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1 Introduction

This thesis has two main objectives: development of adaptive Markov chain Monte

Carlo (MCMC) algorithms and applying them in inverse problems of satellite

remote sensing of the atmosphere. The motivation for developing adaptive MCMC

algorithms originates in the practical problems that appeared while implementing

the MCMC approach to the inverse problems of the GOMOS (Global Ozone

Monitoring by Occultation of Stars) satellite instrument.

The adaptive MCMC algorithms, discussed in this thesis, focus on easily ap-

plicable, effective and, in some sense, ’generic’ Metropolis–Hastings type MCMC

algorithms. The intention has been to create algorithms that would work on a

variety of problems with unknown posterior distributions. It is obvious that the

posterior distributions of some problems are so complicated (e.g., multi-modal),

that they require specifically tailored algorithms. Such problems are not consid-

ered in this thesis.

The MCMC technique has certain advantages over more traditional inverse

techniques. These advantages include possibilities of solving nonlinear and non-

Gaussian inverse problems. In addition, the MCMC technique allows flexibility

in the definition of prior information and noise structure. In this work we have

demonstrated these aspects by applying the MCMC technique to the inverse prob-

lems of the GOMOS satellite instrument. The implementation is possible only by

using adaptive MCMC algorithms.

The thesis consists of 6 original publications which will be referred to by

roman numerals (I–VI). The major contributions of the individual papers are

as follows. Publ. I introduces a practical, easy to implement random walk

MCMC algorithm, Adaptive Proposal, which automatically searches for a proper

proposal distribution for the MCMC algorithm and approximates the the under-

lying target distribution sufficiently well in many cases. In Publ. II an adaptive

MCMC algorithm, Adaptive Metropolis, is developed. The algorithm is the first

fully non-Markovian MCMC technique for which the ergodicity is proven to hold.

Publ. III further develops a variant of the Adaptive Metropolis algorithm called

the Single Component Adaptive Metropolis algorithm. This algorithm combines

the ideas of single component sampling and the AM algorithm. In particular,

high-dimensional problems are considered. In Publ. IV the MCMC technique is

introduced in the context of geophysical problems and, for the first time, applied

to an atmospheric remote sensing problem. Results with simulated data are pre-

sented. Publ. V introduces the methodology of using MCMC technique in the

validation of operational data processing algorithms of atmospheric remote sens-

ing instruments. It is shown that the MCMC technique can be used flexibly for

validating and improving the operational algorithms. Publ. VI considers two

ways, both based on the adaptive MCMC techniques, for solving the posterior
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distributions in a high-dimensional remote sensing problem.

This Summary of the thesis discusses in a general way the developed adaptive

MCMC algorithms and the methodology of applying them to real inverse problems

of satellite remote sensing. In addition, a short introduction to the GOMOS

satellite instrument onboard the Envisat satellite is given.
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2 Markov chain Monte Carlo technique for

solving inverse problems

Indirect measurements are nowadays routinely used in natural sciences to study

various physical and chemical phenomena which are difficult to observe using di-

rect measurements. Examples of such measurements are, for instance, remote

sensing measurements of the Earth and it’s atmosphere and commonly used med-

ical imaging techniques like X-ray and ultrasound measurements. In contrast

to direct measurements the interpretation of the indirect measurements requires

mathematical modeling and computational methods.

Let us denote by y ∈ IRm the measurements, by x ∈ IRd the unknown param-

eters that we are interested, and by f the relationship between these quantities.

To interpret the indirect measurements we need to solve the inverse problem

y = f(x)

for x. Since the measurements include nearly always noise, it is natural to consider

them and the unknown parameters as random variables. The Bayesian solution,

i.e., the posterior distribution, is pointwise characterized by the posterior proba-

bility density function:

p(x | y) =
p(x)p(y | x)

∫

p(x)p(y | x) dx
. (2.1)

The posterior distribution combines the a priori information p(x) and the mea-

surement likelihood p(y | x). To make inferences with respect to the posterior

distribution we need to compute integrals of the form

IE[f(x)] =
∫

f(x)p(x | y) dx, (2.2)

where f is some integrable function. The posterior distribution is typically char-

acterized by computing the expectation, the probability regions of marginal pos-

terior distributions, various quantiles, the covariance matrix and possibly higher

moments which all require integration (2.2). In the general case this is a compli-

cated task as no analytic solutions exist. Monte Carlo techniques, on the other

hand, are based on approximating (2.2) by sampling (X1, . . . , Xn) from the pos-

terior distribution so that the expectation (2.2) with respect to the posterior

distribution could be approximated by using finite sums:

IE[f(x)] ≈ 1

n + 1

n
∑

i=0

f(Xi).

In the traditional Monte Carlo sampling the states sampled are independent, but

in the Markov chain Monte Carlo (MCMC) sampling they may be dependent
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forming a Markov chain whose stationary distribution is the target posterior dis-

tribution p(x | y). Some of the problems typically faced in the traditional Monte

Carlo sampling are overcome in the MCMC technique; most importantly the pos-

terior density (2.1) needs to be evaluated only up to a normalizing constant. In

addition, the sampling can be efficient by concentrating on interesting areas since

the samples are not independent.

Our main motivation in this work has been to apply the MCMC technique

to solve inverse problems and to approximate posterior distributions. However,

the MCMC technique and the adaptive algorithms (discussed in Chapter 3) can

naturally be used to approximate also other distributions.

2.1 MCMC algorithms

The original idea of MCMC was introduced already 50 years ago in Metropolis,

Rosenbluth, Rosenbluth, Teller and Teller [1953] where the algorithm was used in

statistical physics to compute properties of substances consisting of interacting in-

dividual molecules. This algorithm has been extensively used in statistical physics

[e.g., Hammersley and Handscomb, 1964] and appeared also in spatial statistics

and statistical image analysis [e.g., Geman and Geman, 1984]. However, the uti-

lization of MCMC algorithms for posterior inference was realized much later by

Gelfand and Smith [1990]. Since then the MCMC technique has become a com-

monly used technique for approximating posterior distributions in a wide range

of applications and several introductions to the technique have been published

[Tierney, 1994; Gilks, Richardson and Spiegelhalter, 1996; Robert and Casella,

2000; Chen, Shao and Ibrahim, 2000]. The success and power of this technique

are based on the simplicity of the basic MCMC algorithm. Another reason is due

to the advances in computers: samples from the posterior distribution can now

be computed in a reasonable time also for real problems.

Most of the MCMC algorithms are variants of the Metropolis–Hastings (MH)

algorithm, which is based on the original Metropolis algorithm introduced in

Metropolis, Rosenbluth, Rosenbluth, Teller and Teller [1953] and extended to

cover also non-symmetric proposal distributions in Hastings [1970].

The MH algorithm is very simple: assuming that we have already sampled

points X0, . . . , Xt−1 the algorithm proceeds in two steps. First a so-called candi-

date point Z is sampled from a proposal distribution q that may depend on the

present point Xt−1. Next, the candidate point is either accepted or rejected using

as the acceptance probability

α(Xt−1, Z) =











min

(

π(Z)q(Z, Xt−1)

π(Xt−1)q(Xt−1, Z)
, 1

)

if π(Xt−1)q(Xt−1, Z) > 0,

1 if π(Xt−1)q(Xt−1, Z) = 0.

(2.3)

where q(x, z) denotes the probability of proposing z when at point x and π(·)
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stands for the density of the target distribution (i.e., posterior density p(x | y)

in inverse problems). In practice, the initial state X0 is always chosen so that

π(X0) > 0.

The sampled chain that is used to approximate the posterior distribution

has to be ergodic in the correct sense. The acceptance probability (2.3) of the

MH algorithm is selected so that the chain is reversible. The reversibility ensures

that the chain has the desired target distribution π(x) = p(x | y) as the stationary

distribution. The basis for the MCMC technique is given by the following theorem

(using the formulation of [Nummelin, 2002]). Let us consider here such transition

probability kernels P which consist of a singular part, i.e., the chain will stay put,

and a continuous part, i.e., the chain will make a move (for a more exact definition

see Nummelin [2002, Sec. 2.1]).

Theorem 1. (Law of large numbers for Markov chains) Let X0, . . . , Xn be

a time-homogeneous Markov chain in the state space E ⊂ IRd with the transi-

tion probability P . Assume that the chain X0, . . . , Xn satisfies the following two

conditions:

1) There exists a small set1 I ⊂ E such that for each initial state x ∈ E,

P nx(x, I) := P (Xnx
∈ I |X0 = x) > 0,

for some integer nx ≥ 1 depending on x.

2) i) The chain X0, . . . , Xn has a stationary probability density function π(·)
ii) The support S := {x ∈ E : π(x) > 0} of the stationary probability

density function is closed in the sense that P (x, S) = 1 for all x ∈ S.

Then

lim
n→∞

1

n

n−1
∑

i=0

f(Xi) =
∫

f(x)π(x)dx

for all π-integrable functions f and for all initial states X0 = x belonging to the

support S of the stationary probability density function.

A self contained proof of this theorem can be found in Nummelin [2002]. A

discussion on these issues is also given in Tierney [1994], which however, relays

strongly on the results presented in Nummelin [1984]. An easy proof in the case

f is bounded can be found in Tamminen [1999]. For MCMC algorithms the

conditions in the theorem above are easily fulfilled.

Different choices for the proposal distribution q give rise to different sam-

pling algorithms. A commonly used MH technique, called the random walk MH

algorithm, refers to the case where the proposal distribution depends on the dis-

tance between the current point and the proposed point (q(x, z) = g(x − z)).

1A set I ⊂ E with volume |I| > 0 is called small, if there exists a subset J ⊂ E with volume

|J | > 0 and a positive constant β > 0 such that p(x, y) ≥ β whenever x ∈ I, y ∈ J . Here p(x, y)

denotes the probability of moving from x to y.
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A special case of this algorithm where the proposal distribution is symmetric

(g(x) = g(−x)) leads to an algorithm that was originally proposed by Metropo-

lis, Rosenbluth, Rosenbluth, Teller and Teller [1953]. This popular Metropolis

algorithm involves only comparisons of the target function values at the present

point and at the candidate point and it is therefore quite attractive in practice. A

classical and widely used symmetric proposal is a Gaussian distribution centered

at the current point. The algorithms developed in this work are also modifica-

tions of this traditional Metropolis algorithm with Gaussian proposals. Another

class of widely used approaches are based on independence sampling. Here the

proposal distribution (typically an approximation of the target distribution) does

not depend on the current point (q(x, z) = q(z)). This type of algorithm is not

discussed further in this work.

The sampling in MH algorithms may take place directly in a d-dimensional

space or stepwise in a lower dimensional space, e.g., coordinate by coordinate as

in the original Metropolis algorithm. The latter approach is nowadays known as

the single component MH algorithm. The Gibbs sampling algorithm [Geman and

Geman, 1984] can also be considered as a special case of the single component

MH algorithm where the proposal distributions equal with the full conditional

distributions. In this work both single component and multidimensional MH

approaches are considered.

2.2 Comparing the performance of MCMC algorithms

The performance of a MCMC chain is often characterized by the speed of conver-

gence and the efficiency of the chain [Besag and Green, 1993]. Roughly speaking,

the speed of convergence can be understood as a measure of how quickly the algo-

rithm converges to the target distribution, and the efficiency as the capability of

the chain to explore the whole target distribution. Both of these can be addressed

in terms of the spectrum of the Markov transition kernel and require computa-

tion of the eigenvalues of the transition kernel. In practice some approximations

are used instead. One of the measures used for efficiency is the integrated auto-

correlation value [Sokal, 1989]. It can be applied to study the efficiency of the

one-dimensional projections of the chains.

In this work we have empirically tested the performance of different algo-

rithms by comparing their capabilities to approximate certain known, linear and

nonlinear, target distributions (Publ. I). The testing procedure is straightfor-

ward, but contains some novel features. The approach was motivated by the need

to apply MCMC to real multidimensional problems with similar target distribu-

tions. A somewhat similar approach has later been used also by Warnes [2001].

The testing procedure applied to targets in varying dimensions is as follows:

as target distributions we have used uncorrelated and correlated Gaussian dis-
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tributions and twisted, ’banana-shaped’, Gaussian distributions; see Fig. 2.1 for

examples in 2-d. They have been selected so that analytical expressions could

be used to compute different probability regions of the target distribution. In

addition, they represent reasonably well typical shapes of posterior distributions

in many inverse problems. Multi-modal distributions have not been considered in

this work. Each test is repeated 10–100 times with varying starting points close

to the mode of the target distribution. Finally, statistical analysis is performed

to compute different performance criteria for the algorithm. As such criteria we

used, e.g., the mean distance of the expectation values from the true value and the

mean error of the percentages of the sampled points that are located inside some

pre-defined probability region. The first criteria characterizes how well the expec-

tation can be approximated and the second how well the posterior distribution is

covered by the sampled points.

In the comparisons we have used essentially the same number of target func-

tion evaluations for each of the algorithms compared. This decision is based on

the fact that in real life problems, nearly always the most time consuming part

in the MCMC sampling is the evaluation of the target function π(·). Therefore,

algorithms that approximate the target distribution more accurately using a given

number of function evaluations can, roughly speaking, be considered as more ef-

ficient compared to the others.

2.3 Need for adaptation

Despite the simplicity of the basic MH algorithm, the implementation of the

MCMC technique is not a straightforward procedure. In real problems, the per-

formance of the theoretically ergodic MH algorithm may be far from acceptable,

since reasonable results are needed in a finite time. Generally speaking, the perfor-

mance of the MCMC technique depends on two things: the target distribution and

the selected MCMC algorithm. Improvements in the efficiency can be achieved,

e.g., by reparameterizing the target distribution, but this type of changes requires

that the target distribution is known beforehand [Gilks and Roberts, 1996]. More

practical improvements are thus related to the choice of the MCMC algorithm.

In the context of MH type algorithms this relates to optimizing the size and the

shape of the proposal distribution q.

It is well known that a good proposal distribution is crucial for the effec-

tiveness of the MH sampling [e.g., Gelman, Roberts and Gilks, 1996]. A poor

proposal distribution might result in a chain that does not represent the target

distribution well even if run for a relatively long time. This is also demonstrated

in Fig. 2.2 where the proposal distribution is either too small (top panel), too

large (middle panel) or nearly optimal (bottom panel). The selection of the pro-

posal distribution is typically done by trial and error using pre-runs as suggested
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Figure 2.1. Target distributions used in the tests.

by Gelfand and Sahu [1994]. It is common to monitor the acceptance ratio and

tune the proposal distribution to obtain some desired (ad-hoc) acceptance ratio,

typically around 20-70 %. This manual tuning of the size and the shape of the

(multidimensional) proposal distribution is a laborious and time consuming task.

When the parameters are, for example, of different orders of magnitude and cor-

related, the tuning of the proposal distribution becomes complicated if based on

simply monitoring the acceptance ratio. In high-dimensional problems this might

even become impossible in practice. Therefore, automatic techniques for finding

good proposal distributions are needed to make the MH algorithms applicable in

practice. The manual tuning of the proposal distribution also turned out to be the

bottleneck of implementing the MH algorithm to GOMOS inversion, as discussed

more in Sec. 4.4.
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Figure 2.2. Examples of sampled points using MH algorithm with varying proposal

distributions. Top panel: a too small proposal distribution results in accept-

ing almost all points. Middle panel: a too large proposal distribution results

in rejecting a large part of the proposal points. Bottom panel: a reasonable

proposal: about 35% of the points are accepted in this example. The start-

ing point was the same for all the algorithms (not shown in the two lowest

panels).
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3 Adaptive MCMC

3.1 Adaptive algorithms

Automatic techniques that use information collected during the MCMC sampling

to improve the performance are called adaptive MCMC algorithms. During the

last 10 years many adaptive MCMC algorithms have been proposed to optimize

the performance of the standard MH algorithm [for further information, see e.g.,

Publ. I–III; Gilks, Roberts and George, 1994; Gilks, Roberts and Sahu, 1998;

Holden, 1998; Tierney and Mira, 1999; Warnes, 2001; Chauveau and Vandek-

erkhove, 2002; G̊asemyr, 2003; Sahu and Zhigljavsky, 2003; Andrieu and Robert,

2001; Atchade and Rosenthal, 2003; Erland, 2003, and the references therein]. The

critical point in adaptive MCMC algorithms is that the adaptation may disturb

the Markovian property so that the ergodicity of the algorithm is not guaranteed

by the standard ergodicity theory of MCMC. Our aim here is not to make an

extensive overview of adaptive MCMC techniques but rather to mention shortly

the most relevant adaptive MCMC algorithms with respect to the algorithms

developed in Publ. I–III.

3.2 The Adaptive Proposal algorithm

A natural way of improving the proposal distribution is to use pre-runs and tune

the proposal distribution based on the experience of the pre-runs as suggested in

Gelfand and Sahu [1994]. Here the adaptation takes place only during the burn-in

phase and after the tuning the proposal distribution is fixed. Since the adaptation

is not continued after the burn-in phase the convergence is ensured by the basic

theory. This simple approach has been used in many practical applications. The

Adaptive Proposal (AP) algorithm introduced in Publ. I can be considered

to belong to this category, although it can also be thought as an approximately

correct algorithm whose exactness is sufficient for many practical purposes.

The AP algorithm resembles the standard random walk Metropolis algorithm

with the exception that the Gaussian proposal distribution qt depends on time:

qt(Xt−1, ·) = N(Xt−1, sdRt(h))

where Rt(h) corresponds to the empirical covariance matrix of h last points

Rt(h) = cov(Xt−h, . . . , Xt−1).

The scaling sd = 2.42/d is chosen so that it is optimal in the case of a Gaussian tar-

get and a Gaussian proposal [Gelman, Roberts and Gilks, 1996]. The acceptance

probability used in AP equals the Metropolis acceptance probability.
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The AP algorithm is simple and easy to implement. The multivariate Nor-

mal proposal distribution takes naturally into account the possible correlations

between the parameters. The additional computing time in the AP algorithm is

rather small in low-dimensional problems. Numerous tests in Publ. I (see also

[Haario, Saksman and Tamminen, 1998]) show that the AP algorithm can be used

to approximate reasonably well behaving, low-dimensional, posterior distributions

in many cases.

However, when the adaptation in the AP algorithm is continued after the

burn-in period the correct ergodicity is not guaranteed. The stationary distri-

bution of AP may actually be different from the target distribution. For many

practical examples the difference is perhaps negligible, but for some special targets

the difference is crucial, as demonstrated in Publ. I. Using the AP algorithm as

an effective burn-in for ergodic MCMC algorithms may also be problematic. The

adaptation during the burn-in phase may work well in some cases, but it is not

guaranteed that a proper proposal distribution is found.

A similar idea of updating the covariance matrix of a Gaussian proposal

distribution during the burn-in phase was also independently used by Hanson and

Cunningham [1998]. Their adaptation, however, was based on applying a different

numerical approach.

3.3 Continuously adaptive algorithms

In addition to the quasi-adaptive methods, like AP, fairly many adaptive algo-

rithms have been proposed where the adaptation is continued also after the burn-

in period. Techniques that rely on the standard theory of MCMC algorithms use

only partly the history for adaptation. Many of these techniques are based on

using multiple chains [e.g., Gilks, Roberts and George, 1994; Chauveau and Van-

dekerkhove, 2002; Warnes, 2001]. The practicality of these techniques (especially

in high dimension) may be limited because of the memory requirements of multi-

ple chains. For example, the technique by [Chauveau and Vandekerkhove, 2002]

relays on running an increasing number of chains. Algorithms based on delaying

rejection [Tierney and Mira, 1999] can be understood as locally adaptive methods.

However, in the basic version of this method multiple (fixed) proposals are used

rather than truly adaptive techniques.

Continuously adaptive MCMC algorithms (introduced so far) that use the

whole history and only single chain for adaptation are either based on regeneration

or slowing down the adaptation along the sampling (see also Erland [2003]). The

latter type of adaptation is referred to as adaptation with diminishing effect in

Erland [2003] and we will here also employ this terminology.

The regeneration idea is proposed by Mykland, Tierney and Yu [1995] and

Gilks, Roberts and Sahu [1998]. The ergodicity is preserved by updating the pro-
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posal distribution only when entering to a regeneration set. In real, multidimen-

sional, problems the regeneration is rather complicated to ensure and therefore

the practicality of this technique is restricted. The Self-regenerative algorithm

with adaptation [Sahu and Zhigljavsky, 2003] resembles independence sampling

with a proposal distribution that is a mixture of distributions. The adaptation

takes place at so called trouble points and updates the proposal distribution by

adding a new component to the mixture. The proposal distribution consists thus

of an increasing number of distributions. In high-dimensional problems, again,

the practicality of this algorithm might therefore be limited.

The adaptive MCMC algorithms, Adaptive Metropolis algorithm [Publ. II]

and the Single component adaptive Metropolis algorithm [Publ. III], discussed

in this work are based on using adaptive techniques with diminishing effect. This

idea of adaptation was introduced in Publ. II and generalized later, especially,

in Andrieu and Robert [2001] (see also Atchade and Rosenthal [2003]).

3.4 The Adaptive Metropolis algorithm

The Adaptive Metropolis (AM) algorithm is a fully non-Markovian MCMC algo-

rithm in the sense that each step is a non-Markovian and the algorithm is able

to use the whole history for adaptation [Publ. II]. It is based on the same idea

of updating the covariance matrix of the random walk Metropolis algorithm as in

AP. In AM the covariance matrix is updated by using information of the whole

history (or at least suitably increasing part) of the already sampled points. In

AM the proposal distribution is

qt(Xt−1, ·) = N(Xt−1, Ct)

where Ct is defined as

Ct =

{

C0 if t ≤ t0
sdcov(X0, . . . , Xt−1) + sdεId if t > t0

The scaling factor sd = 2.42/d corresponds to the same scaling as in the AP

algorithm and Id is a d-dimensional identity matrix. The role of the scaling ε is

to prevent the covariance Ct becoming a singular matrix and it is chosen to be

small (compared to the size of the support of π). The time t0 reflects our trust

on the initial covariance matrix C0.

The AM algorithm is clearly non-Markovian and the ergodicity proof of stan-

dard MCMC can not be applied. However, the AM algorithm is ergodic and we

have the following theorem.

Theorem 2. [Publ. II] Assume that the target density π has bounded support

and is bounded from above. Then the AM chain simulates properly the target
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distribution: for any bounded and measurable function f it holds almost surely

that

lim
n→∞

1

n + 1
(f(X0) + f(X1) + . . . + f(Xn)) =

∫

f(x)π(x)dx.

Heuristically, the ergodicity follows from the fact that the changing of the

proposal due to adaptation slows down in the course of sampling. This ’freezing’

of the chain can be seen from the recursive formula for updating the covariance:

Ct+1 =
t− 1

t
Ct +

sd

t

(

tX t−1X
T

t−1 − (t + 1)XtX
T

t + XtX
T
t + εId

)

,

where X t stands for the empirical mean:

X t =
1

t + 1

t
∑

i=0

Xi.

The proof of the theorem needs basically two things:

(i) The distribution of Xn approaches π as n→∞.

(ii) The dependence of the chain on fixed size time intervals of the past decreases

along time.

To understand why (i) and (ii) are true, consider the time interval I :=

(n, n + 1, . . . , n + j) where n >> j. Along this interval the covariance Cn stays

almost constant and the chain is approximately Markovian for n ≤ t ≤ n + j.

Let X ′

t, t ≥ n be the approximative chain obtained by setting C ′

t = Cn for t ≥ n.

Thus, we consider the chain

X0, . . .Xn−1, Xn, X ′

n+1, . . . , X
′

n+j, . . . . . . j << n

As Ct −C ′

t is small for t ∈ I, one expects that X ′

n+j yields a good approximation

for Xn+j . The approximative chain (X ′

t) is Markovian and uniformly ergodic for

t ∈ I, whence its distribution converges almost to π during I. This gives (i).

Similarly, it can be shown that it ’forgets’ most of the past during I, which gives

(ii).

The proof of the ergodicity of the AM algorithm contains some restrictions.

The assumptions of π being bounded with bounded support are in practice often

fulfilled. In most cases we can approximate π using a target distribution with

bounded support: the likelihood function is typically such that it decays rapidly

or we can assume that our prior distribution has a bounded support. Nevertheless,

the removal of the restrictions in Theorem 2 is an ongoing research (see also Sec.

3.6).

The adaptation technique of AM is demonstrated in Fig. 3.1 where the evo-

lution of the proposal distributions are shown. The example is a 2-dimensional
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Figure 3.1. Demonstration of the AM algorithm: the evolution of the proposal dis-

tribution in a two-dimensional ’banana-shaped’ test case. The proposal dis-

tributions (only 14 of them) are shown as ellipsoids representing the area

covering 90% of the probability mass of the proposal distribution. The ini-

tial proposal distribution was the smallest ellipsoid and the last ones are the

largest. The ellipsoids are centered at the origin to make them more easily

comparable. The sampled points are indicated with light gray dots.

’banana-shaped’ target distribution. In practice, the usefulness of the AM algo-

rithm is based on the idea that the proposal distribution converges approximately

to the (scaled) covariance matrix of the target distribution. Note also that it is

not necessary to use the whole chain for the adaptation but suitably increasing

part of it.

Most of the adaptive algorithms proposed so far are closely problem specific

or very general in the sense that they discuss more about the setup in which

adaptation could take place without proposing reasonably practical adaptation

techniques. In this context the advantages of the AM algorithm are the following:

(1) AM is simple, (2) it is easy to implement, (3) it is fast: the recursive formula

for computing the covariance matrix can be used and the extra computational

burden does not increase with time, (4) memory requirements are low (at least

when the dimension is not too high) and do not increase with time and (5) it is

automatic and therefore easy to use. The pseudo-code of the AM algorithm is

given in Fig. 3.2.
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AM algorithm

1: Initialize: X0 and X
0

= X0

2: Initialize: C0 and K1 = C0

3: Initialize t0

4: fnew = ppr(X
0)p(y |X0).

5: fold = fnew

6: for t← 1, . . . , N do

7: if t < t0 then

8: Ct = C0

9: else

Ct = Kt + εId

10: end if

11: H t = Chol(Ct) (Cholesky decomposition)
12: Sample G = [g1, . . . , gn]

T , where gi ∼ N(0, 1) (Normal distribution).
13: Z = X t−1 +

√
snH tG.

14: fnew = ppr(Z)p(y |Z).
15: if fnew > fold then

16: X t = Z

17: fold = fnew

18: else

19: Sample s from uniform distribution U(0, 1).
20: if s < fnew

fold

then

21: X t = Z

22: fold = fnew

23: else

24: X t = X t−1

25: end if

26: end if

27: X
t
= t

t+1
X

t−1
+ 1

t+1
X t.

28: Kt+1 = t−1
t

Kt + X
t−1

(X
t−1

)T − t+1
t

X
t
(X

t
)T + 1

t
X t(X t)T.

29: end for

Figure 3.2. Pseudo-code of the AM algorithm

3.5 The Single Component Adaptive Metropolis algo-

rithm

When the dimension of the problem rises to a few hundreds, it is obvious that

the sampling using AM becomes also slower. In high-dimensional problems the

computation of the square root of the covariance matrix (i.e., Cholesky decom-

position on line 11 in the pseudo-code) becomes simply more time consuming.

Therefore, even if the covariance matrix is updated only at certain time intervals,

the AM algorithm becomes slower. In high-dimensional problems the MCMC

sampling is often realized by using the Gibbs sampling algorithm or the single

component MH algorithm. The (to our knowledge) first fully adaptive MCMC al-

gorithm that proceeds componentwise is Single Component Adaptive Metropolis

algorithm (SCAM), introduced in Publ. III. SCAM is a single component version
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of the AM algorithm. The simple idea here is to update individually the variances

of the one-dimensional Gaussian proposal distributions. The ergodicity proof of

the SCAM algorithm follows the proof of AM [Haario, Saksman and Tamminen,

2003]. The natural requirement of the SCAM algorithm to work is that the target

distribution is such that the standard single component algorithm (with Gaussian

proposals) is ergodic.

Correlated target distributions are challenging for all single component meth-

ods and SCAM is not an exception in this sense. In such a situation some im-

provement can be achieved by rotating the sampling directions [e.g., Publ. III;

Gilks and Roberts, 1996].

The SCAM algorithm is tested in varying dimensions up to 1000. The tests

indicate that at least with rather well behaving target distributions the SCAM

algorithm can be used in relatively high dimensions.

While MCMC techniques are nowadays used to solve really high-dimensional

problems with tens of thousands of unknown parameters, it is important to keep

in mind that the actual performance of MCMC in high-dimensional problems is

still very much under research.

3.6 Variants and further development of the Adaptive

Metropolis algorithm

In addition to the basic AM algorithm described above, some variants of the

idea have been used in practice. In moderately high dimensions we have found

it advisable to, instead of updating the covariance at every time, update it only

at fixed time intervals. Another possibility is to weight the history differently

to accelerate the freezing of the proposal distribution. It is obvious, that the

effectiveness of the AM algorithm in its basic form is limited by the fact that

the proposal distribution is chosen to be Gaussian. The idea behind the proof of

Theorem 2 can be, however, applied to various other situations.

Andrieu and Robert [2001] extends the idea of non-Markovian adaptation

with diminishing effect to a more general setup. Moreover, they make an inter-

esting observation that the notions and techniques of stochastic approximation

apply naturally in this context.

Andrieu and Moulines [2003] applies the techniques of stochastic approxima-

tion and proves the convergence of a modified AM algorithm to cover also targets

with non-compact support. However, the density of the target is required to

satisfy rather restrictive regularity conditions instead. An important outcome of

their technique is the interesting estimate for the impact of the adaptation on the

convergence speed. Indeed, in the case of standard AM algorithm their estimates

show that the asymptotic error caused by the adaptation decays faster than the

unavoidable error in MCMC corresponding to the central limit theorem.
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Atchade and Rosenthal [2003] in turn generalizes the proof of Theorem 2

to the geometrically ergodic situation (whereas the original proof of Theorem 2

basically corresponds to the uniformly ergodic case). However, the conditions

of Atchade and Rosenthal [2003] are fairly implicit and not very easy to verify

in practice. They also propose an algorithm where the adaptation is based on

monitoring the acceptance rate of the sampler and tune the size of the (spherical)

Gaussian proposal distribution to achieve the optimal acceptance rate. Here they

also observe the connection to stochastic approximation.

The idea of combining delayed rejection technique [Tierney and Mira, 1999]

and the AM algorithm is introduced as DRAM algorithm in a recent preprint

Haario, Laine, Mira and Saksman [2003]. It is shown that this combination may

be especially helpful in some special situations where AM has problems in getting

started.
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4 Application: Atmospheric remote sensing by

GOMOS satellite instrument

4.1 Motivation

Indirect remote sensing techniques are today routinely used for atmospheric re-

search. The data processing of these instruments often involve solving nonlinear

inverse problems. The traditional approach to solving such problems is to assume

that the posterior distribution is Gaussian, at least around some maximum a pos-

teriori (MAP) estimate, and to search for the MAP estimate either by linearizing

the problem or using iterative optimization algorithms. The potential advantages

of using MCMC for solving inverse problems are: (1) linearization is not needed,

(2) freedom in implementing other than Gaussian prior information, (3) noise

may be non-Gaussian, (4) modeling error can be taken into account in a flexible

way, (5) getting trapped at local maxima is less probable than with optimization

methods and (6) full characterization of the (non-Gaussian) posterior distribution

is possible.

Earlier work related to different Monte Carlo methods that have been applied

to geophysical problems include mainly inverse problems of Earth sciences, like

seismology [e.g., recent reviews Mosegaard and Sambridge, 2002; Sambridge and

Mosegaard, 2002]. In this work (Publ. IV–VI) we have studied the possibilities

of using the MCMC technique in atmospheric remote sensing (see also Tammi-

nen, Sihvola and Haario [1996]; Tamminen, Haario, Kyrölä and Oikarinen [1998];

Tamminen [1999]; Tamminen, Kyrölä and Auvinen [1999]; Auvinen, Oikarinen,

Kyrölä, Tamminen and Leppelmeier [1999]). In particular, we have considered

the inverse problems of the GOMOS satellite instrument.

4.2 GOMOS satellite instrument

GOMOS (Global Ozone Monitoring by Occultation on stars) is one of the 10 in-

struments onboard the European Space Agency’s Envisat satellite (see Figure 4.1)

which is targeted on studying the Earth’s environment [ESA, 2001]. The Envisat

satellite was launched from French Guyana on the 1st of March in 2002 to a po-

lar, sun-synchronous orbit at about 800 km above the Earth. The main objective

of GOMOS is to measure the atmospheric composition and especially the ozone

concentration in the stratosphere and mesosphere with high vertical resolution

[Bertaux, Hauchecorne, Dalaudier, Cot, Kyrölä, Fussen, Tamminen, Leppelmeier,

Sofieva, Hassinen, d’Andon, Barrot, Mangin, Théodore, Guirlet, Korablev, Snoeij,

Koopman and Fraisse, 2004; Kyrölä, Tamminen, Leppelmeier, Sofieva, Hassi-

nen, Bertaux, Hauchecorne, Dalaudier, Cot, Korablev, d’Andon, Barrot, Mangin,

Theodore, Guirlet, Etanchaud, Snoeij, Koopman, Saavedra, Fraisse, Fussen and
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Figure 4.1. Envisat satellite and the instruments. In flight, GOMOS is looking back-

wards with respect to the direction of satellite velocity. (Figure provided by

ESA).

Vanhellemont, 2004]. In addition to ozone (O3) the UV-visible spectrometer (250–

675 nm) can be used to detect also NO2, NO3, aerosols and neutral density. Two

infra-red channels are used to detect O2 and H2O. The Finnish Meteorological In-

stitute (FMI) has been involved in the GOMOS project right from the beginning;

GOMOS was proposed together by FMI and the French Service d’Aeronomie in

1988 to ESA’s Polar Platform satellite, which became later Envisat.

The GOMOS instrument is the first operational instrument that uses the

stellar occultation technique to study the Earth’s atmosphere [Bertaux, Megie,

Widemann, Chassefiere, Pellinen, Kyrölä, Korpela and Simon, 1991]. The mea-

surement principle, demonstrated in Figure 4.2, is elegant: the stellar spectrum

seen through the atmosphere is compared with the reference spectrum measured

above the atmosphere. Due to the absorption and scattering in the atmosphere

the light measured through the atmosphere is attenuated and the attenuation is

proportional to the amount of constituents in the atmosphere. The measurements

are repeated at different tangential altitudes to obtain vertical profiles of the con-

centrations of different atmospheric constituents. The advantages of the GOMOS

instrument compared to other instruments measuring ozone are the fairly good

global coverage, with 300–400 occultations daily around the Earth (see Figure 4.3

for an example of the coverage of GOMOS occultations during one week in April
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Figure 4.2. GOMOS measurement principle. The horizontal transmission of the at-

mosphere at tangent altitude z is obtained by dividing the attenuated stellar

spectrum with the reference spectrum measured above the atmosphere.

2003) combined with the excellent vertical resolution (sampling resolution 0.3–1.7

km). The altitude range which can be covered by GOMOS is large: 15–100 km

and the brightest stars can be followed even down to 5 km. Each occultation

consists of about 70–100 spectra measured at different tangential altitudes and

each UV-vis spectra includes measurements at 1416 different wavelengths. Due

to the multitude of stars it is important that the optimal set of stars is selected

for each orbit. This optimization is included in the GOMOS mission planning

[Kyrölä and Tamminen, 1999].

4.3 GOMOS data retrieval

In the GOMOS data processing constituent densities are retrieved from stellar

spectra attenuated in the atmosphere. The GOMOS inverse problem can be

considered as an exterior problem in tomography [e.g., Natterer, 1986], but in

practice it is solved locally considering only data collected from one occultation

at a time. This inverse problem is as follows. By dividing the stellar spectrum

measured through the atmosphere with the reference spectrum measured above

the atmosphere we obtain a so called transmission spectrum. The transmission

at wavelength λ, measured along the ray path `, includes a term T abs
λ,` due to

absorption and scattering by atmospheric constituents and a term T ref
λ,` due to

refractive attenuation and scintillations, i.e., Tλ,` = T abs
λ,` T ref

λ,` . The dependence of

the transmission on the constituent densities along the line of sight ` is given by
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Figure 4.3. Geographical coverage of GOMOS measurements in one week (April 1–7,

2003). The gray scale (right panel) indicates the brightness (magnitude) of

the star: bright stars are shown with pink and dim stars with yellow.

the Beer’s law [e.g., Stephens, 1994]):

T abs
λ,` = exp



−
∫

`

∑

gas

αgas
λ (z(s))ρgas(z(s))ds



 ,

where ρgas(z) gives the constituent density at altitude z and α denotes the cross

sections. Each atmospheric constituent has typical wavelength ranges where the

constituent is active either by absorbing, scattering or emitting light. The cross

sections reflect this behavior and their values are considered to be known from

laboratory measurements. In the equation above the sum is over different gases

and the integral is taken over the ray path. The problem is ill-posed in the

sense that continuous profile is retrieved from a discrete set of measurements.

Therefore some additional regularization or prior information is required to make

the problem well-posed and solvable. In practice this is done by discretizing the

atmosphere into layers and assuming, e.g., constant or linearly varying density

inside layers. In Publ. VI the problem of regularization is shortly mentioned, but

the optimal amount of smoothness is an ongoing research [Tamminen, Kyrölä and

Sofieva, 2004; Sofieva, Tamminen, Haario, Kyrölä and Lehtinen, 2004; Sofieva,

Kyrö and Kyrölä, 2004].

The measurements are modeled by

yλ,` = T abs
λ,` T ref

λ,` + ελ,`,
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assuming additive independent Gaussian noise ελ,`, ∼ N(0, σ2
λ,`), λ = λ1, . . . , λΛ,

` = `1, . . . , `M . The likelihood function for the constituent profiles then reads as

P (y | ρ(z)) ∝ e−
1

2
(T−y)C−1(T−y)

with C = diag(σ2
λ,`) and y = (yλ,`), T = (Tλ,`). The inverse problem is to estimate

the constituent profiles ρ(z) = (ρgas(z)), gas = 1, ..., ngas.

In the operational data processing of GOMOS the problem is divided into

two parts. The separation is possible if the measurement noise is independent

between successive altitudes and the temperature-dependent cross sections can

be sufficiently well approximated with ’representative’ cross sections (e.g., cross

sections at the temperature of the tangent point of the ray path) [Kyrölä, Sihvola,

Kotivuori, Tikka, Tuomi and Haario, 1993; Sihvola, 1994]. In the operational

algorithm these simplifications are assumed and the problem is solved in two

steps. The spectral inversion is

T abs
λ,` = exp

[

−
∑

gas

α
gas
λ,`N

gas
`

]

, λ = λ1, . . . , λΛ,

which is solved for the horizontally integrated line-of-sight densities N
gas
` . The

vertical inversion

N
gas
` =

∫

`

ρgas(z(s))ds, ` = `1, . . . , `M .

is solved for local constituent densities ρgas using the line-of-sight densities as the

data. Note, that it is also possible to solve the problem directly in one step by

inverting the local densities from the transmission data. This approach is here

referred as the one-step inversion.

4.4 Implementing MCMC

Let us consider first the operational GOMOS data processing approach that con-

sists of two steps: spectral inversion and vertical inversion. The spectral inversion

problem is nonlinear and therefore a potential advantage may be obtained if it

is solved using the MCMC technique. The dimension of the problem is small,

only about 5 parameters (horizontally integrated line-of-sight densities of differ-

ent constituents) to be retrieved but the inversion is done repeatedly at each

altitude about 70-100 times for each occultation. The natural way of implement-

ing the MCMC technique to such a problem is to use random walk MH algorithm

since the posterior distributions are unknown and the Gibbs sampling or inde-

pendence sampling MCMC algorithms can not be applied in a straightforward

manner. Since the size of the problem is small and the posterior distributions are

correlated multidimensional sampling is considered.
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Figure 4.4. Ozone profiles measured by GOMOS and by an ozone sonde close to

Marambio in Antarctica on August 19th 2003.

As discussed earlier, the main difficulties in implementing MH type MCMC

to real inverse problems are typically related to tuning the proposal distribution

to obtain efficient sampling. The special feature in the GOMOS data processing

is that the posterior distributions of the spectral inversion vary strongly. They

depend on the tangential altitude and also on the star used for the occultation.

The line-of-sight densities vary typically several decades between 15 to 100 km

(see Figure 4.4 for ozone vertical profile measured by GOMOS and by an ozone

sonde). When the star is dim (and hence the signal-to-noise ratio is low) the pos-

terior distributions become many times wider compared to the ones obtained for a

bright star. In such a setup it is impossible to find any fixed proposal distribution

that would work at all altitudes and for all stars. Therefore, the proposal distribu-

tions need to be optimized for each altitude and for each occultation separately.

However, the manual tuning of the proposal distributions is also impossible to

realize because of the huge number of different cases. Automatic algorithms for

tuning the proposal distribution are therefore needed.

To overcome these problems we have applied the adaptive MCMC algorithms

AP (Publ. IV) and AM (Publ. V–VI) to the GOMOS spectral inversion prob-

lems. To the GOMOS one-step problem we have applied the SCAM (Publ. VI)
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algorithm. The advantage of these algorithms is that they make the implemen-

tation of the MCMC easy: the adaptation can be used in a fully automatic way

without increasing the computational time dramatically. The posterior distribu-

tions of GOMOS are not too strongly nonlinear (with multiple modes, for example)

and therefore the inverse problems are suitable for the automatic algorithms.

4.5 Improving and validating GOMOS inverse algorithms

with MCMC

The constituent profiles measured by GOMOS are further used in trend analysis,

climatologies and in data assimilation. All of them rely strongly on the correctness

of the error estimation of the GOMOS data. The proper statistical analysis and

error characterization of GOMOS results is therefore important. In atmospheric

remote sensing problems the posterior distributions have so far been approximated

only with Gaussian distributions. The MCMC technique is a relatively efficient

and easily applicable method for computing posterior distributions other than

Gaussian. Therefore, it allows proper statistical analysis also for non-Gaussian

problems like GOMOS inverse problem.

The advantages of the MCMC technique in the GOMOS data retrieval are

demonstrated with simulated data in Publ. IV and Publ. VI. The data was sim-

ulated using FMI’s relatively realistic GOMOS simulator called LIMBO [Kyrölä,

Tamminen, Oikarinen, Sihvola, Verronen and Leppelmeier, 1999]. The ozone pro-

file inverted from real GOMOS measurements using AM algorithm in the spectral

inversion is shown in Fig. 4.5.

The operational data processing of satellite data is typically based on numer-

ous assumptions to make the algorithms fast. With traditional techniques that are

based on assuming normally distributed variables the validation of these assump-

tions may be difficult, whereas the MCMC technique provides relatively simple

environment to test different assumptions. This is demonstrated in Publ. V by

using real GOMOS data from two occultations measured at 24th September in

2002. The AM algorithm turned out to work well in the problems considered.

The constituent profiles retrieved with AM agree well with the profiles retrieved

with the traditional methods used in the operational data processing applying the

same assumptions as in the operational data processing. However, in some cases

differences were observed. The flexibility of the MCMC technique to include other

than Gaussian measurement noise or prior information can be used to improve

the retrieval results. Constraints, like positivity, which are typically not used

correctly as prior information in inverse problems as they lead to non-Gaussian

posterior distributions, can easily bee implemented by the MCMC technique. In

the GOMOS inversion the positivity prior and robust `1 norm solution seemed

to improve the results in some cases. It is also shown that more realistic error
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Figure 4.5. Ozone profiles measured by GOMOS (heavy solid line with circles) and

an ozone lidar at Mauna Loa, Hawaii (thin solid line), on September 24th

2002. The error estimates (1σ = 68.3%) of the lidar measurement are shown

as dashed lines around the measurement.

estimates are obtained if modeling error is taken into account.

Finally, the full posterior distribution of GOMOS inverse problem can be

obtained rather efficiently by solving the one-step inversion with the SCAM algo-

rithm [Publ. VI]. This approach does not rely on the fact that the measurement

noise is independent at successive altitudes and the temperature dependence of

the cross sections can be modeled in a proper way.
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5 Concluding remarks

The numerous adaptive MCMC algorithms proposed so far are tailored to over-

come some specific, strongly target-related problems. In this work we have devel-

oped new adaptive MCMC algorithms that are by definition extremely simple to

implement. New ideas and techniques have also been developed to treat the theo-

retical basis of the AM algorithm. The extensive testing of AM and SCAM shows

that at least in the test examples used we obtain better estimates of target distri-

bution than with corresponding non-adaptive algorithms with some ’non-optimal’

proposal distributions. Indeed, the tests showed that for Gaussian targets the

performance of AM and SCAM algorithms was equal with the ’optimally’ tuned

non-adaptive algorithms. It is also demonstrated that these algorithms can be

used to solve real problems.

The main motivation for applying MCMC to GOMOS inverse problems is

to improve the GOMOS inversion results by detecting possible pitfalls in the

operational data processing and by validating the error estimates given by the

operational processing. Because the satellite instruments are very expensive it

is reasonable to use also state-of-the-art inversion methods to obtain as much

information as possible from the data. In this context the MCMC technique is

especially suitable for studying the error structure of the retrieved parameters,

which is essential for further research, like ozone trend analysis or assimilating

GOMOS measurements to atmospheric models.

Publ. VI was presented at the Royal Statistical Society’s meeting on ’Statis-

tical approaches to inverse problems’. In the discussion that followed the presen-

tation several remarks were made and we refer to Andrieu [2004]; Robert [2004];

Haario, Laine, Lehtinen, Saksman and Tamminen [2004] for further discussion.
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Summaries of the original publications

I H. Haario, E. Saksman and J. Tamminen, (1999): Adaptive proposal dis-

tribution for random walk Metropolis algorithm. Computational Statistics,

14, 375–395.

Publ. I discusses the tuning of the size and the shape of the Gaussian pro-

posal distribution of the random walk Metropolis algorithm. As a remedy to

the laborious and time consuming manual tuning an automatic technique,

called Adaptive Proposal (AP) algorithm, is introduced. The AP algorithm

is based on updating the covariance matrix of the proposal distribution

according to the empirical covariance of some fixed number of previously

sampled points. The AP algorithm is simple and easy to implement and it

is shown that in many cases the performance of the AP algorithm is suffi-

cient. However, as the adaptation destroys the Markovian property of the

chain, convergence to the correct target distribution is not guaranteed if the

adaptation is continued after the burn-in phase. This is demonstrated with

a ’tricky’ 2-dimensional target distribution, where we find a clear discrep-

ancy between the true target distribution and the one sampled with the AP

algorithm by adapting continuously. In the publication we also introduce an

extensive test procedure which has been used to test the performance of the

AP algorithm and to compare it with the traditional Metropolis algorithm

with different proposal distributions. As a realistic application the algorithm

was successfully applied to a simulated GOMOS spectral inversion problem.

II H. Haario, E. Saksman and J. Tamminen, (2001): An adaptive Metropolis

algorithm. Bernoulli, 7(2), 223–242.

In Publ. II we discuss further the tuning problem in Metropolis algorithm

and introduce a non-Markovian adaptive MCMC algorithm called Adaptive

Metropolis (AM) algorithm. The AM algorithm is similar to the AP al-

gorithm: the covariance of the Gaussian proposal is updated by using the

information of all (or suitably increasing part of) previously sampled points.

In contrast to the AP algorithm the AM algorithm is shown to be ergodic in

the sense that the law of large numbers holds. The adaptation can therefore

be continued throughout the sampling. The ergodicity of the AM algorithm

is also demonstrated with several test cases including the same ’tricky’ 2-

dimensional test which indicated problems in AP algorithm.

III H. Haario, E. Saksman and J. Tamminen, (2004): Componentwise adap-

tation for high dimensional MCMC. Computational Statistics, Accepted.

Publ. III discusses the MCMC sampling in relatively high-dimensional

problems. In this publication a Single Component Adaptive Metropolis
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(SCAM) algorithm is introduced. It combines the ideas of the AM algorithm

and the single component sampling. The sampled chain is correctly ergodic

and it is also shown to work well in practice up to 1000-dimensional problems

(at least when the target distribution is relatively well behaving).

IV J. Tamminen and E. Kyrölä, (2001): Bayesian solution for nonlinear and

non-Gaussian inverse problems by Markov chain Monte Carlo method. Jour-

nal of Geophysical Research, 106(D13), 14,377–14,390.

In Publ. IV the MCMC technique is discussed in the context of geo-

physical inverse problems. As an example, the GOMOS spectral inversion

problem is solved by applying the AP algorithm. The potential advantage

of using MCMC is demonstrated by different examples. For example, when

the spectral inversion is linearized, the originally Gaussian noise becomes

non-Gaussian. With the MCMC algorithm it is possible to take into ac-

count non-normal noise structure. The results are compared to the ones

where the noise is approximated to be Gaussian. The improvement is clear

when the noise is correctly modeled. The non-linear spectral inversion is

nominally solved by iteratively searching the maximum point of the poste-

rior distribution. With MCMC algorithm we can compute the expectation

value of the posterior distribution. When the measurement data is noisy,

the behavior of the iterative algorithm suffers and the solution is no more

robust. In these cases the expectation of the posterior distribution seems

to be the more robust estimator. In this publication the positivity prior is

also discussed and it is shown to improve the results, especially when the

signal-to-noise ratio is low.

V J. Tamminen, (2004): Nonlinear inverse algorithm validation with Markov

chain Monte Carlo. Journal of Geophysical Research, Accepted.

Publ. V discusses how the MCMC technique can be used in the validation

of operational data processing of atmospheric remote sensing measurements.

We apply the MCMC methodology and especially the AM algorithm to the

GOMOS spectral inversion and validate the operational inversion using real

data measured by GOMOS. It is shown that when no prior information

is used and the noise is assumed to be normally distributed the MCMC

inversion and the fast operational algorithm give similar results. However,

in some cases the results are improved when positivity or robust `1-norm is

used. The inclusion of modeling error using the MCMC technique is also

investigated.

VI H. Haario, M. Laine, M. Lehtinen, E. Saksman and J. Tamminen, (2004):

MCMC methods for high dimensional inversion in remote sensing, with dis-

cussion. Journal of the Royal Statistical Society B, 66, Part 3, 591–607.
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In Publ. VI the need and the advantage of the adaptive MCMC is dis-

cussed in the context of high-dimensional GOMOS inverse problems. Two

approaches are introduced: the parallel method, applying the AM algorithm

for sub-problems, which can be used to validate the GOMOS operational al-

gorithms and the one-step inversion, applying the SCAM algorithm, which

is free of some assumptions needed in the operational approach. In the

publication discretization and regularization issues are also studied.
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Tamminen, J., Kyrölä, E. and Sofieva, V. [2004], Does prior information improve

measurements?, in G. Kirchengast, U. Foelsche and A. Steiner, eds, ‘Occulta-

tions for Probing Atmosphere and Climate - Science from the OPAC-1 Work-

shop’, Springer Verlag, pp. 87–98.

Tamminen, J., Sihvola, E. and Haario, H. [1996], Data processing and sensitivity

studies of the GOMOS instrument, in P. B. Hayes and J. Wang, eds, ‘SPIE

Proceedings Vol. 2830, optical Spectroscopic Techniques and Insrumentation

for Atmospheric and Space Reseach II’, SPIE, pp. 180–188.

Tierney, L. [1994], ‘Markov chains for exploring posterior distributions, with dis-

cussion’, Annals of Statistics 22, 1701–1762.

Tierney, L. and Mira, A. [1999], ‘Some adaptive Monte Carlo methods for Bayesian

inference’, Statistics in Medicine 18, 2507–2515.

Warnes, G. R. [2001], The Normal Kernel Coupler: An adaptive Markov chain

Monte Carlo method for efficiently sampling from multi-modal distributions.

Technical Report no 39, Department of Statistics, University of Washington.


	ABSTRACT
	TIIVISTELMÄ
	Preface
	Contents
	List of original publications
	1 Introduction
	2 Markov chain Monte Carlo technique for solving inverse problems
	3 Adaptive MCMC
	4 Application
	5 Concluding remarks
	Summaries of the original publications
	References

