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Abstract

Large-scale chromosome rearrangements such as copy number variants
(CNVs) and inversions encompass a considerable proportion of the genetic
variation between human individuals. In a number of cases, they have been
closely linked with various inheritable diseases.

Single-nucleotide polymorphisms (SNPs) are another large part of the ge-
netic variance between individuals. They are also typically abundant and
their measuring is straightforward and cheap.

This thesis presents computational means of using SNPs to detect the pres-
ence of inversions and deletions, a particular variety of CNVs. Techni-
cally, the inversion-detection algorithm detects the suppressed recombina-
tion rate between inverted and non-inverted haplotype populations whereas
the deletion-detection algorithm uses the EM-algorithm to estimate the
haplotype frequencies of a window with and without a deletion haplotype.
As a contribution to population biology, a coalescent simulator for simulat-
ing inversion polymorphisms has been developed. Coalescent simulation is
a backward-in-time method of modelling population ancestry. Technically,
the simulator also models multiple crossovers by using the Counting model
as the chiasma interference model.

Finally, this thesis includes an experimental section. The aforementioned
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methods were tested on synthetic data to evaluate their power and speci-
ficity. They were also applied to the HapMap Phase II and Phase III data
sets, yielding a number of candidates for previously unknown inversions,
deletions and also correctly detecting known such rearrangements.

Computing Reviews (1998) Categories and Subject
Descriptors:
G.3 Probability and Statistics: Probabilistic algorithms, Stochastic

processes
I.6.8 Types of Simulation: Discrete event
J.3 Life and Medical Sciences: Biology and genetics

General Terms:
Algorithms, Experimentation

Additional Key Words and Phrases:
Inversion, Copy-Number Variation, Coalescent Simulation
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CHAPTER 1

Introduction

Bioinformatics is a field that has formed in the overlap of biology

and information technology. The questions posed in bioinformatics

are typically of biological nature, but the methodology blends both

biology and computer science. The data-gathering rate in biology

– in particular genetics, proteomics and other fields concerned with

the functionality within the cell – has increased considerably due

to the advances in laboratory techniques. For example, the first

drafts of the human genome were released in 2001 [60, 134]. In

2007 another human genome sequence was published [74], and in

2008 eight human genomes and their differences were investigated

[64]. Wheeler et al. [139], Bentley et al. [11] and Wang et al. [136]

also investigated the human genomes of single individuals in 2008.

The next step further is the 1000 Genomes Project1 with one of

their goals being to sequence the genomes of at least 1000 people.

The larger the data sets are, the more beneficial automated

methods for analysing them are. For instance, analysing the hu-

man genome without computers appears as, and most likely would

be, a daunting task. Furthermore, the computations may be im-

possible in practice also with data sets of modest size, if the models

applied to the data are particularly complex.

As troublesome as their handling may be, these large genome

data sets enlighten us of a significant part of what contributes to

defining what we are. Someday, the information accumulated this

1http://www.1000genomes.org (Accessed 02.11.2009)
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2 1 Introduction

way may help doctors to create personal medicine by taking into

account the genetic factors of the patient. Overall, the desire to

improve the quality of life is one loosely set goal for studying bioin-

formatics.

The genome of all humans is not identical but varies in several

places. These parts having variations that are not shared by all are

called polymorphisms. The different forms that appear are called

alleles. If a polymorphism is present only in one form in a subpopu-

lation or a data set, it is called monoallelic or monomorphic. Single

nucleotide polymorphisms (SNPs), typically arising from point mu-

tations, have been an important part of research for a number of

reasons, in part because measuring them from people is relatively

straightforward and cheap. As the name implies, in a SNP the nu-

cleotide at one position may vary between people. There can be

at most four different variants per position, as there are only four

different bases in the DNA. Most of common SNPs, however, have

only two variants. SNPs have especially been used in analysing the

linkage between gene alleles that result in a notable change in the

individual phenotype, i.e., observable characteristics of the person,

such as a hereditary disease.

As the name implies, large-scale rearrangements involve larger

segments of chromosome that are, e.g., translocated, deleted or in-

verted. In later chapters the focus will be on the latter two cases. A

study that resequenced a diploid genome of an individual reported

that with the inclusion of larger genetic variants than SNPs, the

two copies of the same chromosome within an individual may have

only 99.5% similarity [74] in terms of matching basepairs. Of the

12.3 Mb of variant basepairs they discovered in their study, 74% of

them were due to non-SNP variation.

In part, the genetic difference between individuals is due to SNPs

involving only single nucleotides, whereas inversions and copy num-

ber variants (CNVs) frequently involve several thousands of base-

pairs long segments, sometimes even millions of basepairs. CNVs

are segments of the genome that appear in different numbers of

copies in different people. These structural variants have been re-

viewed, e.g., by Sharp, Cheng and Eichler [109] and Feuk, Carson

and Scherer [36]. Due to the extent of their contribution to ge-

nomic variance, it is therefore relevant to further investigate the

effects, presence and formation of these rearrangements, as they
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might play a larger than expected role in the diversity within the

human species and between other species.

In many cases, these rearrangements have been found to be

linked to a number of genetic diseases [110, 135]. Furthermore, they

may help the speciation process, i.e., how a population genetically

evolves into a new species [52, 66, 102]

Perhaps the most straightforward way of identifying the rear-

rangements is to resequence the genomes of a group of people, i.e.,

sequence chromosomes and compare the result with reference se-

quences to detect variants, although there are several lighter alter-

native methods, such as comparative genomic hybridization (CGH)

(e.g., [26]) and paired-end mapping (e.g., [70]). Resequencing is an

expensive process, especially if there is no guidance which areas

of the genome to investigate. By comparison, genotyping SNPs is

cheap and they are prevalent in most parts of the chromosomes.

Hence, they are a readily usable tool for directing the attention of

researchers to relevant areas of the genome by genome-wide asso-

ciation studies (e.g., [97, 114]) also when the underlying causes are

not rearrangements.

This brings us to the core of this thesis. The thesis presents

methods for detecting the potential presence of large-scale rear-

rangements from the human genome by means of whole-genome

SNP data analysis. After presenting the methods, they are applied

to real-world data sets, namely HapMap data sets to find putative

regions of such rearrangements.

These questions have been addressed recently, for instance, by

Bansal et al. [9] and Sindi and Raphael [112], who searched for

inversions based on SNP data, and McCarroll et al. [81], Conrad et

al. [20], Corona et al. [22] and Kohler and Cutler [68], who searched

for deletions based on SNP data. This thesis builds the deletion-

detection algorithms on the work of Corona et al., but some of the

results, in particular the inversion-detection algorithm presented in

this thesis, are the outcome of independent and parallel research

from 2004 to 2009.



4 1 Introduction

1.1 Some concepts of genetics and population

genetics

The main focus in this thesis is on the human genome and, to a

much lesser extent, on Drosophila genome. A genome represents the

information inheritable from the progenitors of an organism. In the

aforementioned organisms, these mean the deoxyribonucleic acid

(DNA) located in the nucleus of the cell and in the mitochondria.

Of particular interest are the autosomes, the chromosomes that are

typically present in every human in two nonidentical copies in the

nucleus. In humans there are 22 pairs of autosomes, as the sex

chromosomes X and Y are not autosomes.

The chromosomes of eukaryote have telomeres and centromeres.

In the classic drawing of a chromatid pair as an X, the part where

the two chromatids are tied together is the centromere. The telom-

eres, on the other hand, are the ends of the chromatids. A chro-

matid, in turn, is an identical replicated chromosome in cell division

that is tied together with its identical partner.

Strictly speaking, the term chromosome can be understood to

mean not only the DNA sequence it contains but also the proteins

bound to it. The scope of this thesis limits the model of a chro-

mosome to a string of characters in a four-letter alphabet, each

alphabet corresponding to one possible base. Because each base in

DNA is typically bound to its counterpart in the same alphabet,

these units are called basepairs.

While the study of the genome of one individual is interesting, so

is the investigation of those of a population. Population genetics

can be described as the field of studying the genetic composition of

a population and how it changes over time. It focuses on questions

such as how and why one trait gained frequency in a population.

Such quetsions are tightly linked into natural selection and the the-

ory of evolution. The approach taken is often a theoretical one,

and some population-genetical models have become well-known in

the field of bioinformatics. These models can be used in subsequent

analyses of the history of the population. For example, estimating

population histories based on genetic data often utilizes the coales-

cent in one form or the other as the population model. For instance,

Alter et al. [3] use the coalescent to investigate the past population
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size of gray whales where as Shapiro et al. [108] use it to reconstruct

the population history of bisons in Beringia and come to a conclu-

sion that bison population in Beringia likely had begun to shrink

before the arrival of humans. The topic of the coalescent will be

addressed in greater detail in Chapter 2.

SNP data are important for population genetics. They can be

used to decipher aspects of the history of the population and the

part of the genome the data are from. For instance, if the data are

highly homogeneous, the population might have had a temporary

decrease in size in the past, due to, e.g., an outbreak of a disease

or famine.

SNPs are at the core of this thesis. The methods in this thesis

consider only biallelic SNPs, i.e., SNPs that appear to have only

two different forms, excluding the possible deletion allele (where

the polymorphic nucleotide pair is not detected to be present). This

covers a large part of all SNPs, because it is unlikely for the same

basepair to undergo mutation twice.

As mentioned, humans typically have two copies of each au-

tosome, both with one instance of each SNP in the chromosome.

The alleles in different chromosomes usually cannot be measured

separately. Thus, in the case of biallelic SNPs, the results can be

written by using four values: two values for homozygous genotypes,

i.e., both alleles are measured to be the same, one for the heterozy-

gous genotype, i.e., the alleles differ, and one value for no call, or

failed genotype call.

The data of the type described above is called genotype data.

In genotype data it is not known which alleles are from the same

chromosome. If we have inferred how the differring alleles are di-

vided into the two parent-derived chromosomes and include this

in the data, we call them haplotypes or haploid genotypes. Each

haplotype is therefore the list of alleles in one chromosome. This

process of inferring the assignation of alleles to different haplotypes

is called haplotype inference or phasing and has been extensively re-

searched [80]. In trio data – in which we have genotyped the triplet

of the father, the mother and the child – this is easier than in data

collected from unrelated individuals. There are three types of data

relevant to this thesis: trio genotype data, genotype data from un-

related individuals and haplotype data. If the genotype data used

to infer the haplotypes in the last case was composed of trios, the
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1 1 1 0 0 1 1 1 0
1 1 1 0 0 1 1 1 0
1 0 1 0 0 1 1 1 0
0 0 1 0 1 1 0 0 1
1 1 1 0 0 1 1 1 0
0 0 0 1 0 0 0 0 1

Figure 1.1: An example of a SNP data set with 6 haplotypes and 9

biallelic SNPs after encoding the alleles with ones and zeros.

haplotype data has only the parental haplotypes.

With this terminology, we can now define the format of the data

we will use. For genotype data, the data set D is an n × m ma-

trix; it has n individuals, represented by their genotypes, and m

SNPs. Each element dij corresponds to the measured genotype of

individual i in SNP j. For some notational simplicity in later chap-

ters, we use also dj
i to denote dij . If the data are haplotype data,

we call n the number of haplotypes; thus, each individual is repre-

sented by two rows in the matrix. Because we consider only biallelic

SNPs, the haplotype data set is a binary-valued matrix. Missing

genotypes are typically in such case imputed based on the nearby

SNPs.

By relabeling all SNPs to use only alleles ‘0’ and ‘1’ in the hap-

lotype data, we lose some information on type of the SNP, but this

information is not needed by the methods used in this thesis.

A small example of a haplotype matrix is given as Figure 1.1.

In that, the fourth and sixth haplotypes have a different allele (0)

in the first SNP than the other haplotypes.

In population genetics, as the name implies, modelling the pop-

ulation is necessary. The model can then be used to investigate how

the population and its composition changes over time. A classic and

well-used population model is the Wright–Fisher model [37, 143].

Essentially, the model assumes a constant-sized population of hap-

lotypes, i.e., the haplotypes are not explicitly assigned into individ-

uals. The mating is random, i.e., the parent of each haplotype in

the preceding generation is sampled from a uniform distribution.

Another assumption is that the generations are discrete, i.e., all of

the previous generation dies out the moment all of the next gener-

ation is born. This haplotype population size is called the effective

population size, and will be discussed further in Chapter 2. Note
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that this is different from census population size, i.e., the num-

ber of haplotypes in the diploid population. In practice, there is

no random mating. The effective population size is the size of a

random-mating haplotype population that corresponds to the be-

haviour of the non-random-mating population. For a slightly more

verbose introduction, see, e.g., Wiuf, Schierup and Hein’s book [49,

Ch. 1.4, pp. 11–17].

The Hardy–Weinberg equilibrium [47, 138] is a well-known prin-

ciple about the distribution of genotype frequencies in a population.

Let us assume that we have a SNP with only two alleles present in

the population. Let these alleles be called 0 and 1 and their relative

frequencies in the population p and (1− p), respectively. Assuming

the alleles are selectively neutral, i.e., they do not affect how many

more offspring have the same allele in the next generation, and the

mating is random, then over multiple generations the proportions

of genotypes 00, 01 or 10, and 11 tend to p2, 2p(1−p) and (1−p)2,

respectively. This state is called the Hardy–Weinberg equilibrium.

Strongly deviating allele frequencies might suggest, for instance,

that the alleles are not selectively neutral.

When talking about the frequency of a SNP allele in the popu-

lation, the term minor allele frequency (MAF) is frequently used.

Formally, MAF is defined as the relative frequency of the rarer SNP

allele present in the sample in the case of a biallelic SNP. Thus, the

range of MAF is [0, 0.5] in a population.

If we investigate two SNPs at a time, the non-random depen-

dency between the allele frequencies of these SNPs in a population is

called linkage disequilibrium (LD) (reviewed, e.g., by Slatkin [113]).

SNPs close to each other are not independent of each other but they

are in linkage. Note that SNPs being in linkage disequilibrium does

not always mean SNPs are in linkage. The level of LD due to link-

age diminishes with increased distance between two SNPs. The

computation of LD from a collected data set also requires that the

haplotypes are known.

There are multiple different measures of LD for a pair of biallelic

SNPs. Let us consider the cases where pi,j correspond to the relative

haplotype frequencies of the first SNP being of allele i ∈ {0, 1}, the

second allele being j ∈ {0, 1} and the frequencies of the first and

second SNPs being pi,· and p·,j, respectively. Several different LD

scores can be expressed by using these variables (see, e.g., [29]). In
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this thesis, we limit ourselves to r2, also known as ∆2, a widely

used measure of LD, which is defined as

r2 =
(p0,0 − p0,·p·,0)

2

p0,· p1,· p·,0 p·,1
. (1.1)

The range of r2 is from 0 (independence) to 1 (complete correla-

tion).

The decrease in LD is typically a result of recombination or

crossing-over, in which material between the two non-identical chro-

mosome copies is exchanged. In recombination during meiosis, the

cell division process which produces haploid gametes (mature sperm

and egg cells), the non-sister chromatids form a chiasma; these are

the points where the non-sister chromatids exchange genetic infor-

mation. This can be likened to cutting the chromatids at a point

(the chiasma), exchanging the tails and then glueing them back

together. If SNPs are close to each other, it is less likely for a

recombination to occur between them and thus decrease their de-

pendency.

Recombinations occur at a variable rate in the genome; this

was reviewed e.g. by Kauppi et al. [63]. The genetic distance

between two loci in the genome is measured with centimorgans

(cM). One centimorgan represents the distance in which on aver-

age one crossover occurs once per 100 generations, or alternatively,

the chance of one percent that a crossover occurs between the two

loci in one generation. The physical distance, by comparison, is

measured in basepairs, abbreviated as ‘bp’. In this thesis physi-

cal distance is a more widely used concept than genetic distance.

Larger denominations of physical distance are ‘kb’ and ‘Mb’ for a

thousand and a million basepairs, respectively.

A large part of recombinations per generation occur in spots

called recombination hotspots [5]. These hotspots are typically a

few thousand basepairs long and separate regions of lower recom-

bination rate. Regions of particularly low recombination rate often

result in haplotype blocks in SNP data; we address these in greater

detail in Chapter 3.

Not all SNPs are measured in a genotyping process. There are

essentially two reasons for this: first, we might not be aware of the

presence of the SNPs and second, we might choose not to genotype

the SNP. Reasons for deciding to ignore a SNP include, e.g., high



1.2 Inversions 9

similarity to other nearby SNPs, in which case the SNP would not

add much information to the data set. This process of selecting

SNPs representative for a region is called tag-SNP selection, for

which there are several different algorithms (e.g., [17, 46]). The

process that finds which nucleotides have SNPs in a population is

called ascertainment ; the process may not find all SNPs.

There are multiple different methods of discovering SNPs, one

possible one being resequencing chromosome segments in multiple

persons and listing the multiallelic loci as SNPs. We call this a panel

ascertainment scheme, with the panel referring to the individuals

whose genome was resequenced. As is apparent, the level of LD

and the number of people for whom the resequencing is done can

strongly affect the number and type of SNPs that are included in

the sample. In effect, the SNPs with low MAF in the population are

least likely to be found, but they are also the most common type of

SNPs present in the genome according to a neutral mutation model

(e.g., [124]).

1.2 Inversions

Inversion polymorphisms are large segments of a chromosome that

occur reversed for a subpopulation [36, 53, 109]; known inversions

in the human genome typically range in length from hundreds of

basepairs to roughly 5 Mb. A basic illustration of an inversion

is shown in Figure 1.2. The two strands in the figure represent

different arrangements, i.e., different orders for the genetic material

in the region.

The origins of different types of structural variation, including

inversions, has been reviewed in [78]. One general mechanism that

may result in inversions is called nonallelic homologous recombina-

tion or NAHR. In that, a recombination goes wrong because low

copy repeats (LCR) are mistaken for each other and this results in

wrong parts of chromosome being joined together in a recombina-

tion. Typically these result in segmental deletions or duplications.

In the case of producing an inversion, the low copy repeats are

inverted.

An alternate theory as for how inversions may come about is

given by Ranz et al. [99] in Drosophila melanogaster and two re-
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Inversion
polymorphism

Figure 1.2: An illustration of two matched strands of non-sister

chromatids with and without an inversion. The colours of the

spheres correspond to homologous loci.

lated species, suggesting that the LCRs observed near inversion

breakpoints are the result and not the cause of the changes result-

ing in an inversion.

A number of inversions have been associated with different hu-

man diseases [4]. It has also been argued that inversions and other

chromosome rearrangements facilitate speciation, although the ex-

tent and method of their effect is uncertain [52, 66, 102].

A number of articles presenting previously unknown large-scale

rearrangements in the human genome have been published, e.g.,

[1, 11, 64, 70, 74, 136, 139]. In some cases, the rearrangements

were discovered by resequencing the complete genomes of at least

one person. Complete resequencing of a genome is, however, still

more expensive than whole-genome genotyping of an assay of SNPs.

As mentioned, there are also other methods for detecting such re-

arrangements.

Originally, inversions were investigated in the genus Drosophila,

in which a large amount of recent research pertaining to inversions

has been done. For instance, according to Ranz, Casals and Ruiz

[98], the rate of inversions fixed (so that the new arrangement be-

comes the only arrangement present) in the population per millions

of years in the genus is estimated to be from 0.9 to 1.4 in the whole

genome, which they report to be the highest rate found so far in

eukaryotes.

Whereas haplotypes and genotypes involve single chromosomes,

the characterization of all the chromosomes together is called a

karyotype. In this thesis, the term appears only in reference to in-

version homokaryotypes and heterokaryotypes, the former meaning
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the individual has the inversion regions of both chromosomes of the

same orientation whereas the latter means one chromosome has the

inversion and the other does not. These are also frequently called

homozygous and heterozygous for inversion.

From the perspective of this thesis, heterokaryotypes play an

important role in the genetics of the human population. A signif-

icant part of the effects the inversions have in populations is how

they affect recombinations. Let us consider an inversion heterokary-

otype undergoing meiosis, i.e., a diploid cell dividing twice to pro-

duce four haploid cells. If there are no chiasmata formed within

the inversion region, nothing happens differently from meiosis in

homokaryotypes.

Regardless, let us now assume that one chiasma forms within

the inversion region in a part of the meiosis process called prophase

I. This situation is illustrated in Figure 1.3, where the different se-

quence orientations in a heterokaryotype result in the formation of

an inversion loop. When the crossover is resolved and the chro-

matids move apart in anaphase I, the strand that was involved in a

crossover has two centromeres which are pulled into different cells.

The strand, a dicentric bridge, breaks, effectively leaving the two

cells without a considerable portion of the arm of the chromosome.

In practice, the cells that receive these remnants will not become

viable gametes [94, pp. 242–244].

The inversions therefore effectively suppress recombinations within

the inversion region in heterokaryotypes. Double recombinations,

i.e., the ones with two chiasmata, within the inversion region can

produce viable recombinants. Nonetheless, this is rather rare. Gene

conversions are another method by which genetic material can be

exchanged, although in such cases the gene conversion tracts, the

genetic material that is exchanged, are typically much shorter [89]

than what is exchanged in double recombinations.

This has certain effects on nucleotide variability within and near

the inversions. These have been investigated in particular in Dro-

sophila both by simulations or in theory [88, 89] and real-life exper-

iments [87, 103]. The inversions have a greatly reduced gene flow,

i.e., exchange of genetic material, between the two arrangements

within the inversion; the effect is greater the closer the locus is to

the nearest breakpoint.

Let us now define some further terms for use in later chapters.
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Figure 1.3: Part of meiosis with one chiasma in a heterokary-

otype. The dicentric bridge resulting from the crossover is broken

in anaphase I and the acentric fragment is lost. The picture has

been adapted from [94, pp. 243]. Note that the upper and lower

strands tied to the lower centromere have been exchanged in this

figure in anaphase for readability.
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Figure 1.4: An illustration of chromosomes with and without a

deletion.

Ancestral-type lineage/haplotype and inversion-type lineage/haplo-

type refer to two different arrangement orientations in an inversion

region. These terms are used only in cases in which we know which

is the ancestral orientation, i.e. the original prior to the inversion

event. These are not typically used outside Chapter 2, as the an-

cestral orientation is often difficult to ascertain outside simulations.

To cater for the situations in which the aforementioned terms

are not applicable, we use two other terms: standard-type lin-

eage/haplotype and alternate-type lineage/haplotype. For inversions,

the former use the orientation used in the human reference sequence

or any other reference sequence by which the SNPs are ordered. The

latter represents the lineages that have the orientation opposite to

standard-type. In all cases, the types of such haplotypes are some-

times called arrangements due to the different order of homologous

material inside them.

1.3 Deletions

In the case of a deletion polymorphism, a part of the chromosome

is missing from some people, as shown in Figure 1.4. The length

of this deleted part can vary greatly from one basepair to hundreds

of kilobases and even larger. Deletions are a part of a larger group

of polymorphisms known as copy number variants (CNVs). In the

past couple of years, they have been extensively researched [135].

Deletions can affect the genes and their expression in a number

of ways, but if the deletion is a short one, it may reside outside

genes without affecting the genes and their expression levels. A
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deletion within a gene can effectively prohibit the protein it encodes

from functioning properly. If the deletion length in basepairs is not

divisible by three, the rest of the codons in the gene are in practice

nonsensical and do not bear a resemblance to the original gene.

For example the gene allele resulting in blood type O is an allele

of blood type A except for one missing nucleotide [144]. This is

sufficient to effectively disable the gene.

Typically, deleted segments shorter than 1000 bp are considered

indels, short for insertions and deletions [36, 135]. In this thesis,

we do not make a difference between indels and CNVs, when the

latter does not entail multiple copies of the locus.

Longer deletions may remove whole genes from the chromosome.

For example, RhD negativity in Europe is often due to a complete

deletion of a gene [8]. As with inversions, there are different dis-

eases associated with deletions [131, pp. 274–280]. Many of them

are not typically inherited diseases but due to de novo deletions,

i.e., recurrent deletions that the parents themselves do not carry.

The focus in this thesis, however, is on neutral deletions that are

inherited from the parents, although the results for detecting dele-

tions in unrelated individuals can also be used for identifying de

novo deletions. This is conditional on the novel deletions affecting

the same SNPs.

Furthermore, we focus on deletions that are typically longer than

1 kb. This is because we investigate only indirect evidence of the

presence of deletions, more specifically SNPs, that typically are not

closer than some hundreds of basepairs to each other even in dense

data sets. The resolution of our method is therefore not sufficient for

identifying shorter deletions. Hence, for instance, the one-basepair

long deletion that resulted in blood type O would likely not be

recognized.

1.4 HapMap data set

The International HapMap Project [127] has, in the past years,

played an important role in bioinformatics. To quote the abstract of

the publication describing the project [127], the goal of this project

“is to determine the common patterns of DNA sequence variation

in the human genome and to make this information freely available
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in the public domain.”

This goal is accomplished, e.g., by genotyping millions of SNPs

over the human genome, phasing them to resolve the underlying

haplotypes and estimating recombination rates across the genome.

All these data are available on the project’s website2.

Because of the availability of the HapMap data, they have been

used in several studies, (e.g., [9, 22, 68, 112, 126]). This thesis also

uses the the HapMap data sets [128, 129] as real-world data for the

methods presented in the previous chapters.

The data have been released so far in three phases: the first

and the second phase contained SNP data from four subpopula-

tions while the third phase added a number of other subpopula-

tions. The third phase also increased the number of samples in

some subpopulations.

The used HapMap data consist of the four populations that were

present already in phases I and II: CEPH (people living in Utah

with northern and western European ancestries, abbrev. CEU),

people living in Yoruba in Ibadan, Nigeria (abbrev. YRI), Han

Chinese from Beijing, China (abbrev. CHB) and Japanese in Tokyo,

Japan (abbrev. JPT).

In phases I and II, the CEU and YRI data sets consisted solely of

trios whereas JPT and CHB data sets contained only unrelated indi-

viduals. In phase III, JPT and CHB data sets still contained only

unrelated individuals, but CEU and YRI data sets now included

also duos (one parent and a child) and unrelated individuals.

1.5 Main contributions and organization

With the related biological concepts explained, we can now con-

sider the main contributions of this thesis. The thesis focuses on

presenting novel and improved methods for detecting large-scale

rearrangements from SNP data and a detailed analysis of publicly

available data sets.

• Chapter 2 introduces the theory behind simulating chromo-

some segments with paracentric inversions and a publicly avail-

2http://www.hapmap.org (Accessed 02.11.2009)
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able coalescent simulator for that purpose. J.K. devised and

implemented the simulator.

• In Chapter 3 a novel method of discovering potential inversion

polymorphism regions from SNP data collections is developed.

J.K. participated in developing the test score. This research

was done in collaboration with Mikko Koivisto, Heikki Man-

nila and Leena Peltonen.

• In Chapter 4 we improve the time complexity of a haplotype

frequency estimation method adapted by Corona et al.[22] for

detecting deletions. J.K. participated in correcting the formu-

lae of the efficient EM-algorithm and devised the method for

determining the deletion end-points. This research is joint

work with Jaana Wessman, Mikko Koivisto and Heikki Man-

nila. Preliminary work on the topic was done by Sanna Sipilä

and Suvi Hiltunen.

• In Chapter 5 the methods described in Chapters 3 and 4 are

first tested on synthetic data sets. HapMap Phase II and

III data sets are then examined for inversion and deletion

polymorphisms. The experimental setup was chosen mostly

by J.K. with the exception of the deletion simulations, which

was chosen as a subset of the experiments done by Kohler and

Cutler [68]. All experiments were conducted by J.K.

Finally, in Chapter 6 we review the contributions of this the-

sis and discuss some future topics to pursue based on the results

presented.



CHAPTER 2

Coalescent simulation of

inversions

In this chapter, the basics of coalescent simulation are reviewed. A

model for simulating multiple chiasmata in one recombination event

in continuous time approximation is presented. It is shown how to

incorporate a paracentric inversion model in coalescent simulation.

Finally, the modelling of effective subpopulation sizes in case of an

inversion is briefly considered.

2.1 Coalescent simulation

Due to its computational efficiency, the coalescent has become a

widely used tool in theoretical population genetics ever since the

introduction of Kingman’s coalescent [65], a continuous-time ap-

proximation of the exact discrete time Wright–Fisher model. The

coalescent process forms a tree similar to a phylogenetic tree of a

segment of a chromosome, in effect being the genealogy for that

segment. It is this trace of genetic material backwards in time to

the single ancestor that is the coalescent. The coalescent has been

used, for example, to estimate recombination rates [121] and to

produce realistic synthetic SNP data sets [104] to measure the false

positive rate of, e.g., deletion detection methods [68]. It has also

been used with inversions [88] to estimate gene flow rates between

different arrangements.

17
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One
generation{

Present−day haplotypes

Past

Figure 2.1: An example of a simple genealogy in a population of

haplotypes. The gray nodes are haplotypes that are inherited by

at least one present-day haplotype.

In this section, we briefly review the coalescent, the recombina-

tion model that extends the coalescent [55] and the backwards-in-

time simulation of a chromosome segment.

The idea in the coalescent is to simulate n haplotype lineages

backwards in time until the most recent common ancestor (MRCA)

is found. The simulation is computationally efficient, and there have

been several extensions to the basic model introducing functionality

such as gene conversion [141], subdivided populations with migra-

tion (e.g., [49, 91]) and variable population size over time, reviewed

for example by Donnelly and Tavaré [31].

See Figure 2.1 for an example of a small population of haplotypes

without recombination. In it, the 16 present-day haplotypes of

the population have only five ancestors five generations ago. Note,

however, that this genealogy was not produced strictly according to

the Wright–Fisher model assumptions, as the number of offspring

for each haplotype in each generation was not sampled from the

appropriate distribution.

The simulation can be carried out in two steps: first by generat-

ing the tree and then sampling the mutations in the tree branches.

We now look at how the tree is constructed.

Let us first assume that all the generations are discrete, and the

population in each generation is represented by 2Ne haplotypes, or

Ne diploid individuals. We call Ne the effective diploid population

size. In effect, accounting for diploid individuals is as simple as

only multiplying the number of individuals by two. This is shown
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Figure 2.2: Two examples of coalescent trees of five samples. Each

coalescence event is depicted as a joining of two branches.

in, for example, [91].

The Wright–Fisher model assumes random mating, i.e., the par-

ent of each haplotype in the succeeding generation is sampled in-

dependently from all the haplotypes in the preceding generation.

Ignoring the possiblity of recombination, each haplotype is a copy

of one haplotype in the preceding generation. This means that

any two haplotypes in the same generation have the same parent

haplotype with probability 1/(2Ne). In such case, we say that these

two lineages coalesce in the preceding generation and call this a co-

alescence event. These events define the genealogy of the simulated

haplotypes. Note that the model is still defined in terms of random-

mating haplotypes and not diploid individuals. In the terms of the

latter, coalescing would mean that two children inherited the same

haplotype from the same individual.

The generation of the genealogy can now be done by sampling

the time for the next coalescence event, then randomly selecting two

lineages and joining them into one, and repeating this until only one

lineage remains: the MRCA. At this point the lineages have formed

a coalescent tree, a binary tree where each non-leaf node represents

a coalescence event. Figure 2.2 displays two coalescent trees for

n = 5. Each leaf represents one haplotype in the sample and the

root the MRCA. In essence, this is the phylogenetic tree of the

haplotypes.

By simulating the genealogy backwards in time, we simulate

only the necessary parts of the genealogy within the population.

In forward simulation, some of the genetic material in the past

generation may be lost before the present-day sample, which can

mean unnecessary work in simulating the extinct lineages.
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We now look at how the times for the coalescence events are

sampled. From the Wright–Fisher model described here and in Sec-

tion 1.1 the waiting time for the most recent coalescence event can

be derived to be geometrically distributed with parameter 1/(2Ne),

i.e., the probability of one pair of lineages coalescing t generations

into the past is

Pr(coalescence at t) =

(

1−
1

2Ne

)t−1 1

2Ne
.

To simplify the sampling of the waiting time until the next coa-

lescence event and in the process eliminating the case of multiple

coalescence events happening simultaneously to simplify the simu-

lation, we instead approximate the discrete geometric distribution

with the exponential distribution with the parameter 1/(2Ne) when

Ne is large enough. The point density function for coalescence is

now

fexp(t;
1

2Ne
) =

1

2Ne
e−

t

2Ne .

Furthermore, we rescale the time units from generations to 2Ne

generations per unit and hence can use Exp(1) to model the wait-

ing time for the first pair of lineages to coalesce. This has the

effect of eliminating the effective population size from the sampling

equations if the population size is constant.

In continuous-time simulations, each of the pairs of haplotype

lineages coalesce independently. Let us denote by L(t) the set of

lineages we are tracking at time t, i.e., the lineages that still need

to coalesce before finding the MRCA. Now, when simulating all

the |L(t)| lineages, the parameter for the exponential distribution

is
(|L(t)|

2

)

if the time scaling is 2Ne generations per one unit of

time. The parameter comes from each pair of lineages coalescing

independently. For now, we consider Ne a constant. As previously

mentioned, it can also change with time, in which case we use Ne(t)

to denote the effective population size at time t. In such case, the

time units are typically measured by 4Ne(0) or 2Ne(0) generations

with time 0 corresponding to the present and time increasing into

the past.

The simulation of recombinations is important for many appli-

cations of coalescent simulators that need to simulate parts of au-

tosomes. In Hudson’s model [55], recombination events occur at a
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given rate for a lineage per generation. Each event models the for-

mation of exactly one recombination breakpoint, and the recombin-

ing lineage always recombines with a lineage that is not currently

in set L(t). We denote the recombination rate per generation in

the whole simulated sequence by rl, where l is the simulated se-

quence length minus one (in base pairs) and r is the probability of

a recombination occurring between any two adjacent bases per one

generation. This notation assumes that the recombinations occur

between any two adjacent bases at equal probability.

Similarly to the case of coalescence events, recombinations are

assumed to happen independently of each other, which results in a

geometric distribution for the waiting time for the first recombina-

tion event in generations. This waiting time distribution can also

be approximated in continuous-time by the exponential distribution

with parameter rl|L(t)|, when the time is measured in generations.

The intuitive meaning behind this parameter is the expected total

number of recombination events in one generation.

Each recombination event in Hudson’s model splits a lineage

into two lineages that would have to be tracked in the simulation.

This results in the tracked lineages having segments that are not

inherited by any of the n haplotypes in the simulated sample. The

rest of the genetic material in the two parent haplotypes formed

another haplotype, but this was not any of the tracked haplotype

lineages, which means it does not have offspring in the present-day

sample. We call those segments that are inherited by the present-

day sample the ancestral material of the lineage.

The introduction of recombination causes the haplotype histo-

ries no longer be described as trees, but as ancestral recombination

graphs (ARG) [43], as lineages split by recombination may coalesce

with other lineages before coalescing together again. Hence, the re-

lationships between haplotypes are described as graphs rather than

a single tree. The genealogy of any single position in the simulated

segment can still be represented with a coalescent tree, which can

be viewed as a subgraph of an ARG. Figure 2.3 shows a simple ARG

where there has been one recombination at point 0.2 in the lineage

of ‘c’. The first part of the segment coalesced with the common

ancestor of lineages ‘a’ and ‘b’ while the second part coalesced with

lineage ‘d’. The coalescent tree for the first part contains the arc

labeled (1) but not the arc (2), whereas the coalescent tree for the
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(2)
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a b d

Figure 2.3: An example of an ARG with one recombination event

in lineage ‘c’ at point 0.2.

latter part contains (2) but not (1).

To further simplify matters, we consider the infinite-sites model,

in which the simulated segment is an interval of the real axis. Hence

each crossover will always happen at a different position. A more

important difference to the finite-sites model is that each mutation

always occurs at a different place.

Let us now consider the division of the ancestral material by re-

combination more formally. Let the simulated segment correspond

to [0, 1) ⊂ R. The lineage in edge u of the ARG carries the ances-

tral material a(u) ⊂ [0, 1). After a recombination has taken place

in position c ∈ (0, 1), the material is split into two lineages v and w

so that a(v) = a(u)∩ [0, c) and a(w) = a(u)∩ [c, 1). An example of

this is shown in Figure 2.4. Note that a(v) or a(w) can be empty;

in such case, that lineage need not be simulated further.

The effects of a gene conversion greatly resemble a recombina-

tion event with two breakpoints. In a double crossover genetic ma-

terial is exchanged but in a gene conversion the genetic material is

copied from one DNA molecule to another. After a gene conversion

event, the gametes are either like the original or they look like they

had undergone a double crossover. Hence, gene conversions can be

modelled as if they were double crossovers with different rates of

occurrence and possibly different distributions for the breakpoints.

However, the length of the gene conversion tract is typically consid-

ered different from what would be normal for two adjacent crossover

points during the same meiosis. We use the model proposed by Wiuf
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0 1c

a(w)

a(v)

a(u)

Figure 2.4: An example of recombination in Hudson’s model. The

simulated recombinational breakpoint c splits the ancestral mate-

rial, marked in black, in lineage u into lineages v and w. White

denotes material that is not inherited by any present-day haplo-

type. The simulation proceeds backwards in time, i.e., u and c

determine v and w.

and Hein [141], in which the length of the tract is modelled by the

exponential distribution.

After generating the complete ARG, the addition of neutral mu-

tations into the model is straightforward. Each edge in the ARG

has a length, measured in generations. Let us denote by µ the

mutation probability of a single nucleotide per generation. By as-

suming mutations to happen independently at a certain rate per

2Ne generations, specifically 2Neµ(l+1) with µ being the mutation

rate of one nucleotide per generation and l+1 the sequence length,

we can sample the number and the positions of mutations that oc-

curred in that edge; the former from a Poisson distribution and the

latter from the uniform distribution, assuming constant mutation

rate over the simulated segment. If we constructed the coalescent

tree for the position of one simulated mutation, any sampled hap-

lotype would have the mutated allele if and only if the edge that

introduced the mutation was on the unique path from the leaf to

the root. This is depicted in Figure 2.5 in the case of two mutations

(the circle and the square in the coalescent tree). A white shape

corresponds to the ancestral allele and a black shape to the new

allele.
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Figure 2.5: An example of how two mutations (the square and the

sphere within the tree) simulated in the coalescent tree affect the

present-day haplotypes. At leaves, the black shapes correspond to

the new allele and the white shapes the ancestral allele.

2.2 Inversions in the coalescent

With certain adjustments, coalescent simulators can be used to

simulate data containing inversion polymorphisms. The resulting

framework resembles the one of Zöllner and von Haeseler [148] for

disease gene simulation, with the greatest difference being in the

interaction between the two subpopulations in recombinations. In

both cases, the simulation consists of two separate subpopulations

so that the lineages cannot coalesce across the subpopulation divi-

sion. We track the set memberships of the tracked lineages; we call

these sets lineage sets, one for ancestral-type lineages and one for

inversion-type lineages, denoted by LA and LI, respectively.

At some point of the simulation, i.e., after proceeding far enough

backwards in time, one subpopulation has converged into a single

tracked lineage in which the segregating mutation, in this case the

inversion, occurs. This lineage, which corresponds to the original

haplotype in which the segment was inverted, is then moved to

the other subpopulation, after which the simulation continues as if

there was only one subpopulation.

The paracentric inversion model, where the ‘paracentric’ denotes

that centromere is not within the inversion region, is built on three

rules:

1. The child haplotype inherits from its parent haplotype, or
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haplotypes in the case of recombination, exactly one copy of

each basepair. This excludes the meiotic products with two

or no centromeres.

2. The inversion at this position is a unique event in the popu-

lation history.

3. The chromosomes form chiasmata at the same rate in all in-

dividuals, regardless of their karyotype.

We also assume infinite-sites model: mutations and crossovers oc-

cur always at different positions and inversion end-points are never

crossover points.

The first rule is implicit in coalescent simulation, but is stated

here separately, as it is relevant when modelling recombinations

with inversions. Sampling recombinations at their proper frequency

is not as straightforward as it was without inversions due to reasons

described in Section 1.2. The easiest way to do this is to suppress

recombination events that would produce inviable meiotic products

by rejection sampling. For a viable recombination as defined by rule

1, both inversion breakpoints in the recombination product must

have been inherited from the same lineage set. This equals to either

the recombination occurring in a homokaryotype or having an even

number of simulated breakpoints within the inversion segment in a

heterokaryotype. This is addressed in greater detail in Section 2.2.2.

In real-life genomes, e.g. in the human genome, inversions are in

many cases recurrent events, but unique inversion events do exist as

well [130]. We do not consider the former case here, as modelling the

inversions as unique events suffices in many cases. Hence, rule 2 is

not overly limiting while still simplifying the model. The rule could,

however, be discarded by, e.g., modelling the repeated inversion

events by the way of Zöllner and von Haeseler [148].

Let us denote by tI the time at which the inversion event took

place. Note that it is necessary that before the simulation passes tI,

the inversion population has found its MRCA, if the inversion-type

haplotype population growth has been reasonably modelled.

If we needed to simulate only the segment enclosed within the

inversion polymorphism, the inversion event can, for the most part,

be represented as the birth of a new subpopulation at time tI, and

the inversion-type effective subpopulation size 2N I
e(tI) being 1 at
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the time of inversion formation, i.e., the subpopulation consists of

only one haplotype. This simple simulation is not sufficient for all

purposes, as it does not model gene conversion, double crossovers

or increased LD due to suppressed recombinations. Also the effects

to the LD levels near the breakpoints cannot be modelled this way.

Let us consider an implementation of the model and assume that

parameters tI, number of sampled haplotypes from both popula-

tions, and subpopulation growth models are given to the simulator.

There are four base types of events in the simulation: an inversion

event, coalescence events, recombination events and gene conversion

events. Let us now review how these events are simulated.

The first event type is straightforward to simulate. At time tI, all

lineages in LI are coalesced into one lineage, which is then moved

to LA. Ideally the inversion lineage set should contain only one

lineage at that time due to the inversion arrangement frequency

approaching 1, as rule 2 assumed the inversion was unique and

hence had a single progenitor.

The simulation of coalescence events remains straightforward.

Because the inversion is modelled as a unique event, the coalesc-

ing is limited to only between lineages of same type. Even though

the two haplotype populations coexist in the same diploid popula-

tion, the time scaling on the coalescence events is the same as if

the populations were completely independent. This is because the

scaling for the waiting time is derived from the number of possible

ancestors; each inversion-type lineage has as many possible par-

ents in the preceding generation as is the inversion-type effective

population size.

Hence, the lineages in the two sets coalesce independently of each

other, and especially independently of the effective population size

of the other set. The coalescing rate is therefore different, because

the effective subpopulation sizes are most often not the same.

Recombination events are a more difficult case. To simulate

them, the actual recombination event is replaced by a chiasma for-

mation event, described next.

2.2.1 Multiple chiasmata formation model

The suppression effect the inversion polymorphism has on the re-

combination rates in the simulated segment is not straightforward.
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As stated in various articles on recombination and gene conver-

sion near and within inversion polymorphisms in Drosophila, double

crossovers and gene conversions are important factors in modelling

the gene flow [88, 89] between the two arrangements.

The frequently used Hudson’s simulation model of recombina-

tions [55] does not exactly simulate multiple crossovers within one

generation, but instead creates multiple single recombination events

within a narrow time frame. In the traditional setting, this differ-

ence is not as important as it is in simulating inversions, as the

probabilities of double crossovers occurring are small, and these

crossovers can still be decomposed into three separate events, two

recombination and one coalescence, thus not completely prohibit-

ing such events. The total probabilities of such events, however, are

different from the actual probabilities.

Even ignoring this inaccuracy, the approach used in Hudson’s

model is insufficient for accurately simulating inversion regions:

double crossovers cannot be accurately modelled for simulating in-

versions without considering them, or multiple crossovers in general,

explicitly. This is because already the first step in the ‘chained’

model results in an inviable gamete that could not have been the

parental haplotype.

To this end, Hudson’s recombination model is here adapted for

simulating multiple crossovers at a time, without giving up the

continuous time approximation. We can see Hudson’s model as

the simulation of the formation of one chiasma. By comparison,

the model presented here simulates the formation event of at least

one chiasma, where the chiasmata are also not independently dis-

tributed within one generation. In this section, we consider only the

case where there is only one population and no inversion present.

Similar to the parameterization of Hudson’s model, let r be the

probability of one recombination breakpoint forming in one genera-

tion between two adjacent bases assuming no inversion interference,

as follows from rule 3. In the following, u denotes the lineage of

the haplotype for which the crossovers are proposed and Lα(t) the

lineage set in which u is.

Note that another way of specifying r would have been to con-

sider the recombination rate of the complete simulated sequence,

and select the parameter conversion function from Hudson’s model

to the multiple chiasmata model so that the probability of the sep-
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arate ends of the simulated segment recombining would be equal

in the two models. In the following, we do not consider this ap-

proach of defining a model. Because double recombinations within

segments elementary coalescent simulators can simulate are rare,

the difference between the two parameters gained through different

conversion functions would not likely be very large.

For simplicity, we do not consider chromatid interference mod-

els in which the probabilities of the participation of the four chro-

matids in chiasmata are not identical. We decide for each chiasma

independently and with equal probabilities whether they affect the

sampled chromatid or not. In practice this means that we pick

one type of strand from the centromeric end of the simulated chro-

mosome segment and track it to the telomeric end, switching the

parental chromatid type with probability 1/2 whenever we come

across a simulated chiasma.

This is not biologically accurate for all species; e.g. the results

of Navarro et al. [89] show that in Drosophila, the chiasmata out-

side the inversion affect the proportion of produced viable gametes.

However, this assumption simplifies equations.

We now take a look how the ancestral material is split in the

case of multiple crossover breakpoints. Let us call the simulated

breakpoints affecting the sampled chromatid c2 < . . . < cm+1, and

define the vector c = [0, c2, c3, . . . , cm+1, 1].

Now, define

sA
j (c) :=

⌊(m+2−j)/2⌋
⋃

i=1

[c2i−1+j , c2i+j), j = 0, 1. (2.1)

The superscript A refers to the ancestral-type orientation. The

case of inversion-type orientation is handled later. The function

defines the subset that comes from parental chromatid of type j.

Thus the two sets sA
0 (c) and sA

1 (c) are composed of interleaved

disjoint intervals, with the crossover breakpoints being the interval

end-points.

Note that sA
0 (c)∩sA

1 (c) = ∅ and sA
0 (c)∪sA

1 (c) = [0, 1). With these

alternating masks, the ancestral material in the parent haplotypes

of lineage u are now a(v) := sA
0 (c)∩ a(u) and a(w) := sA

1 (c)∩ a(u).

One aspect of chiasma placement ignored by Hudson’s model is

chiasma interference or the model of dependence for the chiasmata
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0 1

a(w)

a(v)

a(u)

cc1 2

Figure 2.6: An example of multiple chiasmata in a simulated se-

quence.

formed in the same generation and chromosome. With at most one

chiasma per generation, this is usually not modelled in coalescent

simulation. For a larger view of genetic interference, see, e.g., [12].

There are several different chiasma interference models [15, 83];

we will discuss two of them here. In both cases the simulated

tetrads, i.e., the structure of four chromatids formed in the prophase

of meiosis, are assumed not to contain inversions.

Poisson model

The Poisson model [44] is arguably the simplest interference model,

also called the no-interference model. Let us assume that the phys-

ical properties of the chromatids and chiasmata do not interfere

with chiasma formation. Assuming infinite and independent pos-

sible crossover sites within the simulated sequence, the number of

chiasmata in one generation is approximated by the distribution

Poisson(λ); we show later in this section how we compute the pa-

rameter λ.

Each chiasma has the probability of 1/2 of affecting the sampled

strand, because only chiasmata between non-sister chromatids leave

a mark. Therefore, each of these chiasmata affects exactly one

of the two sister chromatids of the type of the sampled strand.

The probability follows from assuming both strands’ involvement

equally probable. Finally, the probability of having k crossover



30 2 Coalescent simulation of inversions

breakpoints in the sampled strand with intensity parameter λ is

Pr(k chiasmata) =

∞
∑

i=k

(

i

k

)

2−ifP (i;λ) ,

where fP (i;λ) = λie−λ/i! is the probability mass function for the

Poisson distribution with value i and parameter λ.

It is now easy to state the expected number of breakpoints in

the sampled strand per generation as

E[# chiasmata] =

∞
∑

k=0

k

∞
∑

j=k

fP (j;λ)

(

j

k

)

2−j

=

∞
∑

j=0

fP (j;λ)

j
∑

k=0

k

(

j

k

)

2−j

=

∞
∑

j=0

fP (j;λ)
j

2

=
λ

2
.

The second equality follows from standard manipulation of listing

values of k and j in different order. The second to last step results

as the expectation of a binomial random variable, and the last step

is due to the expectation of a Poisson-distributed random variable.

With the expected number of chiasmata per generation specified,

we can now solve λ from the equation so that the expected number

of chiasmata per generation in the sampled strand is the same as it

is for Hudson’s recombination model, rl, i.e., λ = 2rl.

Because we are using exponential distribution to sample time to

at least one chiasma to be present in the tetrad, we need to compute

the probability for this event to serve as a parameter for the waiting

time distribution. This parameter is

Pr(1 ≤ #chiasmata) = 1− Pr(0 chiasmata)

= 1− fP (0;λ) ,

which is simple to compute.

Finally, it is necessary to know how to sample the breakpoints

from the conditional distribution under the condition of at least
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one chiasma being present in the tetrad. Because the chiasmata

are placed independently, it is possible to first sample the number

of chiasmata from the tail of the cut Poisson distribution and then

sample the positions of the chiasmata from the uniform distribu-

tion along the simulated segment. The chiasmata are placed along

the simulated segment by a Poisson process. The sampling from

the uniform distribution can hence be done as proven, e.g., in [86,

Theorem 8.14].

Counting model

A well-known set of chiasma interference models is the Gamma fam-

ily, in which the chiasma distances follow the Gamma distribution

with shape parameter b and the scale parameter 1/λ. The point

density function of this distribution is

fGamma(x; b, 1/λ) = xb−1 e−xλ

(1/λ)bΓ(b)
.

One particular subset of models, the Counting model [39], has the

parameters as b − 1 ∈ N and λ. We focus on this model set for

the ease of computation when generating chiasmata according to

it. It has been a convention to label the former parameter of the

Counting model as m = b − 1, but for the purpose of simplifying

the equations in this chapter, we use b as the parameter instead.

An easy way of generating chiasmata according to this model

in a fixed interval is to simulate successive points with distances

from the exponential distribution with parameter λ. Starting from

a randomly picked point of the first b points, we mark every bth

point as a chiasma.

For Drosophila, McPeek and Speed [83] found that the best value

for m = b − 1 was 3.94 under the Gamma model and not limiting

only to integer values. Hence b = 5 can be seen as a good approx-

imation of it. The same value has been reported to work well also

for humans, as Lin and Speed [76] report.

We now derive the equations necessary to simulate the Counting

chiasma interference model. In the model, we adjust the intermedi-

ate event distance distribution parameter λ so that the expectation

of the number of chiasmata per generation matches that of the

Hudson’s model, rl. We use here the result that states that the
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maximal number of terms in a beginning sequence of exponentially

distributed random variables (distances between adjacent interme-

diate points) with total sum below a fixed threshold follows the

Poisson distribution (the number of intermediate points) (e.g., [86,

Theorem 8.7]). Thus we have

E[# chiasmata] =

∞
∑

i=0

iPr(i chiasmata in the sampled chromatid)

=

∞
∑

i=0

i

∞
∑

j′=i

(

j′

i

)

Pr(j′ chiasmata in tetrad)2−j′

=
∞
∑

i=0

i
∞
∑

k=0

b−1
∑

j=0

f(j, k, λ)

(

b− j

b

(

k

i

)

2−k

+
j

b

(

k + 1

i

)

2−k−1

)

=
∞
∑

k=0

b−1
∑

j=0

f(j, k, λ)

(

b− j

b

k
∑

i=0

(

k

i

)

i2−k

+
j

b

k+1
∑

i=0

(

k + 1

i

)

i2−k−1

)

=

∞
∑

k=0

m
∑

j=0

f(j, k, λ)

(

b− j

b

k

2
+

j

b

k + 1

2

)

where f(j, k, λ) = fP (j + kb;λ) is the Poisson distribution proba-

bility mass function for parameter λ and value j +kb. The negative

powers of 2 again follow from each chiasma having 1/2 chance of

affecting the sampled strand.

To solve the corresponding scale parameter 1/λ of the Gamma

distribution, this expectation is set to equal to rl. At this point,

Newton’s method can be used to find an approximate numerical

solution for the equation. Because the probabilities of having high

numbers of chiasmata in the simulated segment quickly become

small, it is not necessary to compute the terms for high values of k

to get an accurate estimate for λ.

We can then solve the corresponding waiting time for the first
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chiasma that is in the tetrad from

Pr(≥ 1 chiasmata) = 1−
b−1
∑

j=0

b− j

b
fP (j;λ)

This probability has to be computed only once at the beginning of

the simulation. We note that if b = 1, the above equations reduce

to those of the Poisson model. Then the sampling of the actual

breakpoints is done as for the Poisson model.

2.2.2 Chiasma formation and gene conversion events with

inversions

The assumption of inversion events never co-occurring with chiasma

formation events is made to simplify the assignment of the parent

haplotypes in the lineage sets. For homokaryotypes, both ancestral

lineages are set in the same lineage set, the same in which the child

lineage was. In heterokaryotypes we set the lineage from which the

child lineage inherited the inversion breakpoints to the same lineage

set, and the other parental lineage to the other. This is because in

the infinite-sites model the neighbourhood of the inversion break-

points determine the orientation of the strand between them: no

recombination can occur precisely at the inversion breakpoints.

However, there is one known problem relating to the use of the

Counting model for which we do not present a solid solution. When

placing the chiasmata along the interval [0, 1), the chiasmata within

the inversion loop in anaphase I need to be placed according to one

orientation. Whichever orientation we choose, it is possible that

the nearest chiasma outside the inversion is too close to the most

distant chiasma within the inversion (Figure 2.7). Because multi-

ple crossovers are rare within the sequences coalescent simulators

can efficiently simulate, the chiasma assignment may be approxi-

mated by selecting the sequence orientation from the two parent

haplotypes at random and use it for positioning the chiasmata in

accordance to the Counting model.

The simulation of chiasma formation events in a population of

both inversion-type and ancestral-type arrangements is done by a

filtered Poisson process. In brief, because some potential meiotic

products are inviable and thus result in an impossible child hap-
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Figure 2.7: The simplest method of sampling chiasmata according

to the Counting model is not accurate, as the chiasmata c2 and

c3 both succeed c1 as the next chiasma, making the sampling of

distance between c2 and c3 problematic; likewise, both c2 and c3

precede c4, presenting the problem on which preceding chiasma

position to condition the position of c4.

lotype, the filtered process will continue sampling until a feasible

solution is found.

First, we model the probability of a lineage recombining in the

absence of knowledge on the karyotype of the parent by dividing it

in two cases: the parent is either a homokaryotype or a heterokary-

otype.

In the case the parent is a homokaryotype, the recombination

events can be directly simulated by the coalescent with the chi-

asma formation event intensity by sampling the positions of the

chiasmata. In the case of heterokaryotypes, some chiasma forma-

tion events are to be rejected because of inviable resulting gametes.

Based on rule 3 we set for the inversion simulation, we see that the

observed total recombination rate in the whole population is larger

than that within heterokaryotypes but lower than within homokary-

otypes. This is because some of the recombinations that would be

accepted in homokaryotypes are suppressed in heterokaryotypes.

We still need to consider the probability of the parent being a

homokaryotype and the probability of the crossovers occurring in a

heterokaryotype. Let us focus on the latter probability first. Con-

sider a tetrad formed for a heterozygous genotype with respect to



2.2 Inversions in the coalescent 35

an inversion. Because every valid haplotype has one centromere,

we can pick any of the four centromeres as the point from where

we start sampling chiasma positions. Because after the modifica-

tions due to recombinations and gene conversions only one of the

chromatids in the tetrad is inherited by the offspring, we do not

concern ourselves with crossovers occurring outside the one tracked

chromatid.

We begin the tracking from the centromere. Each encountered

crossover corresponds to changing the type of the source chromatid

of the tracked haplotype, i.e., from alternative-type arrangement to

standard-type arrangement or vice versa.

Let us assume that the strand we are following is originally of

the standard arrangement when entering the inversion region. We

maintain the assumption of not deleting or duplicating any material

due to the crossovers, so each crossover makes the next chromatid

segment to be read according to the other arrangement. The end

of the inversion region is reached by following the strand in the

standard arrangement if and only if an even number of crossovers

were encountered within the inversion region. Otherwise, the strand

is the inverted one, and the chromatid continues with the prox-

imal region, which was already included in the chromatid. This

breaks our rule of not including homologous genetic material mul-

tiple times. Also, by following the chromatid, we reach another

centromere, forming a dicentric bridge. This bridge is then broken

in anaphase I, resulting in two inviable gametes. In summary, we

consider viable only those recombined strands that are either from

a homokaryotype or have an even number of crossovers within the

inversion region.

As mentioned earlier, this is not accurate for all species: e.g.,

Navarro et al. [89] state that the chiasmata outside the inversion

affect the number of viable gametes in Drosophila. In practice,

however, the discrepancy is small due to the unlikeliness of multiple

crossovers.

We now address the issue of sampling the karyotype of the parent

from which the recombinant haplotype was inherited. Recall that

the karyotype here means whether the individual with the haplo-

type is heterozygous or homozygous with respect to the inversion.

Let the recombination-produced lineage u be from the lineage set

Lα(t), where α stands for the orientation of the lineage. At least
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one of the parent haplotypes for u must be of the same orientation

as u. We name the haplotype of the same orientation as v and the

other parent haplotype as w. Due to the random mating assump-

tion, we can model the probability of the crossover being proposed

in a homokaryotype by randomly selecting an unsimulated lineage

from the joint population, i.e., a lineage that contains no genetic

material inherited by the present-day sample. Let us name the type

of the other parent haplotype as β. If we assume the joint effective

population size to be the sum of the sizes of the two subpopulations,

we can write the homokaryotype probability as

Pr(α = β |u ∈ Lα(t)) =
Nα

e (t)

NA
e (t) + N I

e(t)
,

where N∗
e (t) is the effective population size of the corresponding

subpopulation at time t.

If sampling from this gives that the parent is a homokaryotype,

i.e., α = β, or there is an even number of breakpoints within the

inversion region, the chiasma formation event is accepted and pro-

cessed. Otherwise, we sample the type of w and the number of

recombination breakpoints again, this time permitting also the ab-

sence of chiasmata at time t. If the number of chiasmata is 0,

the simulation continues with no changes. Otherwise, we return

to checking the validity of the newly proposed crossovers and re-

peat, until a sampled strand is accepted or the sampled number of

breakpoints is 0.

The reason why the number of chiasmata is allowed to be 0 only

in the repeated samplings is because the sampled waiting time was

for the event of at least one chiasma forming in the tetrad. This

waiting corresponds to the exclusion of the case of 0 chiasmata in

the first iteration.

For those chiasma formation events that are accepted, the result-

ing lineages that contain the inversion breakpoints will be added in

Lα. The other lineage will be added in the same set as the hypo-

thetical w was placed in.

Regardless of what the outcome of the rejection sampling is, the

simulation progresses in time after the simulation time is increased

by the simulated waiting time for the possibly rejected chiasma for-

mation event. This is valid due to the waiting times being sampled

from an exponential distribution.
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As mentioned, this process defines a rejection sampling scheme,

also called the acceptance-rejection method. Let us now investigate

the situation closer and consider the space of all possible outcomes

of transferring the genetic content from the parent to the offspring

in the case of homokaryotypes. The probability distribution that

the process described above defines over this space serves as the

majoring function for the rejection sampling. In this case of rejec-

tion sampling, the point density function over regions where the

suggested chiasma positions result in inviable gametes is set to 0.

The resulting function is proportional to the desired distribution.

If recombination breakpoints are placed in an inversion-type lin-

eage inside the simulated inversion, splitting ancestral material is

slightly more complex, because the ancestral order in the MRCA

differs from the physical order in inversion-type arrangements. An

example of this can be seen in Figure 2.8(a).

We now look at the ancestral material division more closely. In

the simulation, we keep track of only the inherited intervals but

not the orientation of the intervals alone; the latter is handled by

keeping track of the orientation of the inversion region. Let us

denote the set of chiasmata affecting the sampled strand as c. The

ancestral material masks sI
j(c) for inversion-type arrangements can

be computed in a way similar to standard-type arrangements, but

the chiasma positions have to be transformed from standard-type

to inversion-type arrangement. Let us denote the inversion region

by [bs, be) and define a coordinate transformation γ as

γ(p) =

{

p, p 6∈ [bs, be)

bs + be − p, p ∈ [bs, be)
; (2.2)

in effect, we transform the ‘physical’ coordinates of the actual in-

verted sequence order into the standard order, which corresponds

to the original order for the ancestral material. We do this for

each point in the list of breakpoints c and then compute sA for the

transformed list (see Eq. (2.1)). Once we apply the inverse trans-

formation to each point in the set of intervals sA, we have sI
j(c).

An example of this is seen in Figure 2.8 (b).

If there is an odd number of recombination breakpoints within

the inversion region, both sI
0 and sI

1 have one more contiguous sub-

segment. This results from the inversion breakpoints splitting one

contiguous segment in two, which is relevant when simulating such
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recombinations in inversion-type homokaryotypes.

It should be noted that in heterokaryotypes a(u), the number of

crossover points and their locations completely determine a(v) and

a(w). In homokaryotypes, the division of ancestral matter in two

lineages is also determined, but either of them can be called v or

w.

Algorithm 2.1 summarizes the simulation of recombinations for

coalescent simulation in the presence of inversions.

In our model, in heterokaryotypes gene conversions that involve

a segment that contains either inversion breakpoint are prohibited

to uphold rule 1 like in the case of double recombinations. Consider-

ing the shortness of the gene conversion tracts on average, this does

not have very significant effects. We simulate gene conversion the

same way as chiasma formation events with two or one chiasmata

affecting the sampled strand, the latter number in the case either

breakpoint is outside the simulated segment and hence does not

affect the segment that is simulated. Note, however, that the dis-

tribution of the distance between the gene conversion breakpoints

is different from that of two recombination breakpoints, unless the

Poisson model with the same parameter λ is used.

Unlike in the case of crossovers, it is not necessary to simulate

multiple simultaneous gene conversion events to maintain a reason-

able level of accuracy, as the heterokaryotypes do not significantly

affect gene conversion rates in our model.

2.3 Modelling effective population sizes

It is important to specify the population model of the simulated

population with reasonable accuracy to produce data sets that re-

semble real data sets. The population growth history affects, for

instance, the minor allele frequency distribution of SNPs and the

time until the most recent common ancestor, which will also be

reflected in the number of simulated SNPs in the sample.

When simulating inversions, the population model is no less im-

portant. In addition to the aforementioned effects, if the inversion

is a new one, it is likely to have less sequence variation within the

inversion-type subpopulation than old inversions: assuming similar

population growth models, the MRCA of inverted haplotypes is dis-



2.3 Modelling effective population sizes 39

0 1

a(w)

a(v)

a(u)

c
Inversion region

(a) Single recombinational breakpoint at c in an in-

version homokaryotype.
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(b) Double crossing over at c2 and c3 in a het-

erokaryotype.

Figure 2.8: Different types of crossover events with inversion-type

lineages and how the ancestral material is divided between the par-

ent haplotypes. Note that the inverted segments are represented

in the ancestral order, not the physical, i.e., the regions on gray

background are read from right to left and that the simulation pro-

gresses backwards in time. As a result, homologous content are

lined up. Black represents the ancestral material lineage u inherits

from lineages v and w.
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Algorithm 2.1 Multiple chiasma formation event simulation with

the inversion in the coalescent.
Input: The affected lineage type, α ∈ {A, I} and the associated

lineage set Lα; inversion region end-points bs and be

Output: Updated simulation status with the associated variables

1: Draw lineage u ∈ Lα.

2: i← true {To signal the first iteration of the loop}
3: while true do

4: Sample β ∈ {A, I}, i.e., the type of w, the other chromosome

in the parent, and c, the vector of chiasma positions in the

tetrad

5: if i = true and #c = 0 then

6: Restart loop {#c refers to the number of elements in c}
7: end if

8: c← c thinned by removing each chiasma independently with

probability 1
2 {to omit chiasmata not affecting the strand}

9: if #c = 0 then

10: Exit loop

11: end if

12: i← false {To mark the passing from the first iteration}
13: Amend c with 0 and 1 at the appropriate ends of the vector.

14: Select randomly either α or β, and if the selected type is the

inverted type, then c ← γ(c). {The chiasmata are placed

according to an orientation present in the parent by applying

the γ-transformation (Eq. (2.2) and (2.1)) to each element of

c}
15: d ← #{cj | cj ∈ [bs, be)} {number of chiasmata within the

inversion}

16: if α = β or d is even then

17: Create the ancestral lineages v and w

18: if bs ∈ sα
0 (c) then

19: a(v)← sα
0 (c)∩a(u), a(w)← sβ

1 (c)∩a(u) {See Eq. (2.1)}

20: else

21: a(v)← sα
1 (c) ∩ a(u), a(w)← sβ

0 (c) ∩ a(u)

22: end if

23: Lα ← (Lα \ {u}) ∪ {v}, Lβ ← Lβ ∪ {w}
24: Exit loop

25: end if

26: end while



2.3 Modelling effective population sizes 41

covered sooner and there has not been enough time for mutations

to be introduced in the inversion subpopulation.

The inclusion of varying effective population size affects in our

simulation framework the coalescence event frequency. We now

summarize the inclusion of changing population size as described

in [49, Ch. 4.2].

As with non-time-homogeneous Poisson processes, the change in

the effective population size can be taken into account by scaling

the waiting time appropriately. Let

Λ(t) =

∫ t

0

Ne(0)

Ne(u)
du,

the accumulated coalescent rate until time t with Ne(u) denot-

ing the effective population size at time u. Here, 0 represents the

present and positive time units represent time before the present as

in previous sections. With this, we can now express the probability

of coalescing taking at least v time units, assuming the time now is

t, with

Pr(x > v | t) = exp

{

−

(

|L(t + v)|

2

)

(Λ(t + v)− Λ(t))

}

where x is the random variable for the delay until the next coales-

cence event and |L(t + v)| is the number of simulated lineages at

that time. Note that the larger Ne(u) is compared to Ne(0), the

smaller the rate of coalescence is.

Let y be an exponentially distributed random variable with pa-

rameter
(|L(t)|

2

)

and x the waiting time from the present simulation

time, t. With this, we can solve x from the equation

Λ(t + x)− Λ(t) = y (2.3)

to find the formula for sampling x with the help of y, i.e., the

coalescing time of any pair of lineages in L. The equation can be

derived by using inverse transform sampling.

The frequently used exponential population growth model (e.g.,

[91], [49, Ch. 4.3]) is problematic in our case, because we need

to model also the complementary population. Let us assume the

inversion-type effective population follows the exponential growth

pattern and that time is measured in units of 2Ne generations. In
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this case, we can sample the waiting time to a coalescence event

with

xexp =
1

bexp
log
(

1 + bexpye−bexpt
)

,

where bexp is the growth rate parameter, y is again exponentially

distributed with parameter
(

|L(t)|
2

)

and xexp is the sampled waiting

time.

The case of the complementary population is a difficult one.

The simplest methods of solving the waiting time in such case are

possibly numerical methods. More importantly, while the concept

of exponential growth is reasonable in the case with one population,

it might not be so with two subpopulations competing for the space

within a joint population of constant size.

This directly ties to the question of how the joint effective pop-

ulation size is actually defined. One possibility is that the joint

effective population size is the sum of the two effective subpopula-

tion sizes and a constant. This principle has been used, for instance,

by Navarro et al. [88]. Beside that, the method described earlier

to estimate the probability of a heterokaryotypic person is based

on the assumption that the joint population size is the sum of the

subpopulation sizes but not necessarily a constant.

The connection between the subpopulations in equations is effec-

tively reduced to determining the probability of a heterokaryotypic

person, as the separation into subpopulations resulting from the in-

verted strand orientation carries over to also non-inverted regions.

This results in considerable freedom in specifying how the subpop-

ulation sizes change over time.

It should be noted that Zöllner and von Haeseler [148] used a

fixed proportion for wild-type and mutant chromosomes in the pop-

ulation. Their simulation also did not require the original mutation

to be unique. This is an alternative way to approach modelling two

populations in the same location.

2.4 Implementation

A basic simulator for simulating inversions using the presented mod-
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els has been implemented in Java and is available for download1 and

is called InvCoal. To simulate the generation of the ARG event

by event, the simulator uses the idea used by Strobeck [120] and

Navarro et al. [88] by sampling the waiting times for each event

type, selecting the one with the smallest waiting time, updating

the current simulation time and then resampling the waiting times

for each event type anew with the possibly updated parameters.

The only subpopulation division the simulator supports is the

division into inversion- and ancestral-type haplotypes. This limits

the usability of the simulator. One subpopulation is limited to a

constant-sized effective population whereas the other, the inversion

type, has an exponential population growth model. Therefore the

simulator does not use either the model of Navarro et al. [88] or

Zöllner and von Haeseler [148]. The exponential growth model for

the inversion population guarantees that the inversion population

stemmed from a single haplotype.

The simulator uses the Counting model to simulate multiple

crossovers. It is therefore important to evaluate the significance

of this added functionality to the results compared to Hudson’s co-

alescent simulator ms [57] under otherwise similar parameters, as

Hudson’s recombination model has been very widely used.

To test this, a constant diploid effective population size of 7,500

and recombination rates of 10−8 and 10−9, denoting the average

number of recombinations per basepair per generation, were used.

Because the double recombinations become more frequent with

higher recombination rate, the effect of varying it is relevant for

evaluating the estimation difference between the two models. The

mutation rate was constant at 10−8 per bp per generation. The used

chiasma interference parameter for the Counting model in InvCoal

was m = 4 (b = 5).

Because both simulators model recombination rate as a constant

over the simulated segment, it is justifiable to compute the aver-

age r2 (see Eq. (1.1)) over SNPs at a specific distance apart. To

strengthen the data signal, SNPs with minor allele frequency under

0.05 in the total sample of 500 haplotypes were removed. The simu-

lated segment was 1 Mb in length. Figure 2.9 depicts the behaviour

1The program is available at http://www.cs.helsinki.fi/u/jkollin/

software/InvCoal (Accessed 02.11.2009)
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Figure 2.9: Average LD measured by r2 over a specific distance of

SNPs for two coalescent simulators; bin size is 25 kb. The parameter

r in the legend is the recombination probability per generation and

basepair. No inversion was simulated.

of mean r2 in 100 repeated samples. The simulated segment was

split into 25-kb-long bins and the first bin was chosen as the refer-

ence. Each bin was paired with the reference bin and the mean r2

between all cross-bin SNP pairs was plotted.

In the figure we see that the LD levels between ms and InvCoal

are slightly different but mostly similar. When the interference

parameter was set to 100, effectively eliminating the possibility of

having multiple chiasmata, the difference between the curves was

smaller (data not shown). This is because with the segment length

of 1 Mb, double recombinations with the used recombination rates

would be very unlikely, effectively making the recombination model

into a single-chiasma model.

To experiment on the need of our simulator for simulating inver-

sions, we used the same simulation parameters to compare the sim-

ple inversion model, i.e., no gene flow between the arrangements and

the subpopulations not interfering with recombination at all, with

the model described in Section 2.2.1. To investigate the effect of re-

combination suppression on the levels of LD, two sets of experiments

with different inversion ages were run. In both cases, the modern-

day inversion type haplotype population size was 2 × 0.3 × 7500.

Figure 2.10 displays the behaviour of r2 in such case; there were 500

haplotypes of both inversion- and ancestral-types. The increased

LD in the inversion population in InvCoal is due to the modelled
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recombination suppression within the inversion. Note that the sim-

ple model does not suppress recombinations the way InvCoal does,

because in the simple model all individuals are effectively assumed

to be homokaryotypes.

Finally, we briefly investigated the signal previously used to de-

tect inversions [9, 112]. The signal was essentially having higher LD

levels than expected at a distance away in a subpopulation. The

signal is visible in Figure 2.11. The reference bin was set at 275–

300 kb, which placed it just outside the inversion, which spanned

the region of 300–650 kb. The visibility of this pattern of LD sug-

gests that this simulator could be used to evaluate the performance

of the said inversion detection algorithms under controlled scenar-

ios. Because ms cannot reproduce this signal, InvCoal was not

compared to it in this experiment setup.

Of some interest is the higher LD in the inversion subpopulation

outside the inversion. This is likely due to the smaller effective

population size in the inversion population. The lineages in the

inversion population coalesce faster in comparison to the ancestral-

type population, and hence there are fewer branches to recombine.

The reason why more complex simulators were not used in com-

parisons was to better identify the effects of the differences in the

used models. The ms program can easily be parametrized to be

similar to InvCoal, so the differences in the outputs are likely to

follow from differences in the model and not the other additional

features the simulator entails.

2.5 Discussion

We have presented a framework for multiple crossovers in coales-

cent simulation. The model is for the most part similar to the

model described by Navarro et al. [88, 89] but ignores the de-

tails in gametogenesis, i.e. the process of generating gametes, and

selection. There are also differences in the modelling of tetrads,

as the model described in [89] was adjusted for Drosophila. The

model presented there was extended to permit more than two chi-

asmata within the simulated region, although having such things

occur within segments that a coalescent simulator can simulate is

unlikely. In Section 2.2.1 a way to convert recombination rates to
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simulation with the Counting model was shown.

Our model also results in that heterokaryotypic individuals have

fewer offspring than homokaryotypic ones due to the rejection sam-

pling scheme. It can be criticized that such large rearrangements

are liable to be show the hitchhiking effect of the inversion gaining

in frequency due to the favouring of nearby beneficial gene alleles.

This effect has been used in coalescent simulators by, e.g., Braver-

man et al. [14]; Navarro et al. [88] adapted this model to their use

in simulating inversions.

As chiasma interference models we considered the no-interference

model (Poisson model) and the Counting model, a subclass of the

Gamma family of models and a generalization of the Poisson model.

The Counting model was selected as the chiasma interference model

mostly because of the reasonable trade-off between accuracy and

simplicity of implementation. There are several other chiasma in-

terference models, but in experiments, the Gamma model has been

found a good option [15, 83]. However, Housworth and Stahl [54]

report that the detected double recombinations in a human data set

are best described with a mixture of Gamma and exponential dis-

tance distributions, the latter corresponding to the no-interference

model. The interference parameter also seems to vary between chro-

mosomes and sexes of the same organism. The current version of

InvCoal does not include this model.

There are several other coalescent simulators available. Of inter-

est in the future chapters are COSI [104], the parameters of which

have been calibrated to produce SNP data as seen in human au-

tosomes. The simulator models varying recombination rate across

the simulated segment and recombination hot spots. However, it

has the same problems when simulating inversions as ms has, as it

cannot suppress recombination in a subpopulation only on a short

segment (the inversion) like InvCoal can. There is also another very

recent simulator for simulating population genetic data with inver-

sions [92]. InvCoal was developed independent of such very recent

other simulators.

InvCoal is expected to be a helpful tool in investigating the effect

that the inversions have on LD just outside the inversion regions.

In potential future studies, the simulator may also be able to an-

swer to questions pertaining to the changes in SNP MAF and LD

distributions under different inversion population growth models.
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However, the MAF distribution alone is likely to be insufficient

for detecting the presence of inversions. Other potential uses are

present where coalescent simulators in general are used. As an ex-

ample, haplotype inference software typically assumes that adjacent

SNPs are in higher LD due to linkage than remote ones. An inver-

sion can turn this situation the other way, and the effect this has

on haplotyping accuracy has not yet been investigated.

The Counting model as described here cannot completely ac-

curately model recombinations in heterokaryotypes because of the

chiasma interference from two different directions near the inversion

breakpoints. The mathematically sound solution for this would be

to model the distances between SNPs with conditional Gamma dis-

tributions. The current setup was chosen for its simplicity.

Many modern coalescent simulators model varying recombina-

tion rates and recombination hot spots. The Counting model is

readily useable with these extensions.

The used model of gene conversion can also be criticized. Scha-

effer and Anderson [103] report in their experimental study that

heterokaryotypes appeared to have reduced rate of gene conversion

events near the inversion breakpoints. This aspect is not simulated

by our adaptation of the gene conversion model of Wiuf and Hein

[141].

Nevertheless, it is important to address the case of rejection sam-

pling for viable gametes. In the model presented we resample the

parent karyotype if the suggested recombination is rejected. This

results in simulated semisterility of heterokaryotypes. If we had

only sampled the parent karyotype once and then repeatedly sam-

pled the chiasmata for the simulated region, the situation would

correspond to random mating where the partners are fixed until

the offspring is produced and the number of children is sampled

from the same distribution for both homo- and heterokaryotypes

due to, e.g., cultural reasons. Such a reason could be, for instance,

monogamy, although this is in contradiction with the random mat-

ing assumption of the Wright–Fisher model.

On the other hand, not all inversions are underdominant, i.e.,

they result in lesser infertility amongst heterokaryotypes [23]. In

such case, not resampling the karyotype would be a crude approxi-

mation of simulating non-underdominant inversions.

One can ask if the inversion model could be used to estimate
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the age of an inversion based on the SNP data akin to coalescent

genealogy samplers, reviewed by Kuhner [72]. For every data set

generated by the simulator with a fixed population model we can

compute its likelihood. Fully investigating this option would likely

require a careful revision of the inversion and population models

presented in this chapter.
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(a) Inversion age 40,000 generations.
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(b) Inversion age 150,000 generations.

Figure 2.10: Average LD measured by r2 over a specific distance

of SNPs for two coalescent simulators and different simulated sub-

populations; bin size is 25 kb. Inversion population size in present

was 2× 0.3× 7500.
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Figure 2.11: Average LD measured in InvCoal simulations by r2

over a specific distance of SNPs; bin size is 25 kb. The simulations

had an inversion at 300–650 kb.



CHAPTER 3

Detecting inversions

Inversions leave a footprint in the SNP data by suppressing recom-

binations within the inversion polymorphism region. We examine

this footprint and how it can be used in detecting inversions and

their breakpoints.

3.1 Inversion signals in SNP data

When SNPs are genotyped, their positions along the genome are

not measured relative to the genotyped strand. The positions of the

SNPs are instead reported in reference to a reference sequence, such

as the NCBI RefSeq collection [96]. Hence, if the DNA elements

are permuted in a different order in some individuals, the SNPs are

typically not listed in the physical order of these individuals.

In the reference sequence, the SNPs within an inversion polymor-

phism region are ordered according to one of the orientations. Re-

call that the order in the reference sequence is called the standard-

type arrangement and the other the alternate-type arrangement.

The difference to the ancestral-type and inversion-type arrange-

ment used in Chapter 2 is that we are now unaware which is the

ancestral orientation of the segment and which one is the novel

orientation.

In practice, an inversion polymorphism in SNP data of m SNPs

can be defined as a region spanning SNPs a through b, if the physical

order of those SNPs in one physical haplotype is (a, a+1, . . . , b−1, b)

and for at least one other haplotype (b, b − 1, . . . , a + 1, a). Note

51
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that the order of the SNPs in the SNP data set is the same for

both types. In fact, an individual may even have both orientations

present. Throughout the chapter, however, we assume that we know

the haplotypes underlying the genotypes.

This means also that inversions are not necessarily evident in

SNP data sets. However, inversions leave evidence, here called a

signal, in the population genetical data by promoting unusual LD

patterns and suppressing recombinations. This signal can be ob-

served in at least two ways: the signal left by the breakpoints, and

the signal within the inversion.

We first consider the former signal. Let us consider the case of

four SNPs s1, . . . , s4 so that s1 is barely outside the inversion region

in the proximal end of the inversion, s2 is barely inside the inversion

region near s1 and the SNPs s4 and s3 are set analogously in the

distal end, respectively. We also assume that the recombination

rate is constant across the fictitious inversion.

Now, in standard arrangement the SNPs s1 and s2 are in higher

LD than s1 and s3 because s1 is closer to s2 than s3. The same

applies to the pair s3 and s4 compared to the pair s2 and s4. In

the alternate arrangement, however, this is not so. The physical

distance between s1 and s3 is now shorter than that between s1

and s2, because the physical order of s2 and s3 has been inverted.

This signal has been used by Bansal et al. [9] and Sindi and

Raphael [112] to discover putative inversion breakpoints. The method

of the former is limited to the case where the standard-type arrange-

ment is the rarer arrangement of the two, but the latter overcome

this. A visualization of this LD signal is illustrated in Figure 2.11.

Whereas the signal at the polymorphism region boundaries re-

sulted from the difference in the physical and genetic distances,

the signal within the inversion regions originates from the inver-

sions suppressing recombinations in heterokaryotypes [18, 122]. In

heterokaryotypes, recombinations with one chiasma within the in-

version region result in inviable meiotic products (e.g. [94, pp.242–

244]). The gene flow between the two arrangements is not com-

pletely suppressed, though, as double crossing overs and gene con-

versions can still shift genetic material across the division.

We now focus on modelling this characteristic by two assump-

tions resulting in a simplified model. As in Chapter 2, the first

simplifying assumption is that the inversion event is unique and
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happened exactly once in the population history. Second, we sup-

press all recombinations and gene conversions in heterokaryotypes

within the inversion region. This likely is not very a unrealistic

assumption, because in the model described in Chapter 2 double

recombinations in a 1-Mb-long segment are rare. The exclusion

of gene conversion, however, is a more serious limitation, but gene

conversions typically apply for shorter segments than double recom-

binations. This makes the impact of their exclusion smaller.

From these assumptions it follows that SNPs in the inversion re-

gion that are polymorphic in the population of one ordering are al-

ways monomorphic in the other population. Which population the

SNP is polymorphic in can differ for each SNP, as explained next.

For SNPs that are introduced by mutations after the inversion event

took place, the novel allele cannot move from one arrangement to

another under the assumption of no cross-arrangement gene flow,

leaving the other population with only the ancestral allele. For

SNPs that were introduced before the inversion, with the assump-

tion of a unique inversion event, the inversion arrangement popula-

tion consists of exactly one haplotype with exactly one allele of each

SNP. Figure 3.1(a) displays the genealogy of the inversion region in

this model.

Let us assume that in this scenario, we can first group the hap-

lotypes so that inversion-type haplotypes are separated from those

of ancestral-type, and then sort the SNPs in the inversion region

by their minor allele frequencies in the two haplotype populations.

Ideally, this would result in a pattern similar to what is shown in

Figure 3.1(b). We call this the four-field pattern.

While this model is an oversimplification, it is still likely that re-

cent inversion polymorphisms have not had sufficiently many double

recombinations or gene conversion events to significantly lessen this

effect. For instance, the 900-kb inversion polymorphism, which is

common only in Europeans [117], fits the pattern well, as shown in

Figure 3.2.

In this light, a measure of how well the SNPs in a chromosome

segment can be fitted into the four-field pattern can still be used

as a signal for putative inversion polymorphisms. Unfortunately,

haplotype blocks [25, 41, 146] can also be fitted well into the four-

field pattern, and we have to distinguish inversion footprints from

haplotype blocks. We consider this task next.
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(b) SNP data, which was generated by InvCoal, after sorting rows

and columns conveniently. Regions of a single colour correspond to

monomorphic SNPs.

Figure 3.1: The different signals inversions leave in synthetic SNP

data. The data was produced by the simulator described in chapter

2.

Haplotype blocks are regions where the haplotypes can effec-

tively be divided in few distinct, internally highly homogeneous

groups. There are several different definitions for these blocks: re-

gions where the average D′, which is another LD measure, is above

a threshold given as a parameter [101] and a low number of distinct

haplotypes covering a majority of all haplotypes in a long region

[25, 93]. In these regions, the recombination rate is typically be-

low the average, as frequent recombinations would break the block

structure, i.e., haplotypes being near-identical within the block of

multiple haplotypes and multiple SNPs within a limited region. It

has been observed that recombination hotspots seem to coincide

with haplotype block boundaries [62].

A difference between haplotype blocks and inversion polymor-

phisms is that while recombinations are rare in the latter case, they

are not completely suppressed. Especially in the ancestral-type set
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Figure 3.2: The SNPs in the HapMap Phase III [129] CEPH (CEU)

data set (rel. 2) in chr17:40,899,921–41,989,253, which covers a

known inversion. Each row corresponds to one haplotype, and each

column corresponds to one SNP. The SNPs and haplotypes both

are sorted to display the four-field pattern.

of haplotypes recombinations are typically visible because of the ac-

cumulated recombinations prior to the occurrence of the inversion

event. Hence, we can sometimes detect traces of recombinations

as pairs of SNPs that pass the four-gamete test, i.e., all four allele

combinations of two biallelic SNPs are present in the data.

3.2 Normalized bicomponent score

We now develop a score for detecting inversions from SNP data by

the reduced gene flow. Let us consider the simplified model from

Section 3.1, i.e., there are no double recombinations or gene con-

versions. We approach the detection of putative inversions by

assuming we have found a good division of the haplotypes in two

putative groups: standard- and alternate-type and need to evalu-

ate the goodness of the division. The details of how to infer the

partition are considered later in Section 3.3.
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The completely suppressed recombinations and gene conversions

in heterokaryotypes mean that all SNPs that are polymorphic within

the inversion polymorphism are monomorphic in exactly one of the

haplotype populations. This pattern is visible in long windows of

multiple SNPs. In short windows it is more likely for the window to

display such signal by chance. If the window were short in basepairs,

LD would be expected to be strong and thus haplotype variability

reduced. If the window were short in the number of SNPs, finding

a good bipartition of the haplotypes to display the signal would be

more likely.

To measure this signal we devise a scoring with specific require-

ments. It needs to be quick to compute to accommodate to whole-

genome analysis with dense SNP data sets. With this in mind, a

composite marginal likelihood approach (reviewed in [133]) called

independence likelihood that assumes the SNPs to be independent

is easy to compute and hence suitable.

Let us have SNP haplotype data D with n haplotypes and m

SNPs, and ds
i denote sth measured SNP in the standard order in

ith haplotype. We assume all SNPs to be biallelic, the two alleles

being 0 and 1, i.e., D is a binary-valued matrix.

The inversion-detection scheme consists of solving two subprob-

lems. First, it is necessary to find the putative division between the

two arrangements. Second, this bipartition has to be scored based

on how well the assumption of no cross-arrangement gene flow fits

the division.

Let us investigate the latter question first, and assume we are

given a bipartition of the haplotypes of D and name these two sets

I and N. The former corresponds to the alternate-type arrangement

haplotypes and the latter to standard-type arrangements.

We devise the scoring by modelling the data as a mixture of two

components or probability distributions that are joined together as

a convex combination. One component models the SNPs biallelic

in I but monomorphic in N, while the other has the situation re-

versed. In mixture modelling, the distribution of one data point is

a convex combination of the component distributions. In this case,

the mixture model becomes

Pr(ds|N, I) = q · Pr(ds
N|s biallelic in I)Pr(ds

I |s biallelic in I)

+ (1− q) · Pr(ds
N|s biall. in N)Pr(ds

I |s biall. in N) .
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Here q and 1 − q represent the mixture proportions, ds
N and ds

I

refer to the data at the sth SNP within groups N and I and ds is

the vector containing all the observed values of the SNP s, i.e., the

joined ds
I and ds

N.

If SNP s is biallelic in the other group I, we assume that it

is nearly monomorphic in N and vice versa. The word ‘nearly’ is

used because genotyping errors and errors in phasing can break the

strict monomorphicity, not to mention the double crossovers and

gene conversions.

First, the SNP alleles are modelled as a sequence of Bernoulli-

distributed random variables. Because the actual parameter for the

distribution, i.e., the relative frequency of one allele, is unknown,

the Bayesian approach is used by marginalising over the parameter

space. For an introduction to Bayesian data analysis, see, e.g. [42].

Let us define a Beta prior distribution, Beta(α, β), for the fre-

quency of allele 1 and denote this frequency as θ. By assigning the

hyperparameters α and β the same value between 0 and 1, values of

θ near 0 and 1 are favoured, which corresponds to favouring nearly

monoallelic SNPs.

With this prior distribution, the total probability of the observed

data over all values of θ can be computed. The density function for

Beta distribution Beta(α, β) is

fBeta(θ;α, β) =
1

B(α, β)
θα−1(1− θ)β−1,

where the normalizing constant, ensuring that the total probability

equals unity, is

1

B(α, β)
=

1
∫ 1
0 zα−1(1− z)β−1dz

=
Γ(α + β)

Γ(α)Γ(β)
,

and Γ(y) is the Gamma function, a generalization of the factorial

(y − 1)! to real numbers.

The likelihood of the data given frequency parameter θ is then

given by that of a sequence of Bernoulli-distributed random vari-

ables. Let us denote by a and b the number of observations ds
i , for

i ∈ N, that equal to 0 and 1, respectively.

By integrating θ out analytically, we get with standard formula
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manipulation

Pr(ds
N|s biallelic in I) =

∫ 1

0
Pr(θ)Pr(ds

N|θ)dθ

=

∫ 1

0

Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 × θa(1− θ)bdθ

=
Γ(α + β)

Γ(α)Γ(β)
× c×

∫ 1

0

1

c
θα+a−1(1− θ)β+b−1dθ

=
Γ(α + β)

Γ(α)Γ(β)
×

Γ(a + α)Γ(b + β)

Γ(a + α + b + β)

×

∫ 1

0

Γ(a + α + b + β)

Γ(a + α)Γ(b + β)
θα+a−1(1− θ)β+b−1dθ

=
Γ(α + β)

Γ(α)Γ(β)
×

Γ(a + α)Γ(b + β)

Γ(a + α + b + β)
× 1 .

The variable c corresponds to B(a + α, b + β), which is introduced

so that we can state that the integral sums to unity as an integral

over a Beta distribution. Analogously, we define the corresponding

probabilities for monoallelic SNPs within the inversion group I, that

is, Pr(ds
I |s biallelic in N).

The probability of data, assuming polymorphicity in the popu-

lation, is simpler to model. The appropriate prior parameters for

θ are now α = 1 and β = 1 since we do not want to favour any

particular proportions a priori . These values result in a uniform

prior distribution. With such assignments, we note that the factor

θα−1(1− θ)β−1 in the previous equation becomes unity and can be

removed from the equation. Hence, we have

Pr(ds
N|s biallelic in N) =

Γ(a + 1)Γ(b + 1)

Γ(a + b + 2)
.

It is well-known that SNPs near each other are not independent.

However, we make this assumption to considerably simplify the

model and computations, and combine the probabilities of the SNPs

in the window into a composite marginal likelihood as the product

Pr(D|components N and I) =
m
∏

i=1

Pr(di|N, I) , (3.1)

where D refers to the entire haplotype data in the window and m

is the number of SNPs within it. The assumption of independence
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also bypasses the problem of the physical order of SNPs varying in

different arrangements.

Eq. (3.1) measures how well the bipartition fits the model, but

by itself, it is insufficient to measuring the benefit of using a bicom-

ponent model for the data. Therefore, this two-component model is

compared with a one-component model, for which the probability

of the joint data set is simply

Pr(ds|one component) =

m
∏

s=1

Γ(as + 1)Γ(bs + 1)

Γ(as + bs + 2)
;

here as and bs are the numbers of 1s and 0s in the data for the sth

SNP. Here, we have set the hyperparameters for the Beta prior as

1 and 1, in which case the prior distribution places no preference

on any particular allele frequency.

Note that no assumptions that would make the labels N and I

unexchangeable were used in the analysis. This means that we do

not need to specify which haplotype set represents the standard

arrangement to use this model, which makes the task of finding the

bipartition {N, I} easier. In less words, cluster identification is not

a problem.

Definition 3.1 (Bicomponent Score, BS) Given a bipartition {N,I}

of haplotype data D, bicomponent score is defined as

BS(D|N, I) = log

[

Pr(D|components N and I)

Pr(D|one component)

]

,

i.e., the Bayes factor on the logarithmic scale.

Let us consider this from an information-theoretical viewpoint.

If we used base-2 logarithms, we notice that the scoring can be

written as

log2 Pr(D|one component)−1 − log2 Pr(D|components N and I)−1.

Here, the first term is the number of the bits required to encode the

data with one component, and the second is the same for encoding

the data with two components [107]. Thus, the base-2 BS has the

interpretation of the number of bits saved by encoding the data

with two components instead of one.
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This interpretation reveals one flaw in the bicomponent score: it

is sensitive to the complexity of the window, as the encoding length

of one window is likely to vary.

An intuitive solution to this is to normalize BS with the one-

component data description length, eliminating the effect of the

description length of the data.

Definition 3.2 (Normalized Bicomponent Score, NBS) For a win-

dow of SNPs, we define the normalized bicomponent score as

NBS(D|N, I) =
BS(x|N, I)

− log Pr(D|one component)
.

The interpretation for NBS is now the proportional saving in the

data description length we gain by using two components instead

of one.

We still need to specify the values of the mixture proportion,

q, the hyperparameters α and β, and the bipartition {N, I}. If we

set α = β = 1, we get a particularly simple variant in which the

mixture proportion is cancelled and does not have to be specified.

The score presented is still robust to genotyping errors and mis-

located SNPs: the former because of the Bayesian model, which

marginalizes the model over all values of θ, and the latter because

all the SNPs are considered independent. The score also favours

two haplotype groups over one as desired, when such groups are

present.

3.3 Finding the subdivision between

arrangements

To use the scoring presented in Section 3.2, the bipartition {N, I}
of the data set x needs to be specified. Informally speaking, a good

bipartition is one in which each SNP is biallelic in exactly one of

the groups.

While the details of the method for finding this division is not

important for NBS, for the method to be useable in whole-genome

analysis, it has to be efficient and return at the very least a good

approximation of the best division.
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By using synthetic data, several different methods for splitting

the haplotype set in two were experimented on:

• by sorting the haplotypes according to spectral ordering (e.g.,

[7, 38, 115], described also shortly below) and then splitting

the sequence in two parts by testing all possible division points

and selecting the division point that maximizes NBS with

α = β = 1,

• as above, but with α = β = 0.1,

• k-Means [79] with a Manhattan distance metric with α = β =

1,

• k-Means++ [6] with a Euclidean distance metric with α =

β = 1,

• k-Means++ with data points sorted according to the pro-

portion of their Euclidean distance from one centroid, i.e.,

vi = d2(di, c1)/(d2(di, c1) + d2(xi, c2)), where c1 and c2 are

the two centroids, d2(x, y) the Euclidean distance between x

and y, di is the ith haplotype and vi the representative value

of di by which the haplotypes are ordered. Then all n splits

are tried as with spectral ordering. In this case, this approach

is called ‘k-Means++ ordering’.

In all cases that used k-Means and k-Means++, the number of

clusters was set to 2. The feature vectors used by these two methods

to cluster haplotypes were the binary vectors telling the haplotype

alleles. In the cases where the informative prior was used, i.e.,

α = β = 0.1, which gives the prior distribution a non-constant

form, the best value for the mixing proportion q was selected from

the set of 0.1, 0.2, . . . , 0.9 as the one to maximize NBS for each

investigated subpopulation division separately.

Let us now briefly cover the essentials of spectral ordering in this

application. Informally speaking, the haplotypes are sorted so that

similar haplotypes are set next to each other, after which we find

the division by assuming the first haplotypes in the sorted set form

N, and the last haplotypes form I.

More formally, given two haplotypes di and dj , with indices i, j ∈

{1, . . . , n}, we define their similarity S(i, j) as the number of SNPs
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s for which the alleles ds
i and ds

j agree. The n×n Laplacian matrix

L of S is defined by

L(i, j) = −S(i, j) for i 6= j , and

L(i, i) = −S(i, i) +

n
∑

j=1

S(i, j) .

The matrix L is said to be positive semidefinite in, e.g., [115], so

its eigenvalues are real and nonnegative. The smallest eigenvalue

is 0, and the eigenvector (z1, . . . , zn) corresponding to the second

smallest eigenvalue minimizes the function

n
∑

i=1

n
∑

j=1

S(i, j) (zi − zj)
2 (3.2)

under the constraints
∑

i zi = 0 and
∑

i z2
i = 1 (see [7]).

Thus spectral ordering gives an ordering for the haplotypes –

that is, an ordering i1, i2, . . . , in such that zi1 ≤ zi2 ≤ · · · ≤ zin –

in which similar haplotypes, pairs with a high value of S(i, j), tend

to be close to each other because the minimization of Eq. (3.2) is

mostly affected by terms with large S(i, j) and large (zi − zj)
2, so

the optimum should assign close-by values of zi, zj for all i, j where

S(i, j) is high.

With similar haplotypes being clustered together, we can now

assume that the SNPs that are monoallelic in different subpopula-

tions are set together. If there are only two such subpopulations,

then minimizing Eq. (3.2) results in distinct subpopulations be-

ing separated in the ordering; more specifically, the indices for the

haplotypes in a subpopulation are clustered together.

A good partition {N, I} of the haplotypes is then found by con-

sidering for each possible cutpoint j the partition into the compo-

nents Nj = {i | zi < zj} and Ij = {i | zi ≥ zj}, and selecting the pair

{Nj , Ij} with the highest normalized bicomponent score.

Experiments on synthetic data sets showed that there were no

large differences between different methods. InvCoal, which is de-

scribed in Chapter 2, was used to simulate 250-kb-long segments

completely covering an inversion. The modelled recombination rate

was 10−9 and haplotype count of 120, with the other simulation

parameters defined in Table 5.3. For SNP ascertainment we used
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48-haplotype panel ascertainment. This is briefly described in Sec-

tion 5.2.1. The simulated inversion age was 40,000 generations.

To measure the performance of the different methods, receiver

operating characteristic (ROC) curves were used. Assume that the

cumulative distribution functions of positive and negative cases sep-

arately for one method are T (x) and F (x), with x being a real

number. A case is labelled positive if the score for the data point

is higher than x. In such case, 1 − T (x) gives the true positive

fraction or the power for the threshold x and 1 − F (x) gives the

false positive fraction or 1− specificity for the same threshold. By

letting x vary, the points (1−F (x), 1− T (x)) plot the ROC curve.

By fixing the power, the corresponding specificity can be read from

the curve and vice versa. Generally speaking, the higher the curve

is with low values of false positive fraction, the better the method

performs.

In this case, the positive cases were the data sets that contained a

simulated inversion whereas the negative cases did not. There were

1,000 data sets of both types. In effect, the ROC curves show how

well NBS with the specific method for selecting the subpopulation

division could be used to detect inversion presence in the data set.

To summarize and compare different methods, the area under

the ROC curve (AUC) [123] was used. In the end, we selected

spectral ordering with the informative prior. The AUC values are

listed in Table 3.1. The closer the value is to one, the better the

method performed. The simulated case was deliberately set as a

difficult one, as the chosen recombination rate r is quite low. The

value was chosen for the AUC not to be set very close to 1 for easier

comparison between different methods.

In the results table 3.1 we see that k-Means and its variants, in-

cluding k-Means++, generally did not perform well. This is due to

the fixed way of dividing the data set in two; k-Means++ ordering

is one way of overcoming this by ordering the haplotypes on the real

line and then selecting the best division of the 120 possible ways.

An alternative way of organizing them in this case would have been

to project the haplotypes from the multidimensional space onto the

line passing through the inferred centroids, but this option was not

investigated further. As spectral ordering with the informative prior

seemed to perform best in these tests, it was chosen as the method

of splitting the haplotype population in two in the experiments.
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Table 3.1: AUC-values for different methods for dividing the hap-

lotypes in two populations and different priors for NBS.
Inv.pop.
proportion
(%)

k-Means k-Means++ Spectral order-
ing

10 0.6427 0.6182 0.6496
20 0.9074 0.9077 0.9064
30 0.9670 0.9673 0.9666

Spectral order-
ing, informative
prior

k-Means++ or-
dering with inf.
prior

10 0.6761 0.6741
20 0.9154 0.9135
30 0.9706 0.9703

3.4 Distinguishing haplotype blocks from

inversions

As mentioned in Section 3.1, haplotype blocks can also fit our four-

field model of inversion effects on nucleotide variability, which raises

the question of how to discern inversions and haplotype blocks from

each other. In haplotype blocks, recombination rates have been

suppressed practically completely, while in inversions they typically

have not been suppressed in homokaryotypic individuals. This is

the trait we aim to measure to improve our accuracy in accurately

labelling haplotype blocks apart from inversions.

Let us assume that the proportion of different karyotypes are in

Hardy–Weinberg equilibrium and that only the production of invi-

able gametes reduces the proportion of viable recombinant gametes

in a generation. With these assumptions, we can roughly bound the

suppressed recombination rate per generation. Because the sup-

pression occurs only in heterokaryotypes, the expected number of

recombinations in the population can be bounded by investigating

the recombinations in homokaryotypes only.

If we assume homo- and heterokaryotypes to be in the Hardy–

Weinberg equilibrium and that recombinations are equally likely

to be proposed regardless of the karyotype, we see that the factor

by which the number of recombination is reduced is at most 0.5.
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This is because regardless of the arrangement mixing proportion,

homozygotes constitute at least 50% of the population. Hence, if all

proposed recombinations in homozygotes are expected to result in

viable gametes, then the number of recombinations per generation

is at most halved within the inversion region.

This would let us believe recombinations would still be frequent

in the inversion region, if the region was not a recombination cold

spot prior to the inversion formation. Note that this does not mean

that the rarer arrangement is affected by many recombinations.

Thus, we should be able to distinguish haplotype blocks from in-

version regions by evaluating the presence of recombinations within

the suggested subpopulations and between them; by the ‘within’

and ‘between’ recombination rates we refer to recombinations oc-

curring in homokaryotypes and heterokaryotypes, respectively.

One common characteristic of haplotype blocks is the suppres-

sion of recombinations to a level greater than that in inversions.

This distinction makes the estimation of recombination rates inter-

esting: if the investigated region has few signs of recombinations in

spite of potential for evidence in the contrary, then this site is more

likely to be in a haplotype block than otherwise. This is shown as

a smaller number of distinct haplotypes within the block.

InvCoal simulations show us, however, that the observed recom-

binations are mostly limited to one subpopulation, the ancestral

type, at least in the scenarios InvCoal can handle moderately well,

which limits the simulation to the cases where the inversion-type

population is the smaller one. If we assume the inversion haplo-

types to be rarer than the ancestral orientation haplotypes, then

the haplotypes in the sample quickly find their most recent com-

mon ancestor due to the small number of potential parents in each

generation. Hence the haplotypes in the newer population are ex-

pected to be more alike than in the other if the population is also

the smaller one.

Also, because the MRCA for the inversion population is resolved

usually well before the inversion event, a considerable amount of

mutations are introduced within this arc in the genealogy, resulting

in SNPs that are indicators for inversion-type haplotypes. It follows

that in this subpopulation monomorphic SNPs that cannot be used

to infer recombination rates are present in higher proportion than

otherwise. Hence, the estimated recombination rates for this region
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are unreliable, but could be assumed to be considerably smaller due

to the rarity of inversion-type homozygotes with the assumption of

inversion-type haplotypes being the rarer type.

In this sense, assuming we have correctly inferred the subpopu-

lation division, we can take the maximum estimated recombination

rate, or other statistic for estimating the frequency or presence of

recombinations, of the two subpopulations separately. In haplotype

blocks, we expect both inferred populations to have low recombi-

nation rates, whereas in inversion regions, we expect the ancestral

type population to have higher recombination rates than in haplo-

type blocks. Because this is still assuming that the inversion-type

population is the smaller one, this cannot be used to tell which

subpopulation is the ancestral type, as the assumption might not

hold in reality. The output of InvCoal should also not be given too

much weight in deciding such matters due to the inaccuracies in the

underlying model.

There are multiple methods proposed to estimate the recombina-

tion rate from SNP data sets [121]. For example, there are methods

based on pairwise allele incompatibilities such as Φw [16] and meth-

ods to estimate the minimum number of recombinations explaining

the SNP allele patterns observed [58].

Coalescent-based methods (e.g. [35, 56, 84]) give results fre-

quently with the effective population size as a factor in the form of

ρ = 4Ner, which makes the interpretation of the results harder for

the case of inversions because the effective population size might be

difficult to infer in the case of inversions and their past population

size. As the family trees the coalescent produces are a product of a

random process with a computable likelihood, it makes sense to use

the coalescent model with probabilistic methods to estimate the re-

combination rate.The methods to accomplish this include Markov

chain Monte Carlo [73, 90] and importance sampling [35, 84]; these

methods typically sample the space of coalescent trees compati-

ble with the sample and with varying recombination and mutation

rates. Because of the generation of ancestral recombination graphs,

coalescent methods also require the specification of the population

history in terms of effective population size. The presence of inver-

sions makes this requirement more problematic, as they effectively

decrease the effective population size by splitting the joint popula-

tion in two independently coalescing subpopulations with their own
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effective population sizes. Hence these methods may be unreliable

for this case.

The coalescent model can be used to estimate full likelihood,

which is computationally very intensive, or composite likelihoods

[56, 84], which considers only pairs (or more) of SNPs at a time. In

this approximation, the pairs are considered independent. Because

multiple windows need to be evaluated for their recombination rates

at a rapid pace, full likelihood methods are unusable. As a third

way of estimating recombinations we mention RM by Hudson and

Kaplan [58]. This is an estimate for the minimum number of recom-

binations that have occurred in the history of the subpopulation.

The estimate resolves nonoverlapping intervals that have to contain

at least one recombination to explain the data and then returns the

number of these intervals as the estimate.

Of the three estimates mentioned, RM and Φw are as concepts

perhaps closest to what is being sought: evidence of recombination

within the relevant region. A problem with Φw is that it is used to

test hypothesis of the presence of at least one recombination. This

leads into handling small p-values for which it might not be easy

to set a threshold, and also questions how well the statistic actually

measures the desired feature. Both statistics are also dependent on

the length of the interval. Another problem is that when joining

together sliding windows over a genome, regions outside the inter-

esting region, be it an inversion or a haplotype block, will add to

these estimates.

Of the three statistics, RM was chosen to be used later on. Φw

is excluded in this thesis for the problems with interpretability and

fixing the used thresholds. The third measure, ρ, is excluded due to

the problem with eliminating the effect of the effective population

size and hence also problems with setting the threshold. Other ways

of incorporating these statistics may, however, make them more

useable for the purpose of filtering out false positive data sets.

3.5 Inversion-detection algorithms

The pieces presented in this chapter can now be merged into a

single algorithm for scanning a complete chromosome to detect the

presence of inversion polymorphisms. The NBS-Scan algorithm is
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given as Algorithm 3.1.

The NBS score has no direct interpretation as a p-value. For this

reason, the threshold values in deciding which windows are consid-

ered inversion polymorphism candidates are not given a measure of

statistical significance. Also, as shown in Section 5.2.4, the distri-

bution for the score is strongly affected by the effective population

size in simulations.

NBS-Scan progresses by sliding a window over the genome in

fixed-width steps. In the implementation used in the rest of the

thesis, the window moves in 50-kb steps.

Overlapping windows are joined to form larger regions for pu-

tative inversions. Although unlikely, it is possible that adjacent

windows have strong support for different population subdivisions.

By combining overlapping windows, we can, in part, avoid this by

computing NBS for the combined window, thus seeing how well one

subdivision can be used to explain the pattern.

Finally, to eliminate haplotype blocks as false positives, a mea-

sure for recombinations for the candidate regions can be required

to exceed the threshold given as a parameter. This parameter is

used in step 6 of Algorithm 3.1.

NBS-Scan was chosen to progress by basepairs instead of by

SNPs because the impact of a single SNP for NBS is low in cases

where the number of SNPs is reasonably high. Beside that, SNPs

that are located close to each other are typically in high LD, which

also means that they might mislead NBS in regions of high SNP

density, if the sliding window has a constant number of SNPs. By

moving the window by 50 kb at a time, these effects were partially

mitigated at the cost of not having possibly more accurate inversion

end-point estimates.

Let us now consider an alternative method of using NBS in de-

tecting inversions. This approach is mostly based on Sindi and

Raphael’s recent method [112]; this method is henceforth called

SR-method. We first review the outline of it.

In brief, SR-method considers the spaces between two pairs of

SNPs as potential inversion end-points. The likelihoods of the hap-

lotype frequencies of the SNPs next to the end-points are modelled

by forming two haplotype blocks, both of which contain one end-

point. The haplotype frequencies are then estimated both for the

null model of no inversion present and a two-component mixture
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Algorithm 3.1 NBS-Scan algorithm for listing candidate inversion

regions.

Input: SNP data set, recombination measure threshold

Output: List of candidate regions

1: Divide the sequence in overlapping windows W =

(w1, w2, . . . , wm).

2: Remove the SNP-free parts at the ends of each window.

3: for i = 1, . . . ,m do

4: Divide wi in N and I by spectral ordering with the informative

prior α = β = 0.1.

5: Compute NBS(wi|N, I).

6: Compute the recombination measure for the inferred popu-

lations.

7: Ignore windows where the recombination measure was below

a given threshold for the measure.

8: end for

9: Remove windows with NBS below the NBS threshold.

10: If any remaining windows with NBS above a fixed threshold

overlap, merge them.

11: Find {N, I} for each contiguous region by spectral ordering.

12: Compute NBS for the joined windows and eliminate regions

with score below the NBS threshold.

13: List the remaining regions.

model where one component contains the inversions.

For interpreting the results, it is relevant to detail the process

of deciding which intervals were potential inversion end-points. For

real data, this is also described by Sindi and Raphael [112]. From

the data sets, be they real or synthetic data sets without inversions,

the entropy of haplotypes in SNP blocks with length 2L, where

L = 3, . . . , 15, is computed. From the resulting histogram, the

value of entropy that marked the limit of top 10% was stored for

each value of L.

The next step is to create an empirical distribution for estimating

the p-value for a pair of putative inversion end-points. Each gap

between two adjacent SNPs was investigated by using a specific

procedure. Starting from L = 3, the L SNPs to both left and right

of the gap were used to form a block and its entropy was computed.
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If the entropy was in the top 10% of the previous simulations, the

gap was marked for further processing as a potential end-point.

Otherwise, L was increased by one and the evaluation was repeated.

This continued until L was 15 or the gap was marked for further

processing.

Next, each pair of potential end-points where the distance be-

tween them was over 200 kb and the block configurations did not

overlap were used to compute the likelihood ratio by the EM-

algorithm for the likelihoods of the two haplotype block models

of the same blocks, one with only one component (the case of no

inversion present) and a mixture of two components (haplotypes

with and without inversions). The likelihood ratio test is further

discussed in Section 4.5. Sindi and Raphael [112] note that the

χ2 distribution in this case is a poor approximation of the actual

distribution, so they use an empirical distribution to compute the

p-values instead.

To form this distribution, the distance between the end-points

and the degrees of freedom were stored in a table alongside the

likelihood ratio. After the experiments, the values in this table were

used to evaluate the empirical p-value for the putative inversion in

the actual simulations.

We can now specify a hybrid method that attempts to combine

NBS with SR-method. It utilizes NBS in deciding which gaps be-

tween SNPs are potential inversion end-points. By computing NBS

from two 50-SNP windows, both in different directions, one minus

the absolute difference between these is used to multiply the p-value

of the entropy computed for the haplotype frequencies. The poten-

tial end-points are chosen based on this product rather than the

entropy p-value alone. Note that if the computed NBS values are

the same and the threshold for including the SNP gap is 10%, the

hybrid method performs like SR-method.

These inversion-detection methods are experimented on in Sec-

tion 5.2.3.

3.6 Discussion

This chapter presented a scoring criterion, NBS, for detecting the

presence of common inversion polymorphisms from dense SNP data
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sets and an algorithm that utilizes it.

NBS-Scan detects inversions as the low recombination rate be-

tween two subpopulations. If the recombination rate within the

subpopulations is high, then NBS-Scan can be expected to perform

well. However, if the recombination rate is overall much lower, this

is not detected as different from an inversion, which results in nu-

merous false positives in spite of a recombination measure thresh-

old. These claims are investigated in Sections 5.2.3 and 5.2.4 in

both synthetic and real data sets.

It is well-known that recombination rates vary across the human

genome. This makes accurate detection of the presence of inver-

sions by using NBS more difficult, as regions with a low rate of

recombination or relatively few SNPs can increase the number of

false positives.

As mentioned, in regions of low recombination rate the SNPs are

in high LD with each other. Because this can produce windows with

a high NBS, it is necessary to specify the window to be wide enough

for including a region sufficiently long in terms of genetic distance.

This, unfortunately, has the drawback of making the scoring more

insensitive towards short inversions. Hence a balance between these

two must be found.

Another aspect is that the scoring prefers regions that coincide

with the yin yang -haplotype pattern described by Zhang et al.

[146]. In this pattern the population is divided into haplotype

blocks, two of which have archetypes that are complementary to

each other. It is possible that NBS-Scan proposes such regions to

be inversions.

NBS-Scan presented attempts to discover a region slightly larger

than the actual inversion region. More accurate methods for esti-

mating the end-points of the actual inversion are not easy to devise.

Different heuristics have been experimented on to improve the ac-

curacy of the estimated end-points, but a completely automated

method for that was not successfully produced.

One approach that was investigated for estimating the end-points

more accurately, is to consider how unlikely it is for each SNP indi-

vidually have its alleles split in the way they are in the inferred sub-

population division. As the distance from the inversion increases,

recombinations break the division present. One putative scoring per

SNP would be the number of data matrix element flips required for
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the SNP to be monomorphic in at least one inferred population.

By assigning haplotype miscall a probability and assuming phasing

errors do not exist, it is possible to compute the likelihood that the

data actually is monomorphic. It is then possible to select a base

level of significance, assuming the SNP alleles were independently

and randomly split between the two inferred arrangements, and

then find the interval where the significance was the highest. Un-

fortunately, this approach likely requires the manual selection of the

base level, as a reasonable bipartition eliminates the independence

of allele division into two subsets.

The methods of Bansal et al. [9] and Sindi and Raphael [112]

utilize different signal than our approach, as they focus on the signal

in the LD patterns near the inversion end-points. This raises the

question which signal is clearer and in which conditions. Some

experimental results are presented in Section 5.2.3.
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Detecting deletions

Deletion polymorphisms are a particular variant of copy number

variants (CNVs). In deletions, one or multiple copies of a chro-

mosome segment are present in some people and missing in oth-

ers. We examine the signal that deletion polymorphisms left in the

genotype data sets. We review the framework of an Expectation-

Maximization [27] algorithm for estimating haplotype frequencies.

This algorithm is then shown to work also for detecting the presence

of deletion polymorphisms in genotype data sets collected either as

trios or unrelated individuals, the latter case being a novel find-

ing. Two methods that are computationally more efficient than the

trivial implementation are presented. The difference to previously

existing methods is in the improved time complexity.

Finally, we discuss the problems in using the likelihood ratio test

for the significance of the detected deletions.

4.1 Biological signal and related work

A common method of detecting which genotypes a person has is to

use DNA microarrays to detect which alleles of a SNP are present

in the sample. If both alleles are present, the SNP is considered

heterozygous. If only one allele is present, the SNP is then called

homozygous.

Because only the presence of the allele in either of the two strands

is detected, a hemizygous deletion, i.e., one copy of the chromosome

has the deletion, is observed as a series of homozygous alleles or

73
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null genotypes, where neither allele is found. To simplify the case

somewhat, if the deletion is homozygous, i.e. both strands where

the SNPs are located are deleted, the SNPs are read as missing

alleles or no calls. This case is shown in in the rightmost example

in Figure 4.1.

If there are several hemizygous deletions present in the sample,

this results in more genotypes called homozygous than would be ex-

pected according to Hardy–Weinberg equilibrium. This departure

from the equilibrium can then be detected.

Another detectable signal in trio data are Mendelian inconsisten-

cies. In trios, the child inherits one haplotype from both parents. If

the parents are homozygous, then the child’s haplotype should be

completely determined assuming no errors in measuring the geno-

types and no mutation in the child.

Let us consider the case of a hemizygous deletion in the mother

and assume that the child inherits the deletion haplotype. The

child, assuming that the haplotype inherited from the father is not

a deletion haplotype, now reads as a homozygote of the other (here

the father’s) parental haplotype. If the paternal inherited haplotype

differs from the maternal non-inherited haplotype, this is read as a

Mendelian inconsistency. This case is depicted in Figure 4.1 (b).

Similarly to how the alleles not being in complete Hardy–Weinberg

equilibrium can follow from pure chance, Mendelian inconsistencies

can result from genotyping errors. Hence the discovery of deletion

polymorphisms is not as straightforward as merely finding all trios

and SNPs with such inconsistencies.

Altogether, these signals can be detected by various means from

the SNP data. Kohler and Cutler [68] examine each SNP separately

before joining putative deleted SNPs into windows. This approach

creates estimates of the underlying haplotypes and error rates in

the genotyping process. These estimates are then used to decide the

presence and the limits of the deletions in a probabilistic framework.

McCarroll et al. [81] look for nearby SNPs with similar failure

profiles. These failure profiles are binary vectors for each SNP and

depict patterns of null genotypes, Mendelian inconsistencies or the

combination of these two. If genotyping errors that are not due to

structural variants are expected to be independent, nearby SNPs

with similar failure profiles are possibly due to structural variants.

Therefore, these failure profiles are clustered and the significance
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level for the detected pattern in the SNPs is evaluated. McCarroll

et al. also use deviations from the Hardy–Weinberg equilibrium to

combine the SNP clusters inferred from the failure profiles.

Likewise, Conrad et al. [20] use evidence directly countable from

trio data to detect the presence of deletions. Each detected trio of

genotypes is evaluated whether it contains Mendelian errors sup-

portive of deletions, for instance, a homozygous child with a ho-

mozygous parent of a different allele. If there are sufficiently many

such inconsistencies, a deletion is estimated to be present.

Franke et al. [40] use oligonucleotide arrays to detect deletions

from the genotyping experiment data. In a way, this work pre-

empts the need for methods that depend solely on the measured

genotypes by utilizing direct probe intensity readings before the

data is discretized into genotype calls.

Of particular interest to this thesis is the work of Corona et

al. [22]. They detect the presence of deletions by using haplotype

frequency estimation methodology to evaluate how well the geno-

type data in a specific window can be explained first by all possible

non-deleted haplotypes within that window, and then by adding

a deletion haplotype to the potential set of true haplotypes. The

deletion status is then inferred based on the difference in the data

likelihoods in these two models.

4.2 Estimating haplotype frequencies

For detecting the presence of a deletion, this thesis adapts the ap-

proach presented by Corona et al. [22]. The estimation of haplotype

frequencies has been a widely studied problem under a number of

different cases [33, 147].

The EM algorithm used by Corona et al. modelled genotyp-

ing under errors. The presented algorithm had time complexity of

O(k4) where k is the number of different haplotypes that may have

a positive frequency in the population. If all possible haplotypes

are being considered, then in a window of m SNPs k equals 2m.

This made the algorithm infeasible in practice for long windows.

Instead, they used the haplotyping program HAP [45] to discover

initial haplotype frequencies without deletion, and then scaled the

deletion frequencies with the EM-algorithm. Each iteration now
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Figure 4.1: Idealized footprint of a deletion in SNP genotype data,

in the absence of genotyping error. On green background are the

true haplotypes; the observed genotype is next to them on white.

takes time O(k3). Because this is still inefficient, they focus only

on regions where they believe their method can detect deletions.

The EM algorithm for estimating the haplotype frequencies is

here made computationally feasible by showing how the likelihood

for a trio can be computed in O(k2) time (per EM iteration). Fur-

thermore, a further adjustment to the algorithm results in a runtime

of O(m2m) for m markers. This means that when k is of the order

of 2m, the running time becomes O(k log k). This remains compu-

tationally feasible when m is fairly small (at most 10). If k is below

O(2m), the time complexity of the algorithm still will be O(m2m).

This method can be applied to trios and unrelated individuals,



4.2 Estimating haplotype frequencies 77

thus extending the applicability of the approach to a large class of

study designs.

Let us focus on a window of m SNPs. In total, there are 2m

non-deletion haplotype possibilities with two choices, 0 or 1, at

each position.

We first limit the focus into k ≤ 2m distinct haplotypes and mark

them H1,H2, . . . ,Hk, each being a sequence in {0, 1}m. The value

of each SNP s in haplotype Hi is denoted by Hs
i ∈ {0, 1}. Breaking

the binary form, we write the deletion haplotype as Hs
0 = D for all

s. In this model, this is the only haplotype that contains deleted

SNPs and all of the SNPs are deleted. To each haplotype we affix

their population frequencies f0, f1, f2, . . . , fk so that f0 + f1 + f2 +

· · ·+ fk = 1.

A pair of haplotypes Hi and Hj determine a genotype G(Hi,Hj) =

G(Hj ,Hi) = G = G1G2 · · ·Gm. Each single-SNP genotype Gs has

six possible values: homozygous 00 and 11, heterozygous 01, hem-

izygous deletions 0D and 1D and homozygous deletion DD. The

order of the haplotypes is irrelevant; hence the hetero- and hemizy-

gous cases both represent two different haplotype assignments. For

instance, if Hs
i = D and Hs

j = 1, then Gs = 1D.

In the data sets, Mendelian inconsistencies may be observed as,

for example, the child apparently inheriting an impossible haplo-

type from one or both of the parents, but these can occur not only

in the presence of deletions but because of errors in measuring the

genotypes. For this reason the observed genotype is modelled here

as a product of two ‘true’ haplotypes after applying a probabilistic

error mask. We denote the observed genotype with Ĝ and the four

possible values it can have by 0, 1, 2 and N. Values 0 and 1 repre-

sent corresponding homozygotes, 2 the heterozygote and N no call,

null genotype or missing data. Note that also hemizygous deletions

are observed as homozygotes (Figure 4.1).

Whereas the deletion haplotypes deterministically modify the

observed genotypes, the genotyping error mask changes the under-

lying true genotypes into the observed ones with specific probabil-

ities. Let the true genotype be Gs and the observed genotype Ĝs.

We now denote the probability of observing Ĝs instead of Gs by

εs(G
s, Ĝs). With the simplifying assumption of the errors being

independent, the probability of observing the genotype sequence Ĝ
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with real genotype sequence G becomes

ε(G, Ĝ) =

m
∏

s=1

εs(G
s, Ĝs).

With the standard assumptions of random mating and Hardy–

Weinberg equilibrium, summing over all true genotypes results in

the probability of observing Ĝ,

L(Ĝ) =

k
∑

i=1

k
∑

j=1

fi fj ε(G(Hi,Hj), Ĝ) . (4.1)

4.2.1 Expectation-Maximization algorithm

The Expectation-Maximization algorithm framework [27] has been

successfully applied to a variety of different problems to find pa-

rameter values to maximize the likelihood of the parameters, which

is defined as the probability of the observed data given the param-

eters: L(f) = Pr(D; f). One particular application for it is the

estimation of haplotype frequencies for both unrelated individuals

(e.g. [33, 147]) and trios (e.g. [147]). By using simulated data,

it has been shown to produce accurate estimates of the haplotype

frequencies [34].

We now briefly review the features of the framework; we call

it a framework, as the form of the actual algorithm depends on

the data likelihood formula. These derived algorithms are itera-

tive algorithms that start from one parameter configuration, after

which they deterministically update the model parameters. The

updates monotonically increase the likelihood. These iterations are

continued until the likelihood appears to have converged, i.e., the

likelihood no longer increases considerably between iterations. As

a result, the algorithms are guaranteed to find a local optimum of

the likelihood. Multiple random starting points can then be used

to increase the possibility of finding the global optimum.

The EM-algorithm complements the observed data, D, with un-

observed (missing) dataDM . Together these are called the complete

data. In the case of haplotype frequency estimation, the observed

data are the observed genotypes, and the missing data are the true

underlying haplotypes. We then account for all possible values of

DM by marginalizing over it.
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The algorithm itself consists of two steps that are repeated until

the likelihood converges: the Expectation or E-step and the Max-

imization or M-step. In E-step, the conditional expectation of the

missing data is computed given the observed data and the esti-

mated parameters. In the M-step, the new parameter values that

maximize the expected likelihood of the complete data are com-

puted (where the expectation is over the distribution of the missing

values in the E-step).

Let us denote the parameters we wish to optimize as f (1) and

the parameters from the previous iteration as f . The conditional

expectation of complete data log-likelihood log Lc is denoted

Q(f (1)|f) = EPr(DM |D,f)(log(Lc(f
(1)|DM ,D)) | D)

=

∫

log Lc(f
(1)|DM ,D)Pr(DM |D, f)dDM

with Pr(DM | D, f) being the probability density function of miss-

ing data given the parameters f and the observed data. In the

case of haplotype frequency estimation, f is the vector of estimated

haplotype frequencies and the integration over all DM becomes

summation over all haplotype combinations compatible with the

observations.

To properly perform the M-step, it is necessary to find the value

of f (1) that maximizes Q(f (1)|f). Note that the previous param-

eter estimates f affect the distribution Pr(DM | D) only; on the

other hand, the next iteration parameters, now considered random

variables, are present only in the complete data likelihood function.

This maximization step is dependent on the actual formulation

of the likelihood. In later chapters, we consider cases where the

data is either trios or unrelated individuals.

4.2.2 Error models

The definition of genotype likelihood in Eq. (4.1) leaves us with

the task of specifying the error probabilities. We present an error

model parametrized by two error rates shared by all SNPs. The

miscall rate τ represents the possibility of observing a haplotype

allele different from the true one and the no call rate δ represents

the possibility of reading the genotype as missing. We assume these

errors occur independently for each SNP and haplotype and that
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a deletion haplotype is never read as another allele. With these

parameters and assumptions we form a six-by-four table of prob-

abilities as seen in Table 4.1. For instance, if the true genotype

is 00, we observe genotype 1 by miscalling both haplotypes inde-

pendently with joint probability τ2 and not reading it as a null

genotype, adding the factor of (1 − δ). Similarly, if the true geno-

type is 01, we observe it as a heterozygous 2 by either calling both

haplotypes correctly with probability (1− τ)2(1− δ) or both incor-

rectly (probability τ2(1− δ)).

The model specified above is only one parametrized model of

what the error model can represent. It is also possible to use

SNP-specific values for τ and δ, and also permit detecting an allele

present also with homozygous deletions.

Indeed, there are other proposed models of varying complex-

ity. For instance, Kohler and Cutler [68] proposed a model with

six parameters: the probability of miscalling a homozygote as a

heterozygote, the probability of miscalling a heterozygote as a het-

erozygote, the probability of miscalling a homozygote as the other

homozygote and three separate missing data rates for different real

genotypes.

By comparison, Corona et al. [22] parametrized their model with

miscall probabilities and the no call probability which were esti-

mated from data, but directly substituted the values in Table 4.1

with these probabilities rather than harmonizing the probabilities

by means of underlying true parameters, τ and δ in our case. This

is also close to the model used in this thesis as both share the same

missing data rate parametrization. The difference hence lies in the

specifics of how miscalls are modelled.

4.3 Efficient implementation

When investigating whole-genome data sets, it is preferable that

the detection algorithms are efficient yet do not achieve the speed

at the cost of accuracy. In this section, we consider the cases of data

sets of trios and data sets of unrelated individuals separately. For

both cases, we review the EM-algorithm derived by Zou and Zhao

[147] for estimating haplotype frequencies under genotyping errors,

but also present efficient methods for performing the M-step.
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Table 4.1: True-Genotype/Observed-Genotype Probability Matrix

Observed genotype
0 1 2 N

T
ru

e
g
en

o
ty

p
e 00 (1 − τ)2(1 − δ) τ2(1 − δ) 2τ(1 − τ)(1 − δ) δ

11 τ2(1 − δ) (1 − τ)2(1 − δ) 2τ(1 − τ)(1 − δ) δ
01 (1 − τ)τ(1 − δ) τ(1 − τ)(1 − δ) ((1 − τ)2 + τ2)(1 − δ) δ
0D (1 − τ)(1 − δ) τ(1 − δ) 0 δ
1D τ(1 − δ) (1 − τ)(1 − δ) 0 δ
DD 0 0 0 1

4.3.1 Data model

We assume that the trios or individuals have been independently

sampled. Thus, we can write the likelihood term (probability of the

data) for n trios T̂1, T̂2, . . . , T̂n by assuming independence as

L(T̂1, T̂2, . . . , T̂n) = L(T̂1)L(T̂2) · · ·L(T̂n) .

Although likelihood is technically considered a function of model

parameters, for convenience we instead point out the data for which

the likelihood is computed. For example, L(T̂1) denotes a likelihood

function corresponding to having observed T̂1, and so on.

The likelihood for data from a mother–father–child trio takes

into account the Mendelian dependencies among the trio’s geno-

types. Let M̂ , F̂ , and Ĉ be the observed genotypes for the mother,

the father and the child, respectively, for one trio. Assuming that

the parents each transmit one of their two haplotypes as such, with-

out recombination, the underlying haplotypes of the trio can be

specified by four haplotypes: the mother’s transmitted and untrans-

mitted haplotype, say Hi and Hi′ , respectively, and the father’s

transmitted and untransmitted haplotype, say Hj and Hj′ , respec-

tively. The true genotypes of the mother, the father, and the child

are then M = G(Hi,Hi′), F = G(Hj ,Hj′), and C = G(Hi,Hj),

respectively. The likelihood for the observations T̂ = (M̂, F̂ , Ĉ) is

obtained by summing over the four unobserved haplotypes,

L(T̂ ) =

k
∑

i=0

k
∑

i′=0

k
∑

j=0

k
∑

j′=0

fi fi′ fj fj′ ε(M,M̂ ) ε(F, F̂ ) ε(C, Ĉ) ,
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where f is the vector of relative haplotype frequencies for k haplo-

types and fi, fi′ , fj and fj′ are elements of that vector telling the

frequencies of haplotypes Hi, Hi′ , Hj and Hj′, respectively. Here,

again, we assume that the haplotypes are paired independently.

Above, with several independent trios the likelihood (probability

of observed data) became the product of the individual probabili-

ties of each trio; similarly, for n independently sampled individuals

Ĝ1, . . . , Ĝn the likelihood becomes

L(Ĝ1, Ĝ2, . . . , Ĝn) = L(Ĝ1)L(Ĝ2) · · ·L(Ĝn) .

The probability of the observed genotype of one individual is

shown in Eq. (4.1).

4.3.2 Trio datasets

We now show how to derive the EM-algorithm for genotyping under

errors in trios. This has been derived by Zou and Zhao [147], but

we review it here following our notation.

For the algorithm, we select the unknown true haplotypes as the

missing data and the haplotype frequencies f as the parameters.

We denote Pr(T̂t|Hi,Hi′ ,Hj ,Hj′) as the probability of observing

trio T̂t with mother’s, father’s and child’s haplotypes denoted as

above; more formally,

Pr(T̂t|Hi,Hi′ ,Hj,Hj′) = ε(G(Hi,Hi′), M̂t) ε(G(Hj ,Hj′), F̂t)

× ε(G(Hi,Hj), Ĉt).

Now, we can write the expected log-probability of the complete

data given the previous iteration’s frequencies f as

Q(f (1)|f) =
n
∑

t=1

k
∑

i=0

k
∑

i′=0

k
∑

j=0

k
∑

j′=0

(

log Pr(T̂t|Hi,Hi′ ,Hj,Hj′)

+ log Pr(Hi,Hi′ ,Hj,Hj′)
)

×Pr(Hi,H
′
i,Hj ,H

′
j|T̂t, f)

=

n
∑

t=1

k
∑

i=0

k
∑

i′=0

k
∑

j=0

k
∑

j′=0

(

log Pr(T̂t|Hi,Hi′ ,Hj,Hj′)

+ log
[

f
(1)
i f

(1)
i′ f

(1)
j f

(1)
j′

] )

×Ψt(i, i
′, j, j′),
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where

Ψt(i, i
′, j, j′) = Pr(Hi,H

′
i,Hj,H

′
j |T̂t, f)

= Pr(T̂t|Hi,Hi′ ,Hj,Hj′)fifi′fjfj′

×

(

k
∑

l1=0

k
∑

l2=0

k
∑

l3=0

k
∑

l4=0

Pr(T̂t|Hl1,Hl2 ,Hl3 ,Hl4)

×fl1fl2fl3fl4

)−1

(4.2)

is the probability that the underlying true haplotypes are Hi,Hi′ ,Hj

and Hj′ if we observe trio T̂t.

The divisor in Eq. (4.2) is a constant for the trio and the likeli-

hood of the trio under the previous iteration haplotype frequencies;

we denote this sum L0(Tt).

With the additional constraint of
∑k

h=0 f
(1)
h = 1, we can use La-

grange multipliers to see that Q(f (1)|f) is maximized with respect

to f (1) when we give the parameters the following values:

f
(1)
h =

ah
∑k

h′=0 ah′

,

ah =
n
∑

t=1

k
∑

l1=0

k
∑

l2=0

k
∑

l3=0

(

Ψt(h, l1, l2, l3) + Ψt(l1, h, l2, l3) +

Ψt(l1, l2, h, l3) + Ψt(l1, l2, l3, h)
)

=

n
∑

t=1

(

k
∑

i′=0

k
∑

j=0

k
∑

j′=0

Ψt(h, i′, j, j′) +

k
∑

i=0

k
∑

j=0

k
∑

j′=0

Ψt(i, h, j, j′)

+

k
∑

i=0

k
∑

i′=0

k
∑

j′=0

Ψt(i, i
′, h, j′) +

k
∑

i=0

k
∑

i′=0

k
∑

j=0

Ψt(i, i
′, j, h)

)

.

The last form is of particular interest. Each of the four inner

sum triplets represent the probability of one of the four haplotypes

being fixed as haplotype Hh given the haplotype frequencies f . Let

us write the joint probability of observing a particular trio and the

maternal inherited haplotype being Hi for that trio as

Ii(T̂ ) =

k
∑

i′=0

k
∑

j=0

k
∑

j′=0

fi fi′ fj fj′ ε(M,M̂ ) ε(F, F̂ ) ε(C, Ĉ).



84 4 Detecting deletions

Similarly, we can write the joint probability for observing the trio

and the maternal uninherited haplotype being Hi′ as

I ′i′(T̂ ) =

k
∑

i=0

k
∑

j=0

k
∑

j′=0

fi fi′ fj fj′ ε(M,M̂ ) ε(F, F̂ ) ε(C, Ĉ).

Analogously, we define Jj(T̂ ) and J ′
j′(T̂ ) for paternal inherited and

uninherited haplotypes. With these, we can rewrite

ah =
n
∑

t=1

Ih(T̂t) + I ′h(T̂t) + J ′
h(T̂t) + Jh(T̂t)

L0(Tt)
,

where L0(Tt) is the denominator in Eq. (4.2).

We next look at how the joint probabilities (which could also be

called augmented likelihoods) Ih(T̂ ) and I ′h(T̂ ) in the EM algorithm

can be computed for all h = 0, 1, . . . , k in O(k2) total time. The

analogous terms Jh(T̂ ) and J ′
h(T̂ ) are computed in the same way.

Note also that the total likelihood L0(T̂ ) can be computed easily

by L0(T̂ ) =
∑

h Ih(T̂ ) in O(k) time once the Ih values have been

computed first.

A key observation is that the joint probability expressions are

sums of products where each factor in the product depends on at

most two of the four haplotypes. Recall that M = G(Hi,Hi′),

F = G(Hj ,Hj′), and C = G(Hi,Hj), and denote

αii′ = ε(M,M̂ ) , βjj′ = ε(F, F̂ ) , γij = ε(C, Ĉ) ;

note that these are symmetric matrices, as the function mapping the

haplotype pairs to genotypes does not distinguish between the first

and the second parameter. For each i = 0, 1, . . . , k we decompose

the sum for Ii(T̂ ) as

Ii(T̂ ) =

k
∑

i′=0

k
∑

j=0

k
∑

j′=0

fi fi′ fj fj′ αii′ βjj′ γij

= fi

(

k
∑

i′=0

fi′αii′

)

( k
∑

j=0

fjγij

(

k
∑

j′=0

fj′ βjj′

)

)

.

Accordingly, we first compute β̃j :=
∑

j′ fj′ βjj′ for all j, then γ̃i :=
∑

j fjγijβ̃j and α̃i :=
∑

i′ fi′αii′ for all i. Each step takes O(k2)
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time. Finally, we obtain Ii(T̂ ) = fiα̃iγ̃i for all i, thus taking O(k)

additional time, given the precomputed α̃i and γ̃i.

Similarly, for each i′ = 0, 1, . . . , k we write I ′i′(T̂ ) as

I ′i′(T̂ ) =

k
∑

i=0

k
∑

j=0

k
∑

j′=0

fi fi′ fj fj′ αii′ βjj′ γij

= fi′

(

k
∑

i=0

fiαii′

( k
∑

j=0

fjγij

(

k
∑

j′=0

fj′ βjj′

)

)

)

.

Then we compute I ′i′(T̂ ) = fi′
(
∑

i fiαii′ γ̃i

)

for all i′ in O(k2) total

time.

Again, for each j = 0, 1, . . . , k and j′ = 0, 1, . . . , k we compute

Jj(T̂ ) and J ′
j′(T̂ ) as

Jj(T̂ ) =

k
∑

i=0

k
∑

i′=0

k
∑

j′=0

fi fi′ fj fj′ αii′ βjj′ γij

= fj

(

k
∑

j′=0

fj′βjj′

)

( k
∑

i=0

fiγij

(

k
∑

i′=0

fi′ αii′

)

)

and

J ′
j′(T̂ ) =

k
∑

i=0

k
∑

i′=0

k
∑

j=0

fi fi′ fj fj′ αii′ βjj′ γij

= fj′

(

k
∑

j=0

fjβjj′

( k
∑

i=0

fiγij

(

k
∑

i′=0

fi′ αii′

)

)

)

.

We note that the above algorithm can be viewed as an instan-

tiation of the generic variable elimination method, also called the

generalized distributive law or the sum–product algorithm [2, 71,

116],[69, Ch. 3].

Also, I0(T ) can be considered the unnormalized likelihood of the

maternal inherited haplotype being the deletion haplotype (recall

that we used index 0 to denote the deletion haplotype and indices

1, . . . , k to denote other haplotypes). Analogous interpretations ap-

ply to I ′0(T ), J0(T ) and J ′
0(T ). We can therefore estimate which

individuals in the data set carry homozygous or heterozygous dele-

tions.
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If we consider all the possible haplotypes of a window of mod-

erate size (ca 6 to 8), the time complexity is too high for practical

purposes. The complexity arises from the computation of values

α̃i, β̃i and γ̃i for all i = 1, . . . , k.

Each of these can be viewed as the result of the multiplication of

one (k+1)×(k+1) matrix times a vector of k+1 elements. Naively

done, the computation of each element takes O(mk) time, which

now stands for O(m2m). The factor m is due to the m factors con-

tributing to the genotype observation probability. The computation

of the whole result vector is hence O(2m2mm) = O(4mm).

The application of Yates’ algorithm [145], also treated by Knuth

[67, Section 4.6.4] and Koivisto [69, Ch. 3], can improve this time

to O(k log k), which corresponds to O(m2m).

Assume we have a function q : {0, 1}m → R, with the binary

vector x 7→ q(x) =
∑

y∈{0,1}m gx,yvy, where gx,y can be factorized

as
∏n

i=1 gi(xi, yi); xi and yi refer to the ith element in the respective

vectors. In such case, we can compute q for all different x in time

O(m2m) by Yates’ algorithm, described as Algorithm 4.1.

Algorithm 4.1 An instance of Yates’ algorithm in pseudocode.

Input: Factors gi : {0, 1} × {0, 1} → R, t0(y) = vy for all y ∈
{0, 1}m.

Output: Values of tm, which are equal to q(x) for all x ∈ {0, 1}m.

1: for i = 1, . . . ,m do

2: for y ∈ {0, 1}m do

3: a← y1 . . . yi−10yi+1 . . . ym

4: b← y1 . . . yi−11yi+1 . . . ym

5: ti(y)← gi(yi, 0)ti−1(a) + gi(yi, 1)ti−1(b)

6: end for

7: end for

8: Return tm.

Let us now consider the computation of γ̃ by using Yates’ algo-

rithm. If we write vj ≡ fjβ̃j , then

γ̃i :=

k
∑

j=0

vjγij for i = 0, 1, . . . , k.

We assume that β̃j has been precomputed.
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We also note that γij, βij and αij are of form

m
∏

s=1

ε(G(Hs
i ,Hs

j ), Ĝs) ;

in particular,

γij =

m
∏

s=1

ε(G(Hs
i ,Hs

j ), Ĉs).

For brevity, we write γs
ij = ε(G(Hs

i ,Hs
j ), Ĉs); these correspond to

gi
x,y in the above description of Yates’ algorithm.

To make Yates’ algorithm applicable, we separate the terms in-

volving a deletion haplotype H0; hence, we have

γ̃0 :=
k
∑

j=0

vjγ0j ,

γ̃i := v0γi0 +
k
∑

j=1

vjγij for i = 1, 2, . . . , k . (4.3)

Since the summation in Eq. (4.3) over j goes over all possible

alleles for each position 1, . . . ,m, it can now be decomposed into m

nested sums over j1, j2, . . . , jm which index the allele values of Hj

in each individual position; similarly, we will index the allele values

of Hi by i1, i2, . . . , im. For all i = 1, 2, . . . , k we have

k
∑

j=1

vjγij =
1
∑

j1=0

1
∑

j2=0

· · ·
1
∑

jm=0

γ1
i1ji

γ2
i2j2 · · · γ

m
imjm

vj1j2···jm
,

=

1
∑

jm=0

γm
imjm

(

· · ·

( 1
∑

j2=0

γ2
i2j2

(

1
∑

j1=0

γ1
i1j1vj1j2···jm

)

)

· · ·

)

,

where γ1
i1j1

denotes the value of γs
ij = ε(G(Hs

i ,Hs
j ), Ĉs) when s = 1

and the alleles at Hs
i and Hs

j have values i1 and j1, respectively, and

similarly for γ2
i2,j2

, . . . , γm
im,jm

. The values of j· are limited to the

possible values the haplotype can get in non-deletion haplotypes.

As such, the summations cover all possible haplotypes of m SNPs.

Note that vj1···jm
is merely an alternate notation for vj to show its

dependence on all the allele values j1, . . . , jm which constitute the

haplotype choice j.
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We note that this form is of the form required for Yates’ algo-

rithm to be applicable. To conclude, we can compute γ̃ in O(m2m)

or O(k log k) time.

The handling of α̃i and β̃i is very similar: we decompose the sum

into m nested sums corresponding to Yates’ algorithm. For comput-

ing I ′h, Jh and J ′
h, we need to compute additional similar products;

these steps are accounted for in Algorithm 4.2, which represents the

resulting haplotype frequency estimation EM-algorithm.

Finally, if we do not want to consider all the possible haplotypes,

we set the corresponding haplotype frequencies in f to 0 when ini-

tializing the routine. This effectively eliminates the haplotypes from

the summation without complicating the computations further.

To summarize, unlike in the O(k2) algorithm, it is not necessary

to precompute the error factors ε(G(Hi,Hj), Ĝ) for all genotypes

present in the data and pairs of haplotypes Hi,Hj of length m,

which would take O(nm4m) time, where n is the number of trios

and m is the number of considered SNPs. If we denote the number

of iterations until convergence by r, then the total time complexity

of the fast algorithm becomes O(rnk log k).

4.3.3 Unrelated individuals

The case of unrelated data sets is simpler to evaluate. As men-

tioned, for genotypes Ĝ1, Ĝ2, . . . , Ĝn sampled from n unrelated sub-

jects, the likelihood is obtained by assuming independence:

L(Ĝ1, Ĝ2, . . . , Ĝn) = L(Ĝ1)L(Ĝ2) · · ·L(Ĝn) .

Zou and Zhao [147] showed how to use an error model in the

EM-algorithm for unrelated genotypes. The derivation of the algo-

rithm is similar to that for trios, so we note only that following our

notation, the M-step of the EM-algorithm becomes

f
(1)
h =

1

2n

n
∑

u=1

k
∑

i=1

fifh(ε(G(Hi,Hh), Ĝu) + ε(G(Hh,Hi), Ĝu)
∑k

j=1

∑k
j′=1 fjfj′ε(G(Hj ,Hj′), Ĝu)

.

This can easily be computed in time O(nk2), as long as we have

precomputed the error factors for each pair of haplotypes. How-

ever, as the product in the numerator can be written out as a sum
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Algorithm 4.2 DD EM -subroutine for trios

Input: Trio data set D, k potential non-deletion haplotypes, num-

ber of EM restarts r. Boolean value deletion case for permitting

deletion haplotypes,

Output: Estimated haplotype frequencies f and the data likeli-

hood with the frequencies, L(D)

1: for loop= 1, . . . , r do

2: f ← random initialization s.t.
∑

f = 1 and fi > 0, i =

0, . . . , k

3: if not deletion case then

4: f0 ← 0

5: s←
∑k

h=1 fh

6: fh ← fh/s for all h

7: end if

8: while data likelihood has not converged do

9: for t=1,. . . , n do

10: β̃h ←
∑k

j′=0 fj′βhj′ for all h {Yates’ algorithm}

11: α̃h ←
∑k

i′=0 fi′αhi′ for all h {Yates’ algorithm}
12: γ̃h ←

∑k
j=0 fjγhjβ̃j for all h {Yates’ algorithm}

13: γ̃J
h ←

∑k
j=0 fjγhjα̃j for all h {Yates’ algorithm}

14: I ′h(Tt)← fh(
∑k

i=0 fiαihγ̃i) for all h {Yates’ algorithm}
15: J ′

h(Tt)← fh(
∑k

j=0 fjβjhγ̃J
j ) for all h {Yates’ algorithm}

16: Ih(Tt)← fhα̃hγ̃h for all h

17: Jh(Tt)← fhβ̃hγ̃J
h for all h

18: L(Tt)←
∑k

i=0 Ii(Tt)

19: end for

20: Lloop(D)←
∏n

t=1 L(Tt)

21: for h=0,. . . ,k do

22: fh ←
∑n

t=1(Ih(Tt) + I ′h(Tt) + Jh(Tt) + J ′
h(Tt))/L(Tt)

23: end for

24: f ← f/
∑k

h=0 fh

25: end while

26: end for

27: Return the f associated with the loop maximizing data likeli-

hood Lloop(D).
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of two products, both of these products can be computed by us-

ing essentially the same Yates’ algorithm as we described for the

case of trio data sets. The appropriate subroutine is described as

Algorithm 4.3.

Hence, the time complexity of one iteration can be written as

O(nk log k), where n is the number of unrelated individuals and

not trios unlike in the previous section.

Algorithm 4.3 DD EM -subroutine for unrelated individuals

Input: Data set D of unrelated individuals, k potential non-

deletion haplotypes, Boolean value deletion case for permitting

the deletion haplotype and the number of EM restarts r.

Output: Estimated haplotype frequencies f and the data likeli-

hood with the frequencies, L(D)

1: for loop = 1, . . . , r do

2: f ← random initialization s.t.
∑

f = 1 and fi > 0, i =

0, . . . , k

3: if not deletion case then

4: f0 ← 0

5: s←
∑k

i=0 fi

6: fh ← fh/s for all h

7: end if

8: while likelihood not converged do

9: for u = 1, . . . , n do

10: Compute vu
h ← fh

∑k
i=0 fiε(G(Hi,Hh), Ĝu) for all h

{Yates’ algorithm}
11: Compute vu

0 ← f0
∑k

i=0 fiε(G(Hi,H0), Ĝu).

12: L(Gu)←
∑k

i=0 vu
i

13: end for

14: for h = 0, . . . , k do

15: fh ←
∑n

u=1

∑k
i=0 vu

i /L(Gu)

16: end for

17: f ← f/
∑k

h=0 fh

18: end while

19: end for

20: Return the f associated with the loop maximizing data likeli-

hood Lloop(D).
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4.4 Estimating the error probabilities

The miscall and null call rate parameters, τ and δ, which affect

the error probabilities as described in Section 4.2.2 and Table 4.1,

need be estimated based on the data given. The maximum likeli-

hood estimate for the null genotype call rate δ is straightforward

to estimate as the proportion of null genotypes over all genotypes.

The case of τ is more complicated. To this end, two different

methods were tried. In the simpler case, we assumed that the par-

ent genotypes were correct and only the child haplotypes could have

been wrong. The focus was on the observation probability for infor-

mative trios where both parents were homozygotes, possibly with

respect to different alleles, in which case the child genotype would

be completely determined by the parent genotypes. Each SNP in

each trio was considered separately.

Let us call T the collection of all triplets (F s
t ,M s

t , Cs
t ) in the data

set that have homozygous parents and no null genotypes, and let

C, F andM be the children, fathers and mothers in these trios. In

such a case and assuming no genotyping errors or Mendelian errors

in the parents, the child genotype can be unambigously inferred.

Let this inferred genotype be C inf.
t . The children’s genotypes’ log-

probability given their parents can thus be written as

log L(C|M,F) =
∑

t∈T

log ε(C inf.
t , Ĉt)

= c1 log(1− τ)2 + c2 log(τ2) + c3 log(2(1 − τ)τ)

+c4 log(τ(1 − τ)) + c5 log((1− τ)2 + τ2)

+c6 log(1− τ) + c7 log τ,

where ch are the number of trios for which the difference between

the inferred child genotype C inf.
t and Ct results in the associated

factor. The scenarios that result in each factor are listed in Table 4.1

but here we consider only cases where the observed genotype is not

null, hence δ and 1 − δ are omitted from the factors. Note that

when dealing with data that assumes there are no deleted SNPs in

the parents either, then c6 = c7 = 0.

To find the value of τ to maximize this, we differentiate the like-

lihood log L(C|M,F) for τ . The solutions to ∂
∂τ log L(C|M,F) = 0



92 4 Detecting deletions

are the solutions of

0 = (−4c1 − 4c2 − 4c3 − 4c4 − 4c5 − 2c6 − 2c7)τ
3 + (4.4)

(4c1 + 8c2 + 6c3 + 6c4 + 2c5 + 2c6 + 4c7)τ
2 +

(−2c1 − 6c2 − 4c3 − 4c4 − 2c5 − c6 − 3c7)τ +

(2c2 + c3 + c4 + c7);

for the solution to be feasible, we require that τ ∈ [0, 1]. The true

minimizing solution is found by testing all feasible solutions to the

equation above and also the interval end-points 0 and 1.

An alternate method that was tried resembled the above proce-

dure greatly. The SNPs in the data were considered to be indepen-

dent and their allele frequencies estimated by the means of the same

EM-algorithm depicted earlier in Algorithms 4.2 and 4.3. At the

same time, the EM-algorithm was used to improve the estimate of

τ . Finding τ (1) to maximize the conditional expected log-likelihood

Q(f (1)|f) described in Section 4.3.2 is otherwise the same as solving

Eq. (4.4), but the definition of ch has changed to be the sums of

Ψt(i, i
′, j, j′) as they involve the different types of trios. More for-

mally, let us define U s(Ĉs
t ,H

s
i ,Hs

j ) as vectors of zeros, except for

one element that equals 1. The index of this element corresponds to

the error table factor of ε(G(Hs
i ,Hs

j ), Ĉs
t ) in c. For example, if the

error is of a kind that has probability 2(1−τ)τ , then it corresponds

to factor c3 and the index is set to 3. We now can write the joint

update vector pertaining to child genotypes as

UC =

m
∑

s=1

n
∑

t=1

2
∑

i=1

2
∑

j=1

2
∑

j′=1

2
∑

i′=1

U s(Ĉs
t ,H

s
i ,Hs

j )Ψs
t(i, i

′, j, j′),

where Ψs
t(i, i

′, j, j′) equals Ψt(i, i
′, j, j′) computed for the one-SNP

window of the SNP s. The vector UC effectively contains expected

counts of how many times each error type corresponding to a factor

ch occurs in the observations of child genotypes, under the assump-

tion of independent SNPs. Note that in the preceding notation we

did not allow for deletion alleles to be present due to the assump-

tion of the SNPs being independent. The assumption that adjacent

SNPs are independent decreases the accuracy of the deletion hap-

lotype frequency estimate because the deletion alleles are no longer

tied together to the same individuals and haplotypes. Deletions are
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also expected to represent only a small part of the whole genome.

This makes their inclusion in the estimate unnecessary.

Sums UM and UF representing expected error counts in mother

and father genotype observations are defined analogously. Finally,

maximising τ reduces to finding the solution to Eq. (4.4) with

c = UC +UF +UM , where the individual multipliers ch are given by

the elements of c. We note that each iteration of the EM-algorithm

now takes time O(nm) with the estimation of SNP allele frequencies

included. Note that 2m does not appear as a factor, because the

SNPs are considered independent.

Computationally, the latter method is naturally the slower one,

but it is also more accurate. To test the methods, COSI [104]

and the best-fit parameters provided in the article [104] were used

to generate 100 data sets in the European subpopulation without

deletions with 250 SNPs and 100 trios. Simulated errors were then

added to the data sets by using error parameters τ = 0.001 and

δ = 0.01 to compare the accuracy of the two methods. As the

result, the mean for EM-estimate of τ was 0.0010 with standard

deviation of 0.000152, whereas the simpler estimate had mean of

0.0014 with standard deviation of 0.000248.

Note that in the case of data sets with deletions, the estimate

becomes biased towards higher estimates of τ . This is because

hemizygous deletions are more likely to introduce Mendelian in-

consistencies into the data. These are perceived as miscalls, which

results in the bias.

4.5 Estimating the significance

There are several methods of deciding from the results of the EM-

algorithm whether the data supports the presence of a deletion or

not. We take a closer look at two methods: likelihood ratio tests

(e.g., [140, Ch. 13]) and k-fold crossvalidation (e.g., [48, pp. 214–

217]). As third option, we consider using a data set screened to be

(mostly) without deletion signal.

The exclusion and inclusion of the deletion haplotype in the hap-

lotype frequency estimation produces two different models. The

difference in parametrization is the addition of one variable to the

former, this being the relative frequency of the deletion haplotype.
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As the result of the EM-algorithm for estimating the frequencies,

we gain a local maximum of the data likelihood. These maximized

likelihoods can be used in the standard likelihood ratio test, ex-

plained for instance by Wilks [140, Ch. 13] and Ewens and Grant

[32, Ch. 9.4]. This method was used also by Corona et al. [22]

to give p-values for putative deletions. Kohler and Cutler [68] also

use the likelihood ratio test to estimate the significance of deletions

both on a per-SNP basis and then for the whole candidate deletion.

Let us consider two nested models M0 and M1 so that the pa-

rameter set of M0, Θ0, is a subset of that of M1, Θ1. These models

correspond to the null hypothesis H0 and the alternative hypothe-

sis H1, respectively. Let the maximum likelihood parameter vectors

for these models then be θ0 and θ1 for the respective models. In

the asymptotic case when sample size, in our case n, approaches

infinity,

−2 log

[

L(D|θ0)

L(D|θ1)

]

∼ χ2(|Θ1 \Θ0|)

as the size of the data, |D|, approaches ∞. This can then be used

to test whether to reject H0. In the case of deletions and haplotype

frequencies, Θ0 is the set of random variables depicting the k − 1

haplotype frequencies (the kth variable is completely determined

by the other variables) and Θ1 adds to that set the deletion hap-

lotype frequency, thus having k elements. Hence, the test uses χ2

distribution with one degree of freedom and tests whether the null

hypothesis of no deletion being present should be rejected.

This test makes a number of assumptions as mentioned by e.g.

Ewens and Grant [32, Section 9.4]: the parameters must be real

numbers on some interval, and the maximum likelihood estimate is

not a boundary point in the parameter space. However, with these

assumptions we can compute the associated p-value. Small p-values

suggest the presence of a deletion.

The algorithm for using the likelihood ratio test statistic is given

as Algorithm 4.4. Note that both types of data, unrelated individ-

uals and trios, can be used by this same algorithm separately, if the

called algorithm DD EM is substituted with either Algorithm 4.2

or 4.3.

To investigate the accuracy of this testing method, SNP data

without deletions were generated with COSI [104]. From these

synthetic data, empirical distributions of p-values under the null



4.5 Estimating the significance 95

Algorithm 4.4 Deletion detection algorithm utilizing the likeli-

hood ratio test statistic.
Input: Genotype data set D .

Output: The estimated deletion frequency f1
0 and the likelihood

ratio test statistic t.

1: [f0, L0]← DD EM(D, false)

2: [f1, L1] ← DD EM(D, true) {f1
0 is the estimated deletion fre-

quency}
3: Return f1

0 and the likelihood ratio test statistic t = −2 log L0

L1 .

hypothesis were formed with the number of trios ranging from 30

to 500, and the window size, m, from 2 to 8.

50 data sets of 500 kb in length the under the “European” pop-

ulation model were generated. To simulate SNP ascertainment in

the synthetic data sets, two different schemes were used: one was

to use an adaptation of tag-SNP selection algorithm of Carlson et

al [17], and the other was a simulated panel of 48 haplotypes. The

adaptation of the algorithm by Carlson et al. is depicted in Algo-

rithm 4.5. The main difference is that the mean SNP spacing and

the threshold for minimum r2 were fixed, and that in dividing the

SNPs into bins of high LD, only one SNP was added to the tag-SNP

collection.

Algorithm 4.5 An adaptation of the SNP tagging algorithm of

Carlson et al. [17]

Input: A haplotype data set.

Output: A set of SNPs selected for genotyping.

1: Remove SNPs with MAF below 0.05.

2: Select SNPs so that their mean distance is 2 kb.

3: Sample 120 haplotypes at random and ignore the rest.

4: Again remove SNPs with MAF below 0.05 in the now smaller

data set; S ← the remaining SNP set.

5: while S not empty do

6: k = argmaxi

∑

j r2(i, j)

7: Add SNP k to genotyped SNPs.

8: Eliminate SNPs i for which r2(k, i) ≥ 0.7 from S.

9: end while

To compare the effect the SNP selection schemes have on the
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score distributions, in addition to the method of Carlson et al. [17],

selection of SNPs with a panel that was included in the final data

set was also simulated. 48 haplotypes in the parental haplotypes

were selected at random, and all SNPs with two alleles present in

the panel haplotypes were included in the data set after removing

those with MAF below 0.05 and removing enough SNPs to make

the mean SNP distance 2 kb. Note that the tag-SNP algorithm and

the panel ascertainment method produced data with different mean

SNP distance, which also means that windows spanned different

lengths in the data. The miscall and no call errors were modelled

using the error model in Section 4.2.2 with τ = 0.001 and δ = 0.01.

The test statistic values were computed from sliding windows of

fixed width, so one data resulted in multiple observations of the

test statistic. The number of such windows in each data set was

dependent on the window size m. As seen in Figure 4.2, the

empirical distribution of −2 log L(H0)
L(H1) does not strictly follow the

χ2-distribution with one degree of freedom. The difference between

the theoretical and empirical probability density functions possibly

decreases with increasing the window size, which also corresponds

to growing region covered by the window (Figure 4.2 (a,c)). It is

understandable that with the window size increasing it becomes less

likely for random genotyping errors or pure chance to result in a

false discovery of a deletion.

The number of trios also has a clear impact on the accuracy

of the approximation (Figure 4.2 (b)). The used SNP screening

method has a notable effect on the test statistic distribution as

well.

Regardless, we have no reason to expect that high-scoring values

of the test statistic are less significant than lower-scoring values,

assuming the same sample and window size. We can still select test

statistic thresholds for accepting the alternate hypothesis; we only

are not certain of the false positive rate with real data for some

fixed threshold.

Another frequently used tool for model selection is k-fold cross

validation. In the former, the data is partitioned in k equally large

subsets; let us denote these sets now Di and call them test data.

Let us now use the EM-algorithm for each training data set D\Di

to estimate the haplotype frequencies Θi
1 and Θi

0 for with and with-

out deletion haplotype, respectively. Given these two haplotype fre-
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(a) Varying window size and ascertainment method with 30 trios
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(b) Varying trio count, m = 4
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(c) Varying m, 100 trios with tag-SNP algorithm

Figure 4.2: Empirical likelihood ratio test score distribution, com-

puted from 50 replicated SNP data generated by COSI without

deletions, plotted against the χ2(1) probability density function.

The total number of SNPs in each replication was 250.
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quency sets, we then compute the likelihood of Di. The test value

these likelihoods give us is

tCV =
1

k

k
∑

i=1

(log L(Di|Θ
i
1)− log L(Di|Θ

i
0)).

The resulting algorithm is given as Algorithm 4.6.

Algorithm 4.6 Basic k-fold crossvalidation framework for DelDec.

Input: Genotype data set D and the number of folds in crossvali-

dation, k.

Output: The estimated deletion frequency f1
0 and the test statis-

tic.

1: Partition D randomly in k parts D1, . . . ,Dk.

2: tCV ← 0

3: for i = 1, . . . , k do

4: [f0,i, Li(0)]← DD EM(D \ Di, false)

5: [f1,i, Li(1)]← DD EM(D \ Di, true)

6: tCV ← tCV + log L(Di|f
1,i)− log L(Di|f

0,i)

7: f1
0 ← f1

0 + 1
kf1,i

0

8: end for

9: Return the test statistic 1
k tCV and deletion frequency f1

0 .

In practice, 5-fold crossvalidation performs typically as well or

worse than the likelihood ratio test. This was tested by using the

synthetic data sets described in Section 5.3.1. Figures 4.3 and 4.4

display some example ROC curves generated under various condi-

tions. If the deletion is sufficiently frequent (f0 ≥ 0.1) and window

size at least 4, there is no major difference in the performance be-

tween the two methods. With smaller window size there is a differ-

ence (Figure 4.4). There is also a difference if the amount of data

n is small or if the true proportion of deletions is small. The ROC

curves are drawn on per-SNP-detection accuracy by using the mean

method (described in Section 4.6).

Finally, the third option for estimating significance stems from

the presence of real-world SNP data. Recall that the presence of

deletions increases the number of no call genotypes and the distance

from Hardy–Weinberg equilibrium. Both of these factors have been

used as quality control (QC) criteria for eliminating poorly geno-

typed SNPs from data sets [128, 129]. Because such QC can remove
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(a) n = 30, f0 = 0.05, window

size 4
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(b) n = 30, f0 = 0.1, window

size 4
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(c) n = 500, f0 = 0.005, window

size 4
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(d) n = 1000, f0 = 0.005, win-

dow size 4

Figure 4.3: ROC-curve comparisons of 5-fold CV and likelihood

ratio tests (LRT) under varying synthetic data parameters.

information about deletions, it is sensible to perform the deletion

detection scheme described in this chapter on data sets that have

not undergone such a QC process.

The QC process, however, can be also be used to improve a

deletion significance estimation scheme: the filtered data set can be

expected to have weaker deletion signals, but the QC process most

likely does not remove all of it. Hence the score distribution in this

data set is a combination of both deletion and deletion-free signals,

but is closer to deletion-free signals than the unscreened data set.

This distribution can then be used as a conservative estimate for

translating the p-values the likelihood ratio test produces into p-

value estimates that might be closer to their real values than the
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(a) n = 100, f0 = 0.05, window size

m = 4
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(b) n = 100, f0 = 0.05, window size

m = 4

Figure 4.4: ROC-curve comparisons of 5-fold CV and likelihood

ratio tests (LRT) under different window sizes.

χ2 approximation.

The overall idea is to use a data set with significantly weaker sig-

nals for the presence of deletion to form a closer approximation of

the underlying distribution of the test statistic. Note that this ap-

proach is feasible only for very large data sets, such as the HapMap

data, as the score histogram need be defined at a sufficiently fine

scale.

4.6 Determining deletion end-points

Merely reporting the presence of a deletion is rarely enough, as the

approximate location of the SNP should also be given.

The haplotype frequency estimation method presented in Sec-

tions 4.2 and 4.3 does not directly tell where the deletion break-

points are, as also windows partially covering regions flanking the

deletions can have high test statistic values. In the method of

Kohler and Cutler [68] this is not a problem, as their method de-

fines the putative deletion starting from the evidence from single

SNPs, expanding the putative deletions from each SNP and then

combining the expanded deletion frames.

By comparison, Corona et al. [22] join overlapping windows with
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the likelihood test ratio score higher than a pre-determined value,

and report the positions of the first and the last SNPs within the

window. As our method is also based on the method of Corona

et al., it also uses statistics for windows rather than single SNPs.

Therefore we want to address the problem for a deletion status

prediction for each SNP, as in our approach the windows need to

be joined together to produce deletion candidates longer than at

most 10 SNPs.

Other methods for the same purpose were also considered. The

simplest case was the estimation based on one-SNP windows, which

can be summarized as computing the per-SNP deviation from the

Hardy–Weinberg equilibrium. The shortcoming of this approach

is that it lacks power in the case of SNPs with very low MAF, as

it completely ignores the possible presence of deletions on either

or both sides of the SNP. This option was not tried out in the

experiment.

Alternatively, we approach the problem by taking the solution

of Corona et al. as a starting point. We examine whether there are

SNPs that are inside a deletion polymorphism within the window.

For Corona et al., the window size varied from 1 to 40 SNPs. In our

approach, we use only a fixed-size sliding window over the genome to

produce a scan of the dataset, and included all potential haplotypes

in the consideration, i.e., k = 2m.

Three different end-point determination methods were consid-

ered. The simplest option was to label a SNP deleted if it was

contained in at least one window with a likelihood ratio test score

over a given threshold. We call this the single-hit method; it was

also essentially the same as Corona et al. [22] used in their work to

combine windows. The second option required at least half of the

windows containing the SNP to score above the given threshold;

this is called the majority-vote method. Finally, the third option

considered was to investigate the arithmetic mean of the scores of

the windows containing the SNP and to label the SNP as deleted if

the mean score was over a threshold. In the following, we call this

the mean method.

The three methods were tested on synthetic data sets, the same

ones as used in Section 5.3.1 to evaluate the performance of our

deletion detection method. The mean SNP spacing was 2 kb and

the deletion length was 20 kb in a simulated segment of 250 kb. The
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used criteria were the fractions of false positives and true positives

when predicting the SNP-wise deletion status.

The results are shown in Figures 4.6 and 4.5. Long windows

(m ≥ 6) worked well in these synthetic experiments only in cases

where there were a large number of trios (n ≥ 100) and the deletion

was rare (f0 ≤ 0.01). The good performance in these cases might

be due to the decreased variance in the test score due to the score

being more robust against random noise. When the deletion is rare,

the signal is lost in the random noise when using small windows.

In contrast, in longer windows the consistent deletion patterns in-

crease the likelihood ratio test score. Therefore, in the case of rare

deletions, the long windows have a better chance of detecting the

presence of a deletion and the short windows cannot compete de-

spite their more accurate deletion end-point detection. In shorter

windows, the deletion signal from one end of the window does not

increase the score of the SNPs in the other end.

Of the three different methods, the mean method seems to per-

form well in data sets of moderate size (Figure 4.6(a) and (b)). By

selecting this method we get Algorithm 4.7, which we call Deldec-

Scan, for scanning over whole-genome data sets.

Algorithm 4.7 Deldec-Scan -algorithm for detecting deletions in

whole-chromosome SNP data sets. LRT(·) corresponds to Algo-

rithm 4.4 with 2m different potential haplotypes.

Input: Window size m, genotype data D
Output: Deletion candidate regions

1: for i = 1 to n−m + 1 do

2: si ← LRT(genotypes of SNPs in i through i + m− 1 in D).

3: end for

4: for i = 1 to n do

5: c← mean of SNP deletion scores si−m+1 through si (exclud-

ing indices below 1, that is, SNP positions outside the data).

6: if c > threshold then

7: Mark SNP i as deleted.

8: end if

9: end for

10: Join adjacent SNPs marked as deleted together as deletion can-

didates.
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(a) n = 100, f0 = 0.01
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(b) n = 100, f0 = 0.1
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(c) n = 500, f0 = 0.01
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(d) n = 500, f0 = 0.1

Figure 4.5: ROC-curve comparison of accuracy of deletion end-

point estimation in terms of correctly labelled SNPs for different

window sizes. The used SNP-wise deletion status prediction method

was the mean method. Here n is the number of trios, f0 is the

deletion haplotype frequency and m is the window size.

Because the described methods only detect the presence of a

deletion spanning certain set of SNPs rather than detecting which

specific SNPs have a deletion allele, the main purpose for reason-

ably good end-point location estimates is their use in designing

experimental validation tests by, e.g., fluorescent in situ hybridiza-

tion, quantitative PCR or PCR amplification as done in [81]. In

such case, the segment selected for sequencing spans the estimated

deletion segment and the flanking regions. In this context, the

determination of exact deletion end-points loses some of its signifi-

cance when the SNP density near the estimated deletion end-points
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(a) n = 30, f0 = 0.1, m = 4
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(b) n = 100, f0 = 0.1, m = 4
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(c) n = 100, f0 = 0.01, m = 4
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(d) n = 500, f0 = 0.01, m = 4

Figure 4.6: ROC-curve comparison of accuracy of deletion end-

point estimation in terms of correctly labelled SNPs for different

methods. Here n is the number of trios, f0 is the deletion haplotype

frequency and m is the window size.

is high. In such case, it is less important to be completely accurate

of the deletion end-point, as slight inaccuracy will not likely cost

much more in the experimental validation process.

4.7 Discussion

A method for detecting the presence of deletions from SNP geno-

type data has been presented. Although each iteration of the EM-

algorithm takes O(k log k) time in terms of different haplotypes k for

dense haplotype sets, i.e. k = O(2m), windows of reasonable length
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(m ≤ 10) can be computed on modern computers sufficiently fast

for high-throughput processing. Such an upper limit on the win-

dow length is not a significant limitation for whole-genome scans,

as with a simple routine that uses the algorithms 4.2 and 4.3 as

subroutines we can scan over several million SNPs with reasonable

computational resources. We expound these details of applicability,

i.e., computation time and accuracy, in Chapter 5.

Instead of using previously defined error models [22, 68], we pre-

sented a third one in Section 4.2.2. It can be argued that the high

number of parameters utilized by Kohler and Cutler’s [68] model

might make their model more suspectible to overfitting, but to what

extent is not known. The potential overfitting in [68] is likely not

an issue, as new high-throughput methods produce large amounts

of SNP data which can be used to estimate the parameters accu-

rately. As was shown in the experiments in [68], already rather few

SNPs in the data set were sufficient for estimating the parameters

so that the deletion predictions were accurate. Which error model

works best is a logical question for future work and discussion, but

will not be further addressed in this thesis.

Let us now briefly review the main differences between the algo-

rithm of Corona et al. [22] (labelled ‘CRE-method’ in this section)

and Deldec-Scan. Both algorithms use the same underlying data

model of haplotypes. However, CRE-method first estimates initial

haplotype frequencies by a haplotyping program and then scales

the haplotype probabilities to incorporate also the deletion haplo-

type. This permits them to use longer haplotypes (1 ≤ m ≤ 40)

than Deldec-Scan can (m ≤ 10). This scaling approach was devised

originally to avoid the high time complexity of the EM-algorithm,

as were additional requirements for the investigated regions, i.e., a

limited number of haplotypes within the window and at least one

Mendelian error consistent with a deletion. We solved the same

problem by using Yates’ algorithm and constraining ourselves to a

small window size m.

CRE-method then combines the windows that have a p-value

below a threshold to form a nonoverlapping list of predictions. This

is essentially the same as the single-hit method for deciding SNP

deletion status. Section 4.6 lists two other ways to decide on SNP

deletion status. Of these, the mean method is experimentally shown

to perform better than single-hit method and as the method of
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choice for Deldec-Scan.

While detecting the general presence of deletion is relatively

straightforward, determining the end-points of the deletion accu-

rately represents a problem. To this end, we compared three differ-

ent methods to use in a sliding window approach. All these methods

are rather ad-hoc in nature, which is not a desirable trait.

The question of accurate end-point detection might not be im-

portant enough in practice to warrant much more attention. As-

suming the SNP data sets are dense, misestimating the deletion

end-point by one or two SNPs does not result in a considerably

larger number of genotyped basepairs in experimental verification

of the candidate deletions.



CHAPTER 5

Experiments

The methods developed in preceding chapters were tested on syn-

thetic data sets to evaluate their statistical power and specificity.

The methods were also used to create a list of putative inversions

and deletions from HapMap [128, 129] data sets.

5.1 InvCoal as an inversion simulator

To investigate whether InvCoal is more accurate in simulating in-

versions than ms [56], we experimented on the simulators for five

known inversion polymorphisms. The idea was to use a statistic

sensitive to the presence of an inversion to measure how well the

simulators can reproduce the signal the summary statistic attempts

to detect.

To make ms more comparable to InvCoal, ms was parametrized

to use a two-population model where one population has a constant

size and the other underwent exponential population growth until

the lineages in that population were moved to the main, ancestral,

population. There was no migration between these populations.

InvCoal uses otherwise the same population models as ms with

the exceptions of the inversion spanning only as many basepairs as

the real inversion, recombinations being suppressed and the pop-

ulations not being completely separate, especially outside the in-

version. Note that ms cannot use the information on the inversion

position, as the population subdivision can only span the whole

simulated segment or not be present at all.

107



108 5 Experiments

Normalized bicomponent score, NBS, is a score described in Sec-

tion 3.2. It attempts to detect inversions by the haplotype subdivi-

sion into two distinct populations. Note that ms can produce seg-

ments with high NBS in the given model, as in practice the models

used in InvCoal and ms within the inversion are very similar from

the perspective of NBS.

In the Database of Genomic Variants [59] there are several differ-

ent inversions listed for different chromosomes. The inversions for

simulation studies were chosen from these by the following criteria

for each of the three HapMap data sets (CEU, YRI and JPT+CHB)

separately.

First, the inversion had to be between 250 kb and 1.5 Mb long.

Shorter inversions would not show up on NBS and longer ones with

their flanking regions are too long to simulate with InvCoal.

Now, let the inversion length be l1 kb long and l2 = min(l1, 500).

The second criterion was that the inversion region had to contain

at least 20 SNPs with MAF higher than 0.05, and also the region

(500 + l2) to 500 kb before the inversion had to contain at least 20

SNPs with MAF higher than 0.05. NBS requires a sufficient amount

of SNPs for valid results. The latter requirement is because for the

actual test statistic, we compute NBS also in that region.

Third, the inversion was not allowed to intersect with another

known inversion. This is because InvCoal does not model regions

with multiple inversion events.

Fourth, the NBS within the inversion had to be at least 0.5.

This is a high value. One reason for this is that although all the

inversions in the database are experimentally validated, their popu-

lation frequencies are typically unknown. As such, high NBS score

suggests that the inversion is common enough to be detected and of

the type NBS can detect and InvCoal simulate. NBS cannot detect

all inversions, possibly because inversions are not frequent enough

or they are recurrent. InvCoal does not try to simulate recurrent

inversions, so it is sensible to limit the focus to inversions NBS alone

can detect. It is also possible that InvCoal lacks other features that

pertain to simulating inversions in particular. We acknowledge that

this means that the results of these experiments are not indicative

of all inversions but only a specific subset of inversions.

In the end, there are 4 inversions meeting these criteria in the

HapMap data set, one of which is in 2 populations, yielding a total
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of 5 inversions. If we include also the inversions that meet all other

criteria except the one of high NBS, the number of inversions in-

creases to 37 when inversions in different populations are considered

distinct.

NBS is designed to peak within inversions and stay low outside

inversions. Therefore we choose as the statistic of interest

∆(D) = NBS(Din)−NBS(Dout),

where Din is the data for the SNPs within the inversion and Dout

is the data for the SNPs in the l2-kb long region before the inver-

sion. In the case of real data, D stands for Din and Dout as a pair.

Ideally, the former should be high and the latter low to reflect the

inversion status of the segment. A simulator should produce this

effect equally strongly as it is present in the real data. The better a

simulator can reproduce this difference between the segments, the

better the simulator can be considered in this aspect.

The simulators were used to simulate data sets of length 2× l2 +

500 kb. In the case of ms, the first l2 kb were used as the region

outside the inversion and the last l2 kb as the inversion. The same

applied to InvCoal as well, but the inversion position was also given

as a parameter.

The parameters for the simulators need to be chosen to fit each

inversion and simulator separately. These parameters were the re-

combination rate r, ancestral effective population size NA
e , inver-

sion age, number of inversion haplotypes in the data set and the

inversion population size. The value of the last parameter, f , is

transformed into the inversion population effective population size

as NA
e f/(1− f). The parameters are listed in Table 5.1 with their

possible values.

The parameter fitting was done by using a greedy search method

by updating the parameters one at a time for several iterations.

Once a parameter was chosen for updating, three data sets were

simulated with each potential parameter value. The mean NBS

difference of the three data sets was compared to the difference in

the real inversion. The parameter by which the difference between

these two was minimized was chosen as the updated parameter

value. If a generated data set had less than 20 SNPs in either of

the two relevant regions, the associated parameter value was not

allowed to become the new value of the parameter.
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Table 5.1: The parameters and their ranges investigated in the

comparison of InvCoal and ms outputs to a known inversion. The

size of the inversion population is NA
e times the parameter inversion

population size. The number of haplotypes in the data set is n.
Parameter name Parameter values

r 10−10, 1×10−9, 2×10−9, . . . , 3×10−8

NA
e 2,500; 3,000; . . . ; 15,000

Inversion age 5,000; 10,000; . . . ; 150,000

Inversion haplotypes 1, 2, . . . , n− 1

Inversion population

size parameter f

0.01, 0.02, . . . , 0.99

The parameters were updated in five rounds, each of which up-

dated each parameter exactly once in a random order.

Once the best-fit parameters were found, 500 data sets were gen-

erated by both simulators. Let D∗,i be the ith simulator-produced

data set for simulator ∗, which is either ic (InvCoal) or ms (ms).

The mean of the differences between the NBS scores inside and

outside the generated inversion

ȳ∗ =
1

500

500
∑

i=1

∆(D∗,i)

was computed.

The actual test statistic is

λ̃(D) = |∆(D)− ȳms| − |∆(D)− ȳic|. (5.1)

Here, ∆(D) is the difference computed from the real data and not

one of the simulations.

This is the difference between the mean errors produced by ms

and InvCoal. The larger the statistic is, the better InvCoal per-

formed in comparison to ms.

The difference alone does not reveal how significant the value of

the statistic is. It is likely that the expected value of λ̃ is positive

over data sets without inversions, if we assume that NBS in the

two regions are independently and identically distributed. Note

that the average difference in NBS produced by ms is 0, as the

simulator models the two regions identically. Let us now assume
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that ∆(D) is positive due to random variation. In this case, InvCoal

can model this variation whereas ms cannot, resulting in a positive

expectation for the statistic in this case. If ∆(D) is negative, then

InvCoal should be able to find such parameters that the inversion

population is very small and consists of few haplotypes, in which

case the mean NBS difference should be close to 0.

For this reason, samples were generated from the null distribu-

tion of the statistic with the null hypothesis that the inversion was

actually generated by ms by using the fitted parameters. First, ms

was used to generate several data sets with the fitted parameters.

The simulated data sets were (2 × l2 + 500) kb in length, i.e., it

was as long as the model segment in the real data sets. From each

data set, the difference between the NBS scores computed from the

first l2 kb and the last l2 kb in the synthetic data set were com-

puted; let this be called yi for the ith data set. The difference yi

was substituted as ∆(D) in Eq. (5.1) for the next step.

Because the statistic λ̃ uses fitted parameters to compute the

mean of the statistics, the parameters for both InvCoal and ms

have to be fitted again by using yi as the substitute for the statistic

computed from the real data. The next step was to produce 500

data sets with these newly fitted parameters. These data corre-

sponded to the data sets D∗,i, i.e., they were used to compute the

mean differences produced by the simulators. By computing the

difference in the accuracy of ms and InvCoal with respect to the

substitute statistic, we gain a sampled point from λ̃(D) under the

null hypothesis of ms and InvCoal producing the same difference

in NBS. These samples were then used to compute estimates for

the p-value for the difference. The estimated p-values are listed in

Table 5.2. The number of yi investigated for each inversion are the

denominators listed in the column p̂.

In the case of all these 5 inversions, InvCoal was more accurate

in simulating the data. The small value of λ̃ for the chromosome 11

inversion in the CEU data set is explained by the NBS being high

also in the region outside the inversion.

The observed p-values are not by themselves sufficient to judge

on whether InvCoal is better than ms, because the 5 inversions were

carefully selected for further examination, which likely introduces

bias.

For this reason, we consider the effect of the fourth filtering cri-
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Table 5.2: Inversions by which ms and InvCoal were compared.

The column p̂ lists the proportion of null simulations where λ̃ was

higher than the one observed for real data. The denominator is the

number of points from which the p-value estimate was computed.

The note < 1/352 means none of the simulations produced a λ̃-value

higher than the one observed with real data.
Inversion Pop. λ̃ p̂

chr4:171,552,938–

171,850,814

CEU 0.3454 2/927

chr7:64,246,951–

64,686,726

CEU 0.3472 2/426

chr11:50,047,247–

50,337,552

CEU 0.0617 25/150

chr11:50,047,247–

50,337,552

JPT+CHB 0.1731 6/158

chr17:40,899,921–

41,989,253

CEU 0.3707 < 1/352

terion that required NBS to be high for the inversion to be investi-

gated. This is done by considering us to have made 37 tests, but we

know the actual p-values of only 5 of them and assume the p-values

of the remaining 32 to be sufficiently large not to be considered

significant.

The time consumption of producing sample points for the dis-

tribution of λ̃ for the listed inversions is high, for the fastest case

(chr4:171,552,938–171,850,814) approximately one day per point on

a system utilizing 7 CPU cores, each running at 2.53GHz. This was

the reason why only a subset of selected inversions were investigated

and also the reason why the number of null simulations per inver-

sion was low.

Instead of showing that all the investigated inversions are simu-

lated better by InvCoal than ms, the goal is to show that InvCoal

is significantly more accurate in simulating at least some inver-

sions. To bypass the effect of the filtering criterion in its entirety,

we can try using the Bonferroni correction. To prove the claim,

a p-value of below 0.05/37 ≈ 0.0014 is needed for the p-value to

be below 0.05 due to the multiple testing correction. To achieve

this, at least 740 points under the null hypothesis would need to
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be computed to produce an estimate of the p-value with a signif-

icant value. The inversion with most computed samples from the

null distribution, however, gives p-value estimate of 2/927, which in

turn corresponds to a Bonferroni-corrected p-value of 0.0798. The

Bonferroni-corrected p-values for the other inversions are at least

0.105 due to the low number of computed samples.

An alternative approach to investigate these results is the false

discovery rate (FDR) [10]. In brief, FDR is the expected propor-

tion of false positives out of all positive predictions for a p-value

threshold. If we fix the FDR limit at 0.125, three inversions with

the smallest p-values are accepted with the procedure given by Ben-

jamini and Hochberg [10] to control the FDR.

Storey [119] discusses a method of estimating the FDR for a

fixed p-value threshold t. The equation in question is

F̂DR(t) =
π̂0mt

#{pi ≤ t}
, (5.2)

where m is the number of tests, pi the associated p-values and

π̂0 is the estimated proportion of the 37 tests for which the null

hypothesis holds. Let us assume that all the inversions that were

not investigated have p-value of 1. If we conservatively approximate

π̂0 = 1 and fix t = 0.01, we have

F̂DR(0.01) =
37× 0.01

3
≈ 0.123.

This means that the expected number of false positives out of

the 3 significant results is 0.37, which is notably smaller than the

number of predicted positives. Storey [119] also gives a formula for

estimating for the pFDR (positive FDR) [119, 118], in which the

expectation in FDR is conditioned on the event that at least one

null hypothesis was rejected. The estimate for pFDR, gained from

Eq. (5.2) by dividing it with 1 − (1 − t)m, is approximately 0.397.

The FDR-estimate, however, is small enough to lend credence to

the claim that some inversions of the 3 with the uncorrected p-

value at most 1/100 are better simulated by InvCoal than by ms in

terms of λ̃. Both estimates have their points compared to the other.

The estimate for pFDR is possibly too high due to the conservative

estimate of π̂0, as Storey [119] reports the pFDR estimate tends

towards π̂0, but on the other hand the number of tests is low which
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gives a high probability for the case that no null hypothesis would

be rejected. This makes the accuracy and use of F̂DR questionable.

Let us then consider how likely it is that we have at least 3 false

positives with the uncorrected significance level of 0.01. First, let

us assume that the 37 tests are independent and each one, if inves-

tigated as described above, would result in InvCoal being labeled

the better one with probability of 0.01, that is, by pure chance with

p-value threshold of 0.01. The number of false positives with the

fixed p-value threshold would then be binomially distributed with

parameters 37 and 0.01 (e.g., [24]). In this model, the probability

of having at least 3 false positives out of the 37 trials by summing

the tail of the point mass function of the binomial distribution is

0.0060. According to this test, it is likely that InvCoal is better

than ms in simulating at least some inversions. Even if the p-value

threshold for single inversions is raised to 0.022, the p-value for the

number of false positives would remain below 0.05. With single-

inversion p-value threshold of 0.05, the p-value for the number of

false positives is 0.1119.

Note that it is unknown how significant a presence the 37 inver-

sions have in the HapMap data sets. It is possible that some pop-

ulations do not have an inverted haplotype or have them in such

quantities that they can be detected from SNP data, in which case

keeping the number of tests at 37 results in conservative estimates.

Furthermore, this investigation utilized only one test statistic.

It is possible that there are other statistics that may produce bet-

ter results. These statistics could involve, for instance, Sindi and

Raphael’s [112] scoring for detecting inversions.

As a third point, not all real inversions appear to show the four-

field pattern NBS tries to detect and InvCoal produces, possibly

due to the assumption that inversion events are unique. As such,

InvCoal should not be used as a simulator for all inversions there are

but a specifically behaving subset of them. Further development of

the simulator is hence a relevant task. Nonetheless, as a conclusion,

the experiments show there are inversions that InvCoal can simulate

better than ms.
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5.2 Inversions

In our experiments here, the NBS-Scan algorithm, described in Sec-

tion 3.5, was tested as a scoring for detecting inversions, first in

synthetic data and second in real HapMap Phase III data sets.

5.2.1 Ascertainment and tag-SNP algorithms

Large whole-genome SNP data sets, such as the Perlegen data set

[50] and HapMap data sets [128, 129], often use different and vary-

ing SNP ascertainment procedures. For instance, the ascertainment

correction, or the process of removing the bias produced by the as-

certainment process into the data, of the HapMap data set in par-

ticular is difficult because the scheme changed as the database was

being built [19].

Genome-wide association studies typically use a set of SNPs cho-

sen based on their LD or ability to help impute the alleles of other

SNPs. It is interesting if the methods for detecting structural vari-

ants from SNP data can be used also on such data sets.

For this reason, the effects of different SNP selection schemes

on the performance of the detection methods were investigated by

using either:

• 48-haplotype panel ascertainment,

• the greedy tag-SNP selection algorithm adapted from Carlson

et al. [17].

The panel ascertainment was simulated in a straightforward man-

ner. The panel is made of a randomly selected subset of 48 haplo-

types of all the haplotypes in the data. If a SNP is biallelic in the

subset, the SNP is included in the data set.

The latter algorithm for tag-SNP selection was previously de-

scribed as Algorithm 4.5 in Section 4.5.

5.2.2 Generating synthetic data

The overall goal of the synthetic data simulation was to gener-

ate data sets similar to human haplotype data. The simulator de-

scribed in Section 2.4 was the primary simulator for creating these
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data sets. Another option that was considered as an alternative

was COSI [104]. It was decided not to use COSI, however, for the

following reasons. Applying COSI to generate inversions of vary-

ing age would have been cumbersome. While it models varying

recombination rates and recombination hotspots and is calibrated

to produce data similar to real human SNP data, it does not model

double recombinations or the peculiarities of inversions described in

Section 1.2. Double recombinations are rare and their exclusion is

not a major inaccuracy, especially when the simulated segments are

at most 500 kb, but the suppression of recombination in inversion

regions leaves a notable mark in the LD patterns in the two sub-

populations. Simulating inversions by COSI would have entailed

creating a subpopulation with an exponential growth model that

had been created from the main population lines several genera-

tions ago.

A more relevant limitation is that COSI cannot simulate a seg-

ment that is not completely contained within an inversion and as

such, cannot be used to generate data for comparing different inver-

sion detection algorithms. Some of the experiments include tests

where the simulated inversion does not span the whole simulated

segment. To keep all ROC curves comparable, InvCoal was used

to do all simulations. This admittedly hurts the accuracy of the

ROC curves as estimates for the curves on real data, as InvCoal

cannot handle different population histories and varying recombi-

nation rates like COSI. As another downside, the ancestral-type

effective population size in InvCoal is fixed to a constant-sized pop-

ulation and the inversion-type population undergoes exponential

population growth.

This choice of simulator limits the selection of population growth

models. The exponential growth model for the inversion population

is not realistic and the simulator also does not simulate selection.

Let us consider the chosen population parameters more closely.

The ancestral-type effective population size was chosen as 7,500

individuals. There are multiple different estimates for past pop-

ulation sizes. The calibrated parameters of COSI given in [104]

used 12,500 to model the effective population before the simulated

African expansion 17,000 generations ago. This is higher than a

number of other used values for effective population sizes for hu-

mans in the past (e.g., [125] with a value of 10,000 and [126] with
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estimates 7,500 and 3,100 for different HapMap populations). As a

middle-of-the-road option, we chose 7,500.

The population history used by COSI include bottlenecks, but

also a considerable increase in the effective population size 200 to

400 generations before the present. The exponential growth in In-

vCoal very crudely approximates the latter, whereas the former fea-

tures are not modelled. Unfortunately, the exponential increase in

the simulated population size in InvCoal affects only the inversion-

type population. This is unrealistic.

To use InvCoal, multiple parameters had to be specified for the

simulation. They are summarized in Table 5.3. The gene conversion

parameters were selected based on the calibrated parameters for

COSI [104]: the initiation probability was taken directly, but the

tract length was chosen so that the length had the same expectation

as the constant length in the calibrated parameters of COSI, 0.5

kb.

As the interference parameter for the Counting model we chose

m = 4. Broman and Weber [15] estimated the Gamma model

parameter ν to be 4.3, which corresponds to m = 3.3 if non-integer

values were permitted. Lin and Speed [76] report m = 4 to be the

best positive integer value for the Counting model in humans.

In the cases where the inversion was supposed to be as long as the

simulated segment, the inversion length was set to be only nearly

that, i.e., the inversion was at most two basepairs shorter than

the segment. This was due to InvCoal’s incapability of simulating

inversions that spanned the whole simulated segment.

The smallest and largest used ages for inversion haplotypes are

rather extreme. The oldest inversions at 150,000 generations are

roughly 3 million years old, assuming one generation corresponds

to 20 years. The youngest at 5,000 generations are with the same

assumption 100,000 years old. Most of the results, however, are

given with inversions of age 20,000 or 40,000 generations, to remove

focus from cases in which the inversion would likely have been fixed

in the population by then.

The HapMap project estimated recombination rates between

SNPs [129]. These estimates were used to form a recombination

rate distribution for the human genome. Even though the recom-

bination rate in InvCoal is fixed within each simulation round, it is

possible to sample the segment recombination rate from this distri-
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Table 5.3: Basic parameters used for InvCoal in experiments.

Parameter Values

Inversion proportion f 10%, 20%, 30%
Inversion age 5,000; 20,000; 40,000; 80,000;

150,000 generations
Segment length 150 kb, 250 kb, 500 kb
Inversion length 50 kb, 150 kb, ca 250 kb, ca

500 kb
NA

e 7,500
N I

e(0) f ×NA
e (0)/(1− f)

Chiasma interference parameter
m

4

Mutation rate µ 10−8

Recombination rate r 10−8, 10−9, 1.3102 × 10−8, sam-
pled from the estimated distribu-
tion

Gene conversion initiation prob-
ability

4.5× 10−9 per bp

Gene conversion tract length pa-
rameter

500 (0.5 kb expected length)

bution of estimated rates provided by the HapMap project and use

it to simulate a segment with this value. By computing statistics

from these generated data sets and then averaging them, one can ex-

pect to gain a reasonable estimate for the mean of the statistic over

all inversions in the human genome with the additional assumption

of the presence of inversions being independent of recombination

rate, i.e., the ‘unsuppressed’ recombination rates within inversions

are the same as elsewhere in the genome. Note that the recombi-

nation rate parameter r in simulations translates to the intended

recombination rate before the suppression effect is applied.

The recombination rate distribution was computed as follows

from the genetic distances computed from Phase II HapMap, re-

lease 22 (NCBI build 36). For each chromosome, the first SNP was

marked. Then the next SNP to follow it at least 500 kb ahead was

also marked, and this was repeated until the whole chromosome

was processed. Next, the genetic and physical distances between

these marked SNPs were computed. The data were hence now a
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Figure 5.1: Estimated recombination rate histogram from which re-

combination rates were sampled for InvCoal. The y-axis represents

the sum of the lengths of the windows in the bin.

set of pairs of physical and genetic distances from each marked SNP

to the next marked SNP. Next, the intervals in which the physical

distance was greater than 2 Mb were discarded. This is because

NBS-Scan cannot use SNP-free regions. Finally, a histogram for

genetic distances per basepair (computed as the genetic distance

between SNPs divided by the corresponding physical distance) in

this model was created with 214 bins, and used as the recombina-

tion rate distribution. Each window was weighted with its length

in basepairs. The histogram is depicted in Figure 5.1. The mean

of the histogram was 1.3102 × 10−8. This rate was also used in

experiments.

Note that the results from the simulations cannot reliably be

used to infer the performance of NBS or other compared methods

on real data. This is shown in Section 5.2.4.

5.2.3 Analysis of synthetic inversions

To analyse the performance of NBS under controlled conditions,

InvCoal was used to produce synthetic data sets. For each pos-

itive scenario (data sets with an inversion) involving NBS alone,

1,000 data sets were generated. For the negative scenario (data

sets without an inversion) involving only NBS, 3,000 data sets were

generated. Note that the experiments did not use NBS-Scan to

decide on the inversion status but NBS alone, with the exception

of some tests using RM to help in determining segment inversion

status. In particular, no window joining was done after computing

NBS.
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Figure 5.2: An example of an inversion simulated by InvCoal.

Inversion-type haplotypes are shaded red and the inversion region

is shaded blue. Note the clear bipartition in the inversion region

and how it disappears elsewhere.

It is relevant to note that in the case of InvCoal, the results

are not truly indicative of how well NBS can detect inversions in

humans. This is due to the simulated ancestral history: the model

used in the simulations does not completely reflect the believed

human population subdivision and migration history. In particular,

the effective population size is set to only one estimated value, and

this estimate does not necessarily reflect the ancient population size

tens of thousands of generations into the past.

Figure 5.2 displays an example of InvCoal output. In this and

other similar figures, the covered region is split into bins of equiv-

alent size. If a bin has SNPs in it, one of them is displayed in the

plot. Otherwise, the bin is represented by a blank column. This is

done to keep the maximum number of displayed SNPs per basepair

constant and the number of SNPs manageable. The SNPs were

omitted only from the plot and not from the computation.

The power of inversion detection

In all panel-ascertained SNP experiments, mean SNP density was

one per 2 kb.

In the first round of InvCoal experiments, different recombina-

tion parameters (r was set to 10−8, 10−9, 1.3102 × 10−8 or r was

sampled from the recombination rate histogram) were used while

the simulated segment length, together with that of the inversion,

was 250 kb or 500 kb. The SNP ascertainment method was the sim-
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ulated 48 haplotype panel method. A simple miscall error mask was

applied; each measurement was miscalled with probability 0.001.

These errors were independent and identically distributed. SNPs

with MAF below 0.05 were ignored. Hudson and Kaplan’s RM (an

estimate for the minimum number of recombinations needed to pro-

duce the observed SNP data) [58] was not used for filtering in an

attempt to eliminate recombination cold spots as false positives; its

effect is discussed later in this section.

In the used experiment configurations, older inversions were more

reliably detected than younger ones (Figure 5.3) in all configura-

tions. This is surprising, because young inversions in the used pop-

ulation model were expected to quickly grow into very homogeneous

haplotype blocks. One would therefore assume that such inversions

would have been easier to detect. One possible reason is that with

older inversions there were more mutations that appeared after the

inversion event in the inversion population, thus increasing the pro-

portion of mutations of which the novel allele was limited to the

inversion population alone. In particular, if the MRCA within the

inversion population was found much earlier than the actual inver-

sion event, as is likely in the case of old inversions, then there were

a considerable number of SNPs whose alleles directly corresponded

to the inversion status of the haplotypes. This makes the separation

between the two arrangements clearer. As a comparison, Stefansson

et al. [117] estimated the age of the 900-kb inversion in chromosome

17 to be 3 million years, which would mean 150,000 generations, if

each generation is assumed to last 20 years. The SNP data from

the inversion region is shown in Figure 3.2 after sorting the haplo-

types and SNPs conveniently. This inversion strongly displays the

four-field pattern, which supports the previously mentioned theory.

However, the results of Donnelly et al. [30] suggest the MRCA of the

inversion is actually 656.8 − 1313.6 or 2167.4 − 4334.7 generations

old. This undermines the experiment setup for synthetic inversions

that were all at least 5,000 generations old. The relevance of inver-

sion ages is discussed later in this chapter.

Naturally, as seen in Figure 5.3, the higher the inversion fre-

quency, the easier it was to detect their presence. It appears that

in cases where inversion frequency was 0.1, NBS could not provide

reliable results. Because NBS detects the signal arising from the

bipartition of haplotypes, it is not expected to work well if either



122 5 Experiments

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

False positive fraction

T
ru

e 
po

si
tiv

e 
fr

ac
tio

n

 

 

5,000 gen.
20,000 gen.
40,000 gen.
80,000 gen.
150,000 gen.
y=x

(a) f = 0.1

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

False positive fraction

T
ru

e 
po

si
tiv

e 
fr

ac
tio

n

 

 

5,000 gen.
20,000 gen.
40,000 gen.
80,000 gen.
150,000 gen.
y=x

(b) f = 0.2

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

False positive fraction

T
ru

e 
po

si
tiv

e 
fr

ac
tio

n

 

 

5,000 gen.
20,000 gen.
40,000 gen.
80,000 gen.
150,000 gen.
y=x

(c) f = 0.3

Figure 5.3: NBS ROC curves computed from InvCoal-generated

data sets with different inversion ages, ranging from 5,000 gener-

ations to 150,000 generations and using three different inversion

frequencies f . The recombination rate was sampled from the his-

togram. The data sets had 120 haplotypes and the window size was

250 kb.

subpopulation is very small. In this aspect, it is inferior to the end-

point signal detecting methods [9, 112] when the alternative-type

arrangement is the more common type.

Increasing the number of haplotypes had practically no effect

on ROC-curves (Figure 5.4(a)). The increase in window size (Fig-

ure 5.4(b)) notably improved on the performance of NBS. On the

first glance, this is not surprising. But each 250-kb-long window

had 125 SNPs, which should be a sufficient amount for the spectral

ordering (see Section 3.3) to find only a good ordering of the SNPs,

if there was one. Because NBS treats every SNP independently and

more SNPs only make the SNP-wise compression ratio less sensitive
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Figure 5.4: NBS ROC curves for InvCoal-generated data sets with

different sizes in terms of haplotypes and length of the window. The

recombination rate was sampled from the histogram. The inversion

age was 20,000 generations and inversion frequency f was 0.2.

to random noise, adding more SNPs should not improve the score’s

performance. However, a longer window means also that even in

regions of low recombination rate there are more recombinations

to suppress in heterokaryotypes, thus strengthening the subpopu-

lation division signal in comparison to the null hypothesis scenario.

Hence, the effect is possibly due to the increased genetic length of

the segment rather than the number of SNPs.

Note that even though the length of the simulated inversion also

varies with the window size, the results for scoring a 250-kb window

of a 500-kb inversion would be practically the same as scoring a

250-kb inversion. The largest difference in the scenarios would be

due to the double recombinations, but in both cases they are very

rare. Furthermore, because gene conversion rates were considered

in the simulation to be equal over the whole inversion regardless

of the distance to the end-points, the segments generated under

these different conditions would appear similar with respect to gene

conversions.

In the second round of experiments, InvCoal was used to produce

inversions that spanned 50 kb or 150 kb of the 250-kb simulated

segment; the inversions were placed following a uniform distribution
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Figure 5.5: NBS ROC curves showing the power to detect inversions

of different length, based on InvCoal-generated data sets. Inversion

age is 20,000 generations.

so that they were completely contained within the segment. The

recombination rate was sampled from the recombination rate his-

togram. Data sets with a 150-kb inversion covering all of a 150-kb

window were also simulated.

The effect of the relative inversion length (relative to the window

size) is clear (Figure 5.5). The drop from a window-sized inversion

to a 150-kb-long inversion is slightly surprising, because the pop-

ulation subdivision in InvCoal output remains for some distance

outside the inversion end-points, which could have caused the pre-

cise window size to have only a small effect. It is possible, however,

that this does not hold in simulations where the recombination rate

varies within the segment.

The effect of the varying recombination rate is noteworthy (Fig-

ure 5.6). Because NBS detects the suppressed recombination be-

tween arrangements, the more recombinations there are in the null

scenario, the stronger the difference between the inversion and null

case simulations is. This contributes to the very promising ROC

curve for case r = 10−8. However, if the recombination rate is

considerably lower (r = 10−9), the power is much smaller. In a

way, the recombination rate is a limit to the strength of the signal

NBS detects. The variance in the recombination rate across the
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genome also strongly affects the performance of NBS. The mean

of the estimated recombination rate histogram in Figure 5.1 was

1.3102 × 10−8, and the ROC curve for that was located above the

curve for the case r = 10−8 in the figure. For this reason, the curve

of r = 1.3102 × 10−8 was excluded from the figure. Yet, as seen

in Figure 5.6, in the more realistic scenario where the recombina-

tion rate varied according to the estimated distribution, the curve

is considerably lower.
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Figure 5.6: NBS ROC curves for the cases with different values

for the recombination rate r: either a constant of 10−8 or 10−9 or

sampled from the histogram of Fig. 5.1. Inversion frequency is 0.2,

window size is 250 kb, inversion age 20,000 generations and there

are 120 haplotypes.

The full-window inversion experiments were done also using the

adapted tag-SNP algorithm of Carlson et al. [17]. There was a

notable difference in the ROC curves between the two ascertainment

schemes (Figure 5.7).

The reason for the large difference is not obvious. One possible

explanation is that NBS detects SNPs that have a particular kind

of high LD between them. The tagSNP-selection algorithm of Carl-

son et al. [17] does not distinguish between high LD and high LD

suitable for NBS to detect, so the algorithm effectively eliminates

the signal NBS is attempting to detect. It is possible that using LD-

based tag-SNP selection algorithms in general would be detrimental

for NBS’s applicability, but further experiments on multiple SNP-
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Figure 5.7: NBS ROC curves for cases where the SNP selection

scheme varies in InvCoal-generated data sets. The inversion age is

20,000 generations.

selection algorithms would be necessary to determine which aspects

of the SNP selection affect the results the most. While our tag-SNP

algorithm implementation does produce data sets with fewer SNPs

than the panel simulation described in Section 5.2.1, the data sets

had mean SNP spacing under 7 kb.

The effect of using recombination measure filtering discussed in

Section 3.4 on the results is shown in Figure 5.8. Based on the

examination of the results, while the filtering seems to decrease the

number of false positives with high values of NBS, it also eliminates

a considerable proportion of true positives. The inversion frequency

also affects the measure. The more frequent the inversion is, the

smaller the RM threshold should be to gain the same effect.

However, recall that the used simulator InvCoal does not model

varying recombination rates within the simulated segment. This

also means that the simulator does not accurately model recombi-

nation cold spots; since this causes the recombinations to be evenly

spread on the simulated segment, RM possibly gets higher values

than when the recombinations are concentrated in recombination

hot spots. Hence, the best RM threshold values are likely to be

different for real data.

In summary, NBS would seem to perform well when both sub-
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Figure 5.8: NBS ROC curves for different levels of RM thresholds

and simulation parameters in InvCoal-generated data sets.



128 5 Experiments

populations are represented in the data set with at least 20% of

the haplotypes and the window is at least 250 kb long. The age

of the inversion is an important factor: the older the inversion, the

more reliably it is detected from SNP data sets. By comparison, in-

creasing the number of haplotypes in the data set does not notably

increase the performance of NBS.

Comparison of inversion-detection algorithms

To compare both NBS and Sindi and Raphael’s method [112],

the experiment setup had to be changed. For a brief description

of the latter, see Section 3.5. This method is called SR-method in

this thesis. The reason why the setup is different is that whereas

NBS detects the presence of an inversion from within, SR-method

detects the signal left at the end-points and requires SNPs both

inside and outside the inversion.

With this in mind, InvCoal was used to generate 750-kb segments

with 120 haplotypes with the recombination rates sampled from

the histogram. The inversion size was 500 kb and it was placed

randomly along the segment so that at least 50 kb of non-inverted

material was left at both ends.

NBS used 250-kb windows and 50-kb jumps. In this case, the

score for the complete segment was the maximum value of NBS

observed in the investigated windows. In particular, windows were

not joined together and then re-evaluated. The window also did

not go beyond the end of the segment, i.e., the last 250-kb window

that was considered started at the 500 kb mark. Had the partial

windows been included, NBS would have performed notably worse.

In the case of SR-method, the segment was given the smallest

empirical score, measured from the empirical distribution of likeli-

hood ratios as described by Sindi and Raphael [112], from all puta-

tive end-point pairs that were at least 200 kb apart. If no potential

pair of end-points in the data set was observed, the data set was

assigned an empirical score of 1. We address the generation of the

entropy distributions and the empirical likelihood test ratio scores

in a moment.

Also the hybrid method, where NBS was utilized in selecting

putative end-point pairs, was investigated in this experiment setup.

In this case, the threshold for including a gap between SNPs was
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0.09.

The third compared method, labeled SR-15, was the same as

SR-method with the exception that the SNP gap was chosen as

a potential endpoint if the entropy was in the top 15% instead

of top 10%. The reason for its inclusion was to investigate how

much including more potential end-points in consideration affects

the performance of Sindi and Raphael’s method.

Let us now take a closer look at how SR-method, SR-15 and the

hybrid method were adjusted to work with synthetic data sets. This

is an adaptation of how Sindi and Raphael [112] use the SR-method

for real data sets. First, InvCoal was used to produce 2,000 data sets

with 120 haplotypes in each, each data set representing the SNPs in

a chromosome segment of 1 Mb with no inversion present and the

recombination rate for each data set sampled from the histogram

in Figure 5.1. The SNPs underwent simulated panel ascertainment

and removal of SNPs with MAF below 0.05. From these resulting

data sets, the entropy distributions for different window widths L

ranging from 3 to 15 were computed for use by SR-method, SR-15

and the hybrid method.

The next step was to simulate another 2,000 data sets without

inversions. These underwent the same filtering steps as the ones

used to generate the entropy histograms, but in this case, these data

sets were used to create the empirical distribution for the test score.

The potential inversion end-points were first chosen according to the

method for which the empirical score distribution was to be con-

structed. After that, the EM-algorithm of Sindi and Raphael [112]

was used to compute the test statistic for all pairs of end-points

that could be useful in determining the empirical scores for the

simulations with inversions. The likelihood ratio test score, the dis-

tance between end-points and the degrees of freedom were recorded

for each observation. This resulted in empirical score distributions

for each of the three EM-based methods separately. Finally, these

distributions were used to score the observed likelihood test ratio

scores in the actual simulations used to create power curves.

Figure 5.9 displays the power (proportion of true positives to all

positives) of these different inversion detection methods when the

ancestral-type population is the standard order. By comparison,

Figure 5.10 displays the case where the ancestral-type population

is the alternative order. Because the simulator uses the ancestral
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Figure 5.9: The power of inversion-detection schemes with a fixed

false positive fraction of 0.01. The ancestral-type haplotypes are

the standard-type haplotypes.

order as the reference order, in these latter simulations the majority

of the haplotypes was reversed with respect to the reference order.

In both figures, the false positive fraction was fixed at 0.01. There

were 1,000 positive simulations for each parameter configuration

and 3,000 null simulations.

Note that the cases where the inversion frequency is high are not

realistic scenarios due to the way the inversion-type population size

was computed. At the extreme in the case of f = 0.9, the inversion-

type effective population size would be 67,500. These values should

not be considered as indicative of the presence of the power for a

method. The values of f = 0.4 or f = 0.5 are already slightly

tending towards unrealistic scenarios.

As mentioned, SR-method inspects only such breakpoints where

the entropy of the haplotypes around it is in the top 10% in the

genome for that window size. The inversion simulations, however,

produce data sets where the haplotype diversity is low within the

inversion and at the end-points. This resulted in notably fewer

end-points being considered as potential inversion end-points, and

in some cases, there were no two proposed end-points within the
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Figure 5.10: The power of inversion-detection schemes with a fixed

false positive fraction of 0.01. The inversion-type haplotypes are

the standard-type haplotypes.

simulated segment. This was computed as a empirical score of 1

for the data set. By comparison, in the cases where there were an

inversion and multiple potential end-points present, the empirical

score was in many cases 0. One possible explanation for the non-

varied haplotype structure is the used inversion population growth

model, which affects also the regions outside the inversion.

This results in the depicted SR-method power curves being sim-

ilar to the case where the false positive fraction is 0.1. By com-

parison, the power of NBS-Scan increases notably compared to the

case of fixing the false positive fraction to 0.01. This is shown in

Figure 5.11, which shows the ROC curve for the case of inversion

frequency being 0.2 and inversion age being 20,000 generations.

The figures therefore depict the ROC curves underlying one point

in Figures 5.10(a) and 5.10(b). The figure also shows that if the

false positive fraction is lowered, the performance of NBS-Scan de-

creases sharply whereas the power of SR-method remains at nearly

the same levels.

We note that the hybrid method is not noticeably better than

the original method of Sindi and Raphael. SR-15-variant, however,
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Figure 5.11: ROC curves for inversion-detection schemes with the

inversion frequency f = 0.2. The inversion-type haplotypes are the

standard-type haplotypes.
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is better by a considerable margin when the inversion is not rare.

This suggests that less strict criteria for potential inversion end-

points might be useful. It is likely that the biggest reason for the

loss of power for the SR-method variants in these experiments on

synthetic data is that the real inversion end-points are not consid-

ered as potential inversion end-points. Nonetheless, because the

result is based on simulations that are only remotely indicative, an

inspection into the performance of the two methods on real data is

more useful. This is briefly addressed in Section 5.2.4.

As can be expected, NBS is indifferent to which haplotype pop-

ulation is actually the reference sequence. However, these exper-

iments did not address the question of what happens when the

ancestral-type population is the rarer type and the inversion-type

population is the more common one.

5.2.4 Real data sets

Some of the HapMap Phase III (release 2, February 2009) data

sets discussed in Section 1.4 were processed in 250-kb and 500-

kb windows starting at 50 kb intervals. As a preprocessing step,

SNPs with MAF ≤ 0.05 were removed, as SNPs with low MAF

are at best uninformative to NBS. This was also likely to have the

result of excluding inversions with MAF below that threshold out

of the search. The data sets were in NCBI build 36 coordinates;

these physical coordinates will be used throughout this section on

inversions in real-world data sets.

The studies were limited to autosomes because of the limited

amount of recombination the sex chromosomes undergo. While the

YRI and CEU data sets in phase III contained not only trios but

also duos and unrelated individuals, in these experiments only the

haplotypes resolved by phasing trios were used. This means that

the used data sets have fewer haplotypes than were provided on the

HapMap website. If we look at Figure 5.4(a), we see that the effect

of the additional haplotypes would likely not have been large. The

YRI and CEU data sets used in this section are therefore only trios,

whereas CHB and JPT data are unrelated individuals. The used

data sets contained phased haplotypes, so the difference comes in

CHB and JPT data being less reliably phased. It is possible that

the results are slightly affected by phasing errors. In total, the CEU

data set had 1,075,275 SNPs, the YRI data set 1,142,161 and the
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JPT+CHB data set 938,868 SNPs.

For a number of different NBS-Scan parameter values, the sam-

ple p-value was estimated by a Monte Carlo method. In order,

these parameters were the size of the sliding window, the minimum

NBS for a region to be labeled an inversion, the minimum number of

SNPs required to be within a window for it to be considered and the

minimum required ratio of RM per the number of SNPs within the

joint population (see Section 3.4). The p-values estimate whether

the candidate set returned with the listed parameters covers sig-

nificantly more basepairs known to belong into inversions than a

randomly assembled candidate set. In each scenario, 100,000 dif-

ferent pseudo-candidate sets were generated, composed of a varying

number of regions covering in total at least as many basepairs as

the real candidate set but at most L basepairs more, where L is the

window size used in the analysis. These regions were generated by

sampling uniformly at random over all 22 autosomes the windows

that contained at least the specified minimum amount of SNPs.

Then, for each random sample the number of basepairs they

covered was computed and the p-value for the parameters was re-

ported the proportion of the random samples with higher number

of overlapping basepairs than the real candidate set. Algorithm 5.1

summarizes the process in greater detail.

The p-values for a number of different parameter combinations

for joining windows were computed for the results for the JPT+CHB

data set. The computed p-values for the three investigated data sets

are given in Tables 5.4, 5.5 and 5.6. The entries labeled ‘Inversion’

in the Database of Genomic Variants1 [59] (DGV) were used as the

set of known inversions. There were in total 825 such entries in July

2009 release for hg18 in autosomes. The known inversions covered

in total 44,905,910 basepairs of the autosomes. The computed p-

values have not been corrected for multiple testing that resulted

from using several different parameter values.

Naturally, because these p-values are based on only a currently

known set of inversions present in the human genome, they or the

null hypothesis cannot be considered to be invariant over database

releases and time. They also may show bias with respect to the

populations that have been more thoroughly studied for polymor-

1http://projects.tcag.ca/variation/ (Accessed 02.11.2009)
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Table 5.4: Sample coverage p-values for different criteria in select-

ing permissible windows in the CEU data set inversion region can-

didates. Each test used 100,000 random windows. No multiple

testing correction has been used in reporting the p-values. The line

with bold face represents the set of parameters chosen for reporting

the candidate lists from the experiments.
Window
size (kb)

NBS #SNPs RM

#SNPs

Coverage
(kb)

Overlap
(kb)

p

250 ≥ 0.5 ≥ 10 ≥ 0 178,150 4,799 0.00055
250 ≥ 0.5 ≥ 10 ≥ 0.1 143,700 4,527 0.00007
250 ≥ 0.5 ≥ 20 ≥ 0 175,700 3,882 0.01626
250 ≥ 0.5 ≥ 20 ≥ 0.1 140,100 3,773 0.00218
250 ≥ 0.5 ≥ 50 ≥ 0 152,050 3,094 0.05494
250 ≥ 0.5 ≥ 50 ≥ 0.1 114,550 2,307 0.08754
250 ≥ 0.6 ≥ 10 ≥ 0 96,000 3,870 0.00002
250 ≥ 0.6 ≥ 10 ≥ 0.1 56,850 2,584 0.00005
250 ≥ 0.6 ≥ 20 ≥ 0 91,500 3,157 0.00023
250 ≥ 0.6 ≥ 20 ≥ 0.1 52,150 2,011 0.00151
250 ≥ 0.6 ≥ 50 ≥ 0 71,100 1,352 0.18198
250 ≥ 0.6 ≥ 50 ≥ 0.1 36,500 677 0.25735
250 ≥ 0.7 ≥ 10 ≥ 0 40,850 1,494 0.00722
250 ≥ 0.7 ≥ 10 ≥ 0.1 16,950 318 0.28939
250 ≥ 0.7 ≥ 20 ≥ 0 38,900 1,346 0.01348
250 ≥ 0.7 ≥ 20 ≥ 0.1 15,550 318 0.25087
250 ≥ 0.7 ≥ 50 ≥ 0 25,250 603 0.15483
250 ≥ 0.7 ≥ 50 ≥ 0.1 8,950 0 0.84612
500 ≥ 0.5 ≥ 10 ≥ 0 55,850 3,632 0.00002
500 ≥ 0.5 ≥ 10 ≥ 0.1 43,350 3,512 0.00001
500 ≥ 0.5 ≥ 20 ≥ 0 53,700 3,230 0.00015
500 ≥ 0.5 ≥ 20 ≥ 0.1 41,200 3,111 0.00006
500 ≥ 0.5 ≥ 50 ≥ 0 49,700 2,142 0.00801
500 ≥ 0.5 ≥ 50 ≥ 0.1 36,600 2,135 0.00171
500 ≥ 0.6 ≥ 10 ≥ 0 28,050 2,298 0.00019
500 ≥ 0.6 ≥ 10 ≥ 0.1 16,200 2,250 0.00001
500 ≥ 0.6 ≥ 20 ≥ 0 26,000 1,936 0.00079
500 ≥ 0.6 ≥ 20 ≥ 0.1 15,300 1,887 0.00007
500 ≥ 0.6 ≥ 50 ≥ 0 21,750 1,153 0.0181
500 ≥ 0.6 ≥ 50 ≥ 0.1 11,550 1,105 0.00397
500 ≥ 0.7 ≥ 10 ≥ 0 12,650 628 0.05368
500 ≥ 0.7 ≥ 10 ≥ 0.1 5,350 334 0.09546
500 ≥ 0.7 ≥ 20 ≥ 0 12,200 628 0.05109
500 ≥ 0.7 ≥ 20 ≥ 0.1 4,900 334 0.08656
500 ≥ 0.7 ≥ 50 ≥ 0 9,800 794 0.01581
500 ≥ 0.7 ≥ 50 ≥ 0.1 2,400 0 0.36597
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Table 5.5: Sample coverage p-values for different criteria in select-

ing permissible windows in the YRI data set inversion region can-

didates. Each test used 100,000 random windows. No multiple

testing correction has been used in reporting the p-values. The line

with bold face represents the set of parameters chosen for reporting

the candidate lists from the experiments.
Window
size (kb)

NBS #SNPs RM

#SNPs

Coverage
(kb)

Overlap
(kb)

p

250 ≥ 0.5 ≥ 10 ≥ 0 38,150 1,140 0.0387
250 ≥ 0.5 ≥ 10 ≥ 0.1 30,550 782 0.10936
250 ≥ 0.5 ≥ 20 ≥ 0 37,800 1,429 0.00703
250 ≥ 0.5 ≥ 20 ≥ 0.1 29,600 748 0.11688
250 ≥ 0.5 ≥ 50 ≥ 0 23,750 442 0.28522
250 ≥ 0.5 ≥ 50 ≥ 0.1 18,100 133 0.62758
250 ≥ 0.6 ≥ 10 ≥ 0 11,900 2 0.86285
250 ≥ 0.6 ≥ 10 ≥ 0.1 7,700 2 0.71896
250 ≥ 0.6 ≥ 20 ≥ 0 11,650 325 0.15363
250 ≥ 0.6 ≥ 20 ≥ 0.1 6,450 2 0.65058
250 ≥ 0.6 ≥ 50 ≥ 0 6,950 3 0.66413
250 ≥ 0.6 ≥ 50 ≥ 0.1 3,750 2 0.47259
250 ≥ 0.7 ≥ 10 ≥ 0 2,950 2 0.38123
250 ≥ 0.7 ≥ 10 ≥ 0.1 1,700 2 0.24387
250 ≥ 0.7 ≥ 20 ≥ 0 2,850 2 0.38188
250 ≥ 0.7 ≥ 20 ≥ 0.1 1,750 2 0.2731
250 ≥ 0.7 ≥ 50 ≥ 0 1,700 2 0.24176
250 ≥ 0.7 ≥ 50 ≥ 0.1 1,100 2 0.17993
500 ≥ 0.5 ≥ 10 ≥ 0 19,050 780 0.06573
500 ≥ 0.5 ≥ 10 ≥ 0.1 15,450 454 0.21901
500 ≥ 0.5 ≥ 20 ≥ 0 16,700 481 0.23069
500 ≥ 0.5 ≥ 20 ≥ 0.1 13,250 155 0.36774
500 ≥ 0.5 ≥ 50 ≥ 0 14,350 758 0.04016
500 ≥ 0.5 ≥ 50 ≥ 0.1 10,850 347 0.18715
500 ≥ 0.6 ≥ 10 ≥ 0 5,100 291 0.10266
500 ≥ 0.6 ≥ 10 ≥ 0.1 3,300 2 0.3762
500 ≥ 0.6 ≥ 20 ≥ 0 4,000 291 0.08336
500 ≥ 0.6 ≥ 20 ≥ 0.1 2,200 2 0.28667
500 ≥ 0.6 ≥ 50 ≥ 0 2,750 375 0.04391
500 ≥ 0.6 ≥ 50 ≥ 0.1 900 2 0.12429
500 ≥ 0.7 ≥ 10 ≥ 0 400 0 0.08671
500 ≥ 0.7 ≥ 10 ≥ 0.1 400 0 0.0889
500 ≥ 0.7 ≥ 20 ≥ 0 400 0 0.08672
500 ≥ 0.7 ≥ 20 ≥ 0.1 400 0 0.08887
500 ≥ 0.7 ≥ 50 ≥ 0 0 0 –
500 ≥ 0.7 ≥ 50 ≥ 0.1 0 0 –
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Table 5.6: Sample coverage p-values for different criteria in selecting

permissible windows in the JPT+CHB data set inversion region

candidates. Each test used 100,000 random windows. No multiple

testing correction has been used in reporting the p-values. The line

with bold face represents the set of parameters chosen for reporting

the candidate lists from the experiments.
Window
size (kb)

NBS #SNPs RM

#SNPs

Coverage
(kb)

Overlap
(kb)

p

250 ≥ 0.5 ≥ 10 ≥ 0 214,000 6,433 ≤ 10−5

250 ≥ 0.5 ≥ 10 ≥ 0.1 202,700 5,912 0.00005
250 ≥ 0.5 ≥ 20 ≥ 0 208,000 5,805 0.00012
250 ≥ 0.5 ≥ 20 ≥ 0.1 196,600 5,266 0.00032
250 ≥ 0.5 ≥ 50 ≥ 0 174,550 3,775 0.02159
250 ≥ 0.5 ≥ 50 ≥ 0.1 159,950 3,370 0.03556
250 ≥ 0.6 ≥ 10 ≥ 0 134,400 3,766 0.00138
250 ≥ 0.6 ≥ 10 ≥ 0.1 111,250 3,449 0.0006
250 ≥ 0.6 ≥ 20 ≥ 0 125,850 3,241 0.00608
250 ≥ 0.6 ≥ 20 ≥ 0.1 102,550 2,320 0.04217
250 ≥ 0.6 ≥ 50 ≥ 0 86,000 1,177 0.47656
250 ≥ 0.6 ≥ 50 ≥ 0.1 69,550 1,144 0.30759
250 ≥ 0.7 ≥ 10 ≥ 0 69,700 1,913 0.01941
250 ≥ 0.7 ≥ 10 ≥ 0.1 48,850 1,258 0.05996
250 ≥ 0.7 ≥ 20 ≥ 0 64,400 1,234 0.18749
250 ≥ 0.7 ≥ 20 ≥ 0.1 43,750 323 0.79962
250 ≥ 0.7 ≥ 50 ≥ 0 35,100 317 0.68069
250 ≥ 0.7 ≥ 50 ≥ 0.1 22,850 17 0.93898
500 ≥ 0.5 ≥ 10 ≥ 0 65,000 3,236 0.00044
500 ≥ 0.5 ≥ 10 ≥ 0.1 63,000 3,236 0.00043
500 ≥ 0.5 ≥ 20 ≥ 0 64,250 2,729 0.00332
500 ≥ 0.5 ≥ 20 ≥ 0.1 62,100 2,729 0.00291
500 ≥ 0.5 ≥ 50 ≥ 0 61,600 1,931 0.0387
500 ≥ 0.5 ≥ 50 ≥ 0.1 59,050 1,931 0.03312
500 ≥ 0.6 ≥ 10 ≥ 0 45,650 2,483 0.00119
500 ≥ 0.6 ≥ 10 ≥ 0.1 42,150 2,183 0.00285
500 ≥ 0.6 ≥ 20 ≥ 0 42,400 1,370 0.06056
500 ≥ 0.6 ≥ 20 ≥ 0.1 39,350 1,336 0.05355
500 ≥ 0.6 ≥ 50 ≥ 0 37,050 423 0.53961
500 ≥ 0.6 ≥ 50 ≥ 0.1 33,700 419 0.50056
500 ≥ 0.7 ≥ 10 ≥ 0 19,500 1,790 0.00046
500 ≥ 0.7 ≥ 10 ≥ 0.1 18,050 1,491 0.00229
500 ≥ 0.7 ≥ 20 ≥ 0 17,400 1,002 0.02444
500 ≥ 0.7 ≥ 20 ≥ 0.1 16,250 1,002 0.02165
500 ≥ 0.7 ≥ 50 ≥ 0 12,250 445 0.1733
500 ≥ 0.7 ≥ 50 ≥ 0.1 11,700 445 0.16583
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Algorithm 5.1 Computation of p-value for given set of analysis

parameters.

Input: The candidate set S, number of samples repeats, window

size.

Output: Probability p that at least the same number of known

basepairs within inversions would be covered by chance.

1: cS ← the number of basepairs covered by S (coverage).

2: p← 0

3: oS ← the size of the intersection of S and known inversions.

4: for i = 1, . . . ,repeats do

5: Random sample coverage cR ← 0.

6: Remove all windows from random sample R.

7: while cR ≤ cS do

8: Add one window to R chosen at random from the set of

all suitable windows. The set of suitable windows are rep-

resented by the starting points between every 50 kb that

have at least 10 SNPs. The window sizes are adjusted to

eliminate SNP-free regions at both ends in steps of 50 kb.

9: Recompute cR.

10: end while

11: oR ← the size of the intersection of R and known inversions.

12: if oR > oS then

13: p← p + 1/repeats

14: end if

15: end for

phisms. This means that inversions that are present only in one

population in high numbers should not be expected to be detected

also in the other populations. Yet, this is what this simple test

does.

However, because the overlap is computed per basepair, long

inversions have more weight in the p-value computation than short

ones. This is in the favour of NBS-Scan results in the sense that

NBS-Scan can get good p-values with such an evaluation, because

long inversions are expected to be detected more reliably than short

ones.

Note that already 250-kb windows give sufficiently good p-values

so that the result is that the algorithm is believed to perform better
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than a random guess. This has a number of potential explanations.

First, the small window size may permit the signal of short inver-

sions to show through better than in the case where the window

size is twice as long. Second, in the case of synthetic data we used

independent windows. In reality, however, the windows are not

independent but overlap, and joining together multiple windows

in a haplotype block region may very well produce regions where

smaller, individual windows may have high scores, but after joining

the windows together, the union no longer has as clear a division

into two sets of haplotypes and is discarded. Recall that in Algo-

rithm 3.1 we eliminate such combined windows with NBS below the

threshold. In effect, the joining of the windows effectively functions

as if we performed the investigation on windows larger than the

original 250 kb.

The p-values in Tables 5.4, 5.5 and 5.6 were surprising, as in-

creasing the required number of SNPs present inside the window

strongly decreased the performance of NBS-Scan. For example, see

the rows of Table 5.4 where the number of SNPs was required to

be at least 50.

Partly based on these scores, the parameter configuration of win-

dow size 250 kb, NBS at least 0.5, minimum number of SNPs 20 and

no recombination count filtering was chosen for reporting candidate

regions in the data sets. Of the tested parameter combinations, this

gives the smallest arithmetic mean of p-values over the three data

sets and the smallest maximum of the p-values in the data sets.

It also produces interesting precision-recall curves, which are dis-

cussed later in this section. However, the geometric mean of the

p-values over the three data sets is not minimized by the chosen

set of parameters. It is apparent that permitting windows with low

number of SNPs allowed for more basepairs within inversions to

be found in the CEU and JPT+CHB data sets. This was an in-

teresting phenomenon, because prior expectations said that higher

number of SNPs would be useful because small number of SNPs

can be situated in a short span of the window. Because these SNPs

would then be in high LD, the SNPs are more likely to have a high

NBS score. It is possible that regions of low genotyped SNP density

occur more frequently with inversions, resulting in this bias.

Based on Tables 5.4, 5.5 and 5.6, it appears that using recom-

bination measures to distinguish inversions from haplotype blocks
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as outlined in Section 3.4 is not an effective approach for all cases,

as in at least half of the investigated parameter combinations the

p-values are larger with the filtering. Hence the results have not

been filtered by RM thresholds; the observed ratios of RM/SNPs

are still given, though, for optional removal of such candidates. Be-

cause each successive pair of SNPs can increase RM only by 1 or 0,

normalizing RM with the number of SNPs is a sensible option, and

this was done in Tables 5.4, 5.5 and 5.6. An alternative approach

would have been to use the candidate region length to normalize it,

but the SNP counts in different regions of similar length could vary

significantly.

Candidate lists for HapMap data sets

The top-scoring inversion candidates proposed by NBS-Scan (Al-

gorithm 3.1) have been collected in Tables 5.7, 5.8 and 5.9. In to-

tal, there were 506 candidate regions in CEU data set, 123 in YRI

data set and 610 in JPT+CHB data set. The reported p-values

have been computed for these complete lists. The reference field

contains references to publications in which an inversion has been

detected intersecting the proposed region by at least one basepair.

Note that this also means the real inversion might be a very short

one, whereas the inversion candidate is considerably long.

The candidates for all three data sets are listed separately. Inver-

sions occur at different frequency in different data sets, as shown,

for instance, by Antonacci et al. [4], who tested for the presence of

known inversions in samples from three of the HapMap sets. By

listing the best-ranking regions per data set, the differences between

different populations become apparent. The NBS histograms also

vary between the populations, which makes it difficult to decide on

the best-scoring candidate regions in the combined list.

The candidate list for the joint JPT+CHB data set is the longest

even though it contained least SNPs. This may be caused by the

fact that the data set consists of two smaller data sets, which may

have induced an occasionally detectable subdivision in the data

set. NBS would falsely notice this as signal for the presence of an

inversion. On the other hand, the shortness of YRI candidate set

is also surprising. This topic is discussed later in this section.

Some candidate regions were listed in more than one population.
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Table 5.7: The first 35 estimated inversions from HapMap data,

CEU data set, ordered by NBS score. The window size was 250

kb and each window had at least 20 SNPs. The estimated sample

p-value was 0.01626. The data set had 176 haplotypes. The MAF

column represents the proportion of the smaller inferred subset. See

Section 3.4 for description of RM . ‘Chr.’ is the chromosome of the

inversion; ‘Ref.’ gives literature references.

Chr. Start (Mbp)
Length
(Mbp)

NBS RM

#SNPs
MAF Ref.

1 25.50 0.25 0.796 0.087 0.49 [64]
2 110.20 0.15 0.778 0.114 0.29 [64]
4 26.15 0.25 0.744 0.13 0.44
17 42.05 0.15 0.743 0.069 0.23
16 57.80 0.25 0.706 0.264 0.41
7 138.50 0.3 0.688 0.167 0.22
5 130.60 0.75 0.666 0.04 0.26
16 27.35 0.35 0.659 0.0726 0.16
11 89.30 0.25 0.656 0.143 0.36
6 145.75 0.9 0.651 0.0825 0.43
7 91.20 0.65 0.649 0.127 0.38
10 34.75 0.25 0.648 0.204 0.32
1 12.70 0.15 0.636 0.2 0.25
14 65.65 1.3 0.634 0.0714 0.15 [1]
6 149.85 0.5 0.632 0.147 0.33 [70]
15 42.90 0.25 0.631 0.13 0.097 [64, 70]
4 52.35 0.35 0.631 0.086 0.26
17 15.70 0.55 0.623 0.131 0.48
1 241.85 0.25 0.62 0.0581 0.28
16 18.65 0.2 0.616 0.103 0.47
7 145.05 0.25 0.616 0.132 0.15
4 110.45 0.25 0.616 0.312 0.23
5 49.45 0.45 0.615 0.0395 0.4
2 74.35 0.45 0.614 0.143 0.15
17 40.90 0.85 0.614 0.159 0.22 [64, 117]
8 57.05 0.3 0.611 0.117 0.19
11 91.95 0.25 0.61 0.092 0.48
17 56.15 0.5 0.607 0.115 0.15
11 71.10 0.4 0.607 0.102 0.068
4 153.40 0.35 0.607 0.105 0.3
22 20.10 0.25 0.605 0.152 0.18 [132]
2 130.60 0.25 0.605 0.174 0.5
7 65.10 0.9 0.604 0.0656 0.33
1 49.15 1.2 0.602 0.155 0.32
20 25.05 0.6 0.601 0.0918 0.45
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Table 5.8: The first 35 estimated inversions from HapMap data,

YRI data set, ordered by NBS score. The window size was 250

kb and each window had at least 20 SNPs. Estimated sample p-

value was 0.00703.The data set had 200 haplotypes. The MAF

column represents the proportion of the smaller inferred subset.

See Section 3.4 for description of RM . ‘Chr.’ is the chromosome of

the inversion; ‘Ref.’ gives literature references.

Chr. Start (Mbp)
Length
(Mbp)

NBS RM

#SNPs
MAF Ref.

16 34.60 0.5 0.673 0.0952 0.23
17 42.05 0.15 0.648 0.0357 0.41
16 34.05 0.5 0.629 0.0536 0.23 [64]
5 49.45 0.4 0.608 0.0635 0.45
7 56.35 0.3 0.604 0.14 0.48
16 51.70 0.25 0.592 0.155 0.35
7 65.10 0.95 0.589 0.0755 0.22
16 28.70 0.15 0.586 0.188 0.2
15 49.50 0.25 0.584 0.138 0.41
6 26.60 0.3 0.575 0.11 0.42 [1, 64, 132]
9 94.00 0.5 0.568 0.0882 0.26
19 55.15 0.25 0.567 0.174 0.26 [64]
5 138.05 0.25 0.565 0.132 0.34
8 48.00 0.3 0.565 0.265 0.44
15 81.00 0.1 0.562 0.2 0.42
16 66.60 0.3 0.562 0.188 0.35
12 81.20 0.25 0.561 0.213 0.27
22 19.35 0.3 0.56 0.195 0.39
8 99.90 0.75 0.559 0.104 0.29 [1]
10 64.55 0.45 0.559 0.153 0.28
3 180.20 0.25 0.555 0.123 0.47
17 19.95 0.4 0.554 0.208 0.39
1 233.35 0.25 0.553 0.0976 0.4
8 104.55 0.35 0.549 0.0676 0.28
3 47.55 0.6 0.547 0.174 0.34
18 32.60 0.5 0.547 0.117 0.38
5 133.55 0.25 0.546 0.0926 0.33
20 47.00 0.25 0.546 0.0959 0.44
5 87.55 0.25 0.545 0.213 0.3
7 143.45 0.25 0.544 0.125 0.41 [1, 64]
15 75.25 0.35 0.544 0.135 0.38
4 103.90 0.25 0.544 0.161 0.29
4 52.35 0.3 0.544 0.167 0.24
2 148.25 0.3 0.543 0.0833 0.28
7 99.75 0.2 0.543 0.14 0.3
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Table 5.9: The first 35 estimated inversions from HapMap data,

JPT+CHB data set, ordered by NBS score. The window size was

250 kb and each window had at least 20 SNPs. The estimated sam-

ple p-value was 0.00012. The data set had 340 haplotypes. MAF

column represents the proportion of the smaller inferred subset. See

Section 3.4 for description of RM . ‘Chr.’ is the chromosome of the

inversion; ‘Ref.’ gives literature references.

Chr. Start (Mbp)
Length
(Mbp)

NBS RM

#SNPs
MAF Ref.

7 143.40 0.25 0.888 0 0.24 [1, 64]
1 25.50 0.25 0.805 0.13 0.27 [64]
2 110.15 0.2 0.769 0.156 0.4 [64]
20 29.25 0.45 0.766 0.137 0.28
3 58.65 0.35 0.761 0.123 0.36
17 22.35 0.3 0.744 0.167 0.45
14 65.60 1.4 0.742 0.157 0.47 [1]
10 31.55 0.35 0.719 0.0714 0.21
4 106.75 0.35 0.702 0.0769 0.11
8 124.30 0.25 0.701 0.194 0.4
6 90.40 0.25 0.699 0.103 0.29
12 81.10 0.25 0.699 0.208 0.44
11 3.25 0.3 0.697 0.32 0.47
3 161.40 0.45 0.692 0.163 0.24
1 191.15 0.55 0.69 0.152 0.48
13 78.70 0.35 0.678 0.239 0.27
5 102.20 0.5 0.671 0.129 0.46
1 153.30 0.5 0.668 0.0842 0.26
8 68.20 0.35 0.665 0.238 0.43
1 108.55 0.25 0.661 0.0952 0.42 [64]
6 44.75 0.8 0.66 0.135 0.28
7 110.55 0.35 0.651 0.409 0.5
2 130.60 0.25 0.651 0.163 0.43
16 22.20 0.25 0.649 0.08 0.14 [64, 70, 132]
4 52.35 0.45 0.647 0.162 0.37
16 68.80 0.4 0.644 0.214 0.44
3 196.80 0.25 0.644 0.222 0.26 [64, 132]
1 93.30 0.5 0.641 0.1 0.34
8 81.75 0.25 0.64 0.136 0.42
12 91.60 0.25 0.637 0.163 0.094
17 58.30 0.6 0.636 0.203 0.21
2 189.20 0.25 0.633 0.087 0.074
5 70.70 0.3 0.633 0.167 0.38
12 85.80 0.35 0.632 0.189 0.41 [64]
12 98.75 0.45 0.63 0.102 0.068
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For example, soon after the 900-kb inversion in chromosome 17

[117] is the region of chr17:42,050,000–42,200,000, which is reported

in all three data sets, although in the JPT+CHB data set with

additional 50 kb. This region does not correspond to an inversion

listed in DGV. It is quite possible or even likely that there is another

explanation for this region.

The references’ fields in the tables are not very informative about

the degree of overlap between the region reported in the literature

and the one suggested by NBS-Scan or the true reason the regions

were listed as candidates by NBS-Scan. For example, inversions

that were reported by Ahn et al. [1] and intersected the candidate

regions were short, less than 100 kb in length, making their reliable

detection by NBS-Scan unlikely. In some cases, there were no SNPs

within the known inversion region. Sometimes, the inversions were

only partially covered by the candidate region.

Therefore, it is ill-advised to claim the reported MAF is an es-

timate of the proportion of the inversion arrangements, if the can-

didate region intersects a known inversion. In some cases, one can-

didate region contained multiple reported inversions, placing the

connection between MAF and the proportion of a (single) inversion

even more in question.

Before comparing the results of different inversion prediction al-

gorithms, it is important to note that Bansal et al. [9] did their

experiments on HapMap phase I data sets, Sindi and Raphael [112]

originally on HapMap phase II data sets and we on HapMap phase

III data sets. Furthermore, all three cases used different genome

builds. The conversion of the predictions of [9] from one build to

another has likely have been a disadvantage in the following com-

parisons. The results mentioned regarding Bansal et al. [9] in these

investigations are what they report and not results of another im-

plementation on phase III data sets. By comparison, the hybrid

method, NBS-Scan and our implementation of SR-method used

the same phase III data sets. Hence, interpreting the results of

the comparisons of these algorithms should be done with care. The

threshold for SR-method score for an inversion was set to 10−5 like

Sindi and Raphael [112] did. This threshold value was used also by

the hybrid method.

The inversion predictions of NBS-Scan are not similar to the

predictions of SR-method. Table 5.10 contains the summary of
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Table 5.10: Summary of NBS-Scan predictions intersecting with

the predictions of SR-method.

NBS-Scan

predic-

tions

only

NBS-

Scan-

predictions

intersect-

ing SR-

method

predic-

tions

SR-

method

predic-

tions

inter-

secting

NBS-

Scan-

predictions

SR-

method

predic-

tions

only

CEU 501 5 24 69

YRI 121 2 8 74

JPT+CHB 600 10 23 34

the relationships between the predictions for each data set sepa-

rately. Note that SR-method’s predictions could overlap and such

were counted as two distinct predictions. Overall, NBS-Scan gives a

much higher number of candidate regions for the CEU and JPT+CHB

data sets. If we considered only as many highest-ranking NBS-Scan

predictions as SR-method’s prediction list had, the number of NBS-

Scan-predictions overlapping SR-method’s predictions would be 4, 2

and 4 in CEU-, YRI- and JPT+CHB-data sets, respectively. These

correspond to 4.3%, 2.4% and 7.0% of the number of predictions.

Of particular interest is that the 900-kb inversion in chromo-

some 17, which we first discussed on page 144, was not listed in

Sindi and Raphael’s [112] original candidate list for CEU data set.

However, by using HapMap phase III CEU data set, it discovers an

inversion candidate that is marked at chr17:41,377,578–42,217,772,

whereas the position given in [4] is chr17:40,899,921–41,989,253, so

the inversion is detected only partially.

NBS-Scan was designed particularly to detect such inversions,

and it is more accurate about detecting this inversion. This very

slightly suggests that NBS-Scan can possibly be considered to com-

plement Sindi and Raphael’s method.

As an elementary test of whether NBS can help SR-method in
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detecting inversions, the predictions of SR-method and NBS-Scan

were combined by taking their intersection. The performance of SR-

method compared to the combined method was done by computing

the proportion of known inversion polymorphism regions listed in

DGV [59] on the July 2009 to the predicted regions.

In Table 5.11 we see that with the exception of the YRI popula-

tion, the fraction of basepairs known to be inside inversion polymor-

phisms out of all predictions decreases. The intersection operation

also eliminates at least 80% of the basepairs in SR-method’s pre-

dictions.

The table also contains as comparison the predictions of Bansal

et al. [9], which have been lifted over to NCBI build 36. The predic-

tions of NBS-Scan by itself seems to be more accurate than those

in Bansal et al. [9], but on the other hand, some of their predictions

were lost in the lift-over process. They also used a different data

set, which also might cause their predictions to be less accurate.

Additionally, the table contains the values computed by using

the hybrid method described in Section 3.5. The entropy distribu-

tions and the empirical likelihood ratio distributions were computed

separately for each of the data sets. The main differences to the ex-

periment setup of Sindi and Raphael [112], beside the differences to

the algorithm as described in Section 3.5, are in that the SNPs had

to have MAF of at least 0.05 instead of 0.1, and that the data sets

used were HapMap phase III data sets, with the note that CEU and

YRI data sets used only the subset of haplotypes that were phased

only from trios. Note that the upper limit of the degrees of freedom

in deciding whether a pair of potential inversion end-points was to

be considered was unchanged in spite of the higher number of haplo-

types in the data sets. The hybrid method approached the problem

of clustering nearly identical candidates so that a prediction was

removed from consideration if there was another prediction with

smaller p-value and both endpoints within 10 kb of the respective

endpoints of that prediction.

If we approximate the human genome to be 3 billion basepairs

long, then the inversions listed in the database cover 1.75% of the

whole genome. This also means that the trivial prediction algorithm

that labels every basepair as inverted gets the precision of 1.75%;

this is useful in interpreting the values in Table 5.11.

Table 5.11 also shows that the hybrid method, which is essen-
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Table 5.11: Comparison of different inversion predictions. The val-

ues are the fractions of known true positive predictions out of all

positive predictions in terms of single basepairs, based on DGV

entries on July 2009. The intersection of SR-predictions with NBS-

Scan means those basepairs that are predicted to belong in inver-

sions by both methods. Note that the Bansal et al. [9] used HapMap

phase I data sets whereas our SR-method implementation, NBS-

Scan and the hybrid method used HapMap phase III data sets.

CEU YRI JPT+CHB

Bansal et al. [9] 4.8% 2.5% 1.9%
Sindi and Raphael [112] on

HapMap phase III data
37.8% 16.8% 21.5%

NBS-Scan 2.2% 3.8% 2.8%

Hybrid method 36.7% 11.8% 21.5%
SR-predictions on HapMap

phase III data intersected

with NBS-Scan

25.5% 44.4% 14.0%

tially a slightly tweaked version of Sindi and Raphael’s method,

performs overall notably worse than the original. Let us investigate

the differences between the methods further.

Comparisons between SR-method, NBS-Scan and the hybrid

method were done on the same HapMap phase III data sets. Fig-

ure 5.12 displays the precision-recall curves for these methods for

three different HapMap phase III populations. The basepairs cov-

ered by inversions in Database of Genomic Variants [59] were con-

sidered the set of positives. In precision-recall curves, ‘precision’ is

the number of true positives divided by the number of all predicted

positives. The other axis, ‘recall’, is the number of true positives

divided by the number of all positives, i.e., how much of all in-

version polymorphisms in the database are covered by the list of

predictions. By including one candidate region at a time to the set

of candidates, we can compute each node on the curve. A direct

vertical drop means the prediction that was added did not coincide

with a known inversion.

For NBS-Scan, the parameters used to generate the list of can-

didates was fixed. These lists of candidates were sorted by their
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NBS score and the precision-recall curve was drawn from this list

of candidates. This means that the curves do not look identical

with different parameters used to generate the lists.

In Figure 5.12 we see that NBS-Scan is at its best at very short

candidate lists (low recall). In particular in the YRI population,

NBS-Scan and the hybrid method perform relatively better than

SR-method when only a few candidates are given.

The curves are plotted based on the estimated predictions. Note

that the candidate lists with NBS-Scan have notably more items

than those of the SR-method and the hybrid method, but the recall

rate is in two cases less.

Figure 5.12 shows a notable decrease in the difference in the

performance of NBS-Scan and the hybrid method in comparison to

SR-method.

There are three apparent potential reasons for this beside the

better performance of NBS-Scan and hybrid method. First, the first

predictions of SR-method are actually inversions, but they are not

listed in DGV, for instance, because they are not known. Second,

the data set has some underlying property that makes it difficult

for SR-method to perform on. Third, the low precision is due to

random variation. The reasons for this are a potential topic for

future studies to investigate how past population histories affect

the accuracy of different inversion detection algorithms.

Inversions characterized by Antonacci et al.

Antonacci et al. [4] investigated six inversions in three different

HapMap data sets: CEU, YRI and JPT+CHB. In total, they listed

estimated inversion haplotype frequencies based on 54 sampled hap-

lotypes across the three data sets. These inversions are listed in

Table 5.12.

Four of the six inversions were listed in the candidate regions

produced by NBS-Scan (Tables 5.7–5.9) at least partially: the in-

versions in chromosomes 15 and 17. Antonacci et al. mention that

based on SNP haplotypes, they could accurately predict the inver-

sion status in the inversions of chromosomes 3 and 8, and also the

900-kb inversion in chromosome 17. Also, Deng et al. [28] used prin-

cipal component analysis (PCA) to correctly deduce the haplotype

orientations from SNP data in 418 haplotypes from the HapMap

data for the chromosome 8 inversion. This finding is in contrast to
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(b) YRI data set
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(c) JPT+CHB data set

Figure 5.12: Precision-recall plots of inversion detection. The pre-

cision and recall were computed based on predicted basepairs in-

stead of predicted segments with known inversions in Database of

Genomic Variants [59] in the July 2009 NCBI build 36 release act-

ing as the set of positives. All methods used the same HapMap

phase III data sets.
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Table 5.12: Statistics of six inversions investigated from An-

tonacci et al. [4]. The coordinates were lifted to NCBI Build 36.1

coordinates with the liftOver tool (http://genome.ucsc.edu/cgi-

bin/hgLiftOver).
Inversion mapping Length Highest frequency

(Population)
Total fre-
quency

chr3:196,882,966– 1.9 Mb 12.5% (CEU) 7.4%
198,870,687

chr8:7,225,962– 4.7 Mb 59.1% (YRI) 42.6%
12,487,029

chr15:28,524,207– 2 Mb 25.0% (CEU) 20.4%
30,602,466

chr15:72,151,413 1.2 Mb 6.2% (JPT+CHB) 1.9%
73,356,183

chr17:31,888,441– 1.5 Mb 9.1% (YRI) 5.5%
33,393,152

chr17:40,899,921– 900 kb 18.7% (CEU) 5.5%
41,989,253

the inversions NBS found, which did not include the inversions in

[4, 28] for chromosomes 3 and 8.

It is of interest that the inversion at chr17:31,888,441–33,393,152

was not intersected by the inversion candidates in the YRI popula-

tion, in which Antonacci et al. estimate the inversion to be present

at the highest frequency. Instead, the candidate lists for the two

other data set intersect with the inversion.

The inversions chr8:7,225,962–12,487,029 and chr15:28,524,207–

30,602,466 (Figures 5.13 and 5.14, respectively) were chosen here

as examples. The haplotypes have been sorted by spectral order-

ing, but the inferred data set subdivision is not displayed for the

inversion in chromosome 8, as NBS could not detect it.

Both inversions have many SNPs, but they nearly completely

lack division into two distinct groups detectable by NBS for some

reason. Bosch et al. [13] discovered that SNPs near the ends of

the inversion in chromosome 8 could be used to infer the inversion

status.

It is interesting to note that NBS slightly peaks in the latter

case near the inversion end-points. It is possible that this is due to

the low number of SNPs in those regions, which might increase
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NBS due to chance. An alternative explanation would be that

the inversion end-points and their immediate neighbourhood have

retained the division in two while gene flow over generations has

removed the apparent distinction between the two arrangements.

SNPs with positions in ranges 28.5–28.8 Mb and 30.4–30.7 Mb,

i.e., SNPs near the inversion breakpoints, had NBS score of 0.63,

slightly supporting the latter explanation. However, the data had

only 12 SNPs within those regions and only two of them in the latter

range, making the value of this investigation low. The possibility of

using clustering similarity measures to investigate how similar the

inferred bipartitions at both ends separately are is ill-advised due

to the low number of SNPs in one of the regions.

It should also be noted that these inversions highlight what is

considered a correct detection of an inversion in this thesis: the

candidate region intersects at least partially with a known inversion.

In this case, only a 300 kb subsegment of the 2 Mb inversion in

chromosome 15 was detected. Because most of the inversion does

not seem to be arranged in the four-field pattern, this small segment

might not have been included in the candidate set because of the

inversion but some other cause to form such a haplotype structure.

Detected known inversions

Two candidate regions that contained previously validated inver-

sions were selected for further examination. The first case, a short

inversion in chromosome 22, is an example of the actual inversion re-

gion containing no genotyped SNPs with MAF ≥ 0.05 (Figure 5.15).

It is questionable whether the bipartition visible at 20.25–20.35 Mb

is due to the presence of the inversion or if it is by chance.

Another case is the a longer inversion in chromosome 16 (Fig-

ure 5.16). The bipartition is visible also before the inversion. The

pattern is broken soon after the inversion, though, but the region

still displays lowered recombination rate. Within the inversion, the

four-field pattern seems to hold well, but not perfectly.

Candidate regions

Based on the visible four-field pattern signal, two candidate re-

gions proposed by NBS-Scan were selected for further examina-
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(a) SNP data. Bin size is 7681 bp. The inversion region is highlighted in blue.

One SNP is chosen from each bin to represent it. The haplotypes have been

sorted by spectral ordering as described in Section 3.3.
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(b) The NBS score in windows of 250 kb. The scale is from 0 to 1, the red

dashed line representing the detection threshold value of 0.5. Windows with

less than 20 SNPs are marked by black dotted lines.

Figure 5.13: Data view of an inversion chr8:7,225,962–12,487,029 in

YRI data set after spectral ordering. The shown window includes

the inversion and 250 kb of context in both directions.

tion: chr6:44,750,000–45,750,000 in the JPT+CHB data set and

chr2:74,350,000–74,800,000 in the CEU data set. The SNP and

NBS plots are Figures 5.17 and 5.18.

Neither of these two ranked very high in the lists of candidate

regions. In both cases, however, the region of high NBS was sharply

defined, as the bipartition vanishes nearly instantly outside the

candidate regions. These regions have nonetheless an interesting

recombinational history, even if the reason for that might not be an

inversion.

In both cases, NCBI Map Viewer for Build 36.3 shows several

genes within the suggested regions especially in the case of the

chromosome 2 candidate. This decreases the probability of these

four-field patterns having been formed due to inversions.
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(a) SNP data. Bin size is 3437 bp. The inversion region is highlighted in blue.

One SNP is chosen from each bin to represent it. The haplotypes have been

sorted by spectral ordering as described in Section 3.3.
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(b) The NBS score in windows of 250 kb. The scale is from 0 to 1, the red

dashed line representing the detection threshold value of 0.5. Windows with

less than 20 SNPs are marked by black dotted lines.

Figure 5.14: Data view of an inversion chr15:28,524,207–30,602,466

in CEU data set after spectral ordering. The shown window in-

cludes the inversion and 250 kb of context in both directions.

Comparison of NBS histograms

The distribution for NBS varies considerably in different data sets.

To study this difference, the NBS distributions in several different

data sets were computed. First, the distributions computed from

HapMap data sets with windows containing at least 20 SNPs were

used to generate real-life NBS histograms. Second, InvCoal and

COSI were used to produce 3,000 data sets without inversions using

both 48-haplotype panel ascertainment; for InvCoal, also Carlson’s

tag-SNP algorithm was tried. The resulting frequency histograms

are displayed in Figure 5.19. The purpose of this was to investigate

how accurately the simulator data can reproduce the NBS distri-

bution seen in real data sets. Inversions cover only a small part of

the human genome, so their effect on the HapMap distributions is

minor except for the tail.

The histograms clearly indicate the InvCoal simulator is not able
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(a) SNP data. Bin size is 333 bp. One SNP is chosen from each bin to

represent it. The haplotypes have been sorted by spectral ordering as described

in Section 3.3. The division that maximizes the NBS score is marked by the

red/white background.
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(b) The NBS score in windows of 250 kb. The scale is from 0 to 1, the red

dashed line representing the detection threshold value of 0.5. Windows with

less than 20 SNPs are marked by black dotted lines.

Figure 5.15: Data view of chr22:20,100,000–20,350,000 in the CEU

data set. The known inversion (20,160,891–20,180,436) [132] is

highlighted in blue. The spectral ordering in (a) is computed based

on the whole viewed segment. The division that maximizes NBS

for the viewed segment is also displayed.

to produce data that would behave like the human genome on av-

erage with the parameters used in the experiments. Therefore it

is ill-advised to consider the results from synthetic experiments as

indicative of the performance of NBS on human chromosomes. But

although NBS histograms for InvCoal-simulated data do not match

any of the HapMap NBS histograms, it might be difficult to obtain

a better matching of these histograms with the limited population

and recombination model that InvCoal has. By comparison, COSI

simulations fit the real-life data well in all three subpopulations,

suggesting that the coalescent can be used to generate realistic data

also in this respect. It is likely that the difference in the histograms

between COSI and InvCoal is in part due to modelling the subpop-

ulation and chiasma position distributions differently. This casts
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(a) SNP data. Bin size is 867 bp. One SNP is chosen from each bin to

represent it. The haplotypes have been sorted by spectral ordering as described

in Section 3.3. The division that maximizes the NBS score is marked by the

red/white background.
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(b) The NBS score in windows of 250 kb. The scale is from 0 to 1, the red

dashed line representing the detection threshold value of 0.5. Windows with

less than 20 SNPs are marked by black dotted lines.

Figure 5.16: Data view of chr16:34,050,000–34,700,000 in the

YRI data set. Note that the region proposed by NBS-Scan was

chr16:34,050,000–34,550,000. The known inversion (34,226,853–

34,599,997) [64] is highlighted in blue. The spectral ordering in

(a) is computed based on the whole viewed segment. The division

that maximizes NBS for the viewed segment is also displayed.

notable doubt on the performance of NBS in practice.

The difference between YRI and the other HapMap data sets

seen in Figure 5.19 is interesting. Because the SNPs have undergone

the same ascertainment process, the detected difference corresponds

to a difference in the actual populations. Although the best-fit

parameters of COSI [104] should not be considered as a statement

of the population past (the authors even warn against doing so), the

effective population size parameter of the African subpopulation is

notably higher than the European and Asian subpopulations. On

the other hand, a similar statement has been made by Tenesa et

al. [126] with a higher estimate of effective population size for the
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(a) SNP data. Bin size is 2000 bp. One SNP is chosen from each bin to

represent it. The haplotypes have been sorted by spectral ordering as described

in Section 3.3. The division that maximizes the NBS score is marked by the

red/white background.
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(b) The NBS score in windows of 250 kb. The scale is from 0 to 1, the red

dashed line representing the detection threshold value of 0.5.

Figure 5.17: Data view of a putative inversion chr6:44,750,000–

45,550,000 (highlighted in blue) in the joint JPT+CHB data set.

population of the YRI data set in comparison to those of CEU, JPT

and CHB data sets.

The NBS histogram displays why the YRI data set resulted in

the shortest candidate list of the three populations as it has the

smallest proportion of NBS scores over the detection threshold of

0.5 but has a large number of windows with very low NBS scores.

However, the estimated p-values for the result sets of YRI data set

were not the best of the three subpopulations.

The precision-recall curves (Figure 5.12) showed that NBS per-

formed best in comparison with other methods on the YRI data set

with only a short candidate list (low recall). This is in accordance

with the belief that NBS performs better with populations where
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(a) SNP data. Bin size is 1266 bp. One SNP is chosen from each bin to

represent it. The haplotypes have been sorted by spectral ordering as described

in Section 3.3. The division that maximizes the NBS score is marked by the

red/white background.
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(b) The NBS score in windows of 250 kb. The scale is from 0 to 1, the red

dashed line representing the detection threshold value of 0.5.

Figure 5.18: Data view of a putative inversion chr2:74,350,000–

74,800,000 (highlighted in blue) in the CEU data set.

the haplotype blocks are shortest.

Since the simulated data had no inversions, the tails of NBS val-

ues of COSI simulations can be used to estimate the false positive

rate of NBS in real data, if we assume that the simulated ascertain-

ment process does not skew the NBS histogram much and the NBS

scores of nonoverlapping windows are independent even in the same

chromosome. For the simulated European data sets, 94 windows of

3,000 replicates have NBS greater than 0.5, giving a non-inverted

window the probability of 0.0313 of being falsely claimed as a po-

tential inversion. For the simulated African and Asian data sets,

the probabilities were 0.0060 and 0.0480.

If we count the number of non-overlapping 250 kb windows with

at least 20 SNPs in them for each HapMap data set and multiply

the number with the respective probability of calling a non-inverted

window as inverted, which we estimated above, we get an estimate

of how many 250 kb windows are mistakenly called inverted by
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(b) Distribution of NBS in synthetic data sets. InvCoal used the same param-

eters as in the synthetic experiments section; all curves are plotted based on

3000 250-kb-long data sets with 120 haplotypes.

Figure 5.19: NBS distributions computed from different data sets

with 250-kb windows.

NBS-Scan. These numbers are 329, 63 and 502 for CEU, YRI and

JPT+CHB data sets, respectively. If each of these is considered

an independent false candidate region, this leaves us with 177, 60

and 108 candidate regions in the respective data sets that might

be real inversions. These correspond to 35%, 49% and 18% of all

candidate regions. It should be noted that these numbers are only

slightly educated guesses, as the simulation process and the prop-

erties of the simulated data differ from those of reality and the real

data sets. Yet, assuming the number of false positives is correct, the

candidate set after removing those candidates intersecting known

inversions would still contain more regions than the estimated num-

ber of false positives. Therefore it is possible that NBS-Scan finds

useful information of real previously unvalidated inversions.
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5.2.5 Discussion

It appears that not many frequent inversions can be identified by

using NBS. To some extent, the lack of a detectable four-field pat-

tern in most of the inversions characterized by Antonacci et al. [4]

casts doubt also on the accuracy of the output of InvCoal with the

chosen parameters.

However, based on the computed p-values for the results, it ap-

pears that NBS can, with properly selected parameters, perform

better than a random guess also on real data. The exact reason

for this, however, is unclear, as in some cases the known inversions

are only small parts of the suggested inversion region and may not

contain any genotyped SNPs.

In their paper on copy number variant (CNV) detection, McCar-

roll et al. [82] also discussed the different size estimates of CNVs by

using different detection methods. In particular, some methods re-

sulted in much larger estimates for the same variants. If this holds

true also for inversion polymorphisms in DGV, it may affect also

the estimated p-values for the result set.

Phasing errors (errors in assigning which allele belongs to which

of the two copies of a chromosome) may also affect the performance

of NBS. Such errors can considerably affect the performance of NBS,

as their effect spans several SNPs. Because of this, the candidate

regions of JPT+CHB data set, which has only unrelated individuals

for which phasing is harder, are possibly less reliable than those of

CEU and YRI data sets, which have in our case only trios, for which

phasing is easier. It should be noted that phasing errors were not a

factor accounted for in estimating the number of correctly detected

inversions.

The experimental results gained by using InvCoal to generate

data sets should be carefully considered, as the score distribution

under null hypothesis is notably different from the real data sets.

Yet, the effects of different simulation parameters can be expected

to be generally valid: The more frequent the inversion is, the more

likely it is to be detected. Increasing the number of haplotypes does

not improve the accuracy of NBS, but the recombination rate has

a significant effect on the power of NBS.

Another relevant factor to consider is the age of the inversion.

The simulation experiments showed somewhat surprisingly that old
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inversions would be more likely to be detected than young ones. Old

inversions, however, can be expected to have either become fixed

or extinct in the population, and as such, may be expected to be

present in fewer numbers than younger inversions. This would effec-

tively decrease the probability of NBS-Scan detecting a randomly

chosen inversion in the (human) genome.

Most of the experiments, including the comparison experiment

with Sindi and Raphael’s method [112], did not use any kind of

recombination measure to filter out false positives. The results on

real data seemed not to prefer the filtering by RM , judging by

the p-values resulting from different minimum threshold values for

detected recombinations per SNP. By comparison, in the simulation

experiments RM seemed to increase the number of true positives

for low numbers of false positives.

This suggests that if properly done, using recombination mea-

sures to remove regions of otherwise low recombination rate may

help in improving the performance of NBS-Scan and other similar

methods to lower the false positive rate. Unfortunately, it is not

known which is the best way to accomplish this.

The difference in the performance of NBS between real data

and synthetic data is notable. This casts noticeable doubt on how

realistically InvCoal can actually simulate data. As such, the results

of the experiments on the synthetic data should be taken with a

grain of salt.

5.3 Deletions

In this section, Kohler and Cutler’s microdel [68] is compared to

Deldec-Scan, the method based on haplotype frequency estimation

and described in Chapter 4.

As an EM-based algorithm, Deldec was specified the maximum

number of iterations for each restart in each window (this was set

to 200) and the number of restarts (this was set to 5). The stopping

criterion for one restart was either reaching the maximum number

of iterations or the relative increase in the log-likelihood being below

10−7.

The experiments were executed in parallel on servers with eight

Intel Xeon 2833 MHz processors and 32 GB of RAM, running
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Table 5.13: Parameters used to generate synthetic trio and unre-

lated data sets with Kohler and Cutler’s simulator.
Parameter name Parameter values

Number of trios 30, 100, 500, 1000

Deletion length 20 kb

Deletion frequency 0.5%, 1%, 5%, 10%, 20%

Ubuntu Linux 8.10.

5.3.1 Generating synthetic data

To generate synthetic data for detecting deletions, the simulator

used by Kohler and Cutler2, which they used in testing their deletion-

detection program microdel [68], was used. The parameters used

were the same as in their work, with the exception of using the sim-

ulator to produce 1,000 haplotypes for each simulated data set from

which the trio haplotypes were sampled, limiting to each deletion

being 20 kb in length and having mean SNP spacing of 2 kb. To

summarize, Kohler and Cutler estimated the means and variances of

miscall and no call rates per SNP for 8 different genotyping centres

used in the HapMap project. These are then used to parametrize

Beta distributions from which the error rates are sampled for each

SNP independently by the simulator. Each simulated segment was

250 kb long. The author gratefully acknowledges the help of Assis-

tant Professor David Cutler with the simulator.

For this thesis, 100 data sets with each of these estimated er-

ror rate parameters were generated, totalling 800 data sets for each

parameter configuration. The rest of the parameters were left un-

changed. For a list of the parameters and the values they were

given, see Table 5.13.

For the case of unrelated data, the same simulator and param-

eters were used but the child genotypes were discarded from the

data. However, the number of genotyped individuals in both trios

2http://cutler.igm.jhmi.edu/Software/software.html (Accessed

02.11.2009)
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and unrelated individuals were kept the same by changing the num-

ber of simulated trios, thus making the results comparable.

The used SNP ascertainment scheme was built into the sim-

ulator; the scheme [75] considered all SNPs as independent in the

ascertainment and accepted the SNP with probability dependent on

the allele frequencies alone; this probability was modelled to corre-

spond to the probability of such a SNP being in the SNP database

dbSNP [111]. The used coverage parameter, η, was set to 7. See

[75] for the meaning of η.

5.3.2 The power of deletion detection

The increase in the window size m beyond 4 SNPs decreased the

per-SNP detection accuracy. Even though the signal carried by

the SNPs within the window, presuming it is fully contained inside

the deletion, is detected more reliably, the number of windows that

include the deletion end-points is also higher and this makes the

accurate detection of the deletion status of SNPs near the deletion

ends more difficult. This can be seen in Figure 5.20 and Figure 5.21,

where the change in the simulated deletion frequency results in the

larger window no longer being the best for SNP-wise detection.

It appears that windows with size near 4 is in many cases a

good choice (Figure 5.20) while using the mean method for SNP-

wise assessment at least for deletion frequency 0.1.

Let us start with a comparison of running times. Of the tested

algorithms, microdel was the fastest by a clear margin in larger data

sets (Figure 5.22). Somewhat surprisingly, Deldec for unrelated in-

dividuals performed slower than for trios with as many genotyped

individuals. Even though one iteration of the EM-algorithm per

one individual includes in the case of trio data two calls of Yates’

algorithm and in the case of unrelated individuals one call per in-

dividual, the number of iterations the EM-algorithm differs greatly

between the cases.

The measured running times for Deldec-Scan include the time

spent in estimating parameters the miscall and no call rate pa-

rameters τ and δ only in the case of trio data. The time spent in

the haplotype frequency estimation EM-algorithm was measured as

only the CPU time spent in user mode, as the implementation that

scanned over the SNP data set for Deldec-Scan was very IO-heavy.
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(b) Majority vote method
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(c) Mean method

Figure 5.20: Deldec-Scan ROC curve comparison of accuracy of

deletion end-point estimation for different window sizes m. There

were 100 trios in each data set and deletion frequency f0 was 0.1.

The fractions are computed from SNP-wise deletion-status predic-

tions.
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(a) f0 = 0.005
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(b) f0 = 0.01

Figure 5.21: Deldec-Scan ROC curve comparison of accuracy for

different window sizes m and deletion frequencies f0 with the mean

method. The data had 1,000 trios. The fractions are computed

from SNP-wise deletion-status predictions.

With a good implementation, the time spent to read the whole

data set into the memory at once would likely not have resulted

in a large time spent handling input-output calls. The measured

times for microdel also contained only time spent in user mode.

The times are averaged over different proportions of deletions.

Let us next consider deletion detection performance. In most

of the cases, microdel outperformed Deldec-Scan (Figure 5.23).

This might in part be explained by the simulator used to gen-

erate the synthetic data using the same error model as microdel

and Deldec failing to estimate the error rates reliably for the trio

data. Figure 5.24 displays the estimated genotyping error τ (see

Section 4.2.2) histogram for the synthetic data sets from one geno-

typing centre. The mean genotyping error for the particular centre

is denoted by in the figure by τ̄ . Table 5.14 lists the false positive

fractions for microdel, which were used also for deciding the points

on Deldec-Scan’s ROC curves by which to report the true positive

fraction in Figure 5.23.

Surprisingly, it appears that the estimate is biased downwards.

In the cases with f0 = 0.2, the estimated genotyping error rate

should have been constantly higher than the true genotyping error

rate, because the estimation was done under the assumption of no
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Figure 5.22: Average running times for different deletion detection

algorithms under varying scenarios.

deletion being present. This is possibly due to the differences in

the error models used in the simulation and in the estimation.

Deldec-Scan performed better than microdel only on small data

sets (Figure 5.23(a)). This might also be due to microdel having

a considerably higher false positive rate in the case of 30 trios,

although this is in disagreement with the case of f0 = 0.05 and 100

trio data sets (center set of columns in Figure 5.23(b)).

In the case of unrelated data, the false positive fraction was

fixed at 0.0001 because microdel could not provide a baseline for

the false positive fraction as it could not be used on data sets of

unrelated individuals. The performance of Deldec-Scan is shown

in Figure 5.25. In these simulations the error parameters discussed

in Section 4.2.2 were set to τ = 0.001 and δ = 0.01. These values

are reasonably close to the means of the errors of the genotyping

centres estimated by Kohler and Cutler.

Surprisingly, with the largest data sets and deletion frequency
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(d) 1000 trios

Figure 5.23: True positive fractions for different deletion detection

algorithms under varying simulated scenarios. The false positive

fraction was fixed for Deldec-Scan to the one given by microdel.
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Table 5.14: False positive fractions for microdel that were used also

for Deldec-Scan in Figure 5.23.

f0

Trios 0.005 0.01 0.05 0.1 0.2

30 0.0001 0.0009 0.0013 0.0022 0.0021
100 0.0001 0.0004 0.0012 0.0009 0.0006
500 0.0003 0.0004 0.0003 0.0002 0.0001
1000 0.0004 0.0004 0.0002 0.0001 0.0001

0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.1

0.2

0.3

0.4

Miscall rate estimate

D
en
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ty
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0
 = 0.005

1000 trios, f
0
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0
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0
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Figure 5.24: Genotyping error estimates under four different sce-

narios from one simulated genotyping centre, gained by the EM-

algorithm described in Section 4.4. The tick τ̄ marks the mean

genotyping error in the model of Kohler and Cutler [68].
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of 0.05 it appears that using unrelated individuals results in better

power than with trio data sets with as many genotyped individuals.

For example, the case of 30 trios is compared to the case of 90

unrelated individuals. However, because the power of the tests in

data sets of unrelated individuals remains very low for rare deletions

before a sudden rise, using trio data would still be preferable.

When comparing the case of data from unrelated individuals to

trios, the ROC curves look different. In Figure 5.26(a-c) it can

be seen that with the exception of window size m = 2 the rate of

false positives is much higher than in comparable positions with

trios (Figure 5.20(c) and Figure 5.21(b)). As Figure 5.25 show,

with low deletion frequencies the power is much lower. Finally, the

mean method seems to perform the best also for this kind of data

(Figure 5.26(d)).

To measure the false positive fraction of Deldec-Scan with realis-

tic SNP data sets without deletion, we used COSI [104] to generate

500 SNP data sets of 500 kb in length with 30 trios and mean SNP

spacing of 2 kb. This corresponds to 250 Mb of simulated segments

and 125,000,000 potentially deleted SNPs. The haplotypes were

sampled from the simulated European population and underwent

similar ascertainment simulation as in Kohler and Cutler’s simula-

tor with coverage parameter η = 7, after which they were randomly

thinned so that each data had 250 SNPs. The errors were generated

by following the error model of Deldec with parameters τ = 0.001

and δ = 0.01. For unrelated data otherwise similar data sets but

with 90 individuals were simulated. The mean method was used to

assign deletion status to SNPs. If we considered the mean of the

log-likelihood ratios computed for the windows that each SNP was

in to be useable in a likelihood ratio test using the χ2 approximation

and required the test statistic to be larger than the threshold corre-

sponding to a p-value of 10−10, the number of SNPs predicted to be

deleted was 0 for both unrelated and trio data with m ∈ {2, 4, 6, 8}.

With such an extreme threshold, the false positive fraction in real

experiments could be low also in real data sets.

5.3.3 Real data

For detecting deletions, the data used are unfiltered HapMap Phase

II data sets from January 2007 (rel. 21a) [129]. The coordinates of
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(b) 300 unrelated individuals
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(c) 1500 unrelated individuals
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Figure 5.25: True positive fractions for Deldec-Scan under varying

scenarios using unrelated data. The false positive fraction was fixed

as 0.0001.



170 5 Experiments

10
−4

10
−3

10
−2

10
−1

10
00

0.2

0.4

0.6

0.8

1

False positive fraction

T
ru

e 
po

si
tiv

e 
fr

ac
tio

n

 

 

m=2
m=4
m=6
m=8
y=x

(a) The effect of window size m

when the data set has 300 individu-

als, f0 = 0.1 and the mean method

is used.
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(b) The effect of window size m

when the data set has 3000 individ-

uals, f0 = 0.1 and the mean method

is used.

10
−4

10
−3

10
−2

10
−1

10
00

0.2

0.4

0.6

0.8

1

False positive fraction

T
ru

e 
po

si
tiv

e 
fr

ac
tio

n

 

 

m=2
m=4
m=6
m=8
y=x

(c) The effect of window size m

when the data set has 3000 indi-

viduals, f0 = 0.01 and the mean

method is used.
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(d) The effect of SNP deletion-

status decision method when the

data set has 300 individuals, f0 =

0.1, window size m is 4 and the

mean method is used.

Figure 5.26: Results for deletion detection with unrelated individ-

uals as the data sets.



5.3 Deletions 171

the SNPs are given in with respect to NCBI build 35. Note that this

differs from the ones used for inversions, which used NCBI build 36

coordinates.

Both CEU and YRI data sets contained trios, so they were ex-

perimented using the Deldec EM algorithm for trios. For basic

filtering of the data sets, SNPs that were genotyped at multiple

genotyping centres were joined to their consensus genotype. If the

called genotypes differed, that genotype call was set to no call. If a

SNP had more than 20% no calls, the SNP was discarded.

Second, the number of apparent genotyping errors for each SNP

was computed by counting the number Mendelian inconsistencies

for each SNP. Only the cases in which both parents were homozy-

gous and the child genotype did not have a null call were examined;

if more than 20% of these examined cases in a SNP had a Mendelian

inconsistency, the SNP was discarded.

Finally, all SNPs that were monoallelic or contained only het-

erozygotes together with no call genotypes were removed. In the

end, the CEU data set has 3,280,460 SNPs and the YRI data set

3,463,706 SNPs. Both data sets have 30 trios.

To estimate the miscall parameter τ for the deletion model, we

used the EM algorithm described in Section 4.4 that assumed SNPs

to be independent. Applying this to all SNPs of even the shortest

autosomal chromosome proved to be too time-consuming. There-

fore, 3,000 SNPs were sampled at random from each chromosome

and used to estimate the error rates for that chromosome.

Based on the results from the synthetic data sets, the moving

window size for the deletion was set to 4 SNPs. The likelihood ra-

tio test with the SNP-wise mean method was used to decide which

SNPs were deleted; the p-value corresponding to the mean of the

log-likelihood ratio had to be 10−10 or less for the SNP to be called

deleted. Such an extreme significance threshold was used to de-

crease the number of false positives due to multiple testing.

To form an estimate of the deletion frequency, the mean es-

timated deletion frequency was computed for each SNP over the

windows that contained the SNP. Once SNPs that were considered

deleted were joined into contiguous candidate regions, the deletion

frequency estimate for the region was the average of the SNP-wise

averages.

The likelihood ratio test p-value is not reported, because the



172 5 Experiments

value based on the likelihood ratio test was for all listed candidates

very small, less than 10−16. Reporting p-values smaller than this

would not be of practical use.

To determine a p-value that might be more realistic than that of

the likelihood ratio test value for the 4-SNP windows, the same fil-

tering process as described above was performed to cleaned HapMap

phase II data sets that had undergone a quality control process. The

resulting data sets had 3,062,918 and 3,233,296 SNPs in CEU and

YRI data sets, respectively. Because deletions appear as Mendelian

inconsistencies and higher no call rates, these should have been ef-

fectively removed from the complete data set by the quality control

process. Thus, the likelihood ratio test score histogram obtained

from these data sets is closer to the null hypothesis. This is used to

produce a p-value estimate p̂. The estimate is conservative, because

not all signal is removed from the data set. This p-value is reported

as p̂ in the result tables.

Because the methodology developed in Section 4.3.3 applies for

unrelated data, the experiments included the joined JPT and CHB

data sets. The data has 90 unrelated individuals. The filtering we

did for the data was otherwise similar to that in the case of the

YRI and CEU data sets, but the phase of computing the number

of Mendelian inconsistencies was discarded, as these could not be

estimated from this type of data. Therefore the results pertaining

to this combined data set are less reliable than those of trio data

sets, not necessarily because of the lack of data, but because of

the unreliability of the data. The first, less filtered data set had

3,348,904 SNPs and the control data set (where a quality control

process had been used before the filtering as described above) had

3,134,180 SNPs.

In Tables 5.15, 5.16 and 5.17 are reported only the 35 highest-

scoring regions, as even with the selected p-value threshold there

were far too many candidate regions to list. For the CEU data

set, the experiments revealed 3,586 potential deletions. For the

YRI and JPT+CHB data sets the numbers were 4,575 and 3,813,

respectively.

The Database of Genetic Variants (July 2009 release, hg17 (NCBI

build 35)) has 18,845 entries listed as CNVs and 3,540 indels. The

version set in hg18 (NCBI build 36) coordinates had several more

entries, but in reporting the overlaps only the build 35 version of
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the database was used. The list of verified CNVs and indels were

reported again even if only one basepair between a verified polymor-

phism and the candidate region was shared; in particular, an indel

may have been only a few basepairs long and the candidate region

several kilobases. Duplications may also have been erroneously re-

ported below, as the types of the variations were not investigated

more closely.

In many cases the candidate region intersected with CNVs or

indels listed in several different articles. In the results, only the

four most recent references were included, as in some cases there

were several more references that reported intersecting regions. For

all three data sets, a considerable proportion of the top-ranking

regions is known to intersect with validated CNVs or indels. This

strongly suggests that the haplotype frequency estimation method

works well also in practice.

In many cases, the candidate region spanned a shorter region

than the known CNVs. For instance, in the case of a proposed

33-kb deletion at chr2:52,663,182–52,696,603 in the CEU data set,

the region overlapped variants reported in five articles. The longest

variant was reported by Redon et al. [100] at 87 kb. The candidate

region was completely contained within this reported variant. Also

the regions reported by Kidd et al. [64], Cooper et al. [21] and de

Smith et al. [26] contained all of the candidate region. However,

the variants detected by McCarroll et al. [81, 82] are completely

contained by the candidate region. The lengths of these variants

are 31 kb and 30 kb.

On the other hand, we have candidates such as chr10:55,630,434–

55,633,337 in the YRI data set. The candidate region is 3 kb long

and the CNV detected by Pinto et al. [95] is 2.5 Mb in length. It is

possible that this candidate is, in fact, a previously unknown short

deletion instead of a part of a long CNV.

Overall, to summarize the reported 35 top-ranking regions in

the CEU data set, there were 98 overlaps with reported variants.

In 75 cases, the region listed in the Table 5.15 was contained inside

the database entries. In 15 cases, the database entry was contained

inside the candidate region, and in 8 cases, neither completely con-

tained the other. The high number of candidate regions contained

by the database entries can be due to several reasons. Because

Deldec-Scan detects the signal from SNPs that are inside the dele-
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Table 5.15: 35 highest-ranking candidate deletions from HapMap

data, CEU data set. The coordinates are in NCBI build 35 coordi-

nates.

Chr. #SNPs Start (bp)
Length
(bp)

p̂

10−7 f̂0 Ref.

2 9 82,008,328 8,822 0 0.21
3 11 111,145,471 4,973 0 0.30

15 11 25,531,882 6,008 0 0.28
2 13 52,663,182 33,421 19.6 0.30 [21, 26, 64, 82]
2 14 146,698,495 11,339 22.9 0.30 [20, 64, 81, 82]
2 16 21,313,283 3,349 26.1 0.29

13 9 102,103,779 2,509 29.4 0.22
2 10 34,618,159 29,985 29.4 0.28 [21, 26, 64, 82]
2 11 108,764,313 13,921 35.9 0.28
3 20 164,039,007 39,931 35.9 0.27 [26, 64, 82, 142]

11 8 78,172,686 2,521 35.9 0.21 [59, 142]
6 11 67,098,871 1,915 39.2 0.19 [26, 61, 82, 106]
4 10 69,296,517 14,120 49.0 0.23 [20, 26, 82, 100]

10 10 53,680,643 3,397 55.5 0.25
12 11 13,942,504 6,241 55.5 0.24
12 7 69,810,558 1,773 55.5 0.17
9 20 23,352,311 16,177 55.5 0.28 [26, 64, 82]
2 17 78,173,639 9,610 55.5 0.26 [95, 100, 137]

20 12 40,096,312 6,966 55.5 0.22 [95]
10 36 82,728,769 4,795 55.5 0.12
3 9 84,591,358 1,597 65.3 0.14
1 9 112,402,686 13,900 65.3 0.21 [20, 64, 82, 142]
5 6 150,895,003 2,924 65.3 0.26

11 31 126,200,561 3,977 65.3 0.17
10 7 49,799,777 1,559 65.3 0.17 [106]
10 9 14,501,432 1,873 65.3 0.23
3 10 82,621,628 2,366 65.3 0.15
8 12 39,449,314 2,095 65.3 0.19 [21, 26, 64, 82]
4 9 92,284,590 8,752 65.3 0.20 [20, 26, 64, 81]
2 16 106,336,720 7,781 65.3 0.26 [64, 82, 132]
6 10 6,532,297 1,215 65.3 0.25

20 7 35,710,664 1,272 65.3 0.24
10 9 53,490,273 4,449 65.3 0.23 [95]
2 8 235,786,624 3,411 68.6 0.19

10 6 53,691,853 2,024 68.6 0.21
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Table 5.16: 35 highest-ranking candidate deletions from HapMap

data, YRI data set. The coordinates are in NCBI build 35 coordi-

nates.

Chr. #SNPs Start bp
Length
(bp)

p̂

10−7 f̂0 Ref.

10 12 14,770,886 4,092 0 0.27
6 21 6,527,373 6,139 0 0.23
2 16 21,313,352 6,513 0 0.25

11 8 28,850,004 1,127 0 0.20
16 10 13,193,512 4,467 0 0.24
10 9 55,630,434 2,903 0 0.26 [95]
4 14 70,378,886 12,279 0 0.26 [26, 77, 82, 100]

18 15 63,668,401 4,260 0 0.18 [106]
12 16 44,189,594 8,798 0 0.19 [21, 64, 82]
9 7 7,941,082 796 0 0.22
9 13 102,187,316 5,743 0 0.31
3 8 61,569,913 7,290 0 0.22 [100, 95]

13 6 38,832,462 3,399 0 0.17 [85]
8 7 3,286,222 1,963 0 0.23

15 14 25,523,012 3,318 0 0.25
11 9 5,828,695 3,748 0 0.18 [21, 61, 82, 106]
15 14 25,526,981 4,322 0 0.19
20 6 8,824,090 1,821 0 0.21
11 11 7,772,664 3,642 0 0.18 [21, 64, 82]
6 8 91,157,389 2,109 0 0.23
2 8 43,531,971 7,340 0 0.24
3 8 111,140,447 3,726 0 0.13
7 6 88,512,780 2,565 3.1 0.16 [95, 106, 137]
4 6 115,535,846 7,287 3.1 0.22 [21, 64, 82, 106]
3 6 178,019,905 2,820 3.1 0.20 [95]
9 12 7,935,331 3,341 3.1 0.21
2 6 226,792,000 3,294 3.1 0.17
3 14 111,145,471 4,839 3.1 0.18
6 8 133,065,721 5,939 3.1 0.22
9 8 105,749,820 1,036 3.1 0.21

15 14 32,521,237 8,788 3.1 0.19 [21, 61, 82, 106]
2 11 16,141,116 9,380 3.1 0.20
6 11 106,930,170 2,731 3.1 0.23
2 12 106,338,929 5,261 3.1 0.23 [64, 82, 132]
6 6 145,065,447 3,385 3.1 0.19
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Table 5.17: 35 highest-ranking candidate deletions from HapMap

data, JPT+CHB data sets. The coordinates are in NCBI build 35

coordinates.

Chr. #SNPs Start bp
Length
(bp)

p̂

10−7 f̂0 Ref.

3 10 3,452,526 9,907 0 0.27 [95]
5 9 150,162,906 3,401 0 0.26 [64, 100]
6 11 165,703,122 4,300 3.2 0.28 [64]
2 15 106,336,720 7,781 3.2 0.27 [64, 82, 132]
6 22 32,759,846 1,517 3.2 0.25 [26, 61, 106, 142]

11 11 126,196,008 2,012 3.2 0.27
12 10 60,080,170 3,154 3.2 0.26 [100]
2 15 67,143,097 6,649 3.2 0.17

22 8 37,688,911 7,021 3.2 0.25 [21, 26, 64, 82]
2 12 5,881,785 4,690 3.2 0.19 [142]

11 16 126,201,806 2,658 3.2 0.26
2 10 64,430,563 6,414 3.2 0.19 [100, 95]
5 17 145,293,466 6,309 3.2 0.21
2 9 33,971,663 3,474 3.2 0.19 [61]
5 10 122,505,940 1,895 6.4 0.25

14 9 82,370,501 1,522 9.6 0.28
2 11 39,933,925 6,181 9.6 0.15
5 7 170,945,536 1,434 16.0 0.15
2 19 5,756,171 7,539 16.0 0.23 [106, 142]
9 14 73,439,209 5,734 16.0 0.26
1 7 112,404,201 3,515 16.0 0.21 [64, 100, 132, 142]
5 7 131,755,245 1,366 16.0 0.20
3 10 191,221,744 2,411 16.0 0.28 [26, 81, 106]
5 7 170,942,438 1,666 16.0 0.17
3 12 74,817,834 7,623 16.0 0.19

21 7 40,804,037 1,926 16.0 0.26 [85]
22 6 37,682,537 1,751 16.0 0.21 [26, 64, 132]
5 6 145,282,859 3,201 16.0 0.25

20 7 50,767,082 5,161 16.0 0.20 [59]
2 16 78,174,297 8,685 16.0 0.27 [95, 100, 137]

13 6 64,221,390 1,902 16.0 0.25 [105]
8 9 87,149,323 3,396 19.1 0.21

10 12 16,869,213 2,718 19.1 0.16
9 6 105,749,820 2,473 19.1 0.20

11 15 4,925,512 5,845 22.3 0.22 [26, 64, 82, 100]
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tion, the estimated deletion should, ideally, be at most as long

as the actual deletion. Another possible cause is that the valida-

tion techniques used to discover the entries that were entered into

the database may have overestimated the length of the deletion.

Finally, the used LRT statistic threshold for considering a SNP

deleted may have been set too high, which would have cut the ends

of the underlying polymorphisms from the candidate set.

The majority of the candidates at the end of the list were one-

SNP long. Of the 35 candidate regions listed by Deldec-Scan as

potential deletions in the CEU data set with the worst p-values, 16

intersected with DGV CNV or indel entries. This also hints at the

possibility that the selected threshold for likelihood ratio test was

set too high for the majority of the deleted SNPs to be detected.

Nonetheless, the threshold was left high to reduce the number of

false positives.

If the same threshold was used solely on the results on QC-

passed genotype data, CEU, YRI and JPT+CHB data would have

given us 653, 523 and 1033 candidates, respectively. Of the top 35

candidates, 12, 10 and 6 in the same populations intersected with

known CNVs or indels.

5.3.4 Discussion

Although Deldec-Scan is not as good as microdel for detecting dele-

tions in trio data in most scenarios based on the results on simulated

data, it is nonetheless a valid option for detecting them in unrelated

data, which is something that microdel is not suited for. The esti-

mation of the error parameters is not robust, as was evidenced by

Figure 5.24. A more rigorous approach would likely improve the

performance. It is unclear how to accomplish this.

It might be possible to improve the end-point detection of dele-

tions. The presented methods are heuristics utilizing data only by

the estimated likelihood ratio test scores. The microdel program

estimated deleted haplotypes in the data set and used these to de-

cide on where the deletion ends. A similar approach might work

with Deldec-Scan as well.

Finally, the deletion candidate list of Kohler and Cutler [68] was

nearly filled with previously known CNVs. By comparison, the list

of previously validated CNVs in the candidate deletion lists in Sec-
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tion 5.3.3 appears very sparse. One possibility is that the used data

screening was not as efficient as that of Kohler and Cutler in remov-

ing false signal, although the same effect (that only some candidate

deletions had literature references) is seen in Deldec-Scan results

for HapMap’s QC-filtered data sets as well. Another possibility is

that the change in the used data set (HapMap phase II compared

to HapMap phase I used in [68]) caused this, because the larger

phase II data set could provide greater resolution in regions where

there were deletion polymorphisms.
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Discussion

The aim of this thesis was to present novel – or mostly so – methods

to detect genetic structural variation from SNP data. The presented

algorithm for detecting inversions, NBS-Scan, utilized the signal re-

sulting from the decreased gene flow between different chromosome

arrangements. Deldec-Scan, an algorithm for detecting deletions,

is based on a previous algorithm by Corona et al. [22]. There still

remains much to do in the field of using SNP data to discover in-

versions or deletions. Technological advances in, e.g., resequencing

are however in the near future a possible reason why such research

could lose some of its relevance.

For now, let us assume that analyzing SNP data to detect struc-

tural variation remains a relevant topic also in the future. As men-

tioned in Chapter 3, there are at least two types of signal that may

reveal the presence of inversions: the linkage disequilibrium (LD)

patterns near the inversion breakpoints and the decreased gene flow

between the two arrangements, which should lead to the four-field

pattern discussed in Section 3.1. There now exist methods that

attempt to detect either one of the signals. But can both signals be

detected together to result in better detection accuracy? As seen in

Section 5.2.4, the gene flow signal is not always present even with

frequent inversions. There may also be other, possibly better ways

of detecting inversions from SNP data, such as principal component

analysis as suggested by Deng et al. [28]. The simple experiment

of taking the intersection of the inversions predicted by Sindi and

Raphael’s [112] and NBS-Scan in the HapMap data set showed that

combining the results of the two methods might sometimes be use-

179
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ful.

The idea of using lowered recombination rates in inversion detec-

tion came originally from observing the 900-kb inversion in chro-

mosome 17. This inversion seems to remain the best fit for the

four-field pattern. The clear and visible signal sparked the idea

of using the division to detect inversions even in less clear cases.

It appeared that this approach does not generalize to all known

inversions.

Antonacci et al. [4] deduced that some of the six inversions inves-

tigated in their article occurred on at least two different haplotype

backgrounds. This is in clear disagreement with the assumption of

inversion uniqueness done by NBS and InvCoal and is a possible

reason for the poor performance of the two.

The algorithms presented in this thesis, NBS-Scan and Deldec-

Scan, are similar yet different. Both are based on the idea of a fixed-

width window moving over the data, after which these windows are

joined together. The algorithms differ in how these windows are

joined together and how the window move over the chromosomes. It

is reasonable to ask why were the algorithms not made more similar

in this respect. This is mostly due to the sizes of the windows these

algorithms cover and how much signal a single SNP can carry in

identifying structural variants. For finding deletions, already 4-

SNP windows are sufficient for identifying variants. It is possible,

at least with some level of approximation, to estimate in which

proportions to divide the signal among the covered SNPs. This is

not the case with normalized bicomponent score (NBS) introduced

here for detecting inversions.

For detecting deletions, there already are multiple different meth-

ods, some of which are applicable even before calling the genotypes.

As it is, the approach by estimating haplotype frequencies might

not appear promising. However, maybe the largest problem that

prevents Deldec-Scan from performing at a level comparable to mi-

crodel is the difficulty in determining the deletion end-point accu-

rately. However, Deldec-Scan can work also in the case of unrelated

individuals whereas microdel cannot. For a deletion spanning mul-

tiple SNPs, the problem is not in detecting the deletion in general

but in determining where the deletion ends. There might be better

approaches to this problem beside the simple methods discussed in

Section 4.6.
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On the topic of investigating the performance of inversion-detec-

tion algorithms, the development of a coalescent simulator that can

simulate inversions to some level of accuracy was a small milestone

on the road to the completion of this thesis. The InvCoal simulator

serves as a starting point for future development. There are several

ways to improve the simulation scheme presented in Chapter 2,

such as varying recombination rate within the simulated segment

and stricter adherence to reality in the inversion and recombination

models.

Perhaps the most pressing concern, however, is the modelling

of population history. The problem of selecting a realistic model

was not addressed in this thesis. One question is whether the joint

effective population size of the two subpopulations should be con-

sidered a constant or not. Another is selecting a reasonable model

to depict the size changes in the haplotype population of the new

arrangement.

The simulator output was not comprehensively compared to

known inversions in the human genome outside an examination of

how NBS behaves inside and outside inversions in Section 5.1. This

is a shortcoming because few of the inversions in the HapMap data

set are known to resemble the simulator output. There are several

potential reasons for this discrepancy beside the population history

model. First, the simulator does not model the current knowledge

of the effect inversions have on the human genome. In particu-

lar, gametogenesis, or the process of generating gametes, differs

between species, and what is true for Drosophila might not hold

true for humans when inversions and recombinations are in ques-

tion. These differences include the absence of spontaneous meiotic

recombinations in Drosophila males (e.g., [51]). InvCoal does not

attempt to model either organism completely. Second, the author’s

current knowledge in this respect is insufficient to accurately model

inversions. Finally, the measuring and identification of SNPs within

the inversion may have produced some errors in the data set or the

inversions may have affected the haplotype inference process. One

potential future avenue for research would be to identify the source

of this discrepancy between simulator output and HapMap data.

Overall, the experimental results for algorithms NBS-Scan and

Deldec-Scan were promising. Both methods detected several previ-

ously known polymorphisms while providing also an ample number
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of novel candidate regions for experimental validation. On real hu-

man genome data, however, the method of Sindi and Raphael [112]

seemed to outperform NBS-utilizing detection schemes in most cases.

The use of only tag-SNPs notably decreased the power of NBS-

Scan. This is unfortunate for the algorithm’s application in genome-

wide association studies, as the studies genotype only a set of repre-

sentative SNPs across the genome and thus only tag-SNPs would be

available in such studies. Still, if the regions found associated with

the interesting phenotype in a genome-wide association study are

investigated by resequencing or genotyping more SNPs in these re-

gions, structural variants can be discovered. The effect of tag-SNP

algorithms on other algorithms for detecting inversions appears not

to have been previously investigated; this is an interesting topic for

future studies.
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A-2005-1 T. Mielikäinen: Summarization Techniques for Pattern Collections in Data Mining.
201 pp. (Ph.D. Thesis)

A-2005-2 A. Doucet: Advanced Document Description, a Sequential Approach. 161 pp. (Ph.D.
Thesis)

A-2006-1 A. Viljamaa: Specifying Reuse Interfaces for Task-Oriented Framework Specialization.
285 pp. (Ph.D. Thesis)

A-2006-2 S. Tarkoma: Efficient Content-based Routing, Mobility-aware Topologies, and Tempo-
ral Subspace Matching. 198 pp. (Ph.D. Thesis)

A-2006-3 M. Lehtonen: Indexing Heterogeneous XML for Full-Text Search. 185+3 pp. (Ph.D.
Thesis)

A-2006-4 A. Rantanen: Algorithms for 13C Metabolic Flux Analysis. 92+73 pp. (Ph.D. Thesis)

A-2006-5 E. Terzi: Problems and Algorithms for Sequence Segmentations. 141 pp. (Ph.D.
Thesis)

A-2007-1 P. Sarolahti: TCP Performance in Heterogeneous Wireless Networks. (Ph.D. Thesis)

A-2007-2 M. Raento: Exploring privacy for ubiquitous computing: Tools, methods and experi-
ments. (Ph.D. Thesis)

A-2007-3 L. Aunimo: Methods for Answer Extraction in Textual Question Answering. 127+18
pp. (Ph.D. Thesis)

A-2007-4 T. Roos: Statistical and Information-Theoretic Methods for Data Analysis. 82+75 pp.
(Ph.D. Thesis)



A-2007-5 S. Leggio: A Decentralized Session Management Framework for Heterogeneous Ad-Hoc
and Fixed Networks. 230 pp. (Ph.D. Thesis)

A-2007-6 O. Riva: Middleware for Mobile Sensing Applications in Urban Environments. 195 pp.
(Ph.D. Thesis)

A-2007-7 K. Palin: Computational Methods for Locating and Analyzing Conserved Gene Regu-
latory DNA Elements. 130 pp. (Ph.D. Thesis)

A-2008-1 I. Autio: Modeling Efficient Classification as a Process of Confidence Assessment and
Delegation. 212 pp. (Ph.D. Thesis)

A-2008-2 J. Kangasharju: XML Messaging for Mobile Devices. 24+255 pp. (Ph.D. Thesis).

A-2008-3 N. Haiminen: Mining Sequential Data – in Search of Segmental Structures. 60+78 pp.
(Ph.D. Thesis)

A-2008-4 J. Korhonen: IP Mobility in Wireless Operator Networks. (Ph.D. Thesis)

A-2008-5 J.T. Lindgren: Learning nonlinear visual processing from natural images. 100+64 pp.
(Ph.D. Thesis)

A-2009-1 K. Hätönen: Data mining for telecommunications network log analysis. 153 pp. (Ph.D.
Thesis)

A-2009-2 T. Silander: The Most Probable Bayesian Network and Beyond. (Ph.D. Thesis)

A-2009-3 K. Laasonen: Mining Cell Transition Data. 148 pp. (Ph.D. Thesis)

A-2009-4 P. Miettinen: Matrix Decomposition Methods for Data Mining: Computational Com-
plexity and Algorithms. 164+6 pp. (Ph.D. Thesis)

A-2009-5 J. Suomela: Optimisation Problems in Wireless Sensor Networks: Local Algorithms
and Local Graphs. 106+96 pp. (Ph.D. Thesis)
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