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On thesis

This thesis consists of an introduction and of four research articles, of which I am the sin-
gle author. The introduction provides an overview about the subject of Volterra Gaussian
processes in general, and fractional Brownian motion in particular. The articles are:

[I] C. Jost, Transformation formulas for fractional Brownian motion. Stochastic Processes
and their Applications 116, 1341-1357, 2006.

[II] C. Jost, On the connection between Molchan-Golosov and Mandelbrot-Van Ness rep-
resentations of fractional Brownian motion. To appear in the Journal of Integral
Equations and Applications. Available from http://www.arxiv.org/pdf/math.PR/
0602356.

[III] C. Jost, Measure-preserving transformations of Volterra Gaussian processes and related
bridges. Available from http://www.arxiv.org/pdf/math.PR/0701888. Earlier ver-
sion as Preprint 448, Department of Mathematics and Statistics, University of Helsinki,
Finland.

[IV] C. Jost, A note on ergodic transformations of self-similar Volterra Gaussian processes.
Available from http://www.arxiv.org/pdf/math.PR/0702096. Earlier version as Pre-
print 452, Department of Mathematics and Statistics, University of Helsinki, Finland.
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1 Prologue

Volterra Gaussian processes are a generalization of the simple and well-studied standard
Brownian motion. More precisely, a Volterra Gaussian process is a Wiener integral process
with respect to a one-sided standard Brownian motion. Thus, at every point in time, it
is an infinite linear combination of i.i.d. Gaussian random variables with time-dependent
coefficients. The paradigm is fractional Brownian motion (fBm).

Fractional Brownian motion is a self-similar process, meaning that its probability distribution
is invariant under a suitable simultaneous scaling in time and space. Moreover, fBm has
stationary increments, i.e. the probability distribution of its increments in space over given
time intervals is invariant under a shift in time. Both properties combined are captured by
the Hurst index H, which is a parameter between 0 and 1. Also, the Hurst index characterizes
dependence structure of the increments and memory of the process: The increments over two
non-overlapping time intervals are positively correlated for H > 1

2 and negatively correlated
for H < 1

2 . Moreover, for H > 1
2 , the decay of this dependence as the time intervals grow

apart is slow, and referred to as long-range dependence (long memory). For H < 1
2 , this decay

is fast, and termed accordingly by short-range dependence (short memory). For H = 1
2 , fBm

corresponds to standard Brownian motion, where increments are independent and the process
has no memory. Furthermore, the Hurst index is a measure for the roughness of the paths of
fBm. More precisely, the larger the Hurst index, the smoother the paths.

The phenomena of long-range dependence and self-similarity have been observed empirically
in a wide range of fields, such as in hydrodynamics, meteorology, economics and telecommu-
nications, but also in geophysics: In fact, the index H is named after the British hydrologist
H. E. Hurst, who in 1951 found evidence for the presence of long-range dependence in time
series describing the level changes in reservoirs along the Nile river. These facts make fBm a
fundamental modelling tool in Applied Probability.

The fractional Brownian motion was introduced by Kolmogorov in 1940 under its former
name Wiener spiral for modelling turbulence in liquids. Kolmogorov also obtained its spectral
representation. In 1962, Lamperti observed that self-similar processes are the natural limits
of functional central limit theorems. In 1968, Mandelbrot and Van Ness represented fBm
as a Wiener integral process with respect to a two-sided standard Brownian motion, where
the integrand kernel function is a simple fractional integral. Based on this representation,
the authors proposed its modern name. In 1969, Molchan and Golosov constructed fBm as
a Wiener integral process with respect to a one-sided standard Brownian motion, where the
integrand kernel function is a more complicated fractional integral. More information about
the history of fractional Brownian motion can be found in [29].

The integral representation by Molchan and Golosov is nowadays the basis of many theo-
retical and practical considerations involving fBm. This is mainly due to the fact that the
natural filtrations of the standard Brownian motion and of the fBm that it generates through
this representation do coincide. The Volterra Gaussian process is a generalization of this
representation by allowing arbitrary integrand kernel functions. FBm is the unique Gaussian
process which provides a model for both self-similarity and long-range dependence. However,
the general Volterra Gaussian process allows a bigger flexibility for modelling self-similarity.
Clearly, Volterra Gaussian processes are not only interesting from a practical point of view:
A crucial fact is that most Volterra Gaussian processes, and fBm with H 6= 1

2 in particular,
are not semimartingales, i.e. the usual Itô calculus is not available in order to implement
many ideas. This fact makes the handling of those processes challenging and interesting, even
for purely theoretical considerations.
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2 The fractional Brownian motion (fBm)

Definition 2.1. The fractional Brownian motion with Hurst index H ∈ (0, 1), or H-fBm,
denoted by

(
BH

t

)
t∈R, is the centered Gaussian process with covariance function

RH(s, t) =
1
2
(
|s|2H + |t|2H − |t− s|2H

)
, s, t ∈ R. (2.1)

Clearly, it holds that
B

1
2

d= W,

where d= denotes equality of finite-dimensional distributions and W is a standard Brownian
motion.

Remark 2.2. The function RH is positive semi-definite, and thus determines a covariance
function, if and only if H ∈ (0, 1] (see [44], Proposition 2.2). However, since R1(s, t) = st,
s, t ∈ R, or equivalently, B1

t = tX, a.s., t ∈ R, for some X ∼ N (0, 1), we exclude this
particular and trivial case from our considerations.

2.1 Self-similarity and long-range dependence

Recall that a process (Xt)t∈R is β-self-similar, where β > 0, if

(Xat)t∈R
d=
(
aβXt

)
t∈R

, a > 0.

Moreover, a process (Xt)t∈R has stationary increments, if

(Xt+s −Xs)t∈R
d= (Xt −X0)t∈R , s ∈ R.

By using (2.1), it is straightforward to check the following:

Lemma 2.3. H-fBm is H-self-similar and has stationary increments.

From Lemma 2.3, it follows that the sequence
{
BH

n −BH
n−1

}
n∈N, which is called fractional

Gaussian noise (and white noise for H = 1
2 in particular), is stationary. Let

rH(n) := CovP
(
BH

n+1 −BH
n , BH

1 −BH
0

)
, n ∈ N,

denote the autocovariance function of the fractional Gaussian noise. By using the mean value
theorem twice, we obtain that

rH(n) = H(2H − 1)(n− θ)2H−2, n ∈ N, (2.2)

where θ = θ(H,n) ∈ (−1, 1). From this, it is straightforward to see the following:

Lemma 2.4. For H > 1
2 , it holds that rH(n) > 0, n ∈ N, and∑

n∈N

∣∣rH(n)
∣∣ = ∞. (2.3)

For H < 1
2 , we have that rH(n) < 0, n ∈ N, and∑

n∈N

∣∣rH(n)
∣∣ < ∞. (2.4)

(2.3) and (2.4) are called long-range and short-range dependence properties of the fractional
Gaussian noise, respectively. Hence, the fractional Gaussian noise has the long-range depen-
dence property if and only if H > 1

2 .
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2.2 Other important properties

1. BH has a modification B̃H , which is locally Hölder-continuous of order γ for every γ < H.
This means that for every compact set K ⊂ R and every γ ∈ (0,H), there exists a finite
random variable C = C(K, γ), such that

sup
s, t ∈ K
s 6= t

∣∣B̃H
s − B̃H

t

∣∣
|s− t|γ

≤ C, a.s. (2.5)

In particular, B̃H is a continuous process. Indeed, by combining stationarity of increments
and H-self-similarity, we obtain that

EP
(
BH

s −BH
t

)2m ≤ EP
(
BH

1

)2m |t− s|2Hm, s, t ∈ R, m ∈ N.

Since limm→∞
2Hm−1

2m = H, the claim follows from the Kolmogorov-Chentsov criterion (see
[21], Theorem 2.8). We always assume that BH = B̃H .

2. For T > 0, let πn(T ) :=
{

kT
n | k = 0, . . . , n

}
, n ∈ N, be a sequence of equidistant partitions

of [0, T ]. Then

L2(P) - lim
n→∞

vp

(
BH , πn(T )

)
=


+∞ if H < 1

p

T · EP(|BH
1 |)

1
H if H = 1

p

0 if H > 1
p ,

(2.6)

where for p > 0,

vp

(
BH , π(T )

)
:=

∑
tk∈π(T )

∣∣∣BH
tk
−BH

tk−1

∣∣∣p
is the p-variation of BH with respect to π(T ) := {0 = t0 < t1 < . . . < tn = T}. Indeed, by
using the H-self-similarity of BH , we obtain that

vp

(
BH , πn(T )

) d=
n∑

k=1

( 1
n

)pH−1
T pH

∣∣∣BH
k −BH

k−1

∣∣∣p
n

.

From (2.2), we have that limn→∞ rH(n) = 0. Hence, the fractional Gaussian noise is ergodic
(see [6], Theorem 2, p. 369). In particular, the sequence

{∣∣∣BH
k −BH

k−1

∣∣∣p}
k∈N

is ergodic. The

claim follows from the ergodic theorem.

3. If H 6= 1
2 , then BH is not a semimartingale. Indeed, let H < 1

2 and assume that BH is a
semimartingale. Then, for T > 0, it holds that

v0
2

(
BH , T

)
< ∞, a.s., (2.7)

where for p > 0,

v0
p

(
BH , T

)
:= lim

|π(T )| → 0
π(T ) ∈ PT

∑
tk∈π(T )

∣∣∣BH
tk
−BH

tk−1

∣∣∣p, a.s.,

and PT denotes the set of all partitions of [0, T ]. Hence, v0
p is the p-variation of BH over [0, T ].

However, (2.7) is a contradiction to (2.6), so BH is not a semimartingale. Furthermore, if

3



H > 1
2 , then by using (2.5) with γ = H

2 , we obtain on the one hand that

v0
2

(
BH , T

)
= lim

|π(T )| → 0
π(T ) ∈ PT

∑
tk∈π(T )

∣∣∣BH
tk
−BH

tk−1

∣∣∣2
≤ C2 lim

|π(T )| → 0
π(T ) ∈ PT

∑
tk∈π(T )

|tk − tk−1|H

≤ C2 lim
|π(T )| → 0
π(T ) ∈ PT

|π(T )|
1
2

∑
tk∈π(T )

|tk − tk−1|H−
1
2

= 0, a.s. (2.8)

On the other hand, it follows from (2.6) that

sup
π(T )∈PT

v1

(
BH , π(T )

)
= ∞, a.s. (2.9)

From (2.8) and (2.9), it follows that BH is not a semimartingale.

4. If H 6= 1
2 , then BH is not a Markov process. Indeed, assume that BH is a Markov process.

Since BH is Gaussian, it follows that RH(s, t) = f(t)g(s), s, t ∈ R, for some functions f, g
(see [18], p. 88). This contradicts (2.1).
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3 Integral representations of fBm

In this section, we show that fBm can be represented in terms of the simpler standard
Brownian motion or in terms of a complex Gaussian measure. First, we review some special
functions involved in these representation results.

The gamma function is defined by

Γ(α) :=
∫ ∞

0
exp(−v)vα−1dv, α > 0.

By partial integration, we obtain the recursion formula Γ(α + 1) = αΓ(α) which is used to
extend Γ to all α ∈ A := R \ −N0. Since Γ(1) = 1, it holds that

Γ(n) = (n− 1)!, n ∈ N. (3.1)

We define
1

Γ(β)
:= lim

α → β
α ∈ A

1
Γ(α)

= 0, β ∈ −N0. (3.2)

The beta function is defined by

B(α, β) :=
∫ 1

0
(1− v)α−1vβ−1dv, α, β > 0.

For β > 1, we obtain that B(α, β − 1) = α+β−1
β−1 B(α, β). This recursion formula and the

symmetry relation B(α, β) = B(β, α) are used to extend B to all α, β ∈ A. It holds that (see
[12], p. 9)

B(α, β) =
Γ(α)Γ(β)
Γ(α + β)

, α, β ∈ A. (3.3)

3.1 The Molchan-Golosov representation

The one-sided fractional Brownian motion can be constructed from a one-sided standard
Brownian motion:

Theorem 3.1 (Molchan & Golosov, 1969). For H ∈ (0, 1), it holds that

(
BH

t

)
t∈[0,∞)

d=
(∫ t

0
zH(t, s)dWs

)
t∈[0,∞)

. (3.4)

Here, for H > 1
2 ,

zH(t, s) :=
C(H)

Γ
(
H − 1

2

)s 1
2
−H

∫ t

s
uH− 1

2 (u− s)H− 3
2 du, 0 < s < t < ∞.

For H ≤ 1
2 ,

zH(t, s) :=
C(H)

Γ
(
H + 1

2

) ( t

s

)H− 1
2

(t− s)H− 1
2

− C(H)
Γ
(
H − 1

2

)s 1
2
−H

∫ t

s
uH− 3

2 (u− s)H− 1
2 du, 0 < s < t < ∞.

Moreover,

C(H) :=

(
2HΓ

(
H + 1

2

)
Γ
(

3
2 −H

)
Γ(2− 2H)

) 1
2

.
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Proof. Note that from (3.2), it follows that z 1
2
(t, s) = 1, 0 < s < t < ∞, so the claim holds

for H = 1
2 . Denote the process on the right-hand side of (3.4) by

(
ZH

t

)
t∈[0,∞)

. Clearly, ZH

is centered and Gaussian. Let H > 1
2 . Then, by substituting v := 1

y−u and v := 1
x−u , and

using (3.3), we obtain for 0 < s ≤ t < ∞ that(
Γ
(
H − 1

2

)
C(H)

)2 ∫ s

0
zH(t, u)zH(s, u)du

=
∫ s

0

∫ s

u

∫ t

u
xH− 1

2 (x− u)H− 3
2 dx yH− 1

2 (y − u)H− 3
2 u1−2Hdydu

=
∫ s

0

∫ y

0

∫ t

u
xH− 1

2 (x− u)H− 3
2 dx yH− 1

2 (y − u)H− 3
2 u1−2Hdudy

=
∫ s

0

∫ y

0

∫ y

u
xH− 1

2 (x− u)H− 3
2 dx yH− 1

2 (y − u)H− 3
2 u1−2Hdudy

+
∫ s

0

∫ y

0

∫ t

y
xH− 1

2 (x− u)H− 3
2 dx yH− 1

2 (y − u)H− 3
2 u1−2Hdudy

=
∫ s

0

∫ y

0

∫ x

0
(y − u)−2

(
x− u

y − u

)H− 3
2
(

u

y − u

)1−2H

du xH− 1
2 dx yH− 1

2 dy

+
∫ s

0

∫ t

y

∫ y

0

(
y − u

x− u

)H− 3
2

(x− u)−2

(
u

x− u

)1−2H

du xH− 1
2 dx yH− 1

2 dy

= B

(
2− 2H,H − 1

2

)∫ s

0

∫ y

0
x

1
2
−Hy

1
2
−H(y − x)2H−2xH− 1

2 dx yH− 1
2 dy

+ B

(
2− 2H,H − 1

2

)∫ s

0

∫ t

y
y

1
2
−Hx

1
2
−H(x− y)2H−2xH− 1

2 dx yH− 1
2 dy

=
Γ(2− 2H)Γ

(
H − 1

2

)
Γ
(

3
2 −H

) (∫ s

0

∫ y

0
(y − x)2H−2dxdy +

∫ s

0

∫ t

y
(x− y)2H−2dxdy

)

=

(
Γ
(
H − 1

2

)
C(H)

)2
1
2
(
s2H + t2H − (t− s)2H

)
.

Hence, CovP
(
ZH

t , ZH
s

)
= RH(s, t), 0 ≤ s ≤ t < ∞. For H < 1

2 , this follows from a similar
calculation.

Since the integral on the right-hand side of (3.4) depends on the function zH(t, ·) only via its
values on (0, t), we can assume for later convenience that

zH(t, s) = 0, 0 < t ≤ s < ∞. (3.5)

Then the kernel zH is called Volterra on [0,∞)2.

The kernel zH can be written compactly in terms of the Gauss hypergeometric function.
The Gauss hypergeometric function of parameters a, b, c and variable z ∈ R is defined by the
formal power series

2F1(a, b, c, z) :=
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
.

Here, (a)0 := 1 and (a)k := a · (a + 1) · · · · · (a + k − 1), k ∈ N, is the Pochhammer symbol.
We assume that c ∈ A for this to make sense. If |z| < 1 or |z| = 1 and c − b − a > 0, then
the series converges absolutely. If furthermore c > b > 0 for z ∈ [−1, 1) and b > 0 for z = 1,
then it can be represented by the Euler integral

2F1(a, b, c, z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
vb−1(1− v)c−b−1(1− vz)−adv (3.6)

6



(see [13], p. 59). If c > b > 0, then the expression on the right-hand side of (3.6) is well-
defined for all z ∈ (−∞, 1), and is therefore used as an extended definition of 2F1. For fixed
z ∈ (−∞, 1], 2F1 can be extended to more general parameters by using Gauss’ relations
for neighbor functions. Neighbors of 2F1(a, b, c, z) are functions of type 2F1(a ± 1, b, c, z),
2F1(a, b ± 1, c, z) or 2F1(a, b, c ± 1, z). For any two neighbors F1(z), F2(z) of 2F1(a, b, c, z),
one has a linear relation of type

A(z)2F1(a, b, c, z) + A1(z)F1(z) + A2(z)F2(z) = 0,

where A,A1 and A2 are first-degree polynomials. See [1], p. 558 for all 15 neighbor relations.
Based on these relations, we extend 2F1 for z ∈ (−∞, 1) to all a, b, c ∈ R such that c ∈ A,
and for z = 1 to all parameters that satisfy c, c− b− a ∈ A. Important properties of 2F1 are
the symmetry relation

2F1(a, b, c, z) = 2F1(b, a, c, z)

and the reduction formula
2F1(0, b, c, z) = 1. (3.7)

Moreover, it holds that (see [1], p. 559)

2F1(a, b, c, z) = (1− z)−a
2F1

(
a, c− b, c,

z

z − 1

)
, z < 1. (3.8)

By combining (3.8) and (3.7), we obtain that

2F1(a, b, b, z) = (1− z)−a, z < 1. (3.9)

Furthermore, by combining the neighbor relations (15.2.17) and (15.2.25) in [1], we obtain
that

c · 2F1(a, b, c, z) − c · 2F1(a, b + 1, c, z) + az · 2F1(a + 1, b + 1, c + 1, z) = 0. (3.10)

Based on these facts, we can show the following:

Lemma 3.2 (Decreusefond & Üstünel, 1999). For H ∈ (0, 1) and 0 < s < t < ∞, it holds
that

zH(t, s) =
C(H)

Γ
(
H + 1

2

)(t− s)H− 1
2 · 2F1

(
1
2
−H,H − 1

2
,H +

1
2
,
s− t

s

)
.

Proof. For H > 1
2 , this follows from (3.6) by substitution. For H = 1

2 , this is clear by using
(3.7). For H < 1

2 , it follows by using (3.10) and then combining (3.9) and (3.6).

Remark 3.3. 1. From Lemma 3.2 and (3.8), we obtain for 0 < s < t < ∞ that

zH(t, s) =
C(H)

Γ
(
H + 1

2

)(t− s)H− 1
2

(s

t

) 1
2
−H

· 2F1

(
1
2
−H, 1,H +

1
2
,
t− s

t

)
. (3.11)

Since the Gauss hypergeometric function is continuous in z over (−∞, 1], hence bounded in
z over [0, 1], we see from (3.11) that zH(t, ·) behaves like ·

1
2
−H close to 0 and like (t− ·)H− 1

2

close to t. In particular, from (3.11) we easily see that zH(t, ·) is indeed square-integrable for
every t ∈ (0,∞).
2. After its discoverers, (3.4) is called the Molchan-Golosov representation or integral trans-
form of fBm, respectively. Alternatively, it is also called the time domain representation of
fBm over [0,∞). It has the useful feature that the natural filtrations of (Wt)t∈[0,∞) and of
the fractional Brownian motion that it generates do coincide. Many results for fBm, such
as a Girsanov formula (see [31]), a Donsker theorem (see [43], item [a]), a prediction for-
mula (see [37]), a Lévy characterization (see [26]), and results on deterministic and stochastic
integration with respect to fBm (see [35], and [2] and [7], respectively) are based on the
Molchan-Golosov representation.
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3.2 The Mandelbrot-Van Ness representation

The two-sided fractional Brownian motion can be written in terms of a two-sided standard
Brownian motion:

Theorem 3.4 (Mandelbrot & Van Ness, 1968). For H ∈ (0, 1), it holds that(
BH

t

)
t∈R

d=
(∫

R
z′H(t, s)dWs

)
t∈R

, (3.12)

where

z′H(t, s) :=
1

C ′(H)

(
(t− s)

H− 1
2

+ − (−s)
H− 1

2
+

)
, s, t ∈ R,

xa
+ := xa · 1(0,∞)(x), x, a ∈ R,

and

C ′(H) :=
(∫ ∞

0

(
(1 + s)H− 1

2 − sH− 1
2

)2
ds +

1
2H

) 1
2

.

Proof. We denote the process on the right-hand side of (3.12) by
(
ZH

t

)
t∈R. Clearly, ZH is

centered and Gaussian. Moreover, since W has stationary increments, we obtain for s ∈ R
that (

ZH
t − ZH

s

)
t∈R =

(
1

C ′(H)

∫
R

(
(t− u)

H− 1
2

+ − (s− u)
H− 1

2
+

)
dWu

)
t∈R

=
(

1
C ′(H)

∫
R

(
(t− s− v)

H− 1
2

+ − (−v)
H− 1

2
+

)
dWv+s

)
t∈R

d=
(

1
C ′(H)

∫
R

(
(t− s− v)

H− 1
2

+ − (−v)
H− 1

2
+

)
dWv

)
t∈R

=
(
ZH

t−s

)
t∈R .

Hence, ZH has stationary increments. Furthermore, for t ∈ R \ {0}, we have by substituting
y := s

t for t > 0 and y := 1− s
t for t < 0 that

EP
(
ZH

t

)2
=

(
1

C ′(H)

)2 ∫
R

(
(t− s)

H− 1
2

+ − (−s)
H− 1

2
+

)2

ds

=
(

1
C ′(H)

)2

|t|2H

∫
R

(
(1− y)

H− 1
2

+ − (−y)
H− 1

2
+

)2

dy

=
(

1
C ′(H)

)2

|t|2H

(∫ 0

−∞

(
(1− y)H− 1

2 − (−y)H− 1
2

)2
dy +

∫ 1

0
(1− y)2H−1dy

)
= |t|2H .

By combining these facts, we obtain that

CovP
(
ZH

s , ZH
t

)
=

1
2

(
EP
(
ZH

s

)2 + EP
(
ZH

t

)2 − EP
(
ZH

s − ZH
t

)2)
=

1
2
(
|s|2H + |t|2H − |t− s|2H

)
, s, t ∈ R.

Remark 3.5. 1. For every t ∈ R, it follows from the mean value theorem that z′H(t, s)
behaves like (−s)H− 3

2 as s → −∞.
2. (3.12) is called the Mandelbrot-Van Ness representation of fBm, the Mandelbrot-Van Ness
integral transform of fBm or the time domain representation of fBm over R. Compared to
zH , the kernel z′H has a simple structure. However, the natural filtrations of (Wt)t∈R and of
the fractional Brownian motion that it generates via the Mandelbrot-Van Ness representation
do not coincide. This feature makes the Mandelbrot-Van Ness representation less interesting
than the Molchan-Golosov representation for potential applications.
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3.3 The spectral representation

Alternatively, based on the stationarity of its increments, a two-sided fractional Brownian
motion can be generated by a suitable complex Gaussian random measure. In the following,
let W be a complex Gaussian random measure, meaning that W := W1 + iW2, where W1 and
W2 are independent real-valued Gaussian random measures. We assume that W1 and W2

are independently scattered on [0,∞), and that they satisfy W1(−A) = W1(A), W2(−A) =
−W2(A) and EP(Wi(A))2 = 1

2λ(A), i ∈ {1, 2}, for every Borel set A with λ(A) < ∞, where
λ denotes Lebesgue measure. Let f : R → C be a function such that f(s) = f(−s), s ∈ R,
and |f | ∈ L2(R). Here, z denotes the complex conjugate of z ∈ C. The integral of f with
respect to W is defined by∫

R
f(s)W(ds) :=

∫
R

Re(f)(s)W1(ds) −
∫

R
Im(f)(s)W2(ds).

For details on this type of integral, see [40], p. 325. Based on this definition, we have the
following:

Theorem 3.6 (Kolmogorov, 1940). For H ∈ (0, 1), it holds that(
BH

t

)
t∈R

d=
(∫

R
z′′H(t, s)W(ds)

)
t∈R

, (3.13)

where
z′′H(t, s) :=

1
C ′′(H)

exp(ist)− 1
is

|s|
1
2
−H , s, t ∈ R, s 6= 0,

and

C ′′(H) :=
(
−4Γ(−2H) cos(−Hπ)

) 1
2

=
(

π

HΓ(2H) sin(Hπ)

) 1
2

. (3.14)

Proof. Note first that (3.14) is obtained by combining identities π
cos(πα) = Γ

(
1
2 +α

)
Γ
(

1
2 −α

)
,

Γ (2α) = 22α−1
√

π
Γ(α)Γ

(
α + 1

2

)
and Γ(α)Γ(1 − α) = π

sin(πα) (see [12], p. 3 and p. 5). Let(
ZH

t

)
t∈R be the process on the right-hand side of (3.13). Clearly, ZH is centered and Gaussian.

Furthermore, by using the identities cos(x) = cos2(x
2 )− sin2(x

2 ), x ∈ R, and∫ ∞

0
sin2 (au) u−2H−1du =

−Γ(−2H) cos(−Hπ)a2H

2−2H+1
, a ≥ 0,

(see [15], p. 447), we obtain that

CovP
(
ZH

t , ZH
s

)
=
∫

R
z′′H(t, u)z′′H(s, u)du

=
1

(C ′′(H))2

∫
R

(
exp(iut)− 1

iu

)(
exp(ius)− 1

iu

)
|u|1−2Hdu

=
1

(C ′′(H))2

∫
R

(
exp
(
−iu(t− s)

)
− exp(−iut)− exp(ius) + 1

) |u|1−2H

u2
du

=
2

(C ′′(H))2

∫ ∞

0

((
cos(u|t− s|)− 1

)
−
(
cos(u|t|)− 1

)
−
(
cos(u|s|)− 1

))
u−1−2Hdu

=
−4

(C ′′(H))2

∫ ∞

0

(
sin2

(
u|t− s|

2

)
− sin2

(
u|t|
2

)
− sin2

(
u|s|
2

))
u−1−2Hdu

=
−4

(C ′′(H))2
−Γ(−2H) cos(−Hπ)

2−2H+1

((
|t− s|

2

)2H

−
(
|t|
2

)2H

−
(
|s|
2

)2H
)

=
1
2
(
|s|2H + |t|2H − |t− s|2H

)
, s, t ∈ R.
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Remark 3.7. The spectral representation was the starting point to obtain a series expansion
for fBm (see [9]).

3.4 Connection between Mandelbrot-Van Ness and spectral representa-
tions

The Mandelbrot-Van Ness representation and the spectral representation of fBm are inhe-
rently related via Parseval’s equality (see [38], p. 172), as the following lemma shows:

Lemma 3.8. Let H ∈ (0, 1). Then it holds that

ẑ′H(t, ·)(s) = −i · sgn(s) exp
(

sgn(s)
(
H +

1
2

) iπ

2

)
z′′H(t, s), s, t ∈ R, s 6= 0, (3.15)

where f̂(s) := 1√
2π

∫
R exp(−isu)f(u)du, s ∈ R, is the Fourier transform of f . Furthermore,

C ′(H) = C ′′(H)
Γ
(
H + 1

2

)
√

2π
=

Γ
(
H + 1

2

)(
Γ (2H + 1) sin(πH)

) 1
2

. (3.16)

Proof. First, note that (see [12], combine (37) and (38) on p. 13)∫ ∞

0
exp(isu)uα−1du = Γ(α) exp

(
sgn(s)α

iπ

2

)
|s|−α, α ∈ (0, 1), s ∈ R \ {0}.

Let H < 1
2 . Then for t ∈ R and s ∈ R \ {0}, we obtain that

ẑ′H(t, ·)(s)

=
1√
2π

∫
R

exp(−isu)z′H(t, u)du

=
exp(−ist)− 1
C ′(H)

√
2π

∫ ∞

0
exp(isu)uH− 1

2 du

=
exp(−ist)− 1
C ′(H)

√
2π

Γ
(
H +

1
2

)
exp

(
sgn(s)

(
H +

1
2

) iπ

2

)
|s|−H− 1

2

=
C ′′(H)Γ

(
H + 1

2

)
C ′(H)

√
2π

(−i) · sgn(s) exp
(

sgn(s)
(
H +

1
2

) iπ

2

)
z′′H(t, s). (3.17)

By using an analyticity argument, we obtain that identity (3.17) also holds for H ≥ 1
2 .

Furthermore, by using Theorem 3.6, Theorem 3.4, Parseval’s equality and (3.17), we obtain
that ∫

R

∣∣∣z′′H(t, s)
∣∣∣2ds = RH(t, t)

=
∫

R

(
z′H(t, s)

)2
ds

=
∫

R

∣∣∣ẑ′H(t, ·)(s)
∣∣∣2ds

=

(
C ′′(H)Γ

(
H + 1

2

)
C ′(H)

√
2π

)2 ∫
R

∣∣∣z′′H(t, s)
∣∣∣2ds, t ∈ R.

This proves (3.16). Moreover, by combining (3.17) and (3.16), we obtain (3.15).
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4 Fractional calculus for fBm

Next, we show that the kernels zH and z′H defined in Theorem 3.1 and Theorem 3.4, respec-
tively, can be expressed in terms of fractional integrals and derivatives. Fractional calculus
in a generalization of usual calculus. An extensive source on this subject is [39]. Moreover,
see [37] for details on fractional calculus in connection with fBm.

4.1 Fractional calculus over [0, T ]

Usual n-fold integrals, where n ∈ N, can be generalized to n-fold integrals, or fractional
integrals of order n, where n > 0. In fact, let n ∈ N, T > 0 and f be suitably integrable.
Then, by using Fubini’s theorem, iterating and using (3.1), we obtain that∫ T

s

∫ T

sn−1

. . .

∫ T

s1

f(u)duds1 . . . dsn−1 =
1

Γ(n)

∫ T

s
f(u)(u− s)n−1du. (4.1)

The expression on the right-hand side of (4.1) is well-defined not only for n ∈ N, but for all
n > 0. This motivates the following definition:

Definition 4.1. Let T > 0. The right-sided Riemann-Liouville fractional integral operator
of order α over [0, T ] is defined by

(
Iα

T−f
)
(s) :=


1

Γ(α)

∫ T
s f(u)(u− s)α−1du, s ∈ [0, T ], if α > 0

f(s), s ∈ [0, T ], if α = 0.

The right-sided Riemann-Liouville fractional derivative operator of order α over [0, T ] is
defined by

(
Dα

T−f
)
(s) :=



−d
ds

(
I1−α

T− f
)
(s), s ∈ (0, T ), if α ∈ (0, 1)

−d
ds f(s), s ∈ (0, T ), if α = 1

f(s), s ∈ (0, T ), if α = 0.

For convenience, we set
I−α

T−f := Dα
T−f, α ∈ (0, 1].

If α ≥ 0, then Iα
T− is a bounded endomorphism on Lp([0, T ]) for every p ≥ 1 (see [39],

Theorem 2.6). By combining Fubini’s theorem and (3.3), we obtain the semigroup property

Iα
T−I

β
T−f = Iα+β

T− f, f ∈ L1([0, T ]), α, β ≥ 0. (4.2)

As for the ordinary derivative, the fractional derivative is defined only if f is suitably smooth.
More precisely, Dα

T−f is well-defined if f = Iβ
T−g for some g ∈ L1([0, T ]) and some β ≥ α

(see [39], Theorem 2.4). By combining (4.2) and the identity D1
T−I1

T−f = f , we obtain that

Dα
T−I

β
T−f = Iβ−α

T− f, f ∈ L1([0, T ]), 0 ≤ α ≤ β < ∞, α ≤ 1. (4.3)

Similarly as for ordinary calculus, we have that Iα
T−Dα

T−f 6= f in general.

Based on these facts, we can show the following:

Lemma 4.2 (Molchan & Golosov, 1969). Let H ∈ (0, 1) and T > 0. Then

zH(t, s) = C(H)s
1
2
−H

(
IH− 1

2
T− ·H−

1
2 1[0,t)

)
(s), s, t ∈ (0, T ].

11



Proof. Clearly, for s ≥ t, the claim follows from assumption (3.5). Let s < t. For H ≥ 1
2 , the

claim is clear by definition. For H < 1
2 , it follows from partial integration that(

IH+ 1
2

T− ·H−
1
2 1[0,t)

)
(s) =

1
Γ
(
H + 3

2

) tH− 1
2 (t− s)H+ 1

2 −
(
H − 1

2

)(
IH+ 3

2
T− ·H−

3
2 1[0,t)

)
(s).

By using this and (4.3), we obtain that

C(H)s
1
2
−H

(
D

1
2
−H

T− ·H−
1
2 1[0,t)

)
(s)

= C(H)s
1
2
−H

(
D1

T−I
H+ 1

2
T− ·H−

1
2 1[0,t)

)
(s)

=
C(H)

Γ(H + 1
2)

( t

s

)H− 1
2 (t− s)H− 1

2 − C(H)
(
H − 1

2

)
s

1
2
−H

(
IH+ 1

2
T− ·H−

3
2 1[0,t)

)
(s)

= zH(t, s).

Remark 4.3. The formal derivative of BH , denoted by ḂH (and, with some abuse of ter-
minology, called the fractional Gaussian noise), can be interpreted as a weighted left-sided
fractional integral of order H − 1

2 of Ẇ . The left-sided Riemann-Liouville fractional integral
operator of order α > 0 over [0, T ] is defined by

(
Iα

0+f
)
(s) :=

1
Γ(α)

∫ s

0
f(u)(s− u)α−1du, s ∈ [0, T ].

The operators I−α
0+ , α ∈ [0, 1], are defined accordingly, similarly as for the right-sided frac-

tional integral operators. Indeed, by combining Lemma 4.2 and the formula for fractional
integration by parts (see [39], p. 34), we formally obtain that

BH
t = C(H)

∫ T

0
1[0,t)(s)s

H− 1
2

(
IH− 1

2
0+ ·

1
2
−H Ẇ·

)
(s) ds, t ∈ [0, T ].

Hence, formally,

ḂH
t = C(H)tH−

1
2

(
IH− 1

2
0+ ·

1
2
−H Ẇ·

)
(t), t ∈ [0, T ].

4.2 Fractional calculus over R

Definition 4.4. The right-sided Riemann-Liouville fractional integral operator of order α
over R is defined by

(
Iα
−f
)
(s) :=


1

Γ(α)

∫∞
s f(u)(u− s)α−1du, s ∈ R, if α > 0

f(s), s ∈ R, if α = 0.

The right-sided Marchaud fractional derivative operator of order α ∈ (0, 1) over R is defined
by (

Dα
−f
)
(s) := lim

ε↘0

(
Dα
−,εf

)
(s), s ∈ R,

where (
Dα
−,εf

)
(s) :=

α

Γ(1− α)

∫ ∞

ε
(f(s)− f(u + s))u−α−1du.

Moreover,
D0
−f := f.

12



For convenience, we set
I−α
− := Dα

−, α ∈ (0, 1).

If α ∈ (0, 1) and f ∈ Lp(R), where p ∈
[
1, 1

α

)
, then Iα

−f is well-defined (see [39], p. 94-95).
Moreover, if α ∈ (0, 1), p ∈

(
1, 1

α

)
and q = p

1−αp , then Iα
− is bounded from Lp(R) to Lq(R)

(see [39], Theorem 5.3). If f is suitably integrable, then it holds that

Iα
−I

β
−f = Iα+β

− f, α, β ≥ 0.

Furthermore, we have that (see [39], Theorem 6.1)

Dα
−Iα

−f = f, α ∈
(
0,

1
2

)
, f ∈ L2(R). (4.4)

By straightforward calculation, we can show the following:

Lemma 4.5 (Mandelbrot & Van Ness, 1968). Let H ∈ (0, 1). For t < 0, denote

1[0,t) := −1[t,0).

Then

z′H(t, s) =
Γ
(
H + 1

2

)
C ′(H)

(
IH− 1

2
− 1[0,t)

)
(s), s, t ∈ R.

Remark 4.6. The operator Dα
− can be formally derived from the corresponding right-sided

Riemann-Liouville fractional derivative operator Dα
− by suitable transformations (see [39], p.

109). The reason why we present Dα
− instead of Dα

− is that Dα
−Iα

−f is not well-defined for
f ∈ L2(R), unless also f ∈ L1(R). Hence, Dα

− can not be replaced by Dα
− in (4.4). The

reason for this is that contrary to Dα
−, the operator Dα

− requires integrability of the function
at infinity: for example, we have that Dα

−1 ≡ 0, whereas Dα
−1 does not exist.
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5 Wiener integrals with respect to fBm

The Molchan-Golosov and Mandelbrot-Van Ness integral transforms are useful in order to
construct integrals with respect to fBm:

5.1 Wiener integrals over [0, T ]

For H ∈ (0, 1) and T > 0, define power-weighted fractional integral operators by(
KHf

)
(s) :=

(
KH

T f
)
(s) := C(H)s

1
2
−H

(
IH− 1

2
T− ·H−

1
2 f

)
(s), s ∈ (0, T ),

and (
KH,∗f

)
(s) :=

(
KH,∗

T f
)
(s) := C(H)−1s

1
2
−H

(
I

1
2
−H

T− ·H−
1
2 f

)
(s), s ∈ (0, T ).

The operators KH and KH,∗ are mutually inverse in the following sense:

Lemma 5.1. Let H > 1
2 . Then

KH,∗KHf = f, f ∈ L2([0, T ]), (5.1)

and
KHKH,∗1[0,t) = 1[0,t), t ∈ [0, T ]. (5.2)

Moreover, let H < 1
2 . Then

KHKH,∗f = f, f ∈ L2([0, T ]), (5.3)

and
KH,∗KH1[0,t) = 1[0,t), t ∈ [0, T ]. (5.4)

Proof. Let H > 1
2 . If f ∈ L2([0, T ]), then ·H−

1
2 f(·) ∈ L1([0, T ]). Hence by using (4.3), we

obtain (5.1). By using the fact that IH− 1
2

T− = D
3
2
−H

T− I1
T− and a straightforward calculation,

we obtain (5.2). The identities (5.3) and (5.4) are obtained similarly.

From Lemma 4.2, it follows that the Molchan-Golosov representation restricted to the interval
[0, T ] can be written as

(
BH

t

)
t∈[0,T ]

d=
(∫ T

0

(
KH

T 1[0,t)

)
(s)dWs

)
t∈[0,T ]

. (5.5)

Let ET denote the space of elementary functions on [0, T ], i.e. functions of type

f(s) :=
m∑

i=1

ai1[0,ti)(s), s ∈ [0, T ],

where ai ∈ R, ti ∈ [0, T ], i = 1, . . . ,m, and m ∈ N. For f ∈ ET , the (fractional) Wiener
integral with respect to BH is defined by

IH
T (f) :=

∫ T

0
f(s)dBH

s :=
m∑

i=1

aiB
H
ti .

From (5.5), we obtain that ∫ T

0
f(s)dBH

s
d=
∫ T

0

(
KHf

)
(s)dWs. (5.6)
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By considering (5.6) and the standard Wiener isometry, for H > 1
2 , it is natural to define a

space of time domain Wiener integrands by

ΛT (H) :=
{

f : [0, T ] → R
∣∣∣ ·H− 1

2 f(·) ∈ L1([0, T ]) and
∫ T

0

(
KHf

)
(s)2ds < ∞

}
.

For H < 1
2 , KH is a weighted fractional derivative operator, so its arguments must be

sufficiently smooth. Hence, based on Lemma 5.1, we define

ΛT (H) :=
{
f : [0, T ] → R | ∃ φf ∈ L2([0, T ]) such that f = KH,∗φf

}
.

ET is dense in ΛT (H) with respect to the scalar product

(f, g)ΛT (H) :=
(
KHf,KHg

)
L2([0,T ])

, f, g ∈ ΛT (H).

Let
HT

(
BH
)

:= span
{
BH

t | t ∈ [0, T ]
}
⊆ L2(P)

denote the first Wiener chaos of BH over [0, T ]. The time domain (fractional) Wiener integral
with respect to (BH

t )t∈[0,T ] is defined by

IH
T : ΛT (H) → HT

(
BH
)

f 7→ IH
T (f) :=

∫ T

0
f(s)dBH

s := L2(P) - lim
n→∞

∫ T

0
fn(s)dBH

s ,

where (fn)n∈N ∈ EN
T converges to f in the norm induced by (·, ·)ΛT (H). By construction, (5.6)

holds for all f ∈ ΛT (H).

Remark 5.2. For H > 1
2 , it holds that ΛT (H) ( ET , i.e. ΛT (H) is not complete. This is due

to the fact that KHf is a weighted fractional integral of positive order, i.e. more smooth than
a general square-integrable function. With other words, KH

(
ΛT (H)

)
( L2([0, T ]). Contrary,

for H < 1
2 , ΛT (H) is complete.

By using Lemma 5.1, we can derive the following reciprocal of the Molchan-Golosov integral
transform:

Lemma 5.3. Let H ∈ (0, 1). Then

(Wt)t∈[0,∞)
d=
(∫ t

0
z∗H(t, s)dBH

s

)
t∈[0,∞)

,

where for T > 0 and s, t ∈ [0, T ], it holds that

z∗H(t, s) =
(
KH,∗

T 1[0,t)

)
(s)

=
C(H)−1

Γ
(

3
2 −H

)(t− s)
1
2
−H · 2F1

(
1
2
−H,

1
2
−H,

3
2
−H,

s− t

s

)
1[0,t)(s).

5.2 Wiener integrals over R

From Lemma 4.5, we obtain that the Mandelbrot-Van Ness representation is equivalent to

(
BH

t

)
t∈R

d=

(
Γ
(
H + 1

2

)
C ′(H)

∫
R

(
IH− 1

2
− 1[0,t)

)
(s)dWs

)
t∈R

. (5.7)

Let E be the space of elementary functions on R, i.e. functions of type

f(s) :=
m∑

i=1

ai(s)1[0,ti)(s), s ∈ R,
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where ai, ti ∈ R, i = 1, . . . ,m, and m ∈ N. For f ∈ E , the (fractional) Wiener integral with
respect to BH is defined by

IH(f) :=
∫

R
f(s)dBH

s :=
m∑

i=1

aiB
H
ti .

Then from (5.7), it follows that∫
R

f(s)dBH
s

d=
Γ(H + 1

2)
C ′(H)

∫
R

(
IH− 1

2
− f

)
(s)dWs. (5.8)

For H > 1
2 , we define the space of time domain Wiener integrands by

Λ(H) :=
{

f ∈ L1(R)
∣∣∣ ∫

R

(
IH− 1

2
− f

)
(s)2ds < ∞

}
.

If H < 1
2 , then in view of (4.4), we set

Λ(H) :=
{

f : R → R
∣∣∣ ∃ φf ∈ L2(R) such that f = I

1
2
−H

− φf

}
.

E is dense in Λ(H) with respect to the scalar product

(f, g)Λ(H) :=

(
Γ(H + 1

2)
C ′(H)

)2(
IH− 1

2
− f, IH− 1

2
− g

)
L2(R)

, f, g ∈ Λ(H).

Let
H
(
BH
)

:= span
{
BH

t | t ∈ R
}
⊆ L2(P)

be the first Wiener chaos of BH over R. The time domain (fractional) Wiener integral with
respect to

(
BH

t

)
t∈R is defined by

IH : Λ(H) → H
(
BH
)

f 7→ IH(f) :=
∫

R
f(s)dBH

s := L2(P) - lim
n→∞

∫
R

fn(s)dBH
s ,

where (fn)n∈N ∈ EN approximates f in the norm induced by (·, ·)Λ(H). By construction, (5.8)
holds for all f ∈ Λ(H).

From a straightforward calculation, we obtain the following reciprocal of the Mandelbrot-
Van Ness integral transform:

Lemma 5.4. For H ∈ (0, 1), it holds that

(Wt)t∈R
d=

(
C ′(H)

Γ
(
H + 1

2

)
Γ
(

3
2 −H

) ∫
R

(
(t− s)

1
2
−H

+ − (−s)
1
2
−H

+

)
dBH

s

)
t∈R

.
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6 The Volterra Gaussian process

Some considerations for fBm which are based on its Molchan-Golosov representation do not
rely on the exact structure of the kernel zH , but merely on the fact that there exists a standard
Brownian motion, or a convenient Gaussian martingale, having the same filtration (and the
same first Wiener chaos) as fBm. This is one fact motivating the following definition:

Definition 6.1. A Gaussian process (Xt)t∈[0,∞) is called Volterra, if there exists a standard
Brownian motion (Wt)t∈[0,∞) and a Volterra kernel zX ∈ L2

loc

(
[0,∞)2

)
, such that

Xt =
∫ t

0
zX(t, s)dWs, a.s., t ∈ [0,∞). (6.1)

Recall from before that zX is Volterra if and only if zX(t, s) = 0, 0 < t ≤ s < ∞. The Volterra
Gaussian process is centered and has covariance function

RX(s, t) =
∫ s∧t

0
zX(t, u)zX(s, u)du, s, t ∈ [0,∞). (6.2)

Remark 6.2. The label Volterra originates from the Volterra integral equation (of the first
kind), which is of type

x(t) =
∫ t

0
z(t, s)y(s)ds, t ∈ [0,∞),

where the function x and the kernel z are known, and the function y is unknown. Indeed,
we can consider (6.1) as a generalized, stochastic Volterra integral equation with solution Ẇ .
Correspondingly, X can be considered as a generalized, stochastic Volterra integral transform
of the white noise.

We assume that zX is non-degenerate, meaning that the family {zX(t, ·) | t ∈ (0,∞)} is linearly
independent and complete in L2([0,∞)). From the linear independence, it follows by using
(6.2) that RX is positive definite on (0,∞). The completeness ensures that Γt(X) = Γt(W ),
t ∈ (0,∞). Here,

Γt(Y ) := span{Ys | s ∈ [0, t]} ⊆ L2(P)

is the first Wiener chaos of the Gaussian process Y with Y0 = 0, a.s., over [0, t].

6.1 Self-similarity

It is easy to identify the family of those Volterra kernels that generate β-self-similar Volterra
Gaussian processes for β > 0. Indeed, X is β-self-similar if and only if there exists a function
FX ∈ L2

(
(0, 1), (1− x)2β−1dx

)
such that

zX(t, s) = (t− s)β− 1
2 FX

(s

t

)
, 0 < s < t < ∞,

(see [IV], Lemma 2.4). For example, for fBm, it follows from Lemma 3.2 that

FBH (x) =
C(H)

Γ
(
H + 1

2

) · 2F1

(
1
2
−H,H − 1

2
,H +

1
2
,
x− 1

x

)
, x ∈ (0, 1).

A second example is the Riemann-Liouville process with index H > 0 defined by

UH
t :=

√
2H

∫ t

0
(t− s)H− 1

2 dWs, t ∈ [0,∞).

Hence, UH is H-self-similar and FUH ≡
√

2H. The Riemann-Liouville process was introduced
by Lévy (see [24]) and is therefore sometimes referred to as Lévy fBm. The increments of UH
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are not stationary. Indeed, it is easy to show that BH is the unique centered H-self-similar
Gaussian process with stationary increments. However, contrary to fBm, the Riemann-
Liouville process allows to model H-self-similarity for any index H > 0. We conclude that,
in addition to fBm, also the general Volterra Gaussian process is a suitable instrument for
modelling self-similarity. In contrast to this, it is difficult to identify the family of those
Volterra kernels that produce Volterra Gaussian processes with stationary increments.

Remark 6.3. For a corresponding generalization of the Mandelbrot-Van Ness representation
of fBm, i.e. for a process of type

Xt =
∫

R
z′X(t, s)dWs, a.s., t ∈ R,

where X0 = 0, a.s., and z′X(t, ·) ∈ L2(R), t ∈ R, both families of kernels are easy to iden-
tify: First, assume that span{Xs | s ∈ (−∞, t]} = span{Ws | s ∈ (−∞, t]}, t ∈ [0,∞). Then
(Xt)t∈[0,∞) is β-self-similar if and only if there exists F ′

X ∈ L2
(
(−∞, 1), (1− x)2β−1dx

)
such

that z′X(t, s) = (t− s)β− 1
2 F ′

X

(
s
t

)
, s < t.

Second, X has stationary increments if and only if there exists some G′
X : R → R such that

z′X(t, s) = G′
X(t− s)−G′

X(−s), s, t ∈ R.

6.2 Abstract Wiener integrals over [0, T ]

Let T > 0. For f :=
∑m

i=1 ai1[0,ti) ∈ ET , the Wiener integral with respect to (Xt)t∈[0,T ] is
defined by

IX
T (f) :=

∫ T

0
f(s)dXs :=

m∑
i=1

aiXti .

Let ΛT (X) be the completion of ET with respect to the scalar product

(1[0,s), 1[0,t))X := RX(s, t), s, t ∈ [0, T ].

Hence, f ∈ ΛT (X) is an equivalence class of Cauchy sequences {fn}n∈N ∈ EN
T , where

{fn}n∈N ∼ {gn}n∈N :⇔ (fn − gn, fn − gn)X → 0, n → ∞. The scalar product on ΛT (X) is
given by

(f, g)ΛT (X) := lim
n→∞

(fn, gn)X , f, g ∈ ΛT (X), {fn}n∈N ∈ f, {gn}n∈N ∈ g.

The abstract Wiener integral with respect to (Xt)t∈[0,T ] is defined by

IX
T : ΛT (X) → ΓT (X)

f 7→ IX
T (f) :=

∫ T

0
f(s)dXs := L2(P) - lim

n→∞

∫ T

0
fn(s)dXs,

where {fn}n∈N ∈ f . The random variable
∫ T
0 f(s)dXs is centered, Gaussian and satisfies

EP

(∫ T
0 f(s)dXs

)2
= |f |2ΛT (X), where | · |ΛT (X) is the norm induced by (·, ·)ΛT (X).

Remark 6.4. 1. The construction of the abstract Wiener integral does not rely on the fact
that the Gaussian process X is Volterra. Similarly as for fBm, one can define time domain
Wiener integrals with respect to (Xt)t∈[0,T ] by defining a linear operator on ET by KX

T 1[0,t) :=
zX(t, ·), t ∈ [0, T ], and then considering a space of time domain Wiener integrands. However,
in general, as it is the case for H-fBm with H > 1

2 , the obtained time domain Wiener
integrand space is incomplete.
2. The same notation as in articles [I - IV] is also used in this introduction. Therefore, there
appears a possible source of confusion: Indeed, we have that RBH

= RH and zBH = zH .
However, for H > 1

2 , the space ΛT

(
BH
)

and the map IBH

T in this section are different from the
space ΛT (H) and the map IH

T in Section 5, respectively. Also, note that ΓT

(
BH
)

= HT

(
BH
)
,

where the latter notation was used in Section 5.
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7 Summaries of the articles

I. Transformation formulas for fractional Brownian motion.
First, for given H-fBm

(
BH

t

)
t∈[0,∞)

and Hurst index K ∈ (0, 1), we show that there exists a

K-fBm
(
BK

t

)
t∈[0,∞)

, such that for all t ∈ [0,∞) we have that

BH
t = C(K, H)

∫ t

0
(t−u)H−K ·2F1

(
1−K −H,H −K, 1 + H −K,

u− t

u

)
dBK

u , a.s. (7.1)

Here, C(K, H) is a normalizing constant and the integral is a time domain fractional Wiener
integral. This result generalizes both the Molchan-Golosov integral transform (see Theorem
3.1 and Lemma 3.2) which corresponds to the case K = 1

2 , and its reciprocal (see Lemma 5.3)
corresponding to the case H = 1

2 and K = H. In order to prove this, we consider the K-fBm
defined by BK

t :=
∫ t
0 zK(t, s)dWs, t ∈ [0,∞), where Wt :=

∫ t
0 z∗H(t, s)dBH

s , t ∈ [0,∞). For
T > 0, the kernels zH and z∗K can be written in terms of power weighted fractional integral
operators of order H− 1

2 and 1
2−K, respectively, over [0, T ] (see Lemma 4.2 and Lemma 5.3).

Due to suitable powers, their composition reduces to a weighted fractional integral operator
of order H −K, from which we deduce the kernel in (7.1). Then, for t ∈ [0, T ], the result is
derived directly from the definition of the time domain fractional Wiener integral. By letting
T → ∞, we obtain the result for t ∈ [0,∞). Second, we demonstrate heuristically, how the
corresponding generalized Mandelbrot-Van Ness integral transform, which states that the
process

ZH,∞
t := C(K, H)

∫
R

(
(t− u)H−K

+ − (−u)H−K
+

)
dBK

u , t ∈ R,

(where BK is continued to a two-sided K-fBm) is an H-fBm (see [36]), follows from this.
Indeed, by combining representation (7.1) and the stationarity of increments of both BH and
BK , we obtain that for every s > 0, the process

ZH,s
t := C(K, H)

×

(∫ t

−s
(t− u)H−K · 2F1

(
1−K −H,H −K, 1 + H −K,

u− t

u + s

)
dBK

u

−
∫ 0

−s
(−u)H−K · 2F1

(
1−K −H,H −K, 1 + H −K,

u

u + s

)
dBK

u

)
,

t ∈ [−s,∞), is an H-fBm. For t ∈ [−s,∞), the kernel of ZH,s
t converges pointwise to the

kernel of ZH,∞
t . Hence, formally, we obtain that ZH,s

t → ZH,∞
t , as s →∞.

II. On the connection between Molchan-Golosov and Mandelbrot-Van Ness rep-
resentations of fractional Brownian motion.
We prove the second, only formally obtained result in [I] rigorously. More precisely, we show
that for every K ≥ 1

2 and t ∈ R, there exist constants C1(K, H, t) and s1(t) > 0, such that

EP

(
ZH,s

t − ZH,∞
t

)2
≤ C1(K, H, t)s2H−2, s > s1(t).

Also, we show that for every K < 1
2 and t ∈ R, there exist constants C2(K, H, t), C3(K, H, t)

and s2(t) > 0, such that

EP

(
ZH,s

t − ZH,∞
t

)2
≤ C2(K, H, t)s2H−2 + C3(K, H, t)s2K−2, s > s2(t).

The constants are specified exactly. The proof for these estimates is extensive and technical,
and therefore, we only present it for t > 0. We consider ZH,s

t −ZH,∞
t as the sum of two frac-

tional Wiener integrals, one over (−∞,−s) and the other over (−s, t). The second moments
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of these summands can be estimated by transforming them into standard Wiener integrals
over R, and then using the Wiener isometry. Then the original problem is reduced to esti-
mating the L2(R)-norm of two functions. The first one of them is simple, but the second one
is simple only for K = 1

2 , but complicated for K > 1
2 , and even more complicated for K < 1

2 .
By splitting functions, using well-known calculation formulas for the Gauss hypergeometric
function and recombining results, we obtain the estimates.

III. Measure-preserving transformations of Volterra Gaussian processes and re-
lated bridges.
First, we consider a continuous Volterra Gaussian process (Xt)t∈[0,T ], where T > 0 is a fixed
time horizon. A measurable map T from the coordinate space of X to itself is a measure-
preserving transformation if T (X) d= X. Recall that a process

(
XT

t

)
t∈[0,T ]

is a bridge of X if

LawP
(
XT
)

= LawP(X |XT = 0). We call a measurable map B from the coordinate space of

X to itself a bridge transformation if B(X) d= XT . It is well-known that the process

X̂T
t := Xt −

RX(t, T )
RX(T, T )

XT , t ∈ [0, T ],

is a bridge of X that satisfies

ΓT

(
X̂T
)
⊥ span{XT } = ΓT (X),

where ⊥ denotes the orthogonal direct sum (see [14]). Based on this fact, we derive two
measure-preserving transformations T (i), i ∈ {1, 2}, satisfying

ΓT

(
T (i)(X)

)
= ΓT

(
X̂T
)
, i ∈ {1, 2}.

Furthermore, as an inherently, inversely related problem, we derive two bridge transforma-
tions B(i), i ∈ {1, 2}, such that

ΓT

(
B(i)(X)

)
= ΓT (X), i ∈ {1, 2}.

The transformations T (1) and B(1) are connected to T (2) and B(2), respectively, by suitable
time transformations. In order to do this, we follow ideas of Jeulin and Yor, and Peccati,
which considered the case X = W (see [20] and [33], respectively). First, we note that

X̂T
t =

∫ T

0

(
ηX1[0,t)

)
(s)dXs, a.s., t ∈ [0, T ],

where ηX is the linear orthoprojection from ΛT (X) onto the subspace

ΛT,0(X) :=
{

f ∈ ΛT (X)
∣∣ (f, 1[0,T )

)
ΛT (X)

= 0
}

.

Next, we define endomorphisms on ΛT (X), denoted by αX,i and βX,i, such that αX,i :
ΛT,0(X) → ΛT (X) and βX,i : ΛT (X) → ΛT,0(X) are mutually inverse isometries and
αX,iηX = αX,i, i ∈ {1, 2}. If X is a martingale, then the space ΛT (X) is a simple L2-
space, and the structure of these operators is simple and a straightforward generalization of
the corresponding operators for W . For the general case, the construction of the operators
is more involved. It is based on the prediction martingale of XT with respect to

(
FX

t

)
t∈[0,T ]

,
the natural filtration of X, which is defined by

Mt := EP
(
XT | FX

t

)
, t ∈ [0, T ].

This martingale has key features MT = XT and ΓT

(
M̂T

)
= ΓT

(
X̂T
)
, respectively, yielding

ηX = κ−1ηMκ, where κ is the Wiener isometry between ΛT (X) and ΛT (M). By setting
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αX,i := κ−1αM,iκ and βX,i := κ−1βM,iκ, i ∈ {1, 2}, we obtain operators with the suitable
features. The desired transformation are obtained by setting

T (i)
t (X) :=

∫ T

0

(
βX,i1[0,t)

)
(s)dXs, t ∈ [0, T ], i ∈ {1, 2},

and

B(i)
t (X) :=

∫ T

0

(
αX,i1[0,t)

)
(s)dXs, t ∈ [0, T ], i ∈ {1, 2},

respectively, where the integrals are abstract Wiener integrals. Second, we derive a two-
sided Fourier-Laguerre series expansion for the first Wiener chaos of a Gaussian martingale
(Mt)t∈[0,∞). This generalizes a result by Jeulin and Yor (see [20]), where a one-sided series
expansion for W was obtained. For a Gaussian martingale (Mt)t∈[0,∞), the transformation
T (1) is independent of T , and can hence be considered on the coordinate space of (Mt)t∈[0,∞),
where it is invertible. The inverse T (1),−1 satisfies

Γ[T,∞)(M) = Γ[T,∞)

(
T (1),−1(M)

)
⊥ span

{
T (1),−1

T (M)
}

,

where Γ[T,∞)(M) is the orthogonal of ΓT (M) in Γ∞(M) := span{Mt | t ∈ [0,∞)}. By iterating
this, together with the fact that ΓT (M) = ΓT

(
T (1)(M)

)
⊥ span{MT }, we obtain that the

sequence
{
T (1),n

T (M)
}

n∈Z
is a complete orthogonal system in Γ∞(M). Here, T (1),n denotes

the n-th iterate of T (1). Based on this, we obtain the series expansion.

IV. A note on ergodic transformations of self-similar Volterra Gaussian processes.
Given a continuous β-self-similar Volterra Gaussian process Xt :=

∫ t
0 zX(t, s)dWs, t ∈ [0,∞),

where β > 0, we show that, for every α > −1
2 , the map

Zα
t (X) := Xt − (2α + 1)tβ−α− 1

2

∫ t

0
sα−β− 1

2 Xsds, t ∈ [0,∞),

is an ergodic (measure-preserving) transformation on the coordinate space of X. This result
generalizes and refines a result by Molchan, where X = BH and α = H− 1

2 (see [28]). In order
to prove this, we first express the Lamperti transform of the β-self-similar process Zα(X) in
terms of the Lamperti transform of X. Recall that the Lamperti transform of X is the map
Xt 7→ exp(−βt)Xexp(t), t ∈ [0,∞), which transforms a β-self-similar process into a stationary
process. By using a well-known result from the theory of linear transformations of stationary
processes, we obtain that Zα(X) d= X, i.e. Zα is measure-preserving. Then, based on the
special structure of zX due to the β-self-similarity of X, we show that

Zα
t (X) =

∫ t

0
zX(t, s)dZα

s (W ), a.s., t ∈ [0,∞). (7.2)

Next, we consider the
(
α + 1

2

)
-self-similar martingale Nα

t :=
∫ t
0 sαdWs, t ∈ [0,∞). If the

underlying space is the coordinate space of
(
Nα

t

)
t∈[0,∞)

, then Zα coincides with the trans-

formation T (1) obtained in [III], i.e. Zα
(
Nα
)
≡ T (1)

(
Nα
)
. Hence, for fixed T > 0, we

obtain from [III] that
{
Zα,n

T (Nα)
}

n∈Z, where Zα,n is the n-th iterate of Zα, is a complete
orthogonal system in Γ∞

(
Nα
)

= Γ∞(X) := span{Xt | t ∈ [0,∞)}. By combining this fact
with (7.2), we derive that

{
Zα,n

T (X)
}

n∈Z is a complete and free system in Γ∞(X). Hence
F = ∨n∈Zσ

(
Zα,n

T (X)
)
, where F is the σ-algebra of the coordinate space. Then, by using a

well-known result from ergodic theory, we obtain that Zα is ergodic.
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