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1. Introduction

In this thesis we study a few games related to non-wellfounded and stationary
sets. Games have turned out to be an important tool in mathematical logic
ranging from semantic games defining the truth of a sentence in a given logic to
for example games on real numbers whose determinacies have important effects
on the consistency of certain large cardinal assumptions.

The equality of non-wellfounded sets can be determined by a so called bisimu-
lation game already used to identify processes in theoretical computer science and
possible world models for modal logic. Here we present a game to classify non-
wellfounded sets according to their branching structure. We also study games
on stationary sets moving back to classical wellfounded set theory. The Banach-
Mazur game, also called the ideal game, is connected to precipitousness of the
corresponding ideal. The pressing down game is played on regressive functions
defined on stationary sets, and it has applications in model theory to the de-
terminacy of the Ehrenfeucht-Fräıssé game. We introduce the relevant concepts
later in this section.

This thesis is divided into three independent sections with the following papers:

(i) On Non-wellfounded Sets as Fixed Points of Substitutions, by Tapani
Hyttinen and Matti Pauna, published in Notre Dame Journal of Symbolic
Logic, vol. 42

(ii) A Domain Order Over Non-wellfounded Sets, by Matti Pauna
(iii) The Banach Mazur and the Pressing Down Games are Different, by

Jakob Kellner, Matti Pauna, and Saharon Shelah, accepted to Journal
of Symbolic Logic.

1.1. Non-wellfounded sets. Non-wellfounded sets have infinite descending mem-
bership sequences, which makes them counterintuitive in view of the iterative
concept, which requires that the members of a set have to be formed before the
set itself. For instance, for the set Ω = {Ω} this kind of process of forming the
members is impossible. These kinds of sets contradict the foundation axiom usu-
ally used in set theory and therefore non-wellfounded sets have not been studied
systematically until recently. However, non-wellfounded sets have found appli-
cations in mathematical logic, computer science, and in philosophy, which has
started an active research in the area.

In 1917 Dimitry Mirimanoff developed the concept of wellfounded and non-
wellfounded sets. In 1920–1930 foundation axiom, which states that all sets are
wellfounded, was added to the axioms of set theory by Zermelo, and proved
relatively independent from the other axioms by von Neumann.

Non-wellfounded sets have been studied by several authors during 1920–1980,
but until Peter Aczel’s seminal work [1] no systematic study has taken place.
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Aczel develops the theory of non-wellfounded sets, formulates and proves consis-
tent his anti foundation axiom, AFA, and studies the central concept of bisim-
ulation. In [2] Barwise and Moss further develop the theory of non-wellfounded
sets, coinduction, corecursion, and monotone operators.

Aczel’s key notion is a graph picturing a set meaning that there is a set whose
membership relation is the same as the graph relation. Graphs that have infinite
descending chains will therefore produce non-wellfounded sets. Certain graphs
are identified with the bisimulation relation giving the equality condition of non-
wellfounded sets. Bisimulation can be viewed as a game where two players try to
move along the edges of the graphs. At each round the players are on a certain
node of the graphs (at the beginning both are in some appointed starting nodes
of the two graphs) and first player I moves an edge from either of the graphs.
Player II has to respond with an edge from the other graph. If player II cannot
make a move, she loses, meaning that the two graphs are not bisimilar. In terms
of sets this means that II has reached an empty set while on the other set there
are still members and thus the sets are different.

The anti foundation axiom states that every graph has a unique set that it pic-
tures. In [2] the approach of defining non-wellfounded sets uses equation systems
which describe the elements of a set. For example, the equation system

x = {y}
y = {x}

defines a non-wellfounded set which is equal by bisimulation to the set Ω = {Ω}.
In the first part of this thesis we will use both of these approaches of producing

non-wellfounded sets and present a generalization of the latter in which the non-
wellfounded sets are obtained as fixed points of substitutions. By substitution
we mean an arbitrary function f and a fixed point of it would be a function g
such that, if f(x) is a set, then g(x) = {g(y) | y ∈ f(x)}. (As in [2] we work in
set theory with urelements which are objects that can be members of sets but
themselves do not have any members.) For instance, if f(x) = x, then for the
fixed point g of it, we would have that g(x) = the non-wellfounded set Ω = {Ω}.

We show that set theory without the foundation axiom and including the anti
foundation axiom, ZFA, implies that every function has a fixed point. Also as
a corollary we determine for which functions f there is a function g such that
g = g � f , where � is the substitution operator defined in [2].

We also aim to describe a certain hierarchy of non-wellfounded sets. First we
define a game that describes the branching structure of the sets, and from this
we can define a rank of a non-wellfounded set. Formulated in terms of equation
systems, in the game, denoted by Gα, the player I chooses an infinite descending
sequence of indeterminates (same as a descending infinite chain in a graph). The
second player chooses a natural number n and an ordinal β < α used as a clock.
Then II has to play again a different descending sequence starting below the nth
element of the previous sequence. After that I again chooses a natural number
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and an ordinal γ < β, and so on. We say that I wins the game if she is able to
respond to II’s moves until II has no more moves left, because the ordinal clock
has ran out. Also an infinite version, G∞, of this game is defined without the
ordinal clock.

Now according to this game, the non-wellfounded sets can be divided into
classes V α

afa which contains all the sets for which II wins Gα in the corresponding

equation system. For example, V 0
afa consists of the wellfounded sets. We let

V ∞
afa consist of the sets where I wins the game G∞ in the corresponding equation

system. It is shown that the classes V α
afa form an increasing system of models

of set theory together with modified AFAα which is the anti foundation axiom
restricted to equation systems for which the player II has a winning strategy.

In the second part concerning non-wellfounded sets, we study the hereditarily
finite sets HF 1 as a domain. Domains are approximation structures, where a
partial order � defines the approximation relation. In this setting, we are going
to approximate the sets in HF 1 by their wellfounded parts. We will form the

inverse limit of these approximations obtaining the class of all inverse limits, ĤF ,
which is a domain and also an ultra metric space. This is closely connected with
the work of Maurice Boffa [3].

More specifically, we define a partial ordering � on the class of all non-
wellfounded sets. That ordering is defined as a kind of end extension in the
tree pictures of sets. A tree picture is a graph that is a tree obtained by unwind-
ing an arbitrary graph. Then the domain, D, of non-wellfounded sets is obtained
by taking all inverse limits of �–increasing sequences. This produces a subclass
of the universe and we can show that all hereditarily finite sets belong to D.

1.2. Stationary sets. In the third part we work in classical set theory with
the foundation axiom and study the Banach-Mazur game originally introduced
to study properties of topological spaces and later generalized into Boolean al-
gebras, where the players alternately play a descending sequence of elements of
the Boolean algebra. Thomas Jech [8] used it to characterize distributivity prop-
erties of Boolean algebras. When played on the Boolean algebra consisting of
equivalence classes of stationary sets module the non-stationary ideal of a given
uncountable cardinal the game is usually called ideal game. In [4] it is shown
that the corresponding ideal of non-stationary sets is precipitous if and only if
the player I has not a winning strategy in the ideal game of length ω. Pre-
cipitousness is an important property since it allows one to form a wellfounded
ultrapower of the universe modulo the generic ultrafilter obtained by forcing with
the stationary sets. It is shown in [12] that even the non-stationary ideal on ℵ1

can be precipitous.
In [7] the pressing down game, PD, is introduced. In this game, at each round

the player I plays a regressive function and II plays a stationary set where the
function is constant forming a descending sequence of length ω1 of stationary sets.
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Using this game, it can be shown to be consistent that the Ehrenfeucht-Fräıssé
game is determined on models of size at most ℵ2.

It is easy to see that if II wins BM, then she wins also PD. In this thesis we
show that it is consistent that the reverse implication does not hold. We show
that in V = L[U ], where U is a normal ultrafilter, the player I wins BM and we
also present a forcing construction which gives the player I a winning strategy in
BM.
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2. On non–wellfounded sets as fixed points of substitutions

2.1. Introduction and definitions. In Aczel [1] and in Barwise and Moss [2]
non–wellfounded sets and the Anti-Foundation Axiom (AFA) have been studied.
The non–wellfounded sets are modelled by equations. In the equations we use
urelements and the class of all urelements is denoted by U . Urelements are not
vital for the theory but often they are convenient, see e.g. [2], section 11. We
recall the definitions of a flat system of equations and a solution to it from [2]:

Definition 2.1. .

(i) A flat system of equations is a triple (X, A, f) where X and A are sets
of urelements, X ∩ A = ∅, and f : X → P(X ∪ A) is a function.

(ii) A solution to a flat system of equations (X, A, f) is a function g such that
dom(g) = X, and for all x ∈ X, g(x) = {g(y) | y ∈ f(x)∩X}∪(f(x)∩A).

The idea is that X is the set of indeterminates of the equations and A is
the set of “constants”. The equations are understood as x = f(x), for x ∈ X.
For example, let A = {a}, X = {x}, and f(x) = {a, x}, then (X, A, f) is a
flat system of equations. The solution to this system is a function g such that
g(x) = {a, g(x)}. The Anti-Foundation Axiom, AFA, says that every flat system
of equations has a unique solution.

Substitution operations sub(s, b) are also studied in [2]. The operation sub(s, b)
means that in b all x are substituted by s(x). We recall the definition of a
substitution from [2]. If A ⊆ U , then Vafa [A] is the class of all sets x such that
support(x) ⊆ A, where support(x) is defined to be TC(x) ∩ U . So Vafa [U ] is the
class of all sets.

Definition 2.2. Substitution is a function s such that dom(s) ⊂ U . The substi-
tution operation is the operation sub such that the domain of sub consists of a
class of pairs 〈s, b〉 where s is a substitution and b ∈ Vafa [U ] ∪ U such that the
following conditions hold

(i) If x ∈ dom(s), then sub(s, x) = s(x).
(ii) If x ∈ U − dom(s), then sub(s, x) = x.
(iii) For all sets b, sub(s, b) = {sub(s, p) | p ∈ b}.

In [2] it is shown that there is a unique substitution operation sub(s, b) defined
for all substitutions s and b ∈ Vafa [U ] ∪ U . As a corollary to our theory of
substitution fixed points, we obtain the same result, see Corollary 2.18. Next we
recall the definition of a composition of substitutions from [2].

Definition 2.3. The substitution operation sub(s, b) is also denoted by b[s], and
[s] is the operation mapping each set or urelement b to b[s]. A substitution s is
proper if for all x ∈ dom(s), s(x) ∈ Vafa [U ] whenever s(x) 
= x. If s and t are
substitutions, then t � s is the substitution whose domain is dom(s) and for every
x ∈ dom(s), (t � s)(x) = s(x)[t].
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It is shown in [2] that we can state the AFA axiom in terms of substitution.
AFA is equivalent to the assertion that for every proper substitution e there is a
unique proper substitution s such that s = s � e.

We remark here first that if f is a substitution, not necessarily proper, then a
substitution s such that s = s�f is not necessarily unique for the following reason:
Let a and b be distinct urelements. Let f(a) = b, f(b) = a. Let u ∈ U − {a, b}
and s(a) = s(b) = u. Then s = s � f .

Second, if f is such that the domain of f contains sets, then s does not neces-
sarily exist. For example, let a and b be distinct urelements, and let f(a) = {a},
f({a}) = b. If s is such that s = s � f , then s(a) = (s � f)(a) = f(a)[s] =
sub(s, f(a)) = sub(s, {a}) = s({a}) by Definition 2.3. Then by (ii) of Defi-
nition 2.2, s({a}) = f({a})[s] = sub(s, f({a})) = sub(s, b) = b. But by (iii)
s(a) = sub(s, {a}) = {sub(s, a)} = {s(a)}, hence s(a) = Ω, where Ω is the
unique non–wellfounded set x such that x = {x}.

As a corollary of our theory of substitution fixed points, we will show that for
every substitution f there is g such that g = g � f , see Lemma 2.16.

2.2. Fixed points approach. Next we study the non–wellfounded sets as fixed
points of substitutions. Here we generalize the equation systems to arbitrary
functions. The solutions are then defined in terms of substitution. The fixed
points are further generalizations of the solutions. This approach works well also
in the situation without urelements. First we introduce some notation.

Definition 2.4. .

(i) With every function f we associate a class function f ∗ defined as follows.
If x ∈ dom(f), then f ∗(x) = f(x), otherwise f ∗(x) = x.

(ii) If f and g are functions, then by f [g] we mean a function such that
dom(f [g]) = dom(g) and f [g](x) is defined as follows. If f ∗(x) is an
urelement, then f [g](x) = f ∗(x) and otherwise f [g](x) = {g∗(y) | y ∈
f ∗(x)}.

(iii) For all functions f and g, we say that g is a solution to f (S(g, f)), if
dom(g) = dom(f) and g = f [g].

From the above we see that in [2] a solution to a flat system (X, A, f) of
equations is defined so that g is the solution to the system iff S(g, f) holds. So,
in a sense, the solution to a flat system (X, A, f) of equations is obtained if in
f(x) all elements y from f(x) ∩ dom(f) are replaced by f(y). Then all elements
z in f(y) ∩ dom(f) are replaced by f(z) and so on. So the solutions are some
kind of restricted substitution–fixed points of the function from the system. In
fact, in [2] it is shown that we get an equivalent theory if instead of equations we
study substitution (cf. above).

Because of the urelements, we define
⋃

X =
⋃{x | x ∈ X and x is not an

urelement}.
Next we introduce the concept of a fixed point and the Fixed Point Axiom.



7

Definition 2.5. .

(i) We say that g is a fixed point of f , (FP(g, f)), if dom(f)∪⋃
f ∗[dom(g)] ⊆

dom(g) and g = f [g] (where f ∗[dom(g)] = {f ∗(y) | y ∈ dom(g)}).
(ii) We say that a function f is generating if for all x ∈ dom(f) the following

holds: if f(x) is an urelement, then x = f(x). We say that a generating
f is basic if dom(f) ⊆ U .

(iii) The Fixed Point Axiom (FPA) is the following: every function has a
fixed point.

Note that if FP(g, f) holds and f ∗(x) is not an urelement, then g(x) = {g(y) |
y ∈ f ∗(x)}. The following example shows the difference between solutions and
fixed points: Let x be an urelement, dom(f) = {x} and f(x) = (∅, x). Then
f itself is the solution to f but if g is a fixed point of f , then g(x) = (∅, g(x)).
Also following the notation from [2], if f is basic and FP(g, f) holds, then for all
x ∈ dom(g), if f(x) is not an urelement, then g(x) = sub(g, f(x)). Note that the
basic functions are the same as the proper substitutions in [2].

Example 2.6. Assume ZFC . Let X be a set and f : X → P(X) be such that
f(x) = x∩X. Then f has a (unique) fixed point g (such that dom(g) = dom(f)),
namely the Mostowski collapse of X.

In [2] it is also shown that in the presence of the axiom AFA, bisimulation
characterizes identity:

By TC(x) we mean the transitive closure of x and in the case x is an urelement,
TC(x) is defined to be ∅.
Definition 2.7. .

(i) We write B(x, y) if there is B ⊆ TC({x}) × TC({y}) such that
(a) (x, y) ∈ B,
(b) if (a, b) ∈ B and c ∈ a, then there is d ∈ b such that (c, d) ∈ B,
(c) if (a, b) ∈ B and d ∈ b, then there is c ∈ a such that (c, d) ∈ B,
(d) if (a, b) ∈ B, then a is an urelement iff b is an urelement and if they

are urelements, then a = b.
We call this kind of a relation B a bisimulation relation between x and

y.
(ii) We let the Strong Extensionality Axiom (SEA) be the following axiom:

∀x, y(B(x, y) → x = y).

The axiom system ZFC−2 consists of pairing, union, power set, infinity, collec-
tion, separation, and choice, together with the Axiom of Urelements: ∀p∀q(U(p) →
q /∈ p), and the Axiom of Plenitude of Urelements: for every set S there is an
injective function f : S → U whose image f [S] is disjoint from S. So the list
of the axioms of ZFC−2 is the same as that in page 28 of [2] excluding Exten-
sionality and replacing Strong Plenitude by Plenitude of Urelements. ZFA means
ZFC−2+ Extensionality +AFA. By ZFC+ we mean ZFC−2 + SEA + FPA. So
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the difference between ZFA and ZFC+ is that we have replaced equations by
substitution and uniqueness of the solutions by SEA.

We feel that our axiom system follows the lines of the axiom systems of [1]
in that the axioms for the existence and the uniqueness of the solutions are
separated. Also we think that this approach is a bit more set theoretical in
nature, since the Fixed Point Axiom refers to functions instead of graphs or
equation systems.

We start by showing that ZFA and ZFC + are equivalent. Especially we show
that ZFA implies that every function has a fixed point. Then we show that the
fixed points of the basic functions are fixed points of themselves, thus the name
fixed point. For all functions this does not hold. Finally, we study the following
question: Do we need to assume the existence of all solutions to the flat systems
of equations to get all fixed points? We show that the answer is (essentially) yes.

2.3. Equivalence of ZFA and ZFC+. Item (ii) in the following Lemma is [2]
Exercise 7.3 and item (i) is well–known.

Lemma 2.8. .

(i) ZFC−2 � ∀x, y 
∈ U(∀z(z ∈ x ↔ z ∈ y) → B(x, y)). In particular,
ZFC−2 � ∀x, y(x = y → B(x, y)).

(ii) ZFC � ∀x, y(B(x, y) → x = y).

Proof.
(i): Let B consist of (x, y) together with (a, b) ∈ TC(x) × TC(y), such that

a = b. To show that B is a bisimulation between x and y, let z ∈ x. Then
by the assumption, z ∈ y also. By the definition of B, (z, z) ∈ B and hence
B is a bisimulation between x and y. Especially, if x = y and x, y /∈ U , then
∀z(z ∈ x ↔ z ∈ y), and by the above, we can construct a bisimulation between
x and y. If x = y and x, y ∈ U , then {(x, y)} is a bisimulation between x and y.

(ii): By ∈–induction: Assume the claim for all x′ ∈ x and that for some set
y, B(x, y) holds. This means that for every x′ ∈ x there is y′ ∈ y such that
B(x′, y′) holds. This is so because if B is the bisimulation between x and y, then
B � (TC({x′}) × TC({y′})) is a bisimulation between x′ and y′. But this means
that for every x′ ∈ x there is y′ ∈ y such that x′ = y′, i.e. x′ ∈ y. Similarly, if
y′ ∈ y, then there is x′ ∈ x, such that y′ = x′, i.e. y′ ∈ x. By extensionality,
x = y. �

The following lemma is essentially proved in [2].

Lemma 2.9. Assume ZFC−2 + SEA.

(i) ∀x, y /∈ U(∀z(z ∈ x ↔ z ∈ y) → x = y) i.e. the Extensionality Axiom
holds.

(ii) For all functions f , if S(g, f) and S(h, f) hold, then g = h.
(iii) For all functions f , if FP(g, f) and FP(h, f) hold and A = dom(g) ∩

dom(h), then g � A = h � A.
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Notice that since the Extensionality Axiom holds in ZFC−2 + SEA, also the
functions of the form f [g] are well–defined and thus S(g, f) and FP(g, f) are
well–defined.
Proof.

(i): Let B consist of (x, y) together with (a, b) ∈ TC(x) × TC(y), such that
a = b. Then B is a bisimulation between x and y. This is so because if a ∈ x,
then a ∈ y also, and therefore (a, a) ∈ B. If (a, a) ∈ B, and a ∈ U , then the
condition (d) holds. If a /∈ U , and c ∈ a, then (c, c) ∈ B and we are done.

(ii): Let B consist of (g(a), h(a)) together with (x, y) ∈ TC(g(a)) × TC(h(a))
such that either

(1) x = y
or

(2) there is z ∈ dom(f) such that x = g(z) and y = h(z).
To show that B is a bisimulation, let z ∈ dom(f) and (g(z), h(z)) ∈ B. If g(z)

is an urelement, then g(z) = f [g](z) = f ∗(z) = f [h](z) = h(z).
Assume that g(z) in not an urelement. Then g(z) = f [g](z) = {g∗(y) | y ∈

f ∗(z)}. Let c ∈ g(z). So c = g∗(y) for some y ∈ f ∗(z). But because also
h(z) = {h∗(y) | y ∈ f∗(z)}, we have that h∗(y) ∈ h(z). Now if y /∈ dom(f),
then y /∈ dom(g) = dom(h). Therefore g∗(y) = h∗(y) = y and (y, y) ∈ B. If
y ∈ dom(f), then (g(y), h(y)) ∈ B.

(iii): Let B consist of (g(a), h(a)) together with (x, y) ∈ TC(g(a))× TC(h(a))
for which there is z ∈ ⋃

f ∗[A] such that x = g(z) and y = h(z).
Assume that (g(z), h(z)) ∈ B and f ∗(z) is not an urelement. So g(z) = {g(y) |

y ∈ f∗(z)}. Now let y ∈ ⋃
f ∗[A], then y ∈ A and therefore if g(y) ∈ g(z), then

also h(y) ∈ h(z) and (g(y), h(y)) ∈ B. �

Lemma 2.10. Assume ZFC−2 + SEA.

(i) Assume FP(g, f) holds and let x ∈ dom(g). If TC(f ∗(x))∩dom(f) = ∅,
then g(x) = f ∗(x).

(ii) If FP(g, f) holds and for all x ∈ dom(f), TC(f(x)−dom(f))∩dom(f) =
∅, then S(g � dom(f), f) holds.

Proof.
(i): We may assume that f ∗(x) is not an urelement, since if f ∗(x) is an urele-

ment, then g(x) = f [g](x) = f∗(x) by the assumption that FP(g, f) holds. Let
A = TC(f ∗(x)) ∩ dom(g). Because for all y ∈ A, y = f ∗(y) ⊆ dom(g), A is
transitively closed. Since g(x) = {g(y) | y ∈ f ∗(x)}, it is enough to show that for
all y ∈ f∗(x), g(y) = y. Since A ∩ dom(f) = ∅, FP(g � A, idA) holds. Since A
is transitively closed, S(g � A, idA) holds. So by Lemma 2.9 (ii), it is enough to
show that S(idA, idA) holds, but this is clear.

(ii): Assume that f(x) is not an urelement. By (i), g(x) = {g(y) | y ∈
f(x)} = {g(y) | y ∈ f(x) − dom(f)} ∪ {g(y) | y ∈ f(x) ∩ dom(f)} = {y | y ∈
f(x) − dom(f)} ∪ {g(y) | y ∈ f(x) ∩ dom(f)} = f [g � dom(f)](x). �
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Corollary 2.11. Assume dom(f) ⊆ U and for all x ∈ dom(f), f(x) ⊆ U . If
FP(g, f) holds, then S(g � dom(f), f) holds.

Proof. Let f be as in the assumption, then TC(f(x) − dom(f)) ∩ dom(f) =
(f(x) − dom(f)) ∩ dom(f) = ∅. Hence, by Lemma 2.10 (ii), S(g � dom(f), f)
holds. �

Lemma 2.12. Assume ZFC−2+ extensionality. Assume that f is a generating
function, A ⊆ dom(f), for all x ∈ dom(f) − A, f(x) is an urelement, and
FP(g, f � A) holds. If h is a function such that dom(h) = dom(g) ∪ dom(f),
h � dom(g) = g, and for all x ∈ dom(f) − dom(g), h(x) = f(x), then FP(h, f)
holds.

Proof. If x ∈ dom(f)−A, then f(x) = x ∈ U , because f is generating. Hence
for all x, f ∗(x) = (f � A)∗(x). Because

⋃
f ∗[dom(h)] =

⋃
f ∗[dom(g)∪dom(f)] =⋃

f ∗[dom(g) ∪ (dom(f)−A)] =
⋃

f∗[dom(g)] =
⋃

(f � A)∗[dom(g)] ⊆ dom(g) ⊆
dom(h), we have that dom(f) ∪ ⋃

f∗[dom(h)] ⊆ dom(h).
Assume x ∈ dom(h) and f ∗(x) /∈ U . Then x ∈ dom(g) and f [h](x) = {h(y) |

y ∈ f∗(x)} = {g(y) | y ∈ (f � A)∗(x)} = g(x) = h(x), because f∗(x) = (f �
A)∗(x) ⊆ dom(g). Assume that f∗(x) ∈ U . If x /∈ dom(g), then h(x) = f(x) = x.
If x ∈ dom(g), then h(x) = g(x) = f ∗(x). So we have shown that h = f [h]. �.

The following Lemma is proved for basic functions in [2] (cf. Theorem 8.5).

Lemma 2.13. Assume ZFA. For all generating f there is g such that FP(g, f)
holds.

Proof. Let f be a generating function. We show that f has a fixed point. By
Lemma 2.12, we may assume that for all x ∈ dom(f), f(x) is not an urelement.
Choose a transitively closed A so that dom(f)∪⋃

rng(f) ⊆ A. Then
⋃

f ∗[A] ⊆ A.
Choose a one-one function h so that dom(h) = B = (A−U)∪dom(f), rng(h) ⊆ U ,
h(y) = y if y ∈ dom(f) ∩ U and rng(h) ∩ A = dom(f) ∩ U . Define f ′ so
that dom(f ′) = rng(h) and for all x ∈ B, f ′(h(x)) = {h∗(y) | y ∈ f∗(x)}.
Then (rng(h), (A ∩ U) − rng(h), f ′) is a flat system of equations. Let g′ be such
that S(g′, f ′) holds and let g be such that dom(g) = A, g � B = g′ ◦ h and
g � A−B = idA−B. We show that g is a fixed point of f . We have already shown
that dom(f) ∪ f ∗[dom(g)] ⊆ dom(g). So it is enough to show that for all x ∈ A,
g(x) = f [g](x). If x 
∈ B, then g(x) = x and x /∈ dom(f). So f ∗(x) = x is an
urelement and we have that f [g](x) = f ∗(x) = x = g(x).

Assume that x ∈ B. Then f ′(h(x)) is not an urelement and so g(x) =
g′(h(x)) = {g′(y) | y ∈ f ′(h(x))} =

(1) {g′(y) | y ∈ f ′(h(x)) − rng(h)} ∪ {g′(y) | y ∈ f ′(h(x)) ∩ rng(h)}
Now f ′(h(x)) − rng(h) = {h∗(z) | z ∈ f ∗(x)} − rng(h) = {z | z ∈ f ∗(x) − B} =
f ∗(x) − B. If y ∈ f ∗(x) − B = f ′(h(x)) − rng(h), then y /∈ dom(f ′), since
rng(h) = dom(f ′). Because f ∗(x) ⊆ A, we have that f ∗(x) − B ⊆ U , so y ∈ U .
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Hence g′(y) = f ′[g′](y) = (f ′)∗(y) = y. On the other hand f ′(h(x)) ∩ rng(h) =
{h∗(y) | y ∈ f∗(x)} ∩ rng(h) = {h(y) | y ∈ f∗(x) ∩ B}. Thus we have that (1) is
equal to {y | y ∈ f ∗(x) − B} ∪ {g′(y) | y ∈ {h(z) | z ∈ f ∗(x) ∩ B}} = {g(y) | y ∈
f ∗(x) − B} ∪ {g′(h(z)) | z ∈ f ∗(x) ∩ B} = {g(y) | y ∈ f ∗(x)}. �

Lemma 2.14. Assume ZFC−2 + SEA. If every generating function has a fixed
point, then every function has a fixed point.

Proof. Let f be a function. Let A be a transitively closed set such that
dom(f)∪ rng(f) ⊆ A. Let B be the set of those x ∈ A such that f∗(x) 
= x is an
urelement and let C be the set of those x ∈ A such that f∗(x) = x is an urelement.
Let h be a one-one function such that dom(h) = B and rng(h) ⊆ U − A. Define
f ′ so that dom(f ′) = A−B and for all x ∈ dom(f ′), if x ∈ C, then f ′(x) = x and
otherwise f ′(x) = {h∗(y) | y ∈ f∗(x)}. Then f ′ is generating and so by Lemma
2.13, it has a fixed point g′. Let D = g′[dom(f ′)] − U and define f ′′ so that
dom(f ′′) = D and for all x ∈ dom(f ′′), f ′′(x) = {h′(y) | y ∈ x}, where h′(y) = y,
if y 
∈ rng(h) and otherwise h′(y) = f(h−1(y)). Then f ′′ is generating and let g′′

be a fixed point of f ′′. We define g so that dom(g) = A, for all x ∈ dom(g), if
f∗(x) is an urelement, then g(x) = f ∗(x) and otherwise, g(x) = g′′(g′(x)). We
show that g is a fixed point of f .

Since rng(f) ⊆ A and A is transitively closed,
⋃

f ∗[A] ⊆ A. Also dom(f) ⊆ A.
So it is enough to prove that for all x ∈ A, g(x) = f [g](x). If x ∈ B ∪ C,
the claim is clear. So assume x ∈ A − (B ∪ C). Then g(x) = g′′(g′(x)) =
{g′′(y) | y ∈ f ′′(g′(x))} = {g′′(h′(y)) | y ∈ g′(x)} = {g′′(h′(g′(y))) | y ∈ f ′(x)} =
{g′′(h′(g′(h∗(y)))) | y ∈ f ∗(x)}. We have several cases:

1. y ∈ C: Then h∗(y) = y, g′(y) = (f ′)∗(y) = y, h′(y) = y and g′′(y) =
(f ′′)∗(y) = y. Also g(y) = y and so g′′(h′(g′(h∗(y)))) = g(y).

2. y ∈ B: Then (f ′)∗(h∗(y)) = h∗(y) and so g′(h∗(y)) = h∗(y). Fur-
thermore h′(h∗(y)) = f(y) and since f(y) 
∈ dom(f ′′), g′′(f(y)) = f(y). So
g′′(h′(g′(h∗(y)))) = f(y) = g(y).

3. y ∈ A − (B ∪ C): Clearly h∗(y) = y and g′(y) is a set. So h′(g′(y)) = g′(y).
Then g′′(h′(g′(h∗(y)))) = g′′(g′(y)) = g(y).

By 1-3, g(x) = {g′′(h′(g′(h∗(y)))) | y ∈ f ∗(x)} = {g(y) | y ∈ f ∗(x)} = f [g](x).
�

Corollary 2.15. ZFC + is equivalent to ZFA.

Proof. Assume ZFC + and that (X,A, f) is a flat system of equations. Then
f(x) ⊆ U for every x ∈ dom(f). Let g be such that FP(g, f) holds. Then by
Corollary 2.11, S(g � dom(f), f) holds. Thus AFA holds. The Extensionality
Axiom follows from Lemma 2.9 (i) and hence ZFA holds.

Assume ZFA. Then by Lemmas 2.13 and 2.14, every function has a fixed point.
So FPA holds. By Theorem 7.3 of [2], the Strong Extensionality Axiom holds in
ZFA. Hence ZFC + holds. �
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Lemma 2.16. If f is a substitution, then there is a function g such that g = g�f .

Proof. Let u ∈ U be such that u /∈ dom(f). We define f ′ as follows. Let
dom(f ′) = dom(f). If f(x) is not an urelement, or f(x) = x, or f(x) ∈ U −
dom(f), then let f ′(x) = f(x). If there is n < ω such that ∀m < n : fm(x) ∈ U
and fm(x) 
= fm−1(x) but fn(x) /∈ U , or fn(x) = fn−1(x), or fn(x) ∈ U−dom(f),
then let f ′(x) = fn(x). Otherwise let f ′(x) = u.

Let g′ be such that FP(g′, f ′) holds and let g = g′ � dom(f). We show that
g = g � f .

If f(x) ∈ dom(f) is an urelement, then by the definition of f ′, we have that
f ′(f(x)) = f ′(x). Now if f ′(x) ∈ U , g(x) = f ′(x) = f ′(f(x)) = g(f(x)) =
sub(g, f(x)). If f ′(x) /∈ U , g(x) = {g′(y) | y ∈ f ′(x)} = {g′(y) | y ∈ f ′(f(x))} =
g(f(x)) = sub(g, f(x)). If f(x) ∈ U − dom(f), then g∗(x) = f ′(x) = f(x) =
sub(g, f(x)). So we have shown that if f(x) is an urelement, then g(x) = g(f(x)),
hence we need to show that for all x ∈ dom(f), if f(x) /∈ U , then g′(x) =
sub(g, f(x)). For this, we define a bisimulation B so that (a, b) ∈ B iff there is a
y ∈ dom(g′) such that a = g′(y) and b = sub(g, f ∗(y)), or a = b ∈ U ∩ dom(g′),
or a = g′(y) = b.

To show that B is bisimulation, let (g′(y), sub(g, f ∗(y))) ∈ B for some y ∈
dom(g′). We have several cases:

1. y ∈ U − dom(f): Then (f ′)∗(y) = f ∗(y) = y so g′(y) = y = sub(g, f ∗(y)).
2. y ∈ dom(f) and f(y) ∈ U : As above we have that g′(y) = g(f(y)) =

sub(g, f ∗(y)).
3. y ∈ dom(f), f(y) /∈ U : Because f(y) /∈ U , we have that f(y) = f ′(y), so

g′(y) = {g′(z) | z ∈ f ′(y)}
sub(g, f ∗(y)) = {sub(g, z) | z ∈ f(y)}.

Assume z ∈ f(y), so z ∈ dom(g′). If z /∈ dom(f), then (g′(z), sub(g, f ∗(z))) ∈ B.
If z ∈ dom(f), then sub(g, z) = g(z) = g′(z) and (g′(z), g′(z)) ∈ B. �

For a class function F , FP(G, F ) is defined as for the set functions. We show
that under ZFC + also the class functions have fixed points.

Lemma 2.17. Assume ZFC+. Let F : Vafa [U ] ∪ U → Vafa [U ] ∪ U be a definable
class function. Then there exists a unique definable class function G : Vafa [U ] ∪
U → Vafa [U ] ∪ U such that FP(G, F ) holds.

Proof. Let x ∈ Vafa [U ] ∪ U . If F (x) ∈ U , then let G(x) = F (x). Otherwise
we define G(x) as follows. Let A0 = TC({x}), An+1 = An ∪ TC(F [An]), and
A(x) =

⋃
n<ω An. Then A(x) is transitively closed and F [A(x)] ⊆ A(x). Now let

g be a function such that FP(g, F � A(x)) holds and define G(x) = g(x).
We show that g(y) does not depend on the choice of A(x) as long as y ∈ A(x)

and F [A(x)] ⊆ A(x). Let A and A′ be transitively closed sets such that y ∈ A,
F [A] ⊆ A, and F [A′] ⊆ A′. Let g and g′ be such that FP(g, F � A) and FP(g′, F �
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A′) hold. Let C = A ∩ A′, then C is transitively closed, y ∈ C, and F [C] ⊆ C.
We show that g � C = g′ � C from which the claim follows. So let z ∈ C and let
B consist of (g(z), g′(z)) together with (a, b) ∈ TC(g(z)) × TC(g′(z)) such that
either a = b or there is c ∈ C such that a = g(c) and b = g′(c). To show that B
is a bisimulation between g(z) and g′(z), let c ∈ C and (g(c), g′(c)) ∈ B. Assume
that F (c) is not an urelement. Then g(c) = {g(d) | d ∈ (F � C)(c)}. Now if
d ∈ (F � C)(c), then d ∈ C and so (g(d), g′(d)) ∈ B. So B is a bisimulation and
hence for all z ∈ C, g(z) = g′(z).

We show that G is a fixed point of F . Let x ∈ Vafa [U ] ∪ U . If F (x) ∈ U , then
G(x) = F [G](x) = F (x). If F (x) /∈ U , let A(x) be the transitively closed set such
that x ∈ A(x) and F [A(x)] ⊆ A(x). Let g be such that FP(g, F � A(x)) holds.
Then G(x) = g(x) = {g(y) | y ∈ (F � A(x))∗(x)} = {G(y) | y ∈ F (x)}, because
A(x) is transitively closed and F [A(x)] ⊆ A(x). �

As a corollary we have the Theorem 8.1 of [2].

Corollary 2.18. There is a unique operation sub(s, b) as in Definition 2.2 defined
for all substitutions s and sets b.

Proof. Assume s is a substitution. Define a class function F by F (x) = x if
x /∈ dom(s) and F (x) = s(x) otherwise. By the above lemma, let G be such that
FP(G, F ) holds. We claim that G(x) = sub(s, x) for all x.

If x is an urelement, then G(x) = F (x) = sub(s, x). Let x be a set. Define the
relation B by (a, b) ∈ B iff a = G(y) and b = sub(s, y) for some y ∈ ∪TC({x}).
We show that B is a bisimulation between G(x) and sub(s, x). The case for
urelements is as in the above, so let (G(y), sub(s, y)) ∈ B where G(y) is a set.
Then G(y) = {G(z) | z ∈ F (y)} and sub(s, y) = {sub(s, z) | z ∈ y}. Because
y /∈ dom(s), F (y) = y and we see that the bisimulation can be continued. �

We finish this section by showing that a fixed point of a fixed point of a basic
f is a fixed point of f . Thus the name fixed point.

Lemma 2.19. Assume ZFC +. For every function f there is a function g such
that FP(g, f) holds and rng(g) ∪ ⋃

rng(g) ⊆ dom(g).

Proof. Let f be a function and g′ such that FP(g′, f). We define inductively
functions fn and gn for n < ω as follows. Let f0 = f and g0 = g′.

Let An = dom(gn)∪rng(gn)∪⋃
rng(gn) and dom(fn+1) = dom(fn)∪An. Define

fn+1(x) = fn(x), if x ∈ dom(fn), and otherwise fn+1(x) = x. Let gn+1 be such
that FP(gn+1, fn+1) holds.

Because for every n, dom(fn) ⊆ dom(gn+1), we have that

(2) rng(gn) ∪
⋃

rng(gn) ⊆ dom(gn+1).

From the definition of fn if follows that for all n, fn ⊆ fn+1 and also f ⊆ fn.
Clearly if x /∈ dom(f), then fn(x) = x, hence for every x and n, f∗

n(x) = f ∗(x).
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It is clear that dom(f) ⊆ dom(gn). Also f∗[dom(gn)] = f [dom(gn)∩dom(f)]∪
(dom(gn) − dom(f)) = f ∗

n[dom(gn)]. Hence
⋃

f ∗[dom(gn)] ⊆ ⋃
f∗

n[dom(gn)] ⊆
dom(gn). If x ∈ dom(gn) and f∗(x) is an urelement, then gn(x) = f ∗

n(x) = f ∗(x).
If f ∗(x) is not an urelement, then gn(x) = {gn(y) | y ∈ f∗

n(x)} = {gn(y) | y ∈
f∗(x)}. Thus FP(gn, f).

Now because for every n < ω, FP(gn, f), FP(gn+1, f), and dom(gn) ⊆ dom(gn+1),
we have by Lemma 2.9 (iii) that gn ⊆ gn+1. So we can define g =

⋃
n<ω gn. By

(2) we have that rng(g) ∪ ⋃
rng(g) ⊆ dom(g).

Finally, we show that FP(g, f) holds. Because for all n, FP(gn, f) holds,
we have that dom(f) ∪ ⋃

f ∗[dom(g)] ⊆ dom(g). Let x ∈ dom(g). Then for
some n, x ∈ dom(gn). If f ∗(x) ∈ U , then g(x) = gn(x) = f ∗(x). Otherwise
g(x) = gn(x) = {gn(y) | y ∈ f ∗

n(x)} = {g(y) | y ∈ f ∗(x)} = f [g](x). �

Lemma 2.20. Assume ZFC−2 + SEA, f is basic, FP(g, f) holds and rng(g) ∪⋃
rng(g) ⊆ dom(g). Then for all x ∈ dom(g), g(g(x)) = g(x) and if g(x) 
∈ U ,

then g(x) = {g(y) | y ∈ g(x)}. In particular, FP(g, g) and S(g, g) hold.

Proof. Let a ∈ dom(g). Let B consist of (g(a), g(g(a))) together with (x, y) ∈
TC(g(a))× TC(g(g(a))) such that either x = y or there is z ∈ dom(g) such that
x = g(z) and y = g(g(z)).

We show that B is a bisimulation between g(a) and g(g(a)). Assume that
z ∈ dom(g), f ∗(z) /∈ U , and (g(z), g(g(z))) ∈ B.

Let y ∈ g(z) = {g(w) | w ∈ f ∗(z)}. So y = g(w) for some w ∈ f ∗(z). Because
g(w) ∈ rng(g) ⊆ dom(g), g(g(w)) is defined. So (g(w), g(g(w))) ∈ B.

Let y ∈ g(g(z)) = {g(w) | w ∈ f∗(g(z))}. So y = g(w) for some w ∈ f ∗(g(z)) ⊆
dom(g). Thus (g(w), g(g(w))) ∈ B.

For the second claim, assume that g(x) /∈ U . So g(x) /∈ dom(f) and thus
g(x) = g(g(x)) = {g(y) | y ∈ g(x)} = g[g](x). Thus S(g, g) holds. Because
dom(g) ∪ ⋃

g∗[dom(g)] ⊆ dom(g) ∪ rng(g) ∪ ⋃
rng(g) ⊆ dom(g), we have that

FP(g, g) holds. �

The assumption that f is basic is needed in Lemma 2.20:

Example 2.21. Assume ZFC+ (the first example works also in ZFC ).
(i) We define sets en, n < ω, so that e0 = ∅ and en+1 = {en}. Let f be such

that f(e3) = e2, f(e2) = {e0, e1} and for n < 2, f(en) = en. Then FP(f, f) holds,
but f(f(e3)) = {e0, e1} 
= f(e3)

(ii) Let Ω be such that Ω = {Ω}. Define f so that f(∅) = {∅} and f(Ω) = ∅.
Let g be such that FP(g, f) holds: Then since g(x) = {g(y) | y ∈ f∗(x)},
g(∅) = Ω and g(Ω) = ∅. But {g(y) | y ∈ g(∅)} = {∅} 
= g(∅), so it is not the case
that FP(g, g).

2.4. A model in which not all equations have solutions. We now turn
to the question: Do we need to assume that all flat systems of equations have
solutions in order to get all fixed points. First we show how to construct a model
of set theory from a given transitive class of non–wellfounded sets.
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Definition 2.22. Let C ⊂ Vafa [U ] ∪ U be a transitive class.

C(C) = {x ∈ Vafa [U ] ∪ U |there is no sequence xi, i < ω such that

x0 ∈ TC(x) and ∀i, xi+1 ∈ xi, xi /∈ C}.
Intuitively this class is the same as the following class V ′′: Let V ′

0 = C ∪ U ,
V ′

α+1 = {x | x ⊆ V ′
α}, V ′

β =
⋃

α<β V ′
α, when β is a limit ordinal, and let V ′′ =⋃{V ′

α | α is an ordinal}.
Lemma 2.23. Assume that C ⊂ Vafa [U ]∪U is a transitive class and V ′ = C(C),
then V ′ |= ZFC−2 + SEA.

Proof. Now V ′ is a transitive class, so the Axioms of Extensionality and
Strong Extensionality hold in V ′. If x is a subset of V ′, then clearly x ∈ V ′.
Hence the Power Set Axiom holds in V ′.

The Axiom of Urelements, ∀p∀q(U(p) → ¬(q ∈ p)) holds in V ′. The Pairing
and Union Axioms also hold in V ′. Because ω ∈ V ′, we have that ∅ and the
successor operation are absolute for V ′, V ′ satisfies the Axiom of Infinity.

For the Collection Axiom it is enough to show that for each formula φ(x, y, A, w1, . . . , wn)
and each A, w1, . . . , wn ∈ V ′, if ∀x ∈ A∃!y ∈ V ′φV ′

(x, y, A, w1, . . . , wn), then
∃Y ∈ V ′({y | ∃x ∈ A, φV ′

(x, y, A, w1, . . . , wn)} ⊆ Y ). So let Y = {y ∈ V ′ | ∃x ∈
A, φV ′

(x, y, A, w1, . . . , wn)}. Then Y ⊂ V ′ and hence Y ∈ V ′.
Since for every z ∈ V ′, P (z) ⊆ V ′, we have that V ′ satisfies the Separation

Axiom. For the Axiom of Choice, we can show that if x ∈ V ′ and x can be
well–ordered, then (x can be well–ordered)V ′

: If R ⊆ x × x well–orders x, then
since x × x ∈ V ′ we have that R ∈ V ′. The formula “R totally orders x” is
absolute for V ′. For well–ordering we have to check that (∀yφ(y, x, R))V ′

, where
φ(y, x, R) is

y ⊆ x ∧ y 
= ∅ → ∃z ∈ y∀w ∈ y((w, z) /∈ R).

Now φ is absolute for V ′ so it is enough to show that ∀y ∈ V ′φ(y, x, R), which
follows since R well–orders x. Thus the Axiom of Choice holds in V ′.

For the Axiom of Plenitude, which is: ∀S /∈ U(∃f : S → U such that f is
injective and f [S] ∩ S = ∅), let S be a set in V ′. Let g : S → U be an injection
in Vafa [U ]. Then also g ∈ V ′, because V ′ is closed under the power set operation.
We have shown that V ′ |= ZFC−2 + SEA. �

Lemma 2.24. Assume that C ⊂ Vafa [U ] is a transitive class and there exist xi,
for i < ω such that xi+1 ∈ TC(xi) and xi /∈ C. If V ′ = C(C), then V ′ |=
ZFC−2 + SEA and V ′ 
|= AFA.

Proof. We define the canonical flat system of equations for x0 as follows. Let
h be an injection such that dom(h) = TC(x0), rng(h) ⊆ U and if a ∈ TC(x0)∩U ,
then h(a) = a. Let A = TC(x0) ∩ U , a0 ∈ U − rng(h), X = (rng(h) ∪ {a0}) − A.
Define f in X such that f(a0) = {h(y) | y ∈ x0} and f(h(z)) = {h(y) | y ∈ z}
for z ∈ dom(h). So f is a system of equations which belongs to V ′ and it was
constructed so that for the solution g to f , we have that g(a0) = x0.
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Now x0 can not be in V ′, because of the definition of V ′. Because being a
solution to a flat system of equations is an absolute property for V ′, we have that
f has no solution in V ′. �

Next we introduce the notion of a flat P–coalgebra from [2], which corresponds
to a flat system of equations with no atoms.

Definition 2.25. A flat P–coalgebra is a pair (X, f) such that X ⊆ U is a set
of urelements and f : X → P(X). A function g is a substitution solution to the
flat P–coalgebra if FP(g, f) holds.

It is shown in [2] that if g is a substitution solution to a flat P–coalgebra, then
rng(g) ⊆ P∗, where P∗ is the greatest fixed point of the operator P and it is
equal to the class of all pure sets Vafa [∅]. (In case there are no urelements, then
P∗ is the whole universe and the example below does not hold anymore, but see
the next section.)

Example 2.26. Assume ZFC−2 + SEA. The following does not imply AFA:
Every flat P–coalgebra has a substitution solution.

Proof. Let C = Vafa [∅]. If (X, f) is a flat P–coalgebra and g its solution, then
rng(g) ⊆ C. If we let V ′ = C(C), then dom(g) ∈ V ′ and hence g ∈ V ′, because
V ′ is closed under the power set operation. Because being a flat P–coalgebra
and a solution to it are absolute properties for V ′, we have that in V ′ every flat
P–coalgebra has a solution.

Let x be an urelement and f(x) = {a, x}, where a ∈ U and a 
= x. Then f is
an equation system and it has a solution g in Vafa [U ]. Then g(x) = {a, g(x)} /∈ C,
and we get the xi’s as required in Lemma 2.24, by setting xi = g(x). Hence by
Lemma 2.24, AFA does not hold in V ′. �

Γ–coalgebras can be seen as systems of equations (see [2] section 16) and if we
restrict our interest to flat Γ–coalgebras, then the class of solutions can be seen
as the final Γ–coalgebra. One may wonder if the same can be done (e.g. by fixed
points) for a larger class of Γ–coalgebras than the flat ones. This does not seem
to be the case or at least a much deeper understanding of non–wellfounded sets
is needed. The crucial property of the flat Γ–coalgebras (X, e) is that X is new
for Γ (i.e. for all substitutions t and sets a, Γ(a[t]) = Γ(a)[t]), this forces X to be
flat in the usual sense of the word. And without something like this the theory
does not work. E.g. the crucial Lemma 16.1 in [2] fails:

Let Γ(X) = P(P(X) − {∅}). This is a monotone and proper operator, i.e. if
X ⊆ Y , then Γ(X) ⊆ Γ(Y ), and for all sets a, Γ(a) ⊆ Vafa [U ]. Let X = {∅, {∅}},
and let e(∅) = {{∅}} and e({∅}) = ∅. Then (X, e) is a Γ–coalgebra that is not
flat. If s is a solution to e, then s(∅) = {∅} and s({∅}) = ∅ but {∅} /∈ Γ∗. Hence
s is not a Γ–morphism of (X, e) into (Γ∗, id).
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2.5. Classifying non–wellfounded sets. Here we have a fixed class of urele-
ments, U , and all sets can contain urelements as their members. So from now on
we denote by Vafa the class Vafa [U ]∪U of [2]. But as in the above, urelements are
not vital in here. We regard arbitrary functions as equation systems and when
we speak of the indeterminates of the equation systems, we mean the elements
of their domain.

We define a series of classes of equation systems Eα, α ∈ ON in increasing
complexity. From these equation systems we obtain a series of classes of non–
wellfounded sets,

V 0
afa ⊂ V 1

afa ⊂ · · · ⊂ V α
afa ⊂ · · · ,

so that V α+1
afa 
⊂ V α

afa . We also define the rank of a non–wellfounded set x as the
least α such that x ∈ V α

afa .

The non–wellfounded sets become more complicated in the series V 0
afa ⊂ V 1

afa ⊂
· · · according to the branching structure of the non–wellfounded sets. V 0

afa is the

class of wellfounded sets. In V 1
afa there are sets, which can be described as either

Ω and sets that can be obtained from it by standard set theoretical operations or
sets which have a non-wellfounded ∈–sequence of length ω such that going down
this sequence one has ω chances to branch out of that sequence. But in V 1

afa after

branching the sets are wellfounded. In V 2
afa there are sets in which there are ω

chances to branch to sets in which there are again ω chances to branch into sets
in which there are only finite number of possibilities to branch. So the rank tells
how many times it is possible to branch arbitrarily deep.

A non–wellfounded set of rank ω has elements of arbitrarily high rank below
ω. In a non–wellfounded set of rank ω + 1 one can find a non–wellfounded ∈–
sequence in which there are ω chances to branch into sets of rank ω. And so on
in the higher degrees.

There is also the possibility that this branching process goes on arbitrarily
long. In this case we say that the rank is ∞. First we need to characterize the
different classes of equation systems. This is done in game theoretic terms.

Definition 2.27. Let f be a system of equations. A sequence �x = 〈xi | i < ω〉,
where xi ∈ dom(f), i < ω, of indeterminates of f is called descending if for all
i < ω, xi+1 ∈ f(xi).

We describe a game Gα(E), where α ∈ ON, that is played on a given system
of equations f as follows. There are two players, black and white. First the black
player chooses a descending sequence �x of indeterminates. Then white chooses
an ordinal α0 < α and a natural number n < ω. Black must respond with a
descending sequence of indeterminates �y such that for some m ≥ n, y0 ∈ f(xm),
and y0 
= xm+1. So �y branches out of �x. Then again white chooses an ordinal
α2 < α1 and a natural number and so on.

The length of this game is the number of pairs of moves by black and white.
This length is finite, since there are no infinite descending sequences of ordinals.
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We say that black has a winning strategy in the game Gα(f) if she is able to
respond to white’s moves until white has no more moves. White wins otherwise,
that is if black is not able to respond with a descending sequence of indeterminates
to white’s move.

There is also a game of infinite length. In G∞(f) the white player does not
choose ordinals, only indices. Hence the length of this game is ω.

More formally, we say that a move of the white player is a pair (α, n), where
α is an ordinal and n < ω. We use the projection function π2(α, n) = n to get
the second coordinate of the pair (α, n). In Gα(f) we say that a sequence �w is a
legal sequence of white’s moves of length k if

�w = 〈(αi, ni) | i < k〉, ∀i ∈ ω(ni < ω), and α > α0 > α1 > · · · > αk−1

We define the winning strategy σ for black as follows.

Definition 2.28. Let f be a system of equations and α an ordinal. A winning
strategy for the black player in the game Gα(f) is a function σ of two arguments,
a natural number k and a legal sequence �w of white’s moves of length k, that
satisfies the following conditions:

(i) σ(0, ∅) = �x, where �x is a descending sequence of the indeterminates of f
(ii) σ(k +1, �w) = �y, where �y is a descending sequence of indeterminates such

that the following holds. Denote by �x the previous move of black, i.e.
σ(k, �w � k) and denote by n white’s last move, i.e. π2(wk). We require
from �y that ∃m ≥ n(y0 ∈ f(xm) and y0 
= xm+1).

We say that the black player wins a game if she has a winning strategy. The
white player wins, if the black player does not win.

We may also define a similar game played on non–wellfounded sets, Gα(x). We
say that a sequence 〈xi | i < ω〉 is a non–wellfounded sequence, if for all i < ω,
xi+1 ∈ xi. If we replace in the above definitions the system of equations f by a set
x and the descending sequences of indeterminates by non–wellfounded sequences,
then we have the corresponding definition for sets. For sets we also require that
σ(0, ∅) is a non–wellfounded sequence starting from x.

If white wins the game G0(x), then x is well–founded. If white wins G1(x),
and black wins G0(x), then in TC(x) there are non–wellfounded sets but no sets
in which we can branch two times as described above. Also, if black wins Gα,
then black wins Gβ for all α ≤ β and if white wins Gα, then white wins Gβ for
all β ≥ α.

Definition 2.29. .

(i) Eα = {f | white wins Gα(f)}
(ii) E∞ = {f | black wins G∞(f)},
(iii) V α

afa = {x | white wins Gα(x)}
(iv) V ∞

afa = {x | black wins G∞(x)}
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(v) AFAα is the statement that all the systems of equations in Eα have
solutions.

From the preceding definition it follows that if x is a set and f is its canonical
system of equations, then x ∈ V α

afa iff f ∈ Eα. Also black player’s winning
strategy in the game on sets can be straightforwardly converted into a winning
strategy in the game on equation systems. Thus all the solutions to the equation
systems from Eα are in V α

afa .
The solution set x to an equation system f does not always have the same

rank as f . For example define an equation system f such that dom(f) = {uη ∈
U | η ∈ 2<ω}, where uη’s are distinct, by f(uη) = {uη�{0}, uη�{1}}. Then f /∈ Eα

for all α but the solution set of f is Ω, by exercise 7.1 of [2], and Ω ∈ V 1
afa .

Definition 2.30. The non–wellfoundedness rank of a set x, denoted by nwfrank(x)
is the least α such that x ∈ V α

afa , if there is such and ∞ otherwise.

Note that for x such that nwfrank(x) ∈ ON we have that nwfrank(x) =
min{α | white wins Gα(x)} = sup{α + 1 | black wins Gα(x)}. We also have
that if x ∈ y, then nwfrank(x) ≤ nwfrank(y) but not necessarily nwfrank(x) <
nwfrank(y). In fact, Marshall and Schwarze [18] have shown that it is not possible
to define a rank function r such that if x ∈ y, then r(x) < r(y), in set theory
without the Foundation Axiom. Another notion of rank for non–wellfounded sets,
defined using modal logic, appears in [2], section 11.

Lemma 2.31. Black wins Gα(x) iff there is a non–wellfounded sequence �x start-
ing from x such that for all β < α the set

Aβ = {i < ω | ∃y ∈ xi(y 
= xi+1 and black wins Gβ(y))}
is an unbounded subset of ω.

Proof. Assume that black has a winning strategy σ in the game Gα(x). Let
�x = σ(0, ∅). Let n < ω and β < α. If we let (β, n) be the first move of the white
player, then σ(1, (β, n)) is a non–wellfounded sequence �y such that ∃i ≥ n(y0 ∈ xi

and y0 
= xi+1) by the definition of a winning strategy. The winning strategy σ′

for black in the game Gβ(y0) is defined by the following equations

σ′(0, ∅) = σ(1, (β, n))

σ′(m + 1, �w) = σ(m + 2, (β, n)� �w).

Hence Aβ is unbounded in ω.
Assume on the other hand that there is a non–wellfounded sequence �x starting

from x and satisfying the condition. We prove that black has a winning strategy
σ in the game Gα(x). Let σ(0, ∅) = �x. Let (β, n) ∈ α × ω be white’s first move.
Since Aβ is unbounded in ω there is i ≥ n such that ∃y ∈ xi(y 
= xi+1 and black
wins Gβ(y) with winning strategy σ′). Then let

σ(1, (β, n)) = σ′(0, ∅)
σ(m + 2, (β, n)� �w) = σ′(m + 1, �w).
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�

Corollary 2.32. nwfrank(x) ≥ α iff for all β < α there is a non–wellfounded
sequence �x starting from x such that

{i < ω | ∃y ∈ xi(y 
= xi+1 and nwfrank(y) ≥ β)}
is an unbounded subset of ω.

By Corollary 2.32 we could have also defined the classes V α
afa via the concept

of nwfrank, by letting wellfounded sets have rank 0. So we have that V α
afa = {x |

nwfrank(x) ≤ α}.
Theorem 2.33. V α

afa |= ZFC−2 + SEA + AFAα.

Proof. Let V ′ = C(V α
afa). We claim that V α

afa = V ′ from which the conclusion
follows. Since all the solutions to the equation systems from Eα are in V α

afa ,
V α

afa |= AFAα.
By the definition of V ′, we have that V α

afa ⊆ V ′. We show that V ′ ⊆ V α
afa by

showing that if nwfrank(x) > α, then x /∈ V ′.
Assume towards a contradiction that there is x ∈ V ′ for which nwfrank(x) > α.

So the white player does not have a winning strategy in Gα(x) and this means
that the black player has. From this it follows by Lemma 2.31, that there is a
non–wellfounded sequence �x starting from x such that for all β < α the set

Aβ = {i < ω | ∃y ∈ xi(y 
= xi+1 and black wins Gβ(y))}
is an unbounded subset of ω.

Let i < ω. Black wins Gβ(xi) for all β < α, because �x � [i, ω] is now a non–
wellfounded sequence where black wins. So by Lemma 2.31, black wins Gα(xi).
Hence nwfrank(xi) > α, and so xi /∈ V α

afa which violates the definition of C(V α
afa).

�

From the preceding proof we can extract the following corollaries:

Corollary 2.34. If α < γ, then V α
afa � V γ

afa .

Proof. If nwfrank(x) = γ > α, then by the proof of the theorem, we have that
x /∈ V α

afa .
We construct an example of a set x for which nwfrank(x) = γ as follows.
Let X = {uα | α ≤ γ} be a set of distinct urelements. Let f be such that

dom(f) = X and for α ≤ γ, let

f(uα) =

⎧⎪⎨⎪⎩
{uβ | β < α} if α is a limit,

{uα, uα−1} if α is a successor,

∅ if α = 0.

Let g be the solution to f and let x = g(uγ). We show by induction that
nwfrank(g(uα)) = α for α ≤ γ. It is clear that nwfrank(g(u0)) = 0.
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Assume the claim for α. By the construction, there is a non–wellfounded
sequence �x = 〈g(uα+1), g(uα+1), . . .〉 starting from g(uα+1). Let i < ω. Then
g(uα) ∈ xi and nwfrank(g(uα)) = α, hence by Corollary 2.32, nwfrank(g(uα+1)) ≥
α+1. We show that white wins Gα+1(g(uα+1)), whence nwfrank(g(uα+1)) = α+1.
For the first move black has to choose �x (other choices would be worse). But black
can not win Gα+1(g(uα+1)) in �x by Lemma 2.31, because for all i < ω, it holds
that there is no y ∈ xi such that black wins Gα(y).

Assume the claim for β < α. By the construction, g(uα) = {g(uβ) | β < α}.
For every β < α, nwfrank(g(uβ)) = β so nwfrank(g(uα)) ≥ α. We show that
white wins Gα(g(uα)). Black has to choose some non–wellfounded sequence
starting from g(uα), say �x = 〈g(uβ), g(uβ), . . .〉. Then white chooses some or-
dinal γ such that β < γ < α. Now black cannot win Gγ(g(uβ)), because
nwfrank(g(uβ)) = β < γ. �

Corollary 2.35. If α < γ, then V α
afa 
|= AFAγ.

Proof. If we let f be the canonical equation system for a set x such that
nwfrank(x) = γ, then f ∈ Eγ. But f does not have a solution in V α

afa . �

Next we show that all the AFAα axioms together with AFA∞ imply AFA.
But note that ∀αAFAα 
� AFA.

Lemma 2.36. � AFA ↔ (AFA∞ ∧ ∀α AFAα).

Proof. Let f be an arbitrary system of equations, and assume that the white
player does not win Gα(f) for any α. We show that then black wins G∞(f). For
a descending sequence of indeterminates �u of f , let

r(�u) = sup{α | black wins Gα(f) where the first move of black is �u}.
There is an ordinal α such that if �u is a descending sequence of indeterminates
of f and r(�u) ≥ α, then r(�u) = ∞. This is so because otherwise the set {�u | �u is
a descending sequence of indeterminates of f}, and hence f , would be a proper
class.

We describe a winning strategy for black in the game G∞(f) as follows. There
is a descending sequence of indeterminates �u0 of f such that r(�u0) ≥ α since
otherwise we could take

γ = sup{r(�u) | �u from f such that r(�u) 
= ∞}
and white would win Gγ+1(f). Let �u0 be the first move of black. Let n be the first
move of white. Because r(�u0) ≥ α, then by the above, r(�u0) = ∞. So there is a
descending sequence �u1 such that it branches out of �u0 below n and r(�u1) ≥ α.
So this way we can continue the game arbitrarily long. �

By the previous lemma, we also see that V ∞
afa ∪ {x | ∃α(x ∈ V α

afa)} = Vafa .
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3. A domain order over non–wellfounded sets

In this section we construct a domain structure on a subclass of Vafa [U ]. The
approximation order � is based on a certain kind of tree extension on canonical
tree pictures of sets.

3.1. Introduction. Domain theory can be seen as a theory of approximation and
it is used widely in computer science to model various programming languages and
abstract data types. On the other hand, non–wellfounded sets, studied in Aczel
[1] and in Barwise and Moss [2], have found applications in computer science.
There are connections between these two theories. In an appendix to his book
[1], Peter Aczel writes:

A natural way to try to understand non–well–founded sets is to view
them as limits, in some sense, of their well–founded approximations.
This approach is inspired by Scott’s theory of domains, but it cannot
be done in any simple minded way, as I found out.

In [20], Mislove, Moss, and Oles show how to construct a domain structure on
HF 1, the set of all hereditarily finite sets, which may be non–wellfounded. Their
construction involves initial continuous algebras. Here we try to define a domain
ordering directly by giving a set–theoretic definition in terms of certain kinds of
tree extensions.

In [3], Boffa describes a way to approximate non–wellfounded sets by their
wellfounded components by an inverse limit construction. The approximating
sets are taken from the class of all wellfounded and hereditarily finite sets, HF 0.
We show that this actually defines a domain ordering in the appropriate domain

completion, ĤF 0.
This approach differs from the one in [20] in that it does not use protosets.

Lindström [16] has also studied non–wellfounded sets as the inverse limits of
wellfounded sets in constructive set theory.

3.2. Domains. We give the basic definitions of domains. As a reference to do-
main theory we use Stoltenberg–Hansen, Lindström, and Griffor [22]. Let (D,�)
be a partially ordered set. A set A ⊆ D is called directed, if A 
= ∅ and for all
a1, a2 ∈ A there is a ∈ A such that a1 � a and a2 � a. We denote by

⊔
A the

least upper bound of A, if it exists.

Definition 3.1. Let D = (D,�,⊥) be a partially ordered set with a least element
⊥. Then D is called a complete partial order if

⊔
A exists for all directed A ⊆ D.

In domains we have an abstract notion of finiteness, or compactness as it is
called, by the following definition.

Definition 3.2. Let D be a complete partial order. An element a ∈ D is said
to be compact, if whenever A ⊆ D is a directed set and a � ⊔

A, then there is
some x ∈ A such that a � x. We say that D is algebraic if for each x ∈ D, the
set approx(x) = {a � x | a is compact} is directed and x =

⊔
approx(x).
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We add one more condition to obtain the definition of Scott–Ershov domains.
Two elements a and b of D are called consistent if there is c such that a � c and
b � c.

Definition 3.3. An algebraic complete partial order D is called a domain if for
any two consistent compact elements a and b, a � b exists.

Domains can be obtained also by so called ideal completions of conditional
upper semi lattices.

Definition 3.4. A partial order P = (P,�,⊥) with least element ⊥ is a condi-
tional upper semi lattice with least element (abbreviated cusl) if whenever {a, b}
is consistent in P , then a � b exists in P .

We cite the following well–known representation theorem for domains from [22].
The notion of an ideal can be defined for domains in the usual way. The principal
ideal generated by an element a of a domain is denoted by [a] = {b | b � a}.

Theorem 3.5. Let P be a cusl and let P = {I ⊆ P | I an ideal}. Then the
structure P = (P ,⊆, [⊥]) is a domain. Furthermore, the compact elements of P ,
denoted by P c are precisely the principal ideals. Finally, the map ι : P → P c

defined by ι(a) = [a] is an isomorphism.

3.3. Non–wellfounded sets. Here we follow the lines of [1] in formulating the
Anti-Foundation Axiom, AFA. But we use urelements as in [2]. Although they
are not vital to the theory, they will simplify a few things in some applications.
We denote the class of all urelements by U . (Officially there is a predicate U(x)
in the language and axiom, ∀x∀y(U(x) → y /∈ x), and an axiom stating that for
any set there is an equipollent set of urelements. We denote U(x) also by x ∈ U .
The Axiom of Extensionality is also adjusted to hold only on sets.)

We work in the set theory ZFC− which is like ordinary Zermelo–Fraenkel set
theory, but the Foundation Axiom is excluded. Non–wellfounded sets are modeled
by directed graphs, which consist of nodes and edges between the nodes. For a
graph G we denote the set of its edges by GE and its vertices by GV .

We require that the graphs are pointed, i.e. there is a distinguished point, and
accessible, i.e. every node is accessible from the point. We abbreviate accessible
pointed graph by apg. We may assign sets of urelements to the nodes of an
apg with a labelling function f such that dom(f) = GE and f(x) ⊂ U for all
x ∈ dom(f).

Definition 3.6. Let G be an apg and f its labelling. A decoration of G is a
function d such that d(n) = {d(n′) | (n, n′) ∈ GV } ∪ f(n).

The AFA axiom now says that every apg has a unique decoration. So to an
apg G we may assign a set x such that x = d(n), where d is the unique decoration
of G and n is the distinguished point of G. We also say then that G is a picture
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of the set x. In the next section we show how to assign to a set a canonical tree
picture of it.

The uniqueness condition in the AFA axiom is equivalent to the strong exten-
sionality axiom which states that bisimulation characterizes identity. We recall
the definition of bisimulation.

Definition 3.7. We write B(x, y) if there is a relation B ⊆ ({x} ∪ TC(x)) ×
({y} ∪ TC(y)) such that

(i) (x, y) ∈ B,
(ii) if (a, b) ∈ B and c ∈ a, then there is d ∈ b such that (c, d) ∈ B,
(iii) if (a, b) ∈ B and d ∈ b, then there is c ∈ a such that (c, d) ∈ B,
(iv) if (a, b) ∈ B, then a is an urelement iff b is an urelement and if they are

urelements, then a = b.

We call this kind of a relation B a bisimulation relation between x and y.

3.4. A partial order of non–wellfounded sets. We are going to define a
domain ordering on a subclass of non–wellfounded sets. Here we first define a
partial order � on all non–wellfounded sets.

When trying to see non–wellfounded sets as limits of wellfounded sets one idea
could be to see them as some kind of substitution limits, or fixed points as in
Hyttinen and Pauna [6]. But then the ordering does not come out as a domain
ordering.

In order to construct the partial order, we see sets as trees, called canonical
tree pictures. For a set a, we can define the canonical tree picture of a, denoted
by T (a) as in [1]. The graph relation (n, n′) ∈ GV is from now on to be denoted
by n → n′.

Definition 3.8. Let a be a set. Then T (a) consists of all finite sequences 〈ai :
i < k〉 such that a0 = a, and for all i < k − 1, ai+1 ∈ ai. For t and t′ in T (a), we
let t → t′ (i.e. (t, t′) ∈ T (a)V ) iff t′ is obtained from t by adding one element to t.

Here we have implicitly the labelling f of a tree picture T by urelements, so
that if the last element of a node t is an urelement u, then we require that f
assigns to the predecessor of t the urelement u. Formally, t = t

′�u ∈ T iff
u ∈ f(t′). If we drop the condition that ai+1 ∈ ai, then we only say that T is a
tree picture. By AFA, understood as in [1], every tree picture is a picture of a
unique set.

Definition 3.9. Let T be a tree picture and t ∈ T .

(i) →∗ is the transitive and reflexive closure of →,
(ii) ln(t) = |{t′ | t′ →∗ t}| is the length of t,
(iii) tn, where n ≤ ln(t), is the nth element of t,
(iv) last(t) = tln(t)−1 is the last element of t,
(v) tT = {t′ ∈ T | t → t′} is the set of immediate successors of t,
(vi) Tt = {t′ ∈ T | t →∗ t′} is the subtree of T whose root is t.
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We define an ordering on tree pictures as a certain kind of end extension. We
say that a node t is a leaf node when there is no t′ ← t. So either the last element
of t ∈ T is the empty set or an urelement when T is a canonical tree picture.

Definition 3.10. Let a and b be sets. Then a � b if there is a partial surjection
f : T (b) → T (a) such that for all t ∈ dom(f)

(i) for t, t′ ∈ dom(f), t → t′ iff f(t) → f(t′),
(ii) f(〈b〉) = 〈a〉,
(iii) if last(f(t)) ∈ U , then last(t) = last(f(t)),
(iv) if t′, t′′ ← t and t′ ∈ dom(f), then t′′ ∈ dom(f),
(v) if last(f(t)) = ∅ and there is t′ ∈ dom(f) such that ln(t′) > ln(t), then

last(t) = ∅.
In what follows, we mean by an epimorphism a function that satisfies the

previous definition. For a set a we define its height ht(a) = ht(T (a)) = sup{ln(t) |
t ∈ T (a)}.
Lemma 3.11. Assume a � b and f : T (b) → T (a) is an epimorphism witnessing
this. Then

(i) ht(dom(f)) = ht(a) ≤ ht(b),
(ii) dom(f) = T (b) � ht(a),
(iii) if ht(a) = ht(b), then a = b.

Proof. Here we understand dom(f) as the subtree of T (b) where f is defined.
(i) This follows from the fact that f is surjective and for all t ∈ dom(f),

ln(t) = ln(f(t)).
(ii) We show the claim by induction on t ∈ T (b), where ln(t) ≤ ht(T (a)). First,

the root, b ∈ dom(f). Assume t ∈ dom(f) and t′ ← t. If there is h′ ← f(t), then
ln(t) < ht(T (a)) and for some t′′ ← t, f(t′′) = h′, because f is surjective and
respects →. Now by the condition (iv) of Definition 3.10, also t′ ∈ dom(f).

Assume then that f(t) is a leaf node. If last(f(t)) ∈ U , then last(t) ∈ U .
Assume last(f(t)) = ∅. Now if for some h ∈ T (a), ln(h) > ln(f(t)), then there is,
by (i), some t′′ ∈ dom(f) such that ln(h) = ln(t′′). But then, by (v) of Definition
3.10, last(t) = ∅. If for all h ∈ T (a), ln(h) ≤ ln(f(t)), then f(t) is maximal in
T (a), so ln(f(t)) = ln(t) = ht(T (a)). Hence ln(t′) > ht(T (a)) and so t′ /∈ dom(f).

(iii) Let B = {(last(f(t)), last(t)) | t ∈ T (b)}. We show that B is a bisimulation
between a and b. First, we have that (a, b) ∈ B. Assume (last(f(t)), last(t)) ∈ B.
Let x ∈ last(f(t)), then there is h′ ∈ T (a) such that last(h′) = x and h′ ← f(t).
By (ii), there is some t′ ∈ T (b) such that f(t′) = h′. Because f(t′) = h′ ← f(t)
we have that t′ ← t. Hence last(t′) ∈ last(t) and (last(f(t′), last(t′))) ∈ B.

Let y ∈ last(t), so y = last(t′) for some t′ ← t. Now by (ii), t′ ∈ dom(f). So
f(t) → f(t′) and (last(f(t′)), last(t′)) ∈ B. Assume last(f(t)) ∈ U , then last(t) =
last(f(t)). If last(t) ∈ U , then also last(f(t)) ∈ U and hence last(f(t)) = last(t).
�
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By the previous lemma, we see that all strictly �–increasing sequences are at
most of length ω.

Lemma 3.12. For all sets a, b, and c we have

(i) a � a,
(ii) if a � b and b � a, then a = b,
(iii) if a � b and b � c, then a � c.

Proof. (i) The identity idT (a) : T (a) → T (a) is an epimorphism.
(ii) If f : T (b) → T (a) and g : T (a) → T (b), then ht(a) ≤ ht(b) and ht(b) ≤

ht(a), hence ht(a) = ht(b). So by (iii) of Lemma 3.11, a = b.
(iii) Assume f : T (b) → T (a) and g : T (c) → T (b) are epimorphisms. Define

h : T (c) → T (a) by h(t) = f(g(t)), if g(t) and f(g(t)) are defined. We show
that h is an epimorphism. First we have that h(c) = a and that it respects
→. Assume t′ ∈ T (a). Then for some t′′ ∈ T (b), f(t′′) = t′, but also for some
t ∈ T (c), g(t) = t′′, so h(t) = f(g(t)) = t′.

If h(t) = f(g(t)) ∈ U , then last(f(g(t))) = last(g(t)) = last(t). Assume that
last(f(g(t))) = ∅ and there is some t′ ∈ dom(h) such that ln(t′) > ln(t). So
t′ ∈ dom(g) and g(t′) ∈ dom(f). Now ln(g(t′)) > ln(g(t)), so last(g(t)) = ∅ and
hence last(t) = ∅. �

Lemma 3.13. Assume f : T (b) → T (a) is a partial epimorphism. If n ≤ ht(b),
then f � (T (b) � n) : T (b) � n → T (a) � n is also a partial epimorphism. In
particular, if n ≤ ht(a), then T (b) � n and T (a) � n picture the same sets.

Proof. If n ≥ ht(a), then f � (T (b) � n) = f . If n ≤ ht(a), then we see by the
definition of a partial epimorphism, that f � (T (b) � n) is a partial epimorphism.
The last remark follows from (iii) of Lemma 3.11. �

Corollary 3.14. The following are equivalent.

(i) a � b,
(ii) T (a) and T (b) � ht(a) are pictures of the same sets,
(iii) T (b) � ht(a) is a picture of a.

�

We have now obtained that epimorphisms are unique.

Corollary 3.15. If f and f ′ are partial epimorphisms from T (b) to T (a), then
f = f ′.

Proof. By Lemma 3.11 (ii), dom(f) = T (b) � ht(a) = dom(f ′). Let B =
{(f(t), f ′(t)) | t ∈ dom(f)}. We show that B is a bisimulation relation on T (a),
from which the claim follows. If last(f(t)) ∈ U , then last(f(t)) = last(t) =
last(f(t′)). Let f(t) → s. Because f is surjective, there is some t′ ∈ dom(f) such
that f(t′) = s ← f(t). Hence t → t′, so f ′(t) → f ′(t′) and (f(t′), f ′(t′)) ∈ B. So
B is a bisimulation on T (a). �
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Lemma 3.16. Assume a � c and b � c. Then

(i) if ht(a) = ht(b), then a = b,
(ii) if ht(a) < ht(b), then a � b.

Proof. Let fa : T (c) → T (a) and fb : T (c) → T (b) be the partial epimor-
phisms.

(i) Since ht(a) = ht(b), we have that dom(fa) = T � ht(a) = dom(fb) by (iv)
of Lemma 3.11. Define a bisimulation B between a and b as

B = {(last(fa(t)), last(fb(t))) | t ∈ dom(fa)}.
First, (a, b) ∈ B. Assume (last(fa(t)), last(fb(t))) ∈ B and x ∈ last(fa(t)), i.e.
s ← fa(t) for some s such that last(s) = x. There is some t′ ∈ dom(fa) such that
fa(t

′) = s. Then t → t′ and fa(t) → fa(t
′). Also, t′ ∈ dom(fb) and fb(t) → fb(t

′).
So we have that last(fb(t

′)) ∈ last(fb(t)) and (last(fa(t
′)), last(fb(t

′))) ∈ B, hence
B is a bisimulation between a and b.

(ii) Now T (c) � ht(a) and T (a) are pictures of the set a, by Lemma 3.13. But
then T (b) � ht(a) is also a picture of a. So by Corollary 3.14, a � b. �

Corollary 3.17. If a and b are consistent, then a � b exists.

Proof. Actually, the predecessors of a set are linearly ordered, by Lemma
3.16, so either a � b or b � a, or equivalently a � b = b or a � b = a. �

The previous corollary states the property of conditional closedness for domains
in the class of all non–wellfounded sets. Below we are going to show how to restrict
the class to obtain a domain.

3.5. Inverse limits of projective sequences. Here we show how to obtain lim-
its of �–increasing sequences of wellfounded sets. We first need a lemma stating
that epimorphisms can always be composed to yield a unique epimorphism.

Lemma 3.18. If fcb : T (c) → T (b) and fba : T (b) → T (a) are partial epimor-
phisms, then dom(fba) ⊆ ran(fcb) and fca = fba ◦ fcb is the unique epimorphism
from T (c) to T (a).

Proof. Now ht(c) ≥ ht(b) ≥ ht(a) and dom(fba) = T (b) � ht(a) ⊆ T (b) =
ran(fcb). So fba(fcb(t)) is defined iff t ∈ T (c) � ht(a). Since fba ◦ fcb is a partial
epimorphism, cf. proof of Lemma 3.12 (iii), it is unique by Corollary 3.15. �.

Assume that �a = 〈ai | i < ω〉 is a strictly �-increasing sequence of sets. So for
all i < ω, ht(ai) < ω, and there is an epimorphism fi+1,i : T (ai+1) → T (ai). We
show next how to construct an upper bound for �a. The idea is to construct the
inverse limit of the projective sequence (T (ai+1), fi+1,i)0≤i<ω.

Let

T = {(tn) ∈
ω∏

n=k

T (an) | k < ω, fn+1,n(tn+1) = tn and (tk /∈ dom(fk,k−1) or k = 0)}.
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Let (tn)k≤n<ω → (t′n)k′≤n<ω iff k′ ≥ k and tn → t′n for all n ≥ k′. Note that if
tk /∈ dom(fk,k−1), then tk /∈ dom(fk,k′) for any k′ such that 0 ≤ k′ < k, since in
that case fk,k′ = fk−1,k′ ◦ fk,k−1.

We show first that if (tn)k≤n<ω → (t′n)k′≤n<ω, then k′ = k or k′ = k + 1. First
assume that tk is a leaf node in T (ak), so k′ > k. We show that in this case, we
have that k′ = k + 1. Assume k′ > k + 1 and k′′ is such that k < k′′ < k′. Then
tk′′ is a leaf node in T (ak′′) because otherwise tk′′ → fk′,k′′(t′k′), since tk′ → t′k′

and fk′,k′′(tk′) = tk′′ , hence t′k′ ∈ dom(fk′,k′′), a contradiction. But because �a was
strictly increasing, there is a node t ∈ T (ak′) such that ln(t) > ln(tk′′). Since tk′′

is a leaf, last(fk′,k′′tk′) = ∅, and hence also last(tk′) = ∅. But on the other hand,
tk′ → t′k′ , a contradiction.

Assume then that tk is not a leaf node. So some t′′ ← tk in T (ak). Now if
k′ > k, then fk′,k(tk′) = tk and tk′ → t′k′ imply that fk′,k(t

′
k′) = t′′, which is a

contradiction, since t′k′ /∈ dom(fk′,k). Hence k′ = k. So we have shown in all that
k′ = k + 1 if and only if tk is a leaf node in T (ak). In this case the extension to
tk comes from the next tree T (ak+1).

Next we show that T is strongly extensional in the sense that it has no two
bisimilar subtrees starting from the same node. So assume that there is a node
�t ∈ T and its immediate successors �t1 and �t2 such that T �t1 and T �t2 are bisimilar
subtrees of T . Let B be the bisimulation. Let πn : T → T (an), n < ω be the
projection mapping, i.e.

πn((ti)i≥k) =

{
undefined if n < k,

tn otherwise.

By the above we have that the first index of both �t1 and �t2 is the same, say k.

We show first that for every n ≥ k, and t ∈ T (an)πn(�t1) there is �t′ ∈ T �t1 such

that πn(�t′) = t by induction on the nodes of the tree. So assume the claim holds

for �t′ and let t′′n ← πn(�t′) in T (an). We build a sequence �t′′ around t′′n such that
�t′′ ← �t′, so �t′′ ∈ T �t1. Let m > n. Because fmn(t′m) = t′n and t′′n ← t′n, there is
some t′′m ∈ T (am) such that fmn(t′′m) = t′′n and t′′m ← t′m. Let m ≤ n. Assume we
have found t′′m. If tm /∈ dom(fm,m−1), then by the above, m ≤ k + 1. Otherwise
let t′′m−1 = fm,m−1(t

′′
m) ← t′m−1.

We claim that for every n ≥ k, T (an)πn(�t1) and T (an)πn(�t2) are bisimilar

subtrees of T (an), hence πn(�t1) = πn(�t2), because they have a common immediate
predecessor. Let

Bn = {(πn( �h1), πn( �h2)) | ( �h1, �h2) ∈ B}.
Assume (πn( �h1), πn( �h2)) ∈ Bn and h ← πn( �h1), so by the above, there is some
�h′ ∈ T �t1 such that πn(�h′) = h and �h′ ← �h1. Since B is a bisimulation, there is
�h′′ ← �h2 such that (�h′, �h′′) ∈ B. Hence πn( �h′′) ← πn( �h2) and (πn(�h′), πn(�h′′)) ∈
Bn. So Bn is a bisimulation between T (an)πn(�t1) and T (an)πn(�t2).
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Hence πn(�t1) = πn(�t2) for all n ≥ k, and so �t1 = �t2. From this it follows that if
we take a to be the unique set pictured by T , then T (a) and T are isomorphic. It
is clear that a is an upper bound for all ai, i < ω, since πi : T → T (ai) is in fact an
epimorphism. We call the above construction of a the inverse limit of 〈ai | i < ω〉,
and denote it by a = inv limi<ω ai. Also we denote T = inv limi<ω T (ai).

3.6. A domain of non–wellfounded sets. Now let

C = {a | ht(a) < ω},
D = {inv limi<ω

�b | �b is an increasing sequence in C}.
We have shown that C is a conditional upper semi lattice. We show that D is

isomorphic to the domain completion C of the class of compact elements C.

Lemma 3.19. C ∼= D.

Proof. Assume that I ⊆ C is an ideal. If there is some a ∈ I such that for
all a′ ∈ I, a′ � a, then I is the principal ideal generated by a. Assume that for
all a ∈ I there is a′ ∈ I such that a � a′. So I is infinite and contains a strictly
increasing sequence, (ai)i<ω. Now for all a ∈ I there is some n such that a � an.
Now if we assign inv limi<ω ai to I then we have the isomorphism from C to D.
�

There is a canonical way to obtain a limiting sequence of sets, an, n < ω, for
any set a. But we need a lemma first.

Lemma 3.20. Let T be a tree picture. There is an equivalence relation ∼ on T
such that T/ ∼ is isomorphic to T (a), where a is the set pictured by T , and a
surjective homomorphism η : T → T/∼ such that if t ∼ t′, then η(t) = η(t′).

Proof. Let ∼ be an equivalence relation on T defined as t1 ∼ t2 iff there is
t → t1, t2 and the subtrees Tt1 and Tt2 are bisimilar. Let η(t) = {t′ ∈ T | t ∼ t′}.
Define η(t) → η(t′) if there is t′′ ∼ t′ such that t → t′′. If t1 ∼ t2 and η(t1) → η(t′),
then for some t′′ ∼ t′, t1 → t′′. Because t1 ∼ t2, there is t′2 ∼ t′′ ∼ t′ and t2 → t′2,
so η(t2) → η(t′).

Let T ′ = T/∼. Because T ′ is reduced by bisimulation, it is isomorphic to the
canonical tree picture of the set a. We have also shown that η : T → T ′ is a
surjective homomorphism. (It is also an epimorphism in the sense of Definition
3.10.) �

Lemma 3.21. Let a be a set. Then there is a sequence of sets a0 � a1 � · · · � a
such that approx(a) = {ai | i < ω}.

Proof. Let T (a) be the canonical tree picture of a. Let Tn = T (a) � n, and
an be the set pictured by Tn. There is a partial isomorphism hn : T (a) → Tn,
namely idT (a)�n.

Let T ′
n = Tn/∼ and let gn : T ′

n → T (an) be the isomorphism from the previous
lemma. Let fn = gn ◦ η ◦ hn : T (a) → T (an), where η : Tn → T ′

n is the
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homomorphism from the proof of the previous lemma. We show that fn is a
partial epimorphism.

Assume last(fn(t)) = ∅ and there is t′ ∈ dom(fn) such that ln(t′) > ln(t).
Assume that last(t) 
= ∅, i.e. there is some t′′ ← t. Because ln(t′′) ≤ ln(t′) ≤ n,
we have that t′′ ∈ dom(idT (a)�n). But then η(t′′) ← η(t) in T ′

n and last(fn(t)) 
=
∅. This proves the condition (v) of being a partial epimorphism. The other
conditions are clear. �

Definition 3.22. Let a be a set. The increasing sequence a1 � a2 � · · · of the
proof of the previous lemma is called the canonical limiting sequence of the set
a.

Because D is a domain, we have that if x ∈ D, then x =
⊔

approx(x), i.e. x is
the limit of its canonical limiting sequence.

3.7. Bisimulation in HF 1. Recall that bisimulation characterizes the identity
for the non–wellfounded sets. Bisimulation can be also approximated by the
length of how deep one sees. At limit stages it is required that two sets are equal
in all the approximating bisimulations. In HF 1 it is enough to approximate only
to length ω. As a corollary we can prove that HF 1 ⊆ D. This is made precise
below.

Bisimulation can also be seen as a game played between two players, ∀ and ∃,
and on two graphs or on two sets, a and b. The rules for this bisimulation game,
BG(a, b), are as follows. First the player ∀ chooses one of the sets a or b and an
element x1 of that chosen set. Then the player ∃ has to respond with an element,
y1 of the other set. Following that, ∀ chooses an element, x2, from either x1 or y1

and ∃ responds with an element, y2, from the other set. If ∀ moves an urelement,
then ∃ has to respond with the same urelement from the other set. This way the
game continues.

The player ∀ wins if ∃ is not able to respond with an element at some point of
the game. Otherwise ∃ wins, i.e. the game continues arbitrarily long or ∀ is not
able to move. A winning strategy for either of the players in the game BG(a, b)
is a function σ : (TC(a) ∪ TC(b))<ω → TC(a) ∪ TC(b) such that following that
strategy the player wins the game. That is, given any legal sequence of moves, σ
tells the next move in the game.

We may also restrict the length of the game BG(a, b), i.e. the number of moves
by ∀, obtaining games BGn(a, b). Similarly we can define the winning strategies
σn by letting their domain be (TC(a) ∪ TC(b))≤n. When ∃ wins BGn(a, b) we
denote this also by a ∼n b. It is shown in [2], cf. Theorem 12.6., that ∃ wins
BG(a, b) if and only if a and b are bisimilar.

Note that ∼n is an equivalence relation for every n < ω. We begin with a
characterization of the � ordering with the restricted length game Gn.
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Lemma 3.23. Let a and b be sets. Then a � b iff a ∼ht(a) b.

Proof. Let T (a) and T (b) be the canonical tree pictures of a and b respectively.
By Corollary 3.14, a � b iff T (a) and T (b) � ht(a) picture the same sets iff
a ∼ht(a) b. �

Definition 3.24. Let T be a tree and t ∈ T . We denote by [t]n the subtree Tt
restricted to length n and reduced by bisimulation, i.e. [t]n = (Tt � n)/ ∼.

We are going to prove that if ∃ wins the game BGn(a, b) for all n < ω, where
a is a hereditarily finite set, then a = b. For this we need a lemma providing us
with a “uniform” set of winning strategies in the games BGn(a, b), n < ω.

Lemma 3.25. Let T and T ′ be trees such that T ∼n T ′ for all n < ω. Then
there are following kind of winning strategies σn, n < ω for the player ∃ in the
games BGn(T, T ′), n < ω.

Assume t ∈ T ∪ T ′ and S is a maximal set of immediate successors of t such
that t′ ∼n t′′ for all t′, t′′ ∈ S and n < ω. For all i, j < ω, if �s ∈ dom(σi),
�s′ ∈ dom(σj), σi(�s) ∈ S, and σj(�s′) ∈ S, then σi(�s) = σj(�s′).

Proof. Let n < ω. Because T ∼n T ′, let σ′
n be a winning strategy for ∃ in

BGn(T, T ′). We construct the winning strategy σn as follows. Let us well–order
the nodes of T and T ′ and let t and S be as above. Now if σ′

n(�s) ∈ S, let σn(�s)
be the least t′ ∈ S. Otherwise let σn(�s) = σ′

n(�s). This is a winning strategy, since
t ∼n t′ for all t, t′ ∈ S. �

Recall that HF 1 = {x | ∀y ∈ TC(x) ∪ {x}(|y| < ω)} is the class of all heredi-
tarily finite sets.

Lemma 3.26. Assume a ∈ HF 1, b is a set and for all n < ω, ∃ wins the game
BGn(a, b), then ∃ wins the game BG(a, b).

Proof. Let σn, n < ω, be winning strategies for ∃ in BGn(a, b) that also satisfy
the conditions of the previous lemma. We define inductively on the sequence
of moves the winning strategy σ for ∃ in BG(a, b). Let �s be a sequence of
moves of length n. Assume first that last(�s) ∈ T (b), then there is an infinite set
X(�s) ⊆ X(�s � n − 1) ⊆ ω such that σp(�s) = σp′(�s) for all p, p′ ∈ X(�s), because
there is only a finite number of possible moves for ∃ in any node of T (a). Then
we define σ(�s) = σp(�s) for some p ∈ X(�s).

Assume then that t = last(�s) ∈ T (a). Let t′ ∈ T (b) be the node from which
∃ has to choose the corresponding node for t. If t′ has finitely many successors,
then we can do as above. Assume t′ has infinitely many successors. There are
two cases.

1◦: The number of successors of the root node in the tree [t′]n increases as
n increases. Denote by r the predecessor of t. So ∃ wins BGn(T (a)r, T (b)t′)
for all n < ω. But at some n < ω, the root of [t′]n has more successors than
the root of [r]n since T (a) is hereditarily finite. Hence [r]n 
∼= [t′]n and as these
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trees are reduced by bisimulation, [r]n 
∼ [t′]n, i.e. r 
∼n t′. Thus ∃ does not win
BGn(T (a)r, T (b)t′), a contradiction.

2◦: There is k < ω such that the root of [t′]n has at most k immediate successors
for all n < ω. Let Sn be the set of ∼n equivalence classes of the immediate
successors of the root of [t′]n. By the fact that if for some n < ω and t′1, t

′
2 ← t′,

t′1 
∼n t′2 implies t′1 
∼m t′2 for any m ≥ n, we have that Sn becomes finer as n
increases. Since the root of [t′]n has at most k immediate successors for all n < ω,
there is some n < ω, such that Sn = Sm for all m ≥ n. Let us denote S ′ = Sm for
any such m ≥ n and let S =

⋃
S ′∩⋃

i<ω ran(σi). The previous lemma guarantees
that S = {t′1, . . . , t′k} is a finite set of representatives of the equivalence classes in
S ′.

Thus we can find an infinite set X(�s) ⊆ X(�s � (n− 1)) such that σp(�s) = σq(�s)
for all p, q ∈ X(�s). So we can define σ(�s) = σp(�s) for some p ∈ X(�s). �

Note that from the previous lemma it follows that then also b ∈ HF 1 and a = b.

Lemma 3.27. Assume a is a set. If b is an upper bound for approx(a), then ∃
wins BGn(a, b) for all n < ω.

Proof. Let T (a) be the canonical tree picture for a, and ai, i < ω be its
canonical limiting sequence. Because an � b for all n < ω, by Corollary 3.14 (ii),
it follows that T (an) and T (b) � n picture the same set, i.e. they are bisimilar.
So ∃ wins BGn(a, b) for all n < ω. �

So we have now achieved that all the hereditarily finite sets can be approxi-
mated in the ordering �.

Corollary 3.28. For any hereditarily finite set a, a =
⊔

approx(a). Thus HF 1 ⊆
D.

Proof. Assume a ∈ HF 1 is a set. Let T (a) be the canonical tree picture for
a, and ai, i < ω be its canonical limiting sequence. Let T = inv limi<ω T (ai).
Because T is an upper bound for all T (ai), ∃ wins the game BG(T (a), T ), by
Lemma 3.26. So T (a) and T are bisimilar and hence picture the same sets.
Similarly for any other upper bound b for a, we have that b = a. Hence a =⊔

approx(a). �

The next example shows that there are sets that cannot be approximated in
the ordering �.

Example 3.29. There is a set a such that a 
= inv limi<ω ai, where ai, i < ω is
the canonical limiting sequence of a.

Proof. We define sets xi, i < ω as follows: Let x0 = ∅, and xi+1 = {xi}.
Let a = {xi | i < ω} and let ai, i < ω be its canonical limiting sequence.
So ai = {xn | n ≤ i}. Let us consider T = inv limi<ω T (ai) and T (a). Let
b be the unique set pictured by T . We show that b is non–wellfounded. Let
fn : T (a) → T (an), for n < ω, be the epimorphisms.
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Let t be the root of T (a). Let txi
← t be the unique node in T (a) such that

d(txi
) = xi, where d is the unique decoration of T . Then let tjxi

, where j ≤ i, be
the unique node such that tjxi

←∗ txi
and ln(tjxi

) = j +1. The node can be chosen
uniquely, since the successors of every txi

are linearly ordered.
Let �ti = 〈fn(tixn

) | n ≥ i〉. Now fn(tixn
) → fn(ti+1

xn
) for all n ≥ i + 1, so �ti ∈ T

and �ti → �ti+1, for all i < ω. Let ci be the set assigned to �ti by the decoration of
T . Then ci+1 ∈ ci for all i < ω, and so ci, i < ω is a non–wellfounded sequence in
b. Because a is wellfounded, a 
= b. So approx(a) has two upper bounds, namely
a and b, which are incomparable. �

The previous example shows also that ∃ having a winning strategy in BGn(a, b)
for all n < ω does not imply that ∃ has a winning strategy in BG(a, b). Next we
consider when a set a is the same as ā.

3.8. A characterization of the sets in D. The domain D consists of those
sets that can be approximated in the ordering �. We show that there is another
condition characterizing this.

Let T be a tree and t ∈ T . The notation t → T ′, where T ′ is a tree means that
for some t′ ← t, Tt′ ∼ T ′, i.e. t has an immediate successor such that the tree
beginning from that successor is bisimilar to T ′.

Definition 3.30. Let a be a set. We say that a is inv lim–closed if there is no
t ∈ T (a) and its immediate successors ti, i < ω such that [ti]

i � [ti+1]
i+1 and

t 
→ inv limi<ω[ti]
i.

Definition 3.31. Let a be a set and ai, i < ω its canonical limiting sequence.
Define ā to be the unique set pictured by the tree inv limi<ω T (ai), or equivalently,
ā = inv limi<ω ai.

Theorem 3.32. Let a be a set, ai, i < ω its canonical limiting sequence, fi :
T (a) → T (ai) be the partial epimorphisms, and let T = inv limi<ω T (ai). The
following are equivalent:

(i) the function f : T (a) → T , f(t) = (fi(t))i≥ln(t), is an epimorphism,
(ii) a = ā,
(iii) a is inv lim–closed.

Proof. Note that T is a picture of ā. We may assume that ht(a) = ω since
otherwise the claim is clear.

(i) → (ii): Because ht(T (a)) = ht(T ), and there is a partial epimorphism
between them, we have by Corollary 3.14, that a = ā.

(ii) → (iii): Assume a = ā. Then there is an isomorphism g : T → T (a),
because T = inv limi<ω T (ai) and T (a) picture the same set a and T is already
reduced by bisimulation in the sense of Lemma 3.20. Assume t ∈ T (a), ti ← t, and
[ti]

i � [ti+1]
i+1 for i < ω. Let T ′ = inv limi<ω[ti]

i and let f ′
i+1,i : [ti+1]

i+1 → [ti]
i,

i < ω, be the epimorphisms. We show that t → T ′. Let k = ln(t) + 1.
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First we show that there is a natural way to embed the subtree [ti]
i into T (ak+i).

The idea is to find the corresponding node for ti in T (ak+i) and then map [ti]
i

surjectively onto that node’s successors. Let us call this kind of embedding a
canonical embedding.

We build the embedding hi : [ti]
i → T (ak+i) inductively as follows: Let η :

(Tti � i) → [ti]
i be the ∼–epimorphism from Lemma 3.20. Let hi(ti) = fk+i(ti) ∈

T (ak+i). Assume hi(t) is defined and t → t′. Let t′′ ∈ (Tti � i) be such that
η(t′′) = t′. Define hi(t

′) = fk+i(t
′′). If there is another s ∈ (Tti � i) such that

η(s) = t′, then s ∼i−ln(s) t′′ and hence also fk+i(s) = fk+i(t
′′), so hi is well–defined.

If hi(t) = hi(t
′) then fk+i(s) = fk+i(s

′) for the corresponding s and s′. But then
also t = η(s) = η(s′) = t′ and we have that hi is an injection. We show that it
is also a homomorphism. Assume t → t′, and let s and s′ be such that η(s) = t
and η(s′) = t′. Then η(s) → η(s′), and since η is a homomorphism, s → s′. But
then hi(t) = fk+i(s) → fk+i(s

′) = hi(t
′). Similarly to the other direction.

We have that f ′
i+1,i(ti+1) = ti because ti+1 is the root of [ti+1]

i+1 and ti is the

root of [ti]
i and [ti]

i � [ti+1]
i+1. We also have that fk+i+1,k+i(fk+i+1(ti+1)) =

fk+i(ti+1), because fk+i+1,k+i ◦ fk+i+1 : T (a) → T (ak+i) is an epimorphism and
hence equal to fk+i since epimorphisms are unique. Furthermore fk+i(ti+1) =
fk+i(ti), because ti+1 and ti have a common immediate predecessor and [ti]

i �
[ti+1]

i+1 means that ti ∼i ti+1. So fk+i+1,k+i(hi+1(ti+1)) = fk+i+1,k+i(fk+i+1(ti+1)) =
fk+i(ti+1) = fk+i(ti) = hi(ti) = hi(f

′
i+1,i(ti+1)). And so on for all other t ∈

[ti+1]
i+1. So the following diagram commutes:

T (ak+i)
fk+i+1,k+i←−−−−−− T (ak+i+1)

hi

�⏐⏐ �⏐⏐hi+1

[ti]
i ←−−−

f ′
i+1,i

[ti+1]
i+1

To show that t → T ′, we are going to construct an embedding g′ : T ′ → T such
that g′(T ′) becomes a subtree of g−1(t), and furthermore g′ is a surjection onto
the successors of g′(r) where r is the root of T ′. So let �s = (si)i≥k′ ∈ T ′, where k′

is the length of �s in T ′. We have that for all i ≥ k′, f ′
i+1,i(si+1) = si. Because the

above diagram commutes, we have that fk+i+1,k+i(hi+1(si+1)) = hi(f
′
i+1,i(si+1)) =

hi(si) for all i ≥ k′. Furthermore, hk′(sk′) /∈ dom(fk′+k,k′+k−1) since otherwise
sk′ ∈ dom(f ′

k′,k′−1). So let g′(�s) = (hi(si))i≥k′ ∈ T but then g(g′(�s)) ∈ T (a).
Hence we have shown that g(g′(T ′)) ⊆ T (a). Also, fi(t) → fi(ti) for i < ω, and
so t → T ′.

(iii) → (i): Assume a is inv lim–closed. We show that f : T (a) → T , f(t) =
(fi(t))i≥ln(t) is an epimorphism by showing that it is surjective. So let �t ∈ T . We

can write �t = (fi(ti))i≥k, where ti ∈ T (a), and fi+1,i(fi+1(ti+1)) = fi(ti) for all
i ≥ k. We show that there is some s ∈ T (a) such that fi(s) = fi(ti) for all i ≥ k.
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We may assume that there is an infinite number of different ti’s, otherwise the
claim follows immediately. There is some t′ ∈ T (a) and an infinite number of its
immediate successors t′i, i ≥ k, such that for every i ≥ k, t′i →∗ ti. For some
i, i+1, it may happen that t′i = t′i+1, but in that case also fi+1,i(fi+1(t

′
i+1)) = fi(t

′
i),

because fi+1,i as a homomorphism preserves predecessors. We can find an infinite
number of different t′i’s because there are only finitely many levels above ti’s.

So for all i ≥ k, fi+1,i(fi+1(t
′
i+1)) = fi(t

′
i), hence [t′i]

l+i � [t′i+1]
l+i+1, where

l = ht(ti) − ht(t′i) for some (any) i ≥ k. Because a is inv lim–closed, we have
that t′ → T ′ where T ′ = inv limi≥k[t

′
i]

l+i. Then [t′i]
l+i � T ′ for all i ≥ k. Let

hi : [t′i]
l+i → T (ak′+i) be the canonical embedding, where k′ = ln(ti) for any

i ≥ k. Because for every i ≥ k, t′i →∗ ti, there are si ∈ [t′i]
l+i, i ≥ k, such that

hi(si) = fk′+i(ti). Let f ′
i+1,i : [t′i+1]

l+i+1 → [t′i]
l+i, i < ω be the epimorphisms. As

above, we have that the following diagram commutes:

T (ak′+i)
fk′+i+1,k′+i←−−−−−−− T (ak′+i+1)

hi

�⏐⏐ �⏐⏐hi+1

[t′i]
l+i ←−−−

f ′
i+1,i

[t′i+1]
l+i+1

Hence hi(f
′
i+1,i(si+1)) = fk′+i+1,k′+i(hi+1(si+1)) = fk′+i+1,k′+i(fk′+i+1(ti+1)) =

fi(ti) = hi(si), and so f ′
i+1,i(si+1) = si, because hi is injective. Hence s =

(si)i≥k ∈ T ′, and f ′
i(s) = si for all i ≥ k, where f ′

i : T ′ → [t′i]
i+l, i ≥ k are

the epimorphisms. There is a canonical embedding h : T ′ → T (a) such that the
following diagram commutes:

T ′ h−−−→ T (a)

f ′
i

⏐⏐� ⏐⏐�fk′+i

[t′i]
i+l −−−→

hi

T (ak′+i)

Hence we have that fk′+i(h(s)) = hi(f
′
i(s)) = hi(si) = fk′+i(ti), for all i ≥

k. So f(h(s)) = (fi(ti))i≥k, and we have shown that f is a surjection. It is
straightforward to see that it is also an epimorphism. �

We next show that in the case of pure sets, Corollary 3.28 is the best we can
have. A set is called pure if its transitive closure contains no urelements.

Lemma 3.33. Assume that a is a pure, well-founded, and infinite set. Then
a /∈ D.

Proof. Let ai, i < ω be the canonical limiting sequence of a, and let fi+1,i :
T (ai+1) → T (ai) be the epimorphisms. Also let fi : T (a) → T (ai) be the epi-
morphisms witnessing ai � a, for i < ω. We are going to show that a is not
inv lim–closed.
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For every i < ω, ai is a finite set since there are only a finite number of pure
sets of height i− 1. Let t be the root of T (a). We are going to find ti ← t, i < ω
such that ht[ti]

i = i and [ti]
i � [ti+1]

i+1, i.e. fi+1,i(fi+1(ti+1)) = fi(ti). We show
the claim by induction on i < ω, but we require also that for every i < ω, the set

Ai = {t′ ∈ T (a) | fi+1,i(fi+1(t
′)) = fi(ti)}

is infinite.
Let t0 ← t be arbitrary. The choice can be arbitrary since [t0]

0 pictures the
empty set. Assume that ti which satisfies the above conditions has been found.
Let Ai be the infinite set guaranteed by the induction condition. The set B =
{fi+1(t

′) ∈ T (ai+1) | t′ ∈ A} is on the other hand finite, since ai+1 is finite.
But the set B′ = {t′′ ∈ T (a) | fi+2,i+1(ft+2(t

′′)) ∈ B} is infinite since a was
infinite. Hence for some ti+1 ← t, there is an infinite number of t′′ ∈ B′ such that
fi+2,i+1(fi+2(t

′′)) = fi+1(ti+1). Gather those into a set Ai+1. From this it also
follows that ht([ti+1]

i+1) = i + 1. So this proves the induction step.
Now we have the strictly increasing infinite sequence ti, i < ω. We show

that T (a) is not inv lim–closed. Assume towards a contradiction that T (a) is
inv lim–closed. We show that then a is non–wellfounded.

We build a non–wellfounded sequence si, i < ω of nodes in T (a). Let r be the
root of T (a). We have that (ti)i≥0 ∈ T ′. By Theorem 3.32, there is some t′ ← r
such that fi(t

′) = fi(ti) for all i ≥ 0. Let s0 = t′. Now if s0 has finitely many
immediate successors {t′1, . . . , t′l}, then for some 1 ≤ l′ ≤ l there are infinitely
many t′′ such that fi(t

′′) = fi(t
′
l′). Then let s1 = t′l′ .

On the other hand, if s0 has infinitely many immediate successors, then we
can do as above, i.e. find infinitely many immediate successors t′i, i < ω, of s0

that form an increasing sequence. Because T (a) is assumed to be inv lim–closed,
there is some t′ ← s0 such that fi(t

′
i) = fi(t

′) for all i ≥ ln(s0). Then let s1 = t′.
This way we can continue infinitely long finding a sequence r → s0 → s1 → · · · .
This shows that a is non–wellfounded, which is a contradiction. �

Lemma 3.34. Let a be a set.

(i) If a ⊆ D, then a ⊆ ā,
(ii) ¯̄a = ā,
(iii) a ∈ D iff a = ā.

Proof. (i) Let r be the root of T (a) and let �r be the root of T (ā). Let x ∈ a
and let t ← r be the unique node such that T (a)t pictures x. Now for every

t′ ∈ T (a)t, let �t′ = (fi(t
′))i≥k. Then �t′ ∈ T (ā). We also have that T (a)t and

T (ā)�t are isomorphic, since a ⊆ D, and �t ← �r. From this it follows that x ∈ ā.
(ii) Let ai, i < ω be the approximation sequence of ā. But then ai, i < ω is

also the approximation sequence for a. Hence both ¯̄a and ā are decorations of
the same tree inv limi<ω T (ai). �
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(iii) If a ∈ D, then a is of the form inv limi<ω
�b, where �b is an increasing

sequence of wellfounded sets. But we have that �b is cofinal in �a, where �a is the
canonical limiting sequence of a. Hence a = ā.

If a = ā = inv lim�a, then a is a limit of wellfounded sets. �

3.9. The axioms of ZFA in D. Although D does not satisfy some important
axioms of ZFA, it satisfies some of them. Since D has some resemblance to HF ,
which satisfies ZFC− infinity, it is somewhat interesting to study this question.

When considering the axioms of ZFA, we are going to use the bisimulation
games as well as the definition of inv lim–closedness.

To prove that D is extensional, we show that D is transitive. So assume x ∈ D,
and y ∈ x. So x is inv lim–closed. If y were not inv lim–closed, then x would not
be either, since T (y) is a subtree of T (x). Thus the axiom of strong extensionality
holds in D. The axiom of urelements, ∀x∀y(U(x) → y /∈ x) holds in D.

Let us consider pairing. Assume x, y ∈ D. We immediately see that {x, y}
is inv lim–closed, since there are no new strictly increasing infinite sequences in
{x, y} which were not already either in x or in y. Hence {x, y} is inv lim–closed,
so {x, y} ∈ D. The axiom of choice also holds in D.

We show that the union axiom fails in D. For i < ω, let xi be as in the
example 3.29 and let ui be an urelement such that if i 
= j, then ui 
= uj. Let
yi = {ui, x0, . . . , xi} and let a = {yi | i < ω}. We have that a ∈ D since the sets
yi, i < ω do not form an increasing sequence. On the other hand

⋃
a /∈ D , since

xi ∈
⋃

a, and xi � xi+1 for every i < ω, but inv limi<ω xi /∈ ⋃
a. Hence

⋃
a is

not inv lim–closed and therefore cannot belong to D.
Next we show the infinity axiom. Let us consider the unique set x such that

x = ω ∪ {x}. We are going to show that x = ω̄ from which it follows that
x̄ = ¯̄ω = ω̄ = x, and thus x ∈ D. Moreover, x is an inductive set and thus the
infinity axiom will hold.

For every n ∈ ω, n̄ = n, since ht(n) < ω. We describe the winning strategy
for ∃ in BG(T (ω̄), T (x)). For y ∈ x, let ty be the node 〈xy〉 in T (x). Let ai,
i < ω be the canonical limiting sequence for ω, and let fi : T (ω) → T (ai) be the
epimorphisms. We view inv limi<ω T (ai) and T (ω̄) as the same trees.

Let r be the root of T (x). First if ∀ chooses some tn ← r, then let ∃ respond
with �t = (fi(tn))i≥0 ∈ inv limi<ω T (ai). ∃ wins in this case since T (n) and T (ω̄)�t
are pictures of the set n. If ∀ chooses tx ← r, then let ∃ choose (fi(ti))i≥0 ∈ T (ω̄).
After this ∀ and ∃ are in the same position as in the beginning.

Assume ∀ chooses the first move �t from T (ω̄). There are two cases: First if
there is some j < ω and n < ω such that fi(tn) appears in the sequence �t for
all i ≥ j, then let ∃ choose tn ← r. In this case �t = (fi(tn))i<ω and hence ∃
wins since T (ω̄)�t and T (x)tn both picture the set n. Second, if there are no such
j and n, then �t = (fn(tn))n≥0. This is so because fn+1,n(fn+1(tn+1)) = fn(tn)
and fn+1(tn+1) ∈ dom(fn+1,n) for all n < ω, where fn+1,n : T (an+1) → T (an)
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are the epimorphisms. In this case, let ∃ choose tx ← r. Again after this move
∀ and ∃ are in a similar position as in the beginning. Hence ∃ wins the game
BG(T (ω̄), T (x)). The set x is inductive, i.e. if y ∈ x, then y ∪ {y} ∈ x. Since
x ∈ D, D satisfies the axiom of infinity. Note that from the above, it also follows
that ω /∈ D, since ω 
= x = ω̄.

The separation axiom fails in D, because we can define the natural numbers
from ω̄ by ω = {n ∈ ω̄ | n 
= ω̄}, and ω /∈ D as we saw above. Next we show the
collection axiom. Assume x ∈ D and for every y ∈ x, there is z ∈ D such that
φ(x, y, z). Let a = {z ∈ D | ∃y ∈ xφ(x, y, z)}. So a ⊆ D. But then a ⊆ ā ∈ D,
by Lemma 3.34 (i).

Let us consider the power set axiom. We need to show that y = P(x)∩D ∈ D
for every x ∈ D. We show that y = ȳ from which the claim follows. For
that, we are going to show that y is inv lim–closed. Assume yi ∈ y, and [yi]

i

is an increasing sequence of sets. Let zi ∈ yi, i < ω be an increasing sequence.
But because zi ∈ x, then inv limi<ω[zi]

i ∈ x, since x is inv lim–closed. Hence
inv limi<ω[yi]

i ⊆ x and y is inv lim–closed.
Considering AFA, we can reformulate it to deal only with trees, such that the

tree and the inverse limit of its approximations are bisimilar. Restricted to that
class of graphs, AFAinv lim holds in D.

So we have that D |= ZFC−2 + SEA + AFAinv lim− Separation − Union.

3.10. Comparison to Boffa’s work. Next we discuss briefly the earlier con-
struction of Boffa [3] of the non–wellfounded sets as limits of their wellfounded
approximations. The goal in [3] is not to show that this construction produces
a domain structure and so the ordering � is not explicitly defined. Also the
urelements were not assumed.

Definition 3.35. Let i be a natural number.

(i) HF [i] = {x | ht(x) < i},
(ii) HF =

⋃
i<ω HF [i],

(iii) x[i], the ith approximation of x, is the set which decorates the tree ob-
tained by restricting the canonical tree picture of x to height i.

We have that x[0] = ∅, x[i + 1] = {y[i] | y ∈ x}. So the canonical limiting
sequence of a set x is the same as 〈x[i] | i < ω〉. Now we obtain a sequence of
finite sets

HF [1]
f0← H[2]

f1← · · ·
where fi is the function such that fi(x) = x[i]. The inverse limit ĤF consists of
the limits 〈x[i] | i < ω〉 and the ∈–relation is defined as before.

Proposition 3.36. Vafa [∅] ∩ D = ĤF .

Proof. It is immediate that ĤF ⊆ Vafa [∅] ∩ D. Let x ∈ Vafa [∅] ∩ D. Since
TC(x) does not contain urelements, every x[i] is finite, and hence in HF [i]. Thus

x = inv limi<ω x[i] ∈ ĤF . �
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Boffa mentions that topologically viewed, ĤF is a compact and totally dis-

connected space. HF is open and dense in ĤF . All finitely branching graphs

have decorations in ĤF . When there are no urelements, the construction above
coincides with that of Boffa. Recall that Vafa [A], where A ⊆ U , is the class of all
sets whose transitive closure may contain only the urelements listed in A.

Note that now � can be defined as x � y iff y[ht(x)] = x. When there are no
urelements, the Domain D as a topological space actually looks very much like
the Cantor space 2ω. As it is known, |D| = 2ℵ0 . We can readily define an ultra
metric on D. Let x, y ∈ D. Then let d(x, y) = 0, if x = y, and d(x, y) = 2−n, if
x 
= y, where n is the least number such that x[n] 
= y[n].

It is easy to see that d is an ultra metric on D.

3.11. Open problems. A problem left open in this study is to generalize the
ordering � to the class of all non–wellfounded sets so that the result is a domain.
One possibility is to try to take longer approximation sequences (aα)α<γ for some
ordinal γ ≥ ω.
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4. The Banach Mazur and Pressing Down Games Are Different

4.1. Introduction. We set Eκ
θ = {α ∈ κ : cf(α) = θ}. Let S be a station-

ary set. We investigate two games, each played by players called “empty” and
“nonempty”. Empty has the first move.

In the Banach Mazur game BM(S) of length θ, the players choose decreasing
stationary subsets of S. Empty wins, if at some α < θ the intersection of these
sets is nonstationary. (Exact definitions are give in the next section.)

In the pressing down game PD(S), empty cannot choose a stationary subset
of the moves so far, but only a regressive function. Nonempty chooses a homo-
geneous stationary subset.

So it is at least as hard for nonempty to win BM as to win PD.
BM can be really harder than PD. This follows from well known facts about

precipitous ideals (cf. 4.5 for a more detailed explanation): Nonempty can never
win BM≤ω(ω2), but it is consistent (relative to a measurable) that nonempty wins
PD<ω1(ω2). The reason is the following: In BM, empty can first choose Eω2

ω , and
empty always wins on this set. However in PD, it is enough for nonempty to win
on Eω2

ω1
, which is consistent. In a certain way this is “cheating”, since nonempty

wins PD on Eω2
ω1

but looses BM on the disjoint set Eω2
ω , and the difference arises

because empty has the first move in BM.
So a better question is: Can nonempty win PD(S) but loose BM(S) even if

nonempty gets the first move,∗ e.g. on S = Eω2
ω1

?†

We show that this is indeed the case:

Theorem 4.1. It is consistent relative to a measurable that for θ = ℵ1 and
S = Eθ+

θ , nonempty wins PD<ω1(S) but not BM≤ω(S), even if nonempty gets the
first move.

The same holds for θ = ℵn (for n ∈ ω) etc.

Various aspects of these and related games have been studied for a long time.
Note that in this paper we consider the games on sets, i.e. a move is an element

of the powerset of κ minus the (nonstationary) ideal. A popular (closely related
but not always equivalent) variant is to consider games on a Boolean algebra B:
Moves are elements of B, in our case B would be the powerset of κ modulo the
ideal.

Also note that in Banach Mazur games of length greater than ω, it is relevant
which player moves first at limit stages (in our definition this is the empty player).
Of course it is also important who moves first at stage 0 (in this paper again the
empty player), but the difference here comes down to a simple density effect
(cf. 4.1.4).

∗Which is equivalent to: nonempty does not win BM≤ω(S′) for any stationary S′ ⊆ S.
†S = Eω2

ω1
is the simplest possible example, since empty always wins PD if every element of

S has cofinality ω, cf. 4.4.2.
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The Banach Mazur BM game has been investigated e.g. in [8] or [23]. It is
closely related to the so-called “ideal game” and to precipitous ideals, cf. Theo-
rem 4.4 and [13], [4], or [12]. BM is also related to the “cut & choose game” of
[9].

The pressing down game is related to the Ehrenfeucht-Fräıssé game in model
theory, cf. [19] or [7], and has applications in set theory as well [17].

Other related games have been studied e.g. in [11] or [21].
We thank Jouko Väänänen for asking about Theorem 4.1 and for pointing out

Theorem 4.6.

4.2. Banach Mazur, pressing down, and precipitous ideals. Let κ and θ
be regular, θ < κ.

We set Eκ
θ = {α ∈ κ : cf(α) = θ}. Eκ

θ is the family of stationary subsets of Eκ
θ .

Analogously for Eκ
>θ etc.

Instead of “the empty player has a winning strategy for the game G” we just
say “empty wins G” (as opposed to: empty wins a specific run of the game).
I denotes a fine, normal ideal on κ. (I.e. every α ∈ κ is in I. Together with

normal this implies that I is < κ-complete.)
A set S ⊆ κ is called I-positive if S /∈ I.

Definition 4.2. Let κ be regular, and S ⊆ κ an I-positive set.

• BM<ζ(I, S), the Banach Mazur game of length ζ starting with S, is
played as follows:

At stage 0, empty plays an I-positive S0 ⊆ S, nonempty plays T0 ⊆ S0.
At stage α < ζ, empty plays an I-positive Sα ⊆ ⋂

β<α Sβ (if possible),
and nonempty plays some Tα ⊆ Sα.

Empty wins the run, if
⋂

β<α Sβ ∈ I at any stage α < ζ. Otherwise
nonempty wins.

(For nonempty to win a run, it is not necessary that
⋂

β<ζ Sβ is I-

positive or even just nonempty.)
• BM≤ω(I, S) is BM<ω+1(I, S). (So empty wins the run iff

⋂
n<ω Sn ∈ I,

i.e. the game is naturally equivalent to one of length ω.)
• PD<ζ(I, S), the pressing down game of length ζ starting with S, is played

as follows:
At stage α < ζ, empty plays a regressive function fα : κ → κ, and

nonempty plays some fα-homogeneous Tα ⊆ S ∩ ⋂
β<α Tβ.

Empty wins the run, if Tα ∈ I for any α < ζ. Otherwise, nonempty
wins.

• PD≤ω(I, S) is PD<ω+1(I, S). (I.e. empty wins the run iff S ∩⋂
n∈ω Tn ∈

I.)
• BM<ζ(S) is BM<ζ(NS, S), and PD<ζ(S) is PD<ζ(NS, S) (where NS de-

notes the nonstationary ideal).
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PD<θ could equivalently be defined such that nonempty chooses at stage α
some βα ∈ κ, and empty wins the run if S ∩ ⋂

ζ<α f−1(βζ) ∈ I for some α < θ.
The following is trivial:

Facts 4.1. (i) Assume S ⊆ T .
• If empty wins BM<ζ(I, S), then empty wins BM<ζ(I, T ).
• If nonempty wins BM<ζ(I, T ), then nonempty wins BM<ζ(I, S).
• If empty wins PD<ζ(I, T ), then empty wins PD<ζ(I, S).
• If nonempty wins PD<ζ(I, S), then nonempty wins PD<ζ(I, T ).

(ii) Assume that I ⊆ J , and that J is also fine and normal.
• If empty wins PD<ζ(I, S), then empty wins PD<ζ(J , S).
• If nonempty wins PD<ζ(J , S), then nonempty wins PD<ζ(I, S).

(iii) In particular, if nonempty wins PD<ζ(I, S), then nonempty wins PD<ζ(S).
(iv) Let BM′ be the variant of BM where nonempty gets the first move (at

stage 0 only). The difference between BM and BM′ is a simple density
effect:

• Empty wins BM′
<ζ(I, S) iff empty wins BM<ζ(I, S ′) for all positive

S ′ ⊆ S iff empty has a winning strategy for BM with S as first move.
• Empty wins BM<ζ(I, S) iff empty wins BM′

<ζ(I, S ′) for some posi-
tive S ′ ⊆ S.

• Nonempty wins BM′
<ζ(I, S) iff nonempty wins BM<ζ(I, S ′) for some

positive S ′ ⊆ S.
(v) Assume that S is I-positive, and let IS be generated by I ∪ {κ \ S}.

Then A ∈ IS iff A ∩ S ∈ I, and empty wins BM<θ(I, S) iff empty wins
BM<θ(IS, κ). The same holds for PD or the ideal game (defined below),
and for player nonempty instead of player empty.

(For 3, use that I is normal, which implies NS ⊆ I.)
We will use the following definitions and facts concerning precipitous ideals, as

introduced by Jech and Prikry [13]. We will usually refer to Jech’s Millennium
Edition [10] for details.

Definition 4.3. Let I be a fine, normal ideal on κ.

• Let V be an inner model of W . U ∈ W is called a normal V -ultrafilter
if the following holds:

– If A ∈ U , then A ∈ V and A is a subset of κ.
– α /∈ U for all α ∈ κ, and κ ∈ U .
– If A, B ∈ V are subsets of κ, A ⊆ B and A ∈ U , then B ∈ U .
– If A ∈ V is a subset of κ, then either A ∈ U or κ \ A ∈ U .
– If f ∈ V is a regressive function on A ∈ U , then f is constant on

some B ∈ U .
(Note that we do not require iterability or amenability.)
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• A normal V -ultrafilter U is wellfounded, if the ultrapower of V modulo
U is wellfounded. In this case the transitive collapse of the ultrapower is
denoted by UltU(V ).

• For a < κ-complete ideal I, let PI be the family of I-positive sets ordered
by inclusion. PI forces that the generic filter G is a V -ultrafilter (cf. [10,
22.13]). An ideal I is called precipitous, if it is κ-complete and PI forces
that G is wellfounded.

• The ideal game on I is played just like BM≤ω(I, κ), but empty wins iff⋂
n∈ω Sn is empty (as opposed to “in I”).

So if empty wins the ideal game, then empty wins BM≤ω(I, κ). And if nonempty
wins BM≤ω(I, κ), then nonempty wins the ideal game.

Theorem 4.4. Let I be a fine, normal ideal on κ.

(i) (Jech, cf. [10, 22.21]) I is not precipitous iff empty wins the ideal game.
So in this case empty also wins BM≤ω(I, κ).

(ii) (cf. [4]) If I is such that Eκ
ω is I-positive, then nonempty cannot win the

ideal game, and empty wins‡ PD≤ω(I, Eκ
ω) and therefore also BM≤ω(I, κ).

(iii) (Jech, Prikry [12], cf. [10, 22.33]) If I is precipitous, then κ is measurable
in an inner model.

(iv) (Laver, cf. [4] or [10, 22.33]) Assume that U is a normal measure on κ.
Let ℵ1 ≤ θ < κ be regular and let Q = Levy(θ,< κ) be the Levy collapse
(cf. Lemma 4.18). In V [GQ], let F be the filter generated by U and I
the corresponding ideal. Then I is fine and normal, and the family of
I-positive sets has a < θ-closed dense subfamily.

So in particular in V [GQ] nonempty wins BM<θ(I, S) for all I-positive
sets S (nonempty just has to pick sets from the dense subfamily), and
therefore that nonempty wins PD<θ(S) (cf. 4.1.3).

(v) (Magidor [12], penultimate paragraph) One can modify this forcing to get
a < θ-closed dense subset of Eθ+

θ .

So in particular, Eθ+

θ can be precipitous.

Mitchell [12] showed that even for θ = ℵ0, Levy(θ,< κ) gives a precipitous
ideal on θ+ = ω1 (and with Magidor’s extension, NSω1 can be made precipitous).
So the ideal game is interesting on ω1, but our games are not:

Corollary 4.5. (i) Empty always wins PD≤ω(S) and BM≤ω(S) for S ⊆ ω1.

(ii) It is equiconsistent with a measurable that nonempty wins BM<θ(E
θ+

θ )
for e.g. θ = ℵ1, θ = ℵ2, θ = ℵ+

ℵ7
etc.

(iii) The following is consistent relative to a measurable: Nonempty wins
PD<θ(θ

+) but not BM≤ω(θ+) for e.g. θ = ω1.

‡There is even a fixed sequence of winning moves for empty: For every α ∈ Eκ
ω let (αn)n∈ω

be a normal sequence in α. As move n, empty plays the function that maps α to αn. If β and
β′ are both in

⋂
n∈ω Tn, then βn = β′

n for all n and therefore β = β′.
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Proof. (1) is just 4.4.2, and (2) follows from 4.4.3–4.
(3) Let κ be measurable, and Levy-collapse κ to θ+. According to 4.4.2,

nonempty wins PD<ω1(S) for all S ∈ U , in particular for S = θ+. However,
empty wins BM≤ω(θ+) (by playing Eθ+

ω ). �
In the rest of the paper will deal with the proof of Theorem 4.1.

4.3. Overview of the proof. We assume that κ is measurable, and that ω <
θ < κ is regular.

Step 1. We construct models M satisfying:
(∗) κ is measurable and player empty wins BM≤ω(S) for every stationary S.
We present two constructions, showing that (∗) is true in L[U ] as well as

compatible with larger cardinals:

(i) The inner model L[U ], Section 4.4:
Let D be a normal measure on κ, and set U = D ∩ L[D]. Then in
L[U ], (the dual ideal of) U is the only normal precipitous ideal on κ. In
particular, L[U ] satisfies (∗).

(ii) Forcing (∗), Section 4.5:
(α) We construct a partial order R(κ) forcing that empty wins BM≤ω(S)
for all S. However, R(κ) does not preserve measurability of κ.
(β) We use R(κ) to force (∗) while preserving e.g. supercompactness.

Step 2. Now we look at the Levy-collapse Q that collapses κ to θ+.
In Section 4.6 we will see: If in V [GQ], nonempty wins BM≤ω(Ṡ) for some

Ṡ ∈ Eκ
θ , then in V nonempty wins BM≤ω(S̃) for some S̃ ∈ Eκ

≥θ.
So if we start with V satisfying (∗) of Step 1, then Q forces:

• Nonempty does not win BM≤ω(Ṡ) for any stationary Ṡ ⊆ Eκ
θ . Equiv-

alently: Nonempty does not win BM≤ω(Eκ
θ ), even if nonempty gets the

first move.
• Nonempty wins PD<θ(E

κ
θ ). This follows from 4.4.4: Nonempty wins

PD<θ(S) for all S ∈ U , and Eκ
θ = (Eκ

≥θ)
V ∈ U .

4.4. U is the only normal, precipitous ideal in L[U ]. If V = L, then there
are no normal, precipitous ideals (recall that a precipitous ideal implies a mea-
surable in an inner model). Using Kunen’s results on iterated ultrapowers, it is
easy to relativize this to L[U ]:

Theorem 4.6. Assume V = L[U ], where U is a normal measure on κ. Then the
dual ideal of U is the only normal, precipitous ideal on κ.

In particular, NSκ is nowhere precipitous, and empty wins BM≤ω(S) for any
stationary S ⊆ κ.

Remark: Much deeper results by Jech and later Gitik show that e.g.
(�) κ is measurable and either Eκ

λ or NSκ � Reg is precipitous



45

implies more than a measurable (in an inner model) [5, Sect. 5], so (�) fails
not only in L[U ] but also in any other universe without “larger inner-model-
cardinals”. However, it is not clear to us whether the same hold e.g. for

(�′) κ is measurable and NSκ � S is precipitous for some S.
Back to the proof of Theorem 4.6.
If empty does not win BM≤ω(S), then empty does not win the ideal game

starting with S, and empty does not win the ideal game on the ideal NSS defined
in 4.1.5. That means that NSS is precipitous. But NSS can never be equal to the
dual of U , a contradiction. (S can be partitioned into disjoint positive subsets,
but U is an ultrafilter). So it is enough to show that the dual ideal of U is the
only normal, precipitous ideal.

If I is a normal, precipitous ideal, then PI forces that the generic filter G is a
normal, wellfounded V -ultrafilter (cf. [10, 22.13]). So it is enough to show that
in any forcing extension, U is the only normal, wellfounded V -ultrafilter on κ.
We will do this in Lemma 4.8.

If U ∈ L[U ] and L[U ] thinks that U is a normal ultrafilter on κ, then we call
the pair (L[U ], U) a κ-model.

If D is a normal ultrafilter on κ, and U = D∩L[D], then (L[U ], U) is a κ-model.
We will use the following results of Kunen [14], cited as Theorem 19.14 and

Lemma 19.16 in [10]:

Lemma 4.7. (i) For every ordinal κ there is at most one κ-model.
(ii) Assume κ < λ are ordinals, (L[U ], U) is the κ-model and (L[W ], W )

the λ-model. Then (L[W ], W ) is an iterated ultrapower of (L[U ], U), in
particular: There is an elementary embedding i : L[U ] → L[W ] definable
in L[U ] such that W = i(U).

(iii) Assume that
• (L[U ], U) is the κ-model,
• A is a set of ordinals of size at least κ+,
• θ is a cardinal such that A ∪ {U} ⊂ Lθ[U ], and
• X ⊆ κ is in L[U ].

Then there is a formula ϕ, ordinals αi < κ and γi ∈ A such that in
Lθ[U ], X is defined by ϕ(X, α1, . . . , αn, γ1, . . . , γm, U).

(That means that in L[U ] there is exactly one y satisfying ϕ(y, α1, . . . ), and
y = X.)

Lemma 4.8. Assume V = L[U ], where U is a normal ultrafilter on κ. Let V ′ be
a forcing extension of V , and G ∈ V ′ a normal, wellfounded V -ultrafilter on κ.
Then G = U .

Proof. In V ′, let j : V → UltG(V ) be elementary. Set λ = j(κ) > κ and
W = j[U ]. So UltG(V ) is the λ-model L[W ].

In V , we can define a function J : ON → ON such that in V ′, J(α) is a
cardinal greater than (ακ)+V ′

. (After all, V ′ is just a forcing extension of V .) So
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J(α) is greater than both i(α) and j(α). In V , let C be the class of ordinals that
are ω-limits of iterations of J , i.e. α ∈ C if α = sup(α0, J(α0), J(J(α0)), . . . ). If
α ∈ C, then i(α) = j(α) = α, since

i(α) = sup(i(α0), i(J(α0)), i(J(J(α0))), . . . )

≤ sup(J(α0), J(J(α0)), J(J(J(α0))), . . . ) = α.

Also, each α ∈ C is a cardinal in V ′, since it is a supremum of cardinals.
In V ′, pick a set A of κ+ many members of C, and θ ∈ C such that and

A ∪ {U} ⊆ Lθ[U ]. Pick any X ⊆ κ. Then in L[U ], X is defined by

Lθ[U ] � ϕ(X, �α,�γ, U).

Let k be either i or j. Then by elementarity, in L[W ] k(X) is the set Y such that

Lθ[W ] � ϕ(Y, �α,�γ, W ),

since W = k(U) and k(β) = β for all β ∈ κ ∪ A ∪ {θ}.
Therefore i(X) = j(X) = Y . So X ∈ G iff κ ∈ j(X) = i(X) iff X ∈ U , since

both G and U are normal. �

4.5. Forcing empty to win. As in the last section, we construct a universe with
in which empty wins BM≤ω(S) for every stationary S ⊆ κ, this time using forcing.
This shows that the assumption is also compatible with e.g. κ supercompact.

4.5.1. The basic forcing.

Assumption 4.9. κ is inaccessible and 2κ = κ+.

We will define the < κ-support iteration (Pα, Qα)α<κ+ and show:

Lemma 4.10. Pκ+ forces: Empty has a winning strategy for BM≤ω(κ) where
empty’s first move is κ. Pκ+ is κ+-cc and has a dense subforcing P ′

κ+ which is
< κ-directed-closed and of size κ+.

We use two basic forcings (maybe more exactly: forcing-definitions) in the
iteration:

• If S ⊆ κ is stationary, then Cohen(S) adds a Cohen subset of S. Con-
ditions are functions f : ζ → {0, 1} with ζ < κ successor such that
{ξ < ζ : f(ξ) = 1} is a subset of S. ζ is called height of f . Cohen(S) is
ordered by inclusion.

This forcing adds the generic set S ′ = {ζ < κ : (∃f ∈ G)f(ζ) = 1} ⊂
S.

• If λ ≤ κ+, and (Si)i<λ is a family of stationary sets, then Club((Si)i<λ)
consists of f : (ζ × u) → {0, 1}, ζ < κ successor, u ⊆ λ, |u| < κ such
that {ξ < ζ : f(ξ, i) = 1} is a closed subset of Si. ζ is called height of f ,
u domain of f . Club((Si)i<λ) is ordered by inclusion.

The following is well known:
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Lemma 4.11. Cohen(S) is < κ-closed and forces that the generic Cohen subset
S ′ ⊆ S is stationary.

So Cohen(S) is a well-behaved forcing, adding a generic stationary subset of
S. Club((Si)i<λ) adds unbounded closed subsets of each Si. Other than that
it is not clear why this forcing should e.g. preserve the regularity of κ (and
it will generally not be σ-closed). However, we will shoot clubs only through
complements of Cohen-generics which we added previously, and this will simplify
matters considerably.

The Pα will add more and more moves to our winning strategy.
Set D = {δ < κ+ : δ limit} (D stands for “destroy”).
Set T = (κ+)<ω, a tree ordered by inclusion. (Let us call the order �T .) Find

a bijection i : T → κ+ \D so that s �T t implies i(s) ≤ i(t). Let M be the image
of i, i.e. κ+ = D ∪ M . (M stands for “moves”.) i defines a tree-order �M on
M such that α �M β implies α ≤ β. Tree-order means that for α ∈ M , the set
of �M -predecessors of M is finite and totally ordered by �M . This defines for
α ∈ M the sequence α0 �M α1 �M · · · �M αm �M α of predecessors.

For δ ∈ D, we can look at all infinite branches through M ∩ δ. Some of them
will be “new”, i.e. not in M ∩γ for any γ ∈ D∩ δ. Let λδ be the number of these
new branches, i.e. 0 ≤ λδ ≤ 2κ = κ+.

We define Qα by induction on α, and assume that at stage α (i.e. after forcing
with Pα) we have already defined a partial strategy. (For increasing α, the partial
strategy will increase, i.e. it will know responses to more initial segments of runs
of the game.) We will see that Pα forces 2κ = κ+. This allows us to use some
simple book-keeping to pick at stage α some Tα ⊆ κ such that every T ⊆ κ in⋃

β<κ+ V [Gβ] appears as some Tζ . In more detail:

Fix an enumeration (T̃α,γ)γ∈κ+ of all (Pα-names for) subsets of κ. Fix a ψ :
M → κ+ × κ+ such that ψ(α) = (β, γ) implies β ≤ α, and such that for all
α ∈ M and β, γ ∈ κ+ there is an immediate �M -successor α′ of α such that
ψ(α′) = (β, γ). For ψ(α) = (β, γ), set Tα = T̃β,i if it satisfies some additional
assumption (∗) (see below), otherwise pick some arbitrary Tα satisfying (∗).

We work in V [Gα] to define Qα:

• α ∈ M , with the predecessors 0 = α0 < α1 · · · < αm < α. By induction
we know that at stage αm

– we dealt with the sequence xαm = (κ, Tα1 , Sα1 , Tα2 , . . . , Sαm−1 , Tαm),
which is played according to empty’s partial strategy (at stage αm),

– we defined Qαm to be Cohen(Tαm), adding the generic set Sαm ,
– this Sαm was added to the partial strategy as response to xαm .

Now we use the book-keeping described above to pick Tα satisfying:
(∗) Tα ⊂ Sαm is stationary, and the partial strategy is not (at
stage α) already defined on xα = xαm

�(Sαm , Tα).
Then we set Qα = Cohen(Tα), and add the Qα-generic Sα ∈ V [Gα+1] to
the partial strategy as response to xα.
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• α ∈ D. In V , there are 0 ≤ λα ≤ κ+ many new branches bi. (All old
branches have already been dealt with in the previous D-stages.) For
each new branch bi = (αi

0 < αi
1 < . . . ), we set Si =

⋂
n∈ω Sαi

n
, and we set

Qα = Club((κ \ Si)i∈λα).

So empty always responds to nonempty’s move T with a Cohen subset of T ,
and the intersection of an ω-sequence of moves according to the strategy is made
non-stationary.

We will show:

Lemma 4.12. Pκ+ does not add any new countable sequences of ordinals, forces
that κ is regular and that the Qα-generic Sα (i.e. empty’s move) is stationary for
all α ∈ M .

We will prove this Lemma later. Then the rest follows easily:

Lemma 4.13. Pκ+ forces that the partial strategy is a winning strategy for player
empty in the game BM≤ω(κ), using κ as first move.

Proof. At the final limit stage, Pκ+ does not add any new subsets of κ, nor any
countable sequences of such subsets. (In particular, there are only κ+ many.)
Work in V [Gκ+ ].

We first show that the partial strategy is a strategy: Assume towards a contra-
diction that there is some minimal m ≥ 0 and a sequence x = (κ, T ′

1, S
′
1, T

′
2, S

′
2, . . . , S

′
m, T ′

m+1)
such that x is a valid initial sequence of a run played according to the partial
strategy, but we do not have a respond to x. So S′

m was added as response to
x � 2m, at some stage α ∈ M , i.e. α has predecessors α0 < · · · < αm, and
T ′

i = Tαi
and S ′

i = Sαi
for i < m, and S ′

m = Sα. T ′
m+1 appears in some Vβ for

β < κ+, i.e. T ′
m+1 = T̃β,i for some i < κ+. Then there is some α′ ∈ M such that

α′ > β is immediate �M -successor of α and such that ψ(α′) = (β, i). So at stage
α′ we add to the partial strategy Sα′ as response to x (unless we already added
a response at an earlier stage), a contradiction.

Now we show that the strategy is actually a winning strategy: Let y =
(κ, T ′

1, S
′
1, T

′
2, S

′
2, . . . ) be an infinite run of the game such that nonempty uses

the partial strategy. Then x � 2n corresponds to an element of M for every n,
and x defines a branch b through M . b ∈ V , since Pκ+ does not add new count-
able sequences of ordinals. Let α ∈ D be minimal so that x � 2n < α for all
n. Then in the D-stage α, the stationarity of

⋂
n∈ω S ′

n was destroyed, i.e. empty
wins the run x. �

We now define the dense subset of Pα:

Definition 4.14. p ∈ P ′
α if p ∈ Pα and there are (in V ) a successor ordinal

ε(p) < κ, (fα)α∈dom(p) and (uα)α∈dom(p)∩D such that:

• If α ∈ M , then fα : ε(p) → {0, 1}.
• If α ∈ D, then uα ⊆ λα, |uα| < κ, and fα : ε(p) × uα → {0, 1}.
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• Moreover, for α ∈ D, uα consists exactly of the new branches through
dom(p) ∩ α ∩ M .

• p � α � p(α) = fα.

So a p ∈ P ′
α corresponds to a “rectangular” matrix with entries in {0, 1}. Of

course only some of these matrices are conditions of Pα and therefore in P ′
α.

Lemma 4.15. (i) P ′
α is ordered by extension. (I.e. if p, q ∈ P ′

α, then q ≤ p
iff q (as Matrix) extends p.)

(ii) P ′
α ⊆ Pα is a dense subset.

(iii) P ′
α is < κ-directed-closed, in particular Pα does not add any new se-

quences of length < κ nor does it destroy stationarity of any subset of
κ.

Proof. (1) should be clear.
(3) Assume all pi are pairwise compatible. We construct a condition q by

putting an additional row on top of
⋃

pi (and filling up at indices where new
branches might have to be added). So we set

• dom(q) =
⋃

dom(pi).
• ε(q) =

⋃
ε(pi) + 1.

• For α ∈ dom(q) ∩ M , we put 0 on top, i.e. qα(ε(q) − 1) = 0.
• For α ∈ dom(q) ∩ D, and i ∈ ⋃

dom(pi(α)), set qα(ε(q) − 1, i) = 1.
• For α ∈ dom(q) ∩ D, if i is a new branch through M ∩ dom(q) ∩ α and

not in
⋃

dom(pi(α)), set qα(ξ, i) = 0 for all ξ < ε(q).

Why can we do that? If α ∈ M , whether the bookkeeping says that ε(q)−1 ∈ Tα

or not, we can of course always choose to not put it into Sα (i.e. set qα(ε(q)−1) =
0). Then for α ∈ D, ε(q) − 1 will definitely not be in the intersection along the
branch i, so we can put it into the complement.

(2) By induction on α. Assume p ∈ Pα.
α = β+1 is a successor. We know that Pβ does not add any new < κ sequences

of ordinals, so we can strengthen p � β to a q ∈ P ′
β which decides f = p(β) ∈ V .

Without loss of generality ε(q) ≥ height(f), and we can enlarge f up to ε(q) by
adding values 0 (note that height(f) < κ is a successor, so we do not get problems
with closedness when adding 0). And again, we also add values for the required
“new branches” if necessary.

If α is a limit of cofinality ≥ κ, then p ∈ Pβ for some β < α, so there is nothing
to do.

Let α be a limit of cofinality < κ, i.e. (αi)i∈λ is an increasing cofinal sequence
in α, λ < κ. Using (2), define a sequence pi ∈ P ′

αi
such that pi < pj ∧ p � αi for

all j < i, then use (3). �
How does the quotient forcing Pα

κ+ (i.e. Pκ+/Gα) behave compared to Pκ+?

• Assume α ∈ D. In V [Gα], Qα shoots a club through the complement of
the (probably) stationary set

⋂
i∈ω Si. In particular, Qα cannot have a

< κ-closed subset.
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• Nevertheless, Pα∗Qα has a < κ-closed subset (and preserves stationarity).
• So if we factor Pκ+ at some α ∈ D, the remaining Pα

κ+ will look very
different from Pκ+ .

• However, if we factor Pκ+ at α ∈ M , Pα
κ+ will be more or less the same

as Pα
κ+ (just with a slightly different bookkeeping).

In particular, we get:

Lemma 4.16. If α ∈ M , then the quotient Pα
κ+ will have a dense < κ-closed

subset (and therefore it will not collapse stationary sets).

(The proof is the same as for the last lemma.)
Note that for this result it was necessary to collapse the new branches as soon

as they appear. If we wait with that, then (looking at the rest of the forcing from
some stage α ∈ M) we shoot clubs through stationary sets that already exist in
the ground model, and things get more complicated.

Now we can easily prove Lemma 4.12:

Proof of Lemma 4.12. In stage α ∈ M , nonempty’s previous move Sαm is still
stationary (by induction), the bookkeeping chooses a stationary subset Tαm of
this move, and we add Sα as Cohen-generic subset of Tαm . So according to
Lemma 4.11, Sα is stationary at stage α+1, i.e. in V [Gα+1]. But since α+1 ∈ M ,
the rest of the forcing, P α+1

κ+ , is < κ-closed and does not destroy stationarity of
Sα. �
4.5.2. Preserving Measurability. We can use the following theorem of Laver [15],
generalizing an idea of Silver: If κ is supercompact, then there is a forcing exten-
sion in which κ is supercompact and every < κ-directed closed forcing preserves
the supercompactness. Note that we can also get 2κ = κ+ which such a forcing.

Corollary 4.17. If κ is supercompact, we can force that κ remains supercompact
and that empty wins BM≤ω(S) for all stationary S ⊆ κ.

Remark: It is possible, but not obvious that we can also start with κ just mea-
surable and preserve measurability. It is at least likely that it is enough to start
with strong to get measurable. Much has been published on such constructions,
starting with Silver’s proof for violating GCH at a measurable (as outlined in [10,
21.4]).

4.6. The Levy collapse. We show that after collapsing κ to θ+, nonempty still
has no winning strategy in BM.

Assume that κ is inaccessible, θ < κ regular, and let Q = Levy(θ, < κ) be the
Levy collapse of κ to θ+: A condition q ∈ Q is a function defined on a subset of
κ × θ, such that | dom(q)| < θ and q(α, ξ) < α for α > 1, (α, ξ) ∈ dom(q) and
q(α, ξ) = 0 for α ∈ {0, 1}.

Given α < κ, define Qα = {q : dom(q) ⊆ α × θ} and πα : Q → Qα by
q �→ q � (α × θ).

The following is well known (see e.g. [10, 15.22] for a proof):
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Lemma 4.18. • Q is κ-cc and < θ-closed.
• In particular, Q preserves stationarity of subsets of κ:

If p forces that Ċ ⊆ κ is club, then there is a C ′ ⊆ κ club and a q ≤ p
forcing that C ′ ⊆ Ċ.

• If q � p ∈ G, then q ≤ p (i.e. ≤∗ is the same as ≤).

We will use the following simple consequence of Fodor’s Lemma (similar to a
Δ-system Lemma):

Lemma 4.19. Assume that p ∈ Q and S ∈ Eκ
≥θ. If {qα | α ∈ S} is a sequence

of conditions in Q, qα < p, then there is a β < κ, a q ∈ Qβ and a stationary
S ′ ⊆ S, such that q ≤ p and πα(qα) = q for all α ∈ S ′.

Proof. For q ∈ Q set domκ(q) = {α ∈ κ : (∃ζ ∈ θ) (α, ζ) ∈ dom(q)}. For α ∈ S
set f(α) = sup(domκ(qα)∩α). f is regressive, since | domκ(qα)| < θ and cf(α) ≥ θ.
By the pressing down lemma there is a β < κ such that T = f−1(β) ⊆ S is
stationary.

For α ∈ T , set h(α) = πβ+1(qα). The range of h is of size at most |β×θ|<θ < κ.
So there is a stationary S ′ ⊆ T such that h is constant on S ′, say q. If α ∈ S ′,
then sup(domκ(qα) ∩ α) = β, therefore πα(qα) = πβ+1(qα) = q.

Pick α ∈ S ′ such that α > sup(domκ(p)). qα ≤ p, so q = πα(qα) ≤ πα(p) =
p. �
Lemma 4.20. Assume that

• κ is strongly inaccessible, θ < κ regular, μ ≤ θ.
• Q = Levy(θ,< κ),
• Ṡ is a Q-name for an element of Eκ

θ ,

• p̃ ∈ Q forces that Ḟ is a winning strategy of nonempty in BM<μ(Ṡ).

Then in V , nonempty wins BM<μ(S̃) for some S̃ ∈ Eκ
≥θ.

If Ṡ is a standard name for T ∈ (Eκ
≥θ)

V , then we can set S = T .

Proof. First assume that Ṡ is a standard name.
For a run of BM<μ(S), we let Aε and Bε denote the εth moves of empty

and nonempty. We will construct by induction on ε < μ a strategy for empty,
including not only the moves Bε, but also Q-names Ȧ′

ε, Ḃ
′
ε, and Q-conditions

pε, 〈pε
α | α ∈ Bε〉, such that the following holds:

• pε ≤ pξ and pε
α ≤ pξ

α for ξ < ε.

• pε forces that (Ȧ′
ξ, Ḃ

′
ξ)ξ≤ε is an initial segment of a run of BM<μ(Ṡ) in

which nonempty uses the strategy Ḟ .
• pε � Ȧ′

ε ⊆ Aε.
• For α ∈ Bε, πα(pε

α) = pε (in particular pε
α ≤ pε), and pε

α � “α ∈ Ḃ′
ε”.

Assume that we have already constructed these objects for all ξ < ε.
In limit stages ε, we first have to make sure that

⋂
ξ<ε Bξ is stationary (other-

wise nonempty has already lost). Pick a q stronger than each pξ for ξ < ε. (This is
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possible since Q is < θ-closed.) Then q forces that
⋂

ξ<ε Bξ =
⋂

ξ<ε Aξ ⊇
⋂

ξ<ε Ȧ′
ξ

and that (Ȧ′
ξ, Ḃ

′
ξ)ξ≤ε is a valid initial segment of a run where nonempty uses the

strategy, in particular
⋂

ξ<ε Ȧ′
ξ is stationary.

So now ε can be a successor or a limit, and empty plays the stationary set
Aε ⊆

⋂
ξ<ε Bξ. (That implies that pξ

α is defined for all α ∈ Aε and ξ < ε.)

• Define the εth move of empty in V [GQ] to be

Ȧ′
ε = {α ∈ Aε : (∀ξ < ε) pξ

α ∈ GQ},
and pick p̃ε ≤ pξ for ξ < ε (for ε = 0, pick p̃0 = p̃).

p̃ε forces that Ȧ′
ε ⊆

⋂
ξ<ε Ḃ′

ξ, since pξ
α forces that α ∈ Ḃ′

ξ. p̃ε also forces

that Ȧ′
ε is stationary:

Otherwise there is a C ⊆ κ club and a q ≤ p̃ε forcing that C∩Ȧε is empty
(cf. 4.18). q ∈ Qβ for some β < κ. Pick α ∈ (C∩Aε)\ (β +1). For ξ < ε,
πα(pξ

α) = pξ ≥ q, and q ∈ Qβ, so q and pξ
α are compatible. Moreover, the

conditions (q ∪ pξ
α)ξ∈ε are decreasing, so there is a common lower bound

q′ forcing that pξ
α ∈ GQ for all ξ, i.e. that α ∈ Ȧ′

ε, a contradiction.

• Given Ȧ′
ε, we define Ḃ′

ε as the response according to the strategy Ḟ .
• Now we show how to obtain the next move of nonempty, Bε, (in the

ground model), as well as pε
α for α ∈ Bε. Bε of course has to be a subset

of the stationary set S defined by

S = {α ∈ Aε | p̃ε 
� α /∈ Ḃ′
ε}.

For each α ∈ S, pick some pε
α ≤ p̃ε forcing that α ∈ Ḃ′

ε. By the
definition of Ȧ′

ε and since p̃ε � Ḃ′
ε ⊆ Ȧ′

ε , we get

pε
α � (∀ξ < ε) pξ

α ∈ GQ,

which means that for α ∈ S and ξ < ε, pε
α ≤ pξ

α.
Now we apply Lemma 4.19 (for p = p̃ε). This gives us S ′ ⊆ S and

q ≤ p̃ε. We set Bε = S ′ and pε = q.

If Ṡ is not a standard name, set

S0 = {α ∈ Eκ
≥θ : p̃ 
� α /∈ Ṡ}

As above, for each α ∈ S0, pick a p̃−1
α ≤ p̃ forcing that α ∈ Ṡ, and choose a

stationary S̃ ⊆ S0 according to Lemma 4.19. Now repeat the proof, starting the
sequence (pε) and (pε

α) already at ε = −1. �
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[3] Maurice Boffa, Décoration ensembliste de graphes par approximations, Cahiers du Centre
de Logique, Nr. 7, Academia, Louvain-la-Neuve, 1992, 45–50

[4] F. Galvin, T. Jech, and M. Magidor, An ideal game, J. Symbolic Logic 43 (1978), no. 2,
284–292.

[5] Moti Gitik, Some results on the nonstationary ideal, Israel J. Math. 92 (1995), no. 1-3,
61–112.

[6] Tapani Hyttinen and Matti Pauna, On non–wellfounded ses as fixed points of substitutions,
Notre Dame Journal of Formal Logic 42 (2001), no. 1, 23–40.

[7] Tapani Hyttinen, Saharon Shelah, and Jouko Väänänen, More on the Ehrenfeucht-Fräıssé
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