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Abstract

This thesis addresses modeling of financial time series, especially stock market re-

turns and daily price ranges. Modeling data of this kind can be approached with

so-called multiplicative error models (MEM). These models nest several well known

time series models such as GARCH, ACD and CARR models. They are able to

capture many well established features of financial time series including volatility

clustering and leptokurtosis.

In contrast to these phenomena, different kinds of asymmetries have received

relatively little attention in the existing literature. In this thesis asymmetries arise

from various sources. They are observed in both conditional and unconditional

distributions, for variables with non-negative values and for variables that have

values on the real line. In the multivariate context asymmetries can be observed in

the marginal distributions as well as in the relationships of the variables modeled.

New methods for all these cases are proposed.

Chapter 2 considers GARCHmodels and modeling of returns of two stock market

indices. The chapter introduces the so-called generalized hyperbolic (GH) GARCH

model to account for asymmetries in both conditional and unconditional distribu-

tion. In particular, two special cases of the GARCH-GH model which describe the

data most accurately are proposed. They are found to improve the fit of the model

when compared to symmetric GARCH models. The advantages of accounting for

asymmetries are also observed through Value-at-Risk applications.

Both theoretical and empirical contributions are provided in Chapter 3 of the the-

sis. In this chapter the so-called mixture conditional autoregressive range (MCARR)

model is introduced, examined and applied to daily price ranges of the Hang Seng

Index. The conditions for the strict and weak stationarity of the model as well as

an expression for the autocorrelation function are obtained by writing the MCARR

model as a first order autoregressive process with random coefficients. The chapter

also introduces inverse gamma (IG) distribution to CARR models. The advantages

of CARR-IG and MCARR-IG specifications over conventional CARR models are

found in the empirical application both in- and out-of-sample.
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Chapter 4 discusses the simultaneous modeling of absolute returns and daily

price ranges. In this part of the thesis a vector multiplicative error model (VMEM)

with asymmetric Gumbel copula is found to provide substantial benefits over the

existing VMEM models based on elliptical copulas. The proposed specification is

able to capture the highly asymmetric dependence of the modeled variables thereby

improving the performance of the model considerably. The economic significance

of the results obtained is established when the information content of the volatility

forecasts derived is examined.
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Tiivistelmä

Tässä väitöskirjassa tarkastellaan rahoitusaikasarjojen, erityisesti osakkeiden tuot-

tojen ja osakkeiden hintojen päivittäisen vaihteluvälin, mallintamista. Tämän tyyp-

pisten aineistojen mallintamisessa voidaan käyttää niin sanottuja multiplikatiivisen

virhetermin malleja (MEM). Näihin malleihin kuuluvat monet tunnetut aikasar-

jamallit, kuten GARCH-, ACD- ja CARR-mallit. Niillä voidaan mallintaa useita

rahoitusaikasarjalle tyypillisiä piirteitä, kuten volatiliteetin klusteroitumista sekä

jakauman paksuhäntäisyyttä.

Vastoin kuin edellä mainittuja ilmiöitä, on erilaisia aineistossa havaittavia epä-

symmetrisyyksiä käsitelty aikaisemmassa kirjallisuudessa verraten vähän. Tutkimuk-

sessa tarkasteltavia epäsymmetrisyyksiä havaitaan aineistossa sekä ehdollisessa että

ehdottomassa jakaumassa ja niin ei-negatiivisilla muuttujilla kuin muuttujilla, jotka

saavat arvoja koko reaaliakselillakin. Moniulotteisessa tapauksessa epäsymmetri-

syyksiä on reunajakaumissa ja muuttujien välisissä riippuvuuksissa. Väitöskirjassa

esitetään uusia menetelmiä kaikkiin edellä mainittuihin tapauksiin.

Luku 2 käsittelee GARCH-malleja ja osakeindeksien tuottojen mallintamista.

Aineiston epäsymmetrisyyksien huomioimiseksi luvussa esitellään niin sanottu yleis-

tetty hyperbolinen GARCH-malli. Mallista voidaan erottaa kaksi erikoistapausta,

jotka eniten parantavat mallin sopivuutta symmetrisiin vaihtoehtoihin verrattuna.

Epäsymmetrisyyden huomiointi osoittautuu edulliseksi myös niin sanotuissa Value-

at-Risk sovelluksissa.

Luvun 3 aiheena on ehdollisen autoregressiivisen vaihteluvälin sekoitusmalli

(MCARR). Mallille esitetään ehdot vahvalle ja heikolle stationaarisuudelle ja joh-

detaan autokorrelaatiofunktio kirjoittamalla malli uudelleen moniulotteisena en-

simmäisen kertaluvun satunnaiskertoimisena autoregressiivisenä prosessina. Lu-

vussa ehdotetaan myös käänteisen gammajakauman (IG) käyttöä CARR-mallinnuk-

sessa. CARR-IG- ja MCARR-IG-mallien edut aikaisemmin ehdotettuihin vaihto-

ehtoihin verrattuna tulevat esille sovelluksessa Hang Seng -indeksin vaihteluväliin

sekä estimointi- että ennusteperiodilla.

Neljännessä luvussa mallinnetaan samanaikaisesti tuottojen itseisarvoa ja hin-
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tojen päivittäistä vaihteluväliä. Luvussa todetaan epäsymmetriseen Gumbel-ko-

pulaan perustuvan vektorimultiplikatiivisen virhetermin mallin (VMEM) tarjoavan

huomattavia etuja verrattaessa sitä aikaisemmin esiteltyihin elliptisiin kopuloihin

perustuviin VMEM-malleihin. Ehdotetulla spesifikaatiolla voidaan ottaa huomioon

mallinnettavien muuttujien vahvasti epäsymmetrinen riippuvuus. Näin ollen mallin

sopivuus aineistoon paranee huomattavasti. Viitteitä saatujen tulosten taloudelli-

sesta merkitsevyydestä nähdään tarkasteltaessa eri malleista johdettujen volatili-

teettiennusteiden informaatiosisältöä.
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1 Introduction

As defined by Engle (2001, 53), financial econometrics is simply the application of

econometric tools to financial data. While this area of research is today one of

the most active in econometrics (see Bollerslev 2001, 41-42), such has not always

been the case. Indeed, until the beginning of the eighties most papers in empirical

finance relied on fairly simplistic data analytical tools. However, since then the

developments have been rapid. Advances have included acceleration of computing

power, increased availability of data for financial instruments, and the development

of more sophisticated econometric techniques.

Many financial time series, such as stock returns and exchange rate returns, are

characterized by two so-called stylized facts: excess kurtosis of the unconditional

distribution and volatility clustering. These facts can be described with ARCH type

time series models proposed by Engle (1982) and Bollerslev (1986). For a survey of

these models see, among others Bollerslev et al. (1992), Bera and Higgins (1993),

Bollerslev et al. (1994), Palm (1996), Degiannakis and Xekalaki (2004), Diebold

(2004), and Bollerslev (2008). As argued by Engle (2002b, 425-426), univariate

ARCH/GARCH models are nowadays a well researched area as the literature on

different specifications, theorems for autocorrelations, moments and stationarity and

ergodicity, and Value-at-Risk applications is extensive. However, several new areas

of research have been established and financial econometrics can be expected to

develop rapidly in the future. Engle (2002b, 444) mentions five areas for future work:

high frequency volatility, multivariate models, derivatives pricing, modeling non-

negative processes, and analyzing conditional simulations by Least Squares Monte

Carlo. Because the methods proposed in this thesis are related to the first four of

these topics, we will discuss them in more detail in subchapter 1.2. First, an outline

of the thesis is presented.

1.1 Outline of the thesis

The thesis consists of three actual chapters each concerning the modeling of financial

data from various perspectives. In the second chapter of the thesis we develop
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GARCH models with generalized hyperbolic (GH) innovations. This chapter is

divided into four subchapters, the first of which introduces GH distributions. In

the second subchapter GARCH models based on these distributions are proposed.

The third subchapter presents an application to US and European data while the

fourth subchapter concludes with a discussion.

In the first part of Chapter 3, we introduce an autoregressive model with random

coefficients. In subchapters 3.2 and 3.3 so-called mixture multiplicative error models

(MMEM) are defined and represented as a special case of the model discussed in

subchapter 3.1. Based on this representation, conditions for both strict and weak

stationarity of the MMEM models are given. In subchapter 3.4 the autocorrelation

function of the considered model is derived, and an application to Asian data is

presented in subchapter 3.5. Chapter 3 ends with a discussion.

In the last chapter of the thesis vector multiplicative error models (VMEM)

are examined. First we introduce copulas in subchapter 4.1 and construct VMEM

models based on them in subchapter 4.2. An application to US data is found in

subchapter 4.3 and a discussion in subchapter 4.4.

The rest of the introduction is organized as follows. As already mentioned, in

subchapter 1.2 relevant topics in financial econometrics, such as multivariate models

and modeling of intraday data, are discussed. In subchapters 1.3, 1.4 and 1.5 more

detailed introductions to Chapters 2, 3 and 4 are presented. Subchapter 1.6 includes

conclusions. References are given at the end of each main chapter. Suggestions for

future work are given in the discussions at the end of Chapters 2, 3, and 4.

1.2 Some current topics in financial econometrics

1.2.1 High frequency volatility models

A natural extension of the volatility models introduced and applied to daily, weekly

or monthly data are models for data within the day. Early models (see Engle 2002b,

427 and references therein) were introduced for regularly spaced data and focused

on the so-called time of the day effect. However, as discussed e.g. by Engle (2000,

1-2), ultimately it is desirable to model irregularly spaced data. Data for which all
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transactions are recorded is called ‘ultra-high frequency’ data.

When data arrive at random dates and these times themselves carry information,

the basic procedure is to model the associated variables called marks conditional on

times, and then model the times separately (Engle 2000, 21). In his application Engle

(2000) uses the Autoregressive Conditional Duration (ACD) model of Engle and

Russel (1998) to model arrival times of trades. A semiparametric approach is applied

to the estimation of the hazard function. Finally, price quotes are examined to

obtain models of volatility conditional on transaction times. Evidence is found that

longer durations and longer expected durations are associated with lower volatilities.

Moreover, higher bid-ask spreads and larger volumes both predict rising volatility.

The approach proposed by Engle (2000) was extended by Manganelli (2005) by

elaborating a system where returns and volatilities directly interact with duration

and volume. This is accomplished by first modeling volumes with a model similar

to the ACD model. Then duration, volume and returns are modeled simultaneously

with a special type of vector autoregression. The system developed allows causal and

feedback effects among these variables. The main findings include trading clustering

and different behavior of frequently and infrequently traded stocks. As a direction

for future research Manganelli (2005, 398) suggests adding other variables, such as

depth and spread, to the model. Also, a study exploring the relationships between

different markets is suggested.

In addition, better daily models have been constructed using intra-daily data.

Models based upon so-called ‘realized volatility’1 are built by Andersen et al. (2001a,

2001b, 2003) and further developed e.g. by Lanne (2006).

1.2.2 Multivariate models

An obvious generalization of univariate ARCH/GARCH models are multivariate

volatility models. Surprisingly, even though the literature on volatility models is

extensive, only a small fraction of it is devoted to multivariate GARCH models.

1We simply define that the daily realized volatility RVt at time t is given by RVt =Pτ
i=1(logPt,i− logPt,i−1)2, where Pt,i is the price for the time i×∆ in the trading day t, and ∆ is

the time interval (there are τ equal-length intervals divided in a trading day) (Chou et al. 2008).
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Most notable studies on these models include multivariate GARCH-M by Bollerslev

et al. (1988), constant conditional correlation GARCH by Bollerslev (1990), vec and

BEKK-GARCH by Engle and Kroner (1995) and dynamic conditional correlation

GARCH by Engle (2002a).

As noted by Engle (2002a, 339), in very few articles have more than five assets

been considered. The most successful model for these cases has been the CCC

model by Bollerslev (1990) because of its computational simplicity (Engle 2004,

418). In most cases the number of parameters is too large for easy estimation.

As a solution, several factor and orthogonal models have been introduced in the

literature. Examples include Engle et al. (1990) and Lanne and Saikkonen (2007a).

So-called copula-GARCH models, in which the conditional dependence is modeled

using copula functions (see subchapter 4.1 for a discussion), were recently proposed

by Jondeau and Rockinger (2006) and Patton (2006). For a survey and proposals

for future work on multivariate GARCH models we refer to Bauwens et al. (2006)

and Silvennoinen and Teräsvirta (2008).

1.2.3 Options pricing

One of the most interesting areas of research in financial econometrics at the mo-

ment is pricing of options when the underlying asset follows a GARCH process.

Options pricing in general has been an important area of research since the work of

Black and Scholes (1973) and Merton (1973), even though the history of option pric-

ing theory can be traced back to Bachelier (1900). However, because the standard

Black-Scholes model does not take the well-documented heteroskedasticity of the

asset returns into account, several alternative option pricing models have been pro-

posed (see Duan 1995, 13 for references). In general, the proposed continuous time

options pricing models face the difficulty that the variance rate is not observable.

By contrast, discrete-time models, such as GARCH models, have the advantage of

the relative ease of their estimation and possibility of diagnostic model checking.

It can be argued that research problems with GARCH option pricing arise from

two sources. The first problem is the correct specification of the return dynamics and
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the form of the return distribution. The second is finding an appropriate approach to

risk neutralization. This problem derives from the fact that under GARCH models

markets are incomplete2 and, consequently, there exists an infinite number of risk

neutral measures that can be used to construct option prices.

In the seminal paper of GARCH option pricing, Duan (1995) uses the local risk

neutral valuation principle (LRNVR). The choice is justified by the argument that

the representative agent in an economy is an expected utility maximizer, and the

utility is additive and time-separable (Badescu and Kulperger 2008, 70). Other as-

sumptions made by Duan (1995) include conditional normal distribution of asset

returns and the invariance of the conditional volatility to the change of measure.

However, in Duan et al. (2006) the so-called stochastic discount factor is considered

for constructing a risk-neutralized dynamic for jump GARCH model, whereas the

Esscher transform is employed by Siu et al. (2004), Elliot et al. (2006), Christof-

fersen et al. (2006) and Badescu and Kulperger (2008). The impact of the choice

of the risk-neutralization method is examined by Badescu et al. (2008), who use a

generalized local risk-neutral valuation relationship, an Esscher transform, and an

extended Girsanov principle coupled with the mixture GARCHmodel first suggested

by Haas et al. (2004) and Alexander and Lazar (2006). In their empirical applica-

tion to Standard & Poor’s 500 European Call option pricing Badescu et al. (2008)

show that allowing the volatility model to capture the skewness and leptokurtosis of

the data improves the performance of the option pricing model for both short and

long maturity options compared to the case where the underlying stock dynamics

are modeled with an asymmetric GARCH model. In their proposal for future work,

option pricing using the type of methods discussed and developed in the second

chapter of the thesis is mentioned. A study on option pricing with generalized hy-

perbolic innovations (see discussion in subchapter 1.3) is also considered by Chorro

et al. (2008a, 2008b).

2In complete markets every contingent claim is perfectly replicable by a self financing porfolio.
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1.2.4 Multiplicative error models for non-negative processes

In financial time series analysis the problem is often to model non-negative val-

ued processes. This occurs when considering variables such as volumes, trades,

durations, realized volatility, daily price range, and so on. Non-negativity has tradi-

tionally been approached by two methods: the non-negativity has been ignored or

logs have been taken. The disadvantages of these approaches have been discussed

by Engle (2002b, 428-429). As a solution, the so-called multiplicative error model

(MEM) is proposed. The MEM model is formulated such that the non-negativity of

the process is automatically satisfied. We shall discuss these models in more detail

in subchapter 1.4 and in Chapter 3. It can briefly be mentioned that the MEM

model nests the (squared) GARCH model of Bollerslev (1986), the ACD model of

Engle and Russel (1998) as well as the conditional autoregressive range (CARR)

model of Chou (2005). Engle (2002b, 432-433) illustrated how the MEM model is

applied to realized volatility. A vector MEM model (VMEM) is also introduced by

Engle (2002b). This model is applied to absolute returns, daily price range and

realized volatility by Engle and Gallo (2006). More recently, the VMEM model has

been investigated by Cipollini et al. (2006, 2007, 2008). We shall discuss VMEM

models more specifically in subchapter 1.5 and in Chapter 4.

Potential applications of (V)MEM models are wide-ranging. Topics for further

research include, for example, specification of the conditional distribution, time

varying densities, more general model specifications, and forecasting performance.3

Of these topics, this thesis contributes to modeling non-negative processes as well

as multivariate models. As already stated, we suggest a mixture multiplicative error

model (MMEM) for the daily price range. Our contribution to multivariate models

concerns VMEM models. We discuss these models in more detail in subchapter 1.5.

The present thesis also addresses asymmetric univariate GARCH models which are

most likely to prove relevant in the options pricing in the future. This research

problem will be introduced in the next subchapter.

3For a recent empirical work see e.g. Engle et al. (2008).
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1.3 GARCH modeling with generalized hyperbolic

distributions

The GARCH-in-Mean (GARCH-M) model, originally introduced by Engle et al.

(1987), allows the mean of the series to depend on its volatility. At this point the

model is specified in a general form as

rt = mt + h
1/2
t ηt, (1)

where ηt is a sequence of independent, identically distributed (i.i.d.) random vari-

ables with zero mean and unit variance, h
1/2
t is a (positive) volatility process which

describes the conditional heteroskedasticity in the observed process rt, and mt is

a (stationary) process which describes the conditional mean of rt. In the model

ht−j (j > 0) and ηt are assumed to be independent. In the GARCH-M model the

conditional mean is assumed to be a function of the conditional variance ht. For

instance, a positive relation between the excess return on the stock market and the

conditional variance can be motivated by Merton’s (1973) Intertemporal Capital

Asset Pricing Model.

In this thesis, especially in the second chapter, the primary interest is in the

distribution of the error term ηt. Engle (1982) used the normal distribution but, in

order to fully capture the observed excess kurtosis, more fat-tailed distributions were

proposed in subsequent literature. The best known alternative distributions are the

t distribution (Bollerslev 1987) and the generalized error distribution (Nelson 1991).

Both of these distributions are symmetric.

In the case of equity returns, both unconditional and conditional skewness have

been empirically observed. Theoretically conditional skewness can be explained, for

example, by the so-called volatility feedback effect and leverage effect (see Lanne

and Saikkonen 2007b, Campbell and Hentschel 1992 and Christie 1982). This asym-

metry can be approached either by specifying the conditional variance equation in

an asymmetric way or by allowing for an asymmetric conditional distribution. Prob-

ably the best-known proposals of the former approach are the EGARCH model by
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Nelson (1991) and the GJR-GARCH model by Glosten et al. (1993). One of the

first papers introducing a skewed conditional distribution to GARCH modeling is

Hansen (1994), where a skewed Student’s t distribution with time varying shape

parameters is considered. The so-called normal inverse Gaussian (NIG) distribu-

tion was introduced to financial econometrics by Barndorff-Nielsen (1997)4 and first

applied to GARCH models by Andersson (2001), Jensen and Lunde (2001) and

Forsberg and Bollerslev (2002). Haas et al. (2004) and Alexander and Lazar (2006)

consider a combination of mixed normal distributions and a GARCH-type dynamic

structure. A distribution we call the normal reciprocal gamma (NRG) distribution

was introduced to the modeling of financial data by Aas and Haff (2006), who called

it the generalized hyperbolic (GH) skew Student’s t-distribution. The Fractionally

Integrated GARCH (FIGARCH) model was generalized by Kiliç (2007) by incorpo-

rating the NIG distribution. Recently, a skewed GARCH-M model based on the

so-called z distribution was introduced by Lanne and Saikkonen (2007b) whereas

the skewed generalized t distribution of Theodossiou (1998) was proposed by Bali

et al. (2008).

Multivariate skewed distributions have been discussed, for instance, by Mencia

and Sentana (2004), who consider a multivariate GH distribution in dynamic condi-

tionally heteroskedastic regression models. This distribution nests several asymmet-

ric distributions as well as symmetric t and normal distributions. In Bauwens and

Laurent (2005) a multivariate Student distribution is generalized to the asymmetric

case and applied to GARCH modeling.

The objective of the second chapter of this thesis is to discuss the importance of

allowing for conditional skewness in GARCH models. Therefore, skewed GARCH

models are applied to the returns of two real stock index series, and the performance

of the models is carefully examined. The fundamental assumption made in the

chapter is that the distribution of the innovation ηt can be described by a GH

distribution5. This distribution contains several well-known special cases of which

4Related, so-called hyperbolic distributions were introduced to financial econometrics by Eber-
lein and Keller (1995).

5These distributions were initially introduced by Barndorff-Nielsen (1977) for the (logarithm)
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the already mentionedNIG distribution is perhaps the best known. Based on earlier

literature (e.g. Prause 1999 and Mencia and Sentana 2004) it can be argued that

some special case of the GH distribution is capable of modeling the innovation. As

the number of available special cases is hardly unsubstantial, we suggest that the

number of subclasses considered can be reduced by estimating a GARCH model

with GH innovations and using the results obtained to find an appropriate special

case (or cases). This approach will also be emphasized by our empirical results.

As already mentioned, the models proposed are likely to have applications to

option pricing under GARCH models. The GARCH option pricing model was ini-

tially proposed by Duan (1995). Other studies of GARCH option pricing include

Engle and Mustafa (1992), Christoffersen and Jacobs (2004), Christoffersen et al.

(2006), Badescu et al. (2008) and Stentoft (2008). The original GARCH option

pricing model was derived under the assumption of Gaussian errors. However, the

work of Stentoft (2008) and Badescu et al. (2008), for example, provides evidence

that allowing for non-normality and especially for both conditional skewness and

leptokurtosis is indeed profitable in GARCH option pricing.

1.4 Mixture MEM models and conditional autoregressive

range

In the third chapter of the thesis we emphasize the fact that modeling non-negative

time series is becoming increasingly important in financial econometrics. As already

pointed out, a general model for non-negative time series was introduced by Engle

(2002b). The so-called multiplicative error model (MEM) specified as

xt = µtεt,

of particle size of wind blown sands. Properties of these distributions (or related distributions)
were later studied e.g. by Barndorff-Nielsen (1978), Barndorff-Nielsen et al. (1978), Jensen (1981),
Barndorff-Nielsen et al. (1982), and Barndorff-Nielsen et al. (1992). It may also be noted here that
throughout the thesis we will use terms ‘distribution’ and ‘distributions’ somewhat loosely in the
sense that both terms may refer to a family of distributions or to a distribution with (unknown)
parameters.
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where εt ∼ D+(1,φ2), that is, εt has a non-negative distribution with unit mean and

variance φ2. The innovations εt are also assumed to be independently and identically

distributed. The model is expected to be suitable for realized volatility, range-based

volatility measures and trading volume. The model was generalized to a mixture

MEMmodel by Lanne (2006)6, who applied it to the realized volatility of two foreign

exchange rates. This formulation will be introduced formally in Chapter 3. This

thesis considers mixture MEM models for modeling of the daily price range7.

Modeling of the daily price range of asset prices with MEM-type models was

initially proposed by Chou (2005), who called his model a conditional autoregres-

sive range (CARR) model. As opposed to return based volatility models such as

GARCH models, it was argued by Chou (2005, 561-564) that the strength of the

range as a volatility estimator was already established in the early eighties e.g. by

Parkinson (1980). In particular, it was shown by Parkinson (1980) that the unbi-

ased range-based estimator of the diffusion coefficient of a driftless Brownian Motion

was approximately five times more efficient than the estimator based on the daily

squared returns (Brunetti and Lildholdt 2007, 40). When modeling the three most

common measures of volatility, absolute returns, daily range, and realized volatility,

Engle and Gallo (2006) found evidence that range carries additional information to

realized volatility. It was also suggested by Brandt and Diebold (2006) that, unlike

in the case of realized volatility, the range is not affected by market microstructure

noise. By contrast, Chou et al. (2008) conclude that the range is sensitive to out-

liers and should be replaced with a robust measure such as the quantile range. The

empirical volatility forecasting performance of the CARR model was examined by

Chou and Wang (2007), who concluded that the CARR model produces sharper

volatility forecasts than the GARCH model.

Academic studies on the specification of the CARR model are to the best of our

knowledge somewhat rare. Perhaps surprisingly, several model specifications for the

log-range have been proposed. As an example one can mention Brandt and Jones

6These models have been further generalized by Ahoniemi and Lanne (2008) and De Luca and
Gallo (2009), who allowed for time-varying mixture weights.

7This variable will also be formally defined in Chapter 3.
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(2006), who employ the EGARCH model by Nelson (1991) for the log-range. Several

other models for the log-range can be found in Chou et al. (2008). Chou (2006)

extends his CARR model to an asymmetric ACARR model. Brunetti and Lild-

holdt (2007) propose both semi-parametric and parametric fractionally integrated

(FI)MEM models for the daily ranges of two exchange rates. Multivariate CARR

models have also been proposed. Theoretical contributions for these models can be

found in Fernandes et al. (2005) and in Lee and Chin (2008).

As mentioned in subchapter 1.2.1, the use of high frequency data is currently

one of the most important research topics regarding volatility. One approach is

to model high frequency data based on daily volatility indicators such as realized

volatility. A new estimator of the volatility was recently suggested by Brunetti et al.

(2007) and Christersen and Podolskij (2007), who replaced squared intra-day returns

by the high-low range and obtained realized range. The theoretical properties of

these volatility estimators or indicators are still partially unknown. However, both

Brunetti et al. (2007) and Christersen and Podolskij (2007) note that the realized

range is more efficient than the realized volatility, the difference depending on the

sampling frequency. Both authors present bias correction procedures in order to

account for the market microstructure frictions.

This thesis contributes in several ways to modeling the conditional autoregressive

range. First, we consider a general mixture multiplicative error model and present

results that allow both strict and weak stationarity of the model to be expressed in

a simple way after the model is represented in a first order random coefficient mul-

tivariate autoregressive model. Second, we also find a relatively simple expression

for the autocorrelation function of the model. In addition, the inverse gamma dis-

tribution will be suggested as a suitable alternative for the conditional distribution

of the daily price range. The fit of the models is examined through in-sample and

out-of-sample examination.
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1.5 Modeling financial volatility measures with a VMEM

model based on an asymmetric copula

The third topic of the thesis is vector multiplicative error models (VMEM) intro-

duced by Engle (2002b, 429). The model is defined by

xt = µt ¯ εt,

where µt is a K × 1 vector of conditional means, ¯ is the element by element

(Hadamard) product, and εt|Ωt−1 ∼ D+(1,Σ), that is, εt (K×1) has a non-negative
distribution with unit vector as expectation and a general positive definite variance-

covariance matrix Σ. The innovations εt are assumed to be independently and iden-

tically distributed.

The model was applied by Engle and Gallo (2006) to three volatility indicators,

absolute returns, daily high-low range, and realized volatility. In their application

to Standard & Poor’s 500 data it was found that the specifications retained for each

indicator contained lagged values of other indicators. In particular, it was discovered

that daily range and returns had explanatory power over realized volatility. Further,

the model can be employed e.g. to volumes, trades, durations, and various versions

of ultra-high frequency based measures of volatility. In Engle and Gallo (2006),

however, the components of the innovations εt were assumed to be independent. As

discussed by Cipollini et al. (2007, 2) assuming independency obviously makes the

estimation procedure inefficient, because the correlation of the error terms is not

taken into account. Thus, model selection and ensuing interpretation of the model

may be inaccurate.

In order to take account of the aforementioned correlation, Cipollini et al. (2006,

2007) introduced copula8 functions to link together the marginal probability func-

tions. In their more recent work Cipollini et al. (2008) argue that the choice of

8It may be mentioned here that the copula function is defined as a cumulative distribution
function of a continuous (multivariate) uniform random variable defined on the unit hypercube
(see e.g. Cipollini et al. 2006, Appendix B).
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the copula is often driven by reasons of convenience9. More specifically, the authors

mention that so-called elliptical copulas may be appealing because they can be em-

ployed in relatively large dimensional applications and they can also accommodate

tail dependency. However, it seems obvious that elliptical copulas may not be able to

correctly describe the dependence structure of the variables. Cipollini et al. (2008)

discuss Archimedean copulas as a possible solution but note that they tend to be

less useful when the dimension K increases. In our work we show that the symmet-

rical copulas employed by Cipollini et al. (2006, 2007) may not be optimal when

modeling several volatility indicators, such as absolute returns and daily range, si-

multaneously. We recognize the drawback of Archimedean copulas not being well

suited for large dimensional applications, but as our application only concerns two

volatility indicators we pursue this approach. Our application shows that allowing

for an asymmetric10 copula considerably improves the fit of the model. Cipollini et

al. (2008) argue that in the analysis it may not be of interest to fully specify the

distribution of the innovation εt if the main focus is the dynamics of µt. By contrast,

in our application we show that the specification of the distribution of εt affects the

estimates obtained and thereby the conclusions based on these estimates. Espe-

cially, it is discovered that our volatility forecasts have increased predictive power

to the so-called VIX index (differences), as the model employed better describes

the dependence structure of the components. This application is inspired by Engle

and Gallo (2006), who provide evidence that model-based volatility forecasts have

significant explanatory power when modeling the value of a market based volatility

measure such as the VIX index.

In the earlier work of Engle and Gallo (2006) and Cipollini et al. (2006, 2007)

the marginal distributions were specified as a gamma distribution restricted to have

a unit mean. In Cipollini et al. (2007) it is mentioned that other distributions, such

as inverse gamma, Weibull, Lognormal and their mixtures, may also be employed.

In our application, we argue that different marginals for different components are

9Obviously these reasons include analytical tractability and computational simplicity.
10Discussion on asymmetry in the context of copulas can be found in Chapter 4.
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indeed needed. In particular, we find evidence that the inverse gamma distribution11

correctly describes the conditional distribution of the daily price range whereas the

gamma distribution appears to fit absolute returns.

1.6 Conclusion

This thesis discusses modeling financial data from various perspectives. In Chapter

2 traditional GARCH modeling is considered. Chapter 3 involves modeling the

daily price range whereas Chapter 4 includes modeling return and price range data

simultaneously.

When considering GARCH modeling it is discovered that conditional skewness

cannot be comprehensively captured even with highly sophisticated smooth transi-

tion specification in the conditional variance12. In our applications to US and

European data so-called normal inverse Gaussian and normal reciprocal gamma

(also known as skewed Student’s t distribution) prove to be the most relevant spe-

cial cases of the GH distributions. In both in-sample and out-of-sample comparisons

conditional skewness is found to have an impact on the Value-at-Risk forecasting

performance of the model.

Although the daily price range was recognized as an efficient estimator of the

volatility relatively early e.g. by Parkinson (1980), modeling this variable has not

received extensive attention. A multiplicative error model by Engle (2002b) was

applied to the range data by Chou (2005) and generalized to the asymmetric case

by Chou (2006). As an extension of the MEM model, we propose the mixture MEM

model by Lanne (2006) for the daily price range. The mixture structure allows

flexibility in both the conditional distribution and the mean dynamics. We find

conditions for the strict and weak stationarity and an expression for the autocor-

relation function of the mixture MEM model. In an application to Asian data we

11The inverse gamma distribution is the distribution of the reciprocal of a variable distributed
according to the gamma distribution.
12We also allow the conditional mean to be time-varying and find evidence of an in-Mean effect

in our data. It may be noted that correct specification of both the conditional mean and variance is
important when examining the conditional skewness. This is due to the fact that if the conditional
mean or variance of the model is misspecified, testing for conditional skewness is biased.
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provide evidence that allowing for a more general mixture specification may be ad-

vantageous when modeling the daily price range. It is also noted that the inverse

gamma distribution may prove relevant in the daily range modeling as it appears

to describe the data more accurately than the usually employed gamma distribu-

tion. Different specifications are examined through in-sample fit evaluations and

out-of-sample forecasting performance tests.

The vector MEM model was introduced by Engle (2002b). Among others,

Cipollini et al. (2006, 2007) applied the model to several volatility indicators and

used copula functions to describe the dependence structure of the error terms. In the

fourth chapter of this thesis we show that symmetric copulas proposed by Cipollini

et al. (2006, 2007) may not be optimal for the variables considered if the dependence

of the errors is markedly asymmetric. By employing a proper asymmetric copula

we show that the fit of the model used for two volatility indicators of the S&P 500

data can be considerably improved. Different marginal distributions are proposed

for each variable. We show that model based forecasts derived from our asymmetric

VMEM model outperform those of the symmetric model when forecasts are used

to explain the behavior of a market-based volatility measure, the VIX index, both

in-sample and out-of-sample. We also verify the finding of Engle and Gallo (2006)

that the daily range has explanatory power over other volatility indicators.
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Kiliç, R. 2007: Conditional volatility and distribution of exchange rates: GARCH
and FIGARCH models with NIG distribution, Studies in Nonlinear Dynamics &
Econometrics, 11, Issue 3, Article 1.

Lanne, M. 2006: A mixture multiplicative error model for realized volatility, Journal
of Financial Econometrics, 4, 594-616.

Lanne, M. & P. Saikkonen 2007a: A multivariate generalized orthogonal factor
GARCH model, Journal of Business & Economic Statistics, 25, 61-75.



29

Lanne, M. & P. Saikkonen 2007b: Modeling conditional skewness in stock returns,
European Journal of Finance, 13, 691-704.

Lee, O. & D. W. Shin 2008: Geometric ergodicity and β-mixing property for a
multivariate CARR model, Economics Letters, 100, 111-114.

Manganelli, S. 2005: Duration, volume and volatility impact of trades, Journal of
Financial Markets, 8, 377-399.

Martens, M. & D. van Dijk 2007: Measuring volatility with the realized range,
Journal of Econometrics, 138, 181-207.

Mencia, F. J. & E. Sentana 2004: Estimation and testing of dynamic models with
generalized hyperbolic innovations, CEMFI Working Paper, 0411.

Merton, R. C. 1973: An intertemporal capital asset pricing model, Econometrica,
41, 867-887.

Merton, R. C. 1973: Theory of rational option pricing, Bell Journal of Economics
and Management Science, 4, 141-183.

Nelson, D. B. 1991: Conditional heteroskedasticity in asset returns: A new approach,
Econometrica, 59, 347-370.

Palm, F. C. 1996: GARCH models of volatility, in G. S. Maddala & C. R. Rao, ed.,
Handbook of Statistics 14, Amsterdam: Elsevier Science, 209-240.

Parkinson, M. 1980: The extreme value method for estimating the variance of the
rate of return, Journal of Business, 53, 61-65.

Patton, A. J. 2006: Modelling asymmetric exchange rate dependence, International
Economic Review, 47, 527-556.

Prause, K. 1999: The generalized hyperbolic model: Estimation, financial deriva-
tives, and risk measures. Dissertation zur Erlangung des Doktogrades der Mathe-
matischen Fakultät der Albert-Ludwigs-Universität Freiburg i. Br.

Silvennoinen, A. & T. Teräsvirta 2008: Multivariate GARCH models, CREATES
Research Paper 2008-6.

Siu, T. K., H. Tong & H. Yang 2004: On pricing derivatives under GARCH models:
A dynamic Gerper-Shiu approach, North American Actuarial Journal, 8, 17-32.

Stentoft, L. 2008: American option pricing using GARCH models and the normal
inverse Gaussian distribution, CREATES Research Paper 2008-41.

Theodossiou, P. 1998: Financial data and the skewed generalized t distribution,
Management Science, 44, 1650-1661.



30

2 GARCH modeling with generalized hyperbolic

distributions

The outline of this chapter is as follows. The GH distribution is defined in sub-

chapter 2.1 and, its special cases, the NIG distribution and the NRG, that prove

most relevant in our applications, are discussed in some detail. In subchapter 2.2,

GARCH-M models based on these distributions are considered along with various

specifications for the conditional variance. A brief discussion on parameter estima-

tion is also included. Empirical applications to returns of Standard & Poor’s 500

and Amsterdam EOE indices are presented in subchapter 2.3. The usefulness of

allowing for conditional skewness is illustrated by Value-at-Risk applications using

both in-sample and out-of-sample analysis. Conclusions are drawn in subchapter

2.4.

2.1 Generalized hyperbolic distributions

The density function of the GH distribution expressed with the parameterization

most suitable for our purposes13 is (e.g. Prause 1999, Appendix C)

f(x;λ,α,β, δ, µ) = a(λ,α, β, δ)

Ã
1 +

µ
x− µ
δ

¶2!(λ−1/2)/2

×Kλ−1/2

α

s
1 +

µ
x− µ
δ

¶2 expµβµx− µ
δ

¶¶
, (2)

x ∈ R, where

a(λ,α, β, δ) =
(α2 − β2)λ/2

√
2παλ−1/2δKλ

³p
α2 − β2

´
13For other parameterizations of the GH distribution, see e.g. Prause (1999), Eberlein and v.

Hammerstein (2003) or Aas and Haff (2006).
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and Kλ is the modified Bessel function of the third kind.
14 The parameters are

interpreted as follows: µ ∈ R is a location parameter and δ > 0 is a scale parameter.

The parameter 0 ≤ |β| < α describes the skewness and α > 0 gives the kurtosis. If

β = 0, the distribution is symmetric. The parameter λ ∈ R characterizes certain
subclasses of the distribution and considerably influences the size of the probability

mass contained in the tails of the distribution (Eberlein and v. Hammerstein 2003).

If the random variable x has a GH distribution, we write x ∼ GH(λ,α, β, δ, µ).

This distribution belongs in a location-scale family of distributions15, meaning that

x ∼ GH(λ,α,β, δ, µ)⇔ x− µ
δ

∼ GH(λ,α,β, 1, 0).

As will be seen in subchapter 2.3, this property is convenient in GARCH appli-

cations. The moment-generating function of the GH distribution can be found in

Eberlein (2001, Equation 3.5).

The mean and variance of the GH distribution are given by

Ex = µ+ δ
β

γ

Kλ+1(γ)

Kλ(γ)
(3)

and

V ar(x) = δ2

Ã
Kλ+1(γ)

γKλ(γ)
+

β2

α2 − β2

"
Kλ+2(γ)

Kλ(γ)
−
µ
Kλ+1(γ)

Kλ(γ)

¶2#!
, (4)

where γ =
p

α2 − β2 > 0 (Prause 1999, Appendix C).

We shall next discuss two special cases. For more special cases of the GH

distribution and their properties, see for example Prause (1999) or Eberlein and

v. Hammerstein (2003).

The first special case of the GH distribution we discuss is the NIG distribution.

14For more information on the modified Bessel function see, for example, the Appendix in
Jørgensen (1982) or Appendix B in Prause (1999).
15In general, a random variable y belongs to a location-scale family of distributions if the cumu-

lative distribution function of y can be expressed as F (y;µ, σ) = Φ
¡
y−µ
σ

¢
, where −∞ < µ <∞ is

a location parameter, σ > 0 is a scale parameter and Φ is the cumulative distribution function of
y when µ = 0 and σ = 1.
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The density function of the NIG distribution is obtained by assuming that λ =

−1/2 in Equation (2). Because the modified Bessel function satisfies K−1/2(x) =
K1/2(x) = (π/2x)

−1/2 e−x, we obtain

f(x;α, β, δ, µ) =
α

πδ
exp

·q
α2 − β2 + β

µ
x− µ
δ

¶¸ K1

µ
α
q
1 +

¡
x−µ
δ

¢2¶
q
1 +

¡
x−µ
δ

¢2 , (5)

where x, µ ∈ R, δ > 0 and 0 ≤ |β| < α (Barndorff-Nielsen 1997, Equation 2.4). The

parameters are interpreted in the same way as in the case of the GH distribution.

We write x ∼ NIG(α,β, δ, µ) to signify that the random variable x has an NIG

distribution.

Well-known expressions (see e.g. Jensen and Lunde 2001, 325) for the first and

second cumulants of an NIG distributed random variable are

κ1 = µ+
ρδp
1− ρ2

= µ+
β

γ
δ = Ex

and

κ2 =
δ2

α
³p

1− ρ2
´3 = α2

γ3
δ2 = V ar(x),

where γ =
p

α2 − β2 and ρ = β/α. Straightforwardly from the expressions of the

third and fourth cumulant (Jensen and Lunde 2001, 325) we obtain the skewness

Skw(x) =
κ3

(κ2)3/2
= 3

ρ
4
p
1− ρ2

√
α
,

and the kurtosis

Kts(x) =
κ4
(κ2)2

+ 3 = 3

Ã
1 +

4ρ2 + 1

α
p
1− ρ2

!
.

The second special case of the GH distribution discussed in detail in this sub-

chapter is the so-called NRG distribution. The NRG distribution has the density
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function

f(x;λ,β, δ, µ) =

µ
2

π

¶1/2 exp[β ¡x−µ
δ

¢
)]

δ2−λΓ(−λ)

µq
1 +

¡
x−µ
δ

¢2¶(λ−1/2)
|β|(λ−1/2)

×Kλ−1/2

|β|
s
1 +

µ
x− µ
δ

¶2 , (6)

where x, µ ∈ R, λ < 0, and β, δ > 0. A positive (negative) sign of β in the exponen-

tial function implies positive (negative) skewness. Other parameters are interpreted

as in the case of the GH distribution. If the random variable x has an NRG distri-

bution, we write x ∼ NRG(λ, β, δ, µ).

The density function of the NRG distribution is obtained as a limit from (2)

when α→ |β| > 0. This is seen by using the well-known asymptotic property of the
modified Bessel function that, for x→ 0,

Kλ(x) ∼
1

2
Γ(−λ)

³x
2

´λ
, λ < 0

(Abramowitz and Stegun 1970, Equation 6.3.8; Eberlein and v. Hammerstein 2003,

Equation 3.2). Thus, we have

1

δλKλ(
p

α2 − β2)
∼

2λ+1δ−λ

(α2 − β2)λ/2Γ(−λ) , (7)

and, using this in (2), gives (6).

The Student’s t distribution is obtained as a special case of theNRG distribution

by letting β → 0 in Equation (6). We obtain

f(x;λ, δ, µ) =
Γ (−λ+ 1/2)
Γ (−λ)

√
πδ2

Ã
1 +

(x− µ)2
δ2

!λ−1/2

,

the density of a scaled and shifted t distribution. Specializing to δ2 = −2λ gives the
density of a shifted t distribution with the degrees of freedom parameter equal to

−2λ, where λ < −1.
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By using (7) in (3) and (4) we obtain for the NRG distribution

Ex = µ+ δ
β

2(−λ− 1) ,

and

V ar(x) = δ2
·

1

2(−λ− 1) +
β2

4(−λ− 1)2(−λ− 2)
¸
,

where λ < −2.
The NRG distribution does not have a moment generating function. However,

the moments can be derived after noting that the distribution has a normal variance-

mean mixture representation.

According to Barndorff-Nielsen et al. (1982, 145) the distribution of a random

variable x is a normal variance-mean mixture with location µ, drift β̄ = β/δ, and

non-negative mixing variable y if, for a given y, the distribution of x is normal

with mean µ + β̄y and variance y. The distribution of y is referred to as a mixing

distribution. The same distribution can alternatively be obtained by assuming the

representation

x = µ+ β̄y + y1/2², (8)

where ² ∼ n.i.d.(0, 1) is independent of y. If β̄ = 0, the distribution is symmetric and

called normal variance mixture. The (unconditional) distribution of x is determined

by specifying the distribution of y.

The NRG distribution is obtained by assuming that the mixing variable in (8)

has a reciprocal or inverse gamma distribution RG(−λ, δ2/2). The raw moments of
the reciprocal gamma distribution are given by (Jørgensen 1982, 13)

E(yi) =
δ2iΓ(−λ− i)
2iΓ(−λ) , (9)

where the i-th moment exists if i < −λ. The skewness and kurtosis of the NRG
distribution are obtained by using (8) with the well known general expressions of
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skewness and kurtosis. The results are

Skw(x) =
−3β̄(Ey)2 + 2β̄3(Ey)3 − 3β̄3EyEy2 + 3β̄Ey2 + β̄

3
Ey3

[Ey + β̄
2
(E(y2)− (Ey)2)]3/2

and

Kts(x) =
6β̄

2
(Ey)3 − 3β̄4(Ey)4 + 6β̄4(Ey)2E(y2)
[Ey + β̄

2
(E(y2)− (Ey)2)]2

+
3E(y2) + 6β̄

2
E(y3) + β̄

4
E(y4)

[Ey + β̄
2
(E(y2)− (Ey)2)]2

,

where E(yi), i = 1, 2, 3, 4, are obtained from (9).

Other special cases of the GH distribution are obtained, for example, by choosing

λ ∈ 1/2 Z (λ 6= −1/2), or by letting δ → 0. The decide λ = 1 leads to the so-called

hyperbolic distribution (see e.g. Prause 1999) whereas when δ → 0 we get the

variance-gamma distribution of Madan et al. (1998).

To get an idea of the general shape of the distributions discussed graphs of the

logarithmic densities are presented in Figure 1. Having the applications to GARCH

modeling in mind, the mean and variance are set at zero and unity respectively.

The shape parameters of the skewed distributions with smallest skewness have been

chosen so that the skewness and excess kurtosis equal −.25 and 1 respectively. These
choices are in line with the empirical findings in subchapter 2.4.

The figure on the left presents the NIG distribution and standardized t distri-

bution with unit excess kurtosis. Logarithmic densities make visible differences in

the tails and show the effect of the skewness of the NIG distribution. Different

shapes of the tails can be observed when the NRG distribution is plotted against

the t distribution. In particular, the logarithmic density reveals the heavy left tail

of the NRG distribution. The figures also demonstrate changes in the densities as

the values of the skewness parameters increase.
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Figure 1. Logarithmic densities of the NIG (left), NRG (right) and t distributions (dashed lines). 

2.2 GARCH-M models

This subchapter discusses the GARCH-in-Mean models used in empirical applica-

tions of the chapter. First the model given in Equation (1) is specified more precisely.

We wish to allow for both a skewed conditional distribution and an asymmetric speci-

fication for the conditional variance. Thus, we consider a general non-linear GARCH

model which contains as special cases the ST-GARCH model by Lanne and Saikko-

nen (2005) and the asymmetric GJR-GARCH model by Glosten et al. (1993) as well

as an extension of the GARCH model proposed in Lanne and Saikkonen (2007). The

normal distribution and the t distribution are considered as conventional symmet-

ric distributions for the error term ηt in (1), whereas the asymmetric distributions

presented in the previous subchapter are their asymmetric alternatives. At the end,

the estimation of the parameters of the models is discussed.

2.2.1 Specification of the conditional mean and variance

A commonly used specification for the conditional mean in Equation (1), also

adopted here, is mt = φ0 + φ1rt−1 + ... + φlrt−l + νht. With this specification

the GARCH-M model considered reads as

rt = φ0 + φ1rt−1 + ...+ φlrt−l + νht + h
1/2
t ηt, (10)



37

where φ1, ...,φl and ν are real valued parameters and ht and ηt are as in (1). For

stationarity, the roots of the polynomial 1 − φ1z − ... − φlz
l are required to lie

outside the unit circle. Any available model can be used to model conditional

heteroskedasticity.

The specification we consider is given by

ht = a0 + d1G1(ht−1) +
pX
j=1

bjht−j +
qX
j=1

aju
2
t−j +

qX
j=1

cjIt−ju2t−j, (11)

where

ut = rt −mt − κh
1/2
t (12)

with κ a real valued parameter, and

It−j =

 0, if ut−1 ≥ 0,
1, if ut−1 < 0.

Clearly, a model encompassing the standard GJR-GARCH and ST-GARCH

specification is obtained if κ = 0. The reason for allowing other possibilities is

that in the case of asymmetric conditional distributions it may not be clear what is

the best way to center the series (cf. Lanne and Saikkonen 2007, 696). If d1 = 0

we have the GJR-GARCH by Glosten et al. (1993), which assumes that negative

errors contribute more to the conditional variance. When cj = 0, j = 1, ..., q, the

model corresponds the ST-GARCH model by Lanne and Saikkonen (2005).

For non-negativity of ht, the parameters in (11) are supposed to satisfy a0 > 0,

bj ≥ 0, aj ≥ 0, and d1 ≥ 0 whereas G1: (0,∞) → [0, 1] is an increasing function

which depends on the parameters. The function G1 can be used to allow for a

smooth shift in the level parameter a0. In particular, when ht−1 takes small values

the process (11) is close to a GJR-GARCH(p, q) process with level parameter a0.

As the value of ht−1 increases, the process approaches a GJR-GARCH(p, q) process

with level parameter a0 + d1. In our empirical applications we follow Lanne and

Saikkonen (2005) and choose the function G1 as the cumulative distribution function
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of a standard gamma distribution. Specifically, we assume

G1(ht−1) =
Z ht−1

0

xg1−1

Γ(g1)
exp(−x)dx,

where g1 > 0 is the parameter of the distribution.

As discussed by Lanne and Saikkonen (2005), a major motivation of the nonlinear

function G1 in (11) is that in many applications of the standard GARCH(1,1) model

the sum of the parameters a1 and b1 is estimated relatively close to unity. Hence,

the stationarity condition a1 + b1 < 1 is nearly violated. This can lead to relatively

poor volatility forecasts as the model exaggerates the persistence of the volatility.

In their empirical example the authors demonstrate that a ST-GARCH model of

the form (11) may then be useful.

The model specification is completed by specifying the distribution of the error

term ηt. One may simply assume that ηt ∼ N (0, 1) , or, as in Bollerslev (1987),

that ηt ∼ t
³
λ,
p
2(−λ− 1), 0

´
, that is, a t distribution standardized to have unit

variance and with degrees of freedom −2λ, λ < −1. In subchapter 2.4, the latter
will be used as benchmark to which the skewed distributions will be compared.

When κ 6= 0, the usual stationarity conditions of the GARCH process are

not directly applicable. In the case where the extension is applied with the ST-

GARCH(1,1) and/or GJR-GARCH(1,1), the stationarity conditions can be con-

cluded from Theorems 1 and 2 of Meitz and Saikkonen (2008). In the important

special case p = q = 1 and c1 = d1 = 0 Lanne and Saikkonen (2007) noted that

a sufficient condition for stationarity can be obtained from Corollary 6 of Carrasco

and Chen (2002). Specifically, under mild conditions on the distribution of ηt (see

Carrasco and Chen 2002, 23) it suffices to assume that

E(b1 + a1(ηt − κ)2)k < 1, k ≥ 1,

where k is an integer. Then [ ht ut ]
0 can be treated as a stationary process and

the same is true for rt. Moreover, Eh
k
t <∞, E |ut|2k <∞.
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2.2.2 GARCH-M models based on GH distributions

In this subchapter it is assumed that the error term ηt has a GH distribution. As

already mentioned, the GH distribution itself is only used for finding an eligible

sub-class to be applied. Obtaining GARCH-M-models based on these subclasses is

discussed after the formulation of the GARCH-M-GH model.

First assume that the innovation ηt has a GH distribution. The distribution

is standardized to have zero mean and unit variance by constraining the scale and

location parameters as

δ(λ,α,β) =

Ã
Kλ+1(γ)

γKλ(γ)
+

β2

α2 − β2

"
Kλ+2(γ)

Kλ(γ)
−
µ
Kλ+1(γ)

Kλ(γ)

¶2#!−1/2

and

µ(λ,α,β) = −δ(λ,α,β)β

γ

Kλ+1(γ)

Kλ(γ)
,

where γ =
p

α2 − β2. The assumed distribution of the innovation is now given as

ηt ∼ GH (λ,α,β, δ(λ,α,β), µ(λ,α,β)) , (13)

so that the GARCH-M model is defined by (10), (11), and (13). The implied con-

ditional distribution of rt can then be expressed as

rt|Ωt−1 ∼ GH
³
α,β, h

1/2
t δ(λ,α, β),mt − h1/2t µ(λ,α,β)

´
.

Applying Equations (3) and (4) it is verified that mt and ht are the conditional

mean and variance of rt given the information set Ωt−1 = {rt−1, rt−2, . . . } .
GARCH models with NIG and NRG innovations are now obtained simply by

using λ = −1/2 and α→ |β| in the preceding formulae. In the NIG case we have

ηt ∼ NIG
¡
α, β, γ3/2/α,−γ1/2β/α¢ , (14)
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and the model is defined by (10), (11), and (14). Obviously, the conditional distri-

bution of rt is given as

rt|Ωt−1 ∼ NIG
³
α,β, h

1/2
t γ3/2/α,mt − h1/2t γ1/2β/α

´
. (15)

The conditional density of rt given Ωt−1 is obtained from this and Equation (5).

In the NGR case

ηt ∼ NRG(λ, β, δ(λ,β),−βδ(λ, β)/ [2(−λ− 1)]) (16)

where δ(λ,β) =
h

1
2(−λ−1) +

β2

4(−λ−1)2(−λ−2)
i−1/2

, λ < −2. Now the model is defined
by (10), (11), and (16). With the notation from the previous chapters the conditional

distribution of rt can be expressed as

rt|Ωt−1 ∼ NRG(λ, β, h1/2t δ(λ,β),mt − h1/2t βδ(λ, β)/ [2(−λ− 1)]), (17)

where δ(λ,β) is as above and λ < −2. From (6) and (17) we find the conditional

density of rt.

If needed, other special cases of GARCH-M-GH models can be derived in the

same way as long as the resulting distributions can be represented with the parame-

ters applied here. This is not the case for the so-called variance-gamma distribution

of Madan et al. (1998), because this distribution is obtained when δ → 0.16

2.2.3 Parameter estimation and statistical inference

Suppose that we have an observed time series rt, t = −s+ 1, ..., T , where s denotes
the required number of initial values. Conditional on the initial values of rt and ht

the log-likelihood function of the relevant (skewed) GARCH model can be written

16A detailed discussion on using this distribution in GARCH models can be found in Miettinen
(2007).
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as

lT (θ) =
TX
t=1

log ft−1(rt;θ),

where ft−1(rt;θ) is the conditional density function of rt given Ωt−1 and θ is the

respective vector of unknown parameters. For instance, in the cases of the NIG

or NRG specification ft−1(rt;θ) is obtained from (5) and (15) or (6) and (17),

respectively. In contrast to the sequential approach employed by Aas and Haff

(2006, 298), our procedure is closer to that of Mencia and Sentana (2004) as we

choose to estimate all the parameters of the model simultaneously by maximizing

lT (θ) using standard numerical algorithms.

The ML estimator of the parameter θ, denoted by θ̂, can be treated as approx-

imately normally distributed with mean value θ and covariance matrix

−(E∂2lT (θ)/∂θ∂θ0)−1. Approximate standard errors of the components of θ̂ can be
obtained by taking the square roots of the diagonal elements of−(∂2lT (θ̂)/∂θ∂θ0)−1.
Likelihood ratio, Wald, and Lagrange multiplier tests with approximate chi-square

distributions can also be performed in the usual way.

2.3 Empirical examples

In this subchapter, the relevance of modeling skewness is illustrated by using return

series of two stock market indices. The indices are the Standard & Poor’s 500 index

from 6.1.1986 to 12.31.1997 and the Amsterdam EOE index from the same period.

For both data, we use about 3000 first observations for the estimation of the models

and save 1000 observations for out-of-sample analysis.17

17Most of the empirical work, including the estimation of the models, was carried out on GAUSS.
In the calculation of the modified Bessel function with integer order, formulae 9.8.5 - 9.8.8 from
Abramowitz and Stegun (1970) were applied. Bessel functions with fractional order were calculated
by using algorithms extracted from Spanier and Oldham (1987; 494-495, 504-505). Numerical in-
tegration of the density functions containing a modified Bessel function was executed with Matlab.
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2.3.1 S&P 500 index

The return series of the Standard & Poor’s 500 index has the stylized facts typical

of a financial time series. In particular volatility clustering can be observed from the

plot of the series, while the unconditional excess kurtosis is observable in the figure

presenting the estimated density and the summary statistics in Table 1.

Table 1: Summary statistics of the returns of the S&P 500 index (estimation
period).

Observations 3029
Mean 0.050

Std.devn. 1.009
Skewness -4.237

Excess kurtosis 93.629
Minimum -22.833
Maximum 8.709
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Figure 2. Plot of the returns of the S&P 500 index and estimated density against the density of the 
normal distribution (dashed lines, estimation period). 

We consider the GARCH(1,1)-M model with conditional t distribution as a bench-

mark for the models with skewed conditional distribution. The estimation results

for this model are presented in the first column of Table 2 (degrees of freedom

parameter of the t distribution is denoted by df). The specification of the condi-

tional mean is of the form vht. Both constant and lagged returns were found to be

statistically insignificant in the mean equation. The Ljung-Box statistic for the stan-
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dardized residuals also indicated no remaining autocorrelation. The specification of

the conditional variance is the standard GARCH(1,1).

Table 2: Estimation results for GARCH(1,1)-M models for the returns of the S&P
500 index.

t ST-t ST-NIG ST-NRG
ν 0.075 0.099 0.069 0.067

(0.017) (0.018) (0.020) (0.021)
a0 0.010 0.014 0.019 0.019

(0.003) (0.007) (0.009) (0.009)
a1 0.041 0.033 0.046 0.041

(0.008) (0.007) (0.010) (0.009)
b1 0.947 0.856 0.811 0.825

(0.009) (0.049) (0.056) (0.055)
d1 0.260 0.300 0.297

(0.118) (0.136) (0.131)
g1 1.628 1.606 1.635

(0.116) (0.147) (0.131)
κ 0.490 0.429

(0.140) (0.144)
α 1.194

(0.164)
β -0.131 -0.248

(0.049) (0.091)
λ -2.571

(0.251)
df 4.692 4.773

(0.412) (0.424)

l̂ -3581.6 -3566.0 -3561.9 -3556.3
AIC 7173.2 7146.0 7141.7 7130.7
BIC 7203.3 7188.1 7195.9 7184.7

Skewness 0 0 -0.302 -
Excess kurtosis 8.671 7.762 2.649 -

Q(20) 28.920 28.919 27.213 27.640
Q2(20) 20.246 20.978 11.354 13.906

Skewness and excess kurtosis are the implied point estimates of the skewness and excess

kurtosis of the standardized error ηt. Q(20) stands for Ljung-Box test for up to
20th-order serial correlations in standardized residuals. Q2(20) stands for Ljung-Box test

for up to 20th-order serial correlations in squared standardized residuals. Standard

errors (in parentheses) obtained from inversed Hessian.
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From the results we observe that â1 + b̂1 = 0.988, which implies relatively slow

decline of the conditional variance.

The second column of Table 2 presents estimation results for the respective ST-

GARCH model.18 We observe that the sum â1+ b̂1 now equals 0.889, which may be

considered substantially lower than in the standard GARCH case. It may be noted

that the parameters related to the nonlinear part of the model for the conditional

variance are estimated precisely, as the standard errors are comparatively low. A

substantial improvement in the log-likelihood and thus in the values of the AIC and

BIC criteria is also observed. In light of the estimation results it appears that the

ST-GARCH specification is preferable to the standard GARCH.

As already mentioned, it has been suggested in the literature that the GH dis-

tribution itself may be overparameterized for GARCH applications. Our experience

corroborates. When a GARCH-GH model was estimated for the S&P 500 series an

insignificant estimate for the parameter α was obtained. In addition, the differencebα − ¯̄̄bβ ¯̄̄ was as small as 0.0001, suggesting that the restriction α → |β| could be
binding. The point estimate of λ was about −2.5, indicating that the restriction
λ < 0 could also be binding. Based on these results NIG and NRG models were

fitted. It should be noted that we also tried models with λ = 1 (hyperbolic distri-

bution) and δ → 0 (variance-gamma distribution), but their empirical performance

was consistently surpassed by the λ = −1/2 (NIG) and α → |β| (NRG) cases.
In addition, we considered the z distribution introduced into GARCH modeling by

Lanne and Saikkonen (2007). In our empirical applications this distribution behaved

very similarly to the NIG distribution.19

In the following columns, estimation results for ST-GARCH models with skewed

distributions are reported. The results show that both specifications imply negative

skewness. For the NIG and NRG distributions the skewness can be interpreted as

statistically significant by observing that the estimates of parameter β are statisti-

cally significant.

18The GJR-GARCH specification was not found necessary with the ST-GARCH specification.
19For estimation results for variance-gamma and z distribution models see Miettinen (2007).
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Table 2 reveals that estimates of the parameters in the conditional mean and con-

ditional variance are not affected by the choice of skewed distributions. Differences

in estimates appear to be relatively small in models based on the NIG and NRG

distributions. However, compared to the results obtained with the t distribution the

sum â1 + b̂1 is further reduced, now being less than 0.85 in the smaller case. Also,

estimates of the parameter κ are significantly different from zero in both skewed

specifications.

Using the moments presented in subchapter 2.2 with the restrictions from sub-

chapter 2.3, point estimates for the skewness and excess kurtosis of the distribution

of the standardized error can be computed. These estimates are also presented in

Table 2. In the case of the NRG distribution skewness and (excess) kurtosis do not

exist because the estimate of the parameter λ is greater than −3. Of course, the es-
timated distribution is still negatively skewed as the estimated skewness parameter

is negative. In the case of the NIG distribution these quantities do indeed exist,

the respective point estimates being −0.302 and 2.649.
According to AIC, the models based on the NIG and NRG distributions are

preferable to the models based on the t distribution, and of all the models the one

based on the NRG distribution is recommended by both AIC and BIC. However,

according to BIC, the t distribution is preferred to the NIG distribution.

From the estimation results we now proceed to a more informal examination of

the models. A standard procedure in the diagnostic checking of a GARCH model is

to view the distribution of the standardized residuals, which, for a correctly specified

model, should be compatible with the distribution assumed for the (theoretical) error

term. We examine the distribution of the standardized residuals by comparing the

estimated density function with its theoretical counterpart. To make the fit in the

tails more easily visible, plots with logarithmic scale are presented. The density of

the residuals can be estimated using the standard methods presented, for example,

in Silverman (1986). We set the window width of the smoothing parameter equal

to 1.06σ̂/T 0.2, where σ̂ denotes the estimated standard deviation of the data, and

use the density of the normal distribution as a kernel. In the upper left corner of
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Figure 3 the estimated (logarithmic) density of the standardized residuals obtained

from the GARCH(1,1)-M-model based on the t distribution is presented against

the theoretical distribution implied by the model. The figure reveals that the left

tail is constantly underestimated as the estimated density exceeds the theoretical

density. The right tail appears to be overestimated for values of densities exceeding

3. The corresponding figure for the ST-GARCH(1,1)-M-t model shows that the

addition of the smooth transition term to the conditional variance has not changed

the properties of the empirical distribution of the standardized residuals.

  

  
Figure 3. Plots of the logarithmic estimated densities of the residuals of the GARCH(1,1)-M-t 

(upper left), ST-GARCH(1,1)-M-t (upper right), ST-GARCH(1,1)-M-NIG (lower left) and ST-
GARCH(1,1)-M-NRG (lower right) models against the logarithmic theoretical densities. 

As to the skewed distributions, Figure 3 clearly shows the conditional skewness, as

the left tails of the theoretical densities are thicker than the right tails. The fit in

the tails is also clearly better than in the t distribution. The performance of the

NRG distribution appears nearly flawless.

From Figure 3 it can be concluded that, using either of the skewed distributions,

the fit can be improved especially in the tails of the distribution. In order to illustrate
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the potential importance of such an improvement, a Value-at-Risk application20 is

presented.

In Value-at-Risk (VaR) applications the interest is in determining a return V aRt|t−1,

the smaller of which is observed at some (small) probability, say p. Thus, if the VaR

of size p is properly determined, it should be observed that p× T of T returns are
smaller than the VaR of size p. The first line in the left panel of Table 3 displays

the percentages of observations in the estimation period that are smaller than the

1, 2, and 3 % VaR for the GARCH model based on the conditional t distribution.

In all cases the percentages observed are higher than the size of the VaR. The in-

terpretation is that the t distribution consistently underestimates the left tail of the

distribution. The situation is even worse in the case of the ST-GARCH-t model, as

indicated by the in-sample figures on the second row of the table.

Table 3: Observed percentages of violations of VaR for different models.

In-sample Out-of-sample
VaR VaR

1 % 2 % 3 % 1 % 2 % 3 %
t 1.22 2.4121 3.2322 1.20 3.4023 4.8024

ST-t 1.25 2.8125 3.3726 1.40 3.3027 5.0028

ST-NIG 0.89 1.78 2.91 1.00 2.10 3.90
ST-NRG 0.86 1.95 3.1029 0.90 2.50 4.5030

The respective figures for the skewed distributions (lines 3-4 in the left panel

of Table 3) show that the VaR is not overestimated, but underestimated, by the

models based on skewed distributions. Only in one case out of 6 does the observed

20Various GARCH models have been considered for VaR estimation e.g. by Angelidis et al.
(2004).
21Rejected at 1 % significance level by Christoffersen’s test.
22Rejected at 1 % significance level by Christoffersen’s test.
23Rejected at 1 % significance level by Kupiec’s test and at 5 % level by Christoffersen’s test.
24Rejected at 1 % significance level by Kupiec’s and Christoffersen’s tests.
25Rejected at 5 % significance level by Kupiec’s test and at 0.1 % level by Christoffersen’s test.
26Rejected at 1 % significance level by Christoffersen’s test.
27Rejected at 1 % significance level by Kupiec’s test and at 5 % level by Christoffersen’s test.
28Rejected at 1 % significance level by Kupiec’s and Christoffersen’s tests.
29Rejected at 5 % significance level by Christoffersen’s test.
30Rejected at 1 % significance level by Kupiec’s test and at 5 % level by Christoffersen’s test.
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percentage of violations exceed the VaR size. Generally, not only is this underesti-

mation smaller than the overestimation (in terms of percentages), but it is also less

likely to be a nuisance in the actual applications as it leads to more conservative

VaR figures.

The models considered are tested even harder in out-of-sample VaR analysis

using the 1000 last observations of our data. The results are reported in the left

panel of Table 3. Models based on t distribution appear to underestimate the left

tail of the distribution, also in out-of-sample analysis. Now this is also true for

the models based on skewed distributions for VaRs of sizes 2 and 3 %. However,

this underestimation is considerably smaller for the skewed models than for the

symmetric models.

In order to draw conclusions on the differences in Table 3, a test proposed by

Kupiec (1995) is performed. The no rejection regions at the 5 % confidence level for

T = 3029 are 0.7 ≤ 100N/T ≤ 1.35, 1.55 ≤ 100N/T ≤ 2.51 and 2.44 ≤ 100N/T ≤
3.60 (where N is the number of violations), for the values of 100p equal to 1, 2

and 3 respectively. In the case of the skewed distributions the number of violations

obtained from Table 3 falls within these regions so that no VaR can be rejected.

However, in out-of-sample VaR forecasting using 1000 last observations the models

based on the t distribution are rejected at the 1 % confidence level for 100p = 2

and 100p = 3 (right panel of Table 3). The differences in the forecast performance

of the models based on the skewed distributions appear to remain relatively small

except for the NRG distribution, whose performance deteriorates as the size of VaR

increases.

Kupiec’s (1995) test only allows us to draw conclusions on the unconditional

coverage of the VaR forecasts. A likelihood ratio test designed to account for uncon-

ditional coverage and the independence of the failures is presented in Christoffersen

(1998). Using this more sophisticated test the 2 % and 3 % VaRs based on the t

distribution are rejected at 5 % significance level both in-sample and out-of-sample.

However, the VaRs based on the skewed distributions are only rejected in the case

of the NRG distribution with 100p = 3 both in-sample and out-of-sample.
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In light of these analyses not much can be said about which skewed distribution

one should apply. The plots of the estimated densities suggest that when the goal is

to model the conditional distribution as a whole the NRG distribution is the best

choice. However, when modeling of the left tail is considered, the situation is less

clear, although it seems reasonable to argue that in VaR applications both skewed

distributions outperform the t distribution. Obviously the distribution should be

selected according to the size of the VaR, as the performance of the distribution

appears to have some relation to it.

2.3.2 Amsterdam EOE index

Some of the conclusions drawn on the basis of with the returns of the S&P 500 index

can be repeated by analyzing the returns of the Amsterdam EOE index (Figure 4).

Summary statistics of the series are presented in Table 4.

Table 4: Summary statistics of the returns of the Amsterdam EOE index
(estimation period).

Observations 2979
Mean 0.040

Std.devn. 1.158
Skewness -0.683

Excess kurtosis 15.92
Minimum -12.788
Maximum 11.179
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Figure 4. Plot of the returns of the Amsterdam EOE index and estimated density against the density 
of the normal distribution (dashed lines, estimation period). 
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Table 5: Estimation results for GARCH(1,1) models for the returns of the
Amsterdam EOE index.

GJR-t NIG NRG
φ0 0.077 0.050 0.051

(0.015) (0.016) (0.016)
a0 0.021 0.022 0.020

(0.006) (0.006) (0.006)
a1 0.041 0.071 0.071

(0.013) (0.012) (0.012)
b1 0.911 0.900 0.904

(0.016) (0.017) (0.016)
c1 0.051

(0.018)
κ 0.352 0.315

(0.102) (0.100)
α 1.924

(0.291)
β -0.339 -0.552

(0.100) (0.171)
λ -3.379

(0.378)
df 5.935

(0.582)

l̂ -3955.7 -3953.4 -3943.4
AIC 7923.4 7920.8 7900.8
BIC 7959.5 7962.9 7942.9

Skewness 0 -0.384 -0.630
Excess Kurtosis 3.101 1.781 -

Q(20) 23.518 23.420 23.516
Q2(20) 7.419 7.389 7.541

Skewness and excess kurtosis are the implied point estimates of the skewness and excess

kurtosis of the standardized error ηt. Q(20) stands for Ljung-Box test for up to
20th-order serial correlations in standardized residuals. Q2(20) stands for Ljung-Box
test for up to 20th-order serial correlations in squared standardized residuals. Standard

errors (in parentheses) obtained from inversed Hessian.

In this case, the GJR-GARCH specification was found satisfactory in the sym-

metric case (Table 5). The conditional mean was only modeled with a constant as

no GARCH-M effect was discovered.
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When fitting a GARCH model with GH innovations the estimation results were

qualitatively the same as in the previous example. More precisely, this time we

obtained an insignificant estimate of β and the difference bα− ¯̄̄bβ ¯̄̄ was 0.0033, which
again suggests that the restriction α → |β| could be binding. The point estimate
of λ was about −3.0. In light of these results NIG and NRG models were again

employed.31

  

 

 

Figure 5. Plots of the logarithmic estimated densities of the residuals of the GJR-GARCH(1,1)-t 
(upper left), GARCH(1,1)-NIG (upper right) and GARCH(1,1)-NRG (lower left) models against the 

logarithmic theoretical densities. 

The estimation of models employing skewed conditional distributions was carried

out successfully. The GJR specification was not found necessary when the extension

from Equation (12) was added to the conditional variance equation. The estimates

of the parameters of the NIG distribution again imply significant negative skewness

of −0.384. In the case of the NRG distribution the point estimate of the skewness
is −0.63. A possible explanation for such a large estimate is that the estimate of λ

31We also tried the λ = 1 and δ → 0 cases practically repeating the results from the previous
example. The same applies to the z distribution.
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is relatively close to −3, the point at which the skewness no longer exists. Again,
the model based on the NRG distribution is recommended by AIC and BIC.

Figures of estimated densities of the error term and the theoretical densities

(Figure 5) suggest that the fit is considerably improved in the tails by allowing for

conditional skewness.

Finally a VaR example is constructed in order to illustrate the potential advan-

tages of allowing for conditional skewness. The results are presented in Table 6. The

first line of the left panel suggests that the application of the t distribution leads to

too many violations. Skewed distributions appear to lead to too small VaRs which,

as already mentioned, may be in practice a less harmful feature. The out-of-sample

results (right panel) also indicate very good performance by the models based on the

skewed distributions and considerable underestimation of the left tail by the model

based on the t distribution. Unfortunately the formal tests applied in the previous

subchapter do not allow us to reject any models in this case. It may be noted that,

again, it is difficult to say which skewed distribution one should apply.

Table 6: Observed percentages of violations of VaR for different conditional
distributions.

In-sample Out-of-sample
VaR VaR

1 % 2 % 3 % 1 % 2 % 3 %
t 1.28 2.42 3.46 1.60 2.70 4.10

NIG 0.73 1.81 2.72 1.00 1.70 3.00
NRG 0.77 1.88 2.89 1.10 1.80 3.30

2.4 Discussion

This chapter discussed the importance of accommodating conditional skewness in

GARCH modeling. This issue was addressed by applying skewed distributions as a

conditional distribution of the GARCH model. The emphasis was in the empirical

performance of the models considered.

Specifically, we considered so-called generalized hyperbolic distributions for

GARCH models. Some of the special cases of these distributions have been used
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previously, but this thesis may be one of the first attempts to use the GH distri-

bution. However, the estimation was found to converge to the special case, where

the mixing variable in the normal variance-mean mixture representation of the GH

distribution has a reciprocal or inverse gamma distribution.

In our empirical applications to returns of two real stock market indices, statis-

tically significant estimates of the parameters of the skewed distributions employed

were obtained. In particular, all the estimates implied negatively skewed conditional

distributions with point estimates of the conditional skewness, when attainable,

falling between approximately −0.3 and −0.6. Compared to models based on the
conditional t distribution, the skewed models were also supported by model selection

criteria. Furthermore, the estimated densities of standardized residuals implied by

the models revealed that the t distribution may not be adequate if the objective

is to model the tails carefully. In this respect, the skewed distributions employed

performed considerably better.

To demonstrate the potential importance of the improved fit in the tails of the

distribution, VaR applications were performed. The t distribution consistently eval-

uated the left tail of the distribution too thin so that the probability of small returns

was underestimated. By contrast, with skewed distributions probabilities of small

returns seemed to be slightly overestimated rather than underestimated. This means

specifically that when the objective is to avoid modeling the left tail too liberally it

is preferable to use skewed distributions instead of the t distribution.

As discussed in the introduction, future work on GARCH-GH models includes

options pricing when the underlying asset follows a GARCH-GH model. The

marginal effect of the generalized hyperbolic specification against alternatives such

as mixture GARCH models should also be more carefully addressed.
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3 Mixture MEM models and conditional

autoregressive range

This chapter considers mixture multiplicative error models (MMEM). In subchapter

3.1 we present a condition for the strict stationarity of an autoregressive model with

non-negative i.i.d. coefficients. The discussion is based on Bougerol and Picard

(1992a). The strict stationarity condition of the MMEM model is given in sub-

chapter 3.2. The result is obtained by representing the MMEM model as a first

order autoregressive process with random coefficients. Because the strict stationarity

does not guarantee the existence of second moments, the condition for the weak

stationarity of the MMEM model is derived in subchapter 3.332. This condition is

applied in subchapter 3.4, where an expression for the autocorrelation function of

the MMEM model is derived. In subchapter 3.5 we present an application of the

proposed model to the modeling of the conditional autoregressive range. Subchapter

3.6 concludes with discussion.

3.1 Autoregressive model with non-negative i.i.d. coefficients

DefineM+(d) [resp. (R+)d] as the set of d×d matrices (resp. d-dimensional vectors)
with non-negative elements, and consider the generalized autoregressive equation

Xn = AnXn−1 +Bn, n ∈ Z. (18)

Here

½h
An Bn

i0
, n ∈ Z

¾
is a given sequence of independent, identically dis-

tributed (i.i.d.), random variables with values in M+(d) × (R+)d and Xn is in Rd.
In what follows a necessary and sufficient condition for the existence of a strictly

stationary, non-negative, solution of (18) is discussed.

Let us first recall the definition of strict stationarity. A process {Xn} is strictly
stationary if for all n,m ∈ Z, the law of

h
Xn Xn+1 . . . Xn+m

i0
is independent

32In the preceding literature, the weak stationarity of the mixture GARCH model has been
studied by Haas et al. (2004) whereas Liu (2006) considers the weak and the strict stationarity of
the Markov-switching GARCH model.
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of n. The stationarity properties of the process to be considered later in the chapter

are directly related to the stationary solutions of (18). In order to present the

stationarity result, the so-called top Lyapunov exponent needs to be defined.

The top Lyapunov exponent is defined in Bougerol and Picard (1992a, 116-117)

as follows. Let k·k denote any norm on Rd. Then define an operator norm on the

set M(d) of d× d matrices by

kMk = sup©kMxk / kxk ; x ∈ Rd, x 6= 0ª ,
for any M in M(d). The top Lyapunov exponent associated with a sequence {An,
n ∈ Z} of i.i.d. random matrices, is defined by

γ = inf

½
E

µ
1

n+ 1
log kA0A−1 . . . A−nk

¶
, n ∈ N

¾
,

when E(log+ kA0k) is finite [log+ x = max(log x, 0)]. We point out that, almost

surely,

γ = lim
n→+∞

1

n
log kA0A−1 . . . A−nk .

This result allows us to estimate γ by simulation. It may also be noted that γ is

independent of the norm.

Now suppose that in (18) E(log+ kAnk) is finite and that all the coefficients of An
(or Bn) are strictly positive with nonzero probability. Then, according to Theorem

3.2 in Bougerol and Picard (1992a, 123), if Equation (18) has a strictly stationary,

non-negative, solution, then the top Lyapunov exponent γ related to the matrices

{An, n ∈ Z} is strictly negative. Moreover, if E(log+ kB0k) is finite and if γ < 0,
then for all n ∈ Z, the series

Xn = Bn +
∞X
k=1

AnAn−1 . . . An−k+1Bn−k

converges almost surely and the process {Xn, n ∈ Z} is the unique strictly station-
ary and ergodic solution of (18). In Bougerol and Picard (1992a) the result pre-
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sented above is applied to develop conditions for the strict stationarity of GARCH

processes. This application is presented in Appendix 1.

It may be noted that if the assumption of the non-negativeness of½h
An Bn

i0
, n ∈ Z

¾
, or, especially in our applications, the non-negativeness of

{An, n ∈ Z}, is relaxed, the condition for the strict stationarity of {Xn, n ∈ Z}
can be concluded from Theorem 2.5 of Bougerol and Picard (1992b, 1717-1718). In

particular, the non-negativeness of {An, n ∈ Z} can be relaxed if we wish to allow
the parameters of the MEMmodel (see following subchapter) to satisfy the condition

given in Nelson and Cao (1992).

In subchapter 3.3 a condition for the weak stationarity for the MMEM model is

obtained by presenting the MMEM model as a special case of the generalized AR

model (18). This result is applied in subchapter 3.4, where an expression for the

autocorrelation function for this model is derived.

3.2 Strict stationarity of the mixture MEM model

In Engle (2002) the multiplicative error model (MEM) is specified as

xt = µtεt,

where εt ∼ D(1,φ2), that is, εt has a non-negative distribution with unit mean and

variance φ2. The innovations εt are also assumed to be independently and identically

distributed. The equation for the conditional expectation of xt given the information

set Ωt−1 = {xt−1, xt−2, ...} is generally specified as

µt = ω +

qX
i=1

αixt−i +
pX
j=1

βjµt−j.

In order to guarantee the non-negativity of the mean process {µt}, the parameters
αi, i = 1, ..., q and βj, j = 1, ..., p, are supposed to satisfy the conditions given in

Nelson and Cao (1992). The MEM models nests the squared (that is, y2t = htv
2
t ,

where v2t |Ωt−1 ∼ D(1,φ2t )) GARCH model by Bollerslev (1986), the ACD model by
Engle and Russel (1998) as well as the CARR model by Chou (2005).
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Now consider the generalization of the MEM model given by

xt =
mX
i=1

I(ηt = i)µi,tεi,t (19)

where

µi,t = ωi +

qX
j=1

αi,jxt−j +
mX
l=1

pX
k=1

βi,l,kµl,t−k, (20)

and ηt and εi,t are independently and identically distributed with P (ηt = i) =

πi, i = 1, ...,m,
Pm

i=1 πi = 1, and εi,t ∼ Di(1,φ
2
i ). Moreover, the processes {εi,t}

and {ηt} are mutually independent for all i. In order to be able to apply the results
given in the previous subchapter, we assume that all the coefficients ωi, αi,j and

βi,l,k are non-negative. If the model is restricted to the diagonal model, that is l = i

for i = 1, ...,m, the conditions given in Nelson and Cao (1992) can be employed.

This model, as an obvious extension of the MEM model, nests some previously

considered time series models. As special cases the (finite) mixture ACD model by

De Luca and Zuccolotto (2003), the MN-GARCH model by Haas et al. (2004) and

Alexander and Lazar (2006), and the mixture MEM model by Lanne (2006) can be

mentioned. Our aim is to present the model in convenient form, so that the results

of Bougerol and Picard (1992a) can be directly applied to obtain a condition for the

strict stationarity for these models.

Now, let us define the row vectors

µi,t =
h
µi,t · · · µi,t−p+1

i
∈ Rp,

τ i,t =
h
βi,i,1 + αi,1I(ηt−1 = i)εi,t−1 βi,i,2 · · · βi,i,p−1

i
∈ Rp−1,

ξi,j,t =
h
βi,j,1 + αi,1I(ηt−1 = j)εj,t−1 βi,j,2 · · · βi,j,p−1

i
∈ Rp−1, i 6= j,

ξi,t =
h
I(ηt−1 = i)εi,t−1 0 · · · 0

i
∈ Rp−1,

αi =
h
αi,2 · · · αi,q−1

i
∈ Rq−2,

δi =
h
ωi 0 · · · 0

i
∈ Rp.
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The definitions

Xt =
h
µ1,t µ2,t · · · µm,t xt−1 · · · xt−q+1

i0
∈ Rmp+q−1

and

B =
h
δ1 δ2 · · · δm 0 · · · 0

i0
∈ Rmp+q−1

coupled with the definition of the (mp + q − 1) × (mp + q − 1) matrix At, written
in block form, as

At =



τ 1,t β1,1,p ξ1,2,t β1,2,p · · · ξ1,m,t β1,m,p α1 α1,q

Ip−1 0 0 0 0 0 0 0

ξ2,1,t β2,1,p τ 2,t β2,2,p ξ2,m,t β2,m,p α2 α2,q

0 0 Ip−1 0 0 0 0 0
...

. . .
...

ξm,1,t βm,1,p ξm,2,t βm,2,p τm,t βm,m,p αm αm,q

0 0 0 0 Ip−1 0 0 0

ξ1,t 0 ξ2,t 0 ξm,t 0 0 0

0 0 0 0 · · · 0 0 Iq−2 0



,

allow us to state the model defined by Equations (19) and (20) in the convenient

form

Xt = AtXt−1 +B.

Now, according to Theorem 3.2 in Bougerol and Picard (1992a) the mixture

MEM model is strictly stationary and ergodic, if the top Lyapunov exponent γ

associated with matrices {At, t ∈ Z} is strictly negative. For a special case of a two
component model, see Appendix 2.
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3.3 Weak stationarity of the mixture MEM model

In the preceding subchapter a condition for the strict stationarity of the mixture

MEM model was presented. However, strict stationarity does not guarantee the

existence of second moments. Second moments are often objects of interest, for

instance, when considering the autocorrelation structure of the time series modeled.

The existence of second moments follows from the weak stationarity of the pro-

cess. In this subchapter, a condition for the weak stationarity of the mixture MEM

model is derived. The derivation is based on the representation of the mixture MEM

model as a special case of the autoregressive model (18).

Again, consider the model (19) but, for simplicity33, assume that instead of (20)

we have

µi,t = ωi +

qX
j=1

αi,jxt−j +
pX
k=1

βi,kµi,t−k. (21)

Here all the coefficients ωi, αi,j and βi,k are assumed to fulfill the conditions given

in Nelson and Cao (1992) to guarantee the positivity of the mean processes µi,t for

every i.

Then, define

µi,t =
h
µi,t · · · µi,t−p+1

i
∈ Rp,

τ i,t =
h
βi,1 + αi,1I(ηt−1 = i)εi,t−1 βi,2 · · · βi,p−1

i
∈ Rp−1,

ξi,j,t =
h
αi,1I(ηt−1 = j)εj,t−1 0 · · · 0

i
∈ Rp−1,

ξi,t =
h
I(ηt−1 = i)εi,t−1 0 · · · 0

i
∈ Rp−1,

αi =
h
αi,2 · · · αi,q−1

i
∈ Rq−2,

Xt =
h
µ1,t µ2,t · · · µm,t xt−1 · · · xt−q+1

i0
∈ Rmp+q−1,

δi =
h
ωi 0 · · · 0

i
∈ Rp,

B =
h
δ1 δ2 · · · δm 0 · · · 0

i0
∈ Rmp+q−1.

33We consider the diagonal model to be most relevant in our applications as earlier literature
(see e.g. Haas et al. 2004, 239) suggests only negligible improvement in fit by allowing nondiagonal
coefficients βi,l,k, i 6= l to differ from zero.
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Using these definitions, the (mp+ q − 1)× (mp+ q − 1) matrix At becomes

At =



τ 1,t β1,p ξ1,2,t 0 · · · ξ1,m,t 0 α1 α1,q

Ip−1 0 0 0 0 0 0 0

ξ2,1,t 0 τ 2,t β2,p ξ2,m,t 0 α2 α2,q

0 0 Ip−1 0 0 0 0 0
...

. . .
...

ξm,1,t 0 ξm,t 0 τm,t βm,p αm αm,q

0 0 0 0 Ip−1 0 0 0

ξ1,t 0 ξ2,t 0 ξm,t 0 0 0

0 0 0 0 · · · 0 0 Iq−2 0



,

which allows us to write

Xt = AtXt−1 +B.

Note, that the matrix At can be rewritten as

At =
mX
i=1

I(ηt = i) (αei,t−1 + C) ,

where

α =
h
α1,1 0(1×(p−1)) α2,1 0(1×(p−1)) · · · αm,1 0(1×(p−1)) 1 0(1×(q−2))

i0
∈ Rmp+q−1,

ei,t−1 =
h
0(1×(i−1)p) εi,t−1 0(1×((m−i)p+p+q−2))

i
∈ Rmp+q−1,
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with 0(1×i) denoting a 1× i vector of zeros, and

C =



β1 β1,p 0 0 · · · 0 0 α1 α1,q

Ip−1 0 0 0 0 0 0 0

0 0 β2 β2,p 0 0 α2 α2,q

0 0 Ip−1 0 0 0 0 0
...

. . .
...

0 0 0 0 βm βm,p αm αm,q

0 0 0 0 Ip−1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 · · · 0 0 Iq−2 0



,

with

βi =
h
βi,1 · · · βi,p−1

i
∈ Rp−1.

The model can now be written as

Xt =

Ã
mX
i=1

I(ηt = i) (αei,t−1 + C)

!
Xt−1 +B,

and assuming γ < 0, after recursive substitution

Xt = B +
∞X
k=1

AtAt−1. . .At−k+1B

= B +

Ã
mX
i=1

I(ηt = i) (αei,t−1 + C)

!
B

+

Ã
mX
i=1

I(ηt = i) (αei,t−1 + C)

!Ã
mX
i=1

I(ηt = i) (αei,t−1 + C)

!
B + · · · ,(22)

where the series converges almost surely. In what follows, we state a condition for

the quadratic convergence of (22), and thus the existence of second moments. The

technical details of the proof can be found in Appendix 3.

The mixture MEMmodel is weakly stationary if the spectral radius of the matrix
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Pm
i=1 πiE

¡¡
e0i,n−1α

0 + C 0
¢⊗ ¡e0i,n−1α0 + C 0¢¢ = E(A0n⊗A0n) is smaller than one. This

is written shortly as ρ(E(A0n ⊗A0n)) < 1.
For a two-component special case, see Appendix 4.

3.4 Autocorrelation structure of the mixture MEM model

Consider the mixture MEM model defined by (19) and (21) and use the notation

from the previous subchapter to write it in matrix form as Xt = AtXt−1+B. Assume

weak stationarity and let EXt = X and EAt = A so that by taking the expectations

EXt = EAtEXt−1 +B ⇔ X = (I −A)−1B,

when (I −A)−1 exists. Then by recursive substitution

Cov(Xt, Xt−k) = EXtX
0
t−k −XX 0

= E(AtXt−1 +B)X 0
t−k −XX 0

= AEXt−1X 0
t−k +BEX

0
t−k −XX 0

= AE(At−1Xt−2 +B)X 0
t−k +BX

0 −XX 0

= A2EXt−2X 0
t−k +ABX

0 +BX 0 −XX 0

...

= AkEXt−kX 0
t−k +

kX
i=1

Ak−iBX 0 −XX 0

= AkEXtX
0
t +

kX
i=1

Ak−iBX 0 −XX 0,

where the last equality follows from the weak stationarity. The covariance structure

of the model is obtained from this after solving EXtX
0
t:

EXtX
0
t = E (AtXt−1 +B) (AtXt−1 +B)

0

= EAtXt−1X 0
t−1A

0
t +BX

0A0 +AXB0 +BB0.
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After using the vectorization operator we have

vecEXtX
0
t = vecEAtXt−1X 0

t−1A
0
t + vecBX

0A0 + vecAXB0 + vecBB0

= E (At ⊗At) vecEXt−1X 0
t−1 + vecBX

0A0 + vecAXB0 + vecBB0

= E (At ⊗At) vecEXtX 0
t + vecBX

0A0 + vecAXB0 + vecBB0

or

(I(mp+q−1)2 −E (At ⊗At))vecEXtX 0
t = vecBX

0A0 + vecAXB0 + vecBB0.

By multiplying from the left with the matrix (I(mp+q−1)2 − E (At ⊗At))−1, which
exists when ρ(E(A0n ⊗A0n)) < 1,we obtain

vecEXtX
0
t = (I(mp+q−1)2 −E (At ⊗At))−1 (vecBX 0A0 + vecAXB0 + vecBB0) .

3.5 Application to CARR modeling

We consider an application of the mixture MEM models to modeling the (daily)

price ranges of financial assets. Let Pt be the logarithmic price of the asset observed

at time t, t = 1, 2, ..., T. Let PHIGHt and PLOWt be the high and low prices between

t− 1 and t and define the range variable as in Chou (2006) by

Rt = P
HIGH
t − PLOWt . (23)

The conditional autoregressive range (CARR) model is specified as

Rt = λtεt,

λt = ω +

qX
i=1

αiRt−i +
pX
j=1

βiλt−j,

εt ∼ Gamma(γ, δ).

Here the gamma distribution is assumed for the independently and identically dis-
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tributed errors. This choice is supported by the earlier empirical evidence (see, for

example, Brunetti and Lildholdt 2007). In order to have an error term with unit

expected value the restriction γ = 1/δ is employed. The conditional distribution of

Rt given its past values is

ft−1(Rt) =
1

λtΓ(γ)δ
γ

µ
Rt
λt

¶γ−1
exp

µ
− Rt
δλt

¶
.

We call the resulting model CARR-G.

Let us now extend the model to the mixture CARR (MCARR) model. Following

Lanne (2006) we consider the two-component case given by

Rt = I(ηt = 1)λ1tε1t + (1− I(ηt = 1))λ2tε2t,

where the i.i.d. errors εit ∼ Gamma(γi, δi), γi > 0, δi > 0, i = 1, 2, are independent

of ηt. The restriction γi = 1/δi is set for i = 1, 2 guaranteeing that E(ε1t) = E(ε2t) =

1. We also have ηt = 1 with probability π. The mean equation is specified for the

first component by

λ1t = ω1 +

qX
i=1

α1iRt−i +
pX
j=1

β1iλ1t−j

and for the second component by

λ2t = ω2 +

qX
i=1

α2iRt−i +
pX
j=1

β2iλ2t−j.

It is easily seen that the conditional expectation of Rt given its past values is

Et−1(Rt) = Et−1(I(ηt = 1)λ1tε1t + (1− I(ηt = 1))λ2tε2t)
= πEt−1(λ1tε1t) + (1− π)Et−1(λ2tε2t)

= πλ1t + (1− π)λ2t.
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Following from the specified distribution, the conditional distribution of Rt is

ft−1(Rt; θ) = π
1

λ1tΓ(γ1)δ
γ1
1

µ
Rt
λ1t

¶γ1−1
exp

µ
− Rt
δ1λ1t

¶
+(1− π)

1

λ2tΓ(γ2)δ
γ2
2

µ
Rt
λ2t

¶γ2−1
exp

µ
− Rt
δ2λ2t

¶
.

In contrast to the existing literature, in our applications the assumption of the

gamma distributed errors appeared to be inadequate. We therefore propose the so-

called inverse gamma distribution34, which, as will be seen, performs considerably

better. Under this assumption the conditional distribution of Rt is

ft−1(Rt; θ) = π
(λ1tα1)

γ1

Γ(γ1)
R
−γ1−1
t exp

µ
−α1λ1t
Rt

¶
+(1− π)

(λ2tα2)
γ2

Γ(γ2)
R
−γ2−1
t exp

µ
−α2λ2t
Rt

¶
,

where αi = γi − 1, γi > 0, i = 1, 2, in order to guarantee unit expected value for
the errors εit, i = 1, 2. This model will be called the MCARR-IG model.

The estimation of both the standard and mixture CARR models is carried out by

using standard numerical methods to maximize the logarithmic likelihood function

lT (θ) =
TX
t=1

ln[ft−1(Rt)].

It is well-known that the standard test theory breaks down when determining the

number of mixture components (see e.g. Haas et al. 2004, 224 and references

therein). As already mentioned, we follow Lanne (2006) and restrict the number of

mixture components to two. Other than this, Ahoniemi and Lanne (2009) pointed

out that assuming that rt (or more generally xt) is stationary and ergodic, it is

34We also considered the so-called inverse Gaussian, reciprocal inverse Gaussian and hyperbola
distributions. None of these distributions performed better than the inverse gamma distribution in
our datasets. These distributions, as well as gamma and inverse gamma distributions, are special
cases (or limits) of the so-called generalized inverse Gaussian distribution. For an overview of these
distributions the reader is referred to Jørgensen (1982).
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reasonable to apply standard asymptotic results in statistical inference.

We apply the models described above to the daily price ranges of the Hang Seng

Index (HSI) from the time period from 11th of October 1989 to 24th of February

2006. The data are summarized in Table 7, where summary statistics for the estima-

tion and forecasting periods are presented. Figure 6 reveals the extremely persistent

autocorrelation structure of both original and squared series.

Tables 7: Summary statistics for estimation period and forecasting period for the
Hang Seng Index.

Estimation Forecasting
period period

Observations 2054 2000
Mean 1.530 1.635

Maximum 13.724 9.035
Minimum 0.243 0.285

Standard deviation 1.051 0.949
Skewness 3.251 2.020
Kurtosis 21.774 11.991
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Figure 6. Daily logarithmic price ranges of the Hang Seng Index, actual values (upper left), 

histogram (upper right), autocorrelation function of actual values (lower left) and squared actual 
values (lower right). 
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We employ the first 2054 observations to the estimation of the models and the 2000

last observations are saved for forecasting. Estimation results for the one component

CARR model based on the gamma distribution are presented in the first column of

Table 8.

Table 8: Estimation results for CARR models.

CARR-G MCARR-G CARR-IG MCARR-IG

π 0.907 (0.038) 0.551 (0.167)

γ1 5.366 (0.163) 7.138 (0.386) 5.799 (0.176) 8.013 (1.091)
ω1 0.034 (0.014) 0.023 (0.012) 0.025 (0.012) 0.010 (0.009)
α11 0.198 (0.015) 0.188 (0.015) 0.215 (0.015) 0.142 (0.033)
α13 -0.078 (0.031) -0.098 (0.030) -0.115 (0.030) -0.090 (0.036)
β1 0.858 (0.039) 0.887 (0.039) 0.884 (0.036) 0.944 (0.026)

γ2 3.496 (0.580) 4.959 (0.460)
ω2 0.153 (0.156) 0.070 (0.038)
α21 0.299 (0.097) 0.319 (0.038)
β21 0.759 (0.102) 0.621 (0.085)

l̂ -906.20 -871.21 -863.50 -857.30
AIC 1822.40 1760.42 1737.00 1732.60
BIC 1850.53 1811.06 1765.13 1783.24
χ2 89.50 51.55 28.05 32.56

χ2 denotes the (Pearson) chi-square statistic for the probability integral
transformed data using 25 bins. Standard errors (in parentheses) obtained from

the inversed Hessian.

Based on standard errors obtained from the inversed Hessian we conclude that

a model with q = 3 and p = 1 provides the best fit with the restriction α12 = 0.

However, the inadequacy of the model is illustrated by the upper left panel of Figure

7, where the distribution of the probability integral transformed (PIT) residuals is

illustrated. The PIT residuals are calculated as

zt =

Z xt

−∞
ft−1(u)du, t = 1, 2, ..., T. (24)

For the correct model the PIT residuals are (approximately) independently and
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uniformly distributed. Clearly this is not the case for the estimated CARR-G model,

as also depicted by the respective χ2 statistic35 (last line of the first column of Table

8). According to upper panel of Figure 8 there is only little autocorrelation in the

PIT residuals (and squared PIT residuals) of the single component model.
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Figure 7. Plot of the distribution of the PIT data for CARR-G (upper left panel), MCARR-G (upper 
right), CARR-IG (lower left) and MCARR-IG (lower right) models for HSI (critical values are 62 

(lower bound) and 100 (upper bound)). 

35The statistic is based on the histogram of the PIT residuals and given by
Pm
i=1(Ti −

T/m)/(T/m), where m is the number of bins in the histogram (we used 25 bins) and Ti is the
number of observations in the bin.
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Figure 8. Autocorrelation functions of the PIT data and squared PIT data for CARR-G (upper panel) 

and MCARR-G (lower panel) models for HSI. 

The estimation results for the MCARR-G model are presented in the second column

of Table 8. In the first component the conditional mean specification is of the order

(3,1), whereas in the second component the mean equation is of the order (1,1). The

estimated weight of the first component equals 0.907. Estimates for the parameters

of the first component are very similar to those obtained for the single component

model excluding the estimate for the shape parameter of the respective gamma

distribution γ1. This parameter is increased in the mixture model. In the second

component we obtain a relatively high estimate for the constant ω2. Estimates for

the other parameters also seem to differ from those obtained in the first component.

The fit of the model is much-improved according to the standard model selection

criteria AIC and BIC (Table 8) likewise according to PIT data (upper right panel in

Figure 7)36. The lower panel of Figure 8 reveals minor autocorrelation in the PIT

data as well as in the squared PIT data.

While the fit is considerably improved after expanding the model to two com-

36Because the mixture model has two error terms, we refer to probability integral transformed
residuals as PIT data.
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ponent model, Figures 7 and 8 indicate that there could still be some misspecifica-

tion. The distribution of the PIT data especially seems to differ from the uniform

distribution in the first six and the last two bins. As discussed at the beginning

of this subchapter, we considered several alternative distributions, all of which are

subclasses of so-called GIG distributions. Of these distributions the inverse gamma

distribution proved best for our applications. The estimation results for the single

component CARR-IG model are presented in the third column of Table 8. Estimates

for the parameters are hardly changed from the gamma model, but the AIC and

BIC figures are substantially reduced. The lower left panel of Figure 7 shows that

the distribution of the PIT residuals seems to be very close to uniform distribution.

In addition, the mixture CARR-IG model was fitted (last column of Table 8). We

first observe that the weight of the first component is substantially reduced from the

estimate obtained for the MCARR-G model. Estimates for the parameters of the

conditional mean in the first component appear to match those of the MCARR-G

model. In the second component the estimates have changed slightly. According to

the AIC statistic, this model is the best of the models presented here. This is also

supported by the lower right panel of Figure 7, where the distribution of the PIT

data is presented for the MCARR-IG model. However, the BIC and χ2 statistics

suggest that the more compact CARR-IG model is sufficient. According to Figure 9,

the change of the distribution seems to have no effect on the autocorrelation struc-

ture of the PIT data and the squared PIT data when compared to the CARR-G

model.

As estimated models are clearly (weakly) stationary, it is of interest to see

whether their autocorrelation structure corresponds to that of the data. The auto-

correlation function of the estimated MCARR-IG model against the autocorrelation

function calculated from the data is presented in Figure 10. It reveals that the

autocorrelation function of the mixture model decays very similarly to the sample

autocorrelation function calculated from the Hang Seng Index itself. It is concluded

from Figure 10 that the autocorrelation of the data is well captured by the MCARR-



73

IG model.
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Figure 9. Autocorrelation functions of the PIT data and squared PIT data for CARR-IG (upper 

panel) and MCARR-IG (lower panel) models for HSI. 
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Figure 10. Autocorrelation function of actual data and autocorrelation function implied by 

MCARR-IG model for HSI. 
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We also test the out-of-sample forecasting performance of the models considered.

We therefore calculated 2000 one, five and ten-day-ahead forecasts with each model.

The respective mean squared errors are reported in Table 9. For the one-day-ahead

forecasts (upper panel of Table 9) we find a very similar forecasting performance for

the CARR-G, CARR-IG and MCARR-IG models. The differences in forecasting

performance were tested using the so-called Diebold-Mariano test (see Lanne 2006

and Diebold and Mariano 1995). The nullhypothesis of the test is that the model

has equal forecasting performance with the CARR-G model. According to this test

there are no differences in one-day-ahead forecasting performance of the models

considered.

For five-step-ahead forecasts (middle panel of Table 9) the performance of the

mixture models seems to be improved by the performance of the non-mixture models.

According to Diebold-Mariano tests the differences in forecasting performance are

again insignificant.

Finally, for ten-day-ahead forecasts (lower panel of Table 9) the CARR-IG and

MCARR-IG models seem to perform better than the CARR-G and MCARR-G

models. The differences in MSEs are again insignificant but the results suggest

that the choice of the conditional distribution has an impact on the forecasting

performance of the model.



75

Table 9: Out-of-sample forecast evaluation: the Diebold-Mariano test.

One-Day-Ahead Forecast
Model MSE D-M p-value

Statistic
CARR-G 0.526
MCARR-G 0.542 0.675 0.500
CARR-IG 0.527 0.382 0.703
MCARR-IG 0.525 0.438 0.661

Five-Day-Ahead Forecast
Model MSE D-M p-value

Statistic
CARR-G 0.557
MCARR-G 0.569 0.959 0.338
CARR-IG 0.552 0.811 0.418
MCARR-IG 0.561 1.011 0.312

Ten-Day-Ahead Forecast
Model MSE D-M p-value

Statistic
CARR-G 0.582
MCARR-G 0.581 0.964 0.335
CARR-IG 0.573 1.074 0.283
MCARR-IG 0.569 1.036 0.300

3.6 Discussion

This chapter discussed mixture multiplicative error models. More specifically, we

considered the representation of the model as a first order random coefficient au-

toregressive model. This representation allowed us to express and derive conditions

for the strict and weak stationarity of the model. The latter condition is needed in

order to guarantee the existence of the second moments of the process, which were

needed in order to derive the autocorrelation of the model.

Although the daily price range was recognized as an efficient estimator of the

volatility relatively early e.g. by Parkinson (1980), the modeling of this variable has

not been paid extensive attention. A multiplicative error model by Engle (2002b)

was applied to the range data by Chou (2005). As an extension of the MEM model,

we propose the mixture MEM model by Lanne (2006) for the daily price range of
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the Hang Seng Index. The mixture structure allows flexibility in both conditional

distribution and the mean dynamics.

Even if the existing literature suggests various different conditional distributions

(such as exponential, gamma and Weibull) for CARR models, we find that even

with the flexible MCARR specification the fit of the model can be further improved

by employing the inverse gamma distribution. The implied autocorrelation function

of the MCARR-IG model was found to match the autocorrelation function of the

data quite well.

In addition, the out-of-sample forecast prediction performance of the models

was examined. We considered one, five and ten day-a-head forecasts. While no

significant differences between models were found, the forecasting performance of

the models proposed in the thesis (compared to the ‘standard’ CARR model) was

found to increase as the forecasting horizon increased.

For a topic of future research a natural direction would be to consider model

specifications that allow for time varying mixture probabilities. As mentioned in

the introduction, models of this kind have already been proposed in the literature

at least for implied volatility and duration. Some other suggestions for future work

have been mentioned by Chou (2005). In the next chapter of the thesis we consider

the range as a variable in a bivariate vector multiplicative error model.
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Appendix 1

Consider the GARCH (Generalized Autoregressive Conditional Heteroskedasticity)
process of Bollerslev (1986). A sequence of real random variables {yt, t ∈ Z} is said
to be a GARCH(p, q) process if

yt =
p
htvt,

where innovations vt are identically and independently distributed with zero mean
and unit variance, or vt ∼ D(0, 1), and the conditional variance process satisfies

ht = ω +

pX
i=1

βiht−i +
qX
j=1

αjy
2
t−j, t ∈ Z, (25)

where ω, βi, 1 ≤ i ≤ p and αj, 1 ≤ j ≤ q are non-negative constants.
Now suppose that p, q ≥ 2 and define

τ t =
£
β1 + α1v

2
t β2 . . . βp−1

¤ ∈ Rp−1,
ξt =

£
v2t 0 . . . 0

¤ ∈ Rp−1,
α =

£
α2 . . . αq−1

¤ ∈ Rp−1.
Furthermore, define the (p+ q − 1)× (p+ q − 1) matrix

At =


τ t βp α αq
Ip−1 0 0 0
ξt 0 0 0
0 0 Iq−2 0

 ,
where Ip−1 and Iq−2 are identity matrices of size p − 1 and q − 2. Note that the
random variables {vt, t ∈ Z} are independent. Consequently, the random matrices
{At, t ∈ Z} are i.i.d. and E(log+ kA0k) is finite because all the coefficients of At
are integrable as the distribution of yt has finite variance. Thus the top Lyapunov
exponent γ related to the sequence {At, t ∈ Z} is well defined. Finally, let

B =
£
ω 0 . . . 0

¤0 ∈ Rp+q−1,
and

Xt−1 =
£
ht . . . ht−p+1 y2t−1 . . . y2n−q+1

¤0
.
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As yt is a solution of (25) if and only if Xt is a solution of

Xt = AtXt−1 +B, t ∈ Z,

the following condition for the strict stationarity of GARCH process is readily con-
cluded from the result given in subchapter 3.2: When ω > 0, the GARCH equation
(25) has a strictly stationary solution if and only if the top Lyapunov exponent γ as-
sociated with the matrices {At, t ∈ Z} is strictly negative. Moreover, this stationary
solution is ergodic. It is the only stationary solution when εt’s are given.

Appendix 2

As a special case of the model discussed in subchapter 3.3 consider a two-component
case with mean equations of the order (2, 2). We also assume that βi,l,k are equal
to zero for all i 6= l. The representation Xt = AtXt−1 +B thus reduces to

µ1,t
µ1,t−1
µ2,t
µ2,t−1
xt−1

 =


β1,1 + α1,1I(ηt−1 = 1)ε1,t−1 β1,2 α1,1I(ηt−1 = 2)ε2,t−1 0 α1,2

1 0 0 0 0
α2,1I(ηt−1 = 1)ε1,t−1 0 β2,1 + α2,1I(ηt−1 = 2)ε2,t−1 β2,2 α2,2

0 0 1 0 0
I(ηt−1 = 1)ε1,t−1 0 I(ηt−1 = 2)ε2,t−1 0 0



×


µ1,t−1
µ1,t−2
µ2,t−1
µ2,t−2
xt−2

+


ω1
0
ω2
0
0

 .
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Appendix 3

Series (22) converges quadratically, if

St,N =
NX
k=1

At. . .At−k+1B

satisfies the Cauchy criterion. This means that for ∀² > 0, ∃N0 such that for every
N ≥ N0 and for every M > 0

E kSt,N+M − St,Nk2 = E
°°°°°
N+MX
k=N+1

At. . .At−kB

°°°°°
2

< ²,

where k·k now denotes the usual Euclidean vector norm. Denote

Zt,k = At. . .At−k+1B,

so that

St,N =
NX
k=1

Zt,k

and

E kSt,M+N − St,Nk2 = E
Ã

N+MX
k=N+1

Zt,k

!0Ã N+MX
l=N+1

Zt,l

!
.

By the triangle inequality and the Cauchy-Schwarz inequality we haveÃ
N+MX
k=N+1

Zt,k

!0Ã N+MX
l=N+1

Zt,l

!
=

N+MX
k=N+1

N+MX
l=N+1

Z 0t,kZt,l

=
N+MX
k=N+1

Z 0t,kZt,k + 2
N+MX
k=N+1

X
k>l>N+1

Z 0t,kZt,l

≤
N+MX
k=N+1

Z 0t,kZt,k + 2
N+MX
k=N+1

X
k>l>N+1

¯̄
Z 0t,kZt,l

¯̄
≤

N+MX
k=N+1

Z 0t,kZt,k + 2
N+MX
k=N+1

X
k>l>N+1

kZt,kk kZt,lk ,
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where kZt,kk = (Z 0t,kZt,k)1/2. Taking expectations yields

E

Ã
N+MX
k=N+1

Zt,k

!0Ã N+MX
l=N+1

Zt,l

!

≤
N+MX
k=N+1

EZ 0t,kZt,k + 2
N+MX
k=N+1

X
k>l>N+1

E kZt,kk kZt,lk

≤
N+MX
k=N+1

EZ 0t,kZt,k + 2
N+MX
k=N+1

X
k>l>N+1

(E kZt,kk2)1/2(E kZt,lk2)1/2

=
N+MX
k=N+1

EZ 0t,kZt,k + 2
N+MX
k=N+1

¡
EZ 0t,kZt,k

¢1/2 X
k>l>N+1

¡
EZ 0t,lZt,l

¢1/2
≤

N+MX
k=N+1

EZ 0t,kZt,k + 2
N+MX
k=N+1

¡
EZ 0t,kZt,k

¢1/2 N+MX
l=N+1

¡
EZ 0t,lZt,l

¢1/2
,

where the second inequality follows from the Cauchy-Schwarz inequality for ran-
dom variables. Thus the Cauchy criterion holds if the series

P∞
k=1EZ

0
t,kZt,k andP∞

k=1

¡
EZ 0t,kZt,k

¢1/2
are convergent. We first write

EZ 0t,kZt,k = E(Z 0t,k ⊗ Z 0t,k)vec(Imp+q−1)
= E(B0(Πk−1i=0At−i)

0 ⊗B0(Πk−1i=0At−i)
0)vec(Imp+q−1)

= (B0 ⊗B0) ¡E ¡A0t−k+1 ⊗A0t−k+1¢ · · ·E (A0t ⊗A0t)¢ vec(Imp+q−1),
where well-known properties of the Kronecker product and the vectorization oper-
ator are used. The discussion above and the independence of the random variables
ηt and εi,t imply that

E
¡
A0t−j ⊗A0t−j

¢
= E

Ã
mX
i=1

I(ηt = i)
¡
e0i,t−jα

0 + C 0
¢⊗ mX

i=1

I(ηt = i)
¡
e0i,t−jα

0 + C 0
¢!

= E

Ã
mX
i=1

I(ηt = i)
¡¡
e0i,t−jα

0 + C 0
¢⊗ ¡e0i,t−jα0 + C 0¢¢

!

=
mX
i=1

πiE
¡¡
e0i,t−jα

0 + C 0
¢⊗ ¡e0i,t−jα0 + C 0¢¢ .

Thus,

EZ 0t,kZt,k

= (B0 ⊗B0)
Ã

mX
i=1

πiE
¡¡
e0i,t−1α

0 + C 0
¢⊗ ¡e0i,t−1α0 + C 0¢¢

!k
vec(Imp+q−1).

To see that the series
P∞

k=1EZ
0
t,kZt,k and

P∞
k=1

¡
EZ 0t,kZt,k

¢1/2
are both conver-
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gent when the spectral radius of the matrix
Pm

i=1 πiE
¡¡
e0i,t−1α

0 + C 0
¢⊗ ¡e0i,t−1α0 + C 0¢¢

is smaller than one, the Jordan matrix decomposition is applied.
According to the Jordan matrix decomposition,

EZ 0t,kZt,k = (B0 ⊗B0) ¡E ¡A0t−j ⊗A0t−j¢¢k vec(Imp+q−1)
= (B0 ⊗B0)TΛkT−1vec(Imp+q−1)
= u0Λkv, (26)

where u0 = (B0 ⊗B0)T , v = T−1vec(Imp+q−1), and

Λk =


Λk1 0 · · · 0
0 Λk2 0
...

. . .

0 0 Λks

 ,
where

Λki
(ni×ni)

=


λki

¡
k
1

¢
λk−1i

¡
k
2

¢
λk−2i · · · ¡

k
n−1
¢
λk−ni+1i

0 λki
¡
k
1

¢
λk−1i

¡
k
n−2
¢
λk−ni+2i

0 0 λki
¡
k
n−3
¢
λk−ni+3i

...
. . .

...
0 0 0 · · · λki


denotes the k-th power of the Jordan blocks Λi (λi are the eigenvalues of the matrix
E
¡
A0t−j ⊗A0t−j

¢
). Consider a general nonzero element of Λki , that is,

¡
k
j

¢
λk−ji , 0 ≤

j < ni. We have¯̄̄̄µ
k

j

¶
λk−ji

¯̄̄̄
=

¯̄̄̄
k(k − 1) . . . (k − j + 1)λki

j!λji

¯̄̄̄
≤
¯̄̄̄
kjλki
j!λji

¯̄̄̄
, (λi 6= 0) .

By assuming that |λi| < 1 for all i it suffices to see that

kj |λi|k → 0,

as k →∞.
Now, let 0 ≤ |λi| < ρ < 1, and write

kj |λi|k = kj
µ |λi|

ρ

¶k
ρk.

Because 0 ≤ j < ni,

kj
µ|λi|

ρ

¶k
→ 0,
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as k →∞, and it holds that

kj
µ|λi|

ρ

¶k
≤ C <∞,

for every k. We now have ¯̄̄̄µ
k

j

¶
λk−ji

¯̄̄̄
≤
¯̄̄̄
kjλki
j!λji

¯̄̄̄
≤ C1ρk, (27)

where

kj
¡|λi|

ρ

¢k
j!λji

≤ C1 <∞.

By the triangle inequality, (26) and (27) we have

EZ 0t,kZt,k = u0Λkv

≤
XX

|un| |vl|
¯̄£
Λk
¤
nl

¯̄
≤

³XX
|un| |vl|C1

´
ρk

= C2ρ
k,

where the constant C2 is defined in an obvious way. This enables us to conclude
that ¡

EZ 0t,kZt,k
¢1/2 ≤ ¡C2ρk¢1/2 = C1/22 ρk/2 = C

1/2
2

¡
ρ1/2

¢k → 0,

as k →∞.
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Appendix 4

In the special case mentioned in Appendix 2 the matrix At becomes

At =


β1,1 + α1,1I(ηt−1 = 1)ε1,t−1 β1,2 α1,1I(ηt−1 = 2)ε2,t−1 0 α1,2

1 0 0 0 0
α2,1I(ηt−1 = 1)ε1,t−1 0 β2,1 + α2,1I(ηt−1 = 2)ε2,t−1 β2,2 α2,2

0 0 1 0 0
I(ηt−1 = 1)ε1,t−1 0 I(ηt−1 = 2)ε2,t−1 0 0


= I(ηt = 1) (αe1 + C) + I(ηt = 2) (αe2 + C)

= I(ηt = 1)




α1,1
0

α2,1
0
1

 £ ε1,t 0 0 0 0
¤
+


β1,1 β1,2 0 0 α1,2
1 0 0 0 0
0 0 β2,1 β2,2 α2,2
0 0 1 0 0
0 0 0 0 0




+I(ηt = 2)




α1,1
0

α2,1
0
1

 £ 0 0 ε2,t 0 0
¤
+


β1,1 β1,2 0 0 α1,2
1 0 0 0 0
0 0 β2,1 β2,2 α2,2
0 0 1 0 0
0 0 0 0 0


 .

Thus, in this special case, the model is stationary, if the spectral radius of the matrix

2X
i=1

πiE


 0((2i−2)×1)εi,t−1
0((6−2i)×1)

 £ α1,1 0 α2,1 0 1
¤
+


β1,1 1 0 0 0
β1,2 0 0 0 0
0 0 β2,1 1 0
0 0 β2,2 0 0

α1,2 0 α2,2 0 0



⊗
 0((2i−2)×1)εi,t−1
0((6−2i)×1)

 £ α1,1 0 α2,1 0 1
¤
+


β1,1 1 0 0 0
β1,2 0 0 0 0
0 0 β2,1 1 0
0 0 β2,2 0 0

α1,2 0 α2,2 0 0


 ,

is smaller than one.
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4 Modeling financial volatility measures with a

VMEM model based on an asymmetric copula

The last chapter of the thesis focuses on vector multiplicative error models (VMEM).

In the multivariate MEM model, correctly describing the dependence structure of

the error terms is of interest. For a more specific discussion on this, see subchapter

4.2. In this thesis we follow Cipollini et al. (2006, 2007) and use copula functions

to model this dependence. Copulas are covered in more detail in subchapter 4.1. In

subchapter 4.2 VMEM models are specified and different copulas for these models

are considered. Finally, in subchapter 4.3 we present an application to absolute

returns and daily price range of the Standard & Poor’s 500 data. The advantages

of our specification against previously proposed models are shown through standard

model selection criteria and a forecasting application to the so-called VIX index. In

particular, the explanatory power of the model based forecasts is found to increase

as the fit of the copula and thus that of the model increases. Subchapter 4.4 includes

discussion concerning the obtained results and directions for future research.

4.1 Copulas

In this subchapter, we introduce some of the main ideas of copulas. The following

discussion is mostly based on Cipollini et al. (2006). For a more comprehensive and

mathematically rigorous treatment the reader is referred to Embrechts et al. (2001)

or Bouyé et al. (2000). For a textbook, see Nelsen (1999).

As defined by Cipollini et al. (2006), aK-dimensional copula C is the cumulative

distribution function of a continuous uniform random variable defined on the unit

hypercube [0, 1]K . This means that every univariate component of the random

variable has a Uniform(0, 1) marginal distribution but the components are not

assumed to be independent. Naturally, the associated copula density c is defined as

c(u) =
∂KC(u)

∂u1...∂uK
,
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where u = (u1, ..., uK).

The usefulness of copulas arises from two results. The first one is the well known

fact that if a random variable X ∼ F , where F is the cumulative distribution func-
tion of X, then U = F (X) ∼ Uniform(0, 1). In proportion, if U ∼ Uniform(0, 1)
then F−1(U) ∼ F. The latter relation is used extensively in simulation methodology.
The second result is known as Sklar’s theorem. According to Sklar’s theorem, if

F is a K-dimensional cumulative distribution function with univariate continuous

marginals F1, ..., FK , there exists a unique K-dimensional copula C such that, for

all x ∈ RK,

F (x1, ..., xK) = C(F1(x1), ..., FK(xK)). (28)

By contrast, if C is a K-dimensional copula and F1, ..., FK are univariate cumu-

lative distribution functions, then the function F is a K-dimensional cumulative

distribution function with marginals F1, ..., FK . For proof see Sklar (1996).

It can also be verified that if F is a cumulative distribution function with univari-

ate marginals F1, ..., FK and ui = Fi(xi), i = 1, ...,K, then F (F
−1
1 (x1), ..., F

−1
K (xK))

is a copula. This guarantees the representation in (28) which can be written as

C(u1, ..., uK) = F (F
−1
1 (x1), ..., F

−1
K (xK)). (29)

It may be noted that (29) enables a direct way to find copulas.

As discussed by Bouyé et al. (2000, 5), the importance of Sklar’s theorem arises

from the fact that it provides a way to analyze the dependence structure of mul-

tivariate distributions without studying the marginal distributions. They further

discuss that in financial applications the problem is often not to use a given multi-

variate distribution but to find a convenient distribution to describe some stylized

facts. This is of importance, because the often used multivariate Gaussian distri-

bution, assumed for tractable calculus, may not always be appropriate. It is also

worth mentioning that Cipollini et al. (2006) and Bouyé et al. (2000) point out that

copulas provide a powerful tool for finance because they allow the modeling problem
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to be split into two steps: the first is the identification of the marginal distributions

and the second defining an appropriate copula in order to represent the dependence

structure in an appropriate manner. This chapter proposes a contribution to both

of these steps, for we propose both marginals and copulas not so far extensively

applied in the previous literature to model financial volatility measures.

We now take a look at how copulas are constructed from known multivariate

distributions. These copulas are known in the literature as implicit copulas. After a

straightforward derivation one obtains from (29) that the associated copula density

c given in terms of the density f and marginals f1, ..., fK is

c(u1, ..., uK) =
f(F−11 (x1), ..., F

−1
K (xK))

f1(F
−1
1 (x1)) · · · fK(F−1K (xK))

. (30)

Next recall the density function of the multivariate Normal distribution

f(x1, ..., xK) =
1

(2π)K/2(|Σ|)1/2 exp
·
−1
2
(x− µ)0Σ−1(x− µ)

¸
,

where µ and Σ denote the mean and the covariance matrix of the distribution.

Implicit copulas do not have a simple closed form. The normal copula is based

on the standardized distribution, in which µ is the null-vector and the covariance

matrix equals the correlation matrix R. For a bivariate case the Normal copula has

the representation (Aas 2004)

CN(u1, u2) =

Z Φ−1(u1)

−∞

Z Φ−1(u2)

−∞

1

2π(1− ρ2)1/2
exp

½
−x

2 − 2ρxy + y2
2(1− ρ2)

¾
dx dy,

where ρ is the parameter of the copula (the correlation coefficient) and Φ−1 denotes

the inverse of the cumulative distribution function of a standard Normal distribution.
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From (30) it follows that the copula density for a normal copula reads as

cN(u1, ..., uK) =

1
(2π)K/2(|R|)1/2 exp

£−1
2
q0R−1q

¤QK
j=1

1
(2π)1/2

exp
£−1

2
q2j
¤

= |R|−1/2 exp
·
−1
2
q0(R−1 − IK)q

¸
,

where q = (q1, ..., qK) = (Φ
−1(u1), ...,Φ−1(uK)) and IK is an identity matrix of the

order K. For simulation from this copula, see Embrechts et al. (2001, 26).

From (28) it follows that the density of a K-dimensional random variable X that

has a copula representation can be written as

f(x1, ..., xK) = c(F1(x1), ..., FK(xK))
KY
i=1

fi(xi).

Now we are able to express the probability density function of a multivariate ran-

dom variable X that has gamma marginals (with scale parameters restricted to the

inverses of shape parameters) and the dependence of the components is modeled by

the normal copula:

f(x1, ..., xK) = |R|−1/2 exp
·
−1
2
q0(R−1 − IK)q

¸ KY
i=1

φ
φi
i

Γ(φi)
x
φi−1
i exp(−φixi),

where q = (Φ−1(F1(x1), ...,Φ−1(FK(xK))) and Fi(xi) = Γ(φi,φixi) with Γ(·, ·) de-
noting the (lower) incomplete gamma function Γ(x, y) =

R y
0
tx−1e−tdt.

In our applications we also consider the density where the J first components of

X have inverse gamma distributions (with scale parameters set as shape parameters

−1) as marginal distributions and the K−J last components have gamma distribu-
tions as before (for a motivation of this formulation, see subchapters 3.5 and 4.3).
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This density reads as

f(x1, ..., xK) = |R|−1/2 exp
·
−1
2
x0(R−1 − IK)x

¸
×

JY
i=1

(γi − 1)γi
Γ(γi)

x
−γi−1
i exp

µ
−γi − 1

xi

¶

×
KY

i=J+1

φ
φi
i

Γ(φi)
x
φi−1
i exp(−φixi)

where x = (Φ−1(F1(x1)), ...,Φ−1(FK(xK))) with Fi(xi) = 1− Γ(γi, (γi − 1)/xi), i =
1, ..., J, and Fi(xi) = Γ(φi,φixi), i = J + 1, ...,K.

Another well known implicit copula is the Student T copula. For a bivariate case

it is given by

CT (u1, u2) =

Z T−1(u1;v)

−∞

Z T−1(u2;v)

−∞

1

2π(1− ρ2)1/2

½
1 +

x2 − 2ρxy + y2
v(1− ρ2)

¾
dx dy,

where v > 2 denotes the degrees of freedom parameter, T−1(x; v) is the inverse of

the standard cumulative distribution function of the T distribution with zero mean

and variance v/(v− 2), and ρ is the correlation parameter. Similarly to the Normal

copula, the copula density (now for K dimensional u) is given by

cT (u1, ..., uK) =
Γ((v +K)/2)Γ(v/2)K−1

Γ((v + 1)/2)
|R|−1/2 (1 + q

0R−1q/v)−(v+K)/2QK
i=1(1 + q

2
i /v)

−(v+1)/2 ,

where q = (T−1(u1; v), ..., T−1(uK ; v)), T (x; v) denotes the cumulative distribution

function of the Student T distribution computed at x, and Γ(·) is the gamma func-
tion.

As already discussed, the problem in many applications is finding a copula that

is capable of describing the data at hand. The problem with implicit copulas, such

as the mentioned Normal and T copulas, is that they have a decidedly symmetric

behavior. This is also true for a larger class of implicit copulas such as elliptical

copulas (see Cipollini et al. 2007, 8-9 for a discussion). What is meant by symmetry
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is best described by a discussion about bivariate copulas taken from Hurd et al.

(2007, 15-17). The authors divide the asymmetry of (bivariate) copulas into two

parts, the first being the asymmetry along the 45 degree line and the second the

asymmetry across the 45 degree line. The first asymmetry is expressed in terms of

a bivariate copula density as

c(u1, u2) 6= c(1− u2, 1− u1).

In this type of asymmetry the joint negative events are more dependent than positive

events or vice versa. There are several copulas, such as the Gumbel copula or the

Clayton copula, that can model this asymmetry. These copulas are examples of

so-called Archimedean copulas, which will be discussed after describing the other

type of asymmetry, the asymmetry across the 45 degree line. In terms of bivariate

copulas this asymmetry is written as

c(u1, u2) 6= c(u2, u1).

In this case the copula is not interchangeable, that is, C(u1, u2) 6= C(u2, u1). This
type of asymmetry has been discussed very little in the existing literature, the

only reference known to the present author being Mari and Monbet (2004), where

asymmetric extensions to the Clayton and Gumbel copulas are developed.

We now define the already mentioned Archimedean copulas. According to Bouyé

et al. (2000, 18) the Archimedean copulas are defined by the equation

C(u1, ..., uK) =

½
ϕ−1(ϕ(u1) + ...+ ϕ(uK)) if

PK
i=1 ϕ(ui) ≤ ϕ(0)

0 otherwise

where the so-called the generator of copula ϕ(ui) has the properties ϕ(1) = 0, ϕ
0(ui)

< 0 and ϕ00(ui) > 0 for all 0 ≤ ui ≤ 137. For example, for ϕ(ui) = (− ln(ui))a, a ≥ 1

37The inverse ϕ−1 is assumed to be completely monotonic on [0,∞), i.e. (−1)k dk
dtk

ϕ−1(t) ≥ 0 for
any t ∈ (0,∞) and k ∈ N0.
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and K = 2 we obtain the bivariate Gumbel copula

CG(u1, u2) = exp(−(eua1 + eua2) 1a ),
where eui = − ln(ui). For a discussion on this and several other Archimedean copulas,
see, for example, Venter (2001).

The (bivariate) Gumbel copula has been generalized to an asymmetric Gumbel

copula by Mari and Monbet (2004). This copula is given by

CAG(u1, u2) = u
A
1 u

B
2 exp(−a0H

1
a3 ),

where

A =
a1

a0 + a1
, B =

a2
a0 + a2

, H =

µeu1
F

¶a3
+

µeu2
G

¶a3
and

F = a0 + a1, G = a0 + a2.

The parameters satisfy conditions ai ≥ 0, i = 0, 1, 2 and a3 ≥ 1. The standard

bivariate Gumbel copula is obtained when a0 = 1 and a1 = a2 = 0. The density of

the asymmetric Gumbel copula is

cAG(u1, u2) =
CAG(u1, u2)

u1u2
(T1T2 + T3),

where

T1 = A+
a0
F

µeu1
F

¶a3−1
H

1
a3 −1

T2 = B +
a0
G

µeu2
G

¶a3−1
H

1
a3 −1

T3 =
a0(a3 − 1)
FG

µeu1eu2
FG

¶a3−1
H

1
a3 −2.
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As we shall see in subchapter 4.3, in our applications this copula proves to be very

useful, outlining the fact that symmetric copulas, such as elliptical copulas, may

not be sufficient for financial data, especially volatility measures. We also present

evidence that the copula employed should be able to account for asymmetries both

across and along the 45 degree line. Thus copulas such as the Clayton and Gumbel

copulas may not be sufficient but a more flexible specification should be used.

As discussed by Ahoniemi and Lanne (2009), the methodology presented in

Diebold et al. (1999) can be applied to check the goodness-of-fit of a multivariate

time series model. This methodology includes the checking of probability integral

transformed (PIT) marginals as well as checking the conditional PIT data. For bi-

variate multivariate models based on copulas these conditional probabilities can be

calculated by using the relation (see Aas et al. 2009 for higher dimensions)

F (x1|x2) = ∂Cu1u2(Fx1(x1), Fx2(x2))

∂Fx2(x2)
.

When the marginals are uniform

F (u1|u2) = ∂Cu1u2(u1, u2)

∂u2
.

Explicit expressions for the Normal and T copulas are derived by Aas et al. (2009)

the first one being

FN(u1|u2) = Φ

Ã
Φ−1(u1)− ρΦ−1(u2)p

1− ρ2

!
,

and the second

FT (u1|u2) = T

T−1(u1; v)− ρT−1(u2; v)r
(v+(T−1(u2;v))2)(1−ρ2)

v+1

; v + 1

 .
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For the asymmetric Gumbel copula we obtain after straightforward derivation

FAG(u1|u2) = 1

u2
CAG(u1, u2)T2.

4.2 Vector multiplicative error models

In this subchapter we discuss the vector multiplicative error model (VMEM) speci-

fied by Engle (2002). Let xt be a (K-dimensional) time series generated by

xt = µt ¯ εt,

where µt is a K × 1 vector of conditional means, ¯ is the element by element

(Hadamard) product, and εt|Ωt−1 ∼ D+(1,Σ), that is, conditional on the informa-

tion set Ωt−1 = {xt−1, xt−2, ...} , εt (K × 1) has a non-negative distribution with
(K × 1) vector of ones as mean and a general positive definite (K ×K) variance-
covariance matrix Σ. Furthermore, the innovations εt are assumed to be indepen-

dently and identically distributed. The property for εt|Ωt−1 ∼ D(1,Σ) guarantees
that

E(xt|Ωt−1) = µt

V ar(xt|Ωt−1) = µtµ
0
t ¯Σ = diag(µt)Σdiag(µt),

where the latter is a positive definite matrix when the components of µt are positive.

The equation for the conditional expectation of xt is specified by Cipollini et al.

(2006, 2007) as (the so-called ‘base specification’)

µt = ω + αxt−1 + βµt−1,

where the parameter matrices ω, α and β have dimensions K×1, K×K and K×K
respectively. This is further generalized by

µt = ω + αxt−1 + βµt−1 + δx
(−)
t−1, (31)
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where the K × 1 vector x(−)t−1 contains components of xt−1 multiplied by a variable

that takes a value of one when some variable (usually previous day’s return rt−1)

is negative and otherwise zero, and δ is a K × K parameter matrix. In order to

guarantee the non-negativity of the mean process µt, the parameters are assumed to

satisfy the conditions ω ≥ 0, αij ≥ 0, and βij ≥ 0, αij+δij ≥ 0 for all i, j = 1, ...,K.
A sufficient condition for the (weak) stationarity of the VMEM model defined by

Equation (31) is given by Cipollini et al. (2007, A.1). According to their result the

model is stationary in mean if all characteristic roots of A = α+β+ δ/2 are smaller

than 1 in modulus.

As mentioned in the previous chapter (subchapter 3.2), univariate MEM models

nest the squared GARCH model of Bollerslev (1986), the ACD model by Engle

and Russel (1998) as well as the CARR model of Chou (2005). Cipollini et al.

(2007) note that VMEM models can be applied in several contexts such as volatility

forecasting, and modeling volatility spillovers, order execution dynamics and trades,

duration, volume and volatility dynamics.

In this subchapter we specify the distribution of εt by using copulas introduced in

the previous subchapter. Other possibilities would include, for example, multivariate

gamma distributions. Cipollini et al. (2007) mention the multivariate gamma dis-

tribution of Cheriyan and Ramabhadran as a possible candidate. They also point

out that this distribution admits only positive correlations between components.

Its probability density function is also very complicated and enforces limiting con-

straints for the shape parameters of the marginals. Recently, Ahoniemi and Lanne

(2009) proposed a bivariate gamma distribution of Nagao and Kadoa (for a refer-

ence see Yue et al. 2001). In their model the shape parameters of the marginals,

however, are restricted to be equal. This assumption is likely to be too restrictive

for our applications. In fact, instead of allowing for different shape parameters we

wish to be even more general and use marginals belonging to different classes of dis-

tributions. More specifically, in our bivariate example we model the first marginal

with an inverse gamma distribution whereas the second has a gamma distribution.

Now, the conditional distribution of εt in our VMEM model based on a copula
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is given simply38 by

f(εt|Ωt−1) = c(F1(ε1,t), ..., FK(εK,t))
KY
i=1

fi(εi,t),

where c is the density of the applied copula and fi and Fi are the probability density

function and cumulative distribution function of the i-th marginal. A straight-

forward application of the change of variables theorem shows that the conditional

distribution of xt is given by

f(xt|Ωt−1) = c(F1(x1,t/µ1,t), ..., FK(xK,t/µK,t))
KY
i=1

fi(xi,t/µi,t)/µi,t,

and the log-likelihood of a sample of size T is

l =
TX
t=1

lt =
TX
t=1

ln f(xt|Ωt−1)

=
TX
t=1

ln c(F1(x1,t/µ1,t), ..., FK(xK,t/µK,t))

+
TX
t=1

KX
i=1

£
ln fi(xi,t/µi,t)− lnµi,t

¤
.

Generally the log-likelihood function can be optimized directly using numerical

methods. However, as pointed out by Cipollini et al. (2006, 2007), for some copu-

las their parameters can be obtained by some other method such as the method of

moments, after which these estimates can be plugged into the likelihood function,

and thus obtain a pseudo maximum likelihood function.

Assuming the Normal copula together with the first J components having inverse

gamma distributions and the lastK−J last components having gamma distributions

38For the sake of simplicity, the dependence of both the copula density c and the marginal
densities fi on their parameters are omitted from the notation.
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we obtain

lt =
1

2
ln
¯̄
R−1

¯̄− 1
2
q0tR

−1qt +
1

2
q0tqt

+
JX
i=1

γi ln((γi − 1)µi,t)− (γi + 1) ln (xi,t)− (γi − 1)µi,t/xi,t − lnΓ(γi)

+
KX

i=J+1

φi lnφi − lnΓ(φi)− lnxi,t + φi

µ
lnxi,t − lnµi,t −

xi,t
µi,t

¶
,

with qt = (q1,t, ..., qK,t) = (Φ
−1(F1(ε1,t)), ...,Φ−1(FK(εK,t))). For this model Cipollini

et al. (2006, 2007) derived the concentrated log-likelihood function obtained by first

solving for R:

lc = −T
2

"
ln |q0q|−

KX
i=1

ln(q0·iq·i)

#
+ (marginals contribution),

where q = (q01, ..., q
0
T ) is a T×K matrix and q·i denotes the i-th column of matrix q. In

our applications we did not find any difference whether the ‘original’ or concentrated

likelihood function was applied because both the value of the log-likelihood function

and the implied estimate of the correlation coefficient remained the same.

For the T copula with the marginals as before we have

lt = ln(Γ((v +K)/2)) + ln(Γ(v/2)K−1)− ln(Γ((v + 1)/2))− 1
2
ln |R|

−v +K
2

ln(1 + q0tR
−1qt/v) +

v + 1

2

KX
i=1

ln(1 + q2i,t/v)

+
JX
i=1

γi ln((γi − 1)µi,t)− (γi + 1) ln (xi,t)− (γi − 1)µi,t/xi,t − lnΓ(γi)

+
KX

i=J+1

φi lnφi − lnΓ(φi)− lnxi,t + φi

µ
lnxi,t − lnµi,t −

xi,t
µi,t

¶
,



97

and for the (bivariate) asymmetric Gumbel copula

lt = lnCAG(u1,t, u2,t) + ln(T1,tT2,t + T3,t)− ln(u1,tu2,t)
+γ1 ln((γ1 − 1)µ1,t)− (γ1 + 1) ln (x1,t)− (γ1 − 1)µ1,t/x1,t − lnΓ(γ1)
+φ2 lnφ2 − lnΓ(φ2)− lnx2,t + φ2

µ
lnx2,t − lnµ2,t −

x2,t
µ2,t

¶
,

with ut = (u1,t, u2,t) = (F1(ε1,t), F2(ε2,t)) = (1− Γ(γ1, (γ1 − 1)/ε1,t),Γ(φ2,φ2ε2,t)) .
Obviously, here the first element is assumed to have an inverse gamma distribu-

tion and the second one a gamma distribution. This setup will be applied in our

subsequent empirical analysis.

4.3 Empirical analysis

We apply the models described in the previous subchapter to two volatility indica-

tors, namely the daily price ranges and absolute returns39 of the S&P 500 index from

the time period June 28, 1988 to June 23, 2008. Formally, let Pt be the logarithmic

price of the asset observed at time t, t = 1, 2, ..., T. The daily price range is again

defined by (23) (subchapter 3.5). Absolute returns are given by

A Rt = 100 |Pt − Pt−1| .

The data40 are summarized in Table 10, where summary statistics for estimation and

forecasting periods are presented. Figure 11 reveals highly persistent autocorrelation

structures of both the original and squared series of both variables.

39Admittedly, the application would be more interesting if variables such as realized volatility,
realized absolute variation or realized bi-power variation (see Cipollini et al. 2007 for definitions)
were included. Due to a lack of a proper realized volatility series and limited availability of the
intraday data this is left to future work.
40The days when absolute returns had the value of zero were simply deleted from the data.

The days when the VIX index has no value were also deleted in order to have series with equal
dimensions. The motivation for the latter will be found later in this section.
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Table 10: Summary statistics for estimation period and forecasting period for daily
price range and absolute returns of the S&P 500 index.

Estimation period Forecasting period
Variable Range Abs Ret Range Abs Ret

Observations 3031 3031 2000 2000
Mean 1.128 0.655 1.347 0.793

Maximum 7.658 7.113 8.479 5.574
Minimum 0.177 0.001 0.239 0.001

Standard deviation 0.716 0.647 0.811 0.757
Skewness 2.644 2.611 1.850 1.870
Kurtosis 16.91 16.43 9.015 7.816

We use the first 3031 observations for the estimation of models and save the

2000 last observations for forecasting. The estimation results for the VMEM model

based on the independent copula41 are presented in the first column of Table 11. The

results for the daily price range are presented in the upper part of the column and

those for the absolute returns in the middle. The marginal distribution of the daily

price range is modeled with the inverse gamma distribution, whereas the gamma

distribution is applied for absolute returns. The former selection is based on earlier

evidence from the previous chapter, suggesting that the inverse gamma distribution

provides a satisfactory fit for daily price range data.

41The independent copula is simply obtained by setting the copula contribution equal to zero in
the log-likelihood function.
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Figure 11. Daily logarithmic price ranges and absolute returns of S&P 500 index 6.27.1988 –
6.23.2008, actual values (upper panel), histograms (second panel), autocorrelation function of actual

values (third panel) and squared actual values (lower panel) (solid lines for densities: kernel 
estimated densities, solid lines for autocorrelations: approximate 95 % confidence intervals). 
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Table 11: Estimation results for VMEM models.

Copula
Asymmetric

Independent Normal T Gumbel

γ1 5.460 (0.191) 5.467 (0.152) 5.489 (0.149) 5.342 (0.137)
ω1 0.014 (0.004) 0.020 (0.003) 0.017 (0.003) 0.017 (0.002)
α11 0.069 (0.010) 0.072 (0.008) 0.065 (0.007) 0.049 (0.006)
β11 0.896 (0.010) 0.883 (0.011) 0.892 (0.007) 0.910 (0.006)
δ11 0.050 (0.009) 0.055 (0.006) 0.048 (0.006) 0.055 (0.005)

φ2 1.211 (0.028) 1.212 (0.028) 1.182 (0.027) 1.238 (0.025)
ω2 0.006 (0.003) 0.009 (0.003) 0.008 (0.002) 0.010 (0.002)
α22 0.011 (0.009) 0.008 (0.008) 0.009 (0.007) 0.011 (0.004)
β22 0.944 (0.011) 0.933 (0.011) 0.936 (0.010) 0.933 (0.006)
δ21 0.043 (0.008) 0.053 (0.007) 0.049 (0.007) 0.046 (0.004)

ρ 0.669 (0.010) 0.692 (0.013)
v 5.223 (0.658)

a1 0.716 (0.047)
a3 3.369 (0.106)

l̂ -3248.8 -2344.7 -2290.0 -1900.7
AIC 6517.5 4711.4 4604.0 3825.4
BIC 6577.7 4777.6 4676.2 3897.6
χ2Ran 38.23 46.10 71.12 36.26
χ2Abs 40.50 31.83 36.97 34.74

χ2Ran|Abs 69.38 60.67 50.55

χ2Abs|Ran 692.13 742.15 163.93

Upper part: estimates for the range, middle part: estimates for the absolute returns,

lower part: parameters of the copulas. Standard errors based on outer products of the

first derivatives in parentheses. χ2 denotes the (Pearson) chi-square statistic for the
probability integral transformed data using 20 bins.

Based on standard errors obtained from the outer product of the first deriva-

tives42 we concluded that a model with diagonal parameter matrices α and β coup-

led with a δ matrix having nonzero elements (see Equation (31)) in the first column

provided the best fit. We therefore corroborate the findings of Engle and Gallo

42These standard errors were used because of the difficulties in inverting the respective Hessian
for more complicated models.
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(2006) and Cipollini et al. (2006) that daily price range has explanatory power over

other volatility indicators. According to Figure 12, our decision to use the inverse

gamma distribution as a marginal distribution for the daily price range and gamma

distribution for absolute returns proves to be reasonable. In the upper panel of this

figure we observe the PIT residuals for both series. The PIT residuals are given by

(24) (subchapter 3.5). For a correct model the PIT residuals are (approximately) in-

dependently and uniformly distributed. Clearly, the assumption of an approximate

uniform distribution for both variables cannot be rejected. The same is depicted by

the respective χ2 statistics43 (bottom of the first column of Table 11).
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Figure 12. Plot of the distribution of the PIT data for price range (upper left panel) and absolute 

returns (lower right panel) for the model with independent copula (critical values (dashed lines) are 
128 (lower bound) and 175 (upper bound)). A scatter plot of the actual data is presented in the 

lower left panel whereas a scatterplot of the PIT data for independent copula is shown in the lower 
right panel. 

43The statistic is based on the histogram of the PIT residuals and given by
Pm
i=1(Ti −

T/m)/(T/m), where m is the number of bins in the histogram (we used 20 bins) and Ti is the
number of observations in the bin.
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According to the scatter plot of the original observations or the PIT residuals (see

lower panel of Figure 12) the variables considered cannot be considered independent

and the estimated correlation of the original variables (point estimate approximately

0.7) indicates the same. Thus it is reasonable to model the dependence by using the

copulas discussed in the preceding subchapters. At this point, very little is known

about the usefulness of different copulas for VMEM modeling. As far as we know,

the only existing studies on the problem at hand are Cipollini et al. (2006) and

Cipollini et al. (2007). In these papers Normal and T copulas have been applied for

modeling volatility indicators. Following this work we also estimated models using

these so-called elliptical copulas.
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Figure 13. Plot of the distribution of the PIT data for price range (upper left panel), absolute returns 
(upper right), price range|absolute retuns (lower left) and absolute return|price range (lower right) 

for model with Normal copula (critical values are 128 (lower bound) and 175 (upper bound) 
(dashed lines)). 

The estimation results can be found in the second and third columns of Table

11. For both models we estimated the parameters of the copulas simultaneously

with the parameters in the conditional mean specification. As Table 11 shows,
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the estimate for the correlation coefficient ρ is a little below 0.7 for both models.

For the T copula the point estimate of the degrees of freedom parameter v is 5.2,

which suggests significant deviation from the normal copula. As is known from

the literature, the T copula allows us to model the tail dependence typically found

in financial data. In our opinion, the estimates of the parameters of the mean

equation did not change much after copulas were introduced into the model and the

significance of these changes is left unanswered at this point but will be discussed

in more detail later in this subchapter.
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Figure 14. Plot of the distribution of the PIT data for price range (upper left panel), absolute returns 
(upper right), price range|absolute retuns (lower left) and absolute return|price range (lower right) 
for model with Student’s T copula (critical values are 128 (lower bound) and 175 (upper bound) 

(dashed lines)). 

Having the wide range of different copulas in mind, the goodness-of-fit of the

copula is of special interest. We choose to follow Ahoniemi and Lanne (2009) and

take a look at the PIT data using the conditional cumulative distribution functions

presented in subchapter 4.2. For the normal copula model these are shown in the

lower panel of Figure 13. Whereas the conditional distribution of the daily price
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range given the value of the absolute return appears to be reasonably captured by

the Normal copula, the converse is not the case. On the contrary, the conditional

distribution of the absolute returns given the value of the price range appears to be

decidedly misspecified. This is also underlined by the large value of the χ2 statistic

displayed at the bottom of the second column of Table 11.

Figure 15. Plot of the distribution of the PIT data for price range (upper left panel), absolute returns 
(upper right), price range|absolute retuns (lower left) and absolute return|price range (lower right) 
for model with asymmetric Gumbel copula (critical values are 128 (lower bound) and 175 (upper 

bound) (dashed lines)). 
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Allowing for more flexibility one might expect the T copula to improve the

misspecification observed for the Normal copula. However, according to the lower

right panel of Figure 14 as well as the value of the χ2 statistic in the third column of

Table 11, the T copula provides no gains in fit compared to the Normal copula. The

likely reason for this can be found in the lower right panel of Figure 12, where the PIT

residuals of the independent copula model are plotted against each other. The figure

clearly shows that the distribution of the data is asymmetric both across and along

the 45 degree line. We therefore claim that the dependence of the variables used
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in this application can only be adequately described by a copula able to describe

both these asymmetries. We therefore estimated a VMEM model based on the

asymmetric Gumbel copula of Mari and Monbet (2004).44

Estimation results for this model are presented in the last column of Table 11. In

the estimation we found it necessary to fix the parameters a0 and a2 in the copula to

unity and zero45 respectively. The parameters a1 and a3 turned out to be accurately

estimated. Estimates for the parameters of the models for the conditional mean are

slightly affected by the change of the copula. However, the flexibility of the copula

and thus the improved fit is revealed in the lower panel of Figure 15. It shows

that especially the conditional distribution of the absolute returns is now better

described (lower right panel of Figure 15). We observe a slight misspecification in

the last three bins, but the improvement compared to elliptical copulas is dramatic.

The same is predictably indicated by the value of the χ2 statistics at the bottom of

Table 11. The improved fit is also in line with the AIC and BIC figures in Table 11.

At this point we have demonstrated that a correct specification of the copula

is relevant in VMEM modeling in order to adequately describe the dependence

structure of the variables. We leave space for the argument that the specification of

the copula is not relevant if one is not interested in these structures. Thus, it is of

interest to see how the estimated models perform in a context that does not directly

involve copulas, that is, forecasting analyzed variables.

Recently, Engle and Gallo (2006) provided evidence that (VMEM) model based

volatility indicators have predictive power to a market based volatility indicator,

namely the VIX index. The VIX index is essentially a volatility indicator calculated

by CBOE from the S&P 500 index46 option prices with 30 days to maturity. Engle

and Gallo (2006) find that 22-day-ahead (in line with the 30-day horizon used in the

44We also tried several copulas that are able to model the asymmetry along the 45 degree line
such as the Clayton copula, the Heavy Right Tail copula and the Gumbel copula. In general,
we found that these copulas were able to outperform elliptical copulas but their performance was
consistently exceeded by the asymmetric Gumbel copula. However, estimation results for these
models are not reported in detail.
45These choices coincide with the values which make the asymmetric Gumbel copula to agree

with the symmetric Gumbel copula.
46The calculation was based on S&P 100 index option prices in 1990-2003.
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construction of the VIX) predictions from their VMEM model for daily price ranges,

absolute returns, and realized volatility have significant predictive power when the

VIX index level is modeled with an AR(1) model.

Instead of modeling the VIX index level we consider the approach of Ahoniemi

(2006) and choose to model the first log-differences of the VIX index. This procedure

is also emphasized by Fleming et al. (1995), who argue that the variable of interest

for academics and practitioners is changes or innovations in expected volatility.

They also speculate that if stock prices follow a random walk, estimation of the

relationship between the stock and volatility indices may be spurious. Finally it is

pointed out that because VIX levels appear to be near random walk the inference

may be affected in finite samples by high autocorrelation.

The VIX index level from January 2, 1990 to June 23, 2008, its first log-

differences, and their autocorrelation functions for the first 2650 observations are

presented in Figure 16. Summary statistics for the first log-differences can be found

in Table 12.

Table 12: Summary statistics for the VIX index log-differences.

In-sample Out-of-sample
Observations 2649 2000

Mean 0.000 0.000
Maximum 0.419 0.496
Minimum -0.295 -0.300

Standard deviation 0.058 0.057
Skewness 0.662 0.591
Kurtosis 7.084 7.808

As a reference model we use an AR(1)-GARCH(1,1) specification because the

plot of the first differences clearly shows volatility clustering in the series. The esti-

mation results for the estimation period (i.e. the period overlapping with the period

used in estimation of the VMEM models) are presented in the first column of Table

13 and for the forecasting period in Table 14. One can observe that the obtained pa-

rameter estimates for conditional mean and conditional variance are reasonable both

in-sample and out-of-sample. We compute 22-day-ahead forecasts for both volatil-

ity indicators using the four copulas previously discussed, that is, the independent,
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Normal, T and asymmetric Gumbel copulas. These forecasts are then employed as

explanatory variables in the conditional mean of the AR(1)-GARCH(1,1) model.
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Figure 16. VIX index 1.2.1990 – 6.23.2008, actual values (upper left) and first log-differences 
(upper right) and their autocorrelation functions (lower panel, solid lines for autocorrelations: 95 % 

approximate confidence intervals). 

As revealed by Table 13, the forecasts from independent, Normal and T copulas

seem to have no significant explanatory power over the changes of the VIX index.

By contrast, the forecasts based on the model using the asymmetric Gumbel cop-

ula prove to be significant. It is observed that the coefficient of the price range

φ∗Ra is estimated negative whereas φ
∗
A R, the coefficient for the absolute return, is

estimated positive. This is in line with the findings of Engle and Gallo (2006).

Out-of-sample forecasts from all models are significant but their absolute value is

increased when the fit of the copula is increased (Table 14). Thus, forecasts from

the asymmetric Gumbel copula VMEM model seem to have most predictive power

to the VIX changes. This suggests that a correct specification of the copula has a

significant impact on the forecasting ability of the model based volatility on market
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based volatility.

Table 13: Estimation results for AR(1)-GARCH(1,1) models for the VIX
log-differences, in-sample.

Copula
Asymmetric

AR(1) Independent Normal T Gumbel
φ∗0 0.0002 -0.001 0.0008 0.003 -0.005

(0.001) (0.004) (0.007) (0.005) (0.005)
φ∗1 -0.069 -0.069 -0.069 -0.070 -0.072

(0.022) (0.022) (0.022) (0.022) (0.022)
φ∗Ra 0.010 -0.054 -0.092 -0.228

(0.040) (0.056) (0.053) (0.066)
φ∗A R -0.016 0.088 0.149 0.419

(0.066) (0.087) (0.083) (0.120)
ω∗ 0.001 0.001 0.001 0.001 0.001

(0.0003) (0.0003) (0.0003) (0.0003) (0.003)
α∗ 0.096 0.096 0.095 0.094 0.093

(0.033) (0.033) (0.033) (0.033) (0.033)
β∗ 0.748 0.747 0.748 0.749 0.751

(0.102) (0.102) (0.103) (0.104) (0.104)

l̂ 3835.2 3835.2 3836.0 3836.9 3841.4
AIC -7660.3 -7656.4 -7658.0 -7659.8 -7668.9
BIC -7631.0 -7615.2 -7616.8 -7618.6 -7627.6

Out-of-sample
forecasts
MSE×103 3.262 3.265 3.243 3.228 3.186
MAD×102 4.200 4.202 4.182 4.176 4.133

Robust standard errors in parentheses. φ∗0 denotes the constant in the conditional mean,
φ∗1 is the AR-parameter, φ

∗
Ra and φ∗A R are the coefficients of the range and absolute

return and ω∗, α∗ and β∗ are parameters of the GARCH part of the models.

4.4 Discussion

The topic of this chapter has been vector multiplicative error models. In this thesis,

the VMEMmodels considered were based on so-called copula functions. Advantages

of this approach include the fact that by using copulas the modeling of the joint

distribution function can be divided into two parts: first finding the appropriate

marginal distributions for each variable and choosing suitable copula function to

correctly describe the dependence of the marginals.
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Table 14: Estimation results for AR(1)-GARCH(1,1) models for the VIX
log-differences, out-of-sample.

Copula
Asymmetric

AR(1) Independent Normal T Gumbel

φ∗0 -0.001 0.011 0.036 0.029 -0.0006
(0.001) (0.005) (0.008) (0.006) (0.004)

φ∗1 -0.091 -0.098 -0.108 -0.113 -0.126
(0.024) (0.024) (0.024) (0.024) (0.024)

φ∗Ra -0.197 -0.439 -0.466 -0.708
(0.049) (0.070) (0.063) (0.072)

φ∗A R 0.328 0.672 0.726 1.179
(0.080) (0.105) (0.097) 0.130

ω∗ 0.0002 0.0002 0.0002 0.0002 0.0002
(0.00006) (0.00006) (0.00006) (0.00006) (0.00006)

α∗ 0.085 0.083 0.080 0.080 0.080
(0.018) (0.018) (0.018) (0.018) (0.018)

β∗ 0.864 0.866 0.869 0.869 0.869
(0.029) (0.029) (0.029) (0.029) (0.029)

l̂ 2972.6 2983.2 2996.5 3002.9 3018.5
AIC -5935.3 -5952.4 -5979.0 -5991.7 -6022.9
BIC -5907.2 -5913.2 -5939.8 -5952.6 -5983.8

Robust standard errors in parentheses. φ∗0 denotes the constant in the conditional mean,
φ∗1 is the AR-parameter, φ

∗
Ra and φ∗A R are the coefficients of the range and absolute

return and ω∗, α∗ and β∗ are parameters of the GARCH part of the models.

In the literature, to the best of our knowledge, only elliptical copulas have been

applied to VMEM modeling. However, it is plausible that elliptical copulas are not

able to capture the highly asymmetric nature of the dependence of various variables,

such as different volatility indicators.

Again, to the best of our knowledge, the number of copulas that allow for the type

of asymmetry required in our application is extremely limited. The copula consid-

ered is a generalization of a certain copula that belongs to the class of Archimedean

copulas. The main restriction of the approach taken in the thesis is that in the pre-

sented form it is only suitable for a bivariate application. Research where proposed

methods are generalized to allow for more variables is obviously needed.
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In the application considered to absolute returns and daily price range of the S&P

500 index notable advantage in the fit of the model was found after employing the

asymmetric copula-function. Improvement was detected in terms of log-likelihood

function, standard model selection criteria, chi-square statistics, and visual inspec-

tion of the probability integral transformed data. Most notably, a substantial im-

provement was discovered when the conditional distribution of the variables was

examined given the realized value of the second variable. Inverse gamma distribu-

tion proposed for the daily price range in the preceding chapter of the thesis, was

again found satisfactory for the range. We also provided additional evidence for

the previously established result that the range has explanatory power for other

volatility indicators.

It was also discovered that different copulas lead to slightly different estimates

of the mean parts of the models. Obviously, even if the specified models were of

the same order, different estimates lead to different forecast dynamics. We exam-

ined the effects of these changes with an application where the so-called VIX index

(first differences) was modeled with a model specification where suitable multiperiod

volatility forecasts from various VMEM models were considered as explanatory vari-

ables. In the application the VIX index can be treated as a market based volatility

indicator as it is based on option prices whereas VMEM model based volatility in-

dicators were considered as model based volatility indicators. The results showed

that the copula used was related to the explanatory power of the forecasts such that

forecasts from our asymmetric VMEM model were the best explanatory variables

both in-sample and out-of-sample.

As already noted, generalizations of the proposed methods to higher dimensional

systems are an obvious topic for future work. The analysis could be extended to

include variables such as realized volatility and realized range and their various al-

ternatives. In our opinion, the relations of different volatility indicators and, in

particular, model and market-based volatility indicators could also be more thor-

oughly investigated. The applications presented in this thesis as well as in the

literature suggest that model based volatility forecasts carry additional information
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for market based volatility indicators. Thus, taking this information into account

could enable even more accurate volatility forecasts.
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