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Abstract
Microarrays are high throughput biological assays that allow the screening of thousands of 
genes for their expression. The main idea behind microarrays is to compute for each gene 
a unique signal that is directly proportional to the quantity of mRNA that was hybridized 
on  the  chip.  A large  number  of  steps  and  errors  associated  with  each  step  make  the 
generated expression signal noisy. As a result, microarray data need to be carefully pre-
processed before their analysis can be assumed to lead to reliable and biologically relevant 
conclusions.

This thesis focuses on developing methods for improving gene signal and further utilizing 
this  improved  signal  for  higher  level  analysis.  To  achieve  this,  first,  approaches  for 
designing  microarray  experiments  using  various  optimality  criteria,  considering  both 
biological and technical replicates, are described. A carefully designed experiment leads to 
signal with low noise, as the effect of unwanted variations is minimized and the precision 
of  the  estimates  of  the  parameters  of  interest  are  maximized.  Second,  a  system  for 
improving  the  gene  signal  by  using  three  scans  at  varying  scanner  sensitivities  is 
developed. A novel Bayesian latent intensity model is then applied on these three sets of 
expression values, corresponding to the three scans, to estimate the suitably calibrated true 
signal  of  genes.  Third,  a  novel  image  segmentation  approach  that  segregates  the 
fluorescent signal from the undesired noise is developed using an additional dye, SYBR 
green  RNA  II.  This  technique  helped  in  identifying  signal  only  with  respect  to  the 
hybridized DNA, and signal  corresponding to dust,  scratch,  spilling of  dye,  and other 
noises,  are  avoided.  Fourth,  an integrated  statistical  model  is  developed,  where  signal 
correction, systematic array effects, dye effects, and differential expression, are modelled 
jointly as opposed to a sequential application of several methods of analysis.

The methods described in here have been tested only for cDNA microarrays, but can also, 
with some modifications, be applied to other high-throughput technologies.

Keywords:  High-throughput  technology,  microarray,  cDNA,  multiple  scans,  Bayesian 
hierarchical models, image analysis, experimental design, MCMC, WinBUGS.
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1. Introduction

Biomedical  and  biological  research  is  in  the  middle  of  a  significant  transition  and  is 
basically driven by two important factors: the massive increase in the amount of DNA 
sequence information and the development of the technologies that enable researchers to 
exploit this information. Therefore a very large number of discoveries, analyses, and new 
experiments are being made. In the last few years, almost 700 bacterial species and more 
than  20  eukaryote  organisms,  of  which  about  half  are  fungi,  have  had  their  genome 
completely sequenced, and work on many more is in progress [1]. Unfortunately, the huge 
amount of DNA sequence information do not provide direct answers to questions such as 
what genes do, how a cell works, or how are diseases caused? This is where functional 
genomics has its important role to play. The goal of functional genomics is to make use of 
the  vast  amounts  of  data  produced  by  genomic  projects  (such  as  genome sequencing 
projects) in order to describe gene and protein functions, and their interactions. It focuses 
on  the  dynamic  aspects  such  as  gene  transcription,  translation,  and  protein-protein 
interactions.  Functional  genomics uses new technologies to take full  advantage of this 
large and rapidly increasing sequence information. Among these tools, the most versatile 
and powerful are high-density arrays of oligonucleotides or complementary DNAs. 

These arrays have been in use for biological experiments for many years [2, 3, 4, 5, 6, 7]. 
Traditionally,  they consisted  of  fragments  of  DNA, often  with  an unknown sequence, 
spotted  on  porous  membrane.  The  arrayed  DNA  fragments  often  come  from cDNA, 
genomic  DNA  or  plasmid  libraries.  Recently,  the  use  of  glass  as  a  substrate  and 
fluorescence  for  detection,  together  with  the  development  of  new  technologies  for 
synthesizing or depositing DNA on glass slides at very high densities, have allowed the 
miniaturization  of  DNA  arrays  and  this  has  resulted  in  a  significant  increase  in  the 
experimental efficiency and information content [8, 9, 10, 11, 12, 13].

One of the most important applications for DNA arrays so far has been the monitoring of 
gene expression, in other words, monitoring the abundance of mRNA. The transcription of 
genomic DNA to produce mRNA is the first step in the process of protein synthesis and 
differences  in  gene  expression  are  responsible  for  both  morphological  and phenotypic 
differences  as  well  as  indicative  of  cellular  responses  to  environmental  stimuli  and 
perturbations. It could be argued that if mRNA is only an intermediate molecule in the 
production of protein products, why measure mRNA when in fact proteins are responsible 
for most biological activities? One reason is that protein-based approaches are generally 
more difficult,  less sensitive,  and have a lower throughput  than RNA-based ones.  But 
more  importantly,  mRNA  levels  are  immensely  informative  about  cell  state  and  the 
activity of genes, and for most genes, changes in mRNA abundance are related to changes 
in protein abundance. 

Gene expressions are basically used in attempts to understand the function of genes, and to 
know when, where and to what extent a gene is expressed. This information further leads 
to an understanding of the activity and of the biological roles of its encoded protein. In 
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addition,  changes  in  the  multi-gene  patterns  of  expression  can  provide  clues  about 
regulatory  mechanisms,  broader  cellular  functions,  and  biochemical  pathways.  In  the 
context of human health, the knowledge gained from expression measurements can help 
determine the genes causing a particular disease and consequences of the disease, how 
drugs and drug candidates work in cells and organisms, and which gene products may be 
appropriate targets for therapeutic intervention.

Apart  from  DNA  arrays,  there  are  other  ways  to  measure  mRNA  abundance,  gene 
expression and changes in gene expression. Some of them are: northern blots, polymerase 
chain reaction after reverse transcription of RNA (RT-PCR), nuclease protection, cDNA 
sequencing, clone hybridization, differential display [14], subtractive hybridization, cDNA 
fragment  fingerprinting,  and  serial  analysis  of  gene  expression  (SAGE)  [15].  It  is 
important to emphasize that these new, parallel approaches do not replace the conventional 
methods. Standard methods such as northern blots, RT-PCR are basically used in a more 
targeted fashion to follow-up on the genes, pathways and mechanisms implicated by the 
array results. 

This thesis is structured in two parts. The purpose of the first part is to present both the 
biological and methodological background for understanding the basics behind a typical 
microarray experiment. The second part consists of five publications, which present novel 
methods for improving gene expression signal and eventually use this improved signal for 
finding differentially expressed genes.

The structure for the first part of the thesis is as follows: Chapter 2 presents some concepts 
of molecular biology required to understand the nature of data resulting from microarray 
experiments. Chapter 3 presents a brief introduction on how arrays are produced, spotted, 
hybridized and eventually scanned. It also presents a detailed discussion on scanning and 
image processing. Chapter 4 deals with the importance of experimental design and data 
pre-processing.  Chapter  5  highlights  the methods for  selecting  differentially  expressed 
genes and lists software/methods that can be used for annotating the interesting genes. 
Chapter  6  gives  a  brief  introduction  about  Bayesian  hierarchical  modelling  and  the 
software “WinBUGS” used for analyzing the data in Publications III, IV and V.
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2. Biological Background

Here we review the basic concepts of modern molecular biology, which are needed before 
understanding the purpose and the nature of data resulting from microarrays. We confine 
our discussion to those topics that  are most essential.  A detailed discussion about cell 
biology can be found, e.g., in [16].

2.1 Organisms and cells

A cell, the structural and functional unit of all living organisms, contains the hereditary 
information necessary for regulating cell functions and for transmitting information to the 
next  generation  of  cells.  The  cell  theory,  first  developed  in  1839  by  Matthias  Jakob 
Schleiden and Theodor Schwann, states that all organisms are composed of one or more 
cells. Some organisms, such as bacteria, are unicellular (consisting of a single cell) and 
other organisms, such as humans, are multicellular.

Cells  can  be  classified  in  three  domains:  Eukaryota,  Eubacteria,  and  Archaea  where 
Eubacteria and Archaea are the split of the prokaryotes based on genetic differences. The 
major  difference  between  prokaryotes  and  eukaryotes  is  that  eukaryotic  cells  contain 
membrane-bound compartments  in  which  specific  metabolic  activities  take  place.  The 
most  important  difference is  the presence of nucleus in  the eukaryotic  cells,  which is 
absent in prokaryotic cells. All cells, whether prokaryotic or eukaryotic, possess DNA, the 
hereditary  material  of  genes,  and RNA, containing the information necessary to build 
various proteins such as enzymes, the cell's primary machinery.

2.2 Gene

A gene is a locatable region of genomic sequence, corresponding to a unit of inheritance, 
which is associated with regulatory regions, transcribed regions and/or other functional 
sequence regions. The physical development and phenotype of organisms can be thought 
of as a product of genes interacting with each other and with the environment. 

In cells, genes consist of a long strand of DNA that contains a promoter, which controls 
the  activity  of  a  gene,  and  coding  and  non-coding  sequences.  A  coding  sequence 
determines  what  the  gene  produces,  while  non-coding  sequences  can  regulate  the 
conditions of gene expression. The regions encoding gene products are called exons in 
eukaryotic cells. When a gene is active, the coding and non-coding sequences are copied 
in a process called transcription, producing an RNA copy of the gene's information. This 
RNA can then direct the synthesis of proteins via the genetic code. 

Genes of eukaryotic organisms can contain regions called introns that are removed from 
the messenger RNA in a process called splicing. In eukaryotes, a single gene can encode 
multiple proteins, which are produced through the creation of different arrangements of 
exons through alternative splicing.  In prokaryotes,  introns are less common and genes 
often contain a single uninterrupted stretch of DNA that codes for a product. Prokaryotic 

13



genes are often arranged in groups called operons with promoter and operator sequences 
that regulate transcription of a single long RNA. This RNA can contain multiple coding 
sequences. 

2.3 Physical definition of gene

The vast majority of living organisms encode their genes in long strands of DNA. DNA is 
most commonly recognized as two paired chains of chemical bases, spiralled into a double 
helix structure. The double helix structure of DNA is presented in Figure 1. There are four 
different kinds of bases in DNA: adenine (A), cytosine (C), guanine (G) and thymine (T). 
The order in which the bases occur determines the information stored in the region of 
DNA being looked at.  The bases are divided into two classes: purines (A and G) and 
pyrimidines (C and T). When a base is attached to a sugar it is referred to as nucleoside. If 
a phosphate group is attached to this nucleoside then it is referred to as nucleotide. The 
nucleotide is the basic repeat unit of a DNA strand.

Figure 1: The DNA double helix structure (Source: http://www.scq.ubc.ca/a-monks-flourishing-
garden-the-basics-of-molecular-biology-explained/)
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The double helix structure of DNA is due to the hydrogen bonding that occurs between 
laterally  opposed  bases.  The chemical  structure  of  the  bases  is  such that  adenine (A) 
specifically binds to thymine (T) and cytosine (C) specifically binds to guanine (G). Since 
no other interactions are possible between any other combinations of base pairs, it is said 
that  A is  complementary  to  T and C is  complementary  to  G.  Two strands  are  called 
complementary  if  for  any  base  on  one  strand,  the  other  strand  contains  this  base 
complement.  Two  complementary  single-stranded  DNA  chains  that  come  into  close 
proximity  react  to  form a  stable  double  helix in  a  process  known as  hybridization  or 
annealing. 

2.4 Expression of genetic information

The flow of genetic information is from DNA to mRNA to proteins. This one-way process 
is described as the central dogma of molecular biology, see Figure 2. To make products 
from gene, the information in the DNA is first copied, base to base, into a similar kind of 
information carrier, called a transcript, or RNA. In eukaryotic cells, the RNA copy of the 
gene sequence acts as a messenger, taking information from the nucleus and transporting it 
into the cytoplasm of the cell. Once in the cytoplasm, the messenger RNA is translated 
into the product of the gene, a protein. The sequence of protein is defined by the original 
sequence of the DNA bases found in the gene.

In most cases, RNA is an intermediate product in the process of manufacturing proteins 
from  genes.  However,  for  some  gene  sequences,  the  RNA  molecules  are  the  actual 
functional  products.  The  DNA sequences  from which  such  RNAs  are  transcribed  are 
known as non-coding DNA or RNA genes. Some viruses store their entire genomes in the 
form of RNA, and contain no DNA at all. Because they use RNA to store genes, their 
cellular hosts may synthesize their proteins as soon as they are infected and without the 
delay in waiting for transcription.  On the other hand, RNA retroviruses,  such as HIV, 
require  the  reverse  transcription  of  their  genome  from  RNA  into  DNA  before  their 
proteins can be synthesized.  The process of producing a  functional molecule  of either 
RNA or protein is called gene expression,  and the resulting molecule  is  called a gene 
product.
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Figure 2: Central dogma of molecular biology  
(Source:http://users.ugent.be/~avierstr/principles/centraldogma.html)
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3. cDNA microarray 

3.1 Experimental aspects

cDNA microarray is based upon the mutual and specific affinity of the complementary 
strands  of  DNA.  The  technique  is  applicable  under  laboratory  settings  because  it 
miniaturizes the quantity of information contained within a genome. The number of genes 
on the array can range from 500 to as many as 40,000 genes. Once the desired genes are 
chosen, individual clones of each must be obtained. Universal primers are used for the 
polymerase  chain  reaction  (PCR)  amplification  of  each  gene  either  from  a  plasmid 
preparation or the bacterial vector itself. 

Purified PCR products are then individually spotted, usually in duplicate,  onto a glass 
slide. Printing is usually done in one of three ways: photolithography, mechanical micro 
spotting, or ink jetting [17, 18]. Photolithography uses light to covalently synthesize the 
DNA  strands  to  the  slide,  mechanical  spotting  uses  spotting  pins  and  capillaries  to 
transport DNA to the surface of the glass slide, and ink jetting uses electric current to 
dispense the appropriate amount of purified DNA on the glass slide.  

Printing is a delicate procedure and should be performed in a controlled environment. 
Surface  chemistry,  temperature,  and  humidity  play  an  important  role  in  the  spot 
formulation. Variation in such conditions may lead to non-uniformities among the spots. 
Other problems could be fluctuations in the amount of target spotted by the same pin, or 
variation in the geometry of different pins. Sometimes while printing, a pin touches the 
surface strongly thereby damaging the spots and preventing a good hybridization in the 
centre.  Superficial tension of the liquid can cause spots with tails.  Dust is yet  another 
potential problem for printing and therefore most arrayers are enclosed in a glass container 
to prevent dust deposition during printing.
 
To prepare a sample for hybridization, the first step is to purify high-quality mRNA or 
total  RNA  from  the  cellular  contents.  The  experimenter  is  then  faced  with  several 
challenges: (i) mRNA accounts for only a small fraction (less than 3%) in a cell, (ii) the 
more heterogeneous the cell (e.g., cells of solid tumours), the more difficult it is to isolate 
mRNA  specific  to  the  study,  and  (iii)  captured  mRNA  degrades  very  quickly. 
Amplification methods can be utilized for small RNA amounts [19, 20]. To stop mRNA 
degradation,  it  is  immediately  reverse-transcribed  into  more  stable  cDNA (for  cDNA 
microarrays) or cRNA (for oligonucleotide arrays, cRNA is synthetic RNA produced by 
transcription from a single-stranded DNA template). 

In order to detect which cDNAs are bound to the microarray, each sample is labelled with 
a  reporter  molecule  that  flags  its  presence.  The  reporter  molecules  currently  used  in 
microarray experiments  are fluorescent dyes  that fluoresce when exposed to a specific 
wavelength of light.  Two methods are currently  used for labelling:  direct  and indirect 
labelling [21, 22]. In the direct labelling method, extracted RNA is reverse-transcribed 
into cDNA and labelled with fluorochromes such as Cy3 (cyanine 3) and Cy5 (cyanine 5). 
Alternatively,  in  the  indirect  labelling  method,  amino-allyl  conjugated  nucleotides  are 
incorporated  into  the  first-strand  cDNA,  followed  by  chemical  coupling  of  the 
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fluorochromes. Both types of labelling will generally introduce a dye bias effect into the 
expression  signal,  with  the  bias  caused  by  indirect  labelling  being  smaller  than  that 
resulting from direct labelling. 

The labelled targets are poured onto the microarray and allowed to diffuse uniformly. The 
array is  sealed in a hybridization chamber and incubated at  a  specific  temperature  for 
enough time to allow the hybridization reactions to complete. The experimental conditions 
should  ensure  that  all  areas  of  the  array are  exposed  to  the  same amount  of  labelled 
sample.  Two single-stranded DNA molecules will  bind with high affinity if they have 
precisely matching (complementary) sequences,  and with significantly lower affinity if 
they have an imperfect match. The microarray is removed from the hybridization chamber 
and thoroughly washed to eliminate any excess-labelled sample. Finally the microarray is 
dried using a centrifuge or by blowing with clean compressed air.

The microarray is scanned to determine the amount of labelled sample bound to each spot. 
The emitted light is captured by a scanner that records its intensity. Although the scanner 
is  only  supposed  to  pick  up  light  emitted  by  the  target  cDNAs  bound  to  their 
complementary spots, the scanner will inevitably also pick up light from various other 
sources,  including  the  labelled  sample  hybridizing  non-specifically  to  the  glass  slide, 
unwashed labelled sample adhering to the slide, various chemicals used up in processing 
the slide, and even the slide itself. This extra light from the slide is called background. The 
end product of scanning is a gray scale image usually stored in the 16-bit tagged image 
format (TIFF), then resulting in intensity measurements which range from 0 to 216-1. 

3.2 Creation of scanned microarray images

A microarray scanner performs an area scan of the slide and converts each hybridized 
array into a digital image. The scanned region is divided into equally sized pixels and the 
laser  generates excitation light,  which is  focused on a  small portion of the hybridized 
array. Fluorescent molecules in this area absorb the excitation photons generated by the 
laser and emit fluorescent photons. These emitted photons are gathered by the detector. 
The detector in a scanner converts the emission photons into electric current. A common 
type  of  detector  is  a  photomultiplier  tube  (PMT).  A  PMT converts  each  photon  into 
several  electrons.  The amount  of amplification can be adjusted by varying  the PMT’s 
voltage input. Finally, an analog to digital (A/D) converter is used to convert the electrons 
into a sequence of digital signals. The digitalizing process produces for each pixel a signal 
that represents the total fluorescence in the region corresponding to that pixel [23, 24, 25].

For a typical microarray experiment, the scanner produces two TIFF images, one for each 
fluorescent dye. To measure the abundance of the two fluorescent dyes for each spot, the 
scanners  are  designed  to  generate  excitation  light  at  different  wavelengths  and detect 
different  emission  wavelengths.  The  commonly  used  dyes  are  Cy3  and  Cy5,  with 
corresponding ranges of emission being 510-550 nm and 630-660 nm, respectively.  A 
sequential scanner will first scan the glass slide with one wavelength and then scan it at 
the other wavelength. Alternatively, a dual scanner has two lasers and two detectors, and it 
scans the slide at two wavelengths simultaneously. 
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Various types of noise can affect the final signal produced by the scanner,  e.g., photon 
noise,  dust  on  the  slide,  treatments  of  the  glass  slide,  noise  while  amplification,  and 
digitalizing. A perfect scanned image should only reflect the measures of the fluorescent 
intensities for the dye of interest. However, in practice, we have an imperfect system and 
the scanned image is a combination of the desired fluorescent signal and of the undesired 
noise.

Yet  another  crucial  problem that  arises  while  scanning is  signal  saturation.  Since  the 
sensitivity level of the microarray scanner is adjustable, it plays a crucial role in getting 
reliable measurements from both the weakly and highly expressed spots/genes present on 
the hybridized array. The scanner’s sensitivity is raised to a certain level to ensure that the 
intensity levels of weakly expressed genes exceed the intrinsic noise level of the scanner 
and  that  they  are  measurable.  This,  however,  can  lead  to  problems  caused  by  signal 
censoring for the highly expressed genes. 

Publications III and IV aim at improving the quality of intensity measurements by first 
producing  three  images  with  different  scanner  sensitivities,  and  then  obtaining  three 
different data sets of expression values. A novel Bayesian latent intensity model is applied 
to estimate the suitably calibrated true expression of genes, by using the three different 
sets of expression measurements. 

3.3 Processing the scanned images

The scanned images of the hybridized array are black and white and are usually stored as 
high-resolution  TIFF  files.  For  visualization,  most  of  the  available  softwares  create  a 
composite image by overlapping the two images corresponding to the individual channels. 
To  allow  a  visual  assessment  of  the  relationship  between  the  quantities  of  mRNA 
corresponding to a given gene in the two channels, the software normally uses different 
artificial colours for each of the two channels. Typically, red and green colours are used 
and the composite image produced by overlapping the red and green images will have 
spots  with  colours  from green through yellow to  red.  Green/red  spot  implies  that  the 
spot/gene is over-expressed/under-expressed in the sample labelled with green/red dye. A 
yellow spot implies that the spot is expressed equally in both samples and a black spot 
implies that the spot is not expressed in either of the samples. Figure 3 displays one such 
composite image.
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Figure 3: A pseudo image is obtained by overlapping the two channels

Spots within a microarray slide are divided into sub-grids. These sub-grids are arranged on 
the slide into rows and columns, and are usually separated from their neighbouring grids 
by small spaces. Each sub-grid is created by one pin of the printing head. A spot can be 
localized on the array by specifying its location in terms of the sub-row, sub-column, row, 
and column. Figure 4 displays a microarray slide with 32 sub-grids.

The processing of scanned microarray images can be divided into:-
1) Spot finding or gridding 
2) Segmenting 
3) Quantification or intensity extraction 
4) Spot quality assessment
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Figure 4: A microarray with 32 sub-grids

The number of spots on the array, the pattern according to which they are printed, and 
their sizes are all known in advance. Therefore image processing should be fairly simple, 
but unfortunately this is not the case. In reality, the exact location of each grid may vary 
from slide  to  slide.  Furthermore,  individual  spots  within  a  sub-grid  may  be  severely 
misaligned. Reasons contributing to imperfect gridding are mainly caused by problems 
while spotting, such as hybridization inconsistencies, and by the necessity to print dense 
arrays. As a result, the first step in image processing is finding the exact positions of the 
spots, which can sometimes be rather far from their expected location. 

The spot finding operation aims to locate the spots in images and estimate the size of each 
spot.  There  are  various  levels  of  sophistication  in  the  algorithm  for  finding  spots, 
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depending upon the degree of human intervention in performing the operation.  

Image segmentation is the next step that aims at deciding which pixels forming the spot 
should be considered for calculating the signal and which pixels should be considered for 
calculating the background signal. Figure 5 presents a segmented microarray image, where 
the foreground and background pixels have been separated. Segmentation also aims at 
identifying the pixels that are just noise artefacts. Several algorithms have been proposed 
for segmentation e.g., pure spatial-based segmentation, intensity based segmentation, and 
Mann-Whitney segmentation [23].

                   

Figure 5: An image of an array after segmentation algorithm has been applied. Foregrounds have  
been identified by circles, and corresponding backgrounds by the areas outside the circles, but  
still within the squares.

The  final  goal  of  image  processing  is  to  compute  a  value  that  hopefully  is  directly 
proportional to the quantity of mRNA that was hybridized on the chip. Such a value is 
computed using the spot quantification procedure. The purpose of spot quantification is to 
combine pixel intensity values into a quantitative measure that can be used to represent the 
expression level of a gene deposited on a given spot. Typically, spot quantification is done 
by taking the mean, median, or mode of intensities of pixels of the spot. 

Spot  quality  assessment  is  an  important  feature  that  must  be  considered  while  image 
processing. Uniformity, signal to noise ratio, shape, and diameter of the spot are features 
that determine the quality of a spot. Information regarding low quality spots should be 
collected  and  data  corresponding  to  these  spots  should  not  be  used  for  inference.  In 
Publication I, we use an additional dye known as SYBR green RNA II for segmentation 
and for quality assessment. 

It is said that the total fluorescent intensity from a spot is proportional to the expression 
strength under idealized conditions. These idealized conditions are:
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1) The preparation of  the target  cDNA solution is  done appropriately,  so that  the 
cDNA concentration in the solution is proportional to that in the tissue.

2) The hybridization is done appropriately, so that the amount of cDNA binding on 
spots is proportional to the target cDNA concentration in the solution.

3) The amount of cDNA deposited on each spot during chip fabrication is constant.
4) Spots are not contaminated.
5) The pixels contributing to the signal are correctly identified.

Whether the first two conditions are satisfied or not should be controlled at the time of 
designing the experiment. But the last three conditions are usually violated and affect the 
measurements obtained from image analysis. The amount of DNA deposited during the 
spotting procedure may vary from time to time and from spot to spot as a result of which 
the spot size cannot be considered as constant. Spot contamination due to dust, artefacts 
etc.  leads to incorrect  identification of the pixels contributing to the signal.  Thus, it is 
extremely  important  to  consider  the  above points  while  designing  and conducting  the 
experiment, and while analyzing the data.
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4. Experimental design and data pre-processing

4.1 Experimental design

Each microarray experiment consists of large number of steps. As a result, various sources 
of error and uncontrolled variability emerge while performing the experiment and affect 
the expression data generated. Some such sources of error are listed in Table 1. In most 
cases their effect is clearly visible on the scanned microarray image. 

Although  all  potential  sources  of  error  in  measuring  the  signals  from  microarray 
experiments are not completely understood, the extent  to which these complexities are 
known  should  be  considered  carefully  when  designing  experiments.  This  would  help 
obtain  high  quality  data  and  eventually  more  precise  results.  In  addition,  practical 
constraints should also be considered while designing an experiment, such as the limited 
number of slides which can be hybridized in any given experiment, limited availability of 
the mRNA probes, or other cost considerations.

Replication of the biological samples, technical replicates (two RNA samples obtained 
from each experimental  unit),  and duplication of the spots,  are mandatory elements of 
every design.  It is also crucial that all the details about the experiment, the factors that 
would influence the experiment and their levels of interest, are known in advance. One 
should  also  identify  the  nuisance  factors  and  divide  them  into  controllable  and 
uncontrollable factors. The factors that can be controlled should be blocked and the ones 
that cannot be blocked should be randomized. Apart from considering the listed points 
(above), one must keep a check on the data that are being generated. This will enable the 
researcher to modify the design if the quality of the generated array is poor.

Usually appropriate designs are not investigated while planning an experiment. Designs 
that appear simple and easy to execute are chosen without inferring whether the design 
would  minimize  the  effect  of  unwanted  variation,  or  maximize  the  precision  of  the 
estimates of interest. In addition, improved technology has allowed the usage of three to 
four dyes on the same array. On the other hand, a larger number of samples on the same 
array have further  increased the complexity  of  the analysis  of  the  resulting data.  The 
purpose of Publication II was to describe approaches for optimal planning and designing 
of microarray experiments for any number of dyes, arrays and conditions. 
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Factors Comments
mRNA preparation Tissues, kits and procedure vary
Transcription Inherent  variation  in  the  reaction,  type  of  enzyme 

used
Pin geometry Variation in the pins
Target volume Fluctuations  in  the  volume  spotted  while  printing 

even for the same pin
Hybridization parameters Temperature, humidity, time and buffering condition 

affect the hybridization. 
Slide in homogeneities Slide  production  parameters  lead  to  variation  in 

slides from different batches.
Non-specific hybridization cDNA hybridizes to background or to sequences that 

are not their exact complement
Scanner setting Scanner settings can cause a shift in the distribution 

of the pixel intensities
Dynamic range limitations Limitation of the acquisition device does not allow 

to measure signal beyond 216-1
Image alignment Images  of  the  same  array  obtained  at  different 

wavelengths are not aligned. This leads to different 
pixels to be considered for the same spot

Spot shape Irregular  spots  are  hard  to  segment  from  their 
background

Segmentation Bright  contaminations  may  seem  like  signal  and 
misguide while segmentation

Spot quantification Pixel mean or median and area of the spot are few 
parameters  used  to  quantify  spots.  Choice  of 
parameter can lead to variation from slide to slide.

Table 1: Sources of variations in a microarray experiment

4.2 Data pre-processing

Despite a carefully designed microarray experiment, there are always error-sources that 
cause  variations  to  the  data  generated.  To  reduce  the  effect  of  these  error-sources, 
microarray data need to be pre-processed. 

General pre-processing techniques

4.2.1 Background correction

The fluorescence of a spot is the cumulative effect of the fluorescence of the background 
and the fluorescence due to the labelled mRNA. To obtain the value to the amount of 
mRNA, one needs to subtract the value corresponding to the background. This is the idea 
behind background correction and it can be done in several ways, by locally correcting the 
background, performing a sub-grid background correction, background correction using 
blank spots,  or background correction using control spots.  A brief description of these 
methods is presented below.
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Local background correction
In local background correction method, the intensity of the background is calculated using 
the  local  area  around the  spot.  A measure  of  central-tendency (e.g,, mean,  median or 
mode) is used to calculate the local background and this is subtracted from the intensity of 
the spot. This method is preferred when background intensity varies considerably from 
spot to spot and is avoided when the local neighbourhoods of the spots do not contain 
sufficiently many pixels. This method is usually applied on high-density arrays where the 
spots are separated by only a few pixels. 

Sub-grid background correction
Most current robots print a sub-grid using the same pin so that each sub-grid should be 
homogenous as far as its shape and the size of the spots are concerned. A sub-grid includes 
sufficiently many pixels to allow a more reliable estimate of a measure of central tendency 
while it is still smaller than the whole array and may be flexible enough to compensate for 
local variations in the background intensity. In this method, a measure of central tendency 
is calculated for all the spots in a sub-grid. This is a useful approach particularly for high 
density arrays. 

Background correction using blank spots
This method can be used when the design of an array includes a few blank spots, i.e., spot 
locations where no DNA was deposited. A measure of central tendency is calculated on a 
number of such blank spots.

Background correction using control spots
The spot intensity depends on the properties of interaction between labelled target and 
DNA deposited in the spot. Some researchers have concluded that the labelled target may 
be more likely to stick to the substrate in the background of a spot than to hybridize non-
specifically  on  a  spot  containing  some  DNA.  In  this  case,  subtracting  any  value 
characterizing the target-substrate interaction may be an over-correction. A possibility is 
to use some control spots using exogenous DNA, and the intensities resulting from such 
non-specific hybridization, as more adequate determinants of background correction. 

4.2.2 Log-transformation

The logarithmic  transformation has been used to pre-process microarray data from the 
very beginning. There are several reasons for this: firstly, it provides values that are more 
easily interpretable and more meaningful from a biological point of view. Secondly, the 
log-transformation makes the distribution of the data more symmetrical and almost normal 
[26, 27]. 

4.2.3 Combining replicates and eliminating outliers

For reasons discussed above, microarray data generally involve large amounts of noise. 
Repeated measurements can help reduce such noise, and also facilitate comparison of the 
inter-experiment and within-experiment  variations. The repeated measurements may be 
the different spots in cDNA arrays, or the same spot can be measured on different cDNA 
arrays. In many situations it is natural to combine the values of all replicates to obtain a 
single estimate that would be representative for the given gene/condition. Typically, the 
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estimate  is  obtained  by calculating  a  measure  of  central  tendency,  such  as  the  mean, 
median or mode. Some measures of central tendency can be misleading, but there are also 
strong incentives to calculate a unique value for each gene representing its expression in a 
given condition. Such incentives may include the ability to compare various genes across 
different  conditions  or  tissues,  to  store  the  values  in  expression  databases  for  later 
retrieval, etc.

The value obtained after combining data from several replicates should include additional 
parameters of the distribution of the original values. Such parameters may include: the 
number of values, standard-deviation,  etc. These additional parameters may be used to 
assess the confidence in a particular value (e.g., mean) and to eliminate outliers. 

4.2.4 Normalization

The driving force behind the extensive use of microarrays is the hope that eventually all 
meaningful comparisons between the gene expression levels in various conditions and/or 
tissues  resulting  from different  experiments  would  be  possible.  A critical  requirement 
before such comparisons are possible is to normalize the data in such a way that the data 
are independent of the condition and technology used. Research has been made to make 
data  comparable  both  within  and  across  technologies  [28,  29].  Within  a  technology 
comparisons  leads  to  the  difficulties  because  of  the  variations  in  the  intensities  from 
different  arrays  used.  This  can  be  due  to  many  causes,  including  different  protocols, 
different  amounts  of  mRNA,  different  settings  of  the  scanner,  differences  between 
individual arrays or labelling kits, differences between the channels (dyes) used, etc. The 
goal of normalization is to make the values corresponding to individual genes comparable 
across arrays, by retaining the systematic effects resulting from the biological process of 
interest and by removing other systematic technical variations.

The  need  for  normalization  of  expression  data  can  be  seen  most  clearly  in  self-self 
experiments. In such experiments, two identical mRNA samples are labelled with different 
dyes (Cy3 and Cy5) and hybridized onto the same slide. Since the experiment involves 
self-self hybridization, there should be no differential expression and, in an ideal situation, 
the  intensities  corresponding  to  the  two  dyes  should  be  equal.  However,  it  has  been 
observed  that  the  intensity  corresponding  to  the  red  (R)  dye  is  often  lower  than  the 
intensity from the green (G) dye (red and green are commonly used colours for cDNA 
microarrays). Furthermore, the imbalance is usually not constant across the spots within 
and between arrays, but varies according to the location on the array, slide origin, or other 
variables. 

Normalization procedures of varying complexity have been proposed to account for these 
problems, but it is quite difficult to predict which normalization procedure would be best 
suited to a particular data set. Sometimes, procedures might even introduce new sources of 
variation  due  to  the  uncertainty  with  which  their  parameters  can  be  estimated.  The 
normalization methods which have been presented in the literature can be divided into two 
groups:  linear  methods  and non-linear  methods.  The linear  methods  generally  involve 
either  estimating  one  or  more  global  constants  for  a  microarray,  or  fitting  a  linear 
regression to the log(R) versus log(G) data [30, 31]. The non-linear methods that have 
been developed involve transforming the data onto the axes ((log(R) + log(G))/2 versus 
log(R/G),  and robustly  fitting  one  or  more  robust  lowess  curves  [32]  to  the  data  and 
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computing the residuals from the curve fit [33, 34]. Rescaling of the points is done by 
dividing each final residual value by a robust estimate of the standard deviation of the 
residuals,  the median absolute  deviation.  When a single curve is  fitted,  the method is 
referred to as slide normalization, and when a curve is fitted to the data for each individual 
array printer pin, the method is referred to as pin normalization. Spatial bias may still be 
present even after slide normalization. Other nonlinear normalization methods such as B-
splines, wavelets, kernel smoothers and support vector regression have been discussed by 
Fujita et al. [35]. Figure 6 presents a flowchart from Park et al. [36] of the commonly used 
normalization  methods.  Many other  model  based  techniques  (both  Bayesian  and non-
Bayesian) have also been proposed [37, 38, 39, 40] but not discussed in Figure 6.
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Figure 6: Flowchart of normalization methods

O: Original data
G: Global median normalization (GP, GPS, G.s, GP.s, GPS.s are its variants)
L: Intensity dependent linear normalization (LP, LPS, ls, LP.s, LPS.s and its variants)
N: Intensity dependent non-linear normalization (LOWESS) (NP, NPS, N.s, NP.s, NPS.s and its variants)
P: Print-tip normalization
S: Print-tip scale normalization
.s: Between-slide scale normalization
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5. Selecting candidate genes and their functional 
annotation

In most cases, the purpose of a microarray experiment is to compare the gene expression 
levels  in  two different  samples  and to  identify  genes  that  are  differentially  expressed 
between these samples.  Although this problem is simple in principle, it  becomes more 
complex in reality because the measured intensity values are affected by numerous sources 
of fluctuations and noise [41, 42]. A few methods are discussed below that are used to find 
differentially expressed genes. These methods are independent of the technology used to 
generate the data (e.g., cDNA or Affymetrix).

5.1 Commonly used methods to find differentially expressed 
genes

Fold change
Fold  change  is  the  simplest  method  for  identifying  differentially  expressed  genes.  It 
evaluates the log ratio between two conditions (or the average of ratios when there are 
replicates) and considers all genes that differ by more than an arbitrary cut-off value to be 
differentially expressed [43, 44, 45]. This is not a statistical test as there is no associated 
value that can indicate the level of confidence in the designation of genes as differentially 
or not differentially expressed. 

The most  important  drawback of  this  method is  that,  because  the  threshold is  chosen 
arbitrarily, it may often be inappropriate. For instance, if we want to select genes with at 
least 2 fold-change to be differentially expressed and the condition under study does not 
affect any gene to the point of inducing a 2 fold change, no genes will be selected resulting 
in  zero  sensitivity.  On  the  other  hand,  if  the  condition  is  such  that  many  genes  are 
changing  dramatically,  the  method  will  select  too  many  genes  and  will  have  a  low 
specificity. 

Another important disadvantage is related to the fact that the microarray technology tends 
to have a bad signal/noise ratio for genes with low expression levels. This leads to large 
variability at the low end and low variability at the high end for the log-transformed data. 
Since  the  fold  change  uses  a  constant  threshold  for  all  genes,  it  will  introduce  false 
positives at the low end while missing true positives at the high end [46, 47]. Intensity-
specific thresholds have been proposed as a remedy for this problem [48].

The t- test
A better choice is to rank genes according to the absolute value of the t-statistics,

t = Mg*/(Sg /√n)
where Mg* = the mean of the Mg-values (Mg = log2 Rg/Gg, Rg is the intensity for gene g on 
the red channel and Gg is the intensity for gene g on the green channel) for any particular 
gene across the replicate arrays,  Sg = the standard deviation of the  Mg values across the 
replicates for the gene, and n = the number of replicates. Any Mg-value that is an outlier 
will give rise to large standard deviations, which will usually prevent the gene in question 
from being spuriously identified as differentially expressed. However, genes with small 
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sample variances have a good chance of having a large t-statistic even if they are not 
differentially  expressed.  This  gene  specific  t-test is  not  affected  by  heterogeneity  in 
variance across genes, because it only uses information from one gene at a time. It may, 
however, have low power because of the small sample size—the number of replicates. In 
addition, the variances that are estimated separately for each gene are not stable, and if the 
estimated variance is small, by chance, the corresponding t-value can be large even when 
the fold change is small.

Modifications of t-tests
More stable estimates can be obtained to find differentially expressed genes but these are 
subject to bias when the assumption of homogenous variance between genes is violated. In 
such situations, modified versions of the t-test are both more powerful and less subject to 
bias.

The 'significance analysis of microarrays (SAM) is a modified version of the t-test (known 
as the  S-test) [49]. In here, a small positive constant is added to the denominator of the 
gene-specific t-test (discussed above), i.e,. 

S = Mg
*/[c + (Sg /√n)]  

where the constant c can be taken to be the 90th percentile (Sg /√n) value). With this 
modification, genes with small fold changes are less likely to be selected as significant.

Another variant of the  t-test is known as the  regularized t-test [50]. This test combines 
information from gene-specific and global average variance estimates by using a weighted 
average of the two as the denominator for a gene-specific t-test. Yet another variant of t-
test is the B-statistic proposed by Lonnstedt and Speed [51]. It is a log posterior odds ratio 
of differential expression versus non-differential expression and allows for gene-specific 
variances, also combining information across many genes. 

The  t-  and  B-tests based  on  log  ratios  can  be  found  in  the  Statistics  for  Microarray 
Analysis (SMA) package [52]; the S-test is available in the SAM software package [53]; 
and the  regularized t-test is in the Cyber T package [54]. In addition, the Bioconductor 
package  [55]  has  a  collection  of  various  analysis  tools  for  microarray  experiments. 
Additional modifications of the t-test are discussed by Pan [56]. 

Various model based approaches using the Bayesian framework have also been published 
to identify differentially expressed genes [57, 58]. 

5.2 Functional annotation

So far we have dealt with the analysis of expression data, eventually producing a list of 
genes that were significantly different in the samples considered. However, the ultimate 
aim of expression analysis is not to have the list of differentially expressed genes but to 
produce results that make sense biologically. Thus, there is a need to translate the list of 
differentially  expressed  genes  into  a  functional  profile  that  offers  an  insight  into  the 
cellular mechanism active in the given condition. 
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In  this  section,  we  look  at  tools/ontologies  designed  to  map  the  tens,  or  sometimes 
hundreds, of differentially expressed genes to biological, molecular, and cellular functions.

Gene Ontology (GO)
Due to the complex and distributed nature of biological research, our current biological 
knowledge  is  spread  over  many  databases  maintained  by  many  independent  groups. 
Researchers  usually  need to  visit  many of  these  databases  to  integrate  comprehensive 
annotation  information  for  their  genes.  This  search  is  further  hampered  by  the  wide 
variation in terminology in different databases. 

Gene  Ontology  (GO)  project  addresses  the  need  for  consistent  descriptions  of  gene 
products in different databases [59]. It  includes three independent structured controlled 
vocabularies/ontologies that describe gene products in terms of their associated biological 
processes,  cellular  components  and  molecular  functions  in  a  species.  A gene  product 
might be associated with or located in one or more cellular components and may be active 
in one or more biological  processes,  during which it  performs one or more molecular 
functions.  The use of GO terms by collaborating databases  facilitates  uniform queries 
across them. The controlled vocabularies are structured so that  they can be queried at 
different levels. For example, one can use GO to find all the gene products in the mouse 
genome that are involved in signal transduction. 

Go itself is not populated with gene products of any organism, but rather GO terms are 
used as attributes of genes and gene products by related databases. Databases use these 
GO terms to annotate objects such as gene or gene products stored in their repositories.

DAVID  (The  Database  for  Annotation,  Visualization  and Integrated  Discovery)  
Annotation Tool 
DAVID knowledgebase  [60]  is  designed  to  facilitate  high  throughput  gene  functional 
analysis. For a given gene list, it not only provides quick accessibility to a wide range of 
heterogeneous  annotation data  in  a  centralized location,  but  also  enriches  the  level  of 
biological information for an individual gene. 

DAVID facilitates the analysis via four web-based analysis modules: 1) Annotation Tool - 
rapidly adds descriptive data from several public databases to lists of genes; 2) GoCharts - 
assigns  genes  to  Gene  Ontology  functional  categories  based  on  user  selected 
classifications  and  term  specificity  level;  3)  KeggCharts  -  assigns  genes  to  KEGG 
metabolic  processes  and  enables  users  to  view  genes  in  the  context  of  biochemical 
pathway  maps;  and  4)  DomainCharts  -  groups  genes  according  to  PFAM  conserved 
protein  domains.  The  functionality  provided  by  DAVID  accelerates  the  analysis  of 
genome-scale  datasets  by  facilitating  the  transition  from  data  collection  to  biological 
meaning.

FatiGO
FatiGO [61] takes two lists of genes and converts them into two lists of GO terms using 
the  corresponding  gene-GO  association  table.  Then  a  Fisher's  exact  test  for  2×2 
contingency tables is used to check for significant over-representation of GO terms in one 
of  the  sets  with  respect  to  the  other  one.  Multiple  test  correction  to  account  for  the 
multiple hypotheses tested is then applied.
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OBO-Edit
OBO-Edit [62] is a graph-based tool with emphasis on the graph structure of an ontology 
and provides a user friendly interface. OBO-Edit is developed and maintained within the 
GO Consortium.
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6. Hierarchical modeling and Baye’s theorem

6.1 Basics

Bayesian  inference  is  an  approach  to  statistics  in  which  all  forms  of  uncertainty  are 
expressed in terms of probability. 

A Bayesian approach to a problem starts with the formulation of a model that one hope is 
adequate to describe the situation of interest. One then formulate a prior distribution over 
the unknown parameters of the model,  which captures ones beliefs  about the situation 
before seeing the data. After observing some data, one applies Bayes'  Rule to obtain a 
posterior distribution for these unknowns, which takes account of both the prior and the 
data. From this posterior distribution, one can compute predictive distributions for future 
observations.

In Bayesian analysis, both the model parameters and unobserved data (missing data) are 
treated as random variables. Let y = (y1, y2,…yn) be the observed data and let θ = (θ1, θ2, 
….θr) be a vector of unknown parameters. In order to make a probability statement about 
θ given y, one defines a joint distribution of θ and y. The joint probability density function 
can be written as a product of prior distribution p(θ ) and the likelihood p(y | θ ):

p(θ , y) = p(θ ) p(y | θ ) = p(θ | y) p(y) (1)
which leads to:

p(θ | y) = p(θ , y) / p(y ) =  (p(y | θ ) p(θ ))/ p(y) (2)
where, p(y) = ∫ p(y | θ ) p(θ ) dθ. An equivalent form of equation (2) is 

p(θ | y) ∝ p(y | θ ) p(θ )
where one omit the factor p(y), which does not depend on θ and for a fixed value of y can 
be considered as a constant.

Often the prior on θ depends in turn on other parameters φ that are not mentioned in the 
likelihood. So, the prior p(θ) must be replaced by a prior p(θ | φ), and a prior p(φ) on the 
newly introduced parameters φ is required, resulting in a posterior probability

p(θ, φ | y) ∝ p(y | θ ) p(θ | φ) p(φ)

This  is  the  simplest  example  of  a  Bayesian  hierarchical  model.  The  process  may  be 
repeated; for example, the parameters  φ may depend in turn on additional parameter  φ, 
which will require its own prior. Eventually the process must terminate, with priors that do 
not depend on additional model parameters. The parameters that are not of interest, so-
called nuisance parameters, are integrated out from the full posterior. 

A computational challenge in applying Bayesian methods is that the integration required 
for inference is generally not tractable in closed form, and thus must be approximated 
numerically.  Intractable  integrations  are quite  common in case of nuisance parameters 
(typically unknown variances). Markov chain Monte Carlo (MCMC) integration methods, 
such  as  the  Metropolis-Hastings  algorithm  [63,  64]  and  the  Gibbs  sampler  [65,  66], 
provide often a feasible approximate numerical solution to the above mentioned problem. 
MCMC  methods  work  by  sampling  from  the  probability  distributions based  on 
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constructing  a  Markov  chain that  has  the  desired  distribution  as  its  equilibrium 
distribution. The state of the chain after a large number of steps acts as a sample from the 
desired distribution. The quality of the sample improves as a function of the number of 
steps.

The  convergence  of  the  Markov  chain  to  the  correct  stationary  distribution  can  be 
guaranteed  for  an  enormously  broad  class  of  posteriors.  This  convergence  is  also  the 
source of difficulty in actually implementing MCMC procedures for two reasons. First, it 
forces us to make decision about when to stop the sampling algorithm and summarize its 
output.  Second,  determination  of  the  quality  of  the  estimates  produced  may  be 
problematic, as the samples are not i.i.d draws from the posterior but correlated samples.

6.2 Modeling with WinBUGS

All the Bayesian models described in this thesis have been implemented using WinBUGS 
(the MS Windows operating system version of BUGS: Bayesian Analysis Using Gibbs 
Sampling)  [67].  WinBUGS is a  versatile  package that  has  been designed to carry out 
Markov chain Monte Carlo (MCMC) computations for a wide variety of Bayesian models. 
The  software  is  currently  distributed  electronically  from  the  BUGS  Project  website 
(http://www.mrc-bsu.cam.ac.uk/bugs/overview/contents.shtml).  WinBUGS  implements 
various  MCMC  algorithms  to  generate  simulated  observations  from  the  posterior 
distribution of the unknown quantities (parameters) in the statistical model. The idea is 
that with sufficiently many simulated observations, it is possible to get an accurate picture 
of the distribution.  Convergence diagnostics, model checks comparisons, and other plots 
are also available. 

6.3 Hierarchical models for expression data

In  this  thesis,  we  have  attempted  to  build  hierarchical  models  for  (1)  solving  signal 
saturation using spot data (Publication III), (2) solving signal saturation using pixel data 
(Publication IV), and (3) finding differentially expressed genes between two experimental 
conditions that include simultaneous correction for signal correction, array effects, and dye 
effects (Publication V).
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Figure 7: A small portion of a scanned image from the Cy3 channel. It displays nine spots using 
“rainbow” colour map, where the blue end of the spectrum represents low pixel values and the  
red end of the spectrum represents high pixel values. 

Figure 7 displays nine spots on the hybridized array using “rainbow” colour map. The 
spots are composed of pixels where the blue end of the spectrum represents low pixel 
values and the red end of the spectrum represents high pixel values. The red pixels in the 
figure are saturated.  The aim behind Publications  III  and IV was to estimate  the true 
underlying signal (T) of a spot by combining information from multiple (e.g., three) scans 
made at varying scanner sensitivities. Multiple scans ensure that the intensity level of the 
weakly expressed genes exceeds the intrinsic noise level of the scanner and saturation of 
the highly expressed genes is avoided. The underlying logic in both these publications is 
quite similar  but they deal  with different types  of input data.  Figure 8 demonstrates a 
pictorial  representation  of  the  hierarchical  model  used  in  Publication  III  using  spot 
intensity data.
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Figure 8: A pictorial representation of the hierarchical model used in Publication III, where Y is  

denotes a measured signal from spot i of scan s, Yis.cen denotes a censored observation, Ti denotes  
the underlying signal that needs to be estimated, fi’s are functions used for calibrating the three  
scans, tau’s are precision parameters and sigma’s are the square roots of variances. 

Publication IV models signal saturation, using the measured signal from the pixels that 
forms the spots. Saturation happens for a pixel when the signal from the pixel exceeds the 
scanner’s upper threshold of detection; therefore, modelling the signal from pixels gives a 
more truthful description of the saturation phenomenon than modelling the signal from the 
spots (spot signal is the summary of signal from the pixels comprising the spot). However, 
modelling the signal from pixels is computationally more demanding as each spot consists 
of 80–100 pixels.  Figure 9 demonstrates a schematic diagram showing the connection 
between Publication III and Publication IV. 
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Figure  9:  A  schematic  diagram showing  the  connection  between  Publication  III  (using  spot  
intensity data) and Publication IV (using pixel intensity data). Yis denotes the observed intensity  
for spot i under scan s,  Yis.cen denotes the corresponding censored observation, Yijs denotes the  
observed intensity for pixel j of spot i under scan s, Yijs.cen  denotes the corresponding censored 
observation, Ti denotes the underlying signal that needs to be estimated.

Publication V was an extension of Publication III and models differential expression by 
correcting for signal saturation, array effects, and dye effects. A pictorial representation of 
the hierarchical model of Publication V is presented in Figure 10.
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Figure 10: Pictorial representation of the hierarchical model of Publication V, where Yicrs denotes  
the observed intensity for spot i under condition c and scan s of replicate r, Tic denotes the true  
latent intensity of the gene i under condition c, Ticr denotes the true latent intensity of the gene i  
under condition c of replicate r, and tau’s are precision parameters. 
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7. Conclusions

Microarrays  are high-throughput biological assays  that allow measuring the expression 
profiles of a large number of distinct genes. As a result, immense amounts of noisy data, 
which are corrupted by systematic and random noise occurring from various sources, are 
produced in such experiments. These data are then used for an improved understanding of 
the  function  of  genes,  including  knowing when,  where,  and to  what  extent  a  gene  is 
expressed. In addition, changes in the multi-gene patterns of expression can provide clues 
about  regulatory  mechanisms,  broader  cellular  functions,  and  biochemical  pathways. 
Inference based on these noisy data can be misleading, and therefore a major effort of 
research is currently directed towards developing methods for extracting improved gene 
signals and towards sharper methods of data analysis. The main focus of this thesis is to 
describe  approaches  for  improving  gene  signal,  and  propose  optimal  designs  for 
conducting microarray experiments.  In addition,  this  thesis  also describes  methods for 
analyzing data using Bayesian framework. 

7.1 Summary of publications

Microarray experiment consists of large number of steps and errors can be introduced at 
any of these steps while performing the experiment. As many as possible of these errors 
should be taken into consideration while designing the layout of the experiment. A careful 
planning of the experiment before the actual execution would eventually minimize the 
effect  of  unwanted  variations  and  maximize  the  precision  of  the  estimates  of  the 
parameters of interest. Publication II of this thesis describes approaches for planning and 
designing  microarray  experiments  optimally  for  any  number  of  dyes,  arrays  and 
conditions, considering both technical and biological replicates.

Once a careful design has been laid out and the experiment conducted, there is a need to 
measure  the  expression  of  genes  from the  hybridized  arrays  as  precisely  as  possible. 
Publication I, Publication III and Publication IV aim at achieving this goal, but their focus 
is at different stages of the analysis. Publication I aim at improving image segmentation by 
using an additional dye, SYBR green RNA II. A strong signal emitted by SYBR green 
labelled  probes  and  a  low  signal  from  the  background  allow  clear  distinction  of 
foreground and background signals for the spots. This was used to learn about the spot 
quality and to flag spots which are not reliably hybridized and corrupted by noise. It was 
tested  that  the  segmentation  and  quantification  results  obtained  using  this  approach 
performed  better  than  those  produced  by  the  commercial  image  analysis  software, 
GenePix. 

Publication  III  proposes  a  Bayesian  hierarchical  method  for  improving  the  quality  of 
signal  from DNA microarrays  by analysing  spot  intensity  data  collected  from several 
scans  at  varying  scanner  sensitivities.  The  method  improves  the  accuracy  at  which 
expression can be measured at all ranges and extends the dynamic range of measured gene 
expression at the high end. 

Publication IV solves the problem of improving the data quality and signal saturation but 
differs from Publication III in the type of data modelled. Since saturation occurs for the 
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pixels comprising the spot and not for the spot, signals from pixels were used to model 
saturation phenomenon. Modelling pixel intensity data gives a more truthful description of 
the saturation phenomenon as opposed to spot intensity data, because spot summary data 
do not have a sharp threshold value beyond which saturation would have an effect. 

Publication V focuses on the analysis aspect of the microarrays. It proposes a Bayesian 
hierarchical model for finding differentially expressed genes between two experimental 
conditions  using  an  integrated  statistical  approach  where  signal  correction,  systematic 
array effects, dye effects, as well as differential expression, are all modelled jointly. 

7.2 Future directions

This thesis suggests several directions for further research. An obvious extension would be 
to apply the integrated model and method of Publication V on the data obtained by image 
analysis using SYBR green RNA II, as proposed in Publication I. This extension would 
help improve the signal further,  as  intensities occurring from spots corrupted by noise 
would be avoided. Another possibility for further research would be to perform image 
analysis using SYBR green RNA II jointly with the other processing steps of microarrays 
analysis. 

Another immediate extension of the model in Publication V would be to extend it  for 
identifying genes that show differential expression over a time course. The current model 
in Publication V is successfully implemented using the WinBUGS software. WinBUGS 
gives the user the possibility to easily handle and modify the code. This ease is balanced 
against the long running time when dealing with genomic data. A possibility would be to 
implement the existing models in C or C++ for a realistic run time of the models.

Overall, the methods and techniques developed here could be used for the processing of 
data from other high-throughput techniques.  

41



References
[1] Genome Project Statistic, NCBI Friday, 19 August, 2008.

[2] Lennon GG, and Lehrach H, “Hybridization analyses of arrayed cDNA libraries”, Trends Genet., 7, 314– 
317, 1991.

[3] Kafatos FC, Jones CW, and Efstratiadis A, “Determination of nucleic acid sequence homologies and 
relative concentrations by a dot hybridization procedure”, Nucleic Acids Res., 7, 1541–1552, 1979. 

[4] Gillespie D, and Spiegelman S, “A quantitative assay for DNA-RNA hybrids with DNA immobilized on 
a membrane”, J. Mol. Biol., 12, 829–842, 1965. 

[5]  Southern EM, Case-Green SC, Eider JK, Johnson M, Mir KU, Wang L, and Williams JC, “Arrays of 
complementary oligonucleotides for analysing the hybridisation behaviour of nucleic acids”, Nucleic Acids 
Res., 22, 1368–1373, 1994. 

[6] Zhao N, Hashida H, Takahashi N, Misumi Y, and Sakaki Y, “High-density cDNA filter analysis: a novel 
approach for large-scale, quantitative analysis of gene expression”, Gene, 156, 207–213, 1995.

[7] Nguyen C, Rocha D, Granjeaud S, Baldit M, Bernard K, Naquet P, and Jordan BR, “Differential gene 
expression in the murine thymus assayed by quantitative hybridization of arrayed cDNA clones”, Genomics, 
29, 207–216, 1995. 

[8]  Fodor SP,  Read JL,  Pirrung MC, Stryer L,  Lu AT, and Solas D, “Light-directed, spatially addressable 
parallel chemical synthesis”, Science, 251, 767–773, 1991.

[9]  Fodor SP,  Rava RP,  Huang XC,  Pease AC,  Holmes CP, and  Adams CL, “Multiplexed biochemical 
assays with biological chips”, Nature, 364, 555–556, 1993.

[10]  Pease  AC,  Solas  D,  Sullivan  EJ,  Cronin  MT,  Holmes  CP,  and  Fodor  SP,  “Light-generated 
oligonucleotide arrays for rapid DNA sequence analysis”, Proc. Natl. Acad. Sci., 91, 5022–5026, 1994.

[11] Schena M, Shalon D, Davis RW, and Brown PO, “Quantitative monitoring of gene expression patterns 
with a complementary DNA microarray”, Science, 270, 467–470, 1995. 

[12] Shalon D, Smith SJ, and Brown PO, “A DNA microarray system for analyzing complex DNA samples 
using two-colour fluorescent probe hybridization”, Genome Res., 6, 639–645, 1996. 

[13] DeRisi JL, Iyer VR, and Brown PO, “Exploring the metabolic and genetic control of gene expression on 
a genomic scale”, Science, 278, 680–686, 1997.

[14]  Liang  P,  and  Pardee  AB,  “Differential  display  of  eukaryotic  messenger  RNA  by  means  of  the 
polymerase chain reaction”, Science, 257, 967-971, 1992.

[15] Velculescu VE, Zhang L, Vogelstein B, and Kinzler KW, “Serial analysis of gene expression”, Science, 
270, 484-487, 1995.

[16] Albert B, Johnson A, Lewis J, Raff M, Roberts K, and Walter P, “Molecular Biology of the Cell”, 
Garland Science, 4th edition, 2002.

[17]  Schena  M,  Heller  RA,  Theriault  TP,  Konrad  K,  Lachenmeier  E,  and  Davis  RW,  “Microarrays: 
biotechnology's discovery platform for functional genomics”, Trends in Biotechnology, 16, 301-306, 1998.

[18] Fisher W, and Zhang M, “A Biochip Microarray Fabrication System Using Inkjet Technology”, IEEE 
Transactions on Automation Science and Engineering, Volume 4, Issue 4, 488 – 500, 2007.

42

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=


[19] Van Gelder RN, von Zastrow ME, Yool A, Dement WC, Barchas JD, and Eberwine JH, “Amplified 
RNA synthesized from limited quantities of hetrogenous cDNA”, Proc. Natl. Acad. Sci., 87, 1663-1667, 
1990.

[20] Eberwine J, Yeh H, Miyashiro K, Cao Y, Nair S, Finnell R, Zettel M, and Coleman P, “Analysis of 
gene expression in single live neurons”, Proc. Natl. Acad. Sci., 89, 3010-3014, 1992.

[21] Manduchi E, Scearce LM, Brestelli JE, Grant GR, Kaestner KH, and Stoeckert CJ, “Comparison of 
different labelling methods for two-channel high-density microarray experiments”, Physiol. Genomics, 10, 
169-179, 2002.

[22] Badiee A, Eiken HG, Steen WM, and Løvlie R, “Evaluation of five different cDNA labelling methods 
for microarrays using spike controls”, BMC Biotechnology, 3, 23, 2003.

[23] Yang Y, Buckley M, Dudoit S, and Speed T, “Comparison of methods for image analysis on cDNA 
microarray data”, J. Comput. Graph. Stat., 11, 108-136, 2001.

[24] Schena M, “DNA Microarrays: A Practical Approach”, Oxford University Press, 1999.

[25] Schena M, “Microarray Biochip Technology”, Eaton, 2000.

[26] Long A, Mangalam H, Chan B, Tolleri L, Hatfielf GW, and Baldi P, “Improved statistical inference 
from DNA microarray data using analysis of variance and a Bayesian statistical framework”, J. Biol. Chem., 
276(23), 19937-19944, 2001.

[27] Speed TP, “Hints and prejudices – always log spot intensities and ratios”, Technical report, University 
of California, Berkley, 2000. http://www.stat.berkeley.edu/users/terry/zarray/Html/log.html

[28] Elo LL, Lahti L, Skottman H, Kylaniemi M, Lahesmaa R,  and Aittokallio T, “Integrating probe-level 
expression changes across generations of Affymetrix arrays”, Nucleic Acids Research, Vol. 33 (22): e193, 
2005.

[29] Elo LL, Katajamaa M, Lund R, Oresic M, Lahesmaa R, and Aittokallio T, “Improving identification of 
differentially expressed genes by integrative analysis of Affymetrix and Illumina arrays”, Omics, 10(3):369-
80, 2006.

[30] Finkelstein D, Ewing R, Gollub J, Sterky F, Cherry M, and Somerville S, “Microarray data quality 
analysis: lessons from the AFGC project”, Plant Mol. Biol., 48, 119-131, 2002.

[31] Richmond T, and Somerville S, “Chasing the dream: plant EST microarrays”, Curr. Opin. Plant Biol., 3, 
108-116, 2000.

[32] Cleveland WS, “Robust locally weighted regression and smoothing scatterplots”, J. Am. Stat. Assoc., 
74, 829–836, 1979.

[33] Dudoit S, Yang YH, Callow MJ, and Speed TP, “Statistical methods for identifying expressed genes in 
replicated cDNA microarray experiments”, Statistica Sinica, 12, 111-139, 2002.

[34] Yang YH, Dudoit  S,  Luu P,  Lin DM, Peng V,  Ngai  J,  and Speed TP, “Normalization  for cDNA 
microarray data:  a  robust  composite  method addressing single  and multiple  slide  systematic  variation”, 
Nucleic Acids. Res., 30, e15, 2002.

[35]  Fujita  A,  Sato  JR,  de  Oliveira  Rodrigues  L,  Ferreira  CE,  and Sogayar  MC,  “Evaluating  different 
methods of microarray data normalization”, BMC Bioinformatics, 7, 469, 2006.

[36] Park T, Yi SG, Kang SH, Lee SY, Lee YS, and Simon R, “Evaluation of normalization methods for 
microarray data”, BMC Bioinformatics, 4, 33, 2003.

43

http://www.stat.berkeley.edu/users/terry/zarray/Html/log.html
http://www.labmeeting.com/papers/author/aittokallio-t
http://www.labmeeting.com/papers/author/lahesmaa-r
http://www.labmeeting.com/papers/author/oresic-m
http://www.labmeeting.com/papers/author/lund-r
http://www.labmeeting.com/papers/author/katajamaa-m
http://www.labmeeting.com/papers/author/elo-ll


[37] Kerr MK, Martin M, and Churchill GA, “Analysis of variance for gene expression microarray data”, 
Journal of Computational Biology, 7, 819-837, 2000.

[38] Wolfinger RD, Gibson G, Wolfinger ED, Bennett L, Hamadeh H, Bushel P, Afshari C, and Paules RS, 
“Assessing  gene  significance  from  cDNA  microarray  expression  data  via  mixed  models”,  Journal  of 
Computational Biology, 8(6), 625-637, 2001.

[39] Bhattacharjee M, Pritchard CC, Nelson PS, and Arjas E, “Bayesian integrated functional analysis of 
microarray data”, Bioinformatics, vol. 20, no. 17, pp. 2943–2953, 2004.

[40] Lewin A, Richardson S, Marshall C, Glazier A, and Aitman T, “Bayesian modeling of differential gene 
expression”, Biometrics, vol. 62, no. 1, pp. 10–18, 2006.

[41] Draghici  S,  Kuklin A, Hoff B,  and Shams S, “Experimental  design, analysis  of variance and slide 
quality assessment in gene expression arrays”, Current Opinion in Drug Discovery and Development, 4(3), 
332-337, 2001.

[42] Schuchhardt J, Beule D, Wolski E, and Eickhoff H, “Normalization strategies for cDNA microarrays”, 
Nucleic Acid Research, 28(10), e47i-e47v, 2000. 

[43]. Schena M, Shalon D, Heller R, Chai A, Brown PO, and Davis RW, “Parallel human genome analysis: 
microarray-based expression monitoring of 1000 genes”, Proc. Natl. Acad. Sci., 93, 10614-10619, 1996.

[44]. DeRisi JL, Iyer VR, and Brown PO, “Exploring the metabolic and genetic control of gene expression 
on a genomic scale”, Science, 278, 680-686, 1997.

[45]. Draghici S, “Statistical intelligence: effective analysis of high density microarray data”, Drug Discov. 
Today, 7, S55-S63, 2002.

[46] Rocke DM, and Durbin BA, “Model for measurement error for gene expression arrays”,  J Comput 
Biol., 8, 557–569, 2001. 

[47] Newton MA, Kendziorski CM, Richmond CS, Blattner FR, and Tsui KW, “On differential variability of 
expression ratios: improving statistical inference about gene expression changes from microarray data”, J 
Comput. Biol., 8, 37–52, 2001. 

[48] Yang IV, Chen E, Hasseman JP, Liang W, Frank BC, Wang S, Sharov V, Saeed AI, White J, Li J, Lee 
NH,  Yeatman TJ,  and  Quackenbush J,  “Within the fold:  assessing differential  expression  measures and 
reproducibility in microarray assays”, Genome Biol., 3(11), research0062, 2002.

[49] Tusher VG, Tibshirani R, and Chu G, “Significance analysis of microarrays applied to the ionizing 
radiation response”, Proc. Natl. Acad. Sci., 98, 5116–5121, 2001. 

[50]  Baldi  P,  and  Long  AD,  “A  Bayesian  framework  for  the  analysis  of  microarray  expression  data: 
regularized t-test and statistical inferences of gene changes”, Bioinformatics, 17, 509–519, 2001.

[51] Lonnstedt I, and Speed T, “Replicated microarray data”, Statistica Sinica., 12, 31-46, 2002.

[52] R package: statistics for microarray analysis. 
http://www.stat.berkeley.edu/users/terry/zarray/Software/smacode.html 

[53] SAM: Significance Analysis of Microarray. http://www-stat.stanford.edu/~tibs/SAM 

[54] Cyber T. http://www.igb.uci.edu/servers/cybert/ 

[55] Bioconductor. http://www.bioconductor.org 

[56] Pan W, “A comparative review of statistical methods for discovering differentially expressed genes in 
replicated microarray experiments”, Bioinformatics, 18, 546–554, 2002. 

44

http://www.igb.uci.edu/servers/cybert/
http://www-stat.stanford.edu/~tibs/SAM
http://www.stat.berkeley.edu/users/terry/zarray/Software/smacode.html
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=


[57]  Baldi  P,  and  Long  AD,  “A  Bayesian  framework  for  the  analysis  of  microarray  expression  data: 
regularized t-test and statistical inferences of gene changes”, Bioinformatics, vol. 17, no. 6, pp. 509–519, 
2001.

[58] Ramoni MF, and Sebastiani P, “Bayesian methods for microarray data analysis”, in Proceedings of the 
IMA Workshop 1:  Statistical  Methods for  Gene Expression:  Microarrays  and Proteomics,  Minneapolis, 
Minn, USA, September-October 2003.

[59] Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, 
Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald 
M, Rubin GM, and Sherlock G, “Gene ontology: tool for the unification of biology”, Nat Genet., 25(1), 25-
29, 2000.

[60] Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, and Lempicki RA, “DAVID: Database 
for Annotation, Visualization, and Integrated Discovery”, Genome Biology, 4(5), P3, 2003.

[61] Al-Shahrour F, Díaz-Uriarte R, and Dopazo J, “FatiGO: a web tool for finding significant associations 
of Gene Ontology terms with groups of genes”, Bioinformatics, 20(4), 578-580, 2004. 

[62] OBO-Edit. http://oboedit.org

[63]  Metropolis  N,  Rosenbluth  AW,  Rosenbluth  MN,  Teller  AH,  and  Teller  E,  “Equation  of  state 
calculations by fast computing machines”, Journal of Chemical Physics 21, 1087-1092, 1953. 

[64]  Hastings  WK,  “Monte  Carlo  sampling  methods  using  Markov  chains  and  their  applications”, 
Biometrika, 57, 97-109, 1970.

[65] Geman S, and Geman D, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of 
images”, IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721-741, 1984.

[66] Gelfand AE, and Smith AFM, “Sampling-based approaches to calculating marginal densities”, Journal 
of the American Statistical Association 85, 398-409, 1990.

[67] Spiegelhalter DJ, Thomas A, and Best NG, “WinBUGS”, Version 1.2. User Manual, MRC Biostatistics 
Unit, 1999. 

45

http://oboedit.org/
http://bioinformatics.oxfordjournals.org/misc/terms.shtml
javascript:AL_get(this, 'jour', 'Nat Genet.');
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=

