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On almost sure elimination of

generalized quantifiers

Risto Kaila

Summary

First-order logic has a rather limited expressive power. For instance, apart

from some trivial cases, there is no first-order sentence which is true on every

structure over a fixed vocabulary if and only if the structure is rigid, that is, it

has only one automorphism. Generalized quantifiers provide convenient ways

for extending logics. This line of research was initiated by Mostowski [17]

who studied first-order logic augmented with cardinality quantifiers such as

“there are infinitely many elements”. Lindström [11] defined a general class

of quantifiers by associating with every property of structures a quantifier in

a natural way. Tarski [19] founded another interesting study to strengthen

first-order logic by allowing infinitely long expressions.

Zero-one and convergence laws provide a method for analyzing the ex-

pressive powers of logics on finite structures. The zero-one law of a logic

means that the probabilities of all sentences on random structures of a given

finite size converge to zero or one as the size approaches infinity. If the prob-

abilities converge, but not necessarily to zero or one, then the logic has the

convergence law. The very first zero-one law for first-order logic was proved

by Glebskii, Kogan, Liogon’kii, and Talanov [4] and, independently, by Fagin

[2]. Both of these proofs actually show that first-order logic has almost sure

quantifier elimination. This means that, for every formula ϕ(x̄) of first-order

logic, there is a quantifier-free formula θ(x̄) of first-order logic so that the

probability of the sentence ∀x̄[ϕ(x̄) ↔ θ(x̄)] converges to one as the size of

structures approaches infinity. (Here x̄ may also be the empty sequence and it

is assumed that first-order logic has a quantifier-free everywhere true sentence

and its negation.) Almost sure quantifier elimination implies the zero-one law

if the vocabulary of random structures does not have constant symbols. The

more general question of almost sure equivalence of logics is studied in Hella,

Kolaitis, and Luosto [6]. Zero-one and convergence laws are known to hold in
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several cases. For first-order logic, some very notable results can be found in

Shelah and Spencer [18] and ;Luczak and Spencer [12]. For least fixed point

logic, some interesting results can be found, for example, in Tyszkiewicz [20].

Zero-one laws for the logic Lω
∞ω can be found, for example, in Kolaitis and

Vardi [10] and Lynch [16].

There have been only few zero-one laws for logics with generalized quan-

tifiers. The only published results which I know can be found in Dawar and

Grädel [1]. On random graphs, Dawar and Grädel [1] investigated almost

sure quantifier elimination and zero-one laws of first-order logic augmented

with some generalized quantifiers expressing graph properties such as rigidity.

Results for some restricted classes of sentences with generalized quantifiers

can be found in Fayolle et al. [3] and Knyazev [8]. However, zero-one laws are

very interesting on logics with generalized quantifiers because non-definability

results for such logics are often difficult to obtain by using other methods and

generalized quantifiers have been actively studied on finite structures in re-

cent years. For example, in the context of descriptive complexity theory, some

very important results can be found in Hella [5]. This motivated me to es-

tablish a new powerful method for proving almost sure quantifier elimination

and zero-one laws for logics with generalized quantifiers.

This doctoral thesis is consisting of the following two papers.

(i) On probabilistic elimination of generalized quantifiers.

(ii) On almost sure elimination of numerical quantifiers.

The first paper has both more methodological results and a wider class of

applications while the second paper is focused on numerical quantifiers. The

approach is slightly different in the second paper, but the methods are equiv-

alent to the corresponding one in the first paper.

Definitions

In this thesis (generalized) quantifiers mean the following. They are also

called Lindström quantifiers, and the definition is equivalent to the original

one in Lindström [11]. Let r̄ = (r1, . . . , rm) be a finite sequence of numbers

in N+ = {1, 2, . . .}. A structure A is of type r̄ if it is of the form A =

(A,P1, . . . , Pm), where A is the universe and Pi ⊆ Ari for each 1 � i � m.

A quantifier QK of type r̄ is associated with every class K of structures of

type r̄, which is closed under isomorphisms. The set of formulas of the logic

Lωω(QK) is defined as for first-order logic Lωω with the additional rule:
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if ψi is a formula and ȳi is an ri-tuple of distinct variable sym-

bols for each 1 � i � m, then QKȳ1, . . . , ȳm(ψ1, . . . , ψm) is also a

formula.

Free and bound variable symbols are defined in the obvious way and a

formula with no free variable symbols is a sentence. I use x1, x2, . . . and

y1, y2, . . . as distinct variable symbols and notation like x̄ = (x1, . . . , xm)

for sequences of distinct variable symbols. The notation ϕ(x1, . . . , xm) and

ψ(ȳ) for formulas ϕ and ψ mean that the free variable symbols are among

x1, . . . , xm and among the components of ȳ respectively.

The semantics of the quantifier QK is defined as follows. Suppose that the

free variable symbols of a formula ψi are among the components of x̄i and ȳi.

For every structure A and interpretation āi of x̄i, let

A |= QKȳ1, . . . , ȳm

(
ψ1(ā1, ȳ1), . . . , ψm(ām, ȳm)

)
⇔

(
A,ψA,ā1

1 , . . . , ψA,ām
m

)
∈ K,

where ψA,āi
i = {b̄ ∈ Ari : A |= ψi(āi, b̄)}. The arity of the quantifier QK of

type (r1, . . . , rm) is max{ri : 1 � i � m}. If m = 1, QK is a simple r1-ary

quantifier. The existential and universal quantifiers may be viewed as simple

unary quantifiers. Quantifiers are often identified with the defining classes.

The logic Lωω(Q), where Q is a collection of quantifiers, can be defined in

a similar way. The logic Lk
ωω(Q), k ∈ N+, is as Lωω(Q) but every formula has

at most k variable symbols (bound or free). The logic Lk
∞ω(Q), k ∈ N+, is

defined as Lk
ωω(Q) but disjunctions and conjunctions are allowed over any set

of formulas, provided that at most k variable symbols (bound or free) occur

in the formulas. Further, Lω
∞ω(Q) is the union of the logics Lk

∞ω(Q), k ∈ N+.

The logic Lk
∞ω is the same as Lk

∞ω(∅).
With every quantifier Q of type (r1, . . . , rm) and v ∈ N+, a quantifier of

type (vr1, . . . , vrm) is associated as follows:

vQ =
{
(A,P1, . . . , Pm) : (Av, P1, . . . , Pm) ∈ Q

}
,

where in (A,P1, . . . , Pm) the relation Pi is viewed as an vri-ary relation over

A and in (Av, P1, . . . , Pm) it is viewed as an ri-ary relation over Av. The

quantifier vQ is called the v-vectorization of Q. The size of a set S is denoted

by |S|. A quantifier Q of type (r1, . . . , rm) is numerical if (A,P1, . . . , Pm) ∈ Q

with |Pi| = |P ′
i | and P ′

i ⊆ Ari for each 1 � i � m imply that (A,P ′
1, . . . , P

′
m) ∈

Q. Further information on generalized quantifiers can be found, for example,

in [9].
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The probabilistic quantifier elimination technique of this thesis can be used

with all sequences µd
n, n ∈ N+, of discrete probability measures of structures,

where n is the size of structures. In most applications I consider probability

distributions of random structures which are defined as follows. Let the fi-

nite vocabulary τ consist of finitary relation symbols and let A be a random

structure of size n. For every relation symbol R of the vocabulary, let the

probability of A |= R(ā) be pR(n) with these events mutually independent

over all ā ∈ A#(R) and R ∈ τ , where #(R) is the arity of R. The function pR

is called the atomic probability of R. If pR is the same function for all R ∈ τ , it

is denoted by pato and called the atomic probability. For random graphs, the

edge probability pedg is defined in the similar manner but E(x, x) is never true

and E(x, y) ↔ E(y, x) is always true, where E is the edge relation. Finally,

if the probability of a property ϕ of structures converges to one as the size of

structures approaches infinity, then almost all structures are called to have

the property ϕ.

A survey of the results

I shall first describe the idea of a new quantifier elimination technique for the

logic Lk
∞ω, where k ∈ N+. It is easy to extend the idea for all logics of the

form Lk
∞ω(Q). The new quantifier elimination technique is the basis of this

doctoral thesis.

Let the vocabulary be fixed and let K be a class of structures. A complete

quantifier-free formula χ(x̄) is a quantifier-free formula of Lω
∞ω which fixes the

truth value of each atomic formula ψ(x̄). Suppose that, for every complete

quantifier-free formula χ(x̄) of Lk
∞ω and every quantifier-free formula θ(x̄, y)

of Lk
∞ω, either

∀x̄[χ(x̄) → ∃yθ(x̄, y)] holds on all structures of K or

∀x̄[χ(x̄) → ¬∃yθ(x̄, y)] holds on all structures of K.

Then it is easy to see that every formula of Lk
∞ω is equivalent to a quantifier-

free formula of Lk
∞ω over K. Further, the probabilities of sentences of the

above form are often easy to estimate. So here is a technique for proving

probabilistic elimination of quantifiers. In many cases this simple new tech-

nique turns out to be a powerful way to prove almost sure quantifier elimina-

tion and zero-one laws. Furthermore, almost sure quantifier elimination can

be used to prove convergence laws, as it is shown in this thesis.
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When the above technique is used to prove almost sure quantifier elimina-

tion, it actually shows that there is a class K of structures such that almost

all structures are in K and that the logic has quantifier elimination over K,

that is, for every formula ϕ(x̄), there is a quantifier-free formula θ(x̄) such

that ∀x̄[ϕ(x̄) ↔ θ(x̄)] holds on every structure of K. I call such quantifier

elimination almost sure strong quantifier elimination to distinguish it from

the case where the probabilities of the sentences ∀x̄[ϕ(x̄) ↔ θ(x̄)] are consid-

ered separately. In this thesis it is shown that almost sure strong quantifier

elimination coincide with almost sure quantifier elimination for logics of the

form Lk
∞ω(Q), where k ∈ N+, if the vocabulary of random structures does not

have constant symbols.

As the first application of the new almost sure quantifier elimination tech-

nique, I give a practical criterion for a finite set Q of simple unary quantifiers

such that the logic Lω
∞ω(Q) has the zero-one law for constant atomic prob-

abilities. I also show that the logic Lω
∞ω has the zero-one law for atomic

probabilities which satisfy

n−α � pato(n) � 1− n−α for every α > 0 (1)

for all sufficiently large n. This result extends the zero-one law of Kolaitis

and Vardi [10] for the logic Lω
∞ω with the constant atomic probability 1/2.

Further, I show that this more general result also follows from a closer analysis

of the proofs of the very first zero-one law of Glebskii et al. [4] and Fagin

[2]. Lynch [15, 16] proved that, if the edge probability pedg satisfies n−α �
pedg(n) � 1 − n−α for some 0 < α < 1/(k − 1) with k ∈ {2, 3, . . .} for

all sufficiently large n, then the logic Lk
∞ω has the zero-one law for random

graphs. This result is generalized for random structures.

I show that even the logic Lω
∞ω(Qrig), where Qrig is the collection of all

rigidity quantifiers, has the zero-one law for atomic probabilities which satisfy

Condition (1). This result extends the zero-one law of Dawar and Grädel [1]

for the logic Lωω(Q
2
rig), where Q2

rig is the simple binary rigidity quantifier, on

random graphs with the constant edge probability 1/2.

The Härtig quantifier I is defined by the class {(A,P1, P2) : P1, P2 ⊆ A and

|P1| = |P2|} and the Rescher quantifier R is defined by the class {(A,P1, P2) :

P1, P2 ⊆ A and |P1| � |P2|}. Luosto [13] left an open question: is there,

for every v ∈ N+, a sentence of Lωω(
v+1I) which is not equivalent to any

sentence of Lωω(
vI). This question is answered affirmatively by using the new

technique. A similar result holds also for the Rescher quantifier.

Random structures, which have so-called built-in permutations, are also

considered. The results for such cases extend a zero-one law of Lynch [14].
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The second paper of this doctoral thesis is focused on proving almost

sure quantifier elimination and zero-one laws for logics of the form Lω
∞ω(Q),

where Q is a properly chosen collection of simple numerical quantifiers. For

instance, let γ1 and γ2 be constants in the interval ]i, i + 1[ for some i ∈ N

and let Qγ1,γ2 be the collection of all quantifiers defined by the classes

Km,g =
{
(A,P ) : P ⊆ Am and |P | � g(|A|)

}
,

where m ∈ N+ and g is any function g : N+ → R such that nγ1 � g(n) � nγ2

for all n ∈ N+. Then the results show that the logic Lω
∞ω(Qγ1,γ2) has the

zero-one law for atomic probabilities which satisfy Condition (1). Note that

the quantifier which is defined by the class Km,g express that “there are at

least g(n) m-tuples of elements” on structures of size n.

In this thesis, the new almost sure quantifier elimination technique is not

used for proving convergence laws. However, such applications can be found

in [7], where convergence laws are proved on very sparse random structures.

These results extend the convergence laws of Lynch [16] on very sparse random

graphs.
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