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1 Introduction

In recent years multiplier ideals have emerged as an important tool in al-
gebraic geometry and commutative algebra. For the history of multiplier
ideals and for more details concerning their general theory we refer to [10].
Given an ideal I in a regular local ring, its multiplier ideals J(cI) form a
family parametrized by non-negative rational numbers c¢. This family is to-
tally ordered by inclusion and the parametrization is order reversing, i.e.,
¢ < ¢ implies J(c'I) C J(cI). The jumping numbers associated to the
ideal I are those rational numbers & satisfying J(£1) € J((§ — ¢)I) for
all ¢ > 0. Jumping numbers of an ideal encode information about the sin-
gularities of the corresponding subscheme. The first one of these numbers,
the log-canonical threshold, has been much studied in birational geometry.
A good source for information about jumping numbers is the fundamental
article [6] by Ein, Lazarsfeld, Smith and Varolin.

The purpose of the present manuscript is to determine the jumping num-
bers of a simple complete ideal a in a two dimensional regular local ring «,
and investigate their connection to other singularity invariants associated to
the ideal. Recall that an ideal is called simple if it is not a product of two
proper ideals. Simple ideals play a fundamental role in Zariski’s theory of
complete ideals, his famous theorem about the unique factorization of com-
plete ideals saying that every complete ideal can be expressed uniquely as a
product of simple ideals. Zariski thought of complete ideals as linear systems
of curves satisfying ”infinitely near base conditions”. His theorem about the
unique factorization of a complete ideal then corresponds to the factorization
of a curve into irreducible branches. This leads us to consider the jumping
numbers of an analytically irreducible plane curve. In particular, we are in-
terested to compare the jumping numbers of a simple complete ideal to those
of the analytically irreducible plane curve defined by a general element of the
ideal.

Based on the proximity relations between infinitely near points, our meth-
ods are very much arithmetical in nature. The advantage of this approach
is that tecniques needed are elementary. Moreover, our results hold in every
characteristic.

Let us explain our results in more detail. We first define the notion of
a log-canonical threshold of an ideal with respect to another ideal. It turns
out in Proposition 6.7 that jumping numbers are log-canonical thresholds
with respect to suitable ideals. We then utilize the proximity relations to
calculate these numbers (see Propositions 7.2 and 7.5). In our main Theorem
8.3 we give the promised formula for the jumping numbers. Consider the



composition of point blow-ups
X:Xn+lﬂ—n>~nﬂ—2>X2w—l>X1:Sp€COé, (1)

obtained by blowing up the base points of a. It turns out that the set
of jumping numbers is Hy = Hy U --- U Hy«, where the sets Hy,..., Hy-
correspond to the stars of the dual graph arising from the configuration
of the irreducible exceptional divisors on X. A star is a vertex associated
to an irreducible exceptional divisor which intersects more than two other
irreducible exceptional divisors (see page 18). More precisely, assume that
(ai,...,a,) is the point basis of a (see page 8) and let {v1,...,7,+} be the
set of indices corresponding to the star vertices. Set vy = 1 and 7441 = n,
and for every v =0,..., g* write

- ai+---+a2
|2 a/’yy .
Then
+1 t+1 +1 t+1 1
H, -:{S + + ik s,t,mEN,S + < }
Q- b, Ay, Q- b, Ay,

forv=0,...,9* — 1, while

1 t4+1
Hg*ﬁ_{s—'— + ;— ‘S,tEN}

Qry g g

We point out in Remark 8.2 that the numbers a,, by, b1, ... above are in fact
the ”Zariski exponents” of the ideal. They are conventionally denoted by f,
while the integers a,, are often denoted by e, for every v.

As a consequence of the main result, it turns out in Theorem 8.17 that
the set of jumping numbers gives equivalent data to the information obtained
from the point basis. The proof of this result is based on our Theorem 8.18,
which shows that the three smallest jumping numbers determine the order
of the ideal.

In fact, to obtain the point basis from the jumping numbers we only need
to know the elements ¢, = 1/a,, + 1/b, = min H, in every set Hy,..., Hy-.
This is proved in Corollary 8.15. We shall observe in Proposition 8.14 that
¢, =min{ € H,| £ > 1/a,,}. Note that & is the log-canonical threshold of
the ideal, which is already enough to determine the point basis and thereby
all the jumping numbers, in the case the ideal is monomial. In a way, we
may regard the sequence (&, ... ,5;*) as a generalization of the log-canonical
threshold. In Corollary 8.12 we give also a formula e(a) = (¢’ — 1)7!, where
¢ = min{{ € H, | £ > 1}, for the Hilbert-Samuel multiplicity of the ideal a.
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Utilizing the equivalence between simple complete ideals and analytically
irreducible plane curves, we can now determine the jumping numbers of an
analytically irreducible plane curve as well. It follows from [10, Proposition
9.2.28] (see also Proposition 9.3) that the jumping numbers of our simple
complete ideal a coincide in the interval [0, 1[ to those of the analytically
irreducible plane curve corresponding to a "general” element of a. In fact,
these numbers determine the jumping numbers of a as soon as the integer
n appearing in the resolution (1) is known (see Theorem 9.9 and Remark
9.10). It is also worth to note that the word ”general” can be interpreted here
in the sense of Spivakovsky: Consider the resolution (1) above. Following
[20, Definition 7.1] and [3, Definition 1], an element f € a is defined to
be general, if the corresponding curve Cy is analytically irreducible and the
strict transform of C; intersects the strict transform of any exceptional divisor
passing through the center of m, transversely at this point.

Our formula for the jumping numbers of an arbitrary analytically irre-
ducible plane curve in Theorem 9.4 shows that the jumping numbers depend
only on the equisingularity class of the curve. Remarkably, it turns out in
Theorem 9.8 that the jumping numbers actually determine the equisingular-
ity class. Thus one can say that information about the topological type of
the curve singularity is encoded in the set of the jumping numbers.

One should note that in the case of an analytically irreducible plane
curve singularity over the complex numbers our formula can be obtained
more directly using the general theory of jumping numbers. Indeed, in [21,
p. 1191] and [22, p. 390] Vaquié observed that the jumping numbers can
be read off from the Hodge-theoretic spectrum defined by Steenbrink and
Varchenko. This spectrum has in turn been calculated by several authors,
starting from an unpublished preprint of M. Saito [17, Theorem 1.5]. One
should also note that Igusa found a formula for the log-canonical threshold
of an analytically irreducible plane curve with an isolated singularity (see
[8]), and that this result was generalized to reducible curves by Kuwata in
[9, Theorem 1.2].

After finishing this thesis I received a manuscript [18] by Smith and
Thompson, which treats a similar problem from a different perspective.

2 Preliminaries on complete ideals

To begin with, we will briefly review some basic facts from the Zariski-Lipman
theory of complete ideals. For more details, we refer to [2], [13], [14], [15] and
[23]. Let K be a field. A two-dimensional regular local ring with the fraction
field K is called a point. The maximal ideal of a point « is denoted by m,,.



Write ord,, for the unique valuation of K such that for every x € a ~\ {0}
ord,(x) = max{v | v € m’}.
A point ( is infinitely near to a point a, if
6D a.

Then the residue field extension a/m, C B/mg is finite. In the following
we will always consider points infinitely near to a fixed point, which has an
algebraically closed residue field k.

Take an element z € m, \ m2. A quadratic transform of the point « is
a localization of the ring a[m,/x] at a maximal ideal of a[m,/x]. Any two
points a C 3 can be connected by a unique sequence of quadratic transforms
a=a C---Ca,=/.

Assume that a point (3 is a quadratic transform of the point «. Then the
ideal m,( is generated by a single element, say b € 3. Let a be an ideal in
a. The transform of an a at 3 is a” := b=°d=(@g3. For any point 5 O «,
the transform a” is then defined inductively using the sequence of quadratic
transforms connecting o and 3. It follows that if ¥ D § D « are any points,
then a” = (a”)?. If a has a finite colength, then so does a?. Moreover, if a is
complete, i.e., integrally closed, then so is a”.

The non-negative integer ordg(a?) is called the multiplicity of a at 8. In
the case this is strictly positive we say that the point § D « is a base point
of the ideal a. The support of a is the set of the base points, which is known
to be a finite set. The point basis of the ideal a is the family of multiplicities

B(a) := {ordg(a’) | 8 D al.

Since the transform preserves products, i.e., (ab)? = a’b® for any finite
colength ideals a,b C «, we have B(ab) = B(a) + B(b). If in addition a
and b are complete, then the condition ordg(a®) > ordg(b”) for every point
3 D « implies a C b. Moreover, a = b exactly when ords(a”) = ords(b?) for
every point § D a.

By the famous result of Zariski [23, p. 385] a complete ideal in « factorizes
uniquely into a product of simple complete ideals. Recall that an ideal is
simple, if it is not a product of two proper ideals. There is a one to one
correspondence between the simple complete ideals of finite colength in o and
the points containing « (see e.g. [14, p. 226]). The simple ideal corresponding
to a point 3 D « is then the unique ideal a in «, whose transform at (3 is the
maximal ideal of 3. The base points of a are totally ordered by inclusion,
and if « = a; C --- C «, is the sequence of the base points of a, then



a, = (. The point basis of a is the vector I := (ay,...,a,) € N* where
a; := ord,,(a®). Moreover, there is a one to one correspondence between
points containing o and divisorial valuations of « given by # +— v := ordg
([23, pp. 389-391]). Note also that the ideals m, =p; 2 --- D p, = a
corresponding to the points oy C - -+ C «, are the simple v-ideals containing
a ([23, pp. 392)).

A point (3 is said to be proximate to a point «, if § 2 « and the valuation
ring of ord, contains (3, in which case we write 3 > «. The notion of prox-
imity can be interpreted geometrically as follows. The sequence of quadratic
transforms o = ay C - -+ C «, corresponds to a sequence of regular surfaces

T X =X - B X T X = Speca, (2)

where m; : Xj11 — A is the blow up of X; at a closed point ¢; € X; with
Or. =ajforeveryi=1,....n,and 7 =7, 0---om. Set B =7 {g} C
Xip1. Write Ef = (m,0---om;41)"E! C X for the total transform of E/ and let
Ei(j ) denote the strict transform of E! on &;. Especially, set E; := EE"H). If
J >1, theng; € Ei(j ) if and only if o; > «;, which is occasionally abbreviated
by the notation j > .

Recall that «; is always proximate to «;_1, and there is at most one point
a; such that o; > a; and j # ¢ — 1. In the case such a point «; exists, o;
is said to be a satellite to «; (or shorter ¢ is satellite to j), and then also
a, > «a; for every j < v <. In the opposite case o, (or just i) is said to be
free. Note that as is always free. Also oy is regarded as a free point.

The proximity relations between the base points a« = a3 C -+ C a, of a
simple complete ideal a of finite colength can be represented in the proximity
matriz of a. Following [2, Definition-Lemma 1.5], it is

1, ifi=y;
0, otherwise.

Note that this is the transpose of the proximity matrix Lipman gives in [15,
p. 6]. Let P! = (2 j)nxn denote the inverse of the proximity matrix P, and
write X; for the i:th row of P~'. Observe that by e.g. [15, Corollary 3.1]
these rows correspond to the point basis vectors of the simple complete m,-
primary v-ideals containing a, and that they are in the descending order, so
that X, represents m, and X, is the point basis of a. The next well known
proposition shows that the proximity matrix of a simple complete ideal is
totally determined by the point basis of the ideal. Because it will be crucial
for our arguments in the sequel, we shall give a proof for the convenience of
the reader.



Proposition 2.1. Let a be a simple complete ideal of finite colength in a
two-dimensional regular local ring «, and let I = (aq,...,a,) be the point
basis of a. For every inder i < k < n, we have

a; = Qjy1 + -+ Ay,
if and only if {v| o, = a;} ={i+1,...,k}. Then necessarily
Qi 2 Qjp1 =+ = A1 = A,

and if k > i+1, then ax_1 = ay exactly when k+1 s free or k = n. Moreover,
Ap_1 = Qp = 1.

Proof. As noted above, the point basis vector of a is the bottom row of the
inverse of the proximity matrix P = (p; j)nxn of a. Since P~'P = 1, we have

Z AyPy,i = 5n,i- (4)
v=1

for every i = 1,...,n. Suppose that i <n. If {v | a, = a;} ={i+1,...,k},

then piy1;,=---=pr;, =—land p;j; =0for j & {i,....k}, whilep;; = 1. It
follows from Equation (4) that a; = a;11 + - -+ + ay.
Conversely, if a; = a;11 + -+ + a; and k& := max{v | o, = «;}, then

pvi = —Llifand only if v € {i+1,... %"}, but then by Equation (4) we obtain
i1+t apr=a; =a;1+ -+ a.

This forces the equality k = k’. Especially, choosing ¢ = n we recover the
fact that a,, = 1, and choosing i =n — 1 yields a,,_1 = a,.

Let i < j <k—1. If a, > «; for some v > j + 1, then o2 > ;. This
is impossible, because ;5 is already proximate to a1 and «;. Therefore
aj41 is the only point proximate to c;, which implies that a; = a;;1. Now
the second assertion is clear.

Suppose that £k — 1 > 7. We already observed that a,,_; = a,, so we may
assume k < n. If apy1 > o for some j < k, then also o > «a;. Because
oy, is already proximate to both ay_; and «;, we must have j € {i,k — 1}.
Since k = max{v | o, > o;} and a41 > «;, the only possibility is j = k£ — 1.
Then both ap > ar_; and agy; = ag_1, which implies ap_1 > agp + ari1-
Especially, ap_1 > ai. On the other hand, as ay_1 = ar + agr1 + -+ ap for
some k' > k, we see that a_1 > a; implies g1 = ag_1. O

The lattice A := ZFE,+- - -+ ZF,, of the exceptional divisors on X has two
other convenient bases besides {E; | i = 1,...,n}, namely {E | i =1,...,n}
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and {E; | i =1,...,n}, where the Ej:s are such that the intersection product
with F; is the negative Kronecker delta, i.e.,

Ei . Ej = —51"]‘

fore,7 =1,...,n. Write

~

E:=(Ey,...,E)" E* = (E},...,E))" and E := (Ey,..., E,)", (5

where T stands for the transpose. The proximity matrix P is the base change
matrix between £ and E*, more precisely &/ = P"E*. Furthermore, E}-E} =
—0;; (cf. [2, p. 174]). Then

(i Ej)uxn = EE* = P'E*(P'E*)" = P"(E; - E})uxuP = ~P"P.  (6)

Assume that E; = A\ Ey+- - -+ )\, F,. Then E;-E; = —\;, since EZEJ = —0;.
Therefore E = P*PE. This further implies that £ = P~'E*. Let D € A and
let d,d* and d denote the row vectors in Z" satisfying D = dFE = d*E* = dE.
Then

d* = dP" and d = dP"P = d*P. (7)

Note that the intersection product of D and F' = fE € A is
D-F=dEE"f = —dP"Pf" = —d"(f*)" = —(dif{ + -+ d5f}).  (8)

Recall that a divisor D € A is antinef, if the intersection product E; - D
is non-positive for every i. According to Equation (8) this means that d=
dP" P is non-negative at every entry, which can be abbreviated d=dP>0.
This is to say that the row vector d* = (di,...,d}) satisfies the prozimity
inequalities

d; > d. (9)
=i
By [15, Theorem 2.1] the proximity inequalities guarantee that there exist
a unique complete ideal 0 of finite colength in « having the point basis
B(®) = d*. Then 00y = Ox(—D) so that 0 = I'(X,0x(—D)), as 0 is
complete. Thus we recover the following proposition (cf. [11, §18, p. 238-
239]):

Proposition 2.2. There is a one to one correspondence between the antinef
divisors in A and the complete ideals of finite colength in o generating in-
vertible Ox-sheaves, given by D < I'(X,Ox(—D)).
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Remark 2.3. Let 0 be a complete ideal of finite colength in « such that 00y
is invertible, and let D = dF € A be the antinef divisor corresponding to 0
so that 900y = Ox(—D). The vector V(d) := d is called the valuation vector
of 0. Observe that d; = ord,, (?). Recall also that if py,...,p, are the simple
v-ideals containing a, then p,Oy = OX(—E-) so that p; = I'(&X, OX(—EZ-)).
Because D = dE, we see that 0 = p® ... pn. We say that F(2) := d is the
factorization vector of 0.

For any divisor D € A, there exists by e.g. [16, Lemma 1.2] a minimal
one among the antinef divisors D™~ satisfying D~ > D, which is to say that
D~ — D is effective. This is called the antinef closure of D. According to
[11, §18, p. 238] an antinef divisor is effective. We can construct D~ by the
so called Laufer-algorithm described in [5, Proposition 1]: Set Dy = D. For
i > 1,let D; = D~ when D; is antinef. Otherwise there exsist v; € {1,...,n}
such that D, - E,, > 0. In this case set D;;; = D; + E,,. We have

[(X,0x(=D)) = T(X,0x(=D")) (10)

for any divisor D € A by [16, Lemma 1.2].

3 Arithmetic of the point basis

In this section we want to concentrate on the structure of the point basis

of a simple ideal. From now on, let « = a3y C --- C «, be the quadratic
sequence of the base points of a simple complete ideal a of finite colength in
a two-dimensional regular local ring «, and let I = (a4, ...,a,) denote the

point basis of a.

Definition 3.1. If «. is a satellite point and a4 is not, then o, is a
terminal satellite point. If o is free and oy 1s not, then we say o, is a
terminal free point, and if o, is a free point but c,_1 is not, then a, is a
leading free point.

Remark 3.2. Note that «,, is either a terminal satellite or a terminal free
point. The first point «; is considered as a leading free point, and if a,
is a satellite point, then 2 < v < n. We say that the quadratic sequence
a=a; C- - Ca, (or a) has a free point (a leading free point, a terminal
free point, a satellite, a terminal satellite) at i, if a; is a free point (a leading
free point, a terminal free point, a satellite, a terminal satellite, respectively).
We may also say that i is free (a satellite, a terminal satellite, resp.), if there
is no confusion.
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Clearly, every free point except «y belongs to a sequence of free points
preceded by either a; or a terminal satellite. Moreover, except aq, the leading
free points are exactly the points immediately following a terminal satellite
point. We use the following notation for terminal satellites and terminal free
points.

Notation 3.3. Let us write I'y, or just I' if there is no confusion, for the set
{m, ., = {7 | ay is a terminal satellite point of a},

where y1 < -+ < y,. Write also

I={yel|y<n}t={m,....,7}

Moreover, let oz, ..., az, denote the terminal free points of a anterior to a,,
so that
MN<N<T<y)< - <T3<7. (11)

Set v :=1=: 71 and Yg41 :=n =: 7411, and then define

[:=TU {5}

Note that the number g* of elements in I'* is either g — 1 or g depending
on whether «,, is a satellite or not. Thus v,«41 = n and I' = '™ U {n}. If
necessary, we may write v, = 5 or 7, = 7. to specify the ideal in question.

Example 3.4. If I'* = (), then the ideal is monomial, i.e., there exist a regular
system of parameters for « such that a is monomial in these parameters.

Proposition 3.5. The multiplicity at a non-terminal free point is equal to the
multiplicity at the terminal satellite point preceding it or to the multiplicity
at the first point, if there is no preceding satellite point. The multiplicity
at the subsequent terminal free point s strictly less, or the terminal free
point is the last point, in which case they both are equal to one. Moreover,
the multiplicities at a terminal satellite point and at the point immediately
preceding it are equal.

Proof. It follows from Proposition 2.1 that a;, > a;, if j > i. Moreover,
a;_1 > a; if and only if 7 4+ 1 is a satellite to + — 1. By Definition 3.1 we
see that ¢ + 1 is free for v, 1 < i < 7,. If 1 <v < g, then 7, + 1 must be
a satellite to 7, — 1 as 7, is free. Note also that v, + 1 is not a satellite.
Therefore

a’YV*I == a’Ty_l > aTu Z a”Yl/_l = a"Yu
forv=1,...,¢ . Furthermore, because v, is the last satellite, we must have
ay, = -+ =a, and a, = 1, as observed in Proposition 2.1. ]
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For v =1,...,9 + 1, the sequence a,, ,,...,a,, of multiplicities may be

written as
ry,1 times ry,2 times Tv,m, +1 times

Spdy ey Su1y Sy 2y 5825 -y Sumys - - s Sumy ( )

where s,; > -+ > s,,,,, . Proposition 3.5 implies that m, > 1 and r,,,, > 1
for 1 < v < g, while mg41 = 1 and 74411 := Y441 — 79 = 0. Since there are
no terminal satellites between v,_; and 7,, Proposition 2.1 yields

Suj—1 = TujSuj + Suj+1 (13)

for 1 < 7 < m,, where we set s, ,,, 11 := a,, for 1 <v < g+ 1. Because of
Proposition 3.5, the same holds also for j = 1, if we set s, := a,,_, +---+a,,
forevery v =1,...,g+1. When j = m,, Equation (13) yields s, ., | Sy.m,—1-
This shows that we may obtain the sequence a., ,,...,a,, from a,, , and
a, , + -+ a., by the Euclidian division algorithm.

Notation 3.6. Let v € {1,...,g+1}. We write 3, (a), or just (3, if the ideal
is clear from the context, for the positive rational number

/ a7u71+”‘+a'7_1/

B, =

a'YV—l
We also set 3, :=0 forv > g+ 1.

Proposition 3.7. The point basis of a is totally determined by the ratio-
nal numbers By, ..., B4y In particular, the numbers By, ..., [, yield the
multiplicities ay, . .., a,,. Moreover, forv € {1,...,g+ 1}

ged{ay,...,a,, } = gedf{a,, ,,a.} =a,,.

Proof. Using the Euclidian division algorithm described above we get

ng{a'Yu—l7 aTV} = ng{Sl/,j? 3V7j+1} = Oy, (14)

for every 0 < j < m,. Especially, a,, divides a,,_,, and so a,, divides a; for
every ¢ < 7,. Hence ged{as,...,a,,} = a,,. This shows the last claim.
To prove the first two claims, we observe that for every v =1,...,9+ 1
’r S0 o &
61/ B Sy B D,
where N, and D, are integers with ged{N,,D,} = 1. Suppose that we know
the pair (3,, a,,). By Equation (14) we have s, = a,,N, and 5,1 = a,, , =

14



a,D,. Then we obtain the multiplicities a., ,,...,a,, by the Euclidian di-
vision algorithm. Recall that a,, = a, =1 by Proposition 3.5. Starting from

the pair (5).,,an), or (B, a,,), we then get all the multiplicities

A1,y Qn, OF Q1,. .., Gy,
respectively. O

Remark 3.8. It follows from the Euclidian division algorithm (see Formula
(12), Equation (13) and Proposition 3.7), that each 3/, can be obtained from

the integers 7,1, ...,7,m, as a continued fraction
B, + !
=T 1
v v, 1
TV’Q + + Ty,my, +1

Note that these numbers are the Puiseuzr exponents Spivakovsky defines in
[20, Definition 6.4].

We now want to investigate the relationship between the point bases of
the ideals p; to that of the ideal a. Let P be the proximity matrix of a, and
write X; for the i:th row of (@ ;)nxn = P~'. Recall that (z;1,...,x;;) is the
point basis of p; and that X,, = I.

We first observe the following.

Proposition 3.9. Leti,j € {1,...,n}, withi > j. Then p; has a satellite or
a free point at j, if and only if a has a satellite or a free point at j, respectively.
Moreover, this point is terminal for p; if and only if it is terminal for a or
Jj=r1. Ifi>j, then x; j = x; ;41 if and only if a; = aj41 ori=j+ 1.

Proof. The first two claims are obvious, since the base points of p; are a; D
-+ D «y, which are base points of a. Suppose then that i > j. By Proposition
2.1 we have x; ; = x; ;41 if and only if o4, is the only point among the base
points of p; proximate to ;. An equivalent condition to this is that either
«jy2 is not proximate to a; or ¢ = j + 1, in other words, either a; = a;1; or
t=7+1 O

As a corollary to Proposition 3.5 we now get
Proposition 3.10. Let v € {0,...,g9}. Thenx;; =1 forvy, < j <i<T,41.

Proof. Consider the ideal p;. Because a has a satellite point at 7, < ¢ and
a free point at every j satisfying v, < 7 < i, Proposition 3.9 shows that

Pi =, and Tfil = ¢. In particular, p; has the last satellite point at 7, and
75, =i. Tt follows from Proposition 3.5 that z;,, = -+ = ;; = 1. O

)
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Note that the base points of the transform po* are ay, C - -+ C vy, and the
transform of p2* at «,, is the maximal ideal, i.e., po* is the simple complete
ideal in oy, corresponding to the point a,. It follows that (@, 4, ..., Tmm)
is the point basis of pi*. Observe also that the sequence of multiplicities
(ag,...,am), where 1 < k < m < n, is a point basis of a complete ideal,
though not necessarily simple, because this sequence satisfies the proximity
inequalities (9). Indeed, we have

a; — Z ajZai—ZajZ5i,n20
m>j-i =i
for every k < i < m. This motivates the following notation.

Notation 3.11. For X = (z1,...,2,) € N" and for i,5 € {1,...,n} we
wrie (1) (i—1) G+D) (n)
y 1 i—1 j+1 n
X0 =(0,..., 0 ;25,25 0 ,...,0)

Moreover, we set
X)) . — xli=1 g xil .— xlit1li]
In addition to that, we write
X=X X <= X X2 = X gpd X7 = X0,
For the truncated rows of P~! we obtain the following result.
Proposition 3.12. Leti, k€ {1,...,n}.

ik Xk, ifk<jand k+1 s free;
Tix Xp + 0ixXn, fk<jandk+1 s a satellite to h,

<k _
o=

where ;= Tip — (Tips1 + -+ + xig). In particular,

<w __
X’i - l’iﬁVX%,

where v 1s such that © > ,.

Proof. The case k > 4 being trivial, we may restrict ourselves to the case
k < 1. Proposition 3.9 now implies that we may replace a by p;, and so we
may assume that i = n. Consider the factorization vector F' := X=FP so
that

XF=FP' =) FX;.
j=1

16



Now F; =0 for k < j<n,and if 1 <j <k, then

lg =a; — jz: a,.

k>v>-j

Because a; = ZWJ» a, + d;, by Proposition 2.1, we see that F; > 0, if and
only if k +1 > j or j = k = n. Clearly, Fj, = a;.

It now follows that if & + 1 is free or k = n, then F; = 0 for every j # k,
implying X=F = a; X}. Assume then that k+1 is a satellite to some (unique)
h < k. Now F}, = aj, — (apt1 + -+ - + ai), while F; = 0 for every j ¢ {h, k}.
Then

X8 = Xy + (an, — -+ — ai) Xi,

as wanted. O

For certain computations, it is convenient to introduce the following no-
tation.

Notation 3.13. Let P! = (@i j)nxn be the inverse of the proximity matrix
of a. For anyv € {0,...,g} and~, <i <n, write

pi:’YV = p?,’)/y = xi77u+1 + e + xiﬂ'}/-{—l and pV = p'Yl/+1;'YV'
In the case © < vy, we set p;, = 0.
Remark 3.14. Observe that 8, =1+ p,, ,/a,, ,forv=1...g+1

Corollary 3.15. Let v € {o,...,7V4+1}, and take an element x;; of P~*
with j <~y <1. Then x; ; = x; 42 ;. It follows that

Oy = Oy Ty 1y O Oy, = Ty, Ty
forv=20,...,g9. Moreover, if 7,11 < i, then we have p; ., = T;i~, . pv-

Proof. For the first claim we observe that either v + 1 is free or v = n.
The latter case is trivial, while the former implies by Proposition 3.12 that
va = 7,,X,. Especially, this gives z;; = x;,2,;. Thus the first claim
holds. Choosing j = v, ¥ = V41 and i = n we see that a,, =z, ., 1, ¢,
and then the second equality follows by induction. As 7,41 < 7,41 we see
that x;; = %i~,+10+,41,; for every j =, +1,...,7,41 and ¢ > 7,41, which

proves the last claim. O

Proposition 3.16. Let p; be the simple complete v-ideal corresponding to
the row X; and let |1 be the integer satisfying v, < i < Y41 unless i =1, in
which case we set = 0. For every v € {0,...,u+ 1}, we have

Pi
. P,
i

p = pi,')/u'
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Proof. Suppose first that 0 < v < u. Then v, < 7. It follows from Proposi-
tion 3.9 that 75 = ~,. Moreover, 7% | = min{i, 7,41}. As a;; =0 for j > i

v
we then get

P

i = Tinita +o Tt wi,ﬂ%—l = Tiy,+1 T T Tir o = Pigy - (15)
If v = p, then 7, < i, but it may happen that 7, > i. If this is the case, then
a has a free point at i. By Proposition 3.9 this means that TffH = 1, and
since x; ; = 0 for j > i, we observe that Equation (15) holds. If v = p + 1,

then v, > +P =i and by definition pfiw,,i = Pin, = 0. O]
Corollary 3.17. if v, <1, then 3, (p;) doesn’t depend on i.

Proof. Assuming v, < i we get by using Corollary 3.15

piv’)’ufl . Iia"/upl/_l . a/’YVpV_l . pn:'YVfl

Tip-1 TimTym-r CpTyma O,y
Since v,_1 < 1, it follows from Proposition 3.16 that p?fvﬁ = Pia Because
Bl(pi) =1+ nggil/xi%_l and B, = 1+ pn~,_,/a,_,, we then observe that
B (p;) = ,. Thus we get the claim. O

4 The Dual graph

Let a be a simple complete ideal of finite colength in a two-dimensional
regular local ring a. Consider the resolution (2) of a. The configuration of
the exceptional divisors Ej,. .., E, on X arising from (2) can be represented
by a weighted graph (see, e.g., [19, p. 111, 5. pp. 124 — 129 |). This graph
is called the dual graph of a. Its vertices are €y, ..., €,, where ¢; corresponds
to E; for every ¢. The weight of a vertex ¢; is w; :== —F; - E;. Two vertices
are adjacent, if they are joined by an edge. This takes place, if and only if
the intersection of the corresponding divisors on X is nonempty. A vertex is
called an end, if it is adjacent to at most one vertex. If it has more than two
adjacent vertices, it is said to be a star.

Proposition 4.1. Let ¢; and €; be vertices with ¢ < j in the dual graph of a.
They are adjacent, if and only if j = max{v | v = i}. In particular, if this is
the case, then j is uniquely determined.

Proof. Vertices ¢; and ¢; are adjacent, if and only if E; - E; # 0. By Equation
(6) and by the definition of the proximity matrix we have

"
—FE; - Ej = Zpu,ipu,jv

v=j

18



where p := max{v | v > i}. Clearly, j > p implies E;- E; = 0. If j < p, then

—FEi - Ej = pjraiPiva; T+ Dl

Observe that this is nonzero, if and only if p;i2,p;+2; 7 0, but this is impos-
sibile, because then j + 2 would be proximate to ¢, 57 and j + 1. Then we see
that ;- F; # 0 with ¢ < j if and only if j = pu, in which case E; - E; = 1. [

Remark 4.2. Observe that w; = —F; - E; = 1 + pu — i, where we write
p = max{v | v = i} so that g — i is the number of points proximate to i.
Thus vertices €; and €; with ¢ < j are adjacent, if and only if

j=i+w — 1.

Furthermore, if ¢ < j, then F; - E; = 0;;1w,—1. Thereby we observe that
the matrix P"P, which represents the dual graph of a by Equation (6), is
totally determined by the sequence of the weights (wy,...,w,). Moreover,
we obtain the proximity matrix P = (p; ;)nxn from the w;:s, since p; ; = —1,
if and only if i < j < i+ w;. Thus the sequence (w; ..., w,) gives equivalent
data to the point basis of a.

Proposition 4.3. The stars of the dual graph of a are precisely the vertices
€, such that v < n and a has a terminal satellite at v. The ends of the dual
graph are exactly the vertices €, such that 7 = 1 or a has a terminal free
point at T.

Proof. Suppose that v < n is a terminal satellite. By Proposition 4.1 we
know that €, is adjacent to e, for 4 = max{i | ¢ > v}. Because v is a
terminal satellite, we get for some v <y —1

y=max{i| >~y —1} =max{i|i> v}

By using Proposition 4.1 again, we see that €,, e, and ¢, are adjacent to
€. Thus €, is a star.

Conversely, suppose that €, is a star. Then there are three vertices ad-
jacent to ey, say ¢, €; and ¢,. Noting that a point cannot be proximate to
three different points, it follows from Proposition 4.1 that exactly one of the
indices is greater than ~. Therefore we may suppose that j < k <~y <. In
particular, v < n. If €,4; is a satellite to some m, then also v > m, which
implies that m € {j,k}. On the other hand, as ¢; and ¢, are adjacent to e,
we see by Proposition 4.1 that v 4 1 is proximate to neither j nor k£, which
is a contradiction. Therefore v 4 1 is free, and so 7y is a terminal satellite.

Suppose that a has a terminal free point at 7 > 1. Suppose also that ¢; is
adjacent to e,. If 1 < 7, then 7 > ¢ by Proposition 4.1, and because 7 is not
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a satellite to any 7 < 7 — 1, it follows that ¢ = 7 — 1, but since ¢; is adjacent
to €,, Proposition 4.1 implies that 7 + 1 ¥ 7 — 1. On the other hand, we
know that 7+ 1 is not free as 7 is terminal. This means that 7 = n, and e,_;
is the only vertex adjacent to €., i.e., 7 is an end. Furthermore, we see that
7 < n implies ¢ > 7, but then ¢ is uniquely determined by Proposition 4.1.
Hence €, is an end. For the same reason €; is an end.

Let us then prove the converse. As we just saw, €; is always an end.
Proposition 4.1 yields that €; adjacent to €, whenever n > j. Thus €, is an
end, if and only if n is free. Suppose then that ¢; is an end with 1 < i < n.
Then Proposition 4.1 implies that the only vertex adjacent to ¢; is €,, where
p = max{v | v > i} is greater than i. Moreover, if i > j for some j < ¢, then
1+ 1> j, too. Especially, this shows that ¢ +1 > ¢ — 1, and since ¢ + 1 > 1,
it follows that ¢ % j for any j < ¢ — 1. Therefore ¢ is free, while i + 1 is a
satellite. So, if ¢; is an end for some i € {1,...,n}, then i = 1 or a has a
terminal free point at 7. [

Remark 4.4. By Proposition 4.3 we observe that the vertex ¢; is a star
exactly, when ¢ € I'*, and ¢g* is the number of the star vertices of the dual
graph.

We will now recall how the dual graph can be constructed from the point
basis (a1, ..., a,) of a. Let {7o,...,7,+1} be as given in Notation 3.3. Let also
the integers s, ,, r,, and m, be as in Formula (12), where v =1,...,9+1
and p=1,...,m,. Set

v—1 m; o
Ry = Z Z rij+ Z Tv,j (16)
i=1 j=1 j=1

forv=1,...,94+1and p=0,...,m,. It follows that for u > 0

I
"iy,,u = H;V#L_l + TVH“" and K/V’/”‘ = K;V_Lmufl + : :TV’j
i=1

when v > 1. Moreover, for every v =1,...,g+ 1 we have
Ky = Yv—1 — 1 and Ky, =7, — L.

Note that a; = s,,, for K, ,—1 <1 < Ky, and ay,,, = a,

Lemma 4.5. Let €q,...,¢, be the vertices of the dual graph of a. Assume
that Ky -1 <1 < Kyy 071 = Ky, forve{l,...,g+1} andp e {1,...,m,}.
If 7 > 1, then €; is adjacent to €;, if and only if j =1+ 1. Moreover, €, , 18
adjacent to €, . 41 for pe{1,...,m, — 1}
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Proof. If Kk, -1 <1 < Ky OF © = Kym,, then we have a; = a;11. It follows
from Proposition 2.1 that j > ¢ if and only if j = ¢ + 1, which is to say that
1 has no satellites. By Proposition 4.1 this takes place exactly when ¢; is
adjacent €;41.

Assume that p € {1,...,m, —1}. An application of Equation (13) then
shows that and i =, ,. As we observed above, a,, , = ay, ,+1+ - F 1
S0 Ky i1 + 1 =max{j | j > Ky, } by Proposition 2.1, and the claim follows
from Proposition 4.1. O

Using Lemma 4.5 together with Proposition 4.3 and Remark 4.2, we are
able to construct the dual graph of a from the point basis. The figure below
describes a fragment of the dual graph of a. It illustrates the organization of
the vertices €,, ,,...,€,, and the corresponding multiplicities a,, ,,...,a,
in the point basis of a.

v

-1 €
® — ¢ — O @ — ¢+ — O . — @ —

Ty,1 vertices ¢,
K0 <t<FKy1,

with a; =a~,

Ty,25+1 vertices €;,
Ku,2i <t <Ky2j+1,

with a; =Sy,2j+1

[ ]
| Ty,25 vertices €;,
Ku,2j—1 <1< Ky 25,
| with a; =5y,2j
[}
Yo—1 = Ky0+1
Tv = kKy,1+1
[ J
w; =2 if kyjo1 <i<Kyj | Tv,2 vertices €;,
w“u,j = 2+Tl,7j+1 ifj<m1/ Ky,1 <7«'§/€u,27
Wiy,m, = 2 | with a; =0r,, 1 +1
[ ]

Observe that the vertices €; for K, ,,—1 <@ < Ky, With the multiplicity
a; = a., lie at the horizontal or vertical branch, depending on whether m,
is odd or even, respectively. Note also that for v = 1,..., g the vertex e,,
belongs to the next segment of the dual graph.

Example 4.6. Let a be a simple complete ideal in a two-dimensional regular
local ring o having the resolution (2). and let n = 8 in this resolution.
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Suppose that i > j for i,j € {1,...,8} with ¢ > j, if and only if i = j + 1 or
(i,7) € {(3,1),(6,4),(7,4)}. The proximity matrix of a is then

1 : : : : . : 0
-1 1 :
—1 —1 1
—1 1
P= —1 1 ’
—1 —1 1
. : -1 -1 1 :
0 : : : : .1 1

and the inverse of P is

S .
11
2 1 1 .

» 2 1 1 1 .

Pr=r 9 0 00 1
4 2 2 2 1 1 -
6 3 3 3 1 1 1 -
6 3 3 3 1 1 1 1 |

Thus the point basis of ais I = (ay,...,as) = (6,3,3,3,1,1,1,1). The dual
graph of a is presented in the matrix

3 -1 : : . : 0
. 2 1 :
-1 -1 2 -1 : : :
. . T 4 : | :
Pr= ) ) ) ) 2 1 ) ) ’
-1 2 1 :
: : S | -1 2 1
0 : : : : | 1

We may draw the dual graph as follows:

(€1) (e3) (€a) (€7) (es)
3 — 2 — 4 — 2 — 1
| |
(e2) (e6)

2 2
|
(e5)
2
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The stars of the dual graph are e3 and €7, while the ends are €, €5, €5 and
es. Thus g =2, T' = {3,7} and {r,...,73} = {1,2,5,8}. Now 3] = 9/6,
By = 7/3 and B3 = 2. On the other hand, starting from (3,...,3,,,) =
(3/2,7/3,2) we get first (a,, a,,a,) = (6,3,1) and then (a,, 31, ..., a,0) =
(9,7,2). By using the Euclidian algorithm as above we get (a4, ...,a,,) =
(6,3,3), (ay,,-..,0ay,) = (3,3,1,1,1) and (a,,...,a,) = (1,1), and so we
may reconstruct the point basis, which yields the proximity matrix by Propo-
sition 2.1. Note that the dual graph can be obtained directly from the point
basis by the following manner: From every entry aq,...,a,_1 in the point
basis, draw an arc extending to a; such that a; = a;.1 + - -+ + ay, i.e.,

The entries and the arcs correspond the vertices and the edges of the dual
graph. Moreover, the lengt £ — i + 1 of the arc starting from a;, indicated in
parenthesis, is exactly the weight w;, while w,, = 1.

5 On certain intersection products

Let a be a simple complete ideal of finite colength in a regular local ring «
with the base points &« = a; C --- C «,,. Let X, denote the i:th row of the
inverse (2; ;) nxn = P~1 of the proximity matrix. For any rows X; and X ; of
P! = (2 ;)nxn, write X; - X; for the dot product, i.e.,

Xi- Xji=miaZjn + -+ Tinljn,

and for any v € {0,..., g}, write
— vl (v Yvt1]
[Xz 'Xj]y = Xi’Y Yv+1 _Xj’Y v +17

so that

Assume that the integers &, attached to the ideal a are as in Equation (16).
Then define

U:={i|kyy1 <i<ky,y, forany v and p ¢ 2N, ori =n}.  (17)
Remark 5.1. Note that since 7, = k,410+ 1 for v € {0, ..., g}, we have

v eUforve{0,...,g+1}.
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Obviously, this gives 79,741 € U. If v € {1,...,g}, then 7, = k,1 + 1 by
Proposition 3.5, which implies that

T, ¢ Uforve{l,... g}

Proposition 5.2. Let 1 <i<j<n andletv € {0,...,g9}. Then

Tjr, P, 1 €U,

Xi'X‘V:minxiu‘u7x‘ViV - f i
3= i i) = { e ST

Moreover, if v,41 < 4,7, then [X; - Xjl, = Ty, Pimy = Tjy, Piry, -

Proof. Let us show that it is enough to consider the case v, < i < j
Yv+1. Indeed, suppose first that ¢ < 7,. Then z;;, = 0 for 7, < k <
Subsequently, z; ., =0 = p;,,, and

<
n.

[Xz . Xj]y — Xi(')’ua'YVJrl] . X;'\/uﬂ/lhkl] — 0 — ‘/L‘i,%/pjy’)’u = xj,’Yupi,Vu'

So the claim is clear in this case, and we may assume -, < 1.
If v,41 < 7, then we obtain by using Proposition 3.12

[Xi ) Xj]l/ = [Xz ) X]‘S%H]V = ‘Tj:’Yqul[Xi ) XV

V+1]V'

It follows from Corollary 3.15 that

Li Pive = TimprLiyn Pyosim
xj"yvpi:'yv = xj,’yu+1$’yy+1,’yyp’i,’yy7

and so we are reduced to the case j = 7,41. Similarily, if v,,; < i (so that
To+1 < ])7 then

[Xi : Xj]l/ - [XS%H : X'SWVH]V = i1 Lyt [X2 ]V'

i J Y41
and

TjmPire = Tirs1Timr (Tror e Prosrim)

Tiyy Pjy = xi77u+1xj7’YV+l(m7u+1,7up’7u+1,’7u>'
Then we are reduced to the case i = j = 7y,41.

Let (aq,...,a,) denote the point basis of a and let v, < i < j < 74,41.

It follows from Proposition 3.9 that if & < u, then a1 > a; exactly when
Tuk—1 > Tyuk. We may rewrite the sequence ., ,...,%,,; of multiplicities

for any u > 1 as

r1 times ro times r) times r’ times
N N N N

Sy 8y Sy 8y Say s SN Sat Ty Sas (
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where s} > -+ > s\ > sy ; and s} > s}, ; whenever u > i. Note that the
equality s} = s, can take place if and only if v’ = 1. As in Equation (13),
we get for any 1 < pu < A

TuSy = Sp1 = Spi1s (19)

where
u __
S§ = Tupy 1+ Ty

Because 7, < i < u, Proposition 3.9 yields 7%, = min{u, 7,41} so that
50 = Tuy, T+ Tugpn = Tugy T Puy-
It follows from Proposition 2.1 that for A > 0 and u > 1
sh =1'sh, 1, while s} >r'sy (20)

This holds true also in the case A = 0. Indeed, if A = 0, then this is a direct
consequence of the definition of sg.
Grouping the terms in [X; - X;], by using Equation (18) gives now

[(Xi- X5, = Z LikLjk = Liy Ljm
k=, (21)

A

o i _j /i J bl

= EW%%"’TSAHS,\H 5151-
p=1

Assume that ¢ € U in which case A is even. Using Equation (19) yields

S sl = (sh— sh)sd + sh(sl — )+

pn=1 . . .

i i o i (o j

+ (8h_2 — $3)s3_1 + 8s5(s31 — sh41)
_ ioJ i oJ
and
A
ted J )b J(ai _ ot

E Tus,s, = (85— s3)s1 + sp(s) — %) +
p=1

+ (3{\_2 - 3§>53—1 + 3&(%\—1 — s441)

SR I R I
= SpS1T — S\Say1-
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By Equation (21) we then obtain

(X - Xj]u = 365{ - 5§S§+1 + Tlsf\+15§\+1 - 335{

= shsi — Sishy g + sk S — sist-
Furthermore, by Equation (20)
7"/33+13§\+1 - Sf\sf\ﬂ = 0 and 7’/33+13§+1 — 85418, < 0.
Therefore A ' ‘
[Xi - Xjlo = (6 — s1)s1 < (50 — s1)s1- (22)
Similarily, if ¢ ¢ U, then A is odd and

A
D rusisl, = (sh—sh)sl +sh(s] —sh) + -
pn=1 . . . . . .
+ 53—1@3\—2 - Sz\) + (5.1 — 3i\+1>5&

J_

i i J
and

Zrusisi = (s — s)st 4 sh(s} — s4) + -
pn=1 . .
(2 7

+ 831 (shop = 85) + (3o — s3.0)s%
= s)st — s),,8h
As above by using Equations (20) and (21) this yields that
[Xi - X5, = (55— s1)s1 < sish — s1)-

Because (s}, s7) = (Tury, + Pury, Tuqy,) for uw =1, j, this together with Equa-
tion (22) gives the claim. O

Corollary 5.3. Assume 1 <i < j <n. Setn:=-, and vy := 7,41, where v
is such that n < i <y wheneveri > 1, and v =0 if i = 1. With the notation

above,
Xz' . Xj = Iz’,nxj,nX?) + [XZ . Xj]u'

Especially, if 1 = v < j, then

Xy Xy = m%n(xj,nXs + pjn) = ﬂim(l’%nXﬁ + o).
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Proof. Obviously, X; - X; = X, - ngn + X - Xj>". Because i < ~, we get
X Xj>77 = [X; - Xj],, and by Proposition 3.12

. <n _ y<n <n _ . ... 2
XZ-XJ- = X; -Xj —xm%an'

2

Thus the first claim is clear, and the second claim follows from Proposition
5.2. O

Corollary 5.4. Suppose that n == v, < 7 < k < 7,41 =: v for some
ved{0,...,g9}. Set

x; i X2+ ps
o1(j, k) i= B0 and gy(j, k) = 2T T Lin.
Tl Tk X3 + Py

For any i € {1,...,n} the following equalities hold:

i) If i < j, then

X, X;  f o(G,k) ifi€eUori<mny;
) 0w k) ifi ¢ U andi>n.

o1(4, k) ifj¢U, andk>ieU ori>k¢ U,
X X; o9(j,i)or(i k) ifjeU, andk>ieU ori>k ¢ U,
X, - Xe ) o1(4,0)o2(i k) ifj¢ U, andk>i¢ U ori>keU,
o9(7, k) ifjelU, andk>i¢ U ori>keU.

i) If ' +1 >k is free, then X; - X;/X; - Xy is constant for i > k'

iv) For every1 <i<mn

) > t J > ) = ——----—
0'371)(.7’]@ = Xz Xk i av(]vk)

where v =1 for j ¢ U and v =2 for j € U.

Proof. Before embarking the proof we first make two observations. Assume
that ¢ < 7. Asn < j <k we then get by using Proposition 3.12 that

<
Xi . X] _ Xz . an _ ij,nXi . X77 _ l'jm _ 0'1<j kj) (23)
Xi- Xk X X" weanXi- Xy Ty ’
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Suppose then that ¢ > 7. By using Corollary 5.3 we get

Xio Xj  Tigr, X7+ [Xi - X,

= i 24
Xi . Xk J:i,nxk,nX% + [XZ : Xk],/ ( )

(i) Proposition 5.2 implies that if j > ¢ € U, then [X;- Xj|, = z;,p;, and
(X - Xkly = @k ypiy, Furthermore, if j >4 ¢ U, then [X; - X;], = x;,p;, and
(X - Xilv = @i ppr,y. This together with Equations (23) and (24) proves (i).

(ii) We have ¢ > 7, and again, we make use of Equation (24). Now i > j,
and thus by Proposition 5.2 [X;- X}, is either z;,p; , or z; ,p; ., depending on
whether j ¢ U or j € U. Proposition 5.2 shows also that [X; - Xj|, = zr,pin
when k > i e Uori>k¢ U, and [X, - Xy, = @iypk, when k > i ¢ U or
i > k € U. Putting all this together we obtain (ii).

(i) If ¥ +1 > k and k' 4 1 is free, then we get by Proposition 3.12 for
every 1 > k'

Xi . XJ . X@ : X]‘Sk/ . X;kl . X] . xi,k/Xk/ . Xj o Xk’ . XJ
Xi Xk Xz ngk/ Xigk/ Xk a:i,k’Xk’ Xk Xk/ 'Xk.

(iv). We may assume j < k, since the case j = k is trivial. Choosing
i = k in Equation (24) we see that

X - Xj - xj,nxk,nXg + [Xk’ ) XJ]V
Xl? l’kmxk’nXg -+ xk,npk,n ’

where [ X}, - X, = min{xy ,p;, jnpPrn} by Proposition 5.2. Thereby

Xy X;
X

=0,(j,k) < o3-,(J, k), (25)

where v =11if j ¢ U and v = 2 if j € U. Clearly, the claim holds, if 7 is such

that X;- X
) . .
X'LX]C € {0—1<j>k)702<]5k)}7

Let us check the remaining cases. Suppose first that¢ > j e U,and k > 1€ U
ori >k ¢ U. By Proposition 5.2 we know that [X; - X;], = xi,p, < Tjnpin
and [X; - Xyl = Tk ppin < Tippry. Then

) ) 2 . . ) ) 2 ) ) ) . 2 Y
mz,nmen + ZTinPjn < xlm%an + TinPjn < mz,nmen + ZjnPig
2 = 2 = 2 J
xiﬂ?xkﬂ?Xn + mi7npk’77 xiﬂlkaXn + ‘rkmpiﬂ? xiﬂ?xkﬂ?Xn + xkﬂ?piﬂ?
in other words,

O'Q(j, k‘)Ul(Z,Z) S Ug(j,i)@'l(i,/{f) S Ug(i,i)al(j, k’)
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Note that o,(¢,7) =1 for v € {1,2} and X, - X;/X; - Xy, = 02(J,4)01(i, k) by
(ii). This together with Equation (25) gives the claim.

Suppose next that ¢ > j ¢ U, and k > i ¢ U or i > k € U. According
to Proposition 5.2 we have [X; - X;|, = x;,pin < Tippjn and [X; - Xy, =
TinPhy < ThkpPiy- Lhis gives

) . 2 Y ) ) 2 Y ) ) 2 ) .
xz,nmen + ZTjnPin < xzmmen + ZTjnPin < xz,nmen + TinPin

_— i M
TinThnXp + ThnPin ~ TigTenXg + Tinbky — TinTknX; + TinPkny
Y n<+n n<+n Y Y Y n<+n

which says
o1(j, k)oa(i, 1) < o1(j,1)02(i, k) < 01(i,4)02(5, k).

Again, (ii) shows that X, - X;/X; - Xy = 01(7,7)02(4, k), which together with
Equation (25) gives the claim. Thus the proof is complete. O

Proposition 5.5. Let 0 # Z =r X1+ -+ 1, X,,, wherery,...,r, € N. We
then have for any j < k.
Z-X; _Xj-Xy
>
Z- Xy = X?

Proof. Assume first that Z = X, is a row of P71, If i > k, then

Z-X; XX
Z X, XXy

Proposition 3.12 yields ka = x; x X + 0Xp, where 0 = 2 — (Tipp1 + -+
zi) in the case k + 1 is a satellite to h and otherwise p = 0. Let us recall
the following elementary fact: If a,b,c,d, e, f € N such that bdf # 0, then

a-+c e
~ — 2
b+d ’ (26)

I Y

=

Ul o

b

NS
~| o
~| o
~s

where ~ is one of the relations =, < or >. Applying this gives

Xh'Xj XkX] ZXJ l’z’kaX]—i—QXhX] XkX]
Xh'Xk - X]% ZXk $i7kX]%+QXh’Xk - Xlz

This shows that it is enough to consider the case + < k. Moreover, we may
suppose ¢ < j, because

X, X; _ XX X X; _ XXy,
> < >
X, Xy = X2 X X
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and so, if j < ¢ <k, then we may simply switch the roles of X; and X;.

By the above, we may restrict ourselves to the case i < j < k. Let
v € {0,...,g} be such that v, < j < 7,41 and write v := v,41. If k < 7,
then the claim is clear by Corollary 5.4 (iv). Especially,

XX, Xy X
X X, = Xz

(27)

If £ > ~, then according to Proposition 3.12 we have
Xi X=X, X =m, X, - Xy and X, - X; = X7 X = 25, X, - X
By Proposition 3.12 we know that
v, X2 = (X)) < X7
Then we get by using these and Equation (27)
Z-X; o XX < Xy X5 ey X, X S Xk-Xj‘

Z-Xp wenXi- Xy T me, X2 xf X2 T X?

oy ty

Thereby the claim holds for any row Z of P~
Suppose then that Z = r X, +- - -+7r, X, for some (r1,...,7,) € N*~{0}.
By the above
Xi - X; XX
>
XX, X7

for every i = 1,...,n. Applying Equation (26) we obtain

Z-X; _ XX
>
7 X, - X2

as desired. n

~

Remark 5.6. Note that by Equation (8) we have X, - X; = —Ej - E;. More-
over, by setting v; := ord,, we may write

n

Ei=> u(p)Ex = V(p)E,

k=1

where p; is the simple complete ideal in a containing a and having the point
basis X; (cf. Remark 2.3). Because Ej, - E; = —Jj ;, we obtain

XX, = By By = o) = )
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where the last equality (known as reciprocity, see [11, p. 247, Proposition
21.4]) is now obvious. Therefore Proposition 5.5 says especially for any j < i
and for any k that

v(py) o vilpy)

vk(pi) — vipi)

In the sequel we write for any vector X = (x1,...,z,)

SX = x4 4 2. (28)

Remark 5.7. Observe that if X; is a row of the inverse of the proximity
matrix of a, then ¥ X, = -K - E;, = —-K - X;E*, where K = E] +---+ E’ is
the canonical divisor (see page 32).

Proposition 5.8. Let X; be a row of the inverse of the prorimity matriz of

a. Let p be such that v, < i < y,41 unless © = 1 in which case we set p = 0.
Then
EXZ>'WC _'_ 1 - xl,'Yk = pl»’Yk + e + pi7’YI»L.

foreveryk=0,...,u
Proof. Clearly,

EX>’Yk — EX'(Vkﬂ’k-&-l] 4t ZX-(’YQ”Yg+1].
If 11 < v, then i < 7,, and we see that £X ™! = 0. Thus

ZX>’Yk — EX'(’ka’Ykﬁ-l} R EX(’YM7’YM+1].
We observe that the claim holds if

EX(’YD7’YV+1} — Tiqy, + Piryy = Tirypgr for v < 22
E Tin, + Piy, — 1 for v = p.
It follows from Proposition 3.12 that EXi(V”’%“} = T, +12X§Z$’1%+1], while
Corollary 3.15 yields x; , + piy, — Tiqpir = Timpsr (Tyy 1 + Pp — 1). Subse-
quently, it is enough to verify that

(Vi Ypt1]
NX = Ty, + Py, — 1

for every i (and then especially in the case i = v,41).

Consider the transform b := p; ™. Recall that the point basis of b cor-
responds to Xih‘“ﬂ. Moreover, it follows from Proposition 3.9 that there are
no terminal satellites between 7, and ¢ < v,,;, and therefore [y = {i}. By
Proposition 3.16 we may reduce to the situation i = n and ' = {n}.
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As in Formula (12), the sequence of the multiplicities aq,...,a, is rep-

resented by some positive integers m = my, r; = r; and s; = s1; for
1 <j <m, where a = s; > -+ > s, = a,. By Equation (13) we have
rj8; = sj_1 — 8j41 for every j = 1,..., m. Therefore

a1+"'+an:r151+"'+rmsm+3m:SO+51_3m_Sm+1+5ma
where so =a; +---+a, and s;,41 = S, = 1. Then

a2+,,.+an:30_5m:a1+pn,70—1.

6 Multiplier ideals and jumping numbers

Let a be an ideal in a two-dimensional regular local ring «. Let X — Spec(a)
be a log-resolution of a, i.e., a projective birational morphism = : X —
Spec(a) such that X regular and aOy = Ox(—D) for an effective Cartier
divisor D on X with the property that D+ Exc(m) has simple normal crossing
support. Here Exc(7) denotes the sum of the exceptional divisors of w. Note
that (2) is always a log-resolution. Recall that the relative canonical sheaf
wy can be defined as the dual of the relative Jacobian sheaf Jy (cf. [12, p.
203, (2.3)]). The canonical divisor K := Ky of X is the unique exceptional
divisor on X for which Ox(K) = wy.

Definition 6.1. For a non-negative rational number ¢, the multiplier ideal
J(a°) is defined to be the ideal

J(a) =T (X,0x (K — |cD))) C «,

where D € A is the effective divisor satisfying aOx = Ox(—D) and |cD]
denotes the integer part of cD.

Lemma 6.2. Let a be a simple complete ideal of finite colength in a two-
dimensional reqular local ring a.. Then the base points of the multiplier ideal
J (a®) are among the base points of a for every non-negative rational exponent
c.

Proof. Let X — Spec(a) be the resolution of a as in (2), and let D be the
antinef divisor satisfying a = I'(X', Ox(—D)). Then, by (10)

J(a9) = T(X, Ox(=([cD] — K))) = T(X, Ox(=([cD] — K)7)).

Since the antinef closure is antinef, we observe by Proposition 2.2 that J (a®)
generates an invertible Oy-ideal. O

32



Definition 6.3. Let a be an ideal in a two-dimensional reqular local ring
«. By [6, Lemma 1.3] there is an increasing discrete sequence 0 = & <

&1 < & < -+ of rational numbers & characterized by the properties that
J(a¢) = J(a%) for c € [&,&41), while T(a%+1) C J(a%) for every i. The
numbers &1,&, ..., are called the jumping numbers of a. We set

Ho={&1i=1,2,...}.

Remark 6.4. For practical reasons we don’t consider 0 as a jumping number
in contrary to [6, Definition 1.4]. Clearly, this is no restriction. Note that if
a = «, then J(a%) = « for every ¢, which means that the set of the jumping
numbers is empty.

Definition 6.5. Let a,b be ideals of finite colength in a two-dimensional
reqular local ring . We define the log-canonical threshold of a with respect
to b to be

cp = cp :=1inf{c € Qs | T (a%) 2 b}.
Note that if b = «, then cy is the usual log-canonical threshold.

Remark 6.6. By [10, Theorem 11.1.1] J(a¢) = aJ (a*"!), when ¢ > 2. If a
is proper, then we may find ¢ >> 0 such that J(a%) 2 b, and so

{c€ Q.0 | T(a®) 2 b} #0.

It follows from Definition 6.3 that ¢, = & € Q for some ¢ = 1,2..., provided

that a is proper. If a = «, then the above set is empty and ¢, = oo for any
b.

Let I denote the point basis of a, and let P~! be the inverse of the
proximity matrix of a with the rows Xi,...,X,. For an arbitrary vector
R=1(r1,...,ry) € N* we set

br = H p:Z,
=1

where p; is the simple complete v-ideal containing a and having the point
basis X;. We write

_—_ L0 .__ 0

Proposition 6.7. Let a be a two-dimensional reqular local ring and let a C «
be a simple complete ideal of finite colength. Let H, denote the set of all
Jumping numbers of the ideal a. Then

Ho = {CR € Qso | R e Nn}
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Proof. We may assume a # «. Take R € N and let by be as above. As we
observed in Remark 6.6, cg = &; for some positive integer i. Hence

HaD {036@20 ’ RGN”}

To show the opposite inclusion, take a jumping number & (i > 0). By
Definition 6.3 we get J(a¢) = J(a*-1) ¢ J(a%) for any ¢ € [§-1,&). By
Lemma 6.2 the base points of J(a¢) are among the base points of a. Then
J(a®) = bg for some R € N which means that & = cg, i.e.,

H. C {CRGQZ() ’ RGN”}
]

Corollary 6.8. Let a be a simple complete ideal of finite colength in a two-
dimensional regular local ring o and take R € N*. Then the set {b, | v €
N" ¢, = cr} has the largest element containing all the others. Furthermore,
the set {J(a®) | ¢ < cg} has the least element, and these two coincide.

Proof. By Proposition 6.7 cg = & for some ¢ € Z,. Then by Definition
6.3 we obtain J(a%-1) = min{J(a°) | ¢ < cg}. On the other hand, as we
observed above J(a%-1) = b, for some p € N", and clearly ¢, = & = cp. If
v € N" is such that ¢, = cg, then J(a) D b, for every ¢ < cg. Especially
J(a%-1) = b, D b,, and therefore b, = max{b, | ¢, = cg}. O

7 Key lemmas

In order to determine the set of the jumping numbers, we make use of Propo-
sition 6.7. For the main proofs we shall need a few technical results which
are mostly gathered in this section. As above, a is a simple complete ideal of
finite colength in a two-dimensional regular local ring o having the resolution
(2) and the base points @ = a; C -+ C a,. Let P denote the proximity
matrix and I = (a;...,a,) the point basis of a and let br and cg be as in
Definition 6.5. Recall that H, = {cg | R € N"} according to Proposition 6.7.

Notation 7.1. Let X and Y be row vectors of Pt For any R € N" set
R := RP~! and write

R X+¥X+1
B X.Y ’

Ry[X]Z

where X is as defined in Equation (28). In the following, we usually write
R[X] := R;[X].
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Proposition 7.2. Let X,..., X, be the rows of P~'. Then for any R € N"
cr=min{R[X;] |i=1,...,n}.

Proof. Set D = E, so that a0y = Ox(—D). We have by Definition 6.1 and
Equation (10)
J(a%) = DX, Ox(—([cD] — K))) = (X, Ox(—([cD] — K)7)),

where K denotes the canonical divisor and (|cD]|—K)™~ stands for the antinef
closure of [¢D] — K. By Proposition 2.2 J(a®)Oxr = Ox(—(|cD] — K)~) is
invertible. Also by C « is invertible. Since J(a°) and by are both complete,
we have J(a®) D by exactly when J(a®)Ox D brOy, which is equivalent to

Ox(=([eD] = K)¥) 5 Ox(=V(br)E),
where E is as in Equation (5). This means that
(l[eD] — K)~ < V(bg)E.

Because (|c¢D| — K)™ is by definition the minimal antinef divisor satisfying
([eD] — K) < (leD] — K)~, we see that this holds if and only if

lcD| — K < V(bg)E.

Recall that V(bg) = (R- Xi,...,R-X,) and V(a) = (I - Xy,...,1- X,,) by
Equation (7). Similarly, K = Ef +---+ E* = (XX, - ,XX,,)E. Therefore
the inequality above is equivalent to

X, - I] - X, < R-X;

for every i = 1,...,n. So J(a) 2 by exactly if [cX;-I| > R- X; + XX; for
some ¢ = 1,...,n, or equivalently,

eX;-I>R-X;+ XX, + 1.

for some i = 1,...,n. This means that ¢ > R[X;] for some i =1,...,n. Now
cr is by Definition 6.5 the smallest rational number ¢, for which J(a¢) 2 bpg.
Thus we get the claim. O

The remaining problem is to tell for which X; we reach the minimum of the
R[X;]:s. Let 7o,..., 7441 be as given in Notation 3.3. We shall now present
a few useful equalities and equivalences which will be needed in calculating
and comparing the R[X,]:s.
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Lemma 7.3. Let U be as in Equation (17) and suppose that w € U. When
u > 1 let v satisfy v, < u < y,41, whereas v =0 if u = 1. Set n:=, and
v = Yyi1. Furthermore, take R = (r1,...,r,) € N* and write

= erpm and ¢ := erxm

jedJ Jgd
where we set J:={1,...,n—1}U{j|n<j<wuandjecU}. Write also
§:=R-X,+2X,+1—((+1)X].
Suppose that n < k <. Then
i) XXk +1 =24, (X, + 1) + prs
i) R- X" < pyC + T
iii) R Xp+ SXe+1< (64 any + (C+ D (@en X2 + pry);

i) Ifu=1, then § = 1,

:Eungf
v) If u>1, then R[X,| ~ R[X,] & 0 ~ T
u?”]

where ~ denotes any of the relations =, < or >. Moreover, the equality holds
in 1) and i) if k = u.

Proof. (i) Clearly,
SXp+1=SX" 4 Ty + SXT 1 — ap .

By using Proposition 3.12 we get ZXE" +xp,y = T ,(XX, + 1), and further,
by Proposition 5.8 we obtain XX " + 1 — x4, = p.-
(ii) We first observe that

R-X7"=Y X X",

j=1

36



Because k < v, we have X; - X" = [X} - X;],. Proposition 5.2 then yields
that

R-X7" = ) rlXe- Xl
j=1

n
= E Ty mm{xk,npj,mxmpk,n}

i=1

= E Tj mm{kapjm’xjmpkm} + § Ty mm{xk,npj,mxjmpkm}
JjgJ jeJ

< E 5% 5nPky + § TiPin T
j¢J jeJ

Let us then show that the equality holds here if £ = u. By the above it is
enough to prove that

TunPin, ifJEJ;
[Xu . X]]y = { ',77p.777 f . J
TjnPuny, 1] ¢ .

Indeed, suppose first that j € J. Then either j <nor j € U withn < j < u.
In the first case we have [X, - X;], = 0 = z,,p,,, while in the second case
[(X. - Xl = zyypjn by Proposition 5.2 as wanted. Suppose then that j ¢ J.
If n <j < u,then j ¢ U, and Proposition 5.2 gives [ X, - X;|, = z;,pun. If
J > u, then the same holds, as u € U.

(iii) Using Proposition 3.12 we have

R-Xpy=R-X"+R-X."=m,R- X, + R-X".
By i) ¥X), + 1 = 2,(XX,, + 1) + pi,,. Putting these together yields

R-Xp+3Xp+1 = mp)(R-X,) + 32X, + 1)+ ppp + R- X"
= Tpy0 + ((+ Dwpy X2+ ppy + R X

By ii) R X" < PinC + Ti &, where the equality holds if & = u. Thus the
claim is clear.

(iv) If u = 1, then n = 1, which implies that Xg = 1= XX,,. Furthermore,
we have J = (), which yields

n

szrjmj7ﬂ:ZTij'Xﬂ:R'X”7‘

Jj¢J j=1
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Thus we seethatéz}?'Xn—l—EX,ﬁ—l—(—l:l.

(v) Observe that X, - I = ayzy, X} + [X, - I], by Corollary 5.3, where
I = (a,...,a,) = X,. Because v € U, we have (X, - I], = a,pu, by
Proposition 5.2. Therefore we obtain by using iii)

R-X,+%X,+1
X, 1
Tuy(0 4 &) + (C+ D@y X7 + puy)
X, 1
Tun(R - Xy + 22X, +1) 4 2y + (C4 1) puny
anxung + Gy Puy ’

R[Xu] =

Noting that X, - [ = X, - [=" = aan] by Proposition 3.12 we then see that
R[X,] ~ R[X,] is equivalent to

R-X,+ 35X, +1 2R Xy + 25X, + 1) + 2408 + (C+ 1)puy

(29)
X,g :pu,nXg + pun

If w > 1, in which case v > n, then p,, > 0. An elementary fact similar to

Equation (26) says that if a, b, ¢, d € N such that bd # 0, then
atc a c a
brd 5T a™ (30)

where ~ is one of the relations =, < or >. By using this we see that Equation
(29) is further equivalent to

R-X,+35X, +1  2yné+(C+1)puy

X3 Pun
which is the same as
- TynX?2
§=R-X,+XX,+1—-(C+1)X] ~ ;’—"5.
)
The claim has thus been proven. O

Next we will show that the relevant indices in searching the minimum
of the R[X;]:s are in the set I' = I'* U {n}, where I'"* denotes the set of the
indices corresponding to the star vertices of the dual graph as before.

Lemma 7.4. Let X,..., X, be the rows of P~ := (;ij)nxn. Let i €
{1,...,n}. For1<i<mn,letved{0,...,9} satisfy v, < i < 7,41, whereas
v=0ifi=1. Writen:=~, and v :=~,.1. Then

R[X;] = R[X;] = R[Xi] = R[X,].

Moreover, in the case n > 1 we have R[X;] > R[X,,].
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Proof. Tt follows from Proposition 3.12 that

X, X, XX, X X2 oz, Xio X, X;-X,

X’an_XWSFYXn_X,anS’y_ xn,’yX'% Xg ’

which shows that

R[X']_R-XiJrZXiJrl JRX4BX 1
XX, T X, X, B

RIX,]

is equivalent to 3
R-Xi+5Xi+1 _ Xi- X,
R-X,+%X,+1~ X2 =
Clearly, R[X;] > R[X,] if and only if the inequality here is strict.
Suppose first that ¢ ¢ U. According to Corollary 5.4 (iv) we have

(31)

$i,nX$ + Pin . . Tin Xz ' X’y
————— = 03(i,7) > 01(i,y) = —* = :
x%nX?; + Py Lym X«Qf

As 1 € U we must have 1 <7 < i <~. Then p,, > 0, and Equation (30)
implies

Pin 5 Tin

Py Ty
It follows from Lemma 7.3 (i) that

ZXl —|— 1 . xm(ZXn —+ 1) + pim
SXy+ 1 mg(EXy 1) + oy

An application of Equation (30) then gives

EXZ—i—l > Lin XZX'y
SX, 4171, X2

In the case R = 0 this is the same as Inequality (31). If R # 0, then
Proposition 5.5 yields 3
R-Xi | XX,
R ' XW B X% '
Applying Equation (26) to these two inequalities implies Inequality (31).
Suppose then that ¢ € U. According to Corollary 5.4 (iv) we have

%in

)

. . ;0 X2+ pi, X;- X
:01(277)202(Z77): T L= ’Y‘

= (32)
Lym %,nXﬁ + Py X%
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Choosing v =i and k = 4,7 in Lemma 7.3 (iii) gives

R-Xi+ BXit+1 _ 2in(6+8 + ((+ D(@in X7 + pin)
R. X, +XX,+1 Tyn(6+&) + (C+ 1)(1‘7771)(% + p%n>‘

(33)

By Lemma 7.3 (iv) and (v) R[X,] > R[X,] implies § > 0. Then § + ¢ > 0.
If § + & = 0, this already proves Inequality (31) by Inequality (32). Thus it
remains to consider the case 6 + ¢ > 0. Then we may apply Equation (30)
to (32) to get

mi,n<5 + 6) + (g + 1)(551,77X5 + pi,n) > xi,nXg + pi,n
Typ(0+&) +(C+ 1)(x%77X% + Pym) x%nX,? + Py

(34)

Combining this to Inequalities (32) and (33) shows that Inequality (31) holds.
The first claim has thus been proven.

The second claim follows from putting ¢ = 1 in the inequalities above.
Note that Inequality (32) is now strict, which implies that so are Inequalities
(34) and (31), too. Indeed, 1 € U, and n > 1 yields that 7y = v >n =1 so
that p,, > 0 while p; , = 0. []

Proposition 7.5. Let Xi,..., X, be the rows of P~" := (2 ;)nxn. Then
cp=min{R[X,] |y €T}
for any R = (ry,...,r,) € N". Moreover, cr < R[X1] if n > 1.

Proof. According Proposition 7.2 we have cg = min{R[X|] | j = 1,...,n}.
Hence the claim is obvious in the case n = 1.

Suppose that n > 1. By Lemma 7.4 we have cp < R[X,,] < R[X;]. Thus
the last claim is clear, and furthermore, if 7 is such that cg = R[X;] for some
i, then i > 1. Tt follows that -, < i <, for some v € {0,...,g*}. Because
R[X.,] > R[X;], Lemma 7.4 yields R[X;] > R[X,, ], which further implies

Yr+1

that cp = R[X,,,,]. O

Lemma 7.6. Suppose that v € I'*, and take any R € N" such that cgp =
R[X,]. Then cr<» = R¥[X,] < a', and for some m € N,

m
CR = CR<~ —I— —.
Gy
Proof. Write R = (ry,...,r,) and set R’ := R<7. In order to show that
cr = R'[X,], it is by Proposition 7.5 enough to verify, that R'[X,] < R'[X,)]

for any n € I'.
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_ Write R = R'+ R", where R := R27. Furthermore, set R’ := R'’P~! and
R":= R"P~'. Then

R=RP'=RP'+R'P'=R+R,
and for any row X of P~! we may write

(R+R")-X+XX+1 R'-X
T % = R'[X]+ "

1
Assume that n € I'. Proposition 7.2 implies that cp = R[X,] < R[X,]. So

R[X] = (35)

R”-X RN-X
"X,] - R[X,] < - T = A.
R[ 'Y] R[ 77]— IXn IXfy

We will show that A < 0. Note that the claim is trivial, if R = R’. Thus we
may presume that R” # 0.

Suppose first that < 7. Then X, = X>7. Since R' = > i, TiXi, we
see by using Proposition 3.12 that for any n <~
R". X, R". Xﬂﬁ'y Z? ~ 1X<’7 X, Zz 4 Tii, Xy Xy m %6
X, 1.x3 @ IY-X, X, X,  a, (36)
where m := 37" riz;,. Hence A = (m —m)/a, =0, if n <.

Assume next that n > . Then Proposition 3.12 implies that
I-X, I-X5" 1=.X, X, X, X, X,

X, 1-x2" I-X, X2 X2
By Proposition 5.5 we have for every i =1,...,n
X - X, S X, X,
XX, — X2

By applying Equation (26) we then get

R-X, Y miXi X, L Xy Xy X,
R X, Y riXi- X, Xz IX,
Thus _ ~
_ R// . Xn R// ﬁy < 0
I x, 1-X,
and therefore cp = R'[X,]. Subsequently, by Equations (35) and (36)
R'- X m
cr = R[X,] = R'[X,] + T. )(7’y = Cr + a-
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It remains to show cg < 1/a,. Set i := min{n € T' | v < n}. Observe
that such an index exists, because by assumption v < n. Recall that i € U
(see Remark 5.1). Since cpr = R'[X,], we have R'[X,] < R'[X;]. By Lemma
7.3 (v) this implies

~ ZT;
R-X,+5X, +1—((+1)X2 <=2 (37)

We have p; ,( + ;& = R - X7 by Lemma 7.3 (ii). On the other hand,

v—1
R/ . )(Z->’y = Z’I"]X] . AXV,L->’Y - 07

j=1
Therefore Equation (37) gives
R-X,+3X,+1< (M_i_l)X’?—X?{.
pi,’y
Since X, - I = X, - I¥7 = a,X? by Proposition 3.12, we obtain from this

R-X,+%X,+1 1
Rix)=" 2 r st o L
X, -1 .y
Because cr = R'[X,], we get the claim. O

8 Jumping numbers of a simple ideal

In this section we will give a formula for the jumping numbers of a simple
complete ideal a in a two-dimensional regular local ring o in terms of the
multiplicities of the point basis I = (a4, ..., a,) of a. Let vy,..., 7441 and I'*
be as in Notation 3.3. Recall from Proposition 4.3 that I'* the set of indices
corresponding to the stars of the associated dual graph. Before we proceed
to the main theorem, we prove the following lemma:

Lemma 8.1. Let o be a two-dimensional reqular local ring, and let a be a

simple complete my-primary ideal in o having the point basis I = (aq,. .., ay).
Forv=0,...,g9, write v, =n and v,+1 = 7, and set
I I
b, := )
Qn
Then I x
a .
by =—"—" = aw@%nXs + pu)-

Qn
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Especially, b, is an integer, for which

ged{a,, b, } = a,.
Moreover, a, <b,, where the equality holds if and only if n = 1.
Proof. Proposition 3.12 gives I=7 = a,X.,. Therefore

o LT el X

an ap

Using Corollary 5.3 we obtain X, - [ = an(a:%nXﬁ + p,), and so we get the
first claim. Clearly, b, is an integer, and since a% < [-I57 = ayb,, we see
that a, < b,. Here the equality holds if only if n = 1. By Corollary 3.15
Uy Tryy = Gy and a,p, = pp,. Then

ged{a,,b,} = ged{ay, %(IwXﬁ +pv)}
= ged{ay, pny}-

By definition p,, = ay41 +--- +an,, and a, = --- = a,,_, 1 by Propo-
sition 3.5. Thus ged{a,, pn,} = gcd{a,, ar,,,}, and the claim follows from
Proposition 3.7. ]
Remark 8.2. The integers a1, b, ..., b, in fact coincide with the so called
Zariski exponents By, . . . 7Bg+1' The Zariski exponents can be defined recur-
sively as follows. Let 3], ..., 3, be the Puiseux exponents (see Notation 3.6

and Remark 3.8). Proposition 3.7 gives that ged{a,, ,+---+a,,a,_,} = a,
for every v =1,...,¢g + 1, and then by using Corollary 3.15 we see that

ﬁ, = a:’yl”’y”—l + e + x'Yu:TV
v )

'r’Yuqufl

where ged{x,, ,, , + -+ Ty, rs Ty~ + = 1. Recall that by Corollary
315 Ay, = Ty, 1y, Tyyyr sy, for every v = 0,...,g. Note that the integers
Uy ooy Qygyy AN Ty o5, Ty o, are usually denoted by eg, ..., €441 and
Ny, ..., Ngt1, respectively (cf. [20, p. 130]). Write ng := 1. Following [20,
Equation 6.1] (clearly, e;,1 is a misprint in the cited equation), set

BO ‘= €p, and /BI/ = (ﬁl,/ - 1)61/—1 + Bu—lnu—l for 1 S v S g + 1.

Let us prove that these are the integers a,,, by ..., by. From the definition
above we see that Gy = a,, = I - X%; In order to verify that g, = b,_; for
1 <v <g+1, let us first show that 8,n, = I-X,, also for v > 0. Suppose
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that B,_1n,_1 =1 - X,,_, holds for some 1 < v < g+ 1. Remark 3.14 shows
that (8, — 1)e,—1 = pny,_,, and I - X, = a,,_, X? | by Proposition 3.12.
Subsequently, we obtain by using Corollary 5.3

/BIJnI/ - nV([.X'YV—l +pn7'}’u—1) = '/'C'Yu,'Yu—l(a’Yu—lX’ij_l +pn7’}’u—1) = I.X'YV' (38)

Thus an induction on v shows that

g o LK _ml X,

x'YVqu—l a"}/u—l

for 1 < v < g+ 1, where the last equality follows from Corollary 3.15.
Together with Lemma 8.1 this completes the proof.
We have also an alternative characterization for the Zariski exponents:

/BV:UTy<a):U<pTU> (VZO,...,Q—i—l).

Clearly, this holds for v = 0. Let us then verify this in the case v > 0.
Equation (38) yields 3, = I - X, , + pu~,, for 1 < v < g+ 1. On the
other hand, since z,,; = 1 for every v,_1 < i < 7, by Proposition 3.10,
we get [ - X271 = p,. . An application of Proposition 3.12 then gives
I- Xz =171-X, . Subsequently, for 1 <v <g+1,

Bp=1-X, ,+pnm=1" XTSV'YU—I + 7. XT>V%—1 =1-X,.

Because [ - X, = v, (a) = v(p,,), as observed in Remark 5.6, we thus obtain
the desired characterization.

Theorem 8.3. Let o be a two-dimensional regular local ring, and let a be a

simple complete m,,-primary ideal in o having the point basis [ = (ay, ..., ay).
Let T = {m1,...,74} the set of indices corresponding to the stars of the dual
graph associated to a, and write o := 1 and Vg1 :=n. Forv =20,...,g",
set I <
b, = —
a

Yv

and then define for s,t,m € N
s+1 t+1 m
H, = { + +

s,t,m € N,
a

s+1+t—|—1< 1 }

Q- b, Ay,

s,tEN}.

The set of the jumping numbers of the ideal a is then
Ho=HoU---UH,e.

Tv bV a”YrH—l

forv=0,...,9"—1 and

s+1 t+1
Hg* = { +
Qg by~
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Proof. If n = 1, then a = m,. Subsequently, H, = {m € N | m > 1}, and
the case is clear. Thus we may suppose throughout the proof that n > 1.

To see that every jumping number is in HyU- - -U H -, recall first that by
Proposition 6.7 any element in H, is of the form cg for some R € N". Take an
arbitrary R = (rq,...,r,) € N". By Proposition 7.5 there is v € {0,...,¢*}
(recall that I' = {~1,...,vg41}) such that

cr = R[X,] < RX,], (39)

where v := 7,41 and 1 := 7,. As observed in Remark 5.1, v € U. Thus we
may apply Lemma 7.3 (iii) to get

R[X ] _ R'Xw+2Xw+1 . (x%nXg"‘Pu)(C"‘ 1)+x%n<f+5)
LA I'Xfy - -['X'y .

By Corollary 3.15 we have a,/a, = x,,. It then follows from Lemma 8.1
that

I X, = ay(y, X2+ py) = Ty by (40)
Putting all together we get
(+1 &+96
= 41
CR o + b (41)

Clearly, (+1 is a positive integer, and by Lemma 7.3 (v) we see from Equation
(39) that ¢ and thereby also £ + 0 are positive integers.

If v = ¢g*, then Equation (41) proves that cp € Hyp«. If v < g*, then it
follows from Lemma 7.6 that cg is in H, exactly, when cg<~ is. Thus we may
assume R = R<7. This case is now clear by Equation (41), as Lemma 7.6
guarantees that cr<y < aj 1 Subsequently,

Ho C HyU---U H,

as wanted.
In order to prove the opposite inclusion, we first need two more lemmas.

Lemma 8.4. Let v € {0,...,g}, where g is the number of the terminal
satellites of a, and let t, 1, m,+1 € N. Then there exists two sequences of
pairs (s1,t1), ..., (sy,t,) and (Sys2, Myy2), ..., (sg,my) of non negative inte-
gers satisfying the following conditions:

i) for every 1 <i<v

tivr + 1+ X5 = (80 + 1)@y 0, X5, + pict) + (G + D2y,
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ii) for everyv < i < g we have m; = M1 Ty, 1y T Sig1 ONd Sjp1 < Ty, oy,
Moreover, writing sqg41 := mg we get for every v < u < g

g
my, = E :3i+1xw,w'
i=p

iii) For anyk=v+2,...,9+ 1, we have

(I)k = (mV—H + 1)p7’“’7”+1 +oot (mk_l + 1)p7k7’)’k—1 > My41 +1

A1 Py Yot +eeet Qg1 Pryi k-1 Ay

Proof. (i) Using descending induction, suppose that t;;; € N is given for
some 1 < ¢ < v. By Corollary 5.3

2 _ 2
1'%,%71((1'%7%71)(%71 + pi*1> - X’Vi'

Note that z.,,, , = a,, ,/a,, by Corollary 3.15. Moreover, we also have
Loy X2 4 pic1t = bi—1/a,, by Lemma 8.1, which then further yields

i—1

1.

ng{x'Yiy'Yifﬂ‘T’Yiv’}’iflx’i,l + pifl} = ng{aZI’ bl_l} =
Yi

The existence of a pair (s;, t;) now follows from Lemma 8.5 below, and thereby

we obtain a sequence (S1,t1), ..., (S,,t,).

(ii) Given a non negative integer m; for v < i < g, we have m; 1, s;.1 € N
with m; = m124,,, 4, + Siv1 and s;11 < 2,,,, 4. Arguing inductively, the
existence of the pairs (s,42,My12), ..., (sg,my) is then clear. Observe that
My = Sg41T+,~,- Moreover, assuming that

g
my+1 = E Sit1%; 1
i=p+1

holds for some v < pu < g we see by using Corollary 3.15 that

g g
my, = § : Sit 1T 1 Typgr g 1 Sp1 = E :SiJrlx%,’m'
i=p41 i=p

Hence this holds for every v < u < g.
(iii) To prove the last claim we first note that for every v <i < g

Mip1 + 1 _ Mit 1Ty + Tryigam

Q44 Ay 1 Tyiq1,v
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As x4 = siq1 +1and a2, = a,, by Corollary 3.15, we see that

Mip1 +1  Min1ypg t St 1 omit 1
a%‘ﬂ a7i+1x7i+1’%’ a%’

Because p,, , > 0 for every v < i < k, the above implies

(mi + 1)10%,%‘ > Myy1 + 1

CL%. p'Vk Vi a7u+1

The claim follows now from Equation (26). O

Lemma 8.5. If a < b are positive integers and ged{a,b} = 1, then for any
positive integert there exist positive integers u and v such that ua+vb = ab-+t.

Proof. We can assume a < b, as the case a = b = 1 is trivial, and clearly,
we may reduce to the case t < a. Since ged{a,b} = 1, we can find a positive
integer p such that pa = 1 mod b. Then tpa = t + gb for some integer q.
We see that b 1 tp, as otherwise b | tpa — gb = t, which is impossibile as
0 <t < a<b. Thus we may find integers r and u such that ¢tp = rb+ u and
0 <u<b Wegettpa =rba+ua=t+qb,ie., ua=1t+(g—ra)b. As0 < ua
and t < b, we see that 0 < ¢ —ra. Since u < b we get ua = t+ (¢—ra)b < ab.
Especially, this gives ¢ —ra < a. Set v := (r+1)a —q. Then we observe that
v > 0 and
ua+vb = wa+ ((r+1)a—q)b
t+ (¢ —ra)b+ (r+1)ab — qb
= t+ab.

]

Choose any v € {0,...,¢"}, and take an arbitrary element ¢ € H,. Then
there exist s,t,m € N such that

s+1 t+1 m
+ + —, moreover, ¢ <

1. »
if v <g*.
ay b, Qy Qry

CcC =

As above, write n = v, and v = 7,41. In order to prove that ¢ = cg for some
R € N"| we shall proceed in three steps.

A) To begin with, we shall construct a suitable R € N". Let g be the
number of the terminal satellites of a. Set ¢,,; := ¢ and m,,; := m, and let

(51,t1)s -+ (S0, ty) and (Sy42, Myt2), ..., (sg,my) be sequences constructed
as in Lemma 8.4. From these we obtain a sequence sg,...,s4,41 € N by
setting s,41 := s, So :=t1 and Sg41 := my. Define R = (r1,...,7,) so that

I if i =7, forsomerv =0,...,9+1;
71 0 otherwise.
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We observe that
R= $0Xr + -+ Sgp1Xr = Ry, + S

for any k =0,...,9+ 1, where

g+1

Ry, —ZSZX and S 1= Z $i X,

i=k+1
B) We shall show ¢ = R[X,,]. For k=0,...,g+ 1, set
(k) =Ry X, +5X,, + 1.
Note that

R-X, +¥X,+1 _¢(y+1)+éy+1-xV

X.] = —
RlX) [-X, I-X, [-X,

(42)

According to Proposition 3.12 we have X=% =z, . X where x, . =1
Ti+1 i+1,Yi Vi i+1574
by Proposition 3.10. If ¢ > k, then v, < ~; so that

< 7 < k2 p—
Xopr - Xy = X0y X%’y X 31 Xy, = X5 - X,
Moreover, an application of Proposition 3.12 gives
I X, =X =a,X, X,
Therefore
gk‘ : X’\/k _ i Si+1XTi+1 ' o Z S’L+1 _ g Si+1
[ ’ X'Yk i—=k I ’ X i=k a“Yz 'Yk i—=k a'Yi

As ay/a., = ., , by Corollary 3.15, it follows from Lemma 8.4 (ii) that

§V+1 . XW J Si+1 J Si+1Ln; m
Tu e gta (g

I X Q- a
v i=v1 Vi i=v+1 v v

We aim to show that
b+ 1) = (t+ Dayy + (s + 1) (200 X7 + po). (44)

Suppose for a moment that this holds. As we already saw in Equation (40),
I X, = ap(xyn X7+ py) = 2y 4b,. By Equations (42) and (43) we then have

RIX] — (t+ 1)z, N (54 1) (240 X7 + py) L m
K I-X, I-X, a,
t+1 1
) D m
b, ay Qry
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as desired.
In order to verify Equation (44), recall first that by Proposition 5.8

EX;CWO +1 =2y 00 = Py T T Py
By Corollary 3.15 we get py, 5, = T, ~,,,pi for 0 <4 < k, and so
Y Xy 1 =20y 50 + Ty Po o F Ty Pr1

Setting p(_1) := 2 allows us to write

k
¢(k) = Ry, - X’Yk + EX’Yk +1= Z (siXﬂ' ’ X’Yk + x%mﬂi—l) (45)

i=0
If © < k, then v,y > 7; > 7;, and Proposition 3.12 implies that

X

Ve—1°

_ SVk-1 —
X, - X’Yk =X 'X'yk = x’Yk,’quX‘n )
Furthermore, by Corollary 3.15 @, 4, = %+, 4, T~ ;- Hence for i < k

$i X7, - X% T Loy 7, Pie1 = Ty gy (SiX‘Fz‘ ’ X'kal + x'kal"Yipifl)'

Therefore we get by Equation (45)

k—1
w(’ﬂ = (SiX‘fi ) X’Yk + x'm,%‘pifl) + SkXTk ) X% t Ty 1, P—1
=0 b1
= Ty Z (SiXTi Xt :C'kaly%p’ifl) + 5k Xry - Xy + Pr-1-
1=0

But a look at Equation (45) again shows that this is the same as
w(k) = x%ﬂk—1¢<k - 1) + SkXTk : X% + Pk—1-
Proposition 3.10 says that z,, ,, , = -+ = 2, -, = 1, which implies that

_ <Vk-1 <Vk-1 >Ye—1
X, X, = XXX, - X

_ 2

- ka,Wk—l‘r'Yk:Vk—lek,l + Pr—1

_ 2

- x'?kv’Yk—IX’yk,l + Pr—1,

<Ye—1 <Ye—1 L.
as X5, = Ty o Ny, and X7, = Tr, v X~ , Dy Proposition 3.12.
This yields a recursion formula

@ZJ(]{?) = ':E'Ykﬂk—lw(k - 1) + sk(x7k77k—1X3k_1 + Pk—l) + Pk—1- (46)
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We claim that for k =0,...,v
(k) =tpp + 1+ X2 . (47)

Taking k = v, Equation (44) results from the recursion formula above.
We use induction on k. By definition sy = ¢; and 7y = 79 = 1, so that
Equation (45) gives

P0)=so+2=1t1+1+X>.

Assume next that ¢(k — 1) = ¢, + 1 + X2

b for some 1 < k < v. Then the
recursion in Equation (46) yields

¢<k) - (tk +1+ ng,l)x%ﬁkﬂ + Sk<x7k7'}’k71X’3k,1 + Pk—l) + Pk—1
= (tk + 1)1,71@,%71 + (Sk + 1)<x7k/Yk71X’3k,1 + pkfl)'

Subsequently, by Lemma 8.4 (i) we get 1(k) = t11 + 1 + X2 as needed.
This completes the step B).

C) It remains to show that R[X,] = cg. If this is not the case, then by
Proposition 7.5 there is an integer k # v + 1 satisfying

cr = RIX,,] < RIX,] (48)

(7 = 741). Assume first that & < v+ 1. Then 7 < ), < 7441 by Equation
(11), which yields Ry = (R<")"~, and subsequently,

Ry X, 43X, +1 (k)

R*[X. ] = = .
[ 'Yk] T- X,Yk I- Xfyk
By Lemma 7.6 this gives
vy _ 1
I- X’Yk Ay,

On the other hand, using Proposition 3.12 we get
[ X, =1-X>"=I"".X X2

e T Ay

and then by Equation (47)

Y(k)  ta+ 1+ X2 1
I-X, a'ncng Qv ’

k

which is a contradiction. Therefore we must have k > v + 1. Then v < g*,
and by assumption and the step B)
1
RIX,)=c< 00 (49)

Qry
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Clearly, we may rewrite inequality (48)

R-X, +¥X, +1
I'ch
R~X%j—|—ZX$I;/—|—x%ﬁ+]§.X;7+2XV>kv+1_:6%7
I-X57+1-X57
T (B Xy 45X, + 1)+ R- X2+ EX27 41—,
xwm]'Xv+I'X%j
R-X,+%X,+1

<
I-X, ’

where the second equality follows from Proposition 3.12. Applying Equation
(30) to this, we get
R-X>7+3X>7+1—
I-X7)

Ty - R, (50)

We aim to prove that

R-XZV+EX27+1~

Lypy D
> - ks
I X5,

where @y, is as given in Lemma 8.4. This will lead to a contradiction proving
the claim, because ®;, > (m + 1)/a, by Lemma 8.4 (iii), and then

+1
RIX,] € "= < &, < RIX,]. (51)
gl
Because
g+l
R = Z i X, and X7 = Z X(% i)
=0 j=r+1
we get
X>7_Z Z 5 X1, XVMJH] _Z Z si[ X - X,
=0 j=v+1 i=0 j=v+1

Here [X,, - X,,,]; = 0 whenever ¢ < j < k, because then 7; < ;. Therefore

k-1 g+1
R. XY — A . A
R X% - Z Z SZ[X’H X%]]'
j=r+1i=j+1

o1



As observed in Remark 5.1, 7, € U and 7; ¢ U when 0 < i < g+ 1. Note
also that 7y, < 7441 = n. Therefore [X., - X, |; = 27, 1,4, 4, for 0 <i < g+1
by Proposition 5.2. If j < 4, then v; < 7,1 < 7, and by Corollary 3.15 we
get T\, = Try ;1 Tr,_y 4, Where @, . = 1 according to Proposition 3.10.
Hence

(X - X )5 = Lri i Pyviv; = Tvic1,v Pvieys (52)

for v < j < k and j < i < g. Subsequently, by Lemma 8.4 (ii)

k=1 [/ g+1 k—1
R.X>7 — 4 — .
R X007 = Z Z Silyi_1 ;| Py = Z M Pz

j=v+1 \i=j+1 j=v+1

By Proposition 5.8 we know that

k—1
> _ _
XS L=y = Z Py
j=v+1

Thus we get

k—1
R-X24+SX2 41—, = Z (M + 1) Py

Jj=v+1

Moreover, [I - X,,|; = a,,p-, -, for every j < k by Proposition 5.2, and so

k—1 k—1 k—1
I'X;J = Z I- ngjﬁjﬂ] = Z - X5 = Z Gy Py ;-
Jj=v+1 J=r+l J=r+1
Hence we finally obtain
R- X7>k7 + 2X7>zj +1—2, - Z;:ziﬂ(mj + ]‘)p’ka’Yj — %
I- X7>k7 N Zf;i-H Ay Py -
which leads to the contradiction (51). The proof is thus complete. O

As a corollary, we give the result for the monomial case.

Corollary 8.6. Let a be a simple complete my-primary ideal in a two-
dimensional reqular local ring . Let I be a point basis of a. Suppose that
* = (. Write a := ord(a) and b := I*/a. Then the set Hq of the jumping
numbers of the ideal a is

s,t e N } )

1 1
H::{S+ +t+
a b

52



Lemma 8.7. In the setting of Theorem 8.3, we have for everyv € {0,...,g*}

1 1
—+— € H,.
ay, by

v

In particular, the subsets Hy, ..., Hg are non empty.

Proof. Obviously, the claim holds for v = ¢g*. Suppose that 0 < v < g*. Note
that then v < g, which implies that n > 1, and further, b, > a,, by Lemma
8.1. Recall also that a,, > a,,,, by Proposition 3.5. Because a.,,, | a,, by
Proposition 3.7, it follows that b, > a,, > 2a,,,. Therefore

1 1 1
— +-<
a"YV b’/ a’Yqu 1

Y

and then the claim follows from Theorem 8.3. Hence H, is a non empty, in
fact an infinite set for every v € {0,...,¢*}. O

Notation 8.8. For every v € {0,...,g*}, write

1 1
= — 4+~ (=minH,).
&=ty (sminfl,)
Proposition 8.9. Let a be a simple complete ideal in a two-dimensional
reqular local Ting o with the point basis (ai, ..., a,). Then a;jl ¢ H, for any
i€{0,...,9"+ 1}. In particular, 1 ¢ H,.

Proof. Let v € {0,...,g*} and let us write 7 := 7,41 and n := 7,. According
to Corollary 3.15 we have a, = ayx.,. Furthermore, by Lemma 8.1 we have
b, = ay(24, X7 + p,) and ged{a,,b,} = a,. Let us write a := a,/a, and
b:=b,/a,. Then a and b are positive integers with ged{a, b} = 1.

Assume that 1/a, € H,. Theorem 8.3 then shows that there are positive

integers v and v with
v u 1

So vb = (b — w)a. This is impossible, because ged{a,b} = 1. Therefore
1/a, ¢ H,, which further implies that m/a, ¢ H, for any m € N and
v < g*. Especially, if 7 > v, then we may choose m = z., ,, and we see by
Corollary 3.15 that 1/a,, ¢ H,. If i <wv, then a,, > a,, which shows that

1 1 1
— < —+ — =minH,.
ay, Gy by,

Therefore a2 ¢ H, for any i and for any v, i.e., a;' ¢ Ha. O
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Remark 8.10. By Proposition 8.9 we observe that we could define the sets
H, for v=0,...,9* — 1 in Theorem 8.3 as follows:

s+1 t+1 1 }
+ < .

ey, by Ay i

1 t+1
Hl,::{8+ + i + m s,t,m €N,

Ay, b, Ay,

Proposition 8.11. Let a be a simple complete ideal in a two-dimensional
reqular local ring o with the point basis I = (ay,...,ay,). Then

ko
{CEHg*|c>1}:{1+ 1+ ‘keN}.

2

Especially, every integer greater than one is a jumping number. Moreover,
1+ 1/1?% is the smallest jumping number at least one, while 1 — 1/(1=79)? is
the greatest jumping number at most one, whenever g > 0.

Proof. Let the sets Hy, ..., Hg be as in Theorem 8.3. For 0 < v < g*, let
us write ) := 7, and v := Y,41. Set a := a,/a, and b := b, /a,. Proposition
3.12 yields 1= = a, X, and thus ab = X?. By Lemma 8.1 gcd{a,,b,} = a,,
i.e., ged{a,b} = 1. Tt follows now from Lemma 8.5 that we can find s,t € N
for any k € N satisfying

ab+k+1=(t+1)a+(s+1)b. (53)
Recall also that by Theorem 8.3 every element in H, is of the form
(t+1Da+ (s+1)b+mab

54
a~,ab (54)
for some s,t,m € N. Thereby we observe that
k+1
H,,C{W k’EN} (55)

for every v € {0,...,g"}.
Choosing v = g~ gives X, = X, ., = I and a, = a,,.,, = 1. Moreover,

then a = a, . and b =0, .. Equations (53) and (55) now yield that

k+1
{1+ i ‘keN}:{ceHg*

7 c>1}.

Subsequently, 1+1/1? is the least element in Hy- greater than one, and every
integer greater than one is in H,+. Furthermore, Equation (55) implies that
1 + 1/I? must be the smallest jumping number at least one, as 1 ¢ H, by
Proposition 8.9,
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For the last claim, note first that if g = 0, then ¢* = 0. In that case
Theorem 8.3 implies that Hq = Hy+, and a,,.,, = a,. = 1 by Proposition
3.5. Especially, Equation (55) then shows that every jumping number of a is
greater than one.

Suppose next that g > 0. Observe that if c € H, and ¢ < 1, then it follows
from Equation (54) that v < g, because a,, = a,,,, = 1 by Proposition 3.5.
Set v = g—1.Then we get a > a, = 1 by Proposition 3.5, and By Lemma 8.1
a <b. Let k =a— 2 in Equation (53), and take s,t € N accordingly so that
ab+a—1=(s+1)b+ (t + 1)a. Note that ¢t must be positive as otherwise
b| ab—1 implying b = 1. But then 1 < a < b = 1, which is impossible. Thus

(I=9)? —1=ab—1=(s+1)b+ (¢ + 1)a,
where ' =t — 1 € N. In particular, Theorem 8.3 now shows that

1 s+1 t'+1
Fmee T e Ty e

Moreover, it follows now from Equation (55) that this must be the maximal
jumping number at most one. O

Corollary 8.12. Let a be a simple complete ideal in a two-dimensional reg-
ular local ring a and let H, denote the set of the jumping numbers of a. The
Hilbert-Samuel multiplicity of a is

e(a) = (&' - 1),
where £ :=min{¢ € H, | £ > 1}.

Proof. 1t follows from the Hoskin-Deligne formula that the Hilbert-Samuel
multiplicity of a is I?, where I denotes the point basis vector of a (see [13,
Corollary 3.8]). By Proposition 8.11 we now know that ¢’ = (1+7?)~*. O

Lemma 8.13. For u,v € {0,...,g*} set

1
6,0 :zmin{ﬁéHHfZ—}.
a

Yv
Then )
E,4+— ifp<vy;
ar,

3 if p>wv.

In particular, 8, > &, where the equality holds if and only if p = v.

9#,11 -
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Proof. Since 1/a,, < ¢, = min H,, we observe that 6, = &,.
Suppose that y > v. Then a,,,, > a,, by Proposition 3.5. As v < g~
and ¢, € H, by Lemma 8.7, Theorem 8.3 shows that £, < 1/a,,,,. Hence

which yields £, < &, =0,,,.

Suppose next that < v. In particular, this gives u < g*. As 0,, € H,,
we then know by Theorem 8.3 that ¢, = ¢ +m/a,,,, for some m € N and
ce€ H, with ¢ <1/a,,,,. By Proposition 8.9 we know that 6,, > 1/a,,, and
since 1/a,, = x,4,,,/a,,,, by Corollary 3.15, we observe that m =z, .,
and ¢ = ¢, Thereby 0, = ¢, +1/a,.

Because a,,b, = (I=7+1)* < (I5%+1)? = a,,b,, we have b, < b,. Thus

1 1 1 1
/ = — J— > _— = / -
5/" a’y‘u _|_ b'LL by 51/ a’yy )
which shows that 0, > £, as wanted. H

Proposition 8.14. In the setting of Theorem 8.3 we get for v € {0,...,9*}

szi}.
Ay

Moreover, &, € H, if and only if p = v, and

¢, = min {f € Hq

L<§6<~-<L<§;*.

Gy Qrygu
Proof. Note first that 1/a,, < &, for every v = 0,...,¢*. Furthermore,
¢, € H, by Lemma 8.7. By Remark 8.10 we then see that ¢, < 1/a,,,, for
v<g*t Itg € H, for some pu,v € {0,...,g*}, then 0, < & by definition as
€, > 1/a,,. It follows from Lemma 8.13 that 6, , = £, and further, p = v.
Moreover, &, =min{f,, | ©=0,...,¢*} for any v =0, ..., g*. Hence

1
’V:min{feHa 52—}.
ar,
O]
Corollary 8.15. Let a be a simple complete ideal of finite colength in a two-
dimensional regular local ring ov. The sequence of pairs (a.,, bo), - - -, (ay,. bg~)

and thereby the set of the jumping numbers of a, is totally determined by the
numbers &, ..., & ..
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Proof. For v € {0,...,g*}, write v :'= Y41, 7 == Y, u, = a,/a, and
v, = by/a,. Corollary 3.15 gives u, = x,, while v, = x%nXg + p, by
Lemma 8.1. Then

1 I ay,+b, 1 w+o,

!
A = |
Yoa, by a,b, ay U,

Moreover, by Lemma 8.1 we have

ged{ay, b, } B

a

ged{u, + v, u,v,} = ged{u,,v,} = 1.

v
Thus a, and ¢, determine u, + v, and u,v,. Note that w, and v, are the
roots of the quadratic equation w? — (u, + v, )w +u,v, = 0. So u, and v, are
uniquely determined by a., and §,.

Given all the numbers &, .. ., ., suppose that we would know the integer
a, as well as the pair (u,,v,) for some v > 0. Then we obtain a, = a,u,,

and from the product a,&,_; we get the pair (u,_1,v,_1) as described above.

Because a, ., = 1, we see that { yields (ug-,vy) = (a,,.,bs+) so that
we eventually get all the pairs (ug, vo),. .., (ug, vy<) as well as the integers
Qrgs - - - 5 Gy, Subsequently, we get the sequence (a.,,bo), ..., (a,,.,bg+), and
the claim now follows from Theorem 8.3. O]

Lemma 8.16. In the setting of Theorem 8.3, consider the set

Hﬂz&eﬁuési}.
a

71

Write a := a.,/a,, and b:=by/a,,. Then H ={{ € Hy | £ <1/a,,}, and
(i) H' is empty, if and only if g = 0;
(i) H' has exactly one element, if and only if (a,b) = (2, 3);
(11) H' has exactly two elements, if and only if (a,b) = (2,5).

Proof. Observe that Lemma 8.1 yields gcd{a.,, bo} = a,, and a,, < by. Thus
a < b are positive integers. Note also that £, > 1/a,, whenever v > 1 by
Proposition 8.14. Thereby H' = {{ € Hy | £ < 1/a., } where the inequality
is strict by Remark 8.10.

(i) H = 0 exactly when a.,&), = 1/a+ 1/b > 1. This is the case if and
only if a =1, i.e., a,, = a,,. By Proposition 3.5 this is equivalent to g = 0.

(ii) Theorem 8.3 implies that H' has exactly one element, if and only if
& € H', while 1/a., +2/by ¢ H'. This happens exactly when

1

1 1 2
—+-<land —+->1.
a b a b
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Clearly, this takes place if and only if (a,b) = (2, 3).

(iii) It follows from Theorem 8.3 that H' has exactly two elements, if and
only if both &) and 1/a,, +2/by are in H' while 1/a., +3/by and 2/a., +1/bg
are not. This is equivalent to the condition

1+2<1< ) 1+3 2+1
a b i a ba b

Obviously a > 1. If a > 3 then 2/a+1/b < 1 for any b > a. Therefore a = 2,
and the inequality on the left implies that b > 4. If b > 6 then 1/2+2/b < 1.
Thus the only possible solution to this is (a,b) = (2,5). O

Theorem 8.17. The point basis [ = (a1,...,a,) of a simple complete ideal
a of finite colength in a two-dimensional reqular local ring o can be read off
from the set H, of its jumping numbers. In particular, the jumping num-
bers belonging to the subset H' := {c € Hq | 0 < ¢ < 1} determine the

multiplicities ay, . . ., G,

Proof. As a,, > 1, Lemma 8.16 (i) implies that H' = 0, if and only if g = 0.
Then a; = --- = a, = 1, i.e., I? = n. Subsequently, Proposition 8.11 yields
¢, =14 1/nso that n =1/(§, — 1), and we are done in this case.

Consider then the case H' # (), i.e., g > 1. Suppose first that besides the
jumping numbers of a, we would already know the multiplicities ay,...,a,,.
According to Proposition 3.5 a; = 1 for every @ = 7,,...,n. Thus it remains
to determine the number n. Let ¢ be as above, and let £’ := max{c €
H. | ¢ < 1}. By Proposition 8.11 we know that & = 1+ 1/I?, while
¢ =1—1/(I=%)2. Therefore we see that

1 n 1
5/_1 5//_1'

n_Vg:P_(ISVg)Q =

Let us then prove that the set H’ determines the multiplicities ay, .. ., a,,.
According to Proposition 3.7 it is sufficient to find the rational numbers
B, .., 03, Recall that 3, ,, := 1+ p,,,/a,, by Remark 3.14. Since

ay,by = (IS 1)? = a2 + [Plo+ -+ 17,
for every v =0,...,9 — 1, we get by Proposition 5.2
Oy, by = a’Qyo T Qoo T F Ay Py, -
As a,,b, —a,, b,_1 = a,pp,, it is enough to find out all the pairs
(ayg,00), -, (ay,_y bg—1).
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Arguing inductively, suppose that for some 1 < k < g — 1 we know the
pairs (a.y, bo), - - -, (@y,_,,bk—1). Then we obtain by Lemma 8.1

Ay, = ng{a’kau bk*1}7

and by Proposition 3.5 we know that a,, > a,, = 1. The least element in
Hq greater than 1/a,, is by Proposition 8.14

, 1 1
sz awc + bk’
and because 1 < a,, < by by Lemma 8.1 we see that &, lies in the set H'.
Now by = (&, — 1/a,)~'. Thereby we get also the pair (a,, by).

The problem is to find the first pair of integers (a.,,bp). By Theorem
8.18 below the three smallest jumping numbers determine the order of the
ideal a, which is precisely the integer a.,. Then by = (§) — 1/a,)~*. Thus
everything is clear, if H' has at least three elements.

It remains to consider the two special cases where H’ has either two or
only one element. Let us show that then g = 1. We already saw that H’ # ()
implies ¢ > 1. Suppose that we would have g > 1. Then it follows from
Proposition 3.5 that a,, > a,, =1, i.e., a,; > 2. Proposition 8.14 implies
that & < 1/a,,, and further, & < & < &)+ 1/a,, < 2/a,, < 1. This means
that &, &1 and &) + 1/a,, are all in ‘H’, which is impossible. Therefore we
have g = 1 in both cases so that a,, = 1 by Proposition 3.5. Write a := a.,
and b := by.

Suppose first that & is the only element in H'. By Lemma 8.16 (ii) we
must then have (a,b) = (2,3). In this case we get

(ar,...,ay,)=(2,1,1).

Suppose next that H’ has just two elements. Then by Lemma 8.16 (iii) we
have (a,b) = (2,5), in which case

(ar,...,ay,) =(2,2,1,1).
Thereby we are done as soon as we have proven the next theorem. O

Theorem 8.18. Let a be a simple complete ideal in a two-dimensional reqular
local ring .. Let € < i < ( be the three smallest jumping numbers of a, and
let Hy be as in Theorem 8.3. Then the order of the ideal a s

O F6E = 100 — B¢
ord(a) = %
1 :
ey FOEA100-5C

Moreover, ord(a) = 1 if and only if ¢ > 1, and if ¢ <1 < (, then ord(a) = 2.
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Proof. Let a,,...,a,, and bg,...,bs be as in Theorem 8.3. Note that
ord(a) = a.,. By Proposition 8.14 we know that

1 1
=¢,=— + — € H,.
§=¢& an + by 0
We shall first show that i) € Hy implies ord(a) = 1/(2§ — ), while ¢ ¢ Hy
gives ord(a) = 5/3¢. We shall then verify that 6§ = 10¢) — 5¢ is equivalent
to ¢ ¢ Hy. This will prove the first claim.
Suppose first that ¢ € Hy. Because a,, < by by Lemma 8.1, it follows
from Theorem 8.3 that necessarily
1 2
¢ =—+ 7
Ay bo
provided that in the case g* > 1 we can prove that ¢ < 1/a,,. Indeed,
suppose that we would have ¢ > 1/a,,. As g* > 1, we know by Proposition
8.14 that & ¢ Hy. This means that ¢ < ¢]. Lemma 8.13 yields & < 6y so
that 1/a,, < ¢ < 6y contradicting the definition of 6, ;. Thus we observe
that if ¢ € Hy, then
1
a”YO - 25 . 77Z)
Suppose next that ¢» ¢ Hy. Then ¢g* > 1. By Proposition 8.14 we get
Y =& > 1/a,,. So £ is the only jumping number at most 1/a,,, in which
case Lemma 8.16 (ii) gives (a,, bo) = (2a,,, 3a,,). Hence
bt

&= S or equivalently a,, =
Y1

k)
3¢’
as wanted.

Let us now verify that in the case ¢ ¢ Hy we have 6§ = 10¢) — 5(. Tt is

enough to prove that
1 2
(=142 (56)

Qryy b1 ’

because then 2y — ¢ = 1/a,, = 6£/5, i.e., 6§ = 10¢) — 5¢. Observe that if
g-=1orif g >1and 1/a,, +2/b; < 1/a,, then 1/a,, +2/by € Hy by
Theorem 8.3. Subsequently it is the smallest jumpling number in H; greater
than v, as a,, < b.

We aim to show that 1/a,, +2/b; < 6y, and that 6y, < 1/a,, whenever
g* > 1. These will then yield that 1/a., +2/b; € H; and that ¢ ¢ H,. The
condition #y; < 1/a., will also guarantee by Proposition 8.14 that ( ¢ H,
for any v > 1 in the case g* > 1. But then the only possibility is ( € H;,
which will then prove Equation (56).
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Since [I2]; = a., pn~, by Proposition 5.2, we see that

bl _ ([S’YQ)Q _ ([S’Yl)? + [[2]1 _ Clryobo +a71pnm

Ay A,y A,y

=60, + Pry-

This, together with Lemma 8.13, implies that

1 2 1 2 1
—+ < —+ <&+ —=10o,.
Ay, b Ay 6a’71 Ay

If g* > 1, then it follows from Proposition 3.5 that a,, > a,, so that

90,1:§+i<f‘|‘i:90,2
m Ay

by Lemma 8.13. This means that 6y; < 1/a,,. The proof of Equation (56)
is thus complete.

Assume then that 6§ = 10y — 5(, and that we would have ¢ € Hy. As
we saw above 2§ — ¢ = 1/a.,, which further yields ¢ — & = 1/by.

Suppose first that ¢ < 1/a.,. It follows from Proposition 8.14 that ¢ € H,.
By applying Theorem 8.3 we observe that

C:min{s+1 +tb“ ‘(s,t) 6N2\{(0,0);(0,1)}}.

Ay 0

so that . 3 9 |
(=—+,—or (=—+—.
ay,  bo ayo o

If (=1/a,, + 3/by, then we get

109 — 6§ = 5¢ = 5(2§ — 1) + 15(¢ — &) = 9§ + 109,

which is impossible. If ¢ = 2/a,, + 1/by, then

10y — 66 = 5¢ = 10(26 — ) + 5(4) — €) = 15¢ — 50,

which yields 9/by = 99 —9¢ = 126 — 61 = 6/a.,, i.e., a,, /by = 2/3. It follows
from Lemma 8.16 (ii) that ¢ ¢ Hy, which is a contradiction.

We must thus have ( > 1/a,. Note that 1/a,, is not a jumping number
by Proposition 8.9. Now & and 1 are the only jumping numbers at most
1/a,,. By Lemma 8.16 (iii) we then have a,, = 2a,, and by = 5a,,. This

gives
Lgczl()w—&_ 4 4 24 1
Qy,

= — = < ,
5 Sa,, dby  25a,  a,
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which is a contradiction. The first claim has thus been proven.

It remains to prove the last two claims. Proposition 3.5 implies that
a, = 1 if and only if ¢ = 0. Moreover, it follows from Lemma 8.16 (i) that
this happens exactly when & > 1/a,, = 1.

Assume then that £ < 1 < ¢, in which case g > 0. This implies that the
set H' in Lemma 8.16 has either one or two elements. Indeed, otherwise we
would have ¢ € H' in which case ( < 1/a,, < 1. So a,, = 2a,, by Lemma
8.16 (ii) and (iii). We need to verify that a,, = 1. If a,, were greater than
one, then we would have g* > 1 because of Proposition 3.5. Lemma 8.13
would then yield & < 6p1 = £+ 1/a,,. Since £ < 1/a,, < & by Proposition
8.14, we would then have £ < & < 6y, so that

2
1<( <l <— <1,
Y1

which is a contradiction. Therefore a,, =1, i.e., a,, = 2. ]

Example 8.19. Suppose that I = (2,1, 1). It follows from Theorem 8.3 that
in Theorem 8.18 ¢ =5/6, ¢ = 7/6 and ( = 8/6. Then 6§ = 10t) —5(. On the
other hand, in the case I = (3,1,1,1) £ = 7/12, ¥ = 10/12 and ¢ = 11/12
so that 6§ # 10y — 5¢.

9 Jumping numbers of an analytically irre-
ducible plane curve

In this section, we aim to utilize Theorem 8.3 in determining the jumping
numbers of an analytically irreducible plane curve with an isolated singularity
at the origin. As jumping numbers are compatible with localization, it is
enough to consider the local situation. Therefore in the following we mean
by a plane curve the subscheme C; of Spec« determined by an element f
in the maximal ideal m,. We will next recall some basic facts about plane
curves. For more details, we refer to [2], [4] and [7].

As before, we assume that the residue field k of « is algebraically closed.
If B D «, then the strict transform of Cy is Cj(ég) := Spec 3/(f?)), where f¥
denotes any generator of the transform (f)®. The multiplicity of Crat 8
is mg(Cy) := ordg(f). Following the terminology of [7], we call the set of
those 3 D «a for which f¥) #£ 3 the point locus of f (or Cy).

Suppose that f is analytically irreducible. Then by [7, Corollary 4.8]
there is a unique quadratic transform 3 D « belonging to the point locus of
f. By [7, Corollary 4.8] f is analytically irreducible. It follows that the
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point locus of f consists of a quadratic sequence
a=q Coag C:---.
This corresponds to a sequence of point blow ups
Speca = X <& Xy & - (57)

There exists the smallest v such that the total transform (7, o --- o m)*Cs
has normal crossing support. The morphism 7 :=m,0---0om : X,; 1 — &) is
called the standard resolution of Cy. The multiplicity sequence of C; is now

(my,...,m,),

where m; = m,, (Cy).

Let us recall the notion of a general element of an ideal. Fix a minimal
system fi,..., f, of generators for an ideal a in a. Set A= A+m, €k for
A € a. One says that a general element of a has some property P, if there
is a non empty open subset V' C k¥ such that f = A f; +---+ A\, f, has P
whenever (A, ..., 5\#) € V. Note that the ideal can always be generated by
general elements.

Suppose that a is a simple complete ideal. It follows from [7, Corollary
4.10] that a general element f € a is analytically irreducible. As f is general,
it easily follows that if I = (ay, ..., a,) is the point basis of a, then (ay, ..., a,)
is the multiplicity sequence of C;. It is clear that the resolution (2) of a
contains the standard resolution of Cy, i.e., if 7 : X, 11 — &} is the resolution
of a, then

T =TT, O0-++0M,41 OT.

Let C](f) denote the strict transform of Cy on &;. Since v is the least integer
such that 7*Cy has only normal crossings, we observe that either v = 1,2
or C;_l intersects transversely the exceptional divisor of m,_; and the strict
transform of some other exceptional divisor going through the center ¢, € X,
of m,. Therefore o, must be a satellite point or ¥ = 1, 2. Furthermore, since

C](fﬂ) intersects for every i € {v,...,n} only one of the exceptional divisors
and that transversely, we see that the points 41, ..., ®, are free. It follows

that v = 7, = maxT,.
In a lack of a suitable reference we state the following lemma:

Lemma 9.1. Let a be a simple complete ideal of finite colength in a two-
dimensional regular local ring o having the resolution (2) and the point basis
(ay,...,a,). Let f be an analytically irreducible element in m,. The following
conditions are then equivalent:
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(1) ma,(Cy) =a; fori=1,...,n;
.. * n+1 2l
(i1) Cf:C](c )+ B
(iii) CV"V B =6, fori=1,...,n

() if Ei(n) passes through s, € X, for some i < n, then C}") intersects Ei(")
transversely at g, .

Proof. We know that
TCr —C Y = ", (Cp ]
j=1

Since E, = i1 a; E5, this proves the equivalence of (i) and (ii). Write

7T*Cf — CJ(:H_D = Z CijEA‘j.
j=1

By the projection formula 7°Cy- E; =0 for alli =1,...,n. As E]- By =0,
for all j = 1,....n, we now obtain d; = C](f“’l) - B;. Tt thus follows that (ii)
and (iii) are equivalent.

In order to prove the equivalence of (iii) and (iv) we first observe that in
any case g, € Cj(cn). Because Cy is analytically irreducible, we see that if EZ-(n)

passes through ¢,, then ¢, is the only point of intersection of Cj(cn) and Ei(”).
This implies that (iv) is equivalent to C](c”) EM =1 AsmE™ = E; + E,,
we get by the projection formula

4 I R o e AR e SR N

f ni f

This immediately shows that (iii) implies (iv). Conversely, assuming (iv) and
observing that the both summands on the right hand side are non negative
and C}nﬂ) - E, # 0, we get C}"H) B = 0 and C}nﬂ) - B, = 1. Thereby

7

we see that (iii) holds. O

Remark 9.2. Following [20, Definition 7.1] and [3, Definition 1] we could

define an element f € a to be general, if the corresponding curve C; is
)

analytically irreducible and C](cn) intersects transversely at ¢, € &, every Ei(n
(1 < n) passing through g,.
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We will now describe the correspondence between simple complete ideals
and classes of equisingular plane curves following the exposition given in [19,
I1.5, p. 433]. The class of equisingular curves £ corresponding to the ideal a
is defined to be the set of the analytically irreducible plane curves whose strict
transform on AX,, intersects transversely at the point ¢, the strict transform
of any exceptional divisor passing through ¢,. Note that L is specified by a
pair (C,t), where C € L is a curve and t := n — v, so that L is the collection
of all the curves equisingular to C and sharing the v + ¢ first points of its
point locus with C.

Conversely, let £ be the class of equisingular plane curves specified by
the pair (C,t). Then the corresponding simple ideal a is generated by the
defining equations of the elements of £. If the standard resolution of C is
T X,y1 — X} = Speca, then a is the ideal, whose resolution is 7 =
TpO---0mMyy1 0T : Xyyp — X1, where n = v+t and m; : X1 — A& is the
blow up emerging in the sequence (57) corresponding to the point locus of C.

For the convenience of the reader we state the following variant of [10,
Proposition 9.2.28] adjusted to our case:

Proposition 9.3. Let o be a two-dimensional reqular local ring and let a be a
simple complete ideal in o having the resolution (2). Suppose that C C Spec «
is an analytically irreducible plane curve, whose strict transform intersects
transversely at the point g, the strict transform of any exceptional divisor
passing through ¢,. Then the multiplier ideals of the curve C and the mul-
tiplier ideals of the ideal a coincide in the interval [0,1[. In particular, the
Jumping numbers of the curve C and the ideal a coincide in the interval [0, 1].

Proof. Take a non-negative rational number c. The multiplier ideal 7 (¢-C) C
« is defined by

J(c-C):=T(X,0x(Kx — |c-7*C])),

where 7*C is the total transform of C on X. Since C™ intersects transversely
at the point ¢, the strict transform of any exceptional divisor passing through
G, Lemma 9.1 (ii) implies 7*C = C™ + E,. Moreover, aOx = Ox(—E,),
and thus R

J(c-C)=T(X,0x(Kx — |c- E,] — [c-C™])),

Suppose that 0 < ¢ < 1. Then |c-C™ | vanish, and we obtain

T C) =T (X,0x(Kx — - E,])) = T(a).
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Theorem 9.4. Let o be a two-dimensional reqular local ring, and let a be
a simple complete ideal in o having the resolution (2). Let C C Speca
be an analytically irreducible plane curve, whose strict transform intersects
transversely at the point g, the strict transform of any exceptional divisor
passing through s,. Then the set of the jumping numbers of C is

He={c+m]|ceH,U{1},0<c <1 and m € N},
where H, denotes the set of the jumping numbers of a.

Proof. By the periodicity of the jumping numbers for integral divisors (see
e.g. [6, Remark 1.15]) we know that ¢ > 0 is a jumping number of C if and
only if ¢ 4+ 1 is. Thus it is enough to find out the jumping numbers of C in
the interval ]0, 1].

If ¢ < 1, then by Proposition 9.3 J(c-C) = J(a%). Because |c-C™| =0
for ¢ < 1, we must have J(c-C) 2 J(C) for ¢ < 1 and thus 1 must be also a
jumping number of C. Hence ¢ €]0, 1] is a jumping number of C, if and only
if ce Hyorc=1. O

This result can be utilized in determining the jumping numbers of an
arbitrary analytically irreducible plane curve.

Corollary 9.5. Let a be a two-dimensional reqular local ring and let C C
Spec a be an analytically irreducible plane curve. Let a be the simple complete
ideal in a corresponding to the class of equisingular plane curves specified by
the pair (C,0). Then the set of the jumping numbers of C is

He={c+ml|ceH,U{1},0 <c<1 and m € N}.

Proof. As we observed above, the standard resolution of C coincides with the
resolution of a. Then the claim is a direct consequence of Theorem 9.4. [

Remark 9.6. By Corollary 9.5 we observe that the jumping numbers of C
depend only on the equisingularity class of C, because by Theorem 8.3 the
jumping numbers of a less than one are totally determined by the multiplic-
ities ay, ..., a,, of the point basis (ay,...,a,) of a.

Remark 9.7. Let C be an analytically irreducible plane curve, and let
(ay,...,a,) be the multiplicity sequence of C. Let X; denote the i:th row
of the inverse of the corresponding proximity matrix, and let {vq,...,v,} be
the indices corresponding to the terminal satellites. Note that g is the genus
of the curve C, (see e.g. [1, Definition 3.2.1]). The characteristic exponents
of C are

Bri=a1+ pp~y + -+ Pry_,, Where k=0,...,9.
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It is easy to see by induction on k that ged{f,...,0k} = a,,. Indeed, we
first observe that By = a; and By = By—1 + pnn, , for every 0 < k < g.
Assume that ged{fo, ..., Bk-1} = a,,_,. Then by Proposition 3.7

ng{ﬁOu s 7ﬁk} - ng{a’yk_la pn,k—l} = Q-

The characteristic pairs or Puiseuz pairs (in the case k = C) are the pairs
of integers (my,ny) for k =1,..., g, where

B

my = — and ng = Ty, 4, ,
a’Yk
(see, e.g., [1, Remark 3.1.6]). We can obtain the pairs (a,,,bo), ..., (a,,,by)
from these as follows: Corollary 3.15 yields

M = Tryyo T Pyicvo T T Privria

and a,, , =n;---ng for i =1,..., 9. Moreover, py, ., , = m; — n;m;_; for
i =2,...,g, which further yields p,., , = (ni1---ng)(m; — nym;_1). Then
also a,, ,/a, =mn;---ny fori=1,... k+ 1. Proposition 5.2 implies that

T TSV 2 .
Qry, bp=1-1 = Ay, + Ay Py T+ + Ay Py

Writing @1 = m; and ¢; = m; — n;m;_1, we then get

k+1

Ay = N1 - -~ Ny and by, = Z(niﬂ ceng)(ng g
i=1

for every k=1,...,g.

Theorem 9.8. Let a be a two-dimensional reqular local ring. The jumping
numbers of an analytically irreducible plane curve C C Spec « less than one
determine the equisingularity class of C.

Proof. Take the ideal a corresponding to the class of equisingular curves
specified by the pair (C,0). Then the point basis of a is the same as the
multiplicity sequence (a4,...,a,,) of C. By Theorem 9.4 we know that the
the jumping numbers of a, which are less than one, coincide with those of
the curve C. By Theorem 8.17 they determine the sequence of multiplicities
(ar,...,ay,). O

In Theorem 9.4 we saw how to obtain the jumping numbers of the ana-
lytically irreducible plane curve determined by a general element of a simple
complete ideal from the jumping numbers of the ideal. In the next theorem
we consider the converse situation.
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Theorem 9.9. Let o be a two-dimensional reqular local ring, and let a be
a simple complete ideal in o having the resolution (2). Let C C Speca
be an analytically irreducible plane curve, whose strict transform intersects
transversely at the point g, the strict transform of any exceptional divisor
passing through ¢,. Then the set H, of the jumping numbers of a is

HaZ(Hc\{l})U{l-i-%‘kGN},

where v = v,, denotes the divisorial valuation associated to a.

Proof. As before, let I = (ay,...,a,) denote the point basis of a and let
Ho = HoU---U Hyg be the set of the jumping numbers of a where the
subsets H, are as in Theorem 8.3. Recall that v(a) = I? (see Remark 5.6).
By Proposition 8.11

c>1}.

k+1
{1+ 7 ‘keN}:{ceHg*

Proposition 9.3 shows that 0 < ¢ < 1 is a jumping number of a, if and only
if ¢ € He. Moreover, Proposition 8.9 says that 1 ¢ H,. In order to prove the
claim, it is thereby enough to show that every element of H, greater than
one is in H¢ for any v < g*, and that every element of H¢ gerater than one
is in H,.

Suppose that £ > 1 and £ € H, for some v < g*. Theorem 8.3 implies
that { = ¢ +m/a,,,, for some c € H, and m € N, where 0 < ¢ < a;ulﬂ. By
Proposition 8.9 we even know that ¢ < a;' . Now m > (1 — ¢)a,,, yields
m > a,,,,. Write m = m'a,, , +m”, where m’ € N and m"” < a,,,,. Set
cd:=c+m"/a,, . Thenc € H,and 0 < ¢ < 1. By Proposition 9.3 ¢ € He.
As £ = +m/, it follows that £ € He.

Take £ € He so that &€ > 1. By Proposition 8.11 the case is clear, if
¢ is an integer. Let us then assume that £ is not an integer. Proposition
9.4 implies that & = ¢ + m, where m is a positive integer and ¢ € H, with
0 < ¢ < 1 for some v € {0,...,¢9*}. It follows from Theorem 8.3 that
c=c +m'/a,,,, for some m’ € N and for some ¢’ € H, satisfying ¢’ < a;, .
Thus { = ¢ + (a4,,,m +m')/a,,,,, and { € H, according to Theorem 8.3.
This completes the proof. n

Remark 9.10. In the setting of Theorem 9.9, a is the ideal corresponding
to the pair (C,t), where ¢ = n — ~,. The jumping numbers of the curve
C together with the integer ¢, or equivalently the integer n, then determine
the jumping numbers of a. Indeed, according to Theorem 9.8 the integer ,
as well as the entire multiplicity sequence (ay,...,a,,) of C can be obtained
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from the jumping numbers of the curve C. Because a,, = --- = a, = 1 by

Proposition 3.5, we then get v(a) =a? +--- +a

2

,Yg—i-n—yg.
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