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1. Introduction

In this thesis we study certain Orlicz-Sobolev capacities defined in
terms of potentials on a fixed Euclidean ball. There are several versions
of Orlicz-Sobolev capacity. We concentrate on two of these versions,
and we assume that the defining function of the Orlicz-Sobolev space,
the Young function, satisfies some conditions.

This dissertation includes three articles. In [A] and [B] we study
relations of Orlicz-Sobolev capacities Pα,Φ and Bα,Φ. Our main interest
is in the null sets of these capacities. In [C] we study metric properties
of these capacities. In particular, we obtain two-sided estimates for the
capacity of a ball.

The rest of the summary is organized as follows. In Section 2 we give
some definitions including the definitions of Orlicz-Sobolev capacities
Pα,Φ and Bα,Φ. Section 3 contains history of Orlicz-Sobolev capacities.
In Section 4 we summarize the results of articles [A], [B] and [C].

2. Orlicz-Sobolev capacities

In this section we give some definitions. Let n ≥ 2 and let BR =
Bn(0, R), with R > 0, be a fixed ball in Rn. We use the Lebesgue
n-measure.

Let us first introduce Orlicz spaces.

Definition 2.1. A function Φ : [0,∞)→ [0,∞) is a Young function if
it is continuous, strictly increasing, and convex, and it satisfies

lim
t→0+

Φ(t)

t
= lim

t→∞

t

Φ(t)
= 0.

A Young function Φ has a presentation Φ(t) =
∫ t

0
φ(s)ds for some

non-decreasing, right-continuous function φ : [0,∞) → [0,∞). The
complementary Young function to Φ is the function Ψ : [0,∞)→ [0,∞)
defined by

Ψ(t) =

∫ t

0

g(s)ds,

where g(s) = sup{a | φ(a) ≤ s} for s ≥ 0.
Let Φ be a Young function. Suppose that Ω is a measurable subset

of Rn. The Orlicz space LΦ(Ω) is defined by

LΦ(Ω) =

{
f ∈M0(Ω)

∣∣∣ ∫
Ω

Φ(λ|f(x)|)dx <∞ for some λ > 0

}
.

HereM0(Ω) is the set of those functions g : Ω→ R ∪ {−∞} ∪ {+∞}
that are measurable and almost everywhere finite. The Orlicz space
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equipped with the Luxemburg norm

‖f‖LΦ(Ω) = inf

{
b > 0

∣∣∣ ∫
Ω

Φ

(
|f(x)|
b

)
dx ≤ 1

}
is a Banach space.

Let k be a non-negative integer. A function u ∈ LΦ(Rn) is in the
Orlicz-Sobolev space W k,Φ(Rn) if its weak derivatives up to the order
k belong to LΦ(Rn). If Φ and Ψ satisfy the following growth condi-
tion, the ∆2-condition, then the Orlicz-Sobolev space W k,Φ(Rn) has
properties similar to Sobolev spaces for p ∈ (1,∞). For example, then
W k,Φ(Rn) is separable and reflexive. A Young function Φ satisfies the
∆2-condition, if there exists a positive constant C such that

Φ(2t) ≤ CΦ(t), for all t ≥ 0.

Standard references of Orlicz spaces and Orlicz-Sobolev spaces are [13]
and [16].

The Orlicz potential space Lα,Φ(Rn) is defined for α > 0 by

Lα,Φ(Rn) = {u | u = Gα ∗ f, f ∈ LΦ(Rn)}.

Here Gα is the Bessel kernel, and Gα ∗ f is the convolution of Gα and
f . For the definition and properties of the Bessel kernel we refer to [1].
Here we mention that Gα is equivalent to the Riesz kernel on BR. The
norm in Lα,Φ(Rn) is ‖u‖Lα,Φ(Rn) := ‖f‖LΦ(Rn). If a Young function Φ
and its complementary Young function satisfy the ∆2-condition, and k
is a positive integer, then the Orlicz-Sobolev space W k,Φ(Rn) coincides
with the Orlicz potential space Lk,Φ(Rn).

We are interested in the following two versions of Orlicz-Sobolev
capacity.

Definition 2.2. Let E be a subset of BR and let α > 0. Suppose that
a Young function Φ satisfies the ∆2-condition. Then Pα,Φ-capacity of
E is

Pα,Φ(E) = inf
{
‖f‖LΦ(BR)

∣∣∣ f ≥ 0, spt f ⊂ BR, Gα ∗ f ≥ 1 on E
}

and Bα,Φ-capacity of E is

Bα,Φ(E) = inf

{∫
BR

Φ(f(x))dx
∣∣∣ f ≥ 0, spt f ⊂ BR, Gα ∗ f ≥ 1 on E

}
,

here spt f is the support of f ,

spt f = {x ∈ Rn | f(x) 6= 0}.
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These capacities have been studied in [2]-[7], [11], [12], [14], [15]. If
Φ(t) = tp with p ∈ (1,∞), then the theory of these capacities reduces
to the theory of Lp-capacities which has been extensively studied in [1]
and [17].

3. History

The foundations for the study of Orlicz-Sobolev capacity were laid
by N. Aïssaoui in [5] and Aïssaoui and A. Benkirane in [4] and [7]. It is
shown in [5] that if Φ and its complementary Young function satisfy the
∆2-condition, then Pα,Φ-capacity has the important Choquet-property,
that is, Pα,Φ-capacity of a Suslin set E ⊂ BR can be estimated by open
sets and compact sets,

Pα,Φ(E) = inf{Pα,Φ(U) | U is open, E ⊂ U}

and
Pα,Φ(E) = sup{Pα,Φ(K) | K is compact, K ⊂ E}.

A. Cianchi and B. Stroffolini [11], and D.R. Adams and R. Hurri-
Syrjänen [2],[3], and Y. Mizuta and T. Shimomura [15] used Orlicz-
Sobolev capacity for the study of extensions of Trudinger-type inequal-
ities and Lebesgue point theory. In these articles the sets of zero ca-
pacity, the null sets, play an important role. As it is natural to work
outside the set of measure zero in the Orlicz space setting, it is natural
to work outside the set of capacity zero in the Orlicz-Sobolev space set-
ting. If Pα,Φ and Bα,Φ have the same null sets, then in many situations
it does not matter which one of these capacities is used. Hence, it is
important to know whether Pα,Φ and Bα,Φ have the same null sets.

Adams and Hurri-Syrjänen [2] proved the following theorem concern-
ing the null sets of capacity.

Theorem 3.1. Let E be a subset of BR. If the Young function Φ is
defined by Φ(t) = tp(log(e + t))θ with p ∈ (1,∞) and αp = n, then
Pα,Φ(E) = 0 if and only if Bα,Φ(E) = 0.

This is the most general result concerning the null sets of Orlicz-
Sobolev capacity as far as we know excluding [A] and [B].

The method the authors used in [3] required estimates for the capac-
ity of a ball. Therefore Adams and Hurri-Syrjänen proved that if r is
sufficiently small and BR is a fixed ball, the there is a positive constant
C, depending on n, p and R only, such that

(3.1) C−1

(
log log

1

r

) 1−p
p

≤ Pα,Φ(Bn(0, r)) ≤ C

(
log log

1

r

) 1−p
p

,
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when θ = p− 1, and there is a positive constant C, depending on n, p,
R and θ only, such that

(3.2) C−1

(
log

1

r

) 1−p+θ
p

≤ Pα,Φ(Bn(0, r)) ≤ C

(
log

1

r

) 1−p+θ
p

,

when θ ∈ [0, p− 1), we refer to [3]. Article [C] contains these estimates
as a special case.

4. Summary of articles

The class of Young functions we study in this thesis is the following.

∆+
2 -condition 4.1. Suppose that p ∈ (1,∞). Let ϕ : [0,∞)→ [1,∞)

be a differentiable and increasing function such that t 7→ tpϕ(t) is a
Young function. Further, suppose that

(4.1) ϕ(t2) ∼ ϕ(t) on (0,∞),

and there is a positive number M1 such that for all t ∈ (0,∞)

(4.2)
tϕ′(t)

ϕ(t)
≤M1 < p,

and there is a positive number M2 such that for all t ∈ (0,∞)

(4.3) ϕ′(t) ≤M2,

and

(4.4) lim
t→∞

tϕ′(t)

ϕ(t)
= 0.

Then we say that the function Φ : [0,∞) → [0,∞), Φ(t) = tpϕ(t)
satisfies the ∆+

2 -condition.

An example of a function, which satisfies the ∆+
2 -condition is the

function Φ,

Φ(t) = tp (log(C + t))θ exp ([log log(C + t)]γ) ,

when p ∈ (1,∞), θ ∈ [0, p − 1], γ ∈ [0, 1), and C ≥ ee is a positive
constant depending on p, θ and γ, see [C, Example 6.4].

4.1 Article [A]

Our main theorem [A, Theorem 8.1] gives a relation for capacities
Pα,Φ and Bα,Φ when the Young function Φ satisfies the ∆+

2 -condition.
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Theorem 4.2. Let E be a subset of BR. Suppose that Φ satisfies the
∆+

2 -condition. Let α be a positive real number such that αp = n. Then
there is a positive constant C, depending on n, p, R and ϕ only, such
that

(4.5) Bα,Φ(E) ≤ CPα,Φ(E)pϕ(Pα,Φ(E)).

Further, if Pα,Φ(E) > 0, then

(4.6) C−1Pα,Φ(E)p
[
ϕ

(
1

Pα,Φ(E)

)]−1

≤ Bα,Φ(E).

We set Pα,Φ(E)−1 = 0 in (4.6), if Pα,Φ(E) =∞.

The proof of (4.5) applies a method from [10]. We show that there
is a quasi-norm which is equivalent to the Luxemburg norm, when Φ
satisfies the ∆+

2 -condition, see [A, Theorem 7.6]. In order to obtain
this quasi-norm, we prove a Hardy-type inequality [A, Lemma 7.2].
The other inequality in Theorem 4.2 is a straight-forward calculation
based on the properties of Φ and the fact that∫

BR

Φ

(
f(x)

‖f‖LΦ(BR)

)
dx = 1.

Theorem 4.2 implies that if the capacity of a set is zero for one of
the capacities Pα,Φ and Bα,Φ, then the other capacity of this set is zero
as well.

Corollary 4.3. Suppose that Φ satisfies the ∆+
2 -condition, and α > 0.

Then capacities Bα,Φ and Pα,Φ have the same null sets.

4.2 Article [B]

Article [A] raised a question whether it is possible to obtain a result
corresponding to Corollary 4.3 for capacities Bα,Ψ and Pα,Ψ, when Ψ
is the complementary Young function to Φ which satisfies the ∆+

2 -
condition. It turned out that it is possible since [B, Corollary 4.4] and
[B, Example 4.5] yield the following.

Theorem 4.4. Assume that a Young function Φ satisfies the ∆+
2 -

condition. Let Ψ be the complementary Young function to Φ. Suppose
that α is a positive real number. Then capacities Bα,Ψ and Pα,Ψ have
the same null sets.

It is shown in [C, Lemma 5.2] that the function Ψ is equivalent to
the Young function

t 7→ t
p
p−1ϕ(t)−

1
p−1 .
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Partly this article was motivated by the fact that we were simulta-
neously writing article [C] where we needed an upper estimate for

(4.7)
∥∥Gα ∗ χBn(x0,r)

∥∥
LΨ(BR)

,

whenever r ∈ (0, R
2

) and Bn(x0, r) ⊂ BR. Here χBn(x0,r) is the charac-
teristic function of Bn(x0, r). It turned out that the next theorem, see
[B, Theorem 3.7], was useful in obtaining (4.7).

Theorem 4.5. Suppose that a Young function Φ satisfies the ∆+
2 -

condition. Let Ω be a measurable subset of Rn with m(Ω) = 1. If
a function f is measurable and almost everywhere finite on Ω, then
‖f‖LΦ(Ω) is equivalent to(∫ 1

0

f ∗(t)pϕ

(
1

t

)θp
dt

) 1
p

.

Here f ∗ is the decreasing rearrangement of f , we refer to [B, Section
2]. One essential part of proving Theorem 4.5 was a Hardy-type in-
equality, see [B, Proposition 3.5], which we proved by using a method
from [9].

4.3 Article [C]

It is usually difficult or impossible to calculate the capacity of a given
set. In applications it is often useful to have some estimates for the
capacity of a ball. In [C] we obtain a lower bound and an upper bound
for Pα,Φ-capacity of a ball, when Φ satisfies the ∆+

2 -condition.

Theorem 4.6. Assume that Bn(0, R) is a fixed ball. Suppose that a
Young function Φ : [0,∞) → [0,∞) defined by Φ(t) = tpϕ(t) satisfies
the ∆+

2 -condition. Let α = n/p. Suppose that r ∈ (0, R
2

), and

F (r) =

∫ R

r

s−1ϕ

(
1

s

)− 1
p−1

ds.

Then there is a positive constant C, depending on n, p,R and ϕ only,
such that

C−1F (r)
1−p
p ≤ Pα,Φ(Bn(0, r)) ≤ CF (r)

1−p
p ,

For the upper bound we construct a non-negative function f such
that Gα ∗ f ≥ 1 on Bn(0, r) and sptf ⊂ Bn(0, R) and

‖f‖LΦ(Bn(0,R)) ≤ CF (r)
1−p
p .

Then the upper bound for Pα,Φ(Bn(0, r)) follows from the definition of
Pα,Φ.
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In order to obtain the lower bound for Pα,Φ(Bn(0, r)) it is convenient
to use [5, Théorème 4, p. 112] which states that for all Borel sets E in
BR

(4.8) Pα,Φ(E) = sup{µ(E) | µ ∈ME, ‖Gα ∗ µ‖LΨ(BR) ≤ 1}.

HereME is the set of those Radon measures µ : Rn → [0,∞] that are
supported in E, and

Gα ∗ µ(x) =

∫
Rn
Gα(x− y)dµ(y).

Combining Theorem 4.6 with estimates for the capacity Bα,Φ of a ball
by Y. Mizuta [14, Lemma 7.3, p. 104] yields an interesting relationship
of capacities Pα,Φ and Bα,Φ, when Φ satisfies the ∆+

2 -condition. There
is a constant C, depending on n, p, R and ϕ only, such that

(4.9) C−1Bα,Φ(Bn(0, r)) ≤ (Pα,Φ(Bn(0, r)))p ≤ CBα,Φ(Bn(0, r)),

when α = n/p, and r ∈ (0, R/2), see [C, Theorem 7.2].
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Errata

On p.6 the correct version of Theorem 4.5 is the following:

It turned out that the next theorem, which follows from [B, Theorem 3.7],
was useful in obtaining (4.7).

Theorem 4.5 Suppose that a Young function Φ satisfies the ∆+
2 -condition.

Let Ψ be the complementary Young function to Φ. Let Ω be a measurable sub-
set of Rn with m(Ω) = 1. If a function f is measurable and almost everywhere
finite on Ω, then ‖f‖LΨ(Ω) is equivalent to

(∫ 1

0

f ∗(t)
p

p−1 ϕ

(
1

t

)− 1
p−1

dt

) p−1
p

.


