. Trial report
on self-organizing map based analysis tool for radio networks. In
Proceedings of the IEEE Semiannual Vehicular Technology Confer-
ence (VTC 2004 Spring), pages 2365 – 2369, Milan, Italy, May 2004.
IEEE.

[100] Jaana Laiho, Anneli Korteniemi, Markus Djupsund, Mikko Toivonen,
and Jochen Grandell. Radio network optimisation process. In Jaana
Laiho, Achim Wacker, and Tomáš Novosad, editors, Radio Network
Planning and Optimisation for UMTS, pages 329 – 364. John Wiley
& Sons, Ltd, Chichester, England, 2002.

REFERENCES 137

[101] Jaana Laiho, Mikko Kylväjä, and Albert Höglund. Utilization of
advanced analysis methods in UMTS networks. In Proceedings of
the IEEE Semiannual Vehicular Technology Conference (VTC 2002
Spring) Spring, pages 726 – 730, Birmingham, Alabama, USA, May
2002. IEEE.

[102] Jaana Laiho, Kimmo Raivio, Pasi Lehtimäki, Kimmo Hätönen, and
Olli Simula. Advanced analysis methods for 3G cellular networks.
Technical Report A65, Computer and Information Science, Helsinki
University of Technology, Espoo, Finland, 2002.

[103] Jaana Laiho, Kimmo Raivio, Pasi Lehtimäki, Kimmo Hätönen, and
Olli Simula. Advanced analysis methods for 3G cellular networks.
IEEE Transactions on Wireless Communications, 4(3):930 – 942,
May 2005.

[104] Jaana Laiho, Achim Wacker, and Tomáš Novosad, editors. Radio
Network Planning and Optimisation for UMTS. John Wiley Inc.,
Chichester, England, 2006. 2nd edition.

[105] Sampsa Laine. Using visualization, variable selection and feature ex-
traction to learn from industrial data. PhD thesis, Helsinki Univer-
sity of Technology, Laboratory of Computer and Information Science,
P.O.Box 5400, FIN-02015 HUT, Espoo, Finland, September 2003.

[106] Pier Luca Lanzi, Rosa Meo, and Mika Klemettinen, editors. Database
support for data mining applications, volume 2682 of LNCS. Springer,
2004.

[107] H Leavitt. Applying organizational change in industry: Structural,
technological and humanistic approaches. In J. March, editor, Hand-
book of Organizations. Rand McNally, Chicago, Illinois, USA, 1965.

[108] Pasi Lehtimäki. Data Analysis Methods for Cellular Network Perfor-
mance Optimization. PhD thesis, Helsinki University of Technology,
Faculty of Information and Natural Sciences, Department of Infor-
mation and Computer Science, P.O.Box 5400, FI-02015 TKK, Espoo,
Finland, April 2008.

[109] Pasi Lehtimäki, Kimmo Raivio, and Olli Simula. Mobile radio access
network monitoring using the self-organizing map. In Michel Ver-
leysen, editor, Proceedings of 10th European Symposium on Artificial
Neural Networks (ESANN 2002), pages 231 – 236, Bruges, Belgium,
April 2002.

138 REFERENCES

[110] Hartmut Liefke and Dan Suciu. XMill: an efficient compressor for
XML data. In Weidong Chen, Jeffrey F. Naughton, and Philip A.
Bernstein, editors, Proceedings of the 2000 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 153 – 164, Dallas,
Texas, USA, June 2000. ACM.

[111] Dao-I Lin and Zvi M. Kedem. Pincer-Search: A new algorithm for dis-
covering the maximum frequent set. In Hans-Jörg Schek, Fèlix Saltor,
Isidro Ramos, and Gustavo Alonso, editors, Advances in Database
Technology - EDBT’98, 6th International Conference on Extending
Database Technologyc, volume 1377 of LNCS, pages 105 – 119, Va-
lencia, Spain, 1998. Springer.

[112] William S. Lovejoy. A survey of algorithmic methods for partially
observed Markov decision processes. Annals of Operations Research,
28(1-4):47 – 66, 1991.

[113] Stuart Madnick. From VLDB to VMLDB (very MANY large data
bases): Dealing with large-scale semantic heterogeneity. In Umesh-
war Dayal, Peter M.D. Gray, and Shojiro Nishio, editors, Proceed-
ings of the 21st International Conference on Very Large Data Bases
(VLDB’95), pages 11 – 16, Zürich, Switzerland, September 1995.
Morgan Kaufmann.

[114] Heikki Mannila and Hannu Toivonen. Discovering generalized
episodes using minimal occurrences. In Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining
(KDD’96), pages 146 – 151, Portland, Oregon, USA, August 1996.
AAAI Press.

[115] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Improved
methods for finding association rules. Technical Report C-1993-65,
University of Helsinki, Department of Computer Science, P.O. Box
26, FIN-00014 University of Helsinki, Finland, December 1993.

[116] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Efficient
algorithms for discovering association rules. In Usama M. Fayyad and
Ramasamy Uthurusamy, editors, Knowledge Discovery in Databases,
Papers from the 1994 AAAI Workshop (KDD’94), pages 181 – 192,
Seattle, Washington, USA, July 1994. AAAI Press.

[117] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discov-
ering frequent episodes in sequences. In Usama M. Fayyad and Ra-
masamy Uthurusamy, editors, Proceedings of the First International

REFERENCES 139

Conference on Knowledge Discovery and Data Mining (KDD’95),
pages 210 – 215, Montreal, Canada, August 1995. AAAI Press.

[118] Ian I. Mitroff and Harold A. Linstone. The Unbounded Mind: Break-
ing the Chains if Traditional Business Thinking. Oxford University
Press, New York, USA, 1993.

[119] Michel Mouly and Marie-Bernadette Pautet. The GSM System for
Mobile Communications. Cell & Sys, Palaiseau, France, 1992.

[120] Eric W.T. Ngai, Li Xiu, and D.C.K. Chau. Application of data mining
techniques in customer relationship management: A literature review
and classification. Expert Systems with Applications, 36(2):2592 –
2602, March 2009.

[121] Mark Nicolett. Critical Capabilities for Security Information and
Event Management Technology, 2008. Number G00156303 in Gartner
RAS Core Research Notes. Gartner, Inc., May 2008.

[122] F. Niederman and J. Trower. Industry influence on IS personnel
and roles. In Mohan R. Tanniru, editor, Proceedings of the 1993
Conference on Computer Personnel Research (SIGCPR ’93), pages
226 – 233, St Louis, Missouri, USA, 1993. ACM.

[123] Jukka Nurminen, Olli Karonen, and Kimmo Hätönen. What makes
expert systems survive over 10 years - empirical evaluation of several
engineering applications. Journal of Expert Systems with Applica-
tions, 24(3):199 – 211, 2003.

[124] Jukka K. Nurminen. Modelling and implementation issues in cir-
cuit and network planning tools. PhD thesis, Helsinki University of
Technology, Systems Analysis Laboratory, P.O.Box 1100, FIN-02015
HUT, Espoo, Finland, May 2003.

[125] J. Oksanen, H. Paunonen, E. Sipilä, and A. Kaunonen. Improved
knowledge management with electronic operating and maintenance
manuals. PaperAge Magazine, January 2001.

[126] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal.
Closed set based discovery of small covers for association rules. In
Christine Collet, editor, Proceedings of BDA’99, pages 361 – 381,
Bordeaux, France, October 1999.

140 REFERENCES

[127] Zdzislaw Pawlak, Jerzy Grzymala-Busse, Roman Slowinski, and Wo-
jciech Ziarko. Rough sets. Communications of the ACM, 38(11):88 –
95, November 1995.

[128] Jian Pei, Jiawei Han, and Runying Mao. CLOSET an efficient al-
gorithm for mining frequent closed itemsets. In Dimitrios Gunopu-
los and Rajeev Rastogi, editors, Proceedings of 2000 ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge Dis-
covery, pages 21 – 30, Dallas, Texas, USA, May 2000. ACM.

[129] Jyrki Penttinen. GSM-tekniikka: järjestelmän toiminta ja kehi-
tys kohti UMTS-aikakautta. WSOY, Helsinki, Finland, 2001. (in
Finnish).

[130] Gregory Piatetsky-Shapiro. Discovery, analysis, and presentation of
strong rules. In Gregory Piatetsky-Shapiro and William J. Frawley,
editors, Knowledge Discovery in Databases, pages 229 – 248. AAAI
Press, Menlo Park, California, USA, 1991.

[131] Gregory Piatetsky-Shapiro and Christopher J. Matheus. The inter-
estingness of deviations. In Usama M. Fayyad and Ramasamy Uthu-
rusamy, editors, Knowledge Discovery in Databases, Papers from the
1994 AAAI Workshop (KDD’94), pages 25 – 36, Seattle, Washington,
USA, July 1994. AAAI Press.

[132] John Ross Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers, 1993.

[133] Luc De Raedt and Albrecht Zimmermann. Constraint-based pattern
set mining. In Proceedings of the Seventh SIAM International Con-
ference on Data Mining, pages 237 – 248, Minneapolis, Minnesota,
USA, April 2007. SIAM.

[134] Kimmo Raivio, Olli Simula, and Jaana Laiho. Neural analysis of
mobile radio access network. In Nick Cercone, Tsau Young Lin, and
Xindong Wu, editors, Proceedings of IEEE International Conference
on Data Mining, pages 457 – 464, San Jose, California, USA, Decem-
ber 2001. IEEE Computer Society Press.

[135] Balász Rácz and András Lukács. High density compression of log
files. In Proceedings of 2004 Data Compression Conference (DCC
2004), page 557, Snowbird, Utah, USA, March 2004. IEEE Computer
Society.

REFERENCES 141

[136] Risto Ritala. Normative decision theory as a framework for oper-
ational decision support, Chapter 2. In Teemu Mätäsniemi, editor,
Operational decision making in the process industry, Multidisciplinary
approach, number 2442 in VTT research notes. VTT, Espoo, Finland,
2008.

[137] G. Rossi. A probabilistic model for measurement processes. Measure-
ment, (34):85 – 99, 2003.

[138] Wolfgang Roth and Jürgen Baumann. Short message and data ser-
vices; the general packet radio service (GPRS). In Friedhelm Hille-
brand, editor, GSM and UMTS. The Creation of Global Mobile Com-
munication, pages 425 – 430. John Wiley & Sons, Ltd, Chichester,
England, 2002.

[139] Tobias Scheffer. Finding association rules that trade support opti-
mally against confidence. In Luc De Raedt and Arno Siebes, editors,
Principles of Data Mining and Knowledge Discovery, 5th European
Conference, PKDD 2001, volume 2168 of LNCS, pages 424 – 435,
Freiburg, Germany, September 2001. Springer.

[140] Jun Sese and Shinichi Morishita. Answering the most correlated N
association rules efficiently. In Tapio Elomaa, Heikki Mannila, and
Hannu Toivonen, editors, Principles of Data Mining and Knowledge
Discovery, 6th European Conference, PKDD 2002, volume 2431 of
LNAI, pages 410 – 422, Helsinki, Finland, August 2002. Springer.

[141] Arno Siebes, Jilles Vreeken, and Matthijs van Leeuwen. Item sets
that compress. In Joydeep Ghosh, Diane Lambert, David B. Skil-
licorn, and Jaideep Srivastava, editors, Proceedings of the sixth SIAM
International Conference on Data Mining, pages 393 – 404, Bethesda,
Maryland, USA, April 2006. SIAM.

[142] Herbert A. Simon. The New Science of Management Decision. Harper
Brothers, New York, USA, 1960.

[143] Przemyslaw Skibinski and Jakub Swacha. Fast and efficient log
file compression. In Yannis E. Ioannidis, Boris Novikov, and Boris
Rachev, editors, Communications of the Eleventh East-European
Conference on Advances in Databases and Information Systems, vol-
ume 325 of CEUR Workshop Proceedings, pages 56 – 69, Varna, Bul-
garia, September 2007. CEUR-WS.org.

142 REFERENCES

[144] Padhraic Smyth and Rodney M. Goodman. An information theoretic
approach to rule induction from databases. IEEE Transactions on
Knowledge and Data Engineering, 4(4):301 – 316, August 1992.

[145] Jaideep Srivastava, Robert Cooley, Mukund Deshpande, and Pang-
Ning Tan. Web usage mining: Discovery and applications of usage
patterns from web data. SIGKDD: SIGKDD Explorations: Newslet-
ter of the Special Interest Group (SIG) on Knowledge Discovery &
Data Mining, ACM, 1(2):12 – 23, 2000.

[146] Roy Sterrit. Discovering rules for fault management. In Proceedings
of the eighth Annual IEEE International Conference and Workshop
on Engineering of Computer Based Systems, ECBS 2001, pages 190 –
196, Washington, DC, USA, April 2001. IEEE Computer Society.

[147] R.S. Sutton and A.G. Barto. Reinforcement learning: An introduc-
tion. MIT Press, Cambridge, Massachusets, USA, 1998.

[148] Jari Suutarinen. Performance Measurements of GSM Base Station
System. Lic.Thesis, Tampere University of Technology, 1994.

[149] TeleManagement Forum. Network management, detailed operations
map. Evaluation version 1.0. GB908. TeleManagement Forum, March
1999.

[150] TeleManagement Forum. Telecom operations map. Approved version
2.1. GB910. TeleManagement Forum, March 2000.

[151] TeleManagement Forum. GB921 Business process framework release
8.0. TeleManagement Forum, November 2008.

[152] Joachim Tisal. The GSM Network. John Wiley Inc., Chichester,
England, 2001.

[153] Matthijs van Leeuwen, Jilles Vreeken, and Arno Siebes. Compression
picks item sets that matter. In Johannes Fürnkranz, Tobias Scheffer,
and Myra Spiliopoulou, editors, Proceedings of Knowledge Discovery
in Databases: PKDD 2006, 10th European Conference on Principles
and Practice of Knowledge Discovery in Databases, volume 4213 of
LNCS, pages 585 – 592, Berlin, Germany, September 2006. Springer.

[154] Matthijs van Leeuwen, Jilles Vreeken, and Arno Siebes. Compression
picks the significant item sets. Technical Report UU-CS-2006-050,
Utrecht University, Department of Information and Computing Sci-
ences, Utrecht, The Netherlands, 2006.

REFERENCES 143

[155] Pekko Vehviläinen. Data Mining for Managing Intrinsic Quality of
Service in Digital Mobile Telecommunications Networks. PhD thesis,
Tampere University of Technology, P.O. Box 527, FIN-33101 Tam-
pere, Finland, March 2004.

[156] Pekko Vehviläinen, Kimmo Hätönen, and Pekka Kumpulainen. Data
mining in quality analysis of digital mobile telecommunications net-
work. In Proceedings of XVII IMEKO World Congress, pages 684 –
689, Dubrovnik, Croatia, June 2003. IMEKO.

[157] Juha Vesanto. Data Exploration Based on the Self-Organizing Map.
PhD thesis, Helsinki University of Technology, Laboratory of Com-
puter and Information Science, P.O.Box 5400, FIN-02015 HUT, Es-
poo, Finland, September 2002.

[158] Jilles Vreeken, Matthijs van Leeuwen, and Arno Siebes. Characteris-
ing the difference. In Pavel Berkhin, Rich Caruana, and Xindong Wu,
editors, Proceedings of the thirteenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’07),
pages 765 – 774, San Jose, California, USA, August 2007. ACM.

[159] Jianyong Wang and George Karypis. SUMMARY: Efficiently summa-
rizing transactions for clustering. Technical Report Technical report
TR 04-025, University of Minnesota, Minneapolis, Minnesota, USA,
2004.

[160] Jianyong Wang and George Karypis. On efficiently summarizing cate-
gorical databases. Knowledge and Information Systems, 9(1):19 – 37,
January 2006.

[161] Rüdiger Wirth and Jochen Hipp. CRISP-DM: Towards a standard
process model for data mining. In Proceedings of the 4th International
Conference on the Practical Applications of Knowledge Discovery and
Data Mining, pages 29 – 39, Manchester, United Kingdom, April
2000.

[162] Dong Xin, Jiawei Han, Xifeng Yan, and Hong Cheng. Mining com-
pressed frequent-pattern sets. In Klemens Böhm, Christian S. Jensen,
Laura M. Haas, Martin L. Kersten, Per Åke Larson, and Beng Chin
Ooi, editors, Proceedings of the 31st International Conference on Very
Large Data Bases (VLDB 2005), pages 709 – 720, Trondheim, Nor-
way, September 2005. ACM.

144 REFERENCES

[163] Xifeng Yan, Hong Cheng, Jiawei Han, and Dong Xin. Summarizing
itemset patterns: A profile-based approach. In Robert Grossman,
Roberto J. Bayardo, and Kristin P. Bennett, editors, Proceedings of
the eleventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 314 – 323, Chicago, Illinois, USA,
August 2005. ACM.

[164] Mohammed Javeed Zaki. Generating non-redundant association
rules. In Proceedings SIGKDD’00, pages 34 – 43, Boston, USA, Au-
gust 2000. ACM Press.

[165] J. Ziv and A. Lempel. A universal algorithm for sequental data com-
pression. IEEE Transactions on Information Theory, 22(1):337 – 343,
1977.

Appendix A

Requirements for knowledge
discovery tasks

This Appendix presents characterisation of decision making levels of
telecommunications network operations. The characterisations set require-
ments for the knowledge discovery process. The characterisations are linked
to process phases that they affect most.

Table A.1: Summary of requirements for KD-tasks set by dif-
ferent types of decision situations.

Automatic
Control
Functions

Tactical
Decision-
making

Strategic
Decision-
making

Affected
KD-process
phase

Supported
tasks

Control
circuits

Planning Design Knowledge
require-
ments, UI,
Form of
results

Error
diagnostics

Configuration Management
support
systems

Optimisation

Actor Operative
automated
systems

Expert
systems,
Human
experts

Managers UI, Form of
results

Length of
estimated
time
horizon

< n min < n weeks < n years Knowledge
require-
ments,
Method
selection,
Analysis
execution

Validity
scope

Narrow,
focused

Wider, focused
to given sub
goal

Wide, tied to
scope of
developed
scenarios

Knowledge
require-
ments,
Method
selection

145

146 A Requirements for knowledge discovery tasks

Table A.1: Summary of requirements for KD-tasks set by dif-
ferent types of decision situations (continued).

Automatic
Conrol
Functions

Tactical
Decision-
making

Strategic
Decision-
making

Affected
KD-
process
phase

Type of
decision

Objective,
Subjectivity
integrated to
knowledge

Objective /
Subjective
towards risk,
Multi-
objective

Multi-
objective,
Subjective

Knowledge
requirements

Mode of
support

Off-line
knowledge
extraction and
executable
model
construction

Off-line
knowledge
extraction and
human
interpretable
model
construcation

Off-line
knowledge
extraction and
human
interpretable
model
construcation

UI, Form of
results,
Method
selection,
Analysis
execution

On-line
adaptivity

On-line
support for
decision tasks

KD-
iteration
time

Days – weeks In on-line
support
minutes –
hours

In on-line
support: days

Method
selection,
Analysis
execution

In off-line
support days –
weeks

In off-line
tasks: > weeks

Decision
tasks

System state
identification,

System state
identification

Cost
estimation

Knowledge
requirements

System state
estimation

System state
estimation

System state
estimation
External
estimation
Cost
estimation

What
causes
information
need

Changes in
system inputs
and service
requests

Changes in
system inputs,
service
requests and
direct
surroundings

Changes in
external
factors

Knowledge
requirements

Changes in
system
surroundings

Changes in
system policies

System upsets

Changes in
system policies

Changes in
system
parameters

Business
upsets

147

Table A.1: Summary of requirements for KD-tasks set by dif-
ferent types of decision situations (continued).

Automatic
Conrol
Functions

Tactical
Decision-
making

Strategic
Decision-
making

Affected
KD-
process
phase

Changes in
system
parameters

Changes in
system
production
portfolio

Changes in
product
portfolio

System upsets

Knowledge
requirement
with respect
to the phase
of the
system
lifespan

Frequent at
the beginning
of the system
lifespan

Frequent
throughout the
system lifespan

Depends on
the business

Method
selection,
Knowledge
require-
ments,
Analysis
execution

Later
validation and
updating when
system
parameters,
product
portfolio, or
policies are
changed

Frequent
follow-up

Type of
available
data

Measurements
as time series

Measurements
and cost data
as time series

Aggregated
measurements,
benchmarking,
statistics

Preprocessing,
Method
selection, UI,
Form of
results

Event logs Event logs Free-text
reports

Semi-
structured
documents

Behavior and
business
models and
theories

Required
content

Dynamic
system models

Plans,
scenarios

Scenarios Knowledge
requirements

System state
descriptions

System state
descriptions

148 A Requirements for knowledge discovery tasks

Table A.1: Summary of requirements for KD-tasks set by dif-
ferent types of decision situations (continued).

Automatic
Conrol
Functions

Tactical
Decision-
making

Strategic
Decision-
making

Affected
KD-
process
phase

Required
type of KD
task results

Human
verifiable
mathematical
or logical
model

Models under-
standable for
humans

Any human
understand-
able
knowledge

Method
selection, UI,
Form of
results

Information
quality

Robustness Generalisability Coherency Postprocessing
and
Validation

Coverage

Required
validations

Response
testing

Comparison
against history

Comparison
against history

Postprocessing
and
Validation

Simulations Large-scale
simulations

Appendix B

QLC Queries

This Appendix lists the queries used in testing query evaluation against
QLC compressed files. Table B.1 lists queries applied to the small data
log files and Table B.2 lists queries applied to the large data log files. The
queries have been anonymised without changing field names or query struc-
ture.

149

150 B QLC Queries

T
a
b
le

B
.1

:
Q

ue
ri

es
to

da
ily

lo
g

fil
es

of
sm

al
l
da

ta
w

it
h

an
sw

er
si

ze
m

in
im

um
,

m
ed

ia
n

an
d

m
ax

im
um

.
T

he
qu

er
ie

d
va

lu
es

ha
ve

be
en

an
on

ym
is

ed
.

C
la

ss
N

o
Q

u
e
ry

M
in

M
e
d
ia

n
M

a
x

A
0

U
se

r:
sm

it
h

0
0

0
A

1
A

ct
io

n
:x

x
x
x
x
x

0
1

1
1

A
2

S
er

v
ic

e:
x
x
x
x

0
0

4
A

3
S
o
u
rc

e:
x
x
x
x

0
2
2

2
5
2

A
4

P
ro

to
co

l:
tc

p
&

&
S

p
o
rt

:x
x
x
x

0
0

1
A

5
S
er

v
ic

e:
x
x
x
x

&
&

D
es

ti
n
a
ti

o
n
:1

2
3
.1

2
3
.1

2
3
.1

2
3

0
0

8
7
8

B
6

O
ri
g
in

:f
o
o
.b

a
r.
x
x
x

3
4
1
1

5
1
3
2

1
5
5
8
7

C
7

S
er

v
ic

e:
h
tt

p
4
5

2
3
8

9
6
2

C
8

S
er

v
ic

e:
h
tt

p
&

&
In

fo
:x

x
x
x
x
x

3
8

5
0

3
2
5

C
9

S
er

v
ic

e:
h
tt

p
&

&
S

p
o
rt

:x
[0

-9
]+

0
2
1

1
0
7

C
1
0

S
er

v
ic

e:
h
tt

p
&

&
D

es
ti

n
a
ti

o
n
:1

2
3
.+

0
0

2
4

C
1
1

S
er

v
ic

e:
h
tt

p
&

&
S

p
o
rt

:x
[0

-9
]+

&
&

In
fo

:x
x
x
x
x
x

0
1
3

1
0
1

C
1
2

S
er

v
ic

e:
h
tt

p
&

&
S

p
o
rt

:x
[0

-9
]+

&
&

D
es

ti
n
a
ti

o
n
:1

2
3
.+

0
0

0
C

1
3

S
er

v
ic

e:
h
tt

p
&

&
S

p
o
rt

:x
[0

-9
]+

&
&

D
es

ti
n
a
ti

o
n
:1

2
3
.+

&
&

In
fo

:x
x
x
x
x
x

0
0

0

D
1
4

D
es

ti
n
a
ti

o
n
:1

2
3
.1

2
3
.1

2
3
.1

2
3

4
1
3

6
8
1

6
8
2

D
1
5

D
es

ti
n
a
ti

o
n
:1

2
3
.1

2
3
.1

2
3
.1

2
3

&
&

In
fo

:x
x
x
x
x
x

4
1
3

6
8
1

6
8
2

D
1
6

D
es

ti
n
a
ti

o
n
:1

2
3
.1

2
3
.1

2
3
.1

2
3

&
&

In
fo

:x
x
x
x
x
x

&
&

In
te

rf
a
ce

:x
x
x
x

4
1
3

6
8
1

6
8
2

D
1
7

D
es

ti
n
a
ti

o
n
:1

2
3
.1

2
3
.1

2
3
.1

2
3

&
&

In
fo

:x
x
x
x
x
x

&
&

In
te

rf
a
ce

:x
x
x
x

&
&

P
ro

to
co

l:
x
x
x
x

4
1
3

6
8
1

6
8
2

D
1
8

D
es

ti
n
a
ti

o
n
:1

2
3
.1

2
3
.1

2
3
.1

2
3

&
&

In
fo

:x
x
x
x
x
x

&
&

In
te

rf
a
ce

:x
x
x
x

&
&

P
ro

to
co

l:
x
x
x
x

&
&

R
u
le

:x
x

4
1
3

6
8
1

6
8
2

D
1
9

D
es

ti
n
a
ti

o
n
:1

2
3
.1

2
3
.1

2
3
.1

2
3

&
&

In
fo

:x
x
x
x
x
x

&
&

In
te

rf
a
ce

:x
x
x
x

&
&

P
ro

to
co

l:
x
x
x
x

&
&

R
u
le

:x
x

&
&

S
p
o
rt

:x
x
x
x

4
1
3

6
8
1

6
8
2

D
2
0

D
es

ti
n
a
ti

o
n
:1

2
3
.1

2
3
.1

2
3
.1

2
3

&
&

In
fo

:x
x
x
x
x
x

&
&

In
te

rf
a
ce

:x
x
x
x

&
&

P
ro

to
co

l:
x
x
x
x

&
&

R
u
le

:x
x

&
&

S
p
o
rt

:x
x
x
x

&
&

S
er

v
ic

e:
x
x
x
x

4
1
3

6
8
1

6
8
2

151
T
a
b
le

B
.1

:
Q

ue
ri

es
to

sm
al

l
da

ta
(c

on
ti
nu

ed
).

C
la

ss
N

o
Q

u
e
ry

M
in

M
e
d
ia

n
M

a
x

D
2
1

D
es

ti
n
a
ti

o
n
:1

2
3
.1

2
3
.1

2
3
.1

2
3

&
&

In
fo

:x
x
x
x
x
x

&
&

In
te

rf
a
ce

:x
x
x
x

&
&

P
ro

to
co

l:
x
x
x
x

&
&

R
u
le

:x
x

&
&

S
p
o
rt

:x
x
x
x

&
&

S
er

v
ic

e:
x
x
x
x

&
&

S
o
u
rc

e:
x
x
x
x

4
1
3

6
8
1

6
8
2

D
2
2

D
es

ti
n
a
ti

o
n
:1

2
3
.1

2
3
.1

2
3
.1

2
3

&
&

In
fo

:x
x
x
x
x
x

&
&

In
te

rf
a
ce

:x
x
x
x

&
&

P
ro

to
co

l:
x
x
x
x

&
&

R
u
le

:x
x

&
&

S
p
o
rt

:x
x
x
x
x
x

&
&

S
er

v
ic

e:
x
x
x
x

&
&

S
o
u
rc

e:
x
x
x
x

&
&

T
y
p
e:

lo
g

4
1
3

6
8
1

6
8
2

E
2
3

D
es

ti
n
a
ti

o
n
:1

2
3
.1

2
3
.1

2
3
.1

2
3

1
6
5
1

2
1
1
1

2
8
0
6

E
2
4

D
es

ti
n
a
ti

o
n
:1

2
3
.1

2
3
.1

2
3
.1

2
3

&
&

In
te

rf
a
ce

:x
x
x
x

1
6
5
1

2
1
1
1

2
8
0
6

E
2
5

D
es

ti
n
a
ti

o
n
:1

2
3
.1

2
3
.1

2
3
.1

2
3

&
&

In
te

rf
a
ce

:x
x
x
x

&
&

P
ro

to
co

l:
u
d
p

1
6
5
1

2
1
1
1

2
8
0
6

E
2
6

D
es

ti
n
a
ti

o
n
:1

2
3
.1

2
3
.1

2
3
.1

2
3

&
&

In
te

rf
a
ce

:x
x
x
x

&
&

P
ro

to
co

l:
u
d
p

&
&

R
u
le

:x
x

1
6
5
1

2
1
1
1

2
8
0
6

E
2
7

D
es

ti
n
a
ti

o
n
:1

2
3
.1

2
3
.1

2
3
.1

2
3

&
&

In
te

rf
a
ce

:x
x
x
x

&
&

P
ro

to
co

l:
u
d
p

&
&

R
u
le

:x
x

&
&

S
p
o
rt

:x
x
x
x

1
6
5
1

2
1
1
1

2
8
0
6

E
2
8

D
es

ti
n
a
ti

o
n
:1

2
3
.1

2
3
.1

2
3
.1

2
3

&
&

In
te

rf
a
ce

:x
x
x
x

&
&

P
ro

to
co

l:
u
d
p

&
&

R
u
le

:x
x

&
&

S
p
o
rt

:x
x
x
x

&
&

S
er

v
ic

e:
x
x
x
x
x
x

3
7
4

4
8
0

1
1
9
4

E
2
9

D
es

ti
n
a
ti

o
n
:1

2
3
.1

2
3
.1

2
3
.1

2
3

&
&

In
te

rf
a
ce

:x
x
x
x

&
&

P
ro

to
co

l:
u
d
p

&
&

R
u
le

:x
x

&
&

S
p
o
rt

:x
x
x
x

&
&

S
er

v
ic

e:
x
x
x
x
x
x

&
&

S
o
u
rc

e:
x
x
x
x

0
9
6

1
0
2

E
3
0

D
es

ti
n
a
ti

o
n
:1

2
3
.1

2
3
.1

2
3
.1

2
3

&
&

In
te

rf
a
ce

:x
x
x
x

&
&

P
ro

to
co

l:
u
d
p

&
&

R
u
le

:x
x

&
&

S
p
o
rt

:x
x
x
x

&
&

S
er

v
ic

e:
x
x
x
x
x
x

&
&

S
o
u
rc

e:
x
x
x
x

&
&

T
y
p
e:

lo
g

0
9
6

1
0
2

F
3
1

P
ro

to
co

l:
u
d
p

2
6
8
8

3
5
6
5

4
3
2
3

F
3
2

P
ro

to
co

l:
u
d
p

&
&

A
ct

io
n
:x

x
x
x
x
x

2
6
8
8

3
5
6
4

4
3
2
2

F
3
3

P
ro

to
co

l:
u
d
p

&
&

A
ct

io
n
:x

x
x
x
x
x

&
&

D
es

ti
n
a
ti

o
n
:1

2
3
.1

2
3
.1

2
3
.1

2
3

1
6
5
1

2
1
1
1

2
8
0
6

F
3
4

P
ro

to
co

l:
u
d
p

&
&

A
ct

io
n
:x

x
x
x
x
x

&
&

D
es

ti
n
a
ti

o
n
:1

2
3
.1

2
3
.1

2
3
.1

2
3

&
&

In
te

rf
a
ce

:x
x
x
x

1
6
5
1

2
1
1
1

2
8
0
6

F
3
5

P
ro

to
co

l:
u
d
p

&
&

A
ct

io
n
:x

x
x
x
x
x

&
&

D
es

ti
n
a
ti

o
n
:1

2
3
.1

2
3
.1

2
3
.1

2
3

&
&

In
te

rf
a
ce

:x
x
x
x

&
&

S
er

v
ic

e:
x
x
x
.+

1
6
2
7

2
0
8
7

2
7
8
2

F
3
6

P
ro

to
co

l:
u
d
p

&
&

A
ct

io
n
:x

x
x
x
x
x

&
&

D
es

ti
n
a
ti

o
n
:1

2
3
.1

2
3
.1

2
3
.1

2
3

&
&

In
te

rf
a
ce

:x
x
x
x

&
&

S
er

v
ic

e:
x
x
x
.+

&
&

S
o
u
rc

e:
x
x
x
x

0
2
0
4

2
1
6

152 B QLC Queries

T
a
b
le

B
.2

:
Q

ue
ri

es
to

da
ily

lo
g

fil
es

of
la

rg
e

da
ta

w
it
h

an
sw

er
si

ze
m

in
im

um
,

m
ed

ia
n

an
d

m
ax

im
um

.
T

he
qu

er
ie

d
va

lu
es

ha
ve

be
en

an
on

ym
is

ed
.

C
la

ss
N

o
Q

u
e
ry

M
in

M
e
d
ia

n
M

a
x

A
1

re
a
so

n
:x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
,

1
0

6
8

1
6
8

A
2

re
a
so

n
:y

y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y,

8
8
1

4
9
0

A
3

re
a
so

n
:.
+

zz
zz

zz
z,

1
9

1
3
5

4
3
7

A
4

u
se

r:
a
sm

it
h
,

0
1
2

5
9
0

A
5

u
se

r:
b
sm

it
h
,

2
6

1
8
8

5
0
9
2

A
6

a
ct

io
n
:x

x
x
x
x
x
,

0
1
4

5
5

B
7

a
le

rt
:x

x
x
x
,

7
7
6
7
4

5
9
5
6
2
3

1
1
1
9
8
5
0

B
8

a
ct

io
n
:y

y
y
y
y
y,

8
4
7
1

1
2
6
4
8

1
9
5
6
9

B
9

i/
f

d
ir

:x
x
x
x
x
x

&
&

p
ro

to
:x

x
x
x

&
&

ty
p
e:

lo
g
,

4
4
2
8

5
3
0
6

6
4
4
0

B
1
0

a
ct

io
n
:z

zz
zz

z
&

&
i/

f
d
ir

:x
x
x
x
x
x
x
,

1
5
1
2

1
9
7
6

3
3
2
5

C
1
1

a
ct

io
n
:v

v
v
v
v
v

&
&

i/
f

d
ir

:x
x
x
x
x
x
x
,

0
0

0

D
1
2

u
se

r:
[a

-z
A

-Z
0
-9

]+
,

5
3

4
9
9

5
3
3
6

D
1
3

a
ct

io
n
:z

zz
zz

z
&

&
u
se

r:
[a

-z
A

-Z
0
-9

]+
,

2
9

2
1
5

7
4
7

E
1
4

a
ct

io
n
:z

zz
zz

z,
2
3
7
6
1

5
6
9
4
1

1
2
8
7
6
9

E
1
5

a
ct

io
n
:z

zz
zz

z
&

&
i/

f
d
ir

:x
x
x
x
x
x
,

2
1
8
0
3

5
4
4
2
0

1
2
6
3
7
9

E
1
6

a
ct

io
n
:z

zz
zz

z
&

&
i/

f
d
ir

:x
x
x
x
x
x

&
&

i/
f

n
a
m

e:
x
x
x
x
x
x
,

2
0
3
7
7

5
2
6
6
9

1
2
4
9
4
4

E
1
7

a
ct

io
n
:z

zz
zz

z
&

&
i/

f
d
ir

:x
x
x
x
x
x

&
&

i/
f

n
a
m

e:
x
x
x
x
x
x

&
&

p
ro

to
:t

cp
,

2
0
3
7
7

5
2
6
6
3

1
2
4
9
3
6

E
1
8

a
ct

io
n
:z

zz
zz

z
&

&
i/

f
d
ir

:x
x
x
x
x
x

&
&

i/
f

n
a
m

e:
x
x
x
x
x
x

&
&

p
ro

to
:t

cp
&

&
ru

le
:x

x
&

&
ty

p
e:

lo
g
,

2
0
3
5
1

5
2
4
0
3

1
2
4
6
4
8

F
1
9

a
ct

io
n
:z

zz
zz

z,
2
3
7
6
1

5
6
9
4
1

1
2
8
7
6
9

F
2
0

a
ct

io
n
:z

zz
zz

z
&

&
p
ro

to
:x

x
x
x
,

1
9
0
7

2
3
3
4

3
0
8
1

153
T
a
b
le

B
.2

:
Q

ue
ri

es
to

la
rg

e
da

ta
(c

on
ti
nu

ed
).

C
la

ss
N

o
Q

u
e
ry

M
in

M
e
d
ia

n
M

a
x

F
2
1

a
ct

io
n
:z

zz
zz

z
&

&
p
ro

to
:x

x
x
x

&
&

ru
le

:x
x

&
&

ty
p
e:

lo
g
,

1
3
0
0

1
7
3
0

2
1
8
7

F
2
2

a
ct

io
n
:z

zz
zz

z
&

&
le

n
:x

x
&

&
p
ro

to
:x

x
x
x

&
&

ru
le

:x
x

&
&

ty
p
e:

lo
g
,

0
0

0

G
2
3

a
ct

io
n
:u

u
u
u
u
u
,

2
9
5

8
9
0

3
2
3
8
8

G
2
4

a
ct

io
n
:u

u
u
u
u
u

&
&

i/
f

d
ir

:x
x
x
x
x
x
,

2
9
5

8
9
0

3
2
3
8
8

G
2
5

a
ct

io
n
:u

u
u
u
u
u

&
&

i/
f

d
ir

:x
x
x
x
x
x

&
&

ty
p
e:

x
x
x
x
x
x
,

2
9
5

8
9
0

3
2
3
8
8

H
2
6

a
ct

io
n
:v

v
v
v
v
v
,

3
8
5
5
7

5
0
1
6
7
7

1
0
3
8
2
0
8

H
2
7

a
ct

io
n
:v

v
v
v
v
v

&
&

i/
f

d
ir

:x
x
x
x
x
x

&
&

p
ro

to
:u

d
p
,

2
6
6
8
1

4
7
3
8
5
9

1
0
1
2
4
1
4

H
2
8

a
ct

io
n
:v

v
v
v
v
v

&
&

i/
f

d
ir

:x
x
x
x
x
x

&
&

se
rv

ic
e:

x
x
x
x
,

6
6
7

4
3
6
9
4
6

9
7
7
1
3
2

H
2
9

a
ct

io
n
:v

v
v
v
v
v

&
&

i/
f

d
ir

:x
x
x
x
x
x

&
&

s
p
o
rt

:x
x
x
[0

-9
],

2
8
3

4
1
8
0
9
5

9
7
3
6
5
6

H
3
0

a
ct

io
n
:v

v
v
v
v
v

&
&

i/
f

d
ir

:x
x
x
x
x
x

&
&

s
p
o
rt

:x
x
x
0
,

1
1

5
5
8

3
3
0
4
0
5

I
3
1

a
ct

io
n
:v

v
v
v
v
v

&
&

i/
f

d
ir

:x
x
x
x
x
x

&
&

i/
f

n
a
m

e:
if
1
,

2
4
8
3
6

4
7
6
3
8

2
1
2
0
0
3

I
3
2

a
ct

io
n
:v

v
v
v
v
v

&
&

i/
f

d
ir

:x
x
x
x
x
x

&
&

i/
f

n
a
m

e:
if
1

&
&

p
ro

to
:u

d
p
,

1
3
7
7
1

2
8
5
9
8

1
8
4
9
7
7

I
3
3

a
ct

io
n
:v

v
v
v
v
v

&
&

i/
f

d
ir

:x
x
x
x
x
x

&
&

i/
f

n
a
m

e:
if
1

&
&

p
ro

to
:u

d
p

&
&

se
r-

v
ic

e:
x
x
x
x
,

6
3

7
9
4
5

1
6
3
3
5
0

I
3
4

a
ct

io
n
:v

v
v
v
v
v

&
&

i/
f

d
ir

:x
x
x
x
x
x

&
&

i/
f

n
a
m

e:
if
1

&
&

p
ro

to
:u

d
p

&
&

se
rv

ic
e:

x
x
x
x

&
&

s
p
o
rt

:x
x
x
x

0
1
2
9

7
6
4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

