
A Review of Methods for

Unconstrained Optimization:

Theory, Implementation and

Testing

Master's Thesis
Seppo Pulkkinen

University of Helsinki
Department of Mathematics and Statistics

November 2008

Tiedekunta/Osasto – Fakultet/Sektion – Faculty
 Faculty of Science

Laitos – Institution – Department
 Department of Mathematics and Statistics

Tekijä – Författare – Author
 Seppo Pulkkinen

Työn nimi – Arbetets titel – Title
 A Review of Methods for Unconstrained Optimization: Theory, Implementation and Testing

Oppiaine – Läroämne – Subject
 Applied mathematics

Työn laji – Arbetets art – Level
 Master's thesis

Aika – Datum – Month and year
 November 2008

Sivumäärä – Sidoantal – Number of pages
 89 + 9 pages

Tiivistelmä – Referat – Abstract

This thesis discusses minimizing real-valued n-dimensional functions.

The unconstrained minimization problem of a function f :ℝnℝ is
formulated as finding a point x* such that

f x*=min

x∈ℝ n
f x .

This thesis surveys the most commonly used methods for
unconstrained minimization. The following methods are covered in this
thesis:

•The Nelder and Mead simplex method
•The steepest descent method
•The Fletcher-Reeves and Polak-Ribière conjugate gradient methods
•The Newton method
•The quasi-Newton BFGS method

This thesis is divided into three parts: theory, implementation and
testing. The theoretical background of each method with the relevant
convergence results is disussed in detail in the first part. Detailed
algorithm listings are also provided.

The second part of this thesis discusses implementation of these
methods. The main contribution of this thesis is the implementation of
GSL++, a C/C++ library for unconstrained minimization. This software
library extends the GNU Scientific Library by providing additional
algorithms and utilities. It also implements a GNU Octave interface for
processing and plotting the results of minimization algorithms.

The third part of this thesis consists of testing the implemented
algorithms. A detailed performance comparison of these algorithms is
provided. Some of the interesting characteristic properties of these
algorithms are also illustrated.

Avainsanat – Nyckelord – Keywords
 unconstrained, optimization, minimization, numerical, GSL, Octave

Säilytyspaikka – Förvaringställe – Where deposited
 Kumpula Science Library

Muita tietoja – Övriga uppgifter – Additional information

Acknowledgements

First and foremost, I wish to thank my supervisor prof. Matti Vuorinen for
his advice, inspiration, and patience during this long project which has at
times been with no clear direction. He was the one who introduced me this
fascinating �eld of research, and without his inspiration, I would never have
started writing my master's thesis on this topic. My second supervisor prof.
Marko Mäkelä also made many helpful suggestions.

At the time of writing this thesis, I was working at the Finnish Me-
teorological Insititute. I wish to thank the people of FMI for sharing their
expertise on the �eld of numerical computing. At FMI I also became familiar
with practical applications of the algorithms studied in this thesis.

As any di�cult project, this one also needed creative breaks in order to
proceed. I thank all my friends and fellow students who have shared those
much-needed moments with me. I also wish to express my deepest gratitude
to my parents for all their support during this project.

Helsinki, November 2008
Seppo Pulkkinen

Contents

1 Introduction 1

1.1 About this thesis . 1

1.2 Problem de�nition and motivation 2

2 Mathematical background 3

2.1 Preliminaries . 3

2.1.1 Notations and basic de�nitions 3

2.1.2 Conditions for minima 5

2.1.3 Method de�nition . 6

2.1.4 Convergence rates . 6

2.1.5 Order of complexity 7

2.1.6 Invariance under transformations 8

2.2 Direct search methods . 8

2.2.1 The Nelder and Mead simplex method 9

2.3 Gradient descent methods . 13

2.3.1 Line search conditions and global convergence 14

2.3.2 The Moré and Thuente line search algorithm 16

2.3.3 The method of steepest descents 24

2.3.4 Conjugate gradient methods 25

2.3.5 The Newton method 30

2.3.6 Quasi-Newton methods 32

3 Implementation 37

3.1 Introduction to GSL and BLAS 37

3.1.1 Minimization algorithms implemented in GSL 37

3.1.2 The GSL minimization interface 39

3.1.3 GSL linear algebra routines 41

3.1.4 Overview of BLAS . 41

3.2 Overview of GSL++ . 42

3.2.1 Proposed algorithms 43

3.2.2 GNU Octave utilities implemented in GSL++ 45

i

ii CONTENTS

4 Numerical results 51
4.1 Overview of testing procedures 51
4.2 Qualitative tests . 52

4.2.1 The choice of starting point 52
4.3 Algorithm-speci�c tests . 54

4.3.1 The Nelder and Mead simplex algorithm 54
4.3.2 The steepest descent algorithm 56
4.3.3 Conjugate gradient algorithms 57
4.3.4 Quasi-Newton BFGS algorithms 59

4.4 Comparison of algorithms . 61
4.4.1 Sensitivity to line search parameters 61
4.4.2 Convergence rates . 63
4.4.3 Function and gradient evaluation counts 69
4.4.4 Scale-dependency . 71
4.4.5 Performance pro�les 73
4.4.6 Asymptotic complexity 81

5 Conclusions and discussion 83

References 85

Appendices 90

A Supplementary algorithms 91
A.1 The backtracking algorithm 91
A.2 Fletcher's line search algorithm 92
A.3 Fletcher's initial step length selection 95
A.4 The modi�ed LDLT factorization 96
A.5 Finite-di�erence approximations 98

Chapter 1

Introduction

1.1 About this thesis

This thesis gives an in-depth review of the classical methods for uncon-
strained minimization of real-valued functions in arbitrary dimensions. The
mathematical theory is discussed and a sample C/C++ framework for im-
plementing and testing these methods is described. An extensive set of
numerical test results is also provided. This thesis covers the Nelder and
Mead simplex method, the steepest descent method, the Fletcher-Reeves
and Polak-Ribière conjugate gradient methods, the Newton method and the
quasi-Newton BFGS method. In addition, four di�erent line search methods
and a modi�cation of the Newton method are covered.

Chapter 2 surveys the theoretical background of the methods reviewed
in this thesis. An outline of the derivation of each method is given with
algorithm listings. The characteristic properties of these methods and their
implications to practical implementations are discussed. The proofs of these
results are omitted due to the pragmatic approach taken in this thesis.

The main contribution of this thesis is the implementation of GSL++,
a C/C++ library for unconstrained minimization in the GNU/Linux envi-
ronment. This library extends the functionality of GSL, a general purpose
numerical software library for scienti�c computing written in C. GSL++
implements several revised versions of the GSL algorithms with corrections
suggested by the author of this thesis. In addition, it implements an inter-
face for invoking these algorithms from GNU Octave, a MATLAB-compatible
numerical software environment. An overview of these software packages is
given in Chapter 3.

Due to the computational nature of solving minimization problems, test-
ing of algorithms is an essential part of this thesis. Di�erent approaches for
evaluating performance of minimization algorithms are presented in Chapter
4, and a comprehensive performance comparison of the reviewed algorithms
is given. Also the speci�c characteristics of each algorithm are analyzed

1

2 CHAPTER 1. INTRODUCTION

experimentally with illustrations. Some of their theoretical results are also
experimentally veri�ed. The existing GSL implementations are compared to
the GSL++ implementations in order to provide a set of reference results.
Finally, Chapter 5 summarizes this thesis and points out some areas of future
research.

The documented source code of the GSL++ library with installation in-
structions is available at http://www.cs.helsinki.fi/u/sjipulkk/GSL++.

1.2 Problem de�nition and motivation

This thesis discusses minimizing vector-valued functions f : Rn → R over
Rn, i.e. �nding a point x∗ ∈ Rn such that

f(x∗) = min
x∈Rn

f(x).

This is an unconstrained minimization problem, with objective function f and
variables x = (x1, . . . , xn). The need to solve such problems arises frequently
in practical applications. Many physical systems involve potential functions
whose minima describe speci�c states of the system. Problems of this type
are also typical in statistical applications, where it is often necessary to �t
functions to given data sets.

The primary goal of this thesis is to review a representative set of mini-
mization methods, implement them and compare their performance. The em-
phasis is on implementing provably convergent methods with well-established
theoretical foundations. Several of these methods are notoriously di�cult to
implement correctly, and thus their implementation details are emphasized.
Some of them also exhibit behaviour that is not completely explained by
their convergence theory. Thus, the numerical experiments carried out in
this thesis are aimed for complementing these theoretical results.

As GSL implements only a basic set of minimization algorithms, the
need to extend it with more advanced algorithms with stronger convergence
theory motivated this thesis. It has yet a simple and powerful interface on
which additional algorithms can be built. GSL neither implements any tools
for analyzing and plotting the results of its algorithms, which motivated
the development of a GNU Octave-based interface for it. Such an interface
greatly facilitates analyzation and visualization of the results of minimization
algorithms.

The choice of open-source software libraries in the GNU/Linux environ-
ment was motivated by the rapid development on this front during recent
years. In particular, GNU Octave has become an increasingly capable non-
commercial replacement of MATLAB. All software libraries and applications
utilized in this thesis fall under the GNU general public license (GPL).

http://www.cs.helsinki.fi/u/sjipulkk/GSL++

Chapter 2

Mathematical background

2.1 Preliminaries

2.1.1 Notations and basic de�nitions

Throughout this thesis we use boldface letters to denote vectors and matrices.
A vector in Rn is always assumed to be a column vector, i.e. an n×1 matrix.
Rows and columns of matrices are denoted by subscripts and superscripts,
respectively. If not stated otherwise, the vector norm ‖·‖ denotes the l2-norm

‖x‖ =

√√√√ n∑
i=1

x2
i .

The inner product · : Rn × Rn → R of two vectors u and v is de�ned as

u · v ≡ uTv =
n∑
i=1

uivi.

The elements of the outer product ⊗ : Rn×Rn → Rn×n of two vectors u and
v are de�ned as

[u⊗ v]ij ≡ [uvT]ij = uivj.

We use the notation f ∈ Ci(Rn,R) for a function f : Rn → R with
continuous ith order partial derivatives with respect to all of its components.
The gradient of a di�erentiable function f : Rn → R is de�ned as

∇f(x) =

∂f
∂x1

(x)
∂f
∂x2

(x)
...

∂f
∂xn

(x)

 .
3

4 CHAPTER 2. MATHEMATICAL BACKGROUND

The Taylor series approximation of a C2-function is one of the corner-
stones of minimization methods. The second-order Taylor series approxima-
tion of f(x + h), where f : Rn → R is a C2-function, is given by

f(x + h) ≈ f(x) +
n∑
i=1

∂f

∂xi
(x)hi +

1

2

n∑
i,j=1

∂2f

∂xi∂xj
(x)hihj. (2.1.1)

The third term in the above Taylor series represents the Hessian matrix. Its
elements are given by

[Hf (x)]ij = ∂2f
∂xi∂xj

(x), i, j = 1, ..., n.

Note that since f is a C2-function, ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

, and thus the Hessian ma-

trix is symmetric. By using the above de�nition of Hessian matrix, expression
(2.1.1) can be given equivalently in matrix form, that is

f(x + h) ≈ f(x) +∇f(x)Th +
1

2
hTHf (x)h. (2.1.2)

Positive de�niteness of a matrix is a very important property in the con-
text of function minimization. We say that a matrix M ∈ Rn×n is positive
de�nite if

xTMx > 0

for all nonzero vectors x ∈ Rn. If only weak inequality holds, we say that
M is positive semide�nite. Note that a positive de�nite matrix is invertible.
In addition, a matrix is positive de�nite if and only if its inverse is positive
de�nite [HJ85, Chap. 7].

The theoretical foundations of most minimization methods are built on
quadratic functions. The form of a quadratic function f : Rn → R we use is

f(x) =
1

2
xTAx− bTx + c, (2.1.3)

where A ∈ Rn×n is symmetric, b ∈ Rn and c ∈ R. By applying the rule of
di�erentiating a product to (2.1.3), we obtain

∇f(x) =
1

2
(A + AT)x− b = Ax− b. (2.1.4)

Several convergence results we will state in this thesis require that the
objective function is Lipschitz-continuous in a given set.

De�nition 2.1.5. Let f : Rn → R, f ∈ C1(D,R), where D ⊂ Rn is an open
set. We say that f is locally Lipschitz-continuous in D, if there exists L ≥ 0
such that

‖f(x)− f(y)‖ ≤ L‖x− y‖
for all x,y ∈ D.

2.1. PRELIMINARIES 5

It follows from the mean-value theorem that every C1-function in a com-
pact setX is also locally Lipschitz-continuous inX with L = supx∈X ‖∇f(x)‖.
Therefore the requirement of Lipschitz-continuity in the convergence results
given in the subsequent chapters is usually implied by additional assumptions
of C1- and C2-continuity.

Convexity is another key property in the theory of minimization methods.
Convex sets and functions are de�ned as follows.

De�nition 2.1.6. [Ber99, De�nition B.1] A set X ⊂ Rn is convex, if for any
x1,x2 ∈ X and for any t ∈ [0, 1], we have

tx1 + (1− t)x2 ∈ X.

De�nition 2.1.7. [Ber99, Proposition B.4] A function f : Rn → R, f ∈
C2(X,R), is convex in a set X ⊂ Rn if X is convex and Hf (x) is positive
semide�nite for all x ∈ X.

We say that a function is strictly convex, if positive semide�niteness is re-
placed with positive de�niteness in the above de�nition.

2.1.2 Conditions for minima

A minimum of a function can be either local or global. Their standard de�-
nitions given in the literature are stated below.

De�nition 2.1.8. A point x∗ ∈ Rn is a local minimizer of f : Rn → R, if
there exists a neighbourhood

U = {x ∈ Rn | ‖x− x∗‖ < ε}

such that f attains its minimum value in U at x∗, i.e.

f(x∗) ≤ f(x) ∀x ∈ U.

In general, a function may have several distinct local minima. In a global
minimum, a function attains a value smaller than any of its other minima.
This is formally stated in the following de�nition.

De�nition 2.1.9. A point x∗ ∈ Rn is a global minimizer of f : Rn → R, if
f attains there its smallest value in Rn, i.e.

f(x∗) ≤ f(x) ∀x ∈ Rn.

In the absence of equalities in de�nitions 2.1.8 and 2.1.9, and with the as-
sumption that x 6= x∗, we say that a minimizer is strict.

6 CHAPTER 2. MATHEMATICAL BACKGROUND

The su�cient second-order conditions for a given point x∗ ∈ Rn to be a
strict local minimizer of a C2-function f : Rn → R are that

∇f(x∗) = 0, xTHf (x
∗)x > 0 ∀x 6= 0. (2.1.10)

In the absence of the second condition, we say that x∗ is a stationary point,
which is not guaranteed to be an extremal point. Also, if positive de�niteness
of the Hessian is replaced by positive semide�niteness, these conditions are
not su�cient but necessary conditions for a local minimizer.

Strict convexity of the objective function in a given convex set implies
that a local minimizer is also its unique global minimizer in this set [Ber99,
Propositions B.4. and B.10.]. For this reason, convexity is often a tacitly
made assumption in theory of function minimization.

2.1.3 Method de�nition

This thesis discusses iterative methods for �nding local minima. These meth-
ods produce a sequence of sets of iterates (Xk), Xk = {xik}mi=1 ⊂ Rn, starting
from a given set of starting points {xi0}mi=1 ⊂ Rn, where m denotes the num-
ber of iterates generated at each step. The most general form of such an
iteration step is given by

xik+1 = xik + sik(Xk, Fk, Gk, Hk), (2.1.11)

where

Xk = {xik}, Fk = {f(xik)}, Gk = {∇f(xik)}, Hk = {Hf (x
i
k)}

and i = 1, . . . ,m. The steps sik always depend at least on the current iterates
Xk and their associated function values Fk but not necessarily on function
derivatives. Also note that they may depend on the previous iteration history,
which is not stated in this de�nition for notational simplicity. As methods of
this type are formulated for �nding local minima, it should also be empha-
sized that the result may depend to a great extent on the choice of starting
points.

2.1.4 Convergence rates

One of the key measures for comparing di�erent minimization methods is
their theoretical rate of convergence. Our emphasis is on the asymptotic
convergence rate in the neighbourhood of a solution. A commonly used
approach is to compare the improvement of each estimate xk+1 over the pre-
vious estimate xk by measuring their distances to the assumed solution. The
following standard de�nitions of convergence rates are given in the literature
[NW99, p. 28-29]. 1

1We assume that xk 6= x∗ for all k ∈ N.

2.1. PRELIMINARIES 7

De�nition 2.1.12. Let (xk), where xk ∈ Rn for all k, be a sequence that
converges to an x∗ ∈ Rn. The convergence rate of the sequence (xk) is

1. linear, if there exists r ∈]0, 1[and k0 ∈ N such that

‖xk+1−x∗‖
‖xk−x∗‖ ≤ r for all k > k0. (2.1.13)

2. superlinear, if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0. (2.1.14)

3. quadratic, if there exists M > 0 and k0 ∈ N such that

‖xk+1−x∗‖
‖xk−x∗‖2 ≤M for all k > k0. (2.1.15)

2.1.5 Order of complexity

For theoretical considerations, it is useful to state the asymptotic upper
bound of a function in terms of another function. In this manner, simpler
functions such as polynomials can be used to divide functions into classes
according to their asymptotic behaviour. The following de�nition is used
throughout this thesis.

De�nition 2.1.16. [Ueb97, p. 185-186] A function f : N → N is of order
g : N→ N, if there exists constants c ∈ R and n0 ∈ N such that

f(n) ≤ cg(n) for all n ≥ n0 (2.1.17)

This is usually expressed by using the Landau-O notation. We say that 2

f = O(g(n)),

if f is of order g. The function classes of particular importance are O(1),
O(n), O(n2) and O(n3), which are referred to as constant, linear, quadratic
and cubic, respectively. In this thesis, the above de�nition refers to the order
of complexity, de�ned as a function of n, where n is the problem dimension.
By the notion of complexity we refer to as computational and space com-
plexity of an algorithm. The former gives a measure of used �oating-point
operations, and the latter measures storage requirements.

2This is a notational convention and not an equation in the strict sense. A more correct,
but less frequently used notation is f ∈ O(g(n)).

8 CHAPTER 2. MATHEMATICAL BACKGROUND

2.1.6 Invariance under transformations

The variables of a minimization problem are often scaled in such a way that
they have di�erent ranges of magnitude. This can have a substantial e�ect
on the rate of convergence. Thus, a highly desired property of a minimiza-
tion method is that, excluding errors due to limited numerical precision, its
iterates remain invariant under transformations of variables.

We denote the original variables by x and the transformed variables by
y. Consider a linear transformation T : Rn → Rn,

y = T (x) = Ax + b (2.1.18)

with a nonsingular matrix A. Its inverse transformation T−1 is given by

x = T−1(y) = A−1(y − b). (2.1.19)

We denote the transformed objective function by f̃ ,

f̃(y) = f(T−1(y)). (2.1.20)

Lemma 2.1.21. [Fle80, p. 46] The gradient and Hessian of a function
f : Rn → R, f ∈ C2(Rn,R), in the coordinates transformed according to
(2.1.18) are given by

∇f(x) = AT∇f̃(y), (2.1.22)

Hf (x)−1 = A−1H̃f (y)−1A−T . (2.1.23)

De�nition 2.1.24. A minimization method is invariant under transforma-
tions of the form (2.1.18), if iteration formula (2.1.11) is equivalent to

yik+1 = yik + sik(Yk, F̃k, G̃k, H̃k), (2.1.25)

where

Yk = {yik}, F̃k = {f̃(yik)}, G̃k = {∇f̃(yik)}, H̃k = {H̃f (y
i
k)}

via a transformation of the form (2.1.18). That is, for all k ∈ N, i = 1, . . . ,m,

yik+1 = T (xik+1) if yik = T (xik).

2.2 Direct search methods

The direct search methods do not require di�erentiability or even continuity
of the objective function. Thus, they are applicable to broadest range of
problems. These methods typically exhibit slower convergence rates than
gradient-descent methods. On the other hand, they tend to be more reliable
on noisy functions or functions with multiple local minima. The only repre-
sentative of this class discussed in this thesis is the Nelder and Mead simplex
method.

2.2. DIRECT SEARCH METHODS 9

2.2.1 The Nelder and Mead simplex method

Despite its age, The Nelder and Mead simplex method [NM65] is still used in
modern numerical software packages such as MATLAB and GSL. The origi-
nal paper by Nelder and Mead does not state the algorithm in a very strict
sense, which has led to numerous di�erent interpretations. The variation
of the algorithm reviewed in this thesis is based on a more formally stated
version by Lagarias et. al. [LRWW98].

A simplex in Rn is a n + 1-element set of n-dimensional vertices with a
nondegenerate set of edges.

De�nition 2.2.1. A simplex S ⊂ Rn is a set of n+1 vertices, {xi}n+1
i=1 ⊂ Rn,

connected by edges

E = (x2 − x1,x3 − x1, . . . ,xn+1 − x1) (2.2.2)

that form a basis of Rn, i.e. span(E) = Rn.

The Nelder and Mead simplex algorithm applied to a function f : Rn → R
maintains an ordered set of simplex vertices (xk1, . . . ,x

k
n+1), where k denotes

the kth iteration step. The ordering of simplex vertices is 3

f(x1) ≤ f(x2) ≤ · · · ≤ f(xn+1). (2.2.3)

We refer the vertex x1 with the lowest function value to as the lowest vertex.
Likewise, we refer the vertex with the highest function value to as the highest
vertex.

At the beginning of each iteration, the centroid point

x̄ =
1

n

n∑
i=1

xi (2.2.4)

is computed for all subsequent simplex operations. Each step following the
computation of the centroid point computes a trial point. Each iteration has
two possible outcomes: 1. one of the computed trial points with a lower
function value than the highest vertex is accepted and the highest vertex is
replaced with it, or 2. a shrink operation is performed.

The Nelder and Mead simplex algorithm uses four di�erent trial points.
These trial points with their associated scalar parameters are given in the
following de�nition. They are also illustrated in Figure 1.

De�nition 2.2.5. Trial points of the Nelder and Mead simplex algorithm

Re�ection(ρ > 0) : xr = x̄ + ρ(x̄− xn+1) (2.2.6)

Expansion(χ > max{1, ρ}) : xe = x̄ + χ(xr − x̄) (2.2.7)

Outside contraction(0 < γ < 1) : xoc = x̄ + γ(xr − x̄) (2.2.8)

Inside contraction(0 < γ < 1) : xic = x̄− γ(x̄− xn+1) (2.2.9)

3We omit the superscript k for notational convenience.

10 CHAPTER 2. MATHEMATICAL BACKGROUND

x3

x1

x2

x̄

xr

x3

xr

x̄

xe

x1

x2

re�ection expansion
x3

xr

x̄

x2

xoc
x1

x3

x̄

x2

xic

x1

outside contraction inside contraction

x2

x3

x̃2

x̃3

x1

shrink

Figure 1: The operations performed on a simplex in R2.

2.2. DIRECT SEARCH METHODS 11

If none of the trial points yield improvement, a shrink operation is performed.

De�nition 2.2.10. A shrink operation transforms the simplex vertices {xi}n+1
i=2

according to
x̃i = x1 + σ(xi − x1), 0 < σ < 1. (2.2.11)

A formal statement of the Nelder and Mead simplex algorithm with the
heuristic rules for modifying the simplex is given in Algorithm 1. The ratio-
nale of this algorithm is that successive decreases in function values at the
simplex vertices eventually lead to convergence to a minimizer. However,
its convergence has been established only in low dimensions [LRWW98], and
there exists counterexamples showing where it instead converges to a non-
stationary point [McK98].

Stopping criteria

Since the simplex method is based on comparison of function values, it makes
sense to use the stopping criterion

|f(xn+1)− f(x1)| < ε,

which also was the original stopping criterion suggested by Nelder and Mead
[NM65]. Another stopping criterion is to test V (Sk) < ε, where V (Sk) is the
simplex volume [LRWW98, p. 6]

V (Sk) =
|det(Ek)|

n!
. (2.2.12)

The choice of initial simplex

A practical choice of the initial simplex vertices is 4

x0
i+1 = x0

1 + λiei, i = 1, . . . , n, (2.2.13)

where x0
1 denotes the given starting point x0 and ei denotes a unit vector

along the ith coordinate axis. The parameters λi are supplied by user. This
choice simpli�es computation of the initial simplex volume, since the edge
matrix E0 in formula (2.2.12) reduces to a diagonal matrix. Consequently,
formula (2.2.12) then reduces to

V (S0) =
1

n!

n+1∏
i=2

‖xi − x1‖

which requires only O(n) operations.

4The vertices of the initial simplex are not assumed to be ordered.

12 CHAPTER 2. MATHEMATICAL BACKGROUND

Algorithm 1: The Nelder and Mead simplex algorithm, one iteration.

Order simplex vertices according to (2.2.3). /* 1. Order */1

Compute x̄ from (2.2.4).2

Compute xr from (2.2.6). /* 2. Reflect */3

if f(x1) ≤ f(xr) < f(xn) then4

xn+1 ← xr5

Terminate this iteration step.6

if f(xr) < f(x1) then /* 3. Expand */7

Compute xe from (2.2.7).8

if f(xe) < f(xr) then9

xn+1 ← xe10

else11

xn+1 ← xr12

Terminate this iteration step.13

/* 4. Contract */

if f(xr) ≥ f(xn) then14

if f(xn) ≤ f(xr) < f(xn+1) then /* 4a. Contract outside */15

Compute xoc from (2.2.8).16

if f(xoc) ≤ f(xr) then17

xn+1 ← xoc18

Terminate this iteration step.19

else20

Go to step 5.21

if f(xr) ≥ f(xn+1) then /* 4b. Contract inside */22

Compute xic from (2.2.9).23

if f(xic) < f(xn+1) then24

xn+1 ← xic25

Terminate this iteration step.26

else27

Go to step 5.28

Apply (2.2.11) to simplex vertices. /* 5. Shrink */29

2.3. GRADIENT DESCENT METHODS 13

Properties of the Nelder and Mead algorithm

Lagarias et. al. proved formally several properties of the Nelder and Mead
algorithm. Firstly, they state that the Nelder and Mead simplex algorithm
cannot produce a degenerate simplex, provided that the initial simplex is
nondegenerate [LRWW98, Lemma 3.1].

The following result relaxes the requirement of expensive recomputation
of the simplex volume at each iteration, provided that the initial simplex
volume is known.

Theorem 2.2.14. [LRWW98, Lemma 3.1.] Let S be a simplex de�ned by
2.2.1. Suppose that Algorithm 1 is applied to S. The volume of the modi�ed
simplex S ′ is given by{

V (S ′) = |τ |V (S), following a nonshrink step
V (S ′) = σnV (S), following a shrink step,

where τ is given by

τ = ρ, re�ection τ = ρχ, expansion
τ = ργ, outside contraction τ = −γ, inside contraction.

The Nelder and Mead simplex method is also invariant under linear trans-
formations of the form (2.1.18). Lagarias et. al. essentially proved the follow-
ing result. Provided that the initial simplex S0 is also transformed according
to (2.1.18), this result holds for the entire sequence of generated simplices.

Theorem 2.2.15. [LRWW98, Lemma 3.2.] Suppose that the simplices Sk+1 =
{xk+1

i }n+1
i=1 and S̃k+1 = {yk+1

i }n+1
i=1 are obtained by applying Algorithm 1 to

simplices Sk = {xki }n+1
i=1 and S̃k = {yki }n+1

i=1 , respectively. If

yki = Axki + b ∀i = 1, . . . , n+ 1,

then
yk+1
i = Axk+1

i + b ∀i = 1, . . . , n+ 1.

2.3 Gradient descent methods

For the rest of the theoretical part of this thesis we discuss minimization
methods that use function derivatives and require the objective function to
strictly decrease each iteration, i.e. f(xk+1) < f(xk) for all k. The general
iteration formula for this class of methods is given by

xk+1 = xk + αkdk, (2.3.1)

where dk denotes the given search direction and αk denotes the step length.

14 CHAPTER 2. MATHEMATICAL BACKGROUND

The step lengths αk are obtained by one-dimensional line minimization.
Minimizing the objective function along the search direction is formulated as
�nding a step length αk such that

αk = arg min
α>0

f(xk + αdk), (2.3.2)

where dk is a descent direction, i.e.

d

dαk
f(xk + αkdk)|αk=0 < 0. (2.3.3)

The next iterate xk+1 is assumed to be a local minimizer along the search
direction when 5

d
dαk

f(xk + αkdk) = ∇f(xk + αkdk)
Tdk

= ∇f(xk+1)Tdk = 0.
(2.3.4)

The following stopping criteria for gradient descent methods have been
suggested in the literature:

‖∇f(xk)‖ < ε, ‖xk+1 − xk‖ < ε, f(xk)− f(xk+1) < ε.

Testing the gradient norm follows from conditions (2.1.10), and it is the most
commonly used stopping criterion with these methods.

2.3.1 Line search conditions and global convergence

From the practical point of view, an exact line minimization is too expen-
sive, and a tradeo� between performance and accuracy is usually done by
employing some sort of inexact line search. Based on the Wolfe conditions
[NW99, p. 39], a rigorous mathematical framework with strong convergence
results has been developed. In what follows, we will simplify the notation by
de�ning the objective function along the current search direction as

φ(α) ≡ f(xk + αdk). (2.3.5)

We also assume that{
f ∈ C1(L,R)
f is bounded from below in L, (2.3.6)

where L = {xk + αdk | α ≥ 0} is the search half-line extending from xk.
The strong Wolfe conditions for the step lengths αk are stated as

φ(αk) ≤ φ(0) + µαkφ
′
(0) (2.3.7)

|φ′(αk)| ≤ η|φ′(0)|, (2.3.8)

5Line search procedures do not typically enforce second-order conditions, and in general,
they only guarantee convergence of the multidimensional algorithm to a stationary point.

2.3. GRADIENT DESCENT METHODS 15

where 0 < µ < 1
2
and µ < η < 1. The �rst condition guarantees su�cient

decrease of the objective function, and the second condition restricts the
step length to the neighbourhood of a minimizer. Assuming (2.3.6), it can
be shown that there always exists a step length interval I =]αl, αu[such that
any α ∈ I satis�es conditions (2.3.7) and (2.3.8) [DS83, Theorem 6.3.2]. A
step length interval satisfying these conditions is illustrated in Figure 2.

line of sufficient decrease

admissible interval αk

−ηφ′(0)ηφ′(0)
φ(0) + µαkφ

′(0)

desired slope (φ′(αk))

φ(αk)

Figure 2: A step length interval satisfying the strong Wolfe conditions.

In some cases, condition (2.3.8) is replaced with a weaker condition

φ
′
(αk) ≥ ηφ

′
(0). (2.3.9)

A line search satisfying condition (2.3.8) approaches an exact line search
as η → 0. The weaker condition does not obey this limit, since φ′ is not
restricted from the right-hand side. Also note that condition (2.3.8) implies
condition (2.3.9). One can also show that the Wolfe conditions are scale-
invariant [NW99].

The cosine of the angle between the search directions dk and the negative
gradient directions −∇f(xk), that is

cos θk =
−∇f(xk)

Tdk
‖∇f(xk)‖‖dk‖

(2.3.10)

is a fundamental concept in the convergence theory of gradient descent meth-
ods. A su�cient condition for convergence of a subsequence of (xk) to a sta-
tionary point, and thus the existence of an iterate that satis�es the stopping
criterion ‖∇f(xk)‖ < ε, is that a subsequence of (cos θk) is bounded away
from 90◦. This ensures that the iteration does not stagnate on a contour
line. Based on the earlier results due to Wolfe [Wol69], [Wol71], Dennis and
Schnabel essentially give the following result.

16 CHAPTER 2. MATHEMATICAL BACKGROUND

Theorem 2.3.11. [DS83, Theorem 6.3.3] Consider a sequence (xk) produced
by an iteration of the form (2.3.1) with step lengths αk that satisfy conditions
(2.3.7) and (2.3.9). Suppose that f : Rn → R satis�es the assumptions

f ∈ C1(D,R)
f is bounded from below in D
∇f is Lipschitz-continuous in D,

(2.3.12)

where D = {x ∈ Rn|f(x) < f(x0)} and x0 is the starting point of the
iteration. If

lim sup
k→∞

cos θk > 0, (2.3.13)

then
lim inf
k→∞

‖∇f(xk)‖ = 0.

This result states very general conditions for convergence of gradient de-
scent methods, and thus it is a global convergence result. However, these
conditions do not give any guarantee about the actual rate of convergence,
which is covered by the local convergence theory. It should be also empha-
sized that this result only guarantees convergence to a stationary point.

2.3.2 The Moré and Thuente line search algorithm

The Moré and Thuente algorithm [MT94] is implemented in several numer-
ical software packages such as Mathematica [Wol03] and OPT++ [Mez94].
Within a �nite number of iterations, this algorithm generates step lengths
αk that satisfy conditions (2.3.7) and (2.3.8). In addition, conditions for
convergence to an α∗ such that φ′(α∗) = 0 are given in [MT94]. 6

For the statement of this algorithm, we de�ne the auxiliary function

ψ(α) = φ(α)− φ(0)− µαφ′(0)

and the set of admissible step lengths

T (µ) = {α ∈ R | α ∈ Ts(µ), α ∈ Tc(µ)},
where

Ts(µ) = {α > 0 | φ(α) ≤ φ(0) + µαφ′(0)},
Tc(η) = {α > 0 | |φ′(α)| ≤ η|φ′(0)|}

denote the sets of step lengths satisfying conditions (2.3.7) and (2.3.8), re-
spectively. We also introduce the notation

T ′(µ, η) = {α > 0 | α ∈ Ts(µ), α ∈ Tc(η)}
for the case µ 6= η. Note that T (µ) ⊆ T ′(µ, η) if µ ≤ η. An outline of the
Moré and Thuente algorithm is given in Algorithm 2.

6The step length bounds αmin and αmax introduced in [MT94] are omitted in this
description. In what follows, we assume that that αmin = 0 and αmax =∞.

2.3. GRADIENT DESCENT METHODS 17

Algorithm 2: Outline of the Moré and Thuente line search algorithm.

Choose the parameters µ, η ∈]0, 1[.1

I0 ← [0,∞].2

for k = 0, 1, . . . do3

Terminate if αkt ∈ T ′(µ, η).4

Choose αk+1
t ∈]αkl , α

k
u[by interpolating ψ (S1) or φ (S2).5

If ψ(αkt) ≤ 0 and φ′(αkt) > 0, switch to S2.6

Generate Ik+1 by using Algorithm 3 (S1) or Algorithm 4 (S2).7

This algorithm generates a sequence of intervals Ik ≡ [αkl , α
k
u] and a se-

quence of trial steps αkt such that Ik+1 ⊆ Ik and αkt ∈ Ik for all k in two
stages. The �rst stage is aimed at �nding a step length α∗ ∈ T (µ) such that
ψ′(α∗) = 0. If

ψ(αkt) ≤ 0, φ′(αkt) > 0 (2.3.14)

holds for some iterate αkt , the algorithm starts its second stage using αkt
and Ik. At this stage, the algorithm attempts to �nd a step length α∗ ∈
T ′(µ, η) ∩ Ik such that φ′(α∗) = 0.

The bracketing algorithms for updating the intervals Ik are given in Algo-
rithms 3 and 4 that correspond to stages 1 and 2, respectively. The secondary
bracketing algorithm is otherwise identical to the �rst one, but with ψ re-
placed by φ. This algorithm is also illustrated in Figure 3. Note that we do
not assume that αkl and α

k
u are ordered, and precisely speaking, Ik ≡ [αkl , α

k
u]

denotes an interval with unordered endpoints. 7

Algorithm 3: The Moré and Thuente bracketing algorithm (S1).

if ψ(αt) > ψ(αl) then α+
l ← αl; α

+
u ← αt /* Case 1. */1

else2

if ψ′(αt)(αt − αl) < 0 then α+
l ← αt; α

+
u ← αu /* Case 2. */3

if ψ′(αt)(αt − αl) > 0 then α+
l ← αt; α

+
u ← αl /* Case 3. */4

Algorithm 4: The Moré and Thuente bracketing algorithm (S2).

if φ(αt) > φ(αl) then α+
l ← αl; α

+
u ← αt /* Case 1. */1

else2

if φ′(αt)(αt − αl) < 0 then α+
l ← αt; α

+
u ← αu /* Case 2. */3

if φ′(αt)(αt − αl) > 0 then α+
l ← αt; α

+
u ← αl /* Case 3. */4

7We omit superscripts k and use + to denote k + 1 for notational convenience.

18 CHAPTER 2. MATHEMATICAL BACKGROUND

Case 1.αt

αl

αu

I

α+
l α+

uI+

φ(αt) > φ(αl)

Case 2.

αu

αt

αl

α+
u

I

α+
l I+

φ′(αt)(αt − αl) < 0

φ(αt) ≤ φ(αl)

Case 3.

αu

αl

αt

I

α+
lα+

u I+

φ(αt) ≤ φ(αl)

φ′(αt)(αt − αl) > 0

Figure 3: Bracketing steps of the Moré and Thuente algorithm.

2.3. GRADIENT DESCENT METHODS 19

Convergence results

Given an interval I satisfying the conditions stated below, the Moré and
Thuente algorithm is motivated by the existence of a step length α∗ ∈ I such
that ψ′(α∗) = 0 and α∗ ∈ T (µ). A similar result can also be established for
φ. In particular, it can be shown that Algorithms 3 and 4 preserve conditions
(2.3.16) and (2.3.18), respectively if I0 satis�es them [MT94, p. 291].

Theorem 2.3.15. [MT94, Theorem 2.1] Let µ ∈]0, 1[and let I be a closed
interval with endpoints αl and αu. If the endpoints satisfy

ψ(αl) ≤ ψ(αu), ψ(αl) ≤ 0, ψ′(αl)(αu − αl) < 0, (2.3.16)

then there exists an α∗ ∈ I such that ψ(α∗) ≤ ψ(αl) and ψ′(α∗) = 0. In
particular, α∗ ∈ T (µ) ∩ I.

Theorem 2.3.17. [MT94, Theorem 3.2] Let I be a closed interval with end-
points αl and αu. If the endpoints satisfy

φ(αl) ≤ φ(αu), φ′(αl)(αu − αl) < 0, (2.3.18)

then there exists an α∗ ∈ I such that φ(α∗) ≤ φ(αl) and φ
′(α∗) = 0.

The emphasis of the convergence results in [MT94] is on showing that with
properly safeguarded trial steps, the lengths of the intervals Ik converge to
zero when Algorithms 3 or 4 are successively applied to them. Consequently,

lim
k→∞

Ik = {α∗},

where α∗ satis�es the conditions stated in Theorem 2.3.15 or 2.3.17, respec-
tively. 8

For the following, we introduce the notations Algorithm 2/3 and 2/4
for stages 1. and 2., respectively. Moré and Thuente essentially proved
the following result that motivates switching between bracketing algorithms
when an iterate αkt satis�es conditions (2.3.14).

Theorem 2.3.19. [MT94, Theorem 3.1] Let µ, η ∈]0, 1[. Let (αkt) and (Ik),
where Ik ≡ [αkl , α

k
u] be the sequences produced by Algorithm 2/3. If αkt is the

�rst iterate that satis�es

ψ(αkt) ≤ 0, φ′(αkt) > 0 (2.3.20)

then αkl < αku. Moreover, the interval

I∗ ≡ [αkl , α
k
t]

contains an α∗ that satis�es (2.3.7) and φ′(α∗) = 0, and thus α∗ ∈ T ′(µ, η).
Moreover, any α ∈ I∗ with φ(α) ≤ φ(αkt) also satis�es (2.3.7).

8The term safeguarding refers to the rules that force the trial steps αk+1
t to lie within

the intervals Ik such that they are su�ciently far from the endpoints.

20 CHAPTER 2. MATHEMATICAL BACKGROUND

Remark 2.3.21. If conditions (2.3.14) hold for an iterate αkt , Case 2. in Algo-
rithm 4 cannot hold because φ′(αkt) > 0. Hence, the interval Ik+1 generated
by Algorithm 4 from the interval Ik is the interval I

∗ of Theorem 2.3.19.

Remarks 2.3.22. Conditions (2.3.18) are satis�ed by the interval I∗ assum-
ing that conditions (2.3.16) are satis�ed by the interval Ik. The condition
ψ(αkl) ≤ ψ(αku) implies that φ(αkl) < φ(αku), since φ

′(0) < 0 and αkl < αku.
Moreover, the third condition in (2.3.16) with the assumption αkl < αku is
equivalent to φ′(αkl) < µφ′(0), which implies that φ′(αkl) < 0, and thus
φ′(αkl)(α

k
u − αkl) < 0. These conditions are also satis�ed by Ik+1 ≡ I∗, be-

cause Algorithm 4 preserves them.

The main convergence result in [MT94] is stated below. This result guar-
antees convergence of the Moré and Thuente line search to an α∗ ∈ T ′(µ, η)
such that φ′(α∗) = 0.

Theorem 2.3.23. [MT94, Theorem 3.3] Let µ, η ∈]0, 1[. If Algorithm 2/3
generates an interval Ik ≡ [αkl , α

k
u] and an iterate αkt satisfying conditions

(2.3.14), then Algorithm 2/4 started from Ik and αkt terminates at an αkt ∈
T ′(µ, η), and the sequence (αkt) converges to a limit α∗ such that φ′(α∗) = 0.

Remark 2.3.24. Conditions (2.3.14) are in some cases not satis�ed by any
iterate. However, �nite termination to an α∗ ∈ T (µ) is guaranteed under
more general conditions [MT94, Theorem 2.3]. This is the desired result
when µ ≤ η, and convergence to an α∗ such that φ′(α∗) = 0 is not required.

Trial step selection

In this section we describe the rules for obtaining a new trial point α+
t by

using the previous trial point αt and the current interval I with endpoints
αl and αu [MT94, p. 298-300]. In what follows, we will use f to denote the
interpolated function (ψ or φ) and f ′ to denote its derivative. We introduce
the following notation for the values of f and its derivative at the endpoints:{

fl ≡ f(αl), ft ≡ f(αt), fu ≡ f(αu)
f ′l ≡ f ′(αl), f ′t ≡ f ′(αt), f ′u ≡ f ′(αu)

In order to approximately locate the minimizer of f along the search direc-
tion, the trial step selection employs four types of interpolation polynomials:

1. a cubic polynomial that interpolates fl, ft, f
′
l and f

′
t

2. a quadratic polynomial that interpolates fl, ft and f
′
l

3. a quadratic polynomial that interpolates f ′l and f
′
t

4. a cubic polynomial that interpolates ft, fu, f
′
t and f

′
u

We denote the minimizers of these interpolation polynomials by αc, αq, αs
and αe, respectively. The trial step selection of the Moré and Thuente algo-
rithm is divided into four di�erent cases:

2.3. GRADIENT DESCENT METHODS 21

Case 1. : ft > fl. Compute αc and αq and set

α+
t =

{
αc, if |αc − αl| < |αq − αl|
1
2
(αq + αc), otherwise.

Case 2. : ft ≤ fl and f
′
tf
′
l < 0. Compute αc and αs and set

α+
t =

{
αc, if |αc − αt| ≥ |αs − αt|
αs, otherwise.

Case 3. : ft ≤ fl, f
′
tf
′
l ≥ 0 and |f ′t | ≤ |f ′l |. Compute αc and αs and set

α+
t =

{
αc, if |αc − αt| < |αs − αt|
αs, otherwise.

Restrict α+
t to the interval with endpoints αt and αu so that α+

t is
su�ciently far from αu. This is done by setting

α+
t =

{
min{αt + δ(αu − αt), α+

t }, if αt > αl,
max{αt + δ(αu − αt), α+

t }, otherwise,

where δ = 0.66.

Case 4. : ft ≤ fl, f
′
tf
′
l ≥ 0 and |f ′t | > |f ′l |. Compute αe and and set α+

t = αe.

Choosing a trial step between αl and αt is referred to as interpolation.
Cases 1. and 2., in which a local minimizer exists within this interval, fall
into this category. On the other hand, choosing a trial value α+

t that lies
between αt and αu is referred to as extrapolation [MT94]. Cases 3. and 4. fall
into this category. In these cases, the algorithm extends the trial step length,
because their conditions do not guarantee the existence of a minimizer. The
use of these polynomials is illustrated in Figures 4-5.

Polynomial interpolation formulas

The trial step selection described in [MT94] is based on Fletcher's line search
algorithm that employs a quadratic polynomial of the form

q(α) = c2α
2 + c1α + c0

to approximate φ [Fle80, p. 27]. As in the previous section, we denote the
interpolated function (φ or ψ) by f .

Fletcher describes a formula that can be used for interpolating f(a), f ′(a)
and f(b) within the given interval [a, b]. Requiring that q(a) = f(a), q′(a) =
f ′(a) and q(b) = f(b) gives rise to the linear system of equations a2 a 1

2a 1 0
b2 b 1

 c2

c1

c0

 =

 f(a)
f ′(a)
f(b)

 .

22 CHAPTER 2. MATHEMATICAL BACKGROUND

I

I

αu

αs

αl

αc
αt

Case 2.

φt ≤ φl

φ′tφ
′
l < 0

αt

αc
αq

αu

αl

Case 1.

φt > φl

Figure 4: The Moré and Thuente interpolation polynomials: Case 1. above
and Case 2. below.

2.3. GRADIENT DESCENT METHODS 23

I

I

Case 4.

φt ≤ φl

φ′tφ
′
l ≥ 0

|φ′t| > |φ′l|

αt

αl
αu

αc

αt

αl

αc

αs

Case 3.

φt ≤ φl

φ′tφ
′
l ≥ 0

|φ′t| ≤ |φ′l|

αu

Figure 5: The Moré and Thuente extrapolation polynomials: Case 3. above
and Case 4. below.

24 CHAPTER 2. MATHEMATICAL BACKGROUND

By substituting the solved coe�cients to the expression

αq = − c1

2c2

(2.3.25)

that minimizes q, a straightforward calculation yields

αq = a+
(b− a)2f ′(a)

2[f(a)− f(b) + (b− a)f ′(a)]
. (2.3.26)

Fletcher also describes a formula that can be used for interpolating f ′(a)
and f ′(b). By requiring that q′(a) = f ′(a) and q′(b) = f ′(b), we obtain 9[

2a 1
2b 1

] [
c2

c1

]
=

[
f ′(a)
f ′(b)

]
from which the coe�cients, and thus the minimizer

αs = b+
(b− a)f ′(b)

f ′(a)− f ′(b)
(2.3.27)

for the polynomial q is obtained by substituting the solved coe�cients to
equation (2.3.25).

The minimizer of the cubic polynomial that interpolates f(a), f ′(a), f(b)
and f ′(b) within the given interval]a, b] is given by

αc = b− f ′(b) + w − z
f ′(b)− f ′(a) + 2w

(b− a),

where

z =
3(f(a)− f(b))

b− a
+ f ′(a) + f ′(b)

and
w =

√
z2 − f ′(a)f ′(b).

This formula is described in [Ber99, p. 742-744].

2.3.3 The method of steepest descents

The method of steepest descents by Cauchy [Cau48] is based on the property
that f decreases most rapidly along the direction of negative gradient. This
gives rise to the iteration formula

xk+1 = xk − αk∇f(xk),

where αk is obtained by line minimization.
The steepest descent method is very sensitive to scaling of variables. Lu-

enberger gives the following result for linear convergence rate of objective
function values.

9The coe�cient c0 is left undetermined, since we are only interested in the location of
the minimizer, and not the actual minimum value.

2.3. GRADIENT DESCENT METHODS 25

Theorem 2.3.28. [Lue84, p. 218-219] Suppose that f : Rn → R is a strictly
convex quadratic function of the form (2.1.3) with a minimizer x∗. Then

‖f(xk+1)− f(x∗)‖
‖f(xk)− f(x∗)‖

≤
(
κ− 1

κ+ 1

)2

, (2.3.29)

where κ = λmax

λmin
is the condition number of matrix A with largest eigenvalue

λmax and smallest eigenvalue λmin.

Luenberger also gives an extension of Theorem 2.3.28 for nonlinear func-
tions [Lue84, p. 342-343]. Although these results account for the worst case,
they show that the achievable convergece rates can be severely limited. To
justify this claim, Akaike [Aka59, p. 12] gives examples in which this worst-
case behaviour occurs on quadratic functions. On the other hand, steepest
descent directions trivially satisfy condition (2.3.13), which guarantees global
convergence.

2.3.4 Conjugate gradient methods

The conjugate gradient methods were originally developed by Hestenes and
Stiefel [HS52] for solving linear equations. The development of nonlinear
conjugate gradient methods, which is largely based on the theory of their
linear counterparts, was pioneered by Fletcher and Reeves [FR64] and later
complemented by Polak and Ribière [PR69].

The linear conjugate gradient methods are aimed for solving linear sys-
tems of the form Ax = b, or equivalently locating the minimizer x∗ of a
strictly convex quadratic function of the form (2.1.3) by solving the equation

r ≡ b−Ax∗ ≡ −∇f(x∗) = 0, (2.3.30)

where r is the residual of the linear system.
The primary motivation of these methods is that the vector space Rn can

be spanned by n linearly independent search directions dk, i.e.

Rn = span{d0,d1, . . . ,dn−1}.

If the di�erence vector between the starting point and the minimizer can be
expressed as a linear combination of n linearly independent search directions
such that

x∗ − x0 =
n−1∑
i=0

δidi (2.3.31)

for a set of scalars {δi}n−1
i=0 , the choice of search directions is optimal in that

sense.

26 CHAPTER 2. MATHEMATICAL BACKGROUND

The key property that characterizes the linear conjugate gradient methods
is that the search directions dk are A-conjugated, that is

dTi Adj = 0 ∀i 6= j. (2.3.32)

This property makes a construction of the form (2.3.31) possible, since A-
conjugated search directions are linearly independent [Lue84, p. 239].

The formulas for the iterates xk and residual vectors rk are given by

xk+1 = xk + αkdk (2.3.33)

rk+1 = rk + αkAdk ≡ b−Axk+1, (2.3.34)

where αk denotes the step length and the latter formula is obtained from the
former by premultiplying by A and using the de�nition of residual.

By premultiplying equation (2.3.34) by dTk we obtain

dTk rk+1 = dTk rk + αkd
T
kAdk

The minimizing step length αk for a convex quadratic function is solved from
the above equation by using identities (2.3.4) and (2.3.30), which yields

αk = − dTk rk
dTkAdk

. (2.3.35)

The linear conjugate gradient method generates a set of search directions
{dk} and a set of residual vectors {rk} that satisfy

dTi Adj = 0
rTi rj = 0
dTi rj = 0

∀i < j (2.3.36)

and span{dk} = span{rk} [Lue84, p. 241-246]. In particular, it follows from
this construction that the conjugate gradient method solves an n-dimensional
quadratic problem in at most n steps, since span{ri}n−1

i=0 = Rn. These sets
of vectors are constructed by applying (2.3.33), (2.3.34), (2.3.35) and the
iteration formula for dk, which we will derive next. Instead of providing a
formal proof by induction, we describe an outline of this construction.

The iteration formula for dk is derived via Gram-Schmidt conjugation
[Ber99, p. 134-138]. Assuming (2.3.36) for the residuals {ri}k+1

i=0 , they are
orthogonal and thus linearly independent. Each new search direction is pro-
duced as a linear combination of the residual rk+1 computed from (2.3.34)
and the previous search directions {di}ki=0, that is

dk+1 = rk+1 +
k∑
i=0

γkidi, (2.3.37)

2.3. GRADIENT DESCENT METHODS 27

where d0 = r0. Postmultiplying the above equation by Adj, where j < k+1,
yields

γk,j = −
rTk+1Adj

dTj Adj
(2.3.38)

with the assumption that the set of previously generated search directions
{di}ki=0 is A-conjugated. On the other hand, assuming orthogonality of the
vector set {ri}k+1

i=0 , premultiplying equation (2.3.34) by rj+1, where j ≤ k,
yields

rTj+1rk+1 = rTj+1rk + αkr
T
j+1Adk

⇐⇒ rTj+1Adk = 1
αk

(−rTj+1rk + rTj+1rk+1)

which is equivalent to

rTj+1Adk =

{
1
αk

rTk+1rk+1, j = k

0, otherwise.

By applying the above identity to equation (2.3.38) and substituting αk from
equation (2.3.35), we have

γk+1 =
rTk+1rk+1

dTk rk
,

where γk+1 ≡ γk,k. Finally, by premultiplying equation (2.3.37) by rTk+1 and
applying the assumed orthogonality condition dirj = 0 for all i < j, we
obtain the identity rTk+1dk+1 = rTk+1rk+1, and thus

γk+1 =
rTk+1rk+1

rTk rk
. (2.3.39)

Consequently, equation (2.3.37) then reduces to the form

dk+1 = rk+1 + γk+1dk. (2.3.40)

Two modi�cations are needed in order to apply this method to nonlinear
functions. Firstly, formula (2.3.35) is replaced by an iterative line search
procedure. Secondly, the residual vectors rk are replaced by negative gradient
vectors which we denote by −gk. Instead of applying (2.3.34), the function
gradients are evaluated at each iterate xk. The Fletcher-Reeves formula
[FR64] is obtained from (2.3.39) with the substitution rk ≡ −gk, that is

γk+1 =
gTk+1gk+1

gTk gk
. (2.3.41)

Polak and Ribière [PR69] later suggested a slightly modi�ed formula

γk+1 =
(gk+1 − gk)

Tgk+1

gTk gk
(2.3.42)

28 CHAPTER 2. MATHEMATICAL BACKGROUND

that generally exhibits faster convergence rates than its predecessor on non-
linear functions. These formulas are equivalent for quadratic functions, since
gTk+1gk = rTk+1rk = 0 by equation (2.3.36).

Periodic restarting is a commonly used strategy to accelerate convergence
of conjugate gradient methods [Pow77]. Resetting the search direction back
to the steepest descent direction −gk every n+ 1 iterations was suggested by
Fletcher and Reeves [FR64]. This gives rise to the modi�cation of formula
(2.3.41), that is

γk+1 =

{
0, k = cn for some c ∈ N
gT

k+1gk+1

gT
k gk

, otherwise.
(2.3.43)

Powell [Pow83] constructed a function on which the Polak-Ribière method
cycles in�nitely with γk < 0. This gives rise to the modi�ed update formula

γk+1 = max{(gk+1 − gk)
Tgk+1

gTk gk
, 0}. (2.3.44)

Outline of implementation

The above derivations of the Fletcher-Reeves and Polak-Ribière conjugate
gradient algorithms with restarting are summarized in Algorithms 5 and 6,
respectively.

Algorithm 5: Fletcher-Reeves conjugate gradient iteration step.

Obtain an αk > 0 such that d
dαk

f(xk + αkdk) ≈ 0.1

gk+1 ← ∇f(xk+1)2

if c = n then γk+1 ← 0; c← 03

else γk+1 ←
gT

k+1gk+1

gT
k gk

/* eq. (2.3.43) */
4

xk+1 ← xk + αkdk /* eq. (2.3.33) */5

dk+1 ← −gk+1 + γk+1dk /* eq. (2.3.40) */6

c← c+ 17

Algorithm 6: Polak-Ribière conjugate gradient iteration step.

Obtain an αk > 0 such that d
dαk

f(xk + αkdk) ≈ 0.1

gk+1 ← ∇f(xk+1)2

γk+1 ← max{ (gk+1−gk)T gk+1

gT
k gk

, 0} /* eq. (2.3.44) */
3

xk+1 ← xk + αkdk /* eq. (2.3.33) */4

dk+1 ← −gk+1 + γk+1dk /* eq. (2.3.40) */5

2.3. GRADIENT DESCENT METHODS 29

Convergence results

Based on the earlier results by Al-Baali [AB85] for the Fletcher-Reeves method,
Gilbert and Nocedal [GN92] established global convergence theory of the
Polak-Ribière method. They essentially proved the following global conver-
gence result.

Theorem 2.3.45. [GN92, Theorems 3.2 and 4.3] Consider a sequence (xk)
generated by Algorithm 5. Suppose the iteration and the objective function
f : Rn → R satisfy the assumptions

The step lengths αk satisfy (2.3.7) and (2.3.8).
Periodic restarting is not used.
f ∈ C1(L,R).
L is bounded.
∇f is Lipschitz-continuous in L.

(2.3.46)

where L = {x ∈ Rn|f(x) ≤ f(x0)} and x0 is the starting point of the itera-
tion. Then

lim inf
k→∞

‖∇f(xk)‖ = 0. (2.3.47)

Furthermore, if the su�cient descent condition

gTk dk ≤ −χ‖gk‖2, χ ∈]0, 1[(2.3.48)

is satis�ed for all k, then (2.3.47) also holds for Algorithm 6.

Remarks 2.3.49. Condition (2.3.48) can be satis�ed by any iterative line
search algorithm that satis�es

lim
i→∞

αi = α∗, φ′(α∗) = 0.

Suppose that such a limit exists. By premultiplying (2.3.40) by gk+1, recalling
the notation gk+1 ≡ −rk+1 ≡ −∇f(xk+1), using the de�nition of φ and taking
the limit i→∞, we obtain

lim
i→∞

gTk+1dk+1 = lim
i→∞

(−‖gk+1‖2 + γk+1g
T
k+1dk)

≡ lim
i→∞

(−‖gk+1‖2 + γk+1φ
′(αi)),

= −‖gk+1‖2

< −χ‖gk+1‖2

since χ ∈]0, 1[and φ′(αi) ≡ d
dαi
f(xk + αidk) = ∇f(xk+1)Tdk. In particular,

there exists an iterate αi that satis�es (2.3.48). Also note that a su�cient
condition for (2.3.48) is that φ′(α∗) ≤ 0.

30 CHAPTER 2. MATHEMATICAL BACKGROUND

Unfortunately, the local convergence properties of nonlinear conjugate
gradient methods remain poorly understood. Among the most important re-
sults is the following result by Cohen [Coh72], which states that the Fletcher-
Reeves and Polak-Ribière conjugate gradient methods with periodic restarts
converge n-step quadratically. This result is however based on the assump-
tion that exact line minimization is used.

Theorem 2.3.50. [Coh72, p. 250-255] Let f : Rn → R, f ∈ C3(Rn,R).
Suppose that there exists constants 0 < m < M <∞ such that Hf satis�es

m‖y‖2 ≤ yTHf (x)y ≤M‖y‖2 for all x,y ∈ Rn.

Then the sequence (xk) produced by Algorithms 5-6 with exact line minimiza-
tion is n-step quadratically convergent, i.e. there exists a constant C > 0 such
that

lim sup
k→∞

‖xpk+n − x∗‖
‖xpk − x∗‖2

≤ C,

if the iteration is restarted every p steps, where p ≥ n.

2.3.5 The Newton method

The variant of the Newton method for unconstrained minimization is formu-
lated for minimizing the quadratic approximation

f(xk + hk) ≈ f(xk) + hTk∇f(xk) +
1

2
hTkHf (xk)hk (2.3.51)

of a C2-function with respect to hk. For the formulation of this method, we
introduce the auxiliary function F (hk) ≡ f(xk + hk).

Assuming positive de�nite Hessian, the auxiliary function F attains its
minimum value when

∇F (hk) = 0.

By using the quadratic approximation of ∇F , that is

∇F (hk) ≈ ∇f(xk) + Hf (xk)hk, (2.3.52)

we obtain
Hf (xk)hk = −∇f(xk), (2.3.53)

which gives rise to the iteration formula

xk+1 = xk + hk
= xk −Hf (xk)

−1∇f(xk),
(2.3.54)

assuming that Hf (x) is nonsingular, which follows from its assumed positive
de�niteness.

2.3. GRADIENT DESCENT METHODS 31

Although the Newton method can exhibit quadratic convergence rate if
the starting point is chosen su�ciently close to a minimizer [DS83, Theorem
5.2.1], its global convergence is not in general guaranteed. A common remedy
is to use the step hk obtained from (2.3.53) as a search direction and use a
line search method to obtain the step length. This gives rise to a modi�cation
of iteration formula (2.3.54), that is

xk+1 = xk − αkHf (xk)
−1∇f(xk). (2.3.55)

By following the derivation of equation (2.3.4) and assuming positive de�-
niteness of Hf (xk), and consequently positive de�niteness of its inverse, we
obtain

d
dαk

f(xk − αkHf (xk)
−1∇f(xk))|αk=0

= −∇f(xk)
THf (xk)

−1∇f(xk) < 0,

from which the descent property of hk follows. Unfortunately, this strategy
alone is not successful in practice, since positive de�niteness of the Hessian
is not guaranteed without additional measures.

It can also be shown that the Newton method is invariant under linear
transformations of the form (2.1.18) [Fle80, Theorem 3.3.1]. The Newton
iteration (2.3.54) in the transformed variables y = Ax + b is given by

yk+1 = yk − H̃f (yk)
−1∇f̃(yk). (2.3.56)

By substiting equations (2.1.18) and (2.1.23) to (2.3.56), we obtain

yk+1 = Axk + b−AHf (xk)
−1ATA−T∇f(xk)

= A[xk −Hf (xk)
−1∇f(xk)] + b

= Axk+1 + b,

which veri�es the claim, provided that it holds for k = 0. This also holds for
iterations of the form (2.3.55), if the used line search method is invariant.

The Cholesky factorization

The need to solve equations of the form (2.3.53) arises in the Newton method
and its variants. Any symmetric positive de�nite matrix A has a Cholesky
factorization of the form

A = LLT , (2.3.57)

where L is a nonsigular lower-triangular matrix with strictly positive diagonal
elements. By equating the elements in (2.3.57), one can obtain

lii =

√√√√aii −
i−1∑
j=1

l2ij, (2.3.58)

lij =
1

ljj
(aij −

j−1∑
k=1

likljk), i > j. (2.3.59)

32 CHAPTER 2. MATHEMATICAL BACKGROUND

By using this factorization, the solution of a symmetric positive de�nite linear
system Ax = b is split into a pair of triangular systems

Ly = b and LTx = y

that are solved by forward and back substitution. This method for solving
linear systems is numerically more stable and e�cient than the standard
Gaussian elimination. [GMW91, p. 108-112]

2.3.6 Quasi-Newton methods

The class of quasi-Newton methods consists of numerous di�erent methods
based on the modi�ed Newton iteration of the form (2.3.55). Instead of ex-
plicitly computing the Hessian, they maintain a �rst-order approximation of
either the Hessian or its inverse which we denote by Bk and Sk, respectively.
We also introduce the notation

pk ≡ xk+1 − xk ≡ αkhk (2.3.60)

qk ≡ ∇f(xk+1)−∇f(xk), (2.3.61)

where hk = −Hf (xk)
−1∇f(xk) is the Newton step from equation (2.3.54).

By using approximation (2.3.52) and replacing hk with pk, we obtain

∇f(xk + pk)−∇f(xk) ≈ Hf (xk)pk. (2.3.62)

By using the de�nition of qk and assuming that f is quadratic, equation
(2.3.62) reduces to

Hf (xk)pk = qk or pk = Hf (xk)
−1qk. (2.3.63)

The Sherman-Morrison-Woodbury identity [GvL89, p. 51] states that a
rank-k update of a n× n matrix A of the form

Ã = A + UVT , (2.3.64)

where U,V ∈ Rn×k, k ≤ n, has an inverse given by

Ã−1 = A−1 −A−1U(I + VTA−1U)−1VTA−1. (2.3.65)

Via this identity, update formulas for the Hessian and its inverse can be
derived equivalently, and thus they are treated identically in the literature.
In what follows, we therefore formulate the updates for both Bk and Sk in a
parallel fashion.

The Hessian or inverse Hessian approximation is updated by adding a
rank-1 or rank-2 correction matrix such that{

Bk+1 = Bk + Ck

Sk+1 = Sk + Ck.
(2.3.66)

2.3. GRADIENT DESCENT METHODS 33

In analogy with equations (2.3.63), the resulting matrices Bk+1 and Sk+1

are required to satisfy the quasi-Newton condition{
Bk+1pk = qk
pk = Sk+1qk.

(2.3.67)

By using the approximations Bk or Sk from above, iteration step (2.3.55) is
written to the form {

xk+1 = xk − αkB−1
k ∇f(xk)

xk+1 = xk − αkSk∇f(xk).
(2.3.68)

In practice, the former iteration step is computed by solving the equation

Bkdk = −∇f(xk) (2.3.69)

for dk by Cholesky factorization and then applying xk+1 = xk + αkdk.
An additional condition

pTk qk > 0 ∀k ∈ N (2.3.70)

is required, since Bk+1 and Sk+1 in equations (2.3.67) cannot be positive
de�nite if pTk qk ≤ 0. However, this condition is satis�ed if step lengths
satisfying condition (2.3.9) are used [NW99, p. 195].

Derivation of update formulas

Without imposing additional constraints, the solutions to equations (2.3.67)
are not unique. The variational method due to Greenstadt [Gre70] is formu-
lated as seeking a minimal correction matrix that preserves symmetry and
guarantees that Bk+1 or Sk+1 satis�es condition (2.3.67), i.e.

Ck = arg min
C∈Rn×n

‖C‖F,W
s.t. Bk+1pk = qk,

Ck = CT
k

 or

Ck = arg min

C∈Rn×n
‖C‖F,W

s.t. Sk+1qk = pk,
Ck = CT

k

(2.3.71)

where ‖ · ‖F,W denotes the weighted Frobenius norm

‖C‖F,W = Tr(WCWCT). (2.3.72)

The constrained minimization problem (2.3.71) can be solved by the method
of Lagrange multipliers [Gre70, p. 4-5], and it has an unique solution up
to the choice of the symmetric and positive de�nite weighting matrix W.
Greenstadt derived several commonly used update formulas with di�erent
choices of W [Gre70, eq. (2-25)].

34 CHAPTER 2. MATHEMATICAL BACKGROUND

The BFGS formula and the Broyden family

The BFGS formula is generally considered to be the most robust and best per-
forming of the known quasi-Newton update formulas. In particular, Fletcher
emphasizes its comparative robustness with inexact line searches [Fle80, Ta-
ble 3.5.2]. It was discovered by Broyden [Bro70], Fletcher [Fle70], Goldfarb
[Gol70], and Shanno [Sha70]. Goldfarb, for example, derived it by applying
Greenstadt's method. The BFGS update formulas for Hessian and inverse
Hessian approximations are given by [Kel99, p. 71-72] Bk+1 = Bk +

qkqT
k

qT
k pk
− BkpkpT

k Bk

pT
k Bkpk

Sk+1 = (I− pkqT
k

qT
k pk

)Sk(I−
qkpT

k

qT
k pk

) +
pkpT

k

qT
k pk

.
(2.3.73)

These two are equivalent via equation (2.3.65). For example, the BFGS
formula for Bk can be written in the form (2.3.64) for rank-2 formulas,

Bk+1 = Bk +
[

qk/α −Bkpk/β
] [qTk

(Bkpk)
T

]
≡ Bk + UVT , (2.3.74)

where α = qTkpk and β = pTkBkpk. A straightforward but laborious com-
putation by applying formula (2.3.65) gives the BFGS update for Sk by
substituting Sk+1 ≡ B−1

k+1 and Sk ≡ B−1
k .

The BFGS formula belongs to a more general class of formulas that is
referred to as the Broyden family in the literature [Fle80, p. 48-54]. The
generic form of a Broyden family update formula for Bk is given by

Bk+1 = Bk +
qkq

T
k

qTkpk
− Bkpkp

T
kBk

pTkBkpk
+ φ(pTkBkpk)vkv

T
k ,

where φ ∈ [0, 1] and

vk =
qk

qTkpk
− Bkpk

pTkBkpk
.

The BFGS formula is obtained for φ = 0. The corresponding inverse Hessian
BFGS update can be obtained by applying (2.3.65) to this formula, or making
the interchanges Bk+1 ↔ Sk+1, pk ↔ qk and φ = 1. As the Broyden family
methods generate conjugated search directions, they have the quadratic ter-
mination property [Lue84, p. 267-268]. With exact line minimization, they
also generate identical iterates on nonlinear functions [Dix72].

Assuming that B0 is positive de�nite, the BFGS formula preserves this
property, which guarantees the descent property of search directions.

Theorem 2.3.75. [Kel99, Lemma 4.1.2] Suppose that Bk is positive de�nite
for some k, and Bk+1 is obtained by the BFGS update formula (2.3.73). Then
Bk+1 is positive de�nite if and only if pTk qk > 0.

This result also applies to the inverse Hessian update via identity (2.3.65)
and the property that the inverse of a positive de�nite matrix is also positive
de�nite.

2.3. GRADIENT DESCENT METHODS 35

Outline of implementation

Generic quasi-Newton iteration steps using Hessian and inverse Hessian ap-
proximations are summarized in Algorithms 7 and 8, respectively.

Algorithm 7: Quasi-Newton iteration step, Hessian update.

Compute the Cholesky factorization Bk = LLT .1

Solve LLTdk = −∇f(xk). /* eq. (2.3.69) */2

Obtain an αk > 0 such that d
dαk

f(xk + αkdk) ≈ 0.3

xk+1 ← xk + αkdk4

pk ← xk+1 − xk /* eq. (2.3.60) */5

qk ← ∇f(xk+1)−∇f(xk) /* eq. (2.3.61) */6

Generate Bk+1 such that Bk+1pk = qk. /* eq. (2.3.67) */7

Algorithm 8: Quasi-Newton iteration step, inverse Hessian update.

dk ← −Sk∇f(xk)1

Obtain an αk > 0 such that d
dαk

f(xk + αkdk) ≈ 0.2

xk+1 ← xk − αkSk∇f(xk) /* eq. (2.3.68) */3

pk ← xk+1 − xk /* eq. (2.3.60) */4

qk ← ∇f(xk+1)−∇f(xk) /* eq. (2.3.61) */5

Generate Sk+1 such that Sk+1qk = pk. /* eq. (2.3.67) */6

Solving equation (2.3.69) typically requires O(n3) �oating-point opera-
tions per iteration, which makes the Hessian update less e�cient than the
inverse Hessian update with O(n2) �oating-point operations per iteration.
Some authors however favor the former method claiming its better numer-
ical stability [GMW81, p. 122-123]. In particular, Cholesky factorizations
allow incorporating additional modi�cations, see e.g. [GM74], that prevent
Hessian approximations from losing their positive de�niteness due to loss of
precision.

Convergence results

Powell [Pow76] was the �rst to establish the conditions for global convergence
of the BFGS method. Byrd, Nocedal and Yuan [BNY87] extended the earlier
convergence theory of quasi-Newton methods to the Broyden family. They
essentially proved the following global convergence result on strictly convex
functions.

Theorem 2.3.76. [BNY87, Theorem 3.1] Consider a sequence (xk) produced
by Algorithm 7 or 8. Suppose that the iteration and the objective function

36 CHAPTER 2. MATHEMATICAL BACKGROUND

f : Rn → R satisfy
f ∈ C2(Rn,R).
The step lengths αk satisfy (2.3.7) and (2.3.9).
A Broyden family formula with φ ∈ [0, 1[is used.
B0 or S0 is symmetric and positive de�nite.

(2.3.77)

Also suppose that there exist 0 < m < M <∞ such that

m‖y‖2 ≤ yTHf (x)y ≤M‖y‖2 for all y ∈ Rn,x ∈ L, (2.3.78)

where the set L = {x ∈ Rn|f(x) ≤ f(x0}} is convex and x0 is the starting
point of the iteration. Then

lim inf
k→∞

‖∇f(xk)‖ = 0.

As for the Newton method, rigorous local convergence theory has been
established for the Broyden family methods. Dennis and Moré essentially
proved the following result that also states an alternative de�nition of super-
linear convergence. Based on this result, most implementations of Newton-
based methods use initial step length of unity in their line searches. In partic-
ular, this result establishes superlinear convergence of the Newton method or
any method with iteration steps converging to the Newton iteration (2.3.54).

Theorem 2.3.79. [DM74, Theorem 2.2 and Corollary 2.3] Let f : Rn → R,
f ∈ C2(Rn,R). Consider an iteration of the form xk+1 = xk − Sk∇f(xk)
with nonsingular matrices Sk. Suppose that the iteration converges to x∗ such
that Hf (x

∗) is nonsingular. Then the iteration converges superlinearly to x∗

such that ∇f(x∗) = 0 if and only if

lim
k→∞

‖[S−1
k −Hf (x

∗)](xk+1 − xk)‖
‖xk+1 − xk‖

= 0 (2.3.80)

and
lim
k→∞

αk = 1.

Remark 2.3.81. It can also be shown that if (2.3.80) holds and Hf (x
∗) is

positive de�nite, there exists k0 such that αk = 1 satis�es conditions (2.3.7)
and (2.3.9) for all k ≥ k0 [DM77, Theorem 6.4].

Based on Theorem 2.3.79, Byrd, Nocedal and Yuan also proved the fol-
lowing local superlinear convergence result for the Broyden family methods
on strictly convex functions.

Theorem 2.3.82. [BNY87, Theorem 4.1] Consider a sequence (xk) produced
by Algorithm 7 or 8. Suppose that the iteration and the objective function
f : Rn → R satisfy the assumptions of Theorem 2.3.76. Also suppose that{

αk = 1 whenever it satis�es (2.3.7) and (2.3.9).
Hf is Lipschitz-continuous in a neighbourhood U of x∗.

(2.3.83)

Then the sequence (xk) converges superlinearly to x∗ such that ∇f(x∗) = 0.

Chapter 3

Implementation

3.1 Introduction to GSL and BLAS

GSL (the GNU Scienti�c Library) is a general-purpose numerical software
library for scienti�c computing written in C. It has been primarily developed
on the GNU/Linux platform with gcc (the GNU C compiler), but it also
supports a wide variety of other UNIX-based platforms. GSL is free software
under GPL (GNU General Public License). BLAS (Basic Linear Algebra
Subprograms) is a low-level library for matrix and vector computations.

3.1.1 Minimization algorithms implemented in GSL

The minimization algorithms implemented in GSL version 1.11 and their
corresponding line search routines (if applicable) are listed in Table 1. 1

GSL name Algorithm Line search
steepest_descent steepest descent backtracking
conjugate_fr Fletcher-Reeves conjugate gradient Brent
conjugate_pr Polak-Ribière conjugate gradient Brent
vector_bfgs quasi-Newton L-BFGS Brent
vector_bfgs2 quasi-Newton L-BFGS Fletcher*
nmsimplex Nelder and Mead simplex -

Table 1: Minimization algorithms implemented in GSL.

Line search algorithms

GSL implements the Brent algorithm [Bre73, p. 79-80] which is also described
in [PTVF07, p. 496-499]. This algorithm alternates between a slower golden

1The pre�xes of the GSL algorithm names are omitted for brevity.

37

38 CHAPTER 3. IMPLEMENTATION

section search and a more rapidly converging, but less reliable quadratic
interpolation scheme. This algorithm does not use function derivatives except
for its stopping criterion, that is

‖∇f(xk + αdk)
Tdk‖

‖∇f(xk + αdk)‖‖dk‖
< tol, (3.1.1)

where dk is the search direction and tol is the given tolerance. This con-
dition tests the angle between ∇f(xk + αdk) and dk. It does not imply
conditions (2.3.8) and (2.3.9), and to the knowledge of the author of this
thesis, it is not su�cient for convergence in the same sense as discussed in
Section 2.3.1. Unlike condition (2.3.7), the above stopping criterion neither
guarantees su�cient decrease of the objective function. On the other hand,
the Brent algorithm with this stopping criterion does not require that the
given search direction is a descent direction in the sense of equation (2.3.3).

GSL also implements a re�ned version of the original Fletcher's algo-
rithm described in [Fle80] and Appendix A.2. This algorithm uses cubic
interpolation instead of quadratic. Several additional steps that guarantee
the stronger condition (2.3.8) instead of (2.3.9) are also incorporated into
it. For this algorithm, the user-speci�ed tolerance tol corresponds to the
parameter η of condition (2.3.8).

The steepest descent and conjugate gradient algorithms

GSL implements the steepest descent algorithm described in Section 2.3.3.
This implementation uses the backtracking line search which is described in
Appendix A.1. The user-speci�ed tolerance tol corresponds to the parameter
σ. For the other parameter ρ, GSL uses the value ρ = 2. Both conjugate
gradient algorithms implemented in GSL use the Brent line search. They
also use periodic restarting every n steps to the steepest descent direction.
The Polak-Ribière algorithm also uses equation (2.3.42) instead of (2.3.44).

L-BFGS (limited-memory BFGS) algorithms

Two limited-memory variants of the classical BFGS algorithm using inverse
Hessian approximations are implemented in GSL. They di�er from the clas-
sical BFGS algorithm in such a way that only a single vector is stored instead
of the full inverse Hessian approximation. This substantially reduces their
storage requirements. These algorithms are similar to Wright's L-BFGS al-
gorithm [Wri94] which is also described in [Kel99, p. 79-80]. The older
implementation vector_bfgs uses the Brent line search. The newer imple-
mentation vector_bfgs2 that uses the modi�ed Fletcher's line search algo-
rithm, was introduced in GSL version 1.9. The older implementation uses
periodic restarting to the steepest descent direction every n steps, whereas
the newer one does not.

3.1. INTRODUCTION TO GSL AND BLAS 39

The Nelder and Mead simplex algorithm

The GSL implementation of the Nelder and Mead algorithm is otherwise
similar to the one given in Algorithm 1, but it omits the outside contraction
step. Its stopping criterion tests the simplex size that is de�ned as

s(S) =
1

n+ 1

n+1∑
i=1

‖xi − x̄‖, (3.1.2)

where

x̄ =
1

n+ 1

n+1∑
i=1

xi

and S is a simplex in Rn.

3.1.2 The GSL minimization interface

The GSL minimization algorithms are divided into two categories: direct-
search and gradient-based algorithms, whose names begin with the pre�xes

gsl_multimin_fminimizer

gsl_multimin_fdfminimizer,

respectively.
The objective function f : Rn → R is supplied to a GSL minimization

algorithm via a structure [KR88, p. 127-149] of either of the types

gsl_multimin_f

gsl_multimin_fdf

that describe C0- and C1-functions, respectively. Both of these structures
contain a function pointer [KR88, p. 118-121]

double (*f)(const gsl_vector *x, void *params)

to a function that returns f(x). Additional parameters to the objective
function can be speci�ed with the pointer params. In addition, pointers to
functions that evaluate the gradient ∇f(x) or both f(x) and its gradient can
be given via the function pointers

void (*df)(const gsl_vector *x, void *params, gsl_vector *g)

void (*fdf)(const gsl_vector *x, void *params, double *f,

gsl_vector *g)

de�ned in gsl_multimin_fdf. The evaluated function value and gradient
are stored to the pointers speci�ed with f and g, respectively.

40 CHAPTER 3. IMPLEMENTATION

The usage of a GSL minimization algorithm consists of the following
steps:

1. Initialize the algorithm.

2. Take one iteration step of the algorithm.

3. Test the stopping criterion. Return to 2. if it is not satis�ed.

Depending on the type of the used algorithm, the initialization of a GSL
minimization algorithm s with the given objective function f (or fdf) and
the given starting point x is done by calling either of the following methods:

gsl_multimin_fminimizer_set(gsl_multimin_fminimizer *s,

gsl_multimin_function *f,

const gsl_vector *x,

const gsl_vector *step_size)

gsl_multimin_fdfminimizer_set(gsl_multimin_fdfminimizer *s,

gsl_multimin_function_fdf *fdf,

const gsl_vector *x,

double step_size,

double tol).

Each gradient-based algorithm has two adjustable parameters: step_size

and tol. The line search parameter step_size is the initial step length, and
tol is for adjusting accuracy of line searches. The direct-search algorithms,
e.g. the simplex algorithm, have one parameter: step_size that speci�es a
vector de�ned by equation (2.2.13).

The functions for iterating the GSL minimization algorithms and obtain-
ing information of the iteration are given in Table 2. Depending on the type of
the algorithm, each function takes a pointer to a gsl_multimin_fminimizer
or a gsl_multimin_fdfminimizer object.

Function Purpose Applicable to
x return the current iterate xk both
minimum return f(xk) both
gradient return ∇f(xk) fdfminimizer
iterate take one iteration step both
restart reset to the steepest descent direction fdfminimizer
size return the simplex size fminimizer

Table 2: GSL functions for controlling and monitoring the iteration of mini-
mization algorithms.

GSL implements the following stopping criteria for testing the given quan-
tity against the given tolerance epsabs:

3.1. INTRODUCTION TO GSL AND BLAS 41

gsl_multimin_test_gradient (const gsl_vector *g, double epsabs)

gsl_multimin_test_size (const double size, double epsabs).

These are applicable to gradient-based and direct search algorithms, respec-
tively. The �rst one tests the gradient norm ‖∇f(xk)‖, and the second one
tests the simplex size de�ned by equation (3.1.2).

3.1.3 GSL linear algebra routines

Basic data structures for matrices and vectors are implemented in GSL with
names gsl_matrix and gsl_vector, respectively. By default, GSL provides
a high-level interface for linear algebra operations written in C. A C interface
for more optimized low-level BLAS operations is o�ered as an alternative.

Several matrix decomposition methods and their associated linear equa-
tion solvers are implemented in GSL. In particular, the Cholesky decompo-
sition method and the Cholesky solver

gsl_linalg_cholesky_decomp

gsl_linalg_cholesky_solve

are utilized by the Newton-based minimization algorithms implemented in
GSL++.

3.1.4 Overview of BLAS

BLAS is an interface for low-level linear algebra operations. It provides a
set of highly-optimized routines. The functionality of BLAS is divided into
three levels. Brief descriptions of these levels are given in Table 3.

Typical operations Complexity
Level 1 vector-vector operations O(n)
Level 2 matrix-vector operations O(n2)
Level 3 matrix-matrix operations O(n3)

Table 3: Operation levels de�ned in the BLAS interface.

In all levels, several operations are combined in one function call, which al-
lows higher computational e�ciency. In addition, separate functions with
additional optimizations are implemented for symmetric and triangular ma-
trices in levels 2 and 3. The emphasis of BLAS is on basic arithmetic matrix
and vector operations, and it does not implement more advanced operations
such as matrix decompositions.

42 CHAPTER 3. IMPLEMENTATION

3.2 Overview of GSL++

GSL++ is a collection of algorithms, interfaces and scripts written on top
of GSL by the author of this thesis. It extends GSL by providing additional
minimization algorithms. These are based on the descriptions given in Chap-
ter 2. In addition, GSL++ provides driver routines for calling GSL-based
minimization algorithms from GNU Octave and an interface for evaluating
symbolic function expressions. The interaction of GSL++ with the user and
external libraries is shown in Figure 6.

Figure 6: The interaction of GSL++ with the user and external libraries.

GNU Octave has builtin support for calling dynamically linked functions
written in C/C++ [Eat02, Appendix A]. Via this interface, GSL++ imple-
ments the driver routines that allow calling any GSL-based minimization rou-
tine from GNU Octave by using the same calling syntax as functions written
in the GNU Octave language. Supplying the input parameters, processing
and plotting the results is done in the GNU Octave environment. A set of
m-�les was written in the GNU Octave language for this purpose. The actual
computation is done in the C routines that implement the GSL minimization
algorithm interfaces described in Section 3.1.2. In addition, GSL++ extends
GSL by implementing support for functions with second-order derivatives
and the �nite-di�erence approximations described in Appendix A.5.

GSL++ employs the functionality of three external libraries: GSL, BLAS
and GNU libmatheval. BLAS, which is used via its GSL interface, is for low-
level matrix and vector computations. GSL provides higher-level operations

3.2. OVERVIEW OF GSL++ 43

such as matrix decompositions. It also provides the data structures for matrix
and vector computations. GNU libmatheval is used for evaluating functions
and derivatives from symbolic expressions. 2

3.2.1 Proposed algorithms

In this section we discuss the revised versions of the existing GSL minimiza-
tion algorithms implemented in GSL++. These algorithms are based on the
descriptions given in Chapter 2. We summarize the practical importance of
those theoretical results and discuss how they are taken into account in the
implementations. All the algorithms described in this section are compliant
with the GSL minimization interface described in Section 3.1.2.

The implemented algorithms with their associated line search algorithms
and initial step selection methods are given in Table 4. These choices are
based on theoretical considerations. The experimental results given in Chap-
ter 4 provide some additional justi�cation for these choices.

Name Method Line search method Initial step
conjgrad_fr_mt Fletcher-Reeves Moré and Thuente Fletcher

conjugate gradient
conjgrad_pr_mt Polak-Ribière Moré and Thuente* Fletcher

conjugate gradient
mnewton Newton/ Moré and Thuente unity

modi�ed Cholesky
bfgs_f quasi-Newton BFGS/ Fletcher unity

inverse Hessian update
bfgs_hess_f quasi-Newton BFGS/ Fletcher unity

Hessian update
bfgs_mt quasi-Newton BFGS/ Moré and Thuente unity

inverse Hessian update
bfgs_hess_mt quasi-Newton BFGS/ Moré and Thuente unity

Hessian update
lrwwsimplex Nelder and Mead - -

simplex

Table 4: Minimization algorithms implemented in GSL++.

Conjugate gradient algorithms

The GSL++ conjugate gradient implementations are based on Algorithms 5
and 6. Theorems 2.3.45 and 2.3.50 suggest using accurate line searches sat-

2Symbolic di�erentiation algorithms are extensively covered in [GC91].

44 CHAPTER 3. IMPLEMENTATION

isfying the strong Wolfe conditions. Hence, the Moré and Thuente algorithm
is suggested as the default line search algorithm for these implementations.
These implementations also default to Fletcher's initial step length selection
described in Appendix A.3. The suggested line search parameters are

µ = 0.001, η = 0.05, χ = 0.01,

where the choice of χ was used by Gilbert and Nocedal [GN92, p. 21].
In particular, using the Moré and Thuente line search with the Polak-

Ribière algorithm is motivated by Theorem 2.3.23 which gives the conditions
for convergence to an α∗ such that φ′(α∗) = 0. As suggested by Remarks
2.3.49, condition (2.3.48) is required as an additional stopping criterion in
the line search of the GSL++ Polak-Ribière algorithm.

The modi�ed Newton algorithm

GSL++ implements a modi�cation of the Newton method (2.3.55) with
Cholesky decompositions. This implementation guarantees positive de�nite-
ness of the Hessian by adding a multiple of identity to it, that is

H̃ = H + µI,

where µ = 0 if H is already positive de�nite [DS83, A5.5.1 and A5.5.2]. The
�rst bound µ1 is obtained by modifying the diagonal elements of the LDLT

factorization of H such that

LD̃LT = H + E

and choosing µ1 = maxi=1...nEii. The used procedure for computing the
diagonal matrix E is described in detail in Appendix A.4. The second bound
µ2 is obtained from the Gerschgorin theorem [DS83, p. 60,103]. Thus, the
�nal choice of µ is given by

µ = min{µ1, µ2}.

Because of the need to evaluate and invert the Hessian, this algorithm has
high computational complexity per iteration. This is however compensated
by its rapid convergence rate. In order to further accelerate its convergence
with accurate line searches, the Moré and Thuente line search is suggested
as its default line search algorithm. As suggested by Theorem 2.3.79, initial
step length of unity is used as the default choice.

Quasi-Newton BFGS algorithms

The GSL++ BFGS algorithm implementations are based on Algorithms 7
and 8. The default update formula used in the GSL++ BFGS implementa-
tion is the inverse Hessian BFGS update. Both implementations default to
identity matrix as their initial approximation.

3.2. OVERVIEW OF GSL++ 45

The convergence results stated in Theorems 2.3.76 and 2.3.82 require
only the weaker Wolfer conditions. Fletcher's numerical results [Fle80, Table
3.5.1] also suggest that relaxing the strong Wolfe conditions does not cause a
signi�cant degradation in convergence rates. Hence, BFGS algorithms with
Fletcher's line search described in Appendix A.2 were also implemented.

The suggested line search parameters for the GSL++ BFGS implemen-
tations with the Moré and Thuente line search algorithm are

µ = 0.001, η = 0.1.

Fletcher used the default values

µ = 0.01, η = 0.1, τ = 0.05, χ = 9

with his experiments on quasi-Newton algorithms. These are also the default
parameters for the GSL++ BFGS algorithms with Fletcher's line search. As
for the Newton algorithm, the default initial step length is unity.

All implemented BFGS algorithms include an additional safeguarding
procedure for the case pTk qk ≤ 0. If this occurs, the matrix Bk or Sk is reset
to identity matrix. This is also done in the algorithm with Hessian update
if the Cholesky decomposition Bk = LLT fails due to inde�nite matrix Bk.
Both of these cases can occur due to numerical errors.

The revised simplex algorithm

The GSL++ implementation of the Nelder and Mead simplex algorithm fol-
lows Algorithm 1. It uses insertion sort [Cor01, p. 17] for sorting the simplex
vertices. This algorithm has complexity of O(n2) for arbitrarily sorted sets.
For "almost-ordered" vertices, which is the most common case in the simplex
algorithm, its complexity reduces to O(n) [Cor01, p. 24-25]. The insertion
sort implementation is also consistent with the tie-breaking rules described
in [LRWW98, p. 5-6]. The parameters of the trial point selection, as given
by Lagarias et. al. [LRWW98], are

ρ = 1, χ = 2, γ = 1
2
, and σ = 1

2
.

The initial simplex is chosen according to (2.2.13), and side lengths of unity
is the suggested default choice.

3.2.2 GNU Octave utilities implemented in GSL++

GSL++ implements driver routines and several utility methods for invok-
ing minimization algorithms from GNU Octave. As both GNU Octave and
GSL++ are written in C++, they utilize its more advanced data structures
and stream handling implemented in STL (the standard template library)

46 CHAPTER 3. IMPLEMENTATION

[Str00, p. 427-657]. We give only a brief overview of these routines. A
complete Texinfo-based documentation is provided with their source code.

The driver routine GSLpp_minimize is for invoking GSL-based minimiza-
tion algorithms from GNU Octave. It is used from the GNU Octave command
prompt by typing a command of the following form:

octave:1> results = GSLpp_minimize(a, ap, lsp, f, fp, ep, sc,

scp, sp, v, t)

Input arguments

The input arguments for GSLpp_minimize are listed in Table 5. The manda-
tory arguments are printed in boldface. For the speci�cations of argument
types, the reader is referred to the GNU Octave manual [Eat02, chap. 3-7].

Argument Type Description
a string minimization algorithm name
ap struct minimization algorithm parameters
lsp struct line search parameters (if applicable)
f string symbolic function expression or function name
fp struct additional objective function parameters
ep struct function evaluation type

default: symbolic function and derivative evaluation
sc string stopping criterion name
scp struct stopping criterion parameters, e.g. threshold value
sp vector starting point
v integer verbosity level (the amount of output information)
t boolean measure the used computation time

Table 5: The input arguments of the GSL++ driver routine in the GNU
Octave environment.

The names of the available minimization algorithms are those given in Ta-
bles 1 and 4. Most arguments are speci�ed as structs. This data type is a
collection that associates variable names with their values [Eat02, chap. 6].
For the GSL++ algorithms, each optional algorithm parameter is given the
default value speci�ed in Section 3.2.1 if not explicitly given. GSL algorithms
invoked via the driver routine default to step_size=(1, . . . , 1) and tol=0.1.

Supplying the objective function

The objective function is supplied to the driver routine as a symbolic ex-
pression or as the name of a prede�ned test function. A symbolic expression
may contain basic arithmetic operations (+,−, ∗, /,̂) and basic elementary

3.2. OVERVIEW OF GSL++ 47

functions (absolute value, exponent, logarithm, square root, trigonometric
functions). The prede�ned test functions are from the unconstrained opti-
mization problem set given in [MGH81, p. 30]. They are programmed in
the GSL++ test suite in two di�erent ways. The �rst way is to generate the
symbolic expression of the test function and parse it with GNU libmatheval.
In addition, the evaluators of these functions are also written directly in C
and linked to the GSL++ library, which mitigates the performance penalty
of symbolic expression parsing. However, the lack of symbolic expressions in
this case forces using �nite-di�erence derivatives. The allowed combinations
of function and derivative evaluation methods are listed in Table 6.

Function Gradient Hessian
symbolic symbolic symbolic
symbolic symbolic �nite-di�erence
symbolic �nite-di�erence �nite-di�erence
precompiled �nite-di�erence �nite-di�erence

Table 6: The allowed combinations of function, gradient and Hessian evalu-
ation methods.

Output

The GSL++ driver routine returns a variable of type struct. Its most
relevant �elds are speci�ed in Table 7.

Field Type Description
converged boolean true if iteration converged, false if not
x vector estimated function minimizer
f scalar function value at x
g vector function gradient at x
H matrix the Hessian matrix of f at x
nfeval scalar the number of used function evaluations
ngeval scalar the number of used gradient evaluations
nHeval scalar the number of used Hessian evaluations
iterations cell a list of structs that contains information

about each iteration
termval scalar the criterion value that is tested against the given

threshold when the iteration terminates
time scalar the measured computation time

Table 7: The output produced by the GSL++ driver routine in the GNU
Octave environment.

48 CHAPTER 3. IMPLEMENTATION

The following example invokes the bfgs_f algorithm with its default set-
tings to �nd the minimizer of the Beale function starting from the point
(1, 1). Setting the �elds f and g to sym speci�es symbolic derivatives to be
used with symbolically parsed objective function. The stopping criterion is
to test the condition ‖∇f(xk)‖ < 10−8.

octave:1> results = GSLpp_minimize("bfgs_f", struct(), struct(),

"beale", struct("f", "sym", "g", "sym"),

struct(), "gradient", struct("eps", 1e-8),

[1,1]', 2, false)

When supplied with the above input arguments, the driver routine also prints
into the Octave terminal the following output by using the C++ output
streams [Str00, p. 605-656]. The progress of the iteration, the �nal estimates
of the minimum point, minimum value and minimum gradient are printed.
In addition, the driver routine keeps track of the evaluation counts of the
objective function and its derivatives and prints them. 3

k x y f(x,y)

0 1 1 14.203

1 1 -0.3875 4.428

2 1.6222 -0.51691 2.6557

3 1.9691 0.31222 0.75726

4 2.1691 0.16779 0.33057

5 2.6852 0.42347 0.025106

6 2.8227 0.44087 0.0086544

7 2.9556 0.49583 0.0014262

8 2.9607 0.49044 0.00026025

9 2.9986 0.4994 1.68e-06

10 3 0.50002 2.5537e-09

11 3 0.5 1.4938e-12

12 3 0.5 9.4057e-15

13 3 0.5 3.4254e-23

minimizer: [3, 0.5]

minimum value: 3.4254e-23

minimum gradient: [1.089e-11, -5.1493e-11]

iterations: 14

function evaluations: 24

gradient evaluations: 20 (40)

3The number in parentheses is the total number of partial derivative evaluations: nm for

symbolic gradients and n(n+1)
2 m for symbolic Hessians, where n is the problem dimension

and m is the number of gradient or Hessian evaluations, respectively.

3.2. OVERVIEW OF GSL++ 49

Several functions for illustrating the results of the iteration, e.g. the iter-
ation path, are implemented in GSL++. GSLpp_plot_results can be used
for plotting the iteration path of a minimization algorithm on the contour
lines of the objective function in the two-dimensional case. It is invoked by
typing a command of the following form:

octave:2> GSLpp_plot_results(results, {[0.25, 4.25], [-1, 1.5]},

[false, false, true])

where the �rst argument refers to a struct returned by a previous call of
GSLpp_minimize. The second and third arguments specify the plotting range
and the choice of logarithmic scale for each axis. This function invokes the
GNU Octave functions plot and contour for plotting the iteration path
and contour lines, respectively. When supplied with the results of the driver
routine call in the previous page, the above function call produces the plot
shown in Figure 7.

-1

-0.5

0

0.5

1

1.5

0.5 1 1.5 2 2.5 3 3.5 4

Figure 7: Iteration path of the bfgs_f algorithm on the Beale function.

GSL++ also supports plotting 3D surface plots of two-dimensional functions
with the same syntax as above. For example, the 3D surface plot of the Beale
function can be plotted as follows:

octave:3> GSLpp_plot_mesh("beale", {[0.25, 4.25], [-1, 1.5],

[1e-3, 500]}, [false, false, true])

This command evaluates the values of the given test function in a uniform
rectangular grid and plots the function by invoking the GNU Octave surface
plotting function surf. Surface plots of the Beale function and some of the
other test functions are shown in Figure 8.

50 CHAPTER 3. IMPLEMENTATION

0.5
1

1.5
2

2.5
3

3.5
4

-1

-0.5

0

0.5

1

1.50.001

0.01

0.1

1

10

100

(a) Beale

-5e-05
0

5e-05
0.0001

0.00015
0.0002

0

2

4

6

8

101e-06
1e-05

0.0001
0.001
0.01
0.1

1
10

100
1000

(b) Powell badly scaled

-10

-5

0

5

10

-10

-5

0

5

100
20
40
60
80

100
120
140

(c) trigonometric (n = 2)

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

-1

-0.5

0

0.5

1

1.5

21e-08

1e-06

0.0001

0.01

1

100

(d) extended Rosenbrock (n = 2)

Figure 8: Surface plots of prede�ned test functions programmed in the
GSL++ test suite.

Chapter 4

Numerical results

4.1 Overview of testing procedures

In this chapter, we will provide an extensive comparison of the reviewed
algorithms. We also analyze their characteristic properties in detail. The
testing procedures carried out in this thesis were done on the test function
set proposed by More, Garbow and Hillström [MGH81]. All functions in this
set are given as least-squares problems of the form

f(x) =
m∑
i=1

fi(x)2,

where f : Rn → R. The tested algorithms are the existing GSL algorithms
given in Table 1 and the proposed GSL++ algorithms given in Table 4. If
not stated otherwise, the following is assumed:

• Symbolic gradients and Hessians are used.

• In the absence of symbolic expressions, precompiled test functions with
central-di�erence gradients and forward-di�erence Hessians are used.

• The iterations are started from the standard starting points speci�ed
in [MGH81].

• GSL++ algorithms are run with their default parameters speci�ed in
Section 3.2.1.

• GSL algorithms are run with parameters step_size=(1, . . . , 1) and
tol=0.1.

All tests were run in 32-bit GNU/Linux environment on a computer with
2 GHz AMD processor and 1 GB system memory with double precision
�oating-point arithmetic (16 digits). 1

1The range of representable numbers is [2.225 · 10−308, 1.798 · 10308]. The machine

epsilon εm that is the smallest number yielding 1 + εm > 1 is approximately 2.220 · 10−16.

51

52 CHAPTER 4. NUMERICAL RESULTS

4.2 Qualitative tests

4.2.1 The choice of starting point

Depending on the choice of starting point, the iteration can converge to
di�erent local minima. In order to demonstrate this, the steepest_descent
and bfgs_mt algorithms were tested on the Himmelblau function

f(x, y) = (x2 + y − 11)2 + (x+ y2 − 7)2,

which has four local minima:
f(3, 2) = 0
f(−3.78,−3.28) = 0.0054
f(−2.81, 3.13) = 0.0085
f(3.58,−1.85) = 0.0011.

Each starting point (xi, yi) on the uniform rectangular grid

xi = −5 + i−1
29
· 10 yi = −5 + i−1

29
· 10, i = 1, . . . , 30

was classi�ed according to the local minimizer the iteration started from that
point converged to. Each iteration was tested against the stopping criterion
‖∇f(xk)‖ < 10−8. These points were plotted on contour curves of the test
function. The results are shown in Figure 9.

Observations

The steepest descent algorithm behaves in a very predictable manner and
mostly converges to the nearest local minimizer. On the other hand, the
BFGS algorithm exhibits very peculiar convergence behaviour. For a large
number of starting points, it omits the nearest local minimizer and instead
converges to a further one. The likely explanation is that the Wolfe (or
strong Wolfe) conditions are not su�cient to distinguish di�erent local min-
ima. Since this test function has very variable curvature, this behaviour
becomes more prominent with interpolation polynomials that rely on local
function gradient information. Thus, the steepest descent algorithm with a
very primitive line search routine does not exhibit this behaviour. To some
extent, this can be avoided by trying di�erent line search parameters. Of
course, additional information for this such as 2D plots are not available for
higher-dimensional problems, which makes adjusting the parameters even
more a trial-and-error procedure.

4.2. QUALITATIVE TESTS 53

-4

-2

0

2

4

-4 -2 0 2 4

steepest_descent

-4

-2

0

2

4

-4 -2 0 2 4

bfgs_mt

Figure 9: Convergence to di�erent local minima from di�erent starting
points, steepest descent and BFGS algorithms.

54 CHAPTER 4. NUMERICAL RESULTS

4.3 Algorithm-speci�c tests

4.3.1 The Nelder and Mead simplex algorithm

The GSL++ simplex algorithm lrwwsimplex was tested on di�erent test
functions. Two test measures were used. The �rst was the condition number
of the edge matrix Ek, as de�ned by (2.2.2), that is

κ(Ek) = |λmax
λmin

|, (4.3.1)

where λ1 and λ2 are the largest and smallest eigenvalues of Ek, respectively.
This quantity measures degeneracy of the simplex. If the simplex condition
numbers become very large, it implies that the simplices become highly elon-
gated. This can disable the ability of the simplex algorithm to obtain its trial
steps. The second measure was the simplex volume (2.2.12). The distance
‖xk − x∗‖ to the known minimizer of each test function is also plotted in or-
der to see the correlation of these test measures with the actual convergence
of the iteration. Each iteration was tested against the stopping criterion
‖xk − x∗‖ < 10−8. The results are shown in Figure 10.

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100

10 20 30 40 50 60 70

iterations

Beale

||x-x*||
κ(E)
V(S)

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100

50 100 150 200

iterations

Helical valley

||x-x*||
κ(E)
V(S)

Figure 10: Convergence of the lrwwsimplex algorithm on the Beale function
(left) and the helical valley function (right).

The lrwwsimplex algorithm performs well on the low-dimensional Beale
and helical valley functions. The simplex condition number remains low, and
the decrease in simplex volume is strongly correlated with convergence of the
iteration. The higher-dimensional problems however expose a major weak-
ness in this algorithm. Most n-dimensional test functions in the [MGH81]
problem set caused this algorithm practically fail to converge. The e�ect of
increasing problem dimension n on the simplex algorithm is shown in Tables
8- 10. If the stopping criterion was not satis�ed after 50000 iterations, the

4.3. ALGORITHM-SPECIFIC TESTS 55

iteration was terminated. The number of iterations i, the �nal gradient norm
‖∇f(xk)‖, the �nal simplex volume V (Sk), the �nal distance ‖xk − x∗‖ to
the known minimizer and the �nal simplex condition number cond(Sk) are
listed in these tables.

n i ‖∇f(xk)‖ V (Sk) ‖xk − x∗‖ cond(Sk)
4 409 2.75075e-07 4.01235e-36 8.91199e-09 100.089
8 5255 6.44921e-07 9.19942e-73 6.99695e-09 240.863
12 31858 4.20566e-07 1.75309e-148 9.69522e-09 399.355
16 50000 4.7912 3.35222e-205 5.46229 8.16414e+13
20 50000 5.18912 0 3.87515 Inf

Table 8: E�ect of problem dimension, extended Rosenbrock function.

n i ‖∇f(xk)‖ V (Sk) ‖xk − x∗‖ cond(Sk)
4 159 3.69402e-07 1.64346e-32 8.97569e-09 6.77109
8 951 1.48714e-07 1.47191e-71 9.90648e-09 58.8044
12 4092 2.62145e-07 5.82565e-113 9.69223e-09 243.077
16 25052 2.05804e-07 5.13727e-151 9.97749e-09 176.319
20 50000 2.90948 0 1.01255 2164.77

Table 9: E�ect of problem dimension, variably dimensioned function.

n i ‖∇f(xk)‖ V (Sk) ‖xk − x∗‖ cond(Sk)
4 467 2.23181e-15 1.42547e-50 4.25208e-09 4.71885e+08
8 3136 7.61442e-15 1.45141e-102 7.21967e-09 1.34031e+09
12 14008 5.55417e-16 2.43291e-165 9.7844e-09 3.3855e+09
16 50000 1.03882e-15 2.01755e-240 5.24494e-08 1.00427e+10
20 50000 0.000293667 1.55445e-142 0.00756036 1.70638e+08

Table 10: E�ect of problem dimension, extended Powell singular function.

The above results show a very rapid increase in the iteration counts as
the problem dimension increases. Furthermore, the algorithm fails on all
three test functions with n = 20. On the contrary, the simplex volume con-
verges to zero in all cases. This collapsing of simplices with no observable
decrease in gradient norms is associated with very high simplex condition
numbers, which indicates that the simplices are practically degenerate. The
fundamental reason for this is that although the simplex algorithm is guar-
anteed to generate nondegenerate simplices, there is no upper bound for the

56 CHAPTER 4. NUMERICAL RESULTS

simplex condition number. Similar results have also been reported by Torc-
zon [Tor89]. The observed failures basically render this algorithm unusable in
higher dimensions. Similar results were also obtained with the corresponding
GSL algorithm nmsimplex.

4.3.2 The steepest descent algorithm

The iteration path of steepest descent algorithm on the Extended Rosenbrock
function (n = 2) demonstrates its characteristic behaviour. In order to better
demonstrate this, a modi�cation of the GSL steepest_descent algorithm
was run with the more accurate Moré and Thuente line search (µ = 0.001,
η = 0.01) instead of backtracking. On this test function, the algorithm takes
a large number of redundant steps, as it can be seen from Figure 11.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-1.5 -1 -0.5 0 0.5 1

Figure 11: The iteration path of the steepest descent algorithm on the ex-
tended Rosenbrock function (n = 2).

This "zigzag-e�ect" is related to scaling of variables. In order to demon-
strate this, the quadratic function

f(T−1(x)) = (αx1)2 + x2
2, T (x) = (x1

α
, x2) (4.3.2)

with the scale factor α was plotted with di�erent values of α. The iteration
was started from the point x̃0 = T (x0) = (0.4

α
, 0.9). The results are shown

in Figure 12. With symmetric scaling of axes, the algorithm �nds the min-
imizer in a single step. However, even very small values of α can cause its
performance to deteriorate signi�cantly. 2

2Note the di�erent aspect ratios and scaling that does not preserve the orthogonality
of negative gradient directions with contour lines.

4.3. ALGORITHM-SPECIFIC TESTS 57

0

0.2

0.4

0.6

0.8

1

-0.4 -0.2 0 0.2 0.4

α=1

0

0.2

0.4

0.6

0.8

1

-0.2 -0.1 0 0.1 0.2

α=2

0

0.2

0.4

0.6

0.8

1

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

α=3

0

0.2

0.4

0.6

0.8

1

-0.1 -0.05 0 0.05 0.1

α=4

Figure 12: Iteration paths of the steepest descent algorithm on function
(4.3.2) with di�erent scale parameters.

4.3.3 Conjugate gradient algorithms

The Fletcher-Reeves and Polak-Ribière conjugate gradient algorithms can
exhibit very di�erent convergence behaviour on nonlinear functions. Perhaps
the most signi�cant di�erence is that the Fletcher-Reeves algorithm has a
tendency to fall into a state of very slow convergence, which is rarely seen
with the Polak-Ribière algorithm [GN92, p. 9,21-24]. Analyzing the e�ect
of restarting procedures provides some insight on this aspect. The cosine of
the angle between the steepest descent direction −∇f(xk) and the current
search direction dk, that is

cos θk = − ∇f(xk)
Tdk

‖∇f(xk)‖‖dk‖
(4.3.3)

was measured as a function of the number of iterations. The iteration was
terminated when the stopping criterion ‖xk − x∗‖ < 10−8 was satis�ed. The
results for the extended Rosenbrock function with the conjgrad_fr_mt and
conjgrad_pr_mt algorithms are shown in Figure 13. Gradient and search

58 CHAPTER 4. NUMERICAL RESULTS

direction norms ‖∇f(xk)‖ and ‖dk‖ are also plotted in order to show their
correlation with (4.3.3).

0.001

0.01

0.1

1

10

100

1000

10 20 30 40 50 60 70 80 90

iterations

Fletcher-Reeves

cosθ
||∇ f(x)||

||d||

0.001

0.01

0.1

1

10

100

1000

5 10 15 20 25

iterations

Polak-Ribiere

cosθ
||∇ f(x)||

||d||

Figure 13: Convergence of the Fletcher-Reeves algorithm (left) and the
Polak-Ribière algorithm (right) on the extended Rosenbrock function (n=60).

These results are very similar to those obtained by Gilbert and Nocedal
[GN92]. They clearly show that the Fletcher-Reeves algorithm stagnates
between 5 and 40 iterations. A possible explanation for this behaviour is
based on three observations: 3

cos θk < 0.1, ‖gk+1‖ ≈ ‖gk‖ and ‖dk‖ >> ‖gk‖

starting from the 5th iteration step. Consequently, it follows from equation
(2.3.41) that γk ≈ 1. Recalling equation (2.3.40) for the nonlinear conjugate
gradient method, that is

dk+1 = −gk+1 + γk+1dk,

the above observations imply that dk+1 ≈ dk. With the observation that
cos θk < 0.1 (θk > 85◦), this implies that the algorithm enters a phase where
it repeatedly uses search directions that are nearly orthogonal to steepest
descent directions. This phase terminates only after 40 iterations. It should
also be noted that periodic restarting takes place only after 60 iterations,
which questions its usefulness in this particular case.

On the other hand, the restarting strategy incorporated in the Polak-
Ribière algorithm seems to be much more e�cient. Instead of restarting every
nth iterations, equation (2.3.44) e�ectively forces the algorithm to restart
back to the steepest descent direction whenever γk ≤ 0. In particular, this
occurs whenever gk+1 ≈ gk, which prevents the behaviour observed with the
Fletcher-Reeves algorithm. These restarts can be seen at 6th, 10th, and 23th
iteration steps, where cos θk = 1.

3This argument is originally due to Powell [Pow77].

4.3. ALGORITHM-SPECIFIC TESTS 59

4.3.4 Quasi-Newton BFGS algorithms

The accuracy of Hessian and inverse Hessian approximations can have a
considerable e�ect on the convergence rate of a quasi-Newton algorithm. In
order to test this, the error norms

‖Hf (xk)−Bk‖F , ‖Hf (xk)
−1 − Sk‖F , (4.3.4)

where ‖·‖F denotes the Frobenius norm (2.3.72) with W = I, were measured
at each iteration step of the bfgs_hess_mt and bfgs_mt algorithms. In
addition, the error norm of Theorem 2.3.79, that is,

∆k =
‖[Bk −Hf (xk)](xk+1 − xk)‖

‖xk+1 − xk‖
(4.3.5)

was also measured in order to verify superlinear convergence of these algo-
rithms. The iteration was terminated when ‖xk+1−xk‖ < 10−14. The results
of these tests on the extended Rosenbrock function are shown in Figure 14.
Distance to the minimizer x∗ is also plotted.

1e-15

1e-10

1e-05

1

100000

5 10 15 20 25 30 35

iterations

Hessian approximation

∆
||B-H||
||x-x*|| 1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100

5 10 15 20 25 30 35

iterations

Inverse Hessian approximation

∆
||S-H

-1
||

||x-x*||

Figure 14: Convergence of BFGS algorithms and their Hessian and inverse
Hessian approximations on the extended Rosenbrock function (n = 4).

The above results and similar behaviour on several other test problems
indicate that superlinear convergence of the BFGS method cannot be estab-
lished with these implementations due to limited numerical precision. The
norm ∆k stops converging to zero when ‖xk − x∗‖ becomes small. This
can also be observed from the linear shape of ‖xk − x∗‖ near the mini-
mizer, which is especially the case with the inverse Hessian update. Rather
that being superlinear, the observed convergence rate is linear with ratio
‖xk+1 − x∗‖/‖xk − x∗‖ ≈ 10−2. These results however show that the rapid
convergence near the minimizer is correlated with decrease in the error norms
(4.3.4). That is to say, the quasi-Newton step (2.3.68) approaches (2.3.55).

60 CHAPTER 4. NUMERICAL RESULTS

Consequently, with the choice of initial step length of unity and Remark
2.3.81, this approaches the pure Newton step (2.3.54). 4

Test results on the extended Powell singular function are shown in Fig-
ure 15. Also the condition number κ(Hf (xk)) = λmax/λmin, where λmax
and λmin are the largest and smallest eigenvalues of Hf (xk), respectively, is
plotted. This function has singular Hessian at its minimum. Consequently,
the condition number that measures invertibility of the Hessian, approaches
in�nity as the iterates approach to the minimizer. Thus, the algorithms fail
to produce usable Hessian and inverse Hessian approximations in this special
case. This is associated with the observed linear convergence rates that are
atypically slow for the BFGS algorithm. 5

1e-20

1e-15

1e-10

1e-05

1

100000

1e+10

1e+15

10 20 30 40 50 60

iterations

Hessian approximation

∆
||B-H||
||x-x*||

κ(H)
1e-20

1e-15

1e-10

1e-05

1

100000

1e+10

1e+15

10 20 30 40 50 60 70

iterations

Inverse Hessian approximation

∆
||x-x*||

κ(H)

Figure 15: Convergence of BFGS algorithms and their Hessian and inverse
Hessian approximations on the extended Powell singular function (n = 4).

It should be also noted that on the extended Powell singular function, the
Hessian update with Cholesky factorizations has substantially faster conver-
gence near the minimizer (‖xk − x∗‖ < 10−10), which indicates its better
numerical stability. However, the Hessian and inverse Hessian updates were
observed to have practically identical convergence rates on most test prob-
lems. Because the di�erence between these two updating methods was ob-
served to be only marginal except for pathological cases, it is recommended
to use the computationally more e�cient inverse Hessian update if at least
double-precision accuracy is available. However, it has been reported that the
numerically more stable Hessian update performs substantially better if the
available machine precision is less than single precision (8 digits) [BCP04].

4Convergence to the exact Hessian is theoretically guaranteed only in the sense of
equation (4.3.5).

5The error norm ‖Hf (xk)−1 − Sk‖F was not measured with the inverse Hessian ap-
proximation because of numerical problems with computing the inverse Hessian.

4.4. COMPARISON OF ALGORITHMS 61

4.4 Comparison of algorithms

4.4.1 Sensitivity to line search parameters

One of the key properties that de�ne the robustness of a gradient descent
algorithm is its dependency on the choice of line search parameters. In or-
der to test this, the GSL++ BFGS and conjugate gradient algorithms were
compared on the Beale, extended Rosenbrock and helical valley functions.
All algorithms were run with the Moré and Thuente line search with variable
accuracy, which is controlled by the parameter η. The e�ect of parameter µ
was not tested because it was not observed to have a signi�cant e�ect.

In these tests the bfgs_mt, conjgrad_fr_mt and conjgrad_pr_mt algo-
rithms were compared against each other. Each iteration was tested against
the stopping criterion ‖xk − x∗‖ < 10−6. The number of used iterations and
function and gradient evaluations were also counted. The results are shown
in Figure 16. 6

Observations

From these results, it is evident that the BFGS algorithm bfgs_mt is very
insensitive to the choice of line search parameters. This is not the case with
conjugate gradient algorithms conjgrad_fr_mt and conjgrad_pr_mt. Even
small changes in the value of η cause substantial di�erences in iteration,
function and gradient evaluation counts. This is largely independent of the
accuracy of the line search, and it can also occur with small values of η.
Such a behaviour can make choosing proper line search parameters for these
algorithms very di�cult. These results however seem to slightly indicate that
choosing small values of η leads to rapid convergence.

It is very interesting to note that conjgrad_fr_mt is particularly sensi-
tive to the choice of parameter η. This behaviour is di�cult to explain. It
is possibly related to the observations made in Section 4.3.3. Some unfor-
tunate choices of the parameter η can trigger this behaviour, which leads to
substantially slower convergence.

Function and gradient evaluation counts also show that imposing too
strict line search conditions can lead to degraded performance. All algorithms
start to exhibit increases in the numbers of function and gradient evaluations
in the range η < 0.05. This is obvious, since the line search algorithm needs
more interpolation steps to produce an admissible step length with stricter
conditions. Based on these results, the recommended values of η for the
BFGS and conjugate gradient algorithms lie in the range 0.1− 0.3.

6The GSL++ implementation of the Moré and Thuente algorithm uses the same num-
ber of function and gradient evaluations each iteration.

62 CHAPTER 4. NUMERICAL RESULTS

0

5

10

15

20

25

30

35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

Line search parameter η

Beale

bfgs_mt
conjgrad_fr_mt

conjgrad_pr_mt

0

20

40

60

80

100

120

140

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8N
u

m
b

e
r

o
f

fu
n

c
ti
o

n
 a

n
d

 g
ra

d
ie

n
t

e
v
a

lu
a

ti
o

n
s

Line search parameter η

Beale

bfgs_mt
conjgrad_fr_mt

conjgrad_pr_mt

0

10

20

30

40

50

60

70

80

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

Line search parameter η

Extended Rosenbrock (n=8)

bfgs_mt
conjgrad_fr_mt

conjgrad_pr_mt

0

50

100

150

200

250

300

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8N
u

m
b

e
r

o
f

fu
n

c
ti
o

n
 a

n
d

 g
ra

d
ie

n
t

e
v
a

lu
a

ti
o

n
s

Line search parameter η

Extended Rosenbrock (n=8)

bfgs_mt
conjgrad_fr_mt

conjgrad_pr_mt

0

5

10

15

20

25

30

35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

Line search parameter η

Helical valley

bfgs_mt
conjgrad_fr_mt

conjgrad_pr_mt

0

20

40

60

80

100

120

140

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8N
u

m
b

e
r

o
f

fu
n

c
ti
o

n
 a

n
d

 g
ra

d
ie

n
t

e
v
a

lu
a

ti
o

n
s

Line search parameter η

Helical valley

bfgs_mt
conjgrad_fr_mt

conjgrad_pr_mt

Figure 16: Iteration counts (left) and function and gradient evaluation counts
(right) plotted as a function of η.

4.4. COMPARISON OF ALGORITHMS 63

4.4.2 Convergence rates

All GSL++ and GSL minimization algorithms were tested on all test func-
tions in the [MGH81] problem set with known minimizers. These functions
are given in Table 11.

Test function n m
Brown badly scaled
Beale
helical valley
Gulf research and development 30
Wood
extended Rosenbrock 8
extended Powell singular 4
variably dimensioned 10

Table 11: Test functions and their dimensions (if not default) used in the
convergence rate tests.

Each iteration was tested against the stopping criterion ‖xk−x∗‖ < 10−12.
The results are shown in Figures 17-20. The results on test functions on which
several algorithms failed to converge, are not shown. Based on the observed
convergence rates, the tested algorithms fall into four di�erent categories:

1. Newton-based algorithms testing the Wolfe conditions

2. conjugate gradient algorithms testing the strong Wolfe conditions

3. gradient descent algorithms with the Brent line search

4. simplex algorithms

Instead of analyzing the convergence rates by verifying the conditions of De�-
nition 2.1.12, we will give only qualitative analysis. Several convergence plots
show that theoretically superlinearly or quadratically convergent algorithms
fail to exhibit these properties in their strict sense and instead exhibit linear
convergence near the minimizer. Due to limited numerical precision, this
more rule than exception. Many of these test functions neither satisfy the
conditions of these theoretical convergence results. It should also be empha-
sized that this is not a performance comparison, since numerous other factors
contribute to the overall performance of a minimization algorithm.

An important general observation is that convergence rates of gradient
descent methods are largely governed by their line search routines. Di�erent
algorithms with identical line search routines can exhibit about 50% di�er-
ences in iteration counts, which in some cases can also be observed with the
same algorithm but a di�erent line search routine.

64 CHAPTER 4. NUMERICAL RESULTS

1
e

-1
2

1
e

-1
0

1
e

-0
8

1
e

-0
6

0
.0

0
0

1

0
.0

11

2
4

6
8

1
0

1
2

1
4

1
6

1
8

|xk-x
*
|

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

B
e

a
le

b
fg

s
_

m
t

b
fg

s
_

f
v
e

c
to

r_
b

fg
s
2

m
n

e
w

to
n

1
e

-1
2

1
e

-1
0

1
e

-0
8

1
e

-0
6

0
.0

0
0

1

0
.0

11

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

|xk-x
*
|

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

E
x
te

n
d

e
d

 R
o

s
e

n
b

ro
c
k
 (

n
=

8
)

b
fg

s
_

m
t

b
fg

s
_

f
v
e

c
to

r_
b

fg
s
2

m
n

e
w

to
n

1
e

-1
2

1
e

-1
0

1
e

-0
8

1
e

-0
6

0
.0

0
0

1

0
.0

11

2
4

6
8

1
0

1
2

1
4

1
6

1
8

2
0

|xk-x
*
|

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

H
e

lic
a

l
v
a

lle
y

b
fg

s
_

m
t

b
fg

s
_

f
v
e

c
to

r_
b

fg
s
2

m
n

e
w

to
n

1
e

-1
2

1
e

-1
0

1
e

-0
8

1
e

-0
6

0
.0

0
0

1

0
.0

11

2
4

6
8

1
0

1
2

1
4

1
6

1
8

2
0

|xk-x
*
|

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

V
a

ri
a

b
ly

 d
im

e
n

s
io

n
e

d
 (

n
=

1
0

)

b
fg

s
_

m
t

b
fg

s
_

f
v
e

c
to

r_
b

fg
s
2

m
n

e
w

to
n

F
ig
u
re

17
:
C
on
ve
rg
en
ce

ra
te
s
of

N
ew

to
n
-b
as
ed

al
go
ri
th
m
s
w
it
h
li
n
e
se
ar
ch
es

sa
ti
sf
y
in
g
th
e
W
ol
fe
co
n
d
it
io
n
s.

4.4. COMPARISON OF ALGORITHMS 65

1
e

-1
2

1
e

-1
0

1
e

-0
8

1
e

-0
6

0
.0

0
0

1

0
.0

11

5
1

0
1

5
2

0
2

5
3

0

|xk-x
*
|

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

B
e

a
le c
o

n
jg

ra
d

_
fr

_
m

t
c
o

n
jg

ra
d

_
p

r_
m

t

1
e

-1
2

1
e

-1
0

1
e

-0
8

1
e

-0
6

0
.0

0
0

1

0
.0

11

2
4

6
8

1
0

1
2

1
4

1
6

1
8

2
0

|xk-x
*
|

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

E
x
te

n
d

e
d

 R
o

s
e

n
b

ro
c
k
 (

n
=

8
)

c
o

n
jg

ra
d

_
fr

_
m

t
c
o

n
jg

ra
d

_
p

r_
m

t

1
e

-1
2

1
e

-1
0

1
e

-0
8

1
e

-0
6

0
.0

0
0

1

0
.0

11

5
1

0
1

5
2

0
2

5

|xk-x
*
|

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

H
e

lic
a

l
v
a

lle
y

c
o

n
jg

ra
d

_
fr

_
m

t
c
o

n
jg

ra
d

_
p

r_
m

t

1
e

-1
2

1
e

-1
0

1
e

-0
8

1
e

-0
6

0
.0

0
0

1

0
.0

11

5
1

0
1

5
2

0

|xk-x
*
|

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

V
a

ri
a

b
ly

 d
im

e
n

s
io

n
e

d
 (

n
=

1
0

)

c
o

n
jg

ra
d

_
fr

_
m

t
c
o

n
jg

ra
d

_
p

r_
m

t

F
ig
u
re

18
:
C
on
ve
rg
en
ce

ra
te
s
of

co
n
ju
ga
te

gr
ad
ie
n
t
al
go
ri
th
m
s
w
it
h
li
n
e
se
ar
ch
es

sa
ti
sf
y
in
g
th
e
st
ro
n
g
W
ol
fe
co
n
d
it
io
n
s.

66 CHAPTER 4. NUMERICAL RESULTS

1
e

-1
2

1
e

-1
0

1
e

-0
8

1
e

-0
6

0
.0

0
0

1

0
.0

11

5
1

0
1

5
2

0
2

5
3

0
3

5
4

0
4

5

|xk-x
*
|

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

B
e

a
le

v
e

c
to

r_
b

fg
s

c
o

n
ju

g
a

te
_

fr
c
o

n
ju

g
a

te
_

p
r

1
e

-1
2

1
e

-1
0

1
e

-0
8

1
e

-0
6

0
.0

0
0

1

0
.0

11

5
0

1
0

0
1

5
0

2
0

0

|xk-x
*
|

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

E
x
te

n
d

e
d

 R
o

s
e

n
b

ro
c
k
 (

n
=

8
)

v
e

c
to

r_
b

fg
s

c
o

n
ju

g
a

te
_

fr
c
o

n
ju

g
a

te
_

p
r

1
e

-1
2

1
e

-1
0

1
e

-0
8

1
e

-0
6

0
.0

0
0

1

0
.0

11

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

|xk-x
*
|

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

H
e

lic
a

l
v
a

lle
y v
e

c
to

r_
b

fg
s

c
o

n
ju

g
a

te
_

fr
c
o

n
ju

g
a

te
_

p
r

1
e

-1
2

1
e

-1
0

1
e

-0
8

1
e

-0
6

0
.0

0
0

1

0
.0

11

5
0

1
0

0
1

5
0

2
0

0
2

5
0

3
0

0
3

5
0

4
0

0

|xk-x
*
|

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

W
o

o
d

v
e

c
to

r_
b

fg
s

c
o

n
ju

g
a

te
_

fr
c
o

n
ju

g
a

te
_

p
r

F
ig
u
re

19
:
C
on
ve
rg
en
ce

ra
te
s
of

G
S
L
al
go
ri
th
m
s
w
it
h
th
e
B
re
n
t
li
n
e
se
ar
ch
.

4.4. COMPARISON OF ALGORITHMS 67

1
e

-1
2

1
e

-1
0

1
e

-0
8

1
e

-0
6

0
.0

0
0

1

0
.0

11

2
0

4
0

6
0

8
0

1
0

0
1

2
0

|xk-x
*
|

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

B
e

a
le

lr
w

w
s
im

p
le

x
n

m
s
im

p
le

x

1
e

-1
2

1
e

-1
0

1
e

-0
8

1
e

-0
6

0
.0

0
0

1

0
.0

11

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

8
0

0

|xk-x
*
|

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

E
x
te

n
d

e
d

 P
o

w
e

ll
s
in

g
u

la
r

(n
=

4
)

lr
w

w
s
im

p
le

x
n

m
s
im

p
le

x

1
e

-1
2

1
e

-1
0

1
e

-0
8

1
e

-0
6

0
.0

0
0

1

0
.0

11

5
0

1
0

0
1

5
0

2
0

0
2

5
0

3
0

0

|xk-x
*
|

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

H
e

lic
a

l
v
a

lle
y

lr
w

w
s
im

p
le

x
n

m
s
im

p
le

x

1
e

-1
2

1
e

-1
0

1
e

-0
8

1
e

-0
6

0
.0

0
0

1

0
.0

11

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

|xk-x
*
|

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

W
o

o
d

lr
w

w
s
im

p
le

x
n

m
s
im

p
le

x

F
ig
u
re

20
:
C
on
ve
rg
en
ce

ra
te
s
of

si
m
p
le
x
al
go
ri
th
m
s.

68 CHAPTER 4. NUMERICAL RESULTS

Observations (convergence class 1)

In general, the Newton-based algorithms exhibit superlinear or rapid lin-
ear convergence pattern. The modi�ed Newton algorithm mnewton exhibits
consistently the fastest convergence rates, which agrees with its theoreti-
cally established quadratic convergence rate. This is the case whenever the
Hessian remains positive de�nite, and no modi�cations to its elements are
necessary. The BFGS algorithms converge at a less impressive rate, and their
convergence rates show signs of degradation to linear.

It is also interesting to observe that relaxing the strong Wolfe conditions
has only limited e�ect on convergence rates of the BFGS algorithm. The dif-
ferences between bfgs_f and bfgs_mt are mostly insigni�cant. Surpisingly,
vector_bfgs2 consistently stops converging when ‖xk−x∗‖ enters the range
10−12−10−7. These observations indicate serious problems in the line search
algorithm of vector_bfgs2, since otherwise identical vector_bfgs in con-
vergence class 3 exhibits no such behaviour.

Observations (convergence class 2)

Instead of superlinear, the convergence patterns of algorithms of this class
seem to be linear, but nevertheless at a very rapid rate. The Polak-Ribière
algorithm converges faster on all test functions. One can also see some kind
of n-step convergence pattern, as stated in Theorem 2.3.50. This particularly
applies in low dimensions to conjgrad_fr_mt with periodic restarting, and
to some extent to conjgrad_pr_mt with less regular restarts.

Observations (convergence class 3)

The initial convergence rates far from the minimizer are very slow with this
class of algorithms, which may indicate that condition (3.1.1) is not su�cient
to guarantee global convergence as the Wolfe conditions do. However, the
�nal convergence rates near the minimizer are very rapid. Also note that
the stair-like pattern observed in several cases is due to periodic restarting
implemented in these algorithms.

Observations (convergence class 4)

Only linear convergence rates are observed at best, and the rate remains
constant throughout the iteration. Also the number of iterations is sub-
stantially higher than in the previous cases. It can also be observed that
lrwwsimplex exhibits convergence rates very similar to those obtained with
nmsimplex. Another point of interest is that the simplex algorithms solved
some test problems, such as the extended Powell singular function, on which
most gradient descent algorithms failed.

4.4. COMPARISON OF ALGORITHMS 69

4.4.3 Function and gradient evaluation counts

The number of used function and gradient evaluations is a key performance
measure of a minimization algorithm. Evaluation of a complicated function
may have a signi�cant contribution on its overall performance. The GSL++
and GSL algorithms were tested on the test problems given in Table 11. Only
the results on the helical valley function are shown, because the algorithms
behaved similarly on several other test problems.

Symbolic derivatives

The results with symbolic function expressions and derivatives are shown in
Table 12. The number of iterations (i), function evaluations (f), function
evaluations per iteration (f/i), gradient evaluations (g) and gradient evalua-
tions per iteration (g/i) were measured. Each iteration was terminated when
the stopping criterion ‖xk − x∗‖ < 10−8, where x∗ is the known minimizer,
was satis�ed. 7

Algorithm i f f/i g g/i
bfgs_mt 16 76 4.75 76 4.75
bfgs_f 16 39 2.4375 27 1.6875
vector_bfgs2 18 74 4.11111 49 2.72222
mnewton 12 48 4 48 4
conjgrad_fr_mt 21 94 4.47619 94 4.47619
conjgrad_pr_mt 19 88 4.63158 88 4.63158
vector_bfgs 45 87 1.93333 68 1.51111
conjugate_fr 50 88 1.76 70 1.4
conjugate_pr 53 93 1.75472 73 1.37736

Table 12: Function and gradient evaluation counts, symbolic derivatives.

Algorithms with the Moré and Thuente line search use the highest num-
ber of function and gradient evaluations. On the other hand, this is to
some extent compensated by the rapid convergence rates of these algorithms.
These observations imply high computational cost of algorithms with this line
search routine.

In terms of function and gradient evaluation counts per iteration, bfgs_f
is surprisingly e�cient. The same applies to vector_bfgs2. In particular,
the counts of more expensive gradient evaluations are lower than function
evaluation counts. These algorithms also use relatively low number of iter-
ations, which indicates high overall e�ciency of Fletcher's line search algo-
rithm.

7
mnewton also uses one Hessian evaluation per iteration.

70 CHAPTER 4. NUMERICAL RESULTS

Algorithms with the Brent line search use even lower number of function
and gradient evaluations per iteration. However, iteration counts can be
substantially higher. The total number of function and gradient evaluations
are nevertheless similar to or lower than those obtained with algorithms using
the Moré and Thuente line search. In particular, this applies to conjugate
gradient algorithms, for which the Brent line search is highly e�cient.

Due to its low iteration counts, mnewton is very competitive against the
other algorithms. Evaluating the symbolic Hessian can however be compu-
tationally very expensive, which is even more the case on high-dimensional
test problems.

Finite-di�erence derivatives

These tests were also run on the precompiled test functions with �nite-
di�erence derivatives. The central di�erence formula (A.5.2) and the forward
di�erence Hessian (A.5.4) were used in this case. This time the tolerance of
‖xk − x∗‖ was set to a less strict value of 10−6. The results are shown in
Table 13.

Algorithm i f f/i
bfgs_mt 22 672 30.5455
bfgs_f 27 345 12.7778
vector_bfgs2 73 996 13.6438
mnewton 14 522 37.2857
conjgrad_fr_mt 49 1421 29
conjgrad_pr_mt 55 1568 28.5091
vector_bfgs 109 1027 9.42202
conjugate_fr 143 1326 9.27273
conjugate_pr 123 1152 9.36585
lrwwsimplex 176 312 1.77273
nmsimplex 138 253 1.83333

Table 13: Function and gradient evaluation counts, �nite-di�erence deriva-
tives.

The results are similar to those discussed in the previous section. How-
ever, comparison of these results shows that using �nite-di�erence approxi-
mations can seriously degrade convergence rates. mnewton also uses a very
high number of function evaluations per iteration due to additional evalua-
tions required by the computation of the �nite-di�erence Hessian. This is
expected to be even more prominent in higher dimensions (c.f. Table 15).

Having substantially lower function evaluation counts per iteration, the
simplex algorithms compare very favourably to gradient descent algorithms

4.4. COMPARISON OF ALGORITHMS 71

when �nite-di�erence derivatives are used. They also use a lower total num-
ber of function evaluations than any gradient descent algorithm. This sug-
gests that, at least on low-dimensional problems, they can be highly e�cient
when evaluating the objective function is time-consuming.

4.4.4 Scale-dependency

The behaviour of the GSL++ and GSL algorithms under scaling of variables
was experimentally tested. Each algorithm was run on the quadratic function

f(x) = x2 + y2, x = (x, y)

in the coordinates x̃ transformed according to T (x) = (x/α, y) = x̃, i.e.

f̃(x̃) = f(T−1(x̃)) = f(αx, y) = α2x2 + y2.

Each iteration was tested against the stopping criterion

‖x̃− x∗‖ = ‖(x̃, y)‖ = ‖(x
α
, y)‖ < 10−6, (4.4.1)

where x∗ = (0, 0) is the minimizer of the objective function. The starting
point used in these tests was x̃0 = T (x0) = (3

α
, 2.1). In a similar fashion, the

initial simplex for the simplex algorithm was scaled according to

x̃0
i+1 = x̃0

1 + λiei, i = 1, 2,

where x̃0
1 = T (x0

1) = (3/α, 2.1), λ1 = 1/α and λ2 = 1. The test results are
shown in Figure 21. The required number of iterations to produce an iterate
satisfying (4.4.1) is plotted as a function of α in the range [10−6, 1].

Observations

As expected, steepest_descent is highly intolerant to scaling of variables.
The required number of iterations increases rapidly as α decreases. Possibly
due to this reason, conjgrad_fr_mt exhibits similar behaviour because of
periodic restarting back to the steepest descent direction. It is somewhat
surprising that conjgrad_pr_mt does not su�er from this. Although its
scale-invariance is not theoretically guaranteed, only moderate increase in
the number of iterations is observed as α decreases. As a Newton-based
algorithm, bfgs_mt neither seems to be considerably a�ected by scaling of
variables.

The GSL algorithms using the Brent line search with stopping criterion
(3.1.1) are not invariant. Unlike the Wolfe conditions, this criterion tests an
angle measure, and thus it is not scale-invariant. In particular, the BFGS
algorithm loses its tolerance to scaling with this line search (c.f. bfgs_mt

and vector_bfgs). In addition to the results shown here, lrwwsimplex and
mnewton were observed to be practically invariant to scaling, which agrees
with their theoretical results.

72 CHAPTER 4. NUMERICAL RESULTS

50

100

150

200

250

300

350

400

450

500

0.1 1

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

α

steepest_descent

50

100

150

200

250

300

350

400

450

500

1e-05 0.0001 0.001 0.01 0.1 1
n

u
m

b
e

r
o

f
it
e

ra
ti
o

n
s

α

conjgrad_fr_mt

5

10

15

20

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

α

conjgrad_pr_mt

2

3

4

5

6

7

8

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

α

bfgs_mt

5

10

15

20

25

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

α

conjugate_pr

5

10

15

20

25

30

35

40

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

α

vector_bfgs

Figure 21: Scale-dependency of minimization algorithms.

4.4. COMPARISON OF ALGORITHMS 73

4.4.5 Performance pro�les

One of the main goals of the testing procedures was to provide an easily
interpretable summary of performance di�erences between the reviewed al-
gorithms. For this purpose, the Dolan and Moré performance pro�les [DM02]
were measured for each GSL++ and GSL minimization algorithm. Following
the notation introduced by Dolan and Moré, we denote the set of solvers by
S and the set of test problems by P . The number of solvers is denoted by
ns and the number of test problems is denoted by np.

As the absolute computation time is generally hardware-dependent, it is
advantageous to use relative test measures for performance comparisons. For
this purpose, Dolan and Moré de�ne the performance ratio 8

rp,s =
tp,s

min{tp,s | s ∈ S}
,

where tp,s denotes the computation time required by a solver s ∈ S to solve
a problem p ∈ P . This performance ratio describes the relative computation
time used by the solver s with respect to the best solver on the problem p.

By using the de�nition of performance ratio, Dolan and Moré de�ne the
probability function

ρs(τ) =
1

np

∑
p∈P

χp,s(τ), (4.4.2)

where

χp,s(τ) =

{
0, rp,s > τ
1, rp,s ≤ τ

and np denotes the number of test problems in P . Expression (4.4.2) can be
interpreted as the cumulative distribution function. It describes the proba-
bility of the solver s being able to solve a fraction of ρs(τ) of all test problems
in P within a relative performance ratio of τ .

The limits of ρs are of particular interest. The limit limτ→∞ ρs(τ) gives
the percentage of problems that a solver s is eventually able to solve if com-
putation time is not limited. On the other hand, the value of ρs(1) gives the
percentace of test problems that a solver s solves faster than any other solver
in S.

The measured performance pro�les are shown in Figures 22-25. The �rst
set of measurements was carried out with symbolic function evaluation and
di�erentiation. The second set of measurements was carried out by using
precompiled test functions written in C with central-di�erence gradients. In-
stead of symbolic Hessian, its forward-di�erence approximations (A.5.3) and
(A.5.4) were used with symbolic and �nite-di�erence gradients, respectively.
In order to enhance readability, ρs(2

τ) is plotted instead of ρs(τ). This shows
more clearly the behaviour of ρs near unity.

8If solver s is not able to solve problem p, rp,s is set to rM ≥ rp,s for all p ∈ P, s ∈ S.

74 CHAPTER 4. NUMERICAL RESULTS

Test problems

The test problems for measuring performance pro�les were obtained from
the [MGH81] problem set. The notations

‖xk − x∗‖REL, ‖f(xk)− f(x∗)‖REL, ‖xk − x∗‖, ‖f(xk)− f(x∗)‖

denote the relative and absolute errors in the �nal parameter and function
values, respectively. The relative errors are de�ned as

‖xk − x∗‖REL = ‖xk−x∗‖
‖x∗‖ , ‖f(xk)− f(x∗)‖REL = ‖f(xk)−f(x∗)‖

f(x∗)
,

where the stopping criteria are chosen such that x∗ 6= 0 and f(x∗) 6= 0. Each
test run was also terminated if the stopping criterion was not satis�ed after
50000 iterations. The used test functions with their dimensions and stopping
criteria are listed in Table 14. 9

Name n m Stopping criterion
Powell badly scaled ‖f − f ∗‖ABS < 10−14

Brown badly scaled ‖x− x∗‖ABS < 10−6

Beale ‖x− x∗‖ABS < 10−6

helical valley ‖x− x∗‖ABS < 10−6

Gaussian ‖f − f ∗‖REL < 10−4

Gulf research and development 5 ‖x− x∗‖ABS < 10−6

Box three-dimensional 5 ‖f − f ∗‖ABS < 10−6

Wood ‖x− x∗‖ABS < 10−6

Brown and Dennis 20 ‖f − f ∗‖ABS < 10−1

Biggs EXP6 13 ‖f − f ∗‖REL < 10−4

Watson 6 ‖f − f ∗‖REL < 10−4

extended Rosenbrock 10 ‖x− x∗‖ABS < 10−6

extended Powell singular 12 ‖x− x∗‖ABS < 10−6

penalty function I 10 ‖f − f ∗‖REL < 10−4

penalty function II 10 ‖f − f ∗‖REL < 10−4

variably dimensioned 10 ‖x− x∗‖ABS < 10−6

trigonometric 5 ‖f − f ∗‖ABS < 10−5

chebyquad 8 8 ‖f − f ∗‖REL < 10−5

Table 14: Number of test function dimensions (if not default) and stopping
criteria used in the performance pro�le tests.

9For notational convenience, we omit the subscripts k and instead use the notations f
and f∗ for f(xk) and f(x∗), respectively.

4.4. COMPARISON OF ALGORITHMS 75

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

ρ s
(2

τ)

τ

Symbolic function and derivative evaluation

mnewton
steepest_descent

conjgrad_pr_mt
bfgs_f

lrwwsimplex

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

ρ s
(2

τ)

τ

Precompiled functions with finite-difference derivatives

mnewton
steepest_descent

conjgrad_pr_mt
bfgs_f

lrwwsimplex

Figure 22: Performance pro�les of algorithms of di�erent types.

76 CHAPTER 4. NUMERICAL RESULTS

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

ρ s
(2

τ)

τ

Symbolic function and derivative evaluation

mnewton
bfgs_mt

bfgs_f
vector_bfgs2

vector_bfgs

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

ρ s
(2

τ)

τ

Precompiled functions with finite-difference derivatives

mnewton
bfgs_mt

bfgs_f
vector_bfgs2

vector_bfgs

Figure 23: Performance pro�les of the GSL++ implementations of Newton-
based algorithms and the corresponding GSL implementations.

4.4. COMPARISON OF ALGORITHMS 77

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

ρ s
(2

τ)

τ

Symbolic function and derivative evaluation

conjgrad_fr_mt
conjgrad_pr_mt

conjugate_pr
conjugate_fr

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

ρ s
(2

τ)

τ

Precompiled functions with finite-difference derivatives

conjgrad_fr_mt
conjgrad_pr_mt

conjugate_pr
conjugate_fr

Figure 24: Performance pro�les of the GSL++ implementations of conjugate
gradient algorithms and the corresponding GSL implementations.

78 CHAPTER 4. NUMERICAL RESULTS

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

ρ s
(2

τ)

τ

Symbolic function and derivative evaluation

lrwwsimplex
nmsimplex

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

ρ s
(2

τ)

τ

Precompiled functions with finite-difference derivatives

lrwwsimplex
nmsimplex

Figure 25: Performance pro�les of the GSL++ implementation of the Nelder
and Mead simplex algorithm and the corresponding GSL implementation.

4.4. COMPARISON OF ALGORITHMS 79

Success rates

The BFGS algorithm bfgs_f consistently shows superior reliability. It can
solve 95% of test problems with symbolic derivatives. This is also the case
with �nite-di�erence-derivatives, which implies that Fletcher's line search
algorithm with its strict safeguarding rules is very robust. The GSL algorithm
vector_bfgs2 with a modi�cation of Fletcher's line search is slightly less
reliable. As observed in Section 4.4.2, its line search algorithm is prone to
failures.

The BFGS and the Polak-Ribière algorithms with the Moré and Thuente
line search also reach 95% rates of success with symbolic derivatives. Unfor-
tunately, this is not the case with �nite-di�erence derivatives. In this case,
they exhibit 5− 20% losses of reliablity. This indicates that the polynomial
interpolation scheme of the Moré and Thuente line search is very sensitive.
Its implementation does not impose as strict safeguarding rules as Fletcher's
algorithm, which could partly explain this.

Algorithms with the Brent line search satisfying criterion (3.1.1) do not
achieve the highest rates of success. This is not surprising, since global
convergence with this line search criterion is not guaranteed. Most notably,
vector_bfgs clearly lags behind all the other Newton-based algorithms with
line searches satisfying the Wolfe conditions. The observed 90% rates of
success in several cases are nevertheless surprisingly high. In particular, the
GSL conjugate gradient algorithms with the Brent line search perform very
well achieving similar success rates with the GSL++ implementations.

With symbolic derivatives, the Polak-Ribière algorithms with 88 − 95%
rates of success are more robust than the Fletcher-Reeves algorithms with
85% rates. This is somewhat surprising in the light of their convergence
theory that guarantees convergence of the Fletcher-Reeves algorithm under
more general conditions. This is likely caused by stagnations, and in e�ect,
failures of the Fletcher-Reeves algorithm, as the results of Section 4.3.3 imply.

An interesting observation is that all conjugate gradient algorithms su�er
from 10− 20% losses of reliability when �nite-di�erence approximations are
used instead of symbolic derivatives. This could be partly explained by the
form of equations (2.3.43) and (2.3.44) which suggests that these algorithms
are very sensitive to errors in the denominators of these equations. As it was
observed in Section 4.4.4, conjugate gradient algorithms are also sensitive to
scaling, which can be an additional source of failures.

The lack of reliability of the Nelder and Mead simplex algorithms is very
disappointing. As it was observed in Section 4.3.1, they consistently fail
on higher-dimensional problems (n ≥ 10), for which reason their rates of
success remain below 80%. This success rate however becomes much more
competitive when �nite-di�erence derivatives are used, and gradient descent
algorithms lose their advantage. The GSL++ implementation lrwwsimplex

80 CHAPTER 4. NUMERICAL RESULTS

is slightly more reliable with success rate of nearly 80% compared to the GSL
implementation nmsimplex with success rate of little higher than 70%. The
steepest descent algorithm steepest_descent also yields very low rate of
success, because it likely failed on most badly scaled test problems.

The modi�ed Newton algorithm mnewton neither achieves the highest
success rates. Its LDLT decomposition does not seem to lead to conver-
gent iteration in all cases. Although this decomposition is guaranteed to
produce positive de�nite matrices, the parameter µ can become too large.
In such a case, the iteration fails because it e�ectively becomes the steepest
descent iteration. Running it with symbolic Hessians could possibly improve
its reliability.

Performance comparison, Figure 22

These results show that bfgs_f has superior performance. It is the fastest
algorithm on 65% of test problems. This is also the case with �nite-di�erence
derivatives. The conjgrad_pr_mt algorithm uses substantially higher com-
putation times than bfgs_f due to its computationally more expensive Moré
and Thuente line search routine. The mnewton algorithm, which also uses
the same line search routine, exhibits very similar performance. Its faster
convergence probably explains why it achieves its �nal success rates with a
smaller computational e�ort.

The simplex algorithm lrwwsimplex that uses a relatively small number
of function evaluations is the fastest algorithm on 30% of test problems with
symbolic evaluation. However, it loses this advantage on precompiled test
functions, in which case function evaluations have smaller contribution to per-
formance. It is also not surprising that slowly converging steepest_descent
algorithm requires very high computation times for achieving its highest suc-
cess rates.

Performance comparison, Figure 23

BFGS algorithms with Fletcher's line search have the best performance with
both symbolic and �nite-di�erence derivatives. Again, bfgs_f leads all the
others. This time it is the fastest algorithm on about 55% of test problems.
It also outperforms vector_bfgs2 that uses a more complex line search al-
gorithm.

The bfgs_mt algorithm has a substantially higher computational cost
than bfgs_f due to its expensive line search routine. Also the mnewton

and vector_bfgs algorithms are both clearly lagging behind the other algo-
rithms. This further reinforces the earlier observations that the Brent line
search might not be a good choice for the BFGS algorithm. Neither is the
rapid convergence of the mnewton algorithm enough to give it an advantage
over the other Newton-based algorithms.

4.4. COMPARISON OF ALGORITHMS 81

Performance comparison, Figure 24

As observed in Section 4.4.2, the Polak-Ribière algorithms exhibit faster con-
vergence rates than the Fletcher-Reeves algorithms, which also seems to give
them a clear performance advantage. They are the fastest algorithms on
most test problems.

The Brent line search seems to yield better performance than the Moré
and Thuente line search. The GSL++ implementations are seriously lagging
behind the GSL implementations in this case. This is not surprising in the
light of the results discussed in Section 4.4.3. They showed that the the
Brent line search can be signi�cantly more e�ective than the latter in terms
of function and gradient evaluation counts.

Performance comparison, Figure 25

Considering only minor di�erences in their implementations, the performance
di�erence of the two simplex algorithms is surprisingly large. The reason for
this is di�cult to explain. A careful inspection of the GSL source code how-
ever showed that it unnecessarily computes (3.1.2) even if it is not tested.
The expensive square root computations can cause some performance di�er-
ences.

4.4.6 Asymptotic complexity

An important performance measure of a minimization algorithm is that how
its performance scales when the problem dimension increases. The com-
putation times per iteration were measured for several GSL++ and GSL
algorithms. Each algorithm was iterated ten times on the extended Rosen-
brock function, and the average computation time was measured. In order
to minimize the contribution of function evaluations to the measured times,
this test was carried out on the precompiled extended Rosenbrock function.
Central-di�erence derivatives (A.5.2) were used. The results are shown in
Figure 26.

The measured computation times are in fact dominated by line search
routines and not by matrix computations. This argument is based on the
observation that as a conjugate gradient algorithm, conjgrad_pr_mt should
behave according to its complexity of O(n) compared to the BFGS algorithm
bfgs_mt with complexity of O(n2). On the contrary, bfgs_f with its sim-
pler line search routine outperforms conjgrad_pr_mt. It is also faster than
vector_bfgs2, which has a more complex line search routine.

The fundamental reason for the high computational complexity of line
search routines is that they require a high number of function and gradient
evaluations. This concerns both symbolic di�erentiation and �nite-di�erence

82 CHAPTER 4. NUMERICAL RESULTS

approximations. This boils down to the fundamental limitation that evaluat-
ing a very high-dimensional objective function is computationally expensive
no matter how it is done. It should also be emphasized that due to the
highly optimized nature of BLAS, linear algebra operations are carried out
very e�ciently.

Another observation of these results is that lrwwsimplex, which does not
use line searches, outperforms all the other algorithms by a wide margin. This
observation also agrees with the results of Section 4.4.3, which showed that it
uses a substantially lower number of function evaluations than gradient-based
methods with �nite-di�erence derivatives.

0

20

40

60

80

100

120

140

50 100 150 200 250 300

ti
m

e
 p

e
r

it
e
ra

ti
o
n
 (

m
ic

ro
s
e
c
o
n
d
s
)

number of dimensions (n)

conjgrad_pr_mt
bfgs_mt

bfgs_f
vector_bfgs2
lrwwsimplex

Figure 26: Used computation times per iter iteration as a function of problem
dimension, extended Rosenbrock function.

Chapter 5

Conclusions and discussion

In Chapter 2, we concluded that most unconstrained optimization algorithms
have well-established convergence theory. Building algorithms on the con-
vergence theory described in Chapter 2 led to robust and e�cient implemen-
tations that behaved predictably according to their theoretical results. Also
some of the individual strengths and possible weaknesses of the reviewed
algorithms were identi�ed.

The existing GSL algorithms are already very �ne-tuned, and there is only
little room for improvement. The test results of the algorithms implemented
in GSL++ however showed several small but promising improvements over
the existing GSL implementations. Since the algorithms implemented in
GSL++ are compliant with the existing GSL interface, they can be be used as
replacements for the existing GSL algorithms with only minor modi�cations.

Evaluating the performance of a minimization algorithm is indeed a dif-
�cult task. There is no de�nite answer for which algorithm has the best
overall performance. It was also seen that evaluating the objective function
and its derivatives can have a major impact on performance depending on
how they are supplied to minimization algorithms. It should also be empha-
sized that all test results depend on the choice of test problems. Tests on
high-dimensional or noisy functions were not carried out in this thesis, which
would have led to more conclusive results.

It was shown that The Nelder and Mead simplex algorithm has serious
shortcomings. It consistently failed to converge in higher dimensions. Some
kind of restarting proceduce could e�ectively force the iteration to converge if
it should stall, see e.g. [Kel99, p. 141]. Provably convergent variants of this
algorithm have also been developed [PCB02]. However, all these variants
have higher computational complexity. They have been used in very few
practical implementations, and thus they were not reviewed in this thesis.

The nonlinear conjugate gradient algorithms were not observed to have
any particular advantage over any of the other algorithms. Furthermore,
they require accurate line searches that preferably satisfy the strong Wolfe

83

84 CHAPTER 5. CONCLUSIONS AND DISCUSSION

conditions. This makes programming an e�cient conjugate gradient imple-
mentation very di�cult. They seem to be best suited for problems where
evaluating the objective function is computationally very cheap. For these
reasons, they are most commonly used for solving linear equations.

The modi�ed Newton method showed mixed results. It consistently ex-
hibited the fastest convergence rates. However it su�ered from unexplained
failures on several test problems. It was also observed to have a very high
computational complexity, which questions its usability in practical applica-
tions.

The BFGS algorithms were the most reliable and e�cient of the reviewed
algorithms. They were the only algorithms that were able to solve nearly all
test problems in the [MGH81] problem set with consistent performance. In
particular, the bfgs_f algorithm with Fletcher's line search was superior to
all the other algorithms. It was also observed that requiring the strong Wolfe
conditions with the BFGS algorithm is unnecessary. The bfgs_mt algorithm
with its Moré and Thuente line search exhibited very poor performance com-
pared to bfgs_f. Moreover, it was not able to solve any larger number of
test problems than its faster competitor.

The comparison of line search algorithms yielded perhaps the most inter-
esting results. They seemed to play a major role in the overall performance
of gradient descent algorithms. It was also observed that the line search al-
gorithms satisfying the Wolfe or the strong Wolfe conditions yielded the best
reliability of the algorithms they were embedded into. No similar success
rates were observed with algorithms using the simpler Brent line search. The
verdict is that one should use as simple a line search algorithm as possible
without sacri�cing reliability or global convergence of the multidimensional
algorithm.

Possible future extensions of GSL++ include implementing trust region
methods [Kel99, p. 50-63], which are a viable alternative to line searches.
In particular, it has been claimed that quasi-Newton methods with the SR1
formula perform remarkably well with this approach [CGT91]. There also
exists speci�c methods for solving least-squares problems such as the trust
region-based Levenberg-Marquardt method and the Gauss-Newton method,
which were not studied in this thesis. Also the modi�ed simplex algorithm
discussed in [PCB02] could be worth testing. A broader extension is to
implement a framework for constrained optimization, [NW99, p. 314-357].
GSL has no interfaces for implementing trust-region algorithms or algorithms
for constrained optimization. However, they can be implemented on top of
the existing GSL code basis with relatively little e�ort.

References

[AB85] M. Al-Baali, Descent property and global convergence of the
Fletcher-Reeves method with inexact line search, IMA Journal
of Numerical Analysis 5 (1985), 121�124.

[Aka59] H. Akaike, On a successive transformation of probability distribu-
tion and its application to the analysis of the optimum gradient
method, Annals of the Institute of Statistical Mathematics 11
(1959), 1�17.

[BCP04] D. Byatt, I.D. Coope, and C.J. Price, E�ect of limited precision
on the BFGS quasi-Newton algorithm, Anziam 45 (E) (2004),
C283�C295.

[Ber99] D.P. Bertsekas, Nonlinear Programming, second ed., Athena Sci-
enti�c, Belmont, 1999.

[BNY87] R.H. Byrd, J. Nocedal, and Y. Yuan, Global convergence of a
class of quasi-Newton methods on convex problems, SIAM Jour-
nal on Numerical Analysis 24 (1987), 1171�1190.

[Bre73] R.P. Brent, Algorithms for Minimization With Derivatives,
Prentice Hall, Eaglewood Cli�s, 1973.

[Bro70] C.G. Broyden, The convergence of a Class of Double-rank Min-
imization Algorithms, parts I and II, Journal of the Institute of
Mathematics and Its Applications 6 (1970), 76�90,222�236.

[Cau48] A. Cauchy, Méthode générale pour la résolution des systémes
d'équations simultanées, 1848.

[CGT91] A.R. Conn, N.I.M Gould, and P.L. Toint, Convergence of quasi-
Newton matrices generated by the symmetric rank one update,
Mathematical Programming 50 (1991), 177�195.

[Coh72] A. Cohen, Rate of Convergence of Several Conjugate Gradi-
ent Algorithms, SIAM Journal on Numerical Analysis 9 (1972),
no. 2, 248�259.

85

86 REFERENCES

[Cor01] T.H. Cormen, Introduction to Algorithms, MIT Press, 2001.

[Dix72] L.C.W. Dixon, Variable Metric Algorithms: Necessary and Suf-
�cient Conditions for Identical Behavior of Nonquadratic Func-
tions, Journal of Optimization Theory and Applications 10
(1972), no. 1, 34�40.

[DM74] J.E. Dennis and J.J. Moré, A Characterization of Superlin-
ear Convergence and Its Application to Quasi-Newton Methods,
Mathematics of Computation 28 (1974), no. 126, 549�560.

[DM77] , Quasi-Newton Methods, Motivation and Theory, SIAM
Review 19 (1977), 46�89.

[DM02] E.D. Dolan and Jorge J. Moré, Benchmarking optimization soft-
ware with performance pro�les, Mathematical Programming 91
(2002), no. 2, 201�213.

[DS83] J.E. Dennis and R.B. Schnabel, Numerical methods for un-
constrained optimization and nonlinear equations, Prentice-Hall,
Englewood Cli�s, 1983.

[Eat02] J.W. Eaton, GNU Octave Manual, Network Theory Limited,
2002.

[Fle70] R. Fletcher, A New Approach to Variable Metric Algorithms,
The Computer Journal 13 (1970), 317�322.

[Fle80] , Practical methods of optimization, vol. 1: Unconstrained
optimization, Wiley, Chichester, 1980.

[FR64] R. Fletcher and C.M. Reeves, Function minimization by conju-
gate gradients, Computer Journal 7 (1964), 149�154.

[GC91] A. Griewank and G.F. Corliss (eds.), Automatic Di�erentiation
of Algorithms: theory, implementation and application, SIAM
Publications, Philadelphia, 1991.

[GM74] P.E. Gill andW. Murray, Newton-type methods for unconstrained
and linearly constrained optimization, Mathematical Program-
ming 7 (1974), 311�350.

[GMW81] P.E. Gill, W. Murray, and M.H. Wright, Practical Optimization,
Academic Press, London, 1981.

[GMW91] , Numerical linear algebra and optimization, vol. Volume
1, Addison-Wesley, Redwood city, 1991.

REFERENCES 87

[GN92] J. Gilbert and J. Nocedal, Global Convergence Properties of Con-
jugate Gradient Methods for Optimization, SIAM Journal on Op-
timization 2 (1992), 21�42.

[Gol70] D.A. Goldfarb, A Family of Variable-Metric Methods Derived
by Variational Means, Mathematics of Computation 24 (1970),
no. 109, 23�26.

[Gre70] J. Greenstadt, Variations on Variable-Metric Methods, Mathe-
matics of Computation 24 (1970), 1�22.

[GvL89] G.H. Golub and C.F. van Loan, Matrix Computations, second
ed., Johns Hopkins University Press, Baltimore, 1989.

[HJ85] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge Uni-
versity Press, Cambridge, 1985.

[HS52] M.R. Hestenes and E. Stiefel, Methods of Conjugate Gradients
for Solving Linear Systems, Journal of Research of the National
Bureau of Standards 49 (1952), 409�436.

[Kel99] C.T. Kelley, Iterative Methods for Optimization, SIAM Publica-
tions, Philadelphia, 1999.

[KR88] B.W. Kernighan and D.M. Ritchie, The C Programming Lan-
guage, second ed., Eaglewood Cli�s, 1988.

[LRWW98] J.C. Lagarias, J.A. Reeds, M.H. Wright, and P.E. Wright, Con-
vergence properties of the Nelder-Mead simplex method in low
dimensions, SIAM Journal on Optimization 9 (1998), 112�147.

[Lue84] D.G. Luenberger, Linear and Nonlinear Programming, second
ed., Addison-Wesley, Reading, 1984.

[McK98] K.I.M McKinnon, Convergence of the Nelder-Mead Simplex
Method to a Nonstationary Point, SIAM Journal on Optimiza-
tion 9 (1998), no. 1, 148�158.

[Mez94] J.C. Meza, OPT++: An Object-Oriented Class Library for Non-
linear Optimization, Tech. Report SAND94-8225, Sandia Na-
tional Laboratories, Livermore, California, 1994.

[MGH81] J.J. More, B.S. Garbow, and K.E. Hillstrom, Testing Uncon-
strained Optimization Software, ACM Transactions on Mathe-
matical Software 7 (1981), no. 1, 17�41.

88 REFERENCES

[MT94] J.J. Moré and D.J. Thuente, Line Search Algorithms with Guar-
anteed Su�cient Decrease, ACM Transactions on Mathematical
Software 20 (1994), 286�307.

[NM65] J.A. Nelder and R. Mead, A simplex method for function mini-
mization, The Computer Journal 7 (1965), 308�313.

[NW99] J. Nocedal and S.J. Wright, Numerical Optimization, Springer
Verlag, 1999.

[PCB02] C.J. Price, D. Coope, and D. Byatt, A Convergent Variant of
the Nelder-Mead Algorithm, Journal of Optimization Theory and
Applications 113 (2002), 5�19.

[Pow76] M.J.D. Powell, Some global convergence properties of a variable
metric algorithm for minimization without exact line searches,
Nonlinear Programming, SIAM-AMS Proceedings (R.W. Cottle
and C.E. Lemke, eds.), vol. 9, SIAM Publications, 1976, pp. 53�
72.

[Pow77] , Restart Procedures for the Conjugate Gradient Method,
Mathematical Programming 12 (1977), no. 1, 241�254.

[Pow83] , Nonconvex Minimization Calculations and the Conju-
gate Gradient Method, Numerical Analysis (1983).

[PR69] E. Polak and G. Ribière, Note sur la convergence de méth-
odes directions conjugées, Revue Française d'Informatique et de
Recherche Opérationnelle, 3e Année 16 (1969), 35�43.

[PTVF07] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flan-
nery, Numerical recipes: the art of scienti�c computing, third
ed., Cambridge University Press, New York, 2007.

[Sha70] D.F. Shanno, Conditioning of Quasi-Newton Methods for Func-
tion Minimization, Mathematics of Computation 24 (1970),
647�657.

[Str00] B. Stroustrup, The C++ Programming Language, special ed.,
Addison-Wesley, 2000.

[Tor89] V.J. Torczon, Multi-Directional Search: A Direct Search Algo-
rithm for Parallel Machines, Ph.D. thesis, Rice University, Hous-
ton, Texas, 1989.

[Ueb97] C.W. Ueberhuber, Numerical computation: methods, software
and analysis, vol. Vol. 1, Springer, Berlin, 1997.

REFERENCES 89

[Wol69] P. Wolfe, Convergence conditions for ascent methods, SIAM Rev.
11 (1969), 226�235.

[Wol71] , Convergence conditions for ascent methods II: Some
corrections, SIAM Rev. 13 (1971), 185�188.

[Wol03] S. Wolfram, The Mathematica Book, �fth ed., Wolfram Media,
2003.

[Wri94] S.J. Wright, Compact storage of Broyden-class quasi-Newton
matrices, preprint, Argonne National Laboratory, Argonne, IL,
1994.

90 REFERENCES

Appendix A

Supplementary algorithms

A.1 The backtracking algorithm

The most basic algorithm that produces a step length satisfying the su�cient
decrease condition (2.3.7) is backtracking, [Kel99, p. 39-40]. It reduces the
step length αk from the given initial value α0 by a factor of σ < 1 until
the su�cient decrease condition (2.3.7) is satis�ed. This is mathematically
formulated as choosing αk = σmα0 such that

m = min
m∈N
{φ(σmα0) ≤ φ(0) + µσmα0φ

′
(0)}.

This algorithm is computationally very inexpensive. Each iteration only
consists of testing the su�cient decrease condition (2.3.7) and reducing the
step length αk, if necessary. However, it has the disadvantage that it is not
guaranteed to produce step lengths that satisfy condition (2.3.9) or (2.3.8).
Consequently, global convergence of algoritms that require stricter line search
conditions is not guaranteed. The statement of this algorithm with a modi-
�cation adopted from GSL (lines 4-7) is given below. 1

Algorithm 9: The backtracking algoritm

α← α01

while φ(α) > φ(0) + µαφ′(0) do2

α← σα3

if α = α0 then4

α0 ← ρα05

else6

α0 ← α7

Lines 4-7 implement a simple but e�ective strategy for accelerating con-
vergence. If the �rst iteration step of the loop at lines 2-3 is successful, the
algorithm multiplies the initial step length α0 by a factor of ρ, where ρ > 1.
On the other hand, if the �rst iteration is not successful, α0 is left unmod-
i�ed. This strategy alongside retaining the initial step length α0 between
subsequent calls of this routine e�ectively prevents the initial step lengths α0

from becoming too small.

1Instead of the condition at line 2, the GSL implementation tests a simpler condition

φ(α) > φ(0). It also uses the normed gradient − ∇f(xk)
‖∇f(xk)‖ as the search direction dk.

91

92 APPENDIX A. SUPPLEMENTARY ALGORITHMS

A.2 Fletcher's line search algorithm

Fletcher's line search algorithm [Fle80, p. 26-28] is speci�cally aimed for
producing step lengths that satisfy the weaker Wolfe conditions (2.3.7) and
(2.3.9). Following the notation introduced in section 2.3.2, we denote the
admissible step length intervals by

T (µ, η) = {α ∈ R | α ∈ Ts(µ), α ∈ Tc(η)},

where

Ts(µ) = {α > 0 | φ(α) ≤ φ(0) + µαφ′(0)},
Tc(η) = {α > 0 | φ′(α) ≥ ηφ′(0)}.

The algorithm maintains the current step length interval Ik = [αkl , α
k
u]

and the current trial step length αkt ∈ Ik. Each iteration of the algorithm
consists of two loops. The outer loop (lines 2-8) aims to produce a trial
step αk+1

t ∈ Tc(η) by extrapolation, i.e. choosing an αk+1
t ∈]αkt , α

k
u[. On

the other hand, the inner loop (lines 3-4) is repeated until a step length
αk+1
t ∈ Ts(µ) is found by interpolation, i.e. choosing an αk+1

t ∈]αkl , α
k
t [.

If after this loop, αkt ∈ Tc(η), and thus αkt ∈ T (µ, η), it is accepted, and
the algorithm terminates. If αkt /∈ Tc(η), a new extrapolated trial step is
generated. This step length is no longer guaranteed to be in Ts(µ), and the
iteration is restarted with an interpolation loop.

Algorithm 10: Fletcher's line search algorithm.

Choose µ ∈]0, 1
2
[, η ∈ [µ, 1[, τ ∈]0, η[, χ ∈]τ,∞[1

for k = 0, 1, . . . do2

/* Step 1.:interpolation */

while αkt /∈ Ts(µ) do3

Choose αk+1
t ∈]αkl , α

k
t [by using Algorithm 11.4

k ← k + 15

/* Step 2.:extrapolation */

if αkt ∈ Tc(η) then6

Terminate and accept αkt .7

else8

Choose αk+1
t ∈]αkt , α

k
u[by using Algorithm 12.9

The interpolation step of Fletcher's algorithm is speci�ed in Algorithm 11.
It obtains a trial step αk+1

t from equation (2.3.26). The safeguarding rule with
the constant τ forces αk+1

t to the interval]αl, αu[and also prevents the trial
step from being too close its endpoints by setting αk+1

t ∈]αkl +τ∆α, αku−τ∆α[,

A.2. FLETCHER'S LINE SEARCH ALGORITHM 93

where ∆α = αku−αkl . Each iteration of this step in the inner loop of Algorithm
10 contracts the interval Ik from the right-hand side. This guarantees that
condition (2.3.7) is eventually satis�ed. 2

Algorithm 11: Fletcher's line search algorithm, interpolation step.

α+
t ← αl + (αt−αl)

2f ′(αl)
2[f(αl)−f(αt)+(αt−αl)f ′(αl)]

/* eq. (2.3.26) */1

∆α← αu − αl2

if α+
t < αl + τ∆α then3

α+
t ← αl + τ∆α4

else if α+
t > αu − τ∆α then5

α+
t ← αu − τ∆α6

α+
l ← αl7

α+
u ← αt8

The extrapolation step is speci�ed in Algorithm 12. This step obtains
a trial step αk+1

t from equation (2.3.27). As for the interpolation step, the
computed trial step is explicitly forced to lie within the interval]αkt , α

k
u[

such that αk+1
t ∈ [αkt + τ∆α, αkt + χ∆α], where ∆α = αkt − αkl and χ > τ .

In order to enforce that αk+1
t < αku, an additional safeguarding condition

αk+1
t − αkt ≤ 1

2
(αku − αkt) is imposed.

Algorithm 12: Fletcher's line search algorithm, extrapolation step.

α+
t ← αt + (αt−αl)f

′(αt)
f ′(αl)−f ′(αt)

/* eq. (2.3.27) */1

∆α← αt − αl2

if α+
t < αt + τ∆α then3

α+
t ← αt + τ∆α4

else if α+
t > αt + χ∆α then5

α+
t ← αt + χ∆α6

if α+
t − αt > 1

2
(αu − αt) then7

α+
t ← αt + 1

2
(αu − αt)8

α+
l ← αt9

α+
u ← αu10

Each extrapolation step contracts the interval Ik from the left-hand side,
which in conjunction with interpolation steps guarantees convergence of the
algorithm to a limit α∗ ∈ I0. This limit is however not guaranteed to satisfy
the Wolfe conditions, since Fletcher provides no convergence results for his
algorithm. These steps are illustrated in Figures 27 and 28.

2As in section 2.3.2, we omit superscripts k and denote indices k + 1 by +.

94 APPENDIX A. SUPPLEMENTARY ALGORITHMS

αl

αt

α+
t

I+

αu

I

Figure 27: Interpolation step of Fletcher's algorithm.

αu

αl

αt

I

α+
t

I+

Figure 28: Extrapolation step of Fletcher's algorithm.

A.3. FLETCHER'S INITIAL STEP LENGTH SELECTION 95

A.3 Fletcher's initial step length selection

Fletcher [Fle80, p. 28] suggested applying (2.3.26) for specifying initial line
search step lengths. As in section 2.3.2, the initial interval is I0 = [0,∞].
Equating α0 and the minimizer of a quadratic polynomial that interpolates
φ(αl), φ

′(αl) and φ(α0) yields

α0 = αl +
(α0 − αl)2φ′(αl)

2[φ(αl)− φ(α0) + (α0 − αl)φ′(αl)]
. (A.3.1)

The problem with solving α0 from this formula is that φ(α0) depends on
α0 which is to be solved. This problem is circumvented by assuming that

φ(αl)− φ(α0) = ∆φ,

where
∆φ ≡ f(xk−1)− f(xk)

is obtained by using xk−1 from the previous iteration of (2.3.1). By this
approximation and the choice αl = 0, we can write equation (A.3.1) as

α0 =
α2

0φ
′(αl)

2[∆φ+ α0φ′(0)]
.

Rearranging terms in the above equation yields an estimate for the initial
step length, that is

α0 = − 2∆φ

φ′(0)
.

This method for choosing the initial step length is illustrated in Figure 29.

αl

φl

φ0∆φ

α0

Figure 29: Fletcher's initial step length selection.

96 APPENDIX A. SUPPLEMENTARY ALGORITHMS

A.4 The modi�ed LDLT factorization

We begin our analysis with brie�y describing the standard LDLT factoriza-
tion. It can be shown that any symmetric and positive de�nite matrix A can
be written in the form 3

A = LDLT , (A.4.1)

where L is a lower-triangular matrix with unit diagonal elements and D is a
diagonal matrix with positive elements. This also implies that the diagonal
elements of A are positive. We denote the elements of the matrices A, L and
D as aij, lij and dij, respectively. Equating the matrix elements in (A.4.1)
yields

di = aii −
i−1∑
j=1

lijcij, (A.4.2)

cij = aij −
j−1∑
k=1

ljkcik, i = j + 1, . . . , n, (A.4.3)

where the shorthand notation cij = lijdj is used.
The modi�ed LDLT factorization by Gill and Murray [GM74] produces

the LDLT factorization of a modi�ed, positive de�nite matrix Â such that

Â = LD̂LT = L(D + E)LT = A + E,

where E is a non-negative diagonal matrix which is zero when A is already
positive de�nite. The requirement of positive elements in the matrix D̂
implies positive de�niteness of the resulting matrix A + E, since in this case

xT (A + E)x = xTLD̂LTx = (LTx)T D̂LTx > 0.

However, requiring positivity of the elements of D̂ is not alone su�cient
to constitute a numerically stable algorithm. In particular, if D has negative
elements, the elements lijcij may become arbitrarily large. If the unmodi�ed
matrix D has only positive elements, equation (A.4.2) imposes an upper

bound to the elements lijcij = l2ijdj, and thus to the elements of LD
1
2 via the

diagonal elements of the matrix A. However, this is not the case if negative
elements of D are simply set to a positive number. Thus, Gill and Murray
suggest imposing an additional requirement

|lijcij| = |l2ijdj| ≤ β2, i = 1, . . . , n,
j = 1, . . . , i− 1,

(A.4.4)

3The Cholesky factorization A = LLT with L ≡ LD1/2 is a special case of the LDLT

factorization.

A.4. THE MODIFIED LDLT FACTORIZATION 97

where β is a positive constant. This guarantees a numerically more stable
LDLT factorization.

In order to satisfy the requirement of positivity of the diagonal elements
of D̂ and condition (A.4.4), equation (A.4.2) is modi�ed such that

di = max{|cii|, θ2
i /β

2, δ}, (A.4.5)

where

θi = max{|cji| | j = i+ 1, . . . , n}.

The threshold δ is introduced in order to improve numerical stability. Sev-
eral di�erent values have been suggested in the literature [GM74], [NW99],
[GMW81]. To the experience of the author of this thesis, the value εm or its
multiple yields good results.

Modi�cation (A.4.5) guarantees that the required conditions are satis�ed.
In the �rst case, di = |cii| and di ≥ θ2

i /β
2. Hence, by the de�nition of θi, we

have
|lijcj| = |l2ijdj| =

|cij |2
dj
≤ |cij |2β2

θ2j
≤ β2, j = 1, . . . , i− 1.

In the second case, di = θ2
i /β

2. Then

di =
θ2i
β2 ⇐⇒ di =

max{|ljidi|2}
β2

⇐⇒ β2 =
max{|ljidi|2}

di

⇐⇒ β2 = max{|l2jidi|},
j = i+ 1, . . . , n.

The above equality shows that dj is in this case set to the value for which
the greatest value of |l2jidi| = |ljici|, where j = i+1, . . . , n, is exactly equal to
β2. Condition (A.4.4) also holds in the third case, if δ is set to a su�ciently
small value.

The choice of β is critical for the numerical stability of this factorization.
By establishing an approximate upper bound for the norm of E, Gill and
Murray suggest using the value

β2 = ξ/
√
n2 − 1

that minimizes this upper bound [GM74, Thm. 2.2.1, eq. (11)]. The value
of ξ is given by

ξ = max{|aij| | i 6= j, i, j = 1, . . . , n}.

A lower bound for β also needs to be imposed in order to avoid unneces-
sary modi�cations if A is already positive de�nite. Equation (A.4.2) can be
rewritten as

aii =
∑i

j=1 l
2
ijdj, lii = 1,

98 APPENDIX A. SUPPLEMENTARY ALGORITHMS

which implies for a positive de�nite matrix A that l2ijdij = lijcij ≤ aii for all
j = 1, . . . , i, since aii is positive. Consequently,

lijcij ≤ aii ≤ max{|aii| | i = 1, . . . , n}.

Thus, Gill and Murray give the lower bound

γ = max{|aii| | i = 1, . . . , n}

which guarantees that already positive de�nite matrix is not modi�ed. The
�nal value of β is given by

β2 = max{γ, ξ√
n2 − 1

, εm},

where the lower bound of machine epsilon εm is for improving numerical
stability.

A.5 Finite-di�erence approximations

The components of the forward di�erence gradient approximation are given
by

[∇f(x)]i ≈
f(x + hei)− f(x)

h
, (A.5.1)

and the components of the central di�erence approximation are given by

[∇f(x)]i ≈
f(x + hei)− f(x− hei)

2h
, (A.5.2)

where h is the user-supplied step size. In general, accuracy of gradient ap-
proximations is critical. The line search methods discussed in this thesis and
stopping criteria that use gradient information are particularly sensitive to
inaccurate derivatives. Thus, using at least central di�erence gradients is
strongly recommended. 4

Since evaluating the Hessian matrix has computational complexity of
O(n2), using forward di�erence formulas is recommended for performance
reasons. Two di�erent methods have been suggested in the literature [DS83,
p. 103-104]. The �rst method applies the forward di�erence formula to
symbolically computed gradient. The resulting matrix is given by

[Hf (x)]ij ≈ ∂f
∂xi

(x + hej)− ∂f
∂xi

(x), i, j = 1, . . . , n. (A.5.3)

4GSL implements more accurate forward and central di�erence approximations that
use function values evaluated at four points. These approximations also use adaptive step
size selection.

A.5. FINITE-DIFFERENCE APPROXIMATIONS 99

This operation does not in general produce a symmetric matrix, and therefore
the resulting matrix is symmetrized by setting

Hf (x) ≈ H̃f (x) + H̃f (x)T

2
,

where H̃f (x) is obtained by applying (A.5.3). The second method applies
the forward di�erence formula twice to obtain the second order derivatives
∂2f

∂xi∂xj
(x). This is done by approximating

[Hf (x)]ij ≈
f(x + hei + hej)− f(x + hei)− f(x + hej) + f(x)

h2
. (A.5.4)

Computational complexities of �nite-di�erence methods are dominated by
function and derivative evaluation counts. They are listed in Table 15. The
optimal step lengths and the errors with these values are listed in Table 16.
The reader is referred to [NW99, p. 167-169, 173-174] for their derivations.

Method Function Gradient eval./ Function eval./
evaluations/ Hessian Hessian
gradient (symbolic gradient) (f.-d. gradient)

forward di�erence n+ 1 n+ 1 1
2
n(n+ 1) + n+ 1

central di�erence 2n not implemented not implemented

Table 15: Number of function and derivative evaluations per gradient and
Hessian, �nite-di�erence derivatives.

Method Optimal step size Gradient error Hessian error
forward di�erence

√
εm

√
εm 4

√
εm

central di�erence 3
√
εm

3
√
ε2m

9
√
ε4m

Table 16: Optimal step lengths for �nite-di�erence approximations and their
corresponding error estimates (εm denotes the machine epsilon).

	Introduction
	About this thesis
	Problem definition and motivation

	Mathematical background
	Preliminaries
	Notations and basic definitions
	Conditions for minima
	Method definition
	Convergence rates
	Order of complexity
	Invariance under transformations

	Direct search methods
	The Nelder and Mead simplex method

	Gradient descent methods
	Line search conditions and global convergence
	The Moré and Thuente line search algorithm
	The method of steepest descents
	Conjugate gradient methods
	The Newton method
	Quasi-Newton methods

	Implementation
	Introduction to GSL and BLAS
	Minimization algorithms implemented in GSL
	The GSL minimization interface
	GSL linear algebra routines
	Overview of BLAS

	Overview of GSL++
	Proposed algorithms
	GNU Octave utilities implemented in GSL++

	Numerical results
	Overview of testing procedures
	Qualitative tests
	The choice of starting point

	Algorithm-specific tests
	The Nelder and Mead simplex algorithm
	The steepest descent algorithm
	Conjugate gradient algorithms
	Quasi-Newton BFGS algorithms

	Comparison of algorithms
	Sensitivity to line search parameters
	Convergence rates
	Function and gradient evaluation counts
	Scale-dependency
	Performance profiles
	Asymptotic complexity

	Conclusions and discussion
	References
	Appendices
	Supplementary algorithms
	The backtracking algorithm
	Fletcher's line search algorithm
	Fletcher's initial step length selection
	The modified LDLT factorization
	Finite-difference approximations

