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Foreword

This thesis brings together 5 papers, where paper I considers mapping QTLs with classical inter-

val mapping and composite interval mapping methods in Arabidopsis Thaliana. Papers II and

III introduce Bayesian QTL mapping models for inbred and outbred experimental designs. In

these papers, performances of the methods are tested and compared with classical methods in

simulated data. Paper IV represents a real data application of the Bayesian outbred method

for open-pollinated Scots pine progeny; a cross of two natural populations. Finally, paper V

compares classical and Bayesian QTL mapping methods when they are applied to a real outbred

apple cross. Additionally, initial versions of the software implementing these Bayesian methods

are produced. A description of some common genetic terms is found in the Appendix.

1 Introduction

1.1 De�nition of Quantitative Trait Locus

The term Quantitative Trait Locus (QTL) refers to an individual gene position in the geneti-

cal material inuencing a quantitative characteristic which is determined by several genes and

environmental factors and interactions between these. Such multifactorial traits, which include

many common diseases and which exhibit a complex mode of inheritance, are generally called

complex traits. Usually a QTL is considered to represent a locus for a continuous trait, but

sometimes more generally a locus for any complex trait. The term QTL mapping refers simply

to the genetic mapping of complex traits.

This de�nition of a QTL is not without problems. It does not say anything about how large

gene e�ects should be in order to call them QTLs. Moreover, quantitative traits are traditionally

considered to be normally distributed, which is based on the assumption that trait is determined

by so-called polygenes, that is, a very large number of genes each of which has a small e�ect.

Normally these problems are omitted by considering that there are only a few QTLs as major

genes and further assuming that there are polygenes that are undetectable. Some of these prob-
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lems were discussed in paper II, where a gene was proposed to be regarded as a QTL only if it

has an e�ect which is above some prespeci�ed threshold. This is an important issue when the

number of QTLs is treated as a random variable in the model, as was done in papers II-V.

1.2 Genetic Mapping

Genetic mapping (linkage analysis) refers to the process of estimating gene positions underlying

the particular trait in the hereditary material, based on following the cosegregation of genes and

marker alleles in the study population. Typically the data collected for this type of analysis

consist of phenotypic trait measurements and marker typings (genotype measurements at some

common loci), which may be only partially observed among the considered group of individuals.

The key questions in genetical QTL mapping studies are: (1) How many QTLs are there?, (2)

Where are they in the marker map?, and (3) How large an inuence does each of them have

on the trait of interest? In many plant and animal species, the data may be collected from de-

signed line-crossing experiments so that the resulting o�spring population shares some favourable

properties, such as control of the maximum number of QTL genotypes, genetical homogeneity,

high-information content and high-linkage disequilibrium. In human genetics, classical paramet-

ric linkage analysis methods usually assume a known mode of inheritance (penetrances in binary

traits). In QTL mapping methods, the segregation and linkage analyses are instead performed

simultaneously. However, also in these models, a �xed number of QTLs is often assumed. Ge-

netic mapping is here considered in experimental species.

1.3 Markers and Marker Map

Markers are places in the genetical material where one can observe measurable di�erences be-

tween individuals. Typically one tries to scatter markers along the genome as equidistantly as

possible. In principle, a single-marker (two-point) QTL analysis may be performed for o�spring

without assuming anything about the marker order or their genetic distances. In the case of

outbred crosses, however, knowledge of parental linkage phases is needed in order to determine
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the directions of the estimated e�ects (see paper IV). In practice, the construction of the marker

map preceedes the modern genetic interval mapping studies where the map is then treated as a

known quantity, as was done in papers I, IV, and V. The marker map may also be known from

earlier studies, or the study may be focused entirely on the construction of the genetic linkage

map. A tractable property of these interval mapping methods (Lander and Botstein 1989), where

a putative QTL is placed somewhere between the given marker interval, is that the position and

QTL e�ect are both identi�able in the estimation. In contrast, two-point analyses cannot dis-

tinguish a small QTL close by from a large QTL at a distance. Recombination has a central role

in genetic mapping. By estimating recombination frequencies between the loci in the sample,

one can determine the marker order and their genetic distances (map). Dividing recombination

frequencies into male and female components may be useful in some contexts. This would result

in a single marker order with two sets of marker distances.

1.4 Inbred and Outbred Experimental Designs

By suitable control of matings, such as brother-sister mating or sel�ng, within selection lines one

can create two divergent pure (parental inbred) lines that can di�er substantially in their average

phenotypic values, but are homozygous at their genomes. A substantial degree of divergence in

the phenotypic values is preferred because it is directly related to the number of loci at which

the two lines di�er in their (�xed) QTL alleles. Two commonly used inbred line-cross designs are

backcross and F1 � F1 intercross (F2). A special property of these inbred line-cross designs is

that the marker informativeness is a constant and high along the chromosomes, and that parental

genotypes and their linkage phases are all known. There is also control, at any o�spring locus,

of the maximum number of possible genotypes, two in a backcross and three in an F2 (see Fig-

ure 1). Additionally, linkage disequilibrium (nonrandom allelic association) is almost maximal

in backcross and F2 populations, making it very useful to apply a technique called composite

interval mapping, also known as a MQM (Jansen 1993; Zeng 1993, 1994; Jansen and Stam 1994;

Kao and Zeng 1997). In this technique, some QTL e�ects in other chromosomes may also be

taken indirectly into account by treating nearby markers as covariates in the model.
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The reasons for applying controlled crossing experiments to outbred lines are somewhat sim-

ilar to what they are in the inbred case: (1) Reasonable control of the maximum number of QTL

genotypes segregating in the o�spring, (2) E�ective application of the marker covariates which

can be used instead of polygenic components or unlinked QTLs, and (3) Genetic homogeneity

and systematic linkage disequilibrium in the o�spring, where the degree of linkage disequilibri-

um depends linearly on the distance. The same advantages are present in human populations

which have experienced a recent admixture between low- and high-risk populations (McKeigue

1997, 1998). The single outbred full-sib family design is described in Figure 2. Inbred line crosses

were considered and applied in papers I and II, and outbred experimental crosses in papers III-V.

2 Bayesian Perspectives

2.1 Modeling

In Bayesian analysis, model parameters and missing data (unobservables) are treated in a sim-

ilar fashion, as random variables. The full probability model is formulated for the problem

in question, considering all variables (�) conditionally on the observed data (data), which is

known. By applying the simple Bayes' rule, one obtains an expression for the posterior densi-

ty p(�jdata) =
p(dataj�)p(�)

p(data)
, where p(dataj�) is the likelihood function, p(�) is a joint prior and

p(data) is a normalizing constant. The parameters that are not of posterior interest, so called

nuisance parameters, are integrated out from the full posterior. The exact evaluation of this

marginal posterior distribution becomes complicated or is not even possible when the number

of nuisance parameters increases. Markov chain Monte Carlo (MCMC) methods provide a fea-

sible approximative numerical solution to this problem. Moreover, when using MCMC, the

expression for the posterior p(�jdata) needs to be known only up to a normalizing constant, i.e.,

p(�jdata) / p(dataj�)p(�).

Bayesian modeling practice has many advantages over classical frequentist analysis. By an
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Parental line 1

F1 generation

F2 generation

F1 generation

Parental line 2

Backcross population 

possible
genotypes:

1 2 3
1 2

possible
genotypes:

"high" "low"

only
homozygotes

only heterozygotes 
(regardless of recombinations)

recombinations!

Figure 1: Backcross and F2 inbred line-cross designs. Only two (three) genotypes are possible

and are occurring in the 1 : 1 (1 : 2 : 1) o�spring ratio in a backcross (F2).
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"high" "low"

2

3

4

    Parent 1      Parent 2

1 Grandparents2 3 4

1

43 3

12

4 3

1 12

43

    Offspring 1     Offspring 2     Offspring 3

4 possible genotypes 
(according to grandparental origin)
in different offspring and/or loci

1
3

1
34 4
2 2

21

recombination
points

OUTBRED FULL SIB FAMILY 

Figure 2: One outbred full-sib family. Four possible genotypes (grandparental origin combina-

tions) are possible to segregate at any QTL or marker locus in the o�spring.
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application of simple conditional independence assumptions, Bayesian analysis allows for a de-

scription of very complicated dependency structures in the joint prior p(�). (Note that even if

conditional prior independence is assumed between some parameters, they do not have to be

independent in their posterior distribution.) Actually, this decomposition of the joint prior is

equivalent to the hierarchical model speci�cation. Incorporation of additional information into

the analysis becomes natural through prior speci�cations. The sequential nature of Bayesian

analysis provides \learning from the data" in the way that the posterior of one analysis can be

taken as the prior to the next. Bayesian analysis allows the analyst to quantify probabilisti-

cally the uncertainty involved in each claim made about the problem in question, and classical

decision-making problems associated with hypothesis testing and multiple testing can be com-

pletely avoided. Moreover, the uncertainty in one parameter is automatically incorporated into

the estimation of the marginal posterior distributions of other parameters.

2.2 Estimation of the Parameters

Often the evaluation of the likelihood in genetic applications requires summing over the set of all

possible unobserved discrete genotypes in several individuals in the pedigree or o�spring data.

The number of terms in such sums easily becomes too large to be calculated in an exact manner,

even when the number of individuals in the analysis is only moderately large. MCMC methods

and the Bayesian framework suit well for approximating this task numerically.

According to the ergodic theory of Markov chains, by running MCMC inde�nitely the chain

will eventually converge to its target equilibrium distribution. In practice, the chain must be

stopped after a possibly large but �nite number of iterations. What is a large number in each

case depends on the mixing properties of the sampler and on the desired accuracy for the esti-

mation. Note that even when suÆcient mixing is obtained, there still exists an approximation

error (i.e., the Monte Carlo error) which is related to the length of the chain. Most of the current

convergence statistics measure convergence for a small number of parameters, but the number of

interesting parameters is often so large that it is almost impossible to assess their simultaneous
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convergence (which would be needed for equilibrium). Therefore in papers II-V, we ran a large

number of iterations that seemed to give reasonable results.

Sometimes the local dependence structure is so strong that the chain will become practi-

cally reducible if single-site updating dynamics is applied. In genetics, the vertical dependence

between �rst-degree relatives and horizontal dependence between adjacent loci are well-known

problems (Sheehan and Thomas 1993; Lin et al. 1994; Janss et al. 1995; Lin 1995; Heath

1997a; Jensen and Sheehan 1998; Lund and Jensen 1999). To overcome this, we applied in paper

III a family block-update at a single marker locus at a time, and in papers IV & V (see AP-

PENDICES therein) occasionally an additional blocking of the entire haplotype in one individual.

2.3 Model Choice

In Bayesian inference, convenient summary measures can be de�ned by considering marginal

posterior distributions of the parameters of interest. A suitable summary statistic for gene map-

ping, posterior QTL-intensity, was derived in paper II. The dimension of the parameter space,

depending on the number of QTLs, may also be treated as a random variable, utilizing the vari-

able dimensional model framework (Green 1995). This was applied successfully in papers II-V.

Thaller and Hoeschele (1996), Uimari et al. (1996a), and Uimari and Hoeschele (1997) used link-

age indicators to handle di�erent numbers of linked QTLs in the chromosome. An alternative to

that would be an application of the Bayes factor corresponding to di�erent parameter numbers

as was done in Satagopan et al. (1996). However, numerical estimation of the Bayes factor

(see Kass and Raftery 1995) may be unstable and its calibration is problematic. In contrast,

the QTL-intensity captures all essential information in gene localization, describing both their

number and loci. By integrating QTL-intensity over the chromosomal segment one obtains the

posterior expected number of QTLs therein (see paper II). In addition, in small intervals, the

integral of the QTL-intensity corresponds approximatively to the posterior probability of having

a QTL in that interval.
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3 Statistical Models in Gene Mapping

QTL mapping is usually performed by using an additive regression model, relating observed

o�spring phenotypes to the QTL genotypes. In classical statistics, the problem is formulated as

a decision problem where the hypothesis of a putative QTL in a given place, i.e., the existence

of linkage, is tested in the sequential test framework (Morton 1955; Wald 1947) against the null

hypothesis of no linkage. In interval mapping (Lander and Botstein 1989), this likelihood ratio

test is executed by moving the putative QTL position in the considered marker interval. By

moving one anking marker at a time, it is possible to construct a LOD-score (pro�le likelihood)

curve over the whole linkage group. Unobserved QTL and marker genotypes are completed by

applying the Expectation-Maximization (EM) algorithm (Dempster et al. 1977). Note that

the convergence of EM to only a local maximum is guaranteed. An alternative is to apply

the least squares approach of Haley and Knott (1992), where unobserved QTL genotypes are

replaced with their conditional expectations given the anking marker genotypes. Implement-

ing this approach was shown to lead to very similar results as the likelihood approach because

most of the variation in the cross is not within, but between populations (Haley and Knott 1992).

Classically there is a problem in de�ning adequate signi�cance levels (threshold values) for

the test statistic because the tested hypotheses are not generally nested and because of multi-

ple testing of QTL positions. Some guidelines have been proposed (Lander and Botstein 1989;

Feingold et al. 1993; Lander and Kruglyak 1995; Doerge and Reba�� 1996). The current practice

to overcome this problem is to calculate threshold values under the null distribution by using a

permutation test (Churchill and Doerge 1994; Doerge and Churchill 1996; Davies et al. 1995).

This approach was also applied in paper I.

When analyzing a multifactorial trait, all QTLs in all chromosomes should be considered

in the model simultaneously. Because this is very diÆcult to implement and needs enormous

computing power, some model simpli�cations have been applied. With respect to this, the QTL

mapping models may be classi�ed in the following way: (1) single-QTL models, (2) two-QTL
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models, (3) multiple-QTL models, and (4) approximate multiple QTL models. These models

may be subdivided into multipoint (Lathrop et al. 1984; Lander and Green 1987; Haley et al.

1994) and two-point analyses depending on whether or not all the markers in the linkage group

are considered simultaneously in the calculations. (In simultaneous consideration, QTL and

linked markers form an inhomogeneous Markov chain where the transition matrix is constructed

as a function of recombination fractions; see equation (5) in paper II and equation (4) in paper

III.) Single-QTL model tries to attribute as much of the genetic variation as possible to a single

locus in a single chromosome or linkage group at a time. In this treatment the other chromo-

somes are omitted. Within a single QTL, nonadditive allelic e�ects (dominance e�ects) are often

considered. For design-speci�c reasons, analyses of backcrosses must depend on the assumption

of a codominant QTL (i.e., the e�ect of the heterozygote is in the middle of two homozygotes).

Robustness of single-QTL models has been studied (Wright and Kong 1997).

The results from an application of an additive two-QTL model in a chromosome can be pre-

sented as a two-dimensional search pro�le (Haley and Knott 1992). Simultaneous consideration of

other chromosomes is then omitted. Application of two-QTL models helps to prevent occurrences

of so-called \ghost QTLs", which are typically present in cases in which a single-QTL model is

applied to the chromosomes which have at least two QTLs (Martinez and Curnow 1992). How-

ever, multidimensional integration, which is needed in position estimation with multiple-QTL

models, is very diÆcult with the existing exact methods and thus we have to rely on MCMC

approximations. In multiple-QTL models, QTLs are typically thought to contribute additively to

the phenotype of interest and all QTL x QTL interactions (epistasis) and genotype-environment

(G x E) interactions are omitted. Available environmental covariates are often considered. There

is generally an increasing interest in modeling epistasis (Risch 1990; Long et al. 1996; Charmet

et al. 1998; Kao et al. 1999) and G x E interactions (Jansen et al. 1995; Kang and Gaugh

1996), as well as analyzing multiple traits simultaneously (Jiang and Zeng 1995; Korol et al.

1995; Henshall and Goddard 1999). Because of increased computing time, multiple-QTL models

are often considered for a single chromosome or a small number of chromosomes at a time. Al-
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ternatively, for simpli�ed calculations, e�ects of other chromosomes may be taken into account

approximatively. This strategy is described below.

In approximate multiple-QTL models, some QTL e�ects are taken into account indirectly, by

using marker covariates. This is a reasonable and eÆcient alternative only in controlled crosses,

because generally associated alleles in QTL and nearby marker loci might be di�erent in unrelat-

ed families. (In complex pedigrees, the polygenic components or unlinked QTLs can be taken to

the model instead of covariate markers (Heath 1997; Uimari and Hoeschele 1997).) In composite

interval mapping methods (Jansen 1993; Zeng 1993, 1994; Jansen and Stam 1994; Kao and Zeng

1997), some subset of markers from other intervals and other chromosomes is taken as a covariate

to the model. This technique was applied in frequentist methods in papers I-III, and V, and to

control other chromosomes in Bayesian methods in papers II-V. The covariate markers may be

chosen in several di�erent ways, e.g., by applying single-marker regression, stepwise regression,

or making many consecutive analyses.

QTL mapping in binary traits can be done by applying logistic models with a logit or probit

link function (Visscher et al. 1996; Xu and Atchley 1996). The use of logistic models for binary

traits has been proposed also in human genetics (Bonney 1986; Rice et al. 1991), but they

are applied only rarely compared to the classical parametric linkage analysis. One disadvantage

of parametric linkage analysis is that penetrance probabilities are assumed known in advance,

whereas in logistic models they do not have to be prespeci�ed.

4 Special Topics

4.1 Information Content and Marker Polymorphism

In the analysis of outbred data, a systematic application of some index describing the proportion

of informative meioses (i.e., marker informativeness) locally present in the data will help the

analyst to quantify the possibility of localizing a QTL in di�erent areas of the considered chro-
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mosome. The parental mating type, which is the main factor that determines the information

content of the marker in the o�spring data, is usually not constant in outcrossing experiments

and therefore the level of information varies from marker to marker, unlike in inbred line crosses.

The information content in a marker may be de�ned as the proportion of o�spring alleles whose

grandparental origin at that locus can be uniquely determined from data. If the parental mating

type and their haplotypes are unknown, this measure is obtained as an expected value over con-

sistent mating types. This measure was applied in paper III. In paper IV, the parental mating

type was a constant. Related measures often applied in outbred populations are heterozygosity,

polymorphic information content, and entropy-based information content (see Sham 1998, pp.

60-61, 139-140). It is also possible to determine the information content in regions between

markers in a multipoint fashion as was done in paper V.

Marker information content and marker polymorphism are closely related in how they inu-

ence QTL mapping. By and large, several closely linked biallelic markers can provide a similar

amount of information as a single very polymorphic marker (Kruglyak 1997). Therefore weak

marker polymorphism can be compensated for by having several such markers, which form a

dense set. Similarly, when the information content of the markers is weak, one needs a denser

marker map to achieve a performance comparable to a sparse but highly informative marker

map. The large impact of marker information content on the QTL localization can be seen

clearly from the simulation analysis of paper III, where intensity graphs are much more spread

out or even biased in some direction in the uninformative areas.

4.2 Missing Data

Missing values in linkage phases are even more frequent than in genotypes, because known link-

age phases are based on deductions from genotypes in the previous generation. Application of

sperm typing (Navidi and Arnheim 1994), radiation hybrid mapping (Heath 1997b), or mapping

in megagametophytes (see paper IV) are exceptions to this. Incompleteness and uncertainty in

the data can arise at least in the following situations in addition to randomly missing data: (1)
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when using dominant (e.g., RAPD) markers in outbred populations, (2) when the genotyping

covers only phenotypic extremes (Lander and Botstein 1989; Tanksley 1993; Darvasi and Soller

1992), (3) in sex-limited traits (excluding indirect evaluations), and (4) when some of the geno-

types (and haplotypes) are determined indirectly. In the last case, the family structure might

be incomplete, or even when it is complete and codominant (informative) markers are used,

some of the meioses in the data may not be informative in some marker positions. This type of

uncertainty can arise easily in crossing experiments involving outbred populations with varying

proportions of heterozygosity in di�erent marker positions. Missing values were considered in

papers I-V. Note also that in a marker interval, change in the degree of missing values may have

a similar kind of e�ect on the summary statistics as uctuation in marker information content.

When incomplete genetic data are analyzed, missing values are typically assumed to be missing

at random (except in case 2 above).

4.3 Accuracy of E�ect Estimation

E�ect estimation in QTL mapping is problematic in general. Accuracy of e�ect estimation was

discussed especially in papers I and IV (but also in papers II, III and V). The �rst problem

arises when applying selective genotyping, i.e., when the genotyping covers only phenotypic ex-

tremes. In this case, the QTL e�ects are overestimated for the ascertained sample. Secondly,

the statistical sampling and G x E interactions overestimate QTL e�ects as well, since QTLs are

most likely found when the statistical sampling and environment are preferential for detecting

them. Therefore, the estimation of QTL positions and their e�ects from independent samples

is proposed (Lande and Thompson 1990; Melchinger et al. 1998). Generally, a low accuracy of

e�ect estimates is due to the small sample sizes used commonly in mapping studies (Beavis 1998).

5 Concluding Remarks

As a conclusion based on these studies, I feel that Bayesian methods can be succesfully ap-

plied for mapping QTLs in animal and plant experiments. A real advantage of the Bayesian
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approach is in the probabilistic inference which can be executed without explicit reference to

the hypothesis-testing framework or other decision-making procedures. Answers to substantive

scienti�c questions can be formulated in terms of probabilities, which quantify the uncertainty

involved in each claim made about QTLs, rather than using long-term frequencies corresponding

to a series of hypothetical experiments repeated under similar conditions (see Shoemaker et al.

1999).

Modeling multiple QTLs explicitly in the mapped chromosome seems to suit to the Bayesian

method more naturally than the classical framework. The posterior distribution of the number

of QTLs provides a useful tool for both detecting the interesting chromosomes and distinguishing

between di�erent numbers of linked QTLs therein. The posterior QTL intensity (paper II) is

a summary statistic which captures all essential information for localizing QTLs even further

in those chromosomes. The hierarchical model structure and the Metropolis-Hastings algorithm

allow easy modi�cations and extensions of the work presented here.

QTL mapping is essentially a missing data problem, where the underlying genetic structure,

the genome, is only partially observed in some common marker loci and unobserved everywhere

else. For unobserved marker and QTL genotypes, only the probability distributions for each are

available. The Bayesian framework suits perfectly well this kind of problem, because missing data

can be handled in the hierarchical model structure in a similar fashion as all the other parameters.

Bayesian approaches are often blamed for their computational burden related to the MCMC

estimation. Their execution time is comparable to that in permutation tests, which are also

computationally intensive procedures. Permutation tests are defended with the argument that

their computation time is short when compared to time used for genotyping (Churchill and Do-

erge 1994). The same defence applies to MCMC calculations. Moreover, the new methods using

MCMC estimation are typically laborious for computers available at the time they are presented,

but become tolerable soon after.
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Some caution is needed when applying these methods, however. The statistical analyst should

possess substantial understanding and experience on how MCMC algorithms behave under dif-

ferent circumstances. This is necessary even in situations in which suitable software is available.

Obtaining an MCMC realisation is easy, but it is much more diÆcult to check whether the gen-

erated sample represents the correct target distribution.

The methods presented here are implemented as software packages which are publicly avail-

able on the web (http://www.rni.helsinki.�/�mjs). The software implementing the method of

paper II was listed and evaluated in Manly and Olson (1999).

23



References

Beavis, W. D. (1998) QTL analyses: power, precision, and accuracy, pp. 145-162 in Molecular

dissection of complex traits, edited by A. H. Paterson, CRC Press, Boca Raton, Florida.

Bonney, G. E. (1986) Regressive logistic models for familial disease and other binary traits.

Biometrics 42: 611-625.

Charmet, G., T. Cadalen, P. Sourdille, and M. Bernard (1998) An extension of the 'marker

regression' method of interactive QTL. Molecular Breeding 4: 67-72.

Churchill, G. A. and R. W. Doerge (1994). Empirical threshold values for quantitative trait

mapping. Genetics 138: 963-971.

Darvasi, A. and M. Soller (1992) Selective genotyping for determination of linkage between a

marker locus and a quantitative locus. Theor. Appl. Genet. 85: 353-359.

Davies, S., M. Schroeder, L. R. Goldin, and D. E. Weeks (1995) Nonparametric simulation-based

statistics for detecting linkage in general pedigrees. Am. J. Hum. Genet. 58: 867-880.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977) Maximum likelihood from incomplete

data via the EM algorithm. J. Roy. Statist. Soc., Ser. B. 39: 1-38.

Doerge, R. W. and A. Reba�� (1996) Signi�cance thresholds for QTL interval mapping tests.

Heredity 76: 459-464.

Doerge, R. W. and G. A. Churchill (1996) Permutation tests for multiple loci a�ecting a quan-

titative character. Genetics 142: 285-294.

Feingold E., P. O'Brown, and D. Siegmund (1993) Gaussian models for genetic linkage analysis

using complete high-resolution maps of identity by descent. Am. J. Hum. Genet. 53: 234-251.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian

model determination. Biometrika 82: 711-732.

24



Haley, C. S. and S. A. Knott (1992) A simple regression method for mapping quantitative trait

loci in line crosses using anking markers. Heredity 69: 315-324.

Haley, C. S. , S. A. Knott, and J.-M. Elsen (1994) Mapping quantitative trait loci in crosses

between outbred lines using least squares. Genetics 136: 1195-1207.

Heath, S. C. (1997a) Markov chain Monte Carlo segregation and linkage analysis for oligogenic

models. Am. J. Hum. Genet. 61: 748-760.

Heath, S. C. (1997b) Markov chain Monte Carlo methods for radiation hybrid mapping. J.

Comp. Biol. 4: 505-515.

Henshall, J. M., and M. E. Goddard (1999) Multiple-trait mapping of quantitative trait loci

after selective genotyping using logistic regression. Genetics 151: 885-894.

Jansen, R. C. (1993) Interval mapping of multiple quantitative trait loci. Genetics 135: 205-211.

Jansen, R. C., J. W. Van Ooijen, P. Stam, C. Lister, and C. Dean (1995) Genotype-by-

environment interaction in genetic mapping of multiple quantitative trait loci. Theor. Appl.

Genet. 91: 33-37.

Jansen, R. C. and P. Stam (1994) High resolution of quantitative traits into multiple loci via

interval mapping. Genetics 136: 1447-1455.

Janss, L. L., G. R. Thompson, and J. A. M. Van Arendonk (1995) Application of Gibbs sampling

for inference in a mixed major gene-polygenic inheritance model in animal populations. Theor.

Appl. Genet. 91: 1137-1147.

Jensen, C. S. and N. Sheehan (1998) Problems with determination of noncommunicating classes

for Monte Carlo Markov chain applications in pedigree analysis. Biometrics 54 : 416-425.

Jiang, C. and Z-B. Zeng (1995) Multiple trait analysis of genetic mapping for quantitative trait

loci. Genetics 140: 1111-1127.

Kang, M. S. and Gauch, H. G., JR., eds. (1996) Genotype-by-environment interaction. CRC

Press. Boca Raton, FL.

25



Kao, C.-H. and Z.-B. Zeng (1997) General formulas for obtaining the MLEs and the asymptotic

variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm.

Biometrics 53: 653-665.

Kao, C.-H., Z.-B. Zeng, and R. D. Teasdale (1999) Multiple interval mapping for quantitative

trait loci. Genetics 152: 1203-1216.

Kass, R. E. and A. E. Raftery (1995) Bayes factors. J. Am. Statist. Assoc. 90: 773-795.

Korol, A. B., Y. I. Ronin, and V. M. Kirzhner (1995) Interval mapping of quantitative trait

loci employing correlated trait complexes. Genetics 140: 1137-1147.

Kruglyak, L. (1997) The use of a genetic map of biallelic markers in linkage studies. Nature

Genet. 17: 21-24.

Lande, R. and R. Thompson (1990) EÆciency of marker-assisted selection in the selection in

the improvement of quantitative traits. Genetics 124: 743-756.

Lander, E. S. and D. Botstein (1989) Mapping Mendelian factors underlying quantitative traits

using RFLP linkage maps. Genetics 121: 185-199.

Lander, E. S. and P. Green (1987) Construction of multilocus genetic maps in humans. Proc.

Natl. Acad. Sci. USA 84: 2363-2367.

Lander, E. S. and L. Kruglyak (1995) Genetic dissection of complex traits: guidelines for

interpreting and reporting linkage results. Nature Genet. 11: 241-247.

Lathrop, G. M., J. M. Lalouel, C. Julier, and J. Ott (1984) Strategies for multilocus linkage

analysis in humans. Proc. Natl. Acad. Sci. USA 81: 3443-3446.

Lin, S., E. Thompson, and E. Wijsman (1994) Finding noncommunicating sets for Markov

Chain Monter Carlo estimation on pedigrees. Am. J. Hum. Genet. 54: 695-704.

Lin, S. (1995) A scheme for constructing an irreducible Markov Chain for pedigree data. Bio-

metrics 51: 318-322.

26



Long, A., S. L. Mullaney, T. F. C. Mackay, and C. H. Langley (1996) Genetic interactions

between naturally occurring alleles at quantitative trait loci and mutant alleles at candidate

loci a�ecting bristle number in Drosophila melanogaster. Genetics 144: 1497-1510.

Lund, M. S. and C. S. Jensen (1999) Blocking Gibbs sampling in the mixed inheritance model

using graph theory. Genet. Sel. Evol. 31: 3-24.

Manly, K. F. and J. M. Olson (1999) Overview of QTL mapping software and introduction to

Map Manager QT. Mammalian Genome 10: 327-334.

Martinez, O. and R. N. Curnow (1992) Estimating the locations and the size of the e�ects of

quantitative trait loci using anking markers. Theor. Appl. Genet. 85: 480-488.

McKeigue, P. M. (1997) Mapping genes underlying ethnic di�erences in disease risk by linkage

disequilibrium in recently admixed populations. Am. J. Hum. Genet. 60: 188-196.

McKeigue, P. M. (1998) Mapping genes that underlie ethnic di�erences in disease risk: methods

for detecting linkage in admixed populations, by conditioning on parental admixture. Am. J.

Hum. Genet. 63: 241-251.

Melchinger, A. E., H. F. Utz and C. C. Sch�on (1998) Quantitative trait locus (QTL) mapping

using di�erent testers and independent population samples in maize reveals low power of QTL

detection and large bias in estimates of QTL e�ects. Genetics 149: 383-403.

Morton, N. E. (1955) Sequential tests for detection of linkage. Am. J. Hum. Genet. 7: 277-318.

Navidi, W. and N. Arnheim (1994) Analysis of genetic data from the polymerase chain reaction.

Statistical Science 9: 320-333.

Rice, J., T. Neuman, and S. O. Moldin (1991) Methods for the inheritance of qualitative traits.

In Handbook of Statistics, C. R. Rao and R. Chakraborty (eds.), 8: 1-27.

Risch, N. (1990) Linkage strategies for genetically complex traits. I. Multilocus Models. Am. J.

Hum. Genet. 46: 222-228.

27



Satagopan, J. M., B. S. Yandell, M. A Newton, and T. C. Osborn (1996) A Bayesian approach

to detect quantitative trait loci using Markov chain Monte Carlo. Genetics 144: 805-816.

Sham, P. (1998) Statistics in human genetics. Arnold. London. (John Wiley & sons. New York.)

Sheehan, N. and A. Thomas (1993) On the irreducibility of a Markov chain de�ned on a space

of genotype con�gurations by a sampling scheme. Biometrics 49: 163-175.

Shoemaker, J. S., I. Painter, B. S. Weir (1999) Bayesian statistics in genetics. a guide for the

uninitiated. Trends in Genetics 15 (9) 354-358.

Tanksley, S. D. (1993) Mapping polygenes. Annu. Rev. Genet. 27: 205-233.

Thaller, G. and I. Hoeschele (1996) A Monte Carlo method for Bayesian analysis of linkage

between single markers and quantitative trait loci: I. Methodology. Theor. Appl. Genet. 93:

1161-1166.

Uimari, P. and I. Hoeschele (1997) Mapping linked quantitative trait loci using Bayesian analysis

and Markov chain Monte Carlo algorithms. Genetics. 146: 735-743.

Uimari, P., G. Thaller, and I. Hoeschele (1996) The use of multiple markers in a Bayesian

method for mapping quantitative trait loci. Genetics 143: 1831-1842.

Visscher, P. M., C. S. Haley, and S. A. Knott (1996) Mapping QTLs for binary traits in backcross

and F2 populations. Genet. Res. 68: 55-63.

Wald, A. (1947) Sequential analysis. New York; John Wiley.

Wright, F. A. and A. Kong (1997) Linkage mapping in experimental crosses: the robustness of

single-gene models. Genetics 146: 417-425.

Xu, S. and W. R. Atchley (1996) Mapping quantitative trait loci for complex binary diseases

using line crosses. Genetics 143: 1417-1424.

Zeng, Z.-B. (1993) Theoretical basis for separation of multiple linked gene e�ects in mapping

quantitative trait loci. Proc. Natl. Acad. Sci. USA. 90: 10972-10976.

28



Zeng, Z.-B. (1994) Precision mapping of quantitative trait loci. Genetics 136: 1457-1468.

29



APPENDIX

Typically, the entire genetic code of an organism has been written into the chromosomes.

Diploid species, which are considered here, have two copies of each autosomal (i.e., not sex)

chromosome in each of their cells. The chromosomes together are called the genome, and the

individual chromosomal positions, loci. At each autosomal locus, the o�spring receives one al-

lele from each of its parents. These two alleles together form the genotype of that individual at

that particular locus. In adjacent loci alleles received from the same parent belong to the same

haplotype (linkage phase, parent-derived chromosome). Normally, linkage phases cannot be

directly identi�ed in the laboratory. Alleles at two unlinked loci (i.e., loci that are in di�erent

chromosomes) are inherited independently from each other. Two loci are in linkage disequilib-

rium when their allele frequencies are dependent. When the genetic material is transmitted from

one generation to the next, recombination plays an important role in the process. It takes care

that each transmitted haploid gamete is a novel combination of grandparental chromosomal

segments (that were present in the parent's haplotype).
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