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ABSTRACT 

Elucidating the mechanisms responsible for the patterns of species abundance, diversity, and distribution 

within and across ecological systems is a fundamental research focus in ecology. Species abundance 

patterns are shaped in a convoluted way by interplays between inter-/intra-specific interactions, 

environmental forcing, demographic stochasticity, and dispersal. Comprehensive models and suitable 

inferential and computational tools for teasing out these different factors are quite limited, even though 

such tools are critically needed to guide the implementation of management and conservation strategies, 

the efficacy of which rests on a realistic evaluation of the underlying mechanisms. This is even more so in 

the prevailing context of concerns over climate change progress and its potential impacts on ecosystems. 

This thesis utilized the flexible hierarchical Bayesian modelling framework in combination with 

the computer intensive methods known as Markov chain Monte Carlo, to develop methodologies for 

identifying and evaluating the factors that control the structure and dynamics of ecological communities. 

These methodologies were used to analyze data from a range of taxa: macro-moths (Lepidoptera), fish, 

crustaceans, birds, and rodents. Environmental stochasticity emerged as the most important driver of 

community dynamics, followed by density dependent regulation; the influence of inter-specific 

interactions on community-level variances was broadly minor. 

This thesis contributes to the understanding of the mechanisms underlying the structure and 

dynamics of ecological communities, by showing directly that environmental fluctuations rather than 

inter-specific competition dominate the dynamics of several systems. This finding emphasizes the need to 

better understand how species are affected by the environment and acknowledge species differences in 

their responses to environmental heterogeneity, if we are to effectively model and predict their dynamics 

(e.g. for management and conservation purposes). The thesis also proposes a model-based approach to 

integrating the niche and neutral perspectives on community structure and dynamics, making it possible 

for the relative importance of each category of factors to be evaluated in light of field data. 
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1. INTRODUCTION 

1.1. Background 

Understanding the mechanisms underlying the patterns of species abundance, diversity, and 
distribution on different spatiotemporal scales is an important quest in ecology (May 1975; Levin 
1992; Ricklefs & Schluter 1993; Hubbell 2001; Enquist et al. 2002). Temporal fluctuations in the 
abundance of species typically result from the combined effects of environmental fluctuations, 
density-dependent regulation, demographic stochasticity, and dispersal (Lande et al. 2003; 
Wilson & Lundberg 2006). Species also exist as part of communities, so between-species 
interactions may be important as well (Bower 1962; Murdoch 1994; Shorrocks & Sevenster1995; 
Miyashita 2001).  

The community approach to biodiversity has recently enjoyed increasing attention, the 
main focus being on the identification of the assembly rules, along with any exogenous factors 
that may interact with these rules to create and maintain ecological communities. Relating to this, 
an on-going debate opposes the niche-assembly view and the neutral perspective on community 
structure and dynamics. 

The niche-assembly view (Gause 1934; Hutchinson 1957; Armstrong & McGehee 1980, 
Tokeshi 1990) incorporates from the start the idea that species must differ in a variety of ways, 
including their niches in order to coexist and avoid competitive exclusion (Gause 1934; Hardin 
1960). The competitive exclusion principle (CEP) (Gause 1934) asserts that no two organisms 
can stably coexist on exactly the same resources; one will always out-compete the other and 
drive it extinct. In order to underplay the competition pressure, the weakest competitor has no 
choice but switching to a different resource utilization pattern or a different niche (niche 
segregation). Niche-assembled communities can be thought of as societies primarily structured 
by species interactions as well as organisms’ life histories, habitats, and trophic levels. 
According to this perspective, competing species coexist in stable equilibrium by partitioning 
limiting resources through niche differentiation.  

The CEP has found support from mathematical models such as Lotka-Voltera’s 
differential equations for competition (Gause 1935), and from tests using laboratory experiments 
(Gause 1934, 1935; Bush 1969). However, this principle has been questioned (Hutchinson 1961; 
Hubbell 2001; Zhou & Zhang 2008) in the face of the striking diversity of species-rich systems 
such as tropical forests or planktonic communities, where an apparent strong overlap of species 
niches does not preclude stable coexistence. This phenomenon is known as the “paradox of the 
plankton” after Hutchinson’s (1961) paper. The niche-assembly perspective has also been 
criticized (Hubbell 2001) for its failure to explicitly account for dispersal limitation, the 
importance of which has long been recognized since MacArhur & Wilson’s (1967) theory of 
island biogeography.  

The neutral theory of biodiversity (Bell 2000; Hubbell 2001) has emerged as an 
alternative to the niche-assembly view. This theory maintains that, at a single trophic level, all 
individuals, irrespective of their species identities, can be considered to be functionally 
equivalent on a per capita basis with respect to their birth, death, dispersal, and speciation rates. 
As a consequence, biodiversity patterns are entirely attributed to random fluctuations in these 
demographic and evolutionary processes. The main criterion for species coexistence under the 
neutral perspective is random migration into the same habitable region. This explains why the 
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neutral view is also called “dispersal-assembly”, in contrast to niche-assembly theories which 
emphasize the uniqueness of all species in ecological communities. 

The most documented formulation of the neutral theory of biodiversity is the unified 
neutral theory of biodiversity and biogeography (UNTB) introduced by Hubbell (2001). The 
UNTB considers community dynamics on two different spatio-temporal scales: the local or 
“ecological”  community  defined  as  a  group  of  trophically  similar  species  that  actually  or  
potentially compete for the same or similar resources in a geographical area, and the large-scale 
“metacommunity” which can be viewed as a regional collection of local communities, the arena 
where speciation occurs and the pool from which local communities are colonized (Hubbell 
2001; Magurran 2005). Under the UNTB, the number of individuals comprising an ecological 
community is treated as a constant (the zero-sum assumption), and local community dynamics 
are entirely driven by stochastic demographic processes of birth, death, and immigration (from 
the metacommunity). On the other hand, metacommunity dynamics include an evolutionary 
mechanism of random speciation through which new species originate. Unlike in local 
communities, metacommunity species may not actually compete because of scale separation in 
space or time. In the absence of speciation, the random demographic processes will eventually 
drive all but one species extinct. Hubbell (2001) refers to the zero-sum neutral dynamics as 
“ecological drift”, by analogy with genetic drift (Kimura 1983), and calls the resulting relative 
species abundance distribution the “zero-sum multinomial” (ZSM) distribution.  

Neutral community models have allegedly been effective at predicting many community 
and macroecological patterns including abundance, diversity, and distribution both locally and 
regionally (Holyoak & Loreau 2006; Hubbell 2001). The UNTB has extended previous 
ecological research on the quantification of biodiversity patterns, grounding their description in 
biologically interpretable processes. In particular, it provides sampling models for both local and 
metacommunity dynamics with two core parameters, the immigration rate (m) and the speciation 
rate ( ) respectively. It also predicts a “fundamental biodiversity number”, MJ2 , where 

MJ  is the metacommunity size. The fundamental biodiversity number is related to Fishers’  
(Fisher et al. 1943), and represents the diversity-generating capacity of a system i.e., the 
expected number of new species per generation. 

However, the neutral theory has been extensively falsified (e.g. Engen et al. 2002; 
McGill 2003, Etienne & Olff 2004; Maurer & McGill 2004; Poulin 2004; Chase 2005; Graves & 
Rahbek 2005; Turnbull et al. 2005; Williamson & Gaston 2005; Dornelas et al. 2006; Adler et 
al. 2007). Most empirical evaluations have rejected the neutral theory on the grounds that natural 
communities typically fluctuate more widely than neutral drift would predict. The excess 
variability over neutral predictions is presumably due to the range of mechanisms overlooked by 
the neutral perspective namely, density-dependent regulation, species differential responses to 
environmental fluctuations, and differences in competitive abilities across species. 

An emerging consensus amongst ecologists suggests that natural communities are shaped 
in a convoluted way by a combination of abiotic random forcing, biotic interactions, 
demographic stochasticity, and dispersal (Gravel et al. 2006; Adler et al. 2007).  

Comprehensive models and suitable inferential and computational tools are needed to 
untangle the relative contribution of these different factors beyond the limits of the prevailing 
dichotomist approaches of the form neutrality versus the niches (Turnbull et al. 2005) or 
compensatory dynamics versus environmental forcing (Houlahan et al. 2007). 
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There are obvious issues, both conceptual and methodological, in dealing with 
multispecies data. Nevertheless, recent advances in hierarchical Bayesian (HB) modelling can be 
utilized to set up comprehensive models that consistently integrate scientific knowledge about 
the study system and information from various data sources (Wikle 2003). This thesis combined 
the HB modelling approach with the computationally intensive methods known as Markov chain 
Monte Carlo, and species abundance data from long-term monitoring systems, to develop 
methodologies for teasing out the factors which control the structure and dynamics of ecological 
communities. 

1.2 Aims of the thesis 

The main goal of this thesis is to develop comprehensive models, along with adequate inferential 
and computational tools for identifying and evaluating the mechanisms underlying the structure 
and dynamics of ecological communities. At the outset, a discrete-time version of the unified 
neutral theory of biodiversity and biogeography, with the zero-sum assumption relaxed, was 
fitted to long-term macro-moth (Lepidoptera) community data to evaluate how well the neutral 
model would explain the dynamical behaviour of the study systems. The results suggested that 
neutrality and/or demographic stochasticity alone cannot explain the large variation observed in 
the focal communities. More realistic models were then developed to accommodate the 
mechanisms overlooked by the neutral theory. These models were utilized to analyze species 
abundance time series from a variety of taxa: macro-moths (Lepidoptera), fish, crustaceans, 
birds, and rodents. More specifically, the following aims were set, and approached through five 
articles referred to in the text by their Roman numerals I-V: 

(1) Use data from long-term monitoring systems to examine the validity of the neutral 
theory of biodiversity (I) 

(2) Investigate whether incorporating environmental noise in one or/and another 
parameter makes a difference to the performance of population dynamical models (II) 

(3) Develop a methodology for partitioning the variation in species abundances into 
contributions from environmental forcing, and intra-/inter-specific interactions to see which ones 
dominate (III) 

(4) Extend the scope of previously proposed population dynamical models under climatic 
forcing to multi-species systems (IV) 

(5) Develop a model-based methodology for integrating the niche and neutral 
perspectives on community structure and dynamics (V) 
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2. METHODOLOGIES 

Ecological processes are notoriously complex and the related data are usually fraught with 
missing data and observation errors (e.g. Clark & Bjørnstad 2004). Analyzing such processes in 
a sensible way requires a combination of scientific knowledge about the underlying mechanisms 
with information from various data sources. The Bayesian statistical approach (Bernardo & 
Smith 1994; Gelman et al. 2003) is well suited to this purpose (Anderson 1989; Clark 2005); in 
particular the refined hierarchical Bayesian approach (Berlinier 1996; Gelman et al. 2003; Wikle 
& Hooten 2006) which provides a convenient way of representing complex phenomena as a 
series of simple conditional structures. However, fitting hierarchical Bayesian models to the data 
typically requires a resort to numerical methods such as Markov chain Monte Carlo simulation 
methods (Gilks et al. 1996) on which analyses in this thesis rely. Model adequacy is also worth 
checking before a model can be relied upon for inference. In this section, the Bayesian and 
hierarchical Bayesian model formulations are revisited, along with the related computational 
tools and prominent model selection and model assessment techniques in the Bayesian 
framework.  

2.1. Bayesian inference and the hierarchical Bayesian framework  

Bayesian inference is the process of using data to update the knowledge about the values of 
parameters of a probability model (Gelman et al. 2003). This is done by applying Bayes’ 
formula 

( | ) ( )( | ) ( | ) ( )
( )

p y pp y p y p
p y

,       (2.1) 

where )(p  is the prior distribution which encodes the beliefs about the parameter, , before 
observing the data, )|(yp  is the likelihood of the observed data, and )|( yp  is the posterior 
distribution which reflects the levels of beliefs computed in light of the observed data. The 
normalizing constant dpypyp )()|()(  is the marginal distribution of the data, which 
is also known as the prior predictive distribution. The integral (2.1) is taken over the support, 

, of the parameter . 

Bayesian inference draws entirely on probability theory, with all conclusions arising in 
the  form  of  (posterior)  probability  statements  about  model  parameters  or  functions  of  them  
(estimation), or as yet unobserved data (prediction). Bayesian conclusions turn out to be intuitive 
by contrast to classical tools such as p-values or conventional confidence intervals which are 
often erroneously interpreted. Bayesian inference is also a learning process in the sense that, as 
more data are obtained, they are added to the store of information by multiplying their likelihood 
to the current posterior distribution. 

The computational overhead of performing the high-dimensional integrals involved in 
Bayesian inference, in particular the computation of the normalizing constant )(yp  in (2.1) has 
long prevented the widespread of Bayesian inference or limited its applications to the 
computationally convenient class of conjugate priors. However, the advent of modern computer 
technology such as Markov chain Monte-Carlo (MCMC) (Gilks et al. 1996) has led to a burst of 
applications of Bayesian methods in many areas, including ecology and environmental sciences, 
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where many new and exciting modelling techniques are nowadays applied to problems that could 
not been dealt with previously. 

An appealing feature of the Bayesian approach is the fact that it deals with uncertainty 
explicitly, in particular in making predictions and handling missing values and nuisance 
parameters. Having observed the data y, Bayesian prediction for a future observation, y , is 
based on the so-called posterior predictive distribution  

dypypyyp )|()|~()|~( ,         (2.2) 

which is nothing but the posterior distribution of y . Missing data are also handled in the same 
way, and nuisance parameters (i.e. parameters which are not of immediate interest) are dealt with 
by integrating them out. For example, if ),( 21  and interest in on 1  only, then 2  
becomes a nuisance parameter, and  

22211 2
)|(),|()|( dypypyp ,        (2.3) 

which can be interpreted as a weighted average of the conditional density ),|,( 21 yp , the 
weights being the posterior probability densities )|( 2 yp  (O’Hara et al. 2002). 

The Bayesian approach therefore, provides a unified framework for inference and 
prediction, where parameter uncertainty is naturally transferred to predictive inference. 

In extending Bayesian models to more complex settings going beyond the simple 
likelihood-prior-posterior scheme, a hierarchical formulation is often required. Hierarchical 
Bayesian (HB) models (Berlinier 1996; Gelman et al. 2003; Wikle & Hooten 2006) are Bayesian 
models in which parameters in the likelihood depend on other parameters not mentioned herein, 
which themselves require priors that may depend on new parameters, the process coming to an 
end when no new parameters are introduced. The HB formulation makes it possible to entertain a 
much richer class of models that can better capture the scientific understanding of phenomena 
under investigation, by decomposing the joint distribution of a collection of random variables 
into a series of simple conditional models. 

Berlinier (1996) and Wikle & Hooten (2006) delineated three basic stages in the HB 
modelling of hidden processes: the observation or data model, the process model, and the 
parameter model. These three model components are intended to be conditionally linked in a 
hierarchical structure comprising the data model at the lowest level. The observation model 
specifies the distribution of the data, y, given the state of the actual process of interest, x , taking 
into  account  sampling  errors,  and/or  the  fact  that  only  a  proportion  of  statistical  units  may  be  
sampled. The parameters involved in the data model (e.g. capture probability) are denoted by , 
and referred to as “data parameters”. The process model describes the underlying dynamics and 
involves a number of parameters denoted by , and referred to as “process parameters”. 
Examples of process parameters include demographic rates: birth, death or immigration rates. 
The parameter model describes the uncertainty about both the data parameters and the process 
parameters. 

The target distribution for inference is the joint posterior distribution, ( , , | )p yx , of 
the latent states of the process, the process parameters and the data parameters, which derives 
from Bayes’ theorem as 
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),()|(),|()|,,( pxpxypyxp .       (2.4) 

The corresponding posterior predictive distribution |( )p y y  is given by  

dxddyxpxypyyp X )|,,(),,|~()|~( .     (2.5) 

It goes without saying that the increase in model complexity resulting from the HB formulation 
carries along further computational challenges, making the recourse to numerical methods such 
as Monte Carlo integration (e.g. Robert & Casella 2004) or Markov chain Monte Carlo (MCMC) 
simulation (Gilks et al. 1996) inevitable. An overview of Monte Carlo integration and MCMC 
methods is provided below. 

2.2. Computational issues: Monte Carlo integration and MCMC methods 

2.2.1 Monte Carlo integration 

It is often possible to approximate high dimensional integrals with respect to a probability 
measure, in particular the integrals arising in Bayesian analysis, by finite sums involving random 
samples from the focal probability distribution. For example, let ),...,( 1 kXXX  be a k-
dimensional random variable with probability density function (.)f , where k may be large. If a 

reasonable number, n,  of  random vectors  n
i

ix 1
)( }{  can be drawn from (.)f , then the expected 

value dxxfxX )(]E[  can be approximated by the finite sum nxn
i

i /1
)( . In general, having a 

sample n
i

ix 1
)( }{  from )(xf , ( ) ( )dI h x f x x  can be approximated by nxhI n

i
i /)(ˆ

1
)( . This 

process is known as Monte Carlo integration (e.g. Robert & Casella 2004).  

The Monte Carlo estimate, Î , is valid and useful since Î I  almost surely (i.e. with 
probability 1) as n , by the strong law of large numbers (Ross 2007). The simulation error 

can be evaluated by the variance )1(/)ˆ)(()ˆ(Var
2

1 nnIxhI n
i i , which is reminiscent of the 

variance of the sample mean for a normal population with unknown variance. 

Monte Carlo integration is highly relevant to Bayesian inference in the sense that, if ( )h  
is an interesting function of  and )|( yp  is the posterior distribution of , then the posterior 

mean dyphyh )|()(]|)(E[  can be approximated by nhn
i

i /)(1
)( , where )(i  is a 

sample from the posterior distribution )|( yp  for ni ,...,1 . Other distributional summaries can 
be obtained in a similar fashion. Moreover, a 100x(1 )%  credible interval for  is given by 
the 2/  and )2/1( percentiles of ( | )p y  estimated from the simulated posterior. So, 
the only problem would be to obtain samples from the posterior distribution, and Markov chain 
Monte Carlo methods make this possible.  
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2.2.2. Markov chain Monte Carlo 

A stochastic process }:{ TtSX t  is a collection of random variables, where t is frequently 
(but not necessarily) a time index. If we think of tX  as the state of the process }{ tX  at time t, 
and assume the following dependence condition known as the Markov property: 

)|(Pr),...,|(Pr 110011 ntttnttt iXiXiXiXiX , then tX  is said to be a (discrete-
time) Markov chain (MC) with state-space S. The Markov property implies that the future state 
of the process is independent of the past, given the present. Thus, a MC wanders about the state 
space, remembering only where it has just been in the last time step. The transition probability 
from state i to state j, )|Pr( 1 iXjX tt , is denoted by jip . The transition probabilities are 

usually collected into a matrix, }{ jipP , called the transition matrix or transition kernel, where 

0jip  and 1Sj jip . Herein attention is restricted to time-homogeneous MCs, where the 
transition probabilities are constant over time. The probability of going from state i to state j in n 
time steps, )|Pr( 0 iXjX n , is denoted by )(n

jip , and the n–step transition matrix is ( ){ }n
i jp is 

denoted by ( )nP .  

If u  and v  are two non-negative integers such that vun , then 

Sk
v
jk

u
ki

n
ji ppp )()()( . This result is known as the Chapman Kolmogorov equation (Ross 2007). 

Stated otherwise, )()()( vun PPP , meaning that the n-step transition matrix, )(nP , is nothing 
but nP . 

Let )(n
i  denote the probability, )Pr( iX n , that the MC is in state i at time n, ( 0)(n

i  

and 1)(
i

n
i ). The row vector }{ )()( n

i
n  is called the distribution of the MC at time n, 

)0(  being the initial distribution of the MC. It turns out that 
)}{Pr()}|{Pr( 11

)( iXiXjX nSi nn
n

j  i.e., Si ji
n

i
n

j p)1()( .  In  matrix  form,  
nnn PP )0()1()( ... . So, a MC is entirely determined by the initial distribution and the 

transition kernel. 

The row vector  is said to be a stationary distribution of a MC with transition kernel P 
if the distribution of the MC is invariant with respect to P, meaning that P  or equivalently, 

Si jiij p ,  Sj . In other words,  is a left eigenvector of the transition matrix with 
eigenvalue 1. The existence and uniqueness of the stationary distribution depend on the structure 
of the MC as discussed below. 

A state j  is said to be accessible from another state i , which is denoted by ( ji ), if 
there exists an integer 0n  such that ( )

0Pr ( | ) 0n
n i jX j X i p . If ij  and ji , then 

i is said to intercommunicate with j, which is denoted by ji . Intercommunication is an 
equivalence relation, and intercommunicating states are the equivalence classes in this relation. 
If ji  for all i and j, then the MC is said to be irreducible.  
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A state i is said to have period k if any return to state i must occur in multiples of k time 
steps. Formally, the period of a state is defined as 0)|(Pr:gcd 0 iXiXnk n , where 
gcd stands for greatest common divisor. If the gcd of return time to any of the states is 1, the 
chain is said to be aperiodic. 

Let iXiXnT ni 0|,0min  denote the first return time to state i. If 
1)|(Pr 0 iXTi , then state i is said to be “recurrent” or “persistent”; otherwise it is said 

to be “transient.” If a state i is recurrent and ]|[E 0 iXTii , then i is said to be 
“positive recurrent” or “non-null recurrent”, otherwise it is said to be “null recurrent”. A finite 
state MC which is irreducible, positive recurrent and aperiodic is said to be ergodic. Two 
interconnected states have the same classification: transient, null recurrent or positive recurrent. 

The fundamental theorem of Markov chains (Motwani & Raghavan 1995) states that, if 
a MC is ergodic, then high powers of the transition matrix converge to the rank one matrix with 
all  rows  equal  to  . i.e., an ergodic MC has a unique limiting distribution, , that is 
independent of the initial state, 0X , and depends only on the transition kernel. Thus, starting 
from any state i, the nth step of a run of an ergodic MC has a chance close to j  of being in 
state j if n is large. A MC with transition kernel P is said to satisfy the local balance (or detailed 
balance) if there exists a probability measure  such that for any two states i and j, 

ijjjii pp            (2.6) 

Local balance is a sufficient (but not necessary) condition for  to be the stationary distribution 
of  a  MC with  transition  kernel  P (i.e. local balance implies stationarity, but not the other way 
around). Starting with jiiijj pp  and integrating (summing) the two sides with respect to i, 

one gets i jiiSi ijj pp  which yields Si jiij p  1Si ijp . On the other hand, 

Si jiij p  implies that  is a left eigenvector of the transition matrix associated with 
eigenvalue 1 i.e.,  is a stationary distribution of the MC. More details on Markov chains can be 
found in Brémaud (2001) or Ross (2007).  

The probability distributions arising in the hierarchical Bayesian framework are usually 
high-dimensional with unknown normalization constants. This makes it difficult to directly 
sample from them. As a consequence, a great deal of research has been devoted to developing 
algorithms that can be used to generate samples from complex probability distributions. One of 
the most successful methods of this kind is Markov chain Monte Carlo (MCMC) (Gilks et al. 
1996).  

The rationale of MCMC simulation methods is to construct an ergodic Markov chain that 
has the target distribution of interest as its stationary distribution. This MC can be initialized with 
any state, being guaranteed to converge to its stationary distribution. After convergence and 
removal of the pre-convergence part of the chain called the “burn-in”, samples from the 
stationary distribution of the MC can be used as draws from the target distribution, and 
inferences can be based on the simulated samples. The two most widely used MCMC algorithms 
are the Gibbs sampler and Metropolis-Hastings algorithm which are sketched below.  
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Let 1( ,..., )d  denote the d-dimensional parameter vector of interest, and |p y  
be the posterior distribution of  given the data, y. The Gibbs sampler (Gelfand & Smith 1990; 
Casella & George 1992) proceeds by sampling each component of  from its full conditional 
(the conditional distribution of the focal component with all other components held to their 
current values). More specifically, the Gibbs sampler proceeds as follows. 

1. Pick ),...,( )0()0(
1

)0(
d  arbitrarily in the support of  and set 0i  

2. Generate  ),,...,|(~ )()(
21

)1(
1 yp i

d
ii  

         1 1
2 2 1 3~ ( | , ,..., , )i i i i

dp y  

  …….. 

       1 1 1
1 1~ ( | ,..., , )i i i

d d dp y  

3. Set 1ii , and repeat steps 2-3 until “convergence”. 

Note that Gibbs sampling is only feasible when the full conditionals have well-known 
forms (i.e. under conditional conjugacy). Otherwise, alternative sampling schemes such as the 
Metropolis-Hastings (MH) (Metropolis et al. 1953; Hastings 1970) algorithm are required.  

Let ( | )propq  be a proposal kernel, where  is the current state and prop  a proposed 
move from the current state . The MH algorithm proceeds as follows: 

1. Pick arbitrarily ),...,( )0()0(
1

)0(
d  in the support of  and set 0i  

2. Generate a proposal prop  from ( | )ipropq  

3. Compute ( | )( | )( , ) min 1,
( | ) ( | )

i
i

i i

propprop
prop

prop
qp y

p y q
a  

Draw u uniformly over the interval (0, 1) 
If ( , )i propu a , then set 1i prop  otherwise set 1i i  
4. Set 1ii , and repeat steps 2-4 until “convergence” 

An important feature of the MH algorithm is the fact that the normalizing constant of the 
posterior density cancels out from ( , )i propa  as it is involved in both the numerator and the 
denominator of the ratio )|(/)|( )( ypyp iprop . If in addition the proposal kernel q is selected 
to be symmetric, meaning that ( | ) ( | )i iprop propq q , then ( , )i propa  takes the 
simpler form )|(/)|(),( )()( ypypa iproppropi .  

Random walk, )(iprop , provides a useful example of a symmetrical proposal 

kernel, where )(i  is the current state and  is a zero-mean random disturbance to the current 
state, typically chosen to be normal. The proposal density is typically required to have no 
thinner tails then the target distribution. For Gaussian disturbance, Random walk proposals 
have the form iprop s , where ),0(MVN~  and s is a nonnegative constant which 
is often tuned to achieve an acceptance rate of between 20% and 40%. The tuning of s is 
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typically done by trial and error, by running the chain for different values of s and monitoring 
the acceptance rate. 

It is important to ensure that the chains have mixed and to have a sense that further 
simulation will not change inferences significantly. There are a number of tools for assessing the 
convergence of MCMC (see e.g. Gelman et al. 2003 for details). Visual inspection of traceplots 
and autocorrelation functions is an informal approach to assessing the convergence and the 
mixing of MCMC. 

In situations where only some components of the parameter vector can be sampled from 
directly, a hybrid Gibbs/Metropolis sampler may be required. This amounts to updating the 
parameters in blocks, where each block is altered using the Gibbs sampler or a Metropolis jump 
(Tierney 1994; Gelman et al. 2003). 

In practice, MCMC can be implemented using available software such as WinBUGS 
(Spiegelhalther et al. 2003) or OpenBUGS (Thomas et al. 2006). These are Windows versions of 
the BUGS software program for Bayesian statistical analysis using MCMC, which can be used to 
model a wide variety of complex statistical problems.  

The advent of computer intensive statistical methods such as MCMC has greatly 
impacted applied statistics by opening new horizons in the scale of the problems that one can 
deal with, thus enhancing the position of statistics in most applied fields. Model selection and 
model validation are also important aspects of Bayesian inference. 

2.3. Bayesian model selection  

Choosing amongst alternative models or scientific hypotheses is a fundamental problem faced by 
researchers  in  any  scientific  discipline.  Model  selection  can  be  viewed  as  a  wide  scale  testing  
problem where models rather than parameters are of interest (Robert 2001). In the Bayesian 
framework, the prominent model selection techniques include Bayes factors, (Kass & Raftery 
1995), the deviance information criterion (Spiegelhalter et al. 2002), variable selection methods 
such as stochastic search variable selection (George McCulloch 1993), and posterior predictive 
model assessment (Gelman et al. 1996, 2003). A brief account of these methods is given below.  

2.3.1 Bayes factors 

Bayes factors (Kass & Raftery 1995) provide a natural means of evaluating the support 
provided by the data in favor of one model or scientific hypothesis against another, using rules 
of probability theory. Suppose that one is interested in comparing two models (or hypotheses) 

iM  and jM  with respective parameters i  and j .  Given  that  models  are  considered  as  
unknowns,  prior  distributions  are  required  on  them  as  well.  If  ( )p M  denotes the prior for 
model M , the posterior odds ratio of model iM  versus jM  is given by  

)(
)(

)|(
)|(

)|(
)|(

j

i

j

i

j

i
Mp
Mp

Myp
Myp

yMp
yMp

,         (2.7) 
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where kkkk dMpMypMyp k )|(),|()|( .  The  first  term  on  the  right-hand  side  of  

equation (2.7) is called the Bayes factor (BF) of iM  versus jM , which is denoted here by i jB . 
In essence, i jB  evaluates the evidence provided by the data in favour of iM  against jM . More 
explicitly, it is the amount by which the observed data change the prior odds of model iM  over 

jM  into posterior odds: /BF Posterior Odds Prior Odds . If both hypotheses are simple and 
)()( ji MpMp , then i jB  boils down to the usual likelihood ratio. One says that the data 

provides support for iM  over jM  if 1i jB , and vice-versa. Jeffreys (1961) proposed the 
following scale for interpreting Bayes the factor 12B  of 1H  against 2H . 

1BF : Negative (i.e. support for H2); 31 BF : Barely worth mentioning evidence 
for  H1; 103 BF : Substantial support for H1; 10010 BF :  Strong  support  for  H1; 

100BF : Decisive support for H1 

It is worth emphasizing that strong support for iM  versus jM  need not translate into 
high posterior probability for iM  and a low one for jM . Both models might be improbable, jM  
being more unlikely than iM . Bayes factors can be difficult to compute in practice. In particular, 
if )(p  is improper, then )|( Myp  necessarily is, and Bayes factor is not well defined. Plummer 
(2008) also pointed out that Bayes factors are numerically unstable when proper, but diffuse 
priors are used. 

2.3.2. The deviance information criterion  

From a decision theoretic perspective, model selection can be cast in terms of minimizing a loss 
function appropriate to the decision problem at hand. A general loss function based the 
likelihood function is the deviance, ))|(log(2),( yLyD , where ( | )L y  denotes the 
likelihood function and )(log x  is the natural logarithm of x . ( , )D y  is minimized as the 
corresponding utility function, the (log)-likelihood function, is maximized. Model selection can 
thus proceed by minimizing the deviance ))ˆ|(log(2)ˆ( yLD , where ˆ  is the maximum 
likelihood estimate (MLE) of .  

However, the introduction of extra parameters will result in an increased likelihood, 
regardless of whether or not those new parameters are actually relevant. As a consequence, a 
simple comparison of the maximum likelihoods (or alternatively the deviances) of different 
models will always favour the model with more parameters. Information criteria (basically 
penalized likelihood measures) have been developed to overcome this bias towards higher 
dimensional models. Their principle is to penalize the more complex models to offset any 
improvement in the maximum likelihood that may arise from the extra parameters. 

In the classical framework, the most popular information criteria are the Akaike 
information criterion (AIC) kyL 2))ˆ|((log2AIC  (Akaike 1973), and the Bayesian 
information criterion (BIC) or Schwarz criterion )log())ˆ|((log2BIC nkyL  (Schwarz 
1978), where k is the number of free parameters, and n is the sample size.  
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In the Bayesian framework, the deviance information criterion (DIC) introduced by 
Spiegelhalter et al. (2002) is widely used. The DIC is defined as 

DIC DD P .           (2.8) 

dypyLyDD )|()]|(log([2)]|([E  is the posterior mean of the deviance which is 

interpreted as a measure of fit, whereas the “effective number of parameters” ˆ
DP D D  acts as 

a penalty for model complexity, where ˆ (E[ | ])D D y  is the deviance evaluated at the 
posterior mean of the model parameters. 

The model with the smallest DIC is favoured as this indicates the best balance between 
goodness of fit and model complexity. In Article II,  the  DIC was  used,  along  with  the  mean 
squared error (MSE) to investigate whether including environmental noise in one or another 
parameter makes a difference to the fit and predictive performance of population dynamical 
models. 

2.3.3. Stochastic search variable selection 

Stochastic search variable selection (SSVS) (George McCulloch 1993) is a Bayesian procedure 
for  selecting  promising  subsets  of  predictors  in  a  regression  set-up.  Its  rationale  is  to  embed a  
multiple regression in a hierarchical normal mixture model, where latent indicators are used to 
identify the relevant predictors. To keep things simple, the sketch of SSVS given below is 
restricted to the multiple linear regression setting. 

Let T
1 ),...,( nyyy  denote observations of the response variable and ),...,( 1 Jxxx  be a 

set of J potential predictors for the responses iy .  A linear  regression  of  y over x has  the  form  

0 1
J

i j j j iy x , where 2~ N (0, )i , independently for ni ,...,1 . In order to find a 
subset of the predictors with significant effects, SSVS utilizes indicator variables j  ,  one  for  
each covariate jx  ),...,1( Jj , such that j  takes the value one when jx  is included in the 
model, and is zero otherwise. Bernoulli priors, ~ ( )jj Bern p , ( 0 1jp ), are assigned to the 
indicator variables, where jp  quantifies the a priori expectation that jx  needs to be included 
into the model. 

The prior distribution of j  is defined as a mixture of two normal distributions, 
conditional on the indicator j . That is, 1 2| ~ (1 ) (0, ) (0, )j j j jN c N c , where the 
constant 01c  is selected to be very small, whereas 02c  is set to be large. With this prior 
specification, the effect j  is  forced  to  be  close  to  zero  when 0j  since the corresponding 
prior is a narrow “spike” clustered around zero, while being freely estimated from the data when 

1j  since the corresponding “slab” component of the prior is diffuse. 

A Gibbs sampling methodology is used to generate samples from the joint posterior 
)|,,( 2 yp . The covariates with significant effects can be identified as those with higher 
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inclusion probabilities. The importance of a single predictor jx  can also be evaluated through 
the Bayes factor,  

)1(/
)]|(Pr1[/)|(Pr

jj

jj

pp
yy

,  

which evaluates the evidence provided by the data in favour of including versus not including jx  
into the model. This approach was used in Articles III and IV to constrain the effects of spurious 
inter-specific interactions to be close to zero, so that they do not affect the amount of variance 
attributable to different factors of fluctuation in species abundances. 

2.4. Model assessment through posterior predictive checks 

Model assessment implies the willingness to evaluate a statistical model in order to discover 
what (if anything) may be deficient about the model at hand, and find ways of remedying the 
problem, independently of any other model. There are many ways of assessing a model e.g., 
checking the distributional assumption about residuals in a regression setting. A standard method 
for Bayesian model assessment is posterior predictive checking (Gelman et al. 1996, 2003), 
where some function of the observed data is compared to its counterpart based on replicated data 
from the fitted model, and systematic discrepancies between the two taken as evidence for 
potential failings of the model. One approach is posterior predictive cross-validation which 
consists  of  omitting  some  of  the  observed  data,  and  forecasting  them  to  find  out  whether  the  
omitted data are consistent with their posterior predictive distributions. The posterior predictive 
assessment is made in terms of posterior probability statements about the posterior predictive 
distribution, )|.( yrepyp , where y denotes the observed data and y.rep the replicated data from 
the fitted model. This approach to model assessment was utilized in article IV. 
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3. A PROBABILISTIC TEST OF THE NEUTRAL THEORY OF 
BIODIVERSITY  

The neutral theory of biodiversity (Bell 2000; Hubbell 2001) is one of the hottest topics in 
ecology right now. It refers to the underlying assumption that traits differences between 
trophically similar species have no impact on their relative abundances or their speciation rates. 
Although empirical evaluations of the neutral theory are becoming quite common, tests that 
elucidate the underlying mechanisms are still missing. Most of previous tests of the neutral 
theory have been limited to examining the consistency of empirical abundance-frequency 
patterns  of  local  communities  with  the  equilibrium  predictions  of  the  neutral  theory,  using  
snapshot data or temporally pooling several samples.  

A sensible way of evaluating a dynamical model is to fit the model to temporal data and 
ask whether the resulting parameter values are sensible. In Article I a discrete-time version of the 
“unified neutral theory of biodiversity and biogeography” (UNTB) (Hubbell 2001), with the 
zero-sum assumption relaxed, was fitted to long-term macro-moth (Lepidoptera) community data 
from the Rothamsted Insect Survey (RIS) network in the UK, to see how well the neutral model 
would explain the changes in species abundances.  

More specifically, let ,i tN  denote the abundance of species i at time t (S species in total), 
in the focal community assumed to be dynamically coupled to a metacommunity through 
immigrantion. Neutral dynamics were modelled by assuming that the expected number, ti, , of 
individuals of species i at time t is given by  

]xx)1[( 1,1, ittittti PmCmJ ,        (3.1) 

where ti
S
it NJ ,1  is the total community size at time t, tm  is the immigration rate at time t, 

which is assumed to be equal across species (under neutrality, immigrants are taken randomly 
from the metacommunity, their relative abundances being the sole arbiter of the probability that 
an immigrant is of a particular species), ttiti JNC /,,  is the relative abundance of species i in 
the community at time t, and iP  is the metacommunity relative abundance of species i, which 
was assumed to be constant on the ecological time-scale of the data sets considered in Article I, 
and speciation was not included into the model. 

Since neutrality implies no selective difference between species, the fraction (1 tm ) of 
individuals of species i produced locally will have the same expected relative frequency as in the 
previous generation (i.e. , 1i tC ).  Equation  (3.1)  is  essentially  a  discrete-time  version  of  the  
UNTB, except that the zero-sum is relaxed.  

Denoting by tiJP ,  the composite variable it PJ x  and recognizing that 

1,1,1 x titit NCJ , equation (3.1) can be written as ]xx)1[( ,1,, tittitti JPmNm . 

Random drift was incorporated into the model by thinking of ,i t  as a birth rate, so that tiN ,  can 
be assumed to be distributed as  

, ,~ Poissoni t i tN .           (3.2) 
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Further, the observed abundance of species i at time t, tiy , , was assumed to be distributed as  

, ,~ Poisson( x )i t i t ty N q ,          (3.3) 

where the “sampling rate”, tq , represents the proportion of ,i tN  which has been observed. In a 
similar fashion to the variance effective population size (e.g. Berthier et al. 2002), tJ  is the size 
of a neutral community that would show the same amount of variation as the focal community. If 
the neutral model is a reasonable description of the community dynamics, then the sampling 
rates should lie between 0 and l. This can be tested out by relaxing the prior on the sampling 
rates to be e.g., )6,3Gamma(  which  has  the  same  expected  value  and  variance  as  the  uniform  
distribution between 0 and 1, but with wider support.  

By not restricting the parameter range, one can check whether the neutral model can 
produce sensible results with realistic community sizes. Under neutrality, the sampling rate 
corresponds to the probability of capture and should lie between 0 and 1, with the value 1 
corresponding to the case where the community is completely observed. For partially observed 
communities like the Lepidoptera communities considered in Aricle I, neutral dynamics should 
imply sampling rates that are necessarily between 0 and 1. Consequently, the neutral model can 
be rejected if it predicts sampling rates that are higher than 1.  

The model was fitted to the data with a Bayesian approach, and the analyses were carried 
out both for the full macro moth data sets and for the geometrids (Geometridae) only. 
Geometrids  are  a  moth  family  whose  members  are  known to  respond in  a  similar  way to  light  
and are sampled particularly efficiently by the Rothamsted Insect Survey light traps (Taylor & 
French 1974). Figure 1 shows the 95% credible intervals of the community sizes, the sampling 
rates and the immigration rates for the geometrids.  

These results suggest that the neutral model would need sampling rates that are higher 
than 1 in order to fit to the data well. This is unrealistic as it implies community sizes that are 
lower than the observed numbers. So, directly fitting the neutral model to the data showed that it 
is unrealistic. 

An obvious explanation for the poor performance of the neutral model is the fact that it 
attributes all the dynamics to chance, ignoring many potentially important factors namely (1) 
environmental stochasticity which is known to affect the dynamics of populations regardless of 
their sizes (Lande et al. 2003; Chase 2005), so it is not surprising that we find it in community 
dynamics as well; (2) density-dependence, which has been shown to occur in a larger set of 
similar  RIS  moth  data  (Woiwod  &  Hanski  1992),  and  (3)  competitive  asymmetries  across  
species.  

The next section is devoted to the development of a more comprehensive framework 
designed to accommodate the mechanisms overlooked by the neutral perspective. The model is 
used to analyze community time series data from a variety of taxa for evaluating the relative 
importance of different factors.  
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Figure 1: Posterior medians and 95% credibility sets for the estimated community sizes and the observed 
values (solid lines): (A–C); posterior medians and 95% credibility sets for the estimated sampling rates: 
(D–F) and for 10 x immigration rates: (G–I). The dashed horizontal lines in panels D - F are drawn at 
height 1. These results concern the geometrid species only. 
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4. THE GENERAL FRAMEWORK 

Ecological data are often fraught with measurement errors and missing data (Clark & Bjørnstad 
2004). The state-space model formulation (de Valpine & Hastings 2002; Buckland et al. 2004; 
Clark & Bjørnstad 2004; Rivot et al. 2004; Gimenez et al. 2007) provides a natural approach to 
integrating the process model which describes the dynamical behavior of a system, usually by 
conditional Markovian transition between successive states, and the observation model (or 
sampling model) intended to map the observed data to the states of the underlying process with 
regard to sampling errors. The general framework described in this section assumes Gaussian 
noise for both the process and the sampling model. 

4.1. The process model 

The underlying model assumed for species abundance dynamics is a discrete-time stochastic 
Gompertz model (Jacobson et al. 2004; Dennis et al. 2006). That is, 

1, , ,, 1 , 11 /exp logS
i ji t i j i i ti t j tN N r N k , 2,3, ...,Tt ,    (4.1) 

where S is the total number of species, ,i tN is the number of individuals of species i at time t, ir  
and ik  are respectively the intrinsic growth rate and the natural logarithm of the carrying 
capacity of species i; ,i j  is the coefficient of interaction between species i and j, which 
measures the per capita effect of species j on the growth of species i, with all intra-specific 
coefficients, ,i i , set to 1, and ,i t  is a zero-mean random disturbance affecting the dynamics of 
species i at time t,  and  assumed to  be  Gaussian  (see  below).  On the  natural  logarithmic  scale,  
equation (4.1) becomes 

1 1, , , ,1, /1 S

ji t i t i j j i i ttin n nr k        ( 2,3, ...,Tt ),     (4.2) 

where ,i tn  denotes  the   natural  logarithm of  ,i tN . Equation (4.2) can be compactly written in 
matrix form as 

1 1t t S t tR 1 An n n ,  for 2,3,...,Tt ,      (4.3) 

where tn  denotes the S-dimensional vector of log-abundances of all species at time t, R  is a S-
by-S diagonal matrix with ,i i irR , and S1  is the S-dimensional vector with all elements equal 

to 1; , , /i j i j iA k , and T
,1 ,( ,..., )t t St  is the vector of process disturbances affecting the 

community dynamics at time t, with one element by species. The vectors t  are  set  to  be  
serially independent and multivariate normally distributed around the zero-vector, with a 
covariance matrix denoted by t . This covariance matrix is further decomposed as  

t tC D            (4.4) 
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where 2iag ( )d /t i tND  and C  are respectively the demographic and environmental 
components of the underlying dynamics. Note the inverse scaling of demographic stochasticity 
with the population size (e.g. Sæther et al. 2000; Bjørnstad & Grenfell 2001), implying that 
demographic stochasticity can be neglected when dealing with large populations.  

Correlations in species’ responses to environmental fluctuations are accommodated by 
specifying C  as a full matrix with diagonal elements, ,Ci i , and off-diagonal elements, ,Ci j  
( i j ), representing species-specific and common responses to environmental fluctuations, 
respectively. Consequently, the correlation between the responses of species i and j to the 
environmental disturbances is evaluated by 1/ 2

, , , ,C C C( )/i j i j i i j j . 

4.2. Variance partitioning 

The temporal fluctuations in the abundance of individual species can be decomposed into 
relative contributions from intra-specific interactions, inter-specific interactions, and 
environmental forcing. More specifically, let 1,,, tititi nnz  denote the change in the log-

abundance of species i from time 1t  to time t, T
1,. }{ ttii zz  and let iiv ,  designate the 

(stationary) variance of T
1,. }{ itii nn . In settings where demographic stochasticity can be 

neglected (i.e. for large populations), )(var .iz  can be additively decomposed into the 

contributions 2
, )/( iiii krv , jjji jiii vkr ,

2
,

2)/( , and ,i iC  from intra-specific interactions, 
inter-specific interactions, and environmental forcing, respectively. This methodology was 
applied in Article III to analyze community data from a range of taxa: macro-moths 
(Lepidoptera), fish, crustaceans, birds, and rodents.  

Environmental forcing accounted for most of the temporal variation, followed by intra-
specific interactions. The contribution of inter-specific interactions was found to be broadly 
minor.  Figure  2  shows  the  posterior  distributions  of the proportion of temporal variation 
attributable to environmental forcing and to intra-specific interactions in the dynamics of moths, 
fish, and crustaceans.  

4.3. The sampling model 

A convenient setting for accommodating sampling error is when replicated samples are 
available. Assume k replicates (e.g. data from k different traps on the same site) are available, 
and let , ,i t ky  denote the natural logarithm of the observed number of individuals of species i at 
time t, from trap k. Under Gaussian observation errors, a sensible sampling model that takes into 
account differences in capture probabilities between species across traps is given by 

2
, , , , ,| ~ N( , )i t k i t i t i k iy n n b    ( 1, 2,...,Tt ),      (4.5) 
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where 2
i  is the sampling variance specific to species i. The random variable ),0(~ 2

, bki Nb  is 
intended to correct for possible differences in trapping efficiency between traps with regard to 
species i, and is set to zero for one of the replicates (one of the traps), to force identifiability.  

This sampling model was used in Article IV to analyze macro-moth (Lepidoptera) light-
trapping abundance time series from the Rothamsted Insect Survey network in the UK, using 
replicated  samples  from  two  traps  (Geescroft  I  and  Geescroft  II)  on  Rothamsted  farm  in  
Hertfordshire, UK (Woiwod & Harrington 1994), with all values of the random variable b set to 
zero for Geescroft I as discussed above. 

 

Figure 2: Error-bars (mean  1SD) for the proportions of variance attributable to environmental forcing 
(black diamonds) and to intra-specific interactions (grey boxes) in the dynamics of individual moth, fish, 
and crustacean species. 
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4.4. Incorporating environmental covariates 

The model described by equations (4.2) & (4.3) can be extended to explicitly include the effects 
of K environmental covariates KXX ,...,1  as 

tttStt XAn1Rnn )( 11        (4.6) 

where T
,1,( , , )t K ttX XX , T T

,, 1( , , )i i Ki , and ki,  quantifies  the  strength  of  

dependency of the growth rate of species i on the environmental variable kX . All environmental 
variables kX  are assumed to be standardized to have zero-mean and unit variance. 

In article IV, the model (4.6) was fitted to replicated light-trapping data of twelve 
noctuid (Noctuidae) macro-moth (Lepidoptera) from the Rothamsted Insect Survey network in 
the UK. The data used in Article IV came from two traps: Geescroft I and Geescroft II sampled 
on Rothamsted Farm in Hertfordshire UK (Woiwod & Gould 2008), and covered the period 
1973-2003 for Geescroft I and 1973-1998 for Geescroft II. Two weather variables namely, 
mean winter (Dec-Feb) rainfall (in mm), mean winter temperature were used as environmental 
covariates. 

The model fitting was carried out by MCMC simulation via OpenBUGS (Thomas et al. 
2006). The model adequacy was evaluated through posterior predictive cross-validation by 
leaving out the last five observations for Geescroft I and using the model to forecast them and 
determine how well the model predictions would approximate the omitted data. The model 
predictions were consistent with the discarded data  

Figure 3a summarizes the posterior distributions of the parameters evaluating the effects 
of the two weather variables on individual species. Figure 3b summarizes the posterior 
distributions of the variable b representing the trapping efficiency of the Geescroft II trap 
relative to Geescroft I for each species, with all values corresponding to Geescroft I set to zero 
to force identifiability. Negative values of b represent lower capture efficiency of Geescroft II 
relative to Geescroft I. Fig. 3c shows the relative contribution of environmental variation (not 
including inter-specific interactions) as well as intra- and inter-specific interactions to the total 
variation in the dynamics of individual species, and Fig. 3d shows the proportion of 
environmental variance explained by the included weather variables both individually and 
collectively. 
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Figure 3: (a) Error-bars (mean ± SD), representing 68% credible intervals for the the effects of winter 
rainfall (grey squares) and winter temperature (black circles) on the growth of individual species; (b) 
posterior means and 68% credible intervals for the variable b representing the efficiency of the 
Geescroft II trap relative to Geescroft I for each species, with all values corresponding to Geescroft I 
set to zero; (c-d) barplots for the proportions of environmental variance attributable to environmental 
stochasticity, as well as intra-/inter-specific interactions in the dynamics of individual species (c), and 
for the proportion of environmental variance explained by winter rainfall and winter temperature, 
both individually and collectively (d). 

5. INTEGRATING NEUTRALITY AND NICHES  

Many ecological scholars recognize that trait-mediated and stochastic factors operate 
simultaneously to generate the biodiversity patterns observed in nature (Chave et al. 2002; 
Gravel et al. 2006; Héraut 2007). Accordingly, it has been suggested that neutrality and stringent 
niche segregation can be viewed as extremes of a continuum (Gravel et al. 2006). There is a call 
for comprehensive frameworks within which the relative importance of niche-mediated and 
neutral factors processes can be evaluated in light of field data. However, attempts to make the 
niche-neutral continuum operational remain sparse. 
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This subsection describes a model-based approach to operationalizing the niche-neutral 
continuum. The methodology connects the niche configuration (i.e. the way species break up the 
resource pool) to community dynamics through a mechanistic description of interaction 
coefficients, and includes demographic stochasticity to accommodate the stochastic character of 
species abundance dynamics. Species’ niches are defined in terms of their resource utilization 
kernels. 

Utilization of a resource with attributes x by a species i is described by a probability 
density function ( )if x . If the resource is uniform, ( )if x  describes the probability density (or 
probability mass function for resources with discrete states) for which resource state x an 
individual of species i will be found using, and is referred to as species i’s resource utilization 
curve (RUC).  

Competition between species is assumed to result from overlaps in their RUCs, with the 
competition being more or less intense depending on the degree of overlaps in species niches and 
the niche breadths of potential competitors. This is how the niche aspect is incorporated into the 
model. 

Several niche breadth and niche overlap have been proposed (see e.g. Colwell & 
Futuyma 1971; Hurlbert 1978; or Abrams 1980 for a review). Herein, the Levins’(1968) niche 
breadth index for species i ,  defined  as dxxfw ii )(/1 2  is adopted. The formulae for niche 
breadth, niche overlap, and competition coefficient given here also apply to resources occurring 
in  discrete  states,  with  sums  in  place  of  integrals  and  probability  mass  functions  in  place  of  
probability density functions. Following Pianka (1974), we define the overlap, i jO , in the niches 
of species i and j as 

2 2( ) ( ) ( ) ( )/i j i ji jO f x f x dx f x dx f x dx        (5.1) 

Intuitively, i jO quantifies the probability that two individuals found in a given resource state 
belong to species i and j relative to the geometric mean of the probabilities that they both 
belong to either species (the denominator of eqn. 5.1). Pianka’s niche overlap index takes 
values between zero (no resources used in common) and one (complete overlap). In particular, 
the overlap of a species’ niche with itself is 1, so 1i i . 

Along the lines of MacArthur & Levins (1967) and Simberloff (1982), the competitive 
effect of species j on species i, resulting from overlap in utilization of a single resource is 
defined as  

2( ) ( ) ( )/i j ii j f x f x dx f x dx .        (5.2) 

Intuitively, i j  evaluates the probability that two individuals found in a given resource state 
belong to species i and j, relative to the probability that they both belong to species i. The full 
effect of competition from species j on species i at a given t is , ,i j j tn . This completes the 
link between niche configuration and community dynamics. 

In this setting, the competitive effect of species j on species i, i j , is related to the two 
species’ niche characteristics through 
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/i j i j i jO w w ,          (5.3) 

MacArthur & Levins (1967) suggested that under Gaussian RUCs,  
2 2 22exp ( ) ( )/i j i j i jO w w ,        (5.4) 

where i  and j  are the niche modes, and iw  and jw  the niche breadths (standard deviations 

of the RUCs) for species i and j, respectively. If in particular the niche breadths are equal 

i.e. i jw w w , then 2 2
,exp( /4 )i j i jO d w , where , | |i j i jd  (Begon et al. 1996).  

Figure 4 illustrates the connection between the niche configuration and the extent of competition 
experienced by a species i from another species j. The difference in species niche breadths is 
represented by the ratio of the niche breadth of species i to that of species j. The quantity 

,

,1- 1

i ji j

i i
S
i

b

S b
, 

where ijiiji krb /,, , can be used to evaluate the departure of the dynamical behaviour of a 
community from neutral drift, as a proxy for the community position on the niche-neutral 
continuum. The metric  takes values between 0 and 1 with the extremes 0 and 1 corresponding 
to strict niche separation and neutral drift, respectively. 

 
Figure 4: Illustration of the connection between niche configuration and the extent of 
competition experienced by species i from species j. The x-axis is the niche overlap, the y-axis 
represents the ratio of the niche breadths of species i to that of species j, and the z-axis is the 
competitive effect of species j on species i. 
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This methodology was used in Article V to analyze rodent web-trapping data from the Sevilleta 
National Wildlife Refuge in central New Mexico, USA (Figgens 2006), involving two species: 
Dypodomys ordii (Ord’s Kangaroo rat) and Dypodomys spectabilis (Bannertail Kangaroo rat). 
Replicated time series of species abundances were analyzed under the process model described 
in equation (4.1), and the resulting competition coefficients were used to reconstruct the niche 
configuration along a single niche axis with continuous and normally-distributed resource states, 
using eqns (5.3) and (5.4).  

The replicated nature of the data (the sampling webs were monitored for three 
consecutive nights, which provides three replicated samples) was used to estimate the capture 
probabilities across species over time. When dealing with count data, it might be desirable to 
use a sampling model that honors the discrete nature of the data. For example  

, , , , ,| ~ Bin( , )i t k i t i t i tY p N p          (5.5) 

(Royle & Dorazio 2006), where tiN ,  denotes the actual number of individuals of species i at 

time t, ktiY ,,  is the observed number of individuals of species i at time t in the kth replicate, and 

tip ,  represents the detection probability for species i during year t.  

Figure 5 shows the niche configuration for D. ordii and D. spectabilis resulting from the 
competition coefficients derived from species abundances time series using equations (5.3) and –
(5.4), with the niche mode and niche breadth of one of species (D. ordii) set to zero and 1, 
respectively for identifiability 

.  

Figure 5: Niche configuration implied by the competition coefficients derived from time series of species 
abundances, with the niche mode and niche breadth of D. ordii set to 0 and 1, respectively for 
identifiability. 
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6. SUMMARIES OF THE ORIGINAL ARTICLES AND MAIN RESULTS 

Article I: Species abundance dynamics under neutral assumptions: a Bayesian 
approach to the controversy  

In article I, a discrete-time version of Hubbell’s (2001) “unified neutral theory of biodiversity 
and biogeography” was developed with the assumption of a constant community size relaxed. 
The model was fitted with a hierarchical Bayesian approach to long-term macro-moth 
(Lepidoptera) light-trapping data from the Rothamsted Insect Survey network in the UK. The 
results suggested that the neutral model would need parameter values that are impossible in order 
to fit the data well. This is because the community sizes fluctuate more than expected under 
neutrality. The excess of variability over neutral drift owes presumably to mechanisms such as 
density-dependent effects, differential responses to environmental fluctuations, and potential 
imbalances in competitive abilities across species, which are overlooked by the neutral theory. 
This was one of the first times that the neutral theory was tested on temporal data, and it turned 
out that demographic stochasticity alone and/or neutrality cannot explain the fluctuations in the 
study communities.  

Article II: On the setting of environmental noise and the performance of 
population dynamical models  

Article II investigated whether including environmental noise in one or/and another parameter 
makes a difference to the behaviour of population dynamical models, with a focus on model fit 
and predictive performance. To do this, three population dynamical models of the Ricker type 
were developed, with the noise included in the growth rate (Model 1), in the carrying capacity 
(Model 2), or in both (Model 3). Several synthetic datasets were generated from each model. The 
three models were fitted to the simulated data with a Bayesian approach, and their performances 
in fitting to the data and in forecasting new observations were assessed. The results suggested 
that the way environmental noise is incorporated into a model may profoundly affect its 
performance. Overall, Models 1 and 3 broadly outperformed Model 2, the first having the 
advantage of simplicity and computational tractability. An interesting result emerging from the 
analyses was the broad positive correlation between mean square errors and deviance 
information criteria, suggesting that the latter is also informative about the predictive 
performance of the model.  

Article III: What drives community dynamics?  

Article III tackled one of the central questions in community ecology: what determines patterns 
of temporal variation in species abundance, and what is the relative importance of environmental 
forcing versus compensatory dynamics? This issue was approached through the combination of 
multi-species stochastic dynamics modelling with refined statistical methods and high quality 
data to decompose the community dynamics into the different components namely 
environmental stochasticity and intra-/inter-specific interactions. The methodology was 
implemented using data from a range of taxa including moths, fish, crustaceans, birds and 



33 
 

rodents. The results suggested that environmental variation is the most important driver of 
community dynamics across taxa. Whilst there was always evidence for some density-dependent 
regulation, the influence of inter-specific interactions on community-level variances remained 
broadly minor. This implies that community-level variances depend mainly on how species 
respond to environmental fluctuations. This result is in direct contrast with the view that inter-
specific competition reduces community-level variability by promoting negative covariances 
between species abundances (Tilman & Downling 1994; Lawton & Brown 1993). We thus need 
to understand species-environment interactions and species differences in their responses to 
environmental fluctuations if we are to effectively predict their dynamics (Ives et al. 1999).  

Article IV: A multispecies perspective on ecological impacts of climatic 
forcing  

This  article  touched  upon  a  timely  research  area,  namely  investigating  the  effects  of  weather  
and/or climate fluctuations on population and community dynamics. It used the state-space 
model formulation in the increasingly popular hierarchical Bayesian framework to extend the 
scope of previously proposed models of population dynamics under climatic forcing to multi-
species systems. The model was designed to explicitly accommodate covariance patterns in 
species responses to latent environmental factors. The implementation of the model was 
demonstrated by fitting it to macro-moth (Lepidoptera) community data from the Rothamsted 
Insect Survey network in the UK, using winter rainfall and winter temperature as environmental 
covariates. The proportions of environmental variances and covariances attributable to the 
included climatic covariates in the dynamics of individual species were evaluated.  

Article V: Integrating the niche and neutral perspectives on community 
structure and dynamics  

In Article V, a model-based approach was proposed to operationalize the now widely accepted 
idea that there exists a continuum of community dynamical behaviours between neutrality and 
niches. The methodology consisted of separating out the role of trait-mediated and stochastic 
factors, linking the niche configuration to community dynamics through competition, and adding 
demographic stochasticity. This resulted in a comprehensive framework including neutrality and 
stringent niches separation as extreme cases. The proposed approach brings mechanisms and 
patterns closer together, making it possible for the importance of niche-mediated and stochastic 
factors to be examined in light of the data. A metric for evaluating the position of a community 
on the niche-neutral continuum was developed as well. The methodology was illustrated with 
rodent web-trapping data from the Sevilleta National Wildlife Refuge (NWR) in central New 
Mexico, USA. The coefficients of inter-specific competition estimated from species abundance 
time series were used to reconstruct the niche configuration.  
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7. CONCLUSIONS & PERSPECTIVES 

This thesis combined the hierarchical Bayesian modelling approach with the computational 
intensive methods known as Markov chain Monte Carlo, to develop methodologies for 
identifying and evaluating the workings of community structure and dynamics.  

Models of increasing complexity were developed and used to analyze data from real-
world systems. The results of a preliminary analysis (I) suggested that the failure to acknowledge 
a range of potentially important mechanisms such as density-dependent regulation, species 
differences in their ecologies and in their responses to environmental fluctuations makes neutral 
models inadequate for explaining and predicting the patterns of species abundances and the 
structure of many real-world systems.  

Article II was devoted to investigating whether the way environmental noise is 
incorporated into a population dynamical model makes a difference to the model performance, 
with a focus on model fit and predictive performance. 

In article III, a comprehensive framework was developed to evaluate the relative 
importance of different factors namely, environmental forcing, and inter-/inter-specific 
interactions  as  drivers  of  community  dynamics.  The  model  was  used  to  analyze  species  
abundance time series from a variety of taxa: moths (Lepidoptera), fish, crustaceans, birds, and 
rodents. Environmental forcing was consistently found to be the most important driver of 
community dynamics across taxa. There was also broad evidence for population regulation 
through density-dependence, but the contribution of inter-specific interactions to temporal 
variation in species abundances was broadly weak. The model developed in article III was 
extended in Article IV to include environmental covariates and explicitly accommodate 
sampling error through replicated samples.  

A model-based approach to integrating the niche and neutral perspectives on community 
structure and dynamics was developed in Article V, and a proxy for community position on the 
niche-neutral continuum was proposed.  

This thesis contributes to elucidating the mechanisms that drive the structure and 
dynamics of ecological communities by demonstrating that environmental variation rather than 
inter-specific competition dominates the dynamics in a diverse range of communities. It is quite 
amazing to see that broadly similar results would arise for such groups of species as moths, fish, 
crustaceans, birds, and rodents which are so different from one another, with environmental 
forcing consistently dominating the dynamics. These findings call into question the alleged 
importance of negative covariance between species in stabilizing ecological communities 
(Tilman & Downling 1994; Lawton & Brown 1993), and emphasize the need to better 
understand how species are affected by the environment. 

The scope of the methods presented in this thesis can be extended in different ways. For 
example, a spatially explicit setting (Hastings 1980, Hastings & Wolin 1989) can be included. 
This means adding migration into the general framework, which would result in a structured 
meta-community model. The communities can also be embedded in a larger food web (Ings et al. 
2009). All these refinements can be achieved under the flexible hierarchical Bayesian framework 
adopted here.  
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