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1 Overview
In this thesis, random planar curves are studied. The study of the geometry of
random curves and surfaces is a very active part of mathematical statistical physics.
Let’s first explain the words in the title of this thesis.

Why the plane R2? Many problems of the statistical physics are quite trivial
in R and really hard in R3. Maybe surprisingly the problems are also challenging
in R2. For this reason, the study of two dimensional systems is a benchmark. If a
method works in two dimensions then there is, in principle, a good chance that it
works in three dimensions. The methods that are explained in this thesis apply in
two dimension; however, they are quite special. Only in two dimensions the theory
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of conformal mappings is so rich that it enables a full characterization of certain
objects. We will come back to this in a moment.

Why curves? A planar curve is a continuous mapping from an interval of the
real axis to R2. The concept of a curve includes both the locus and the order in
which the locus is visited. A simple curve doesn’t visit the same point twice. In the
plane R2, there are naturally the left-hand side and the right-hand side of a simple
curve. Both end points of the curve can be connected to infinity by a simple curve
so that if we glue these three curves together they form a simple curve. And this
divides the plane into exactly two connected components. These components are the
left-hand side and the right-hand side of the extended curve. For this reason, simple
curves are naturally interfaces : they divide an area into two. If we are, for example,
studying a random coloring of the plane, then the interface is formed between an
area with one color and an area with the other color.

What kind of random curves? The random curves of this thesis arise as interfaces
in the statistical physics and are of the type illustrated in Figure 1. The colors red
and white represent the two possible states of each individual lattice site. There
might be a mechanism so that red hexagons attract or repel each other, but this
effect is counterbalanced by the fluctuations caused by the finite temperature. In
the case of Figure 1, each hexagon is independent of all the others and what is seen
is the pure thermal fluctuations. The boundary conditions are chosen so that there
are two boundary arcs and one of them is white and the other is red. This way,
there are a macroscopic white cluster, a macroscopic red cluster and an interface in
between them.

Figure 1: A sample of percolation showing the interface between a red cluster and
a white cluster.

What is the scaling limit? Usually, a connected region of the plane is taken. Then
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we take a lattice like the triangular lattice formed by the centers of the hexagons in
Figure 1. The scaling limit is taken when we let the mesh size of the lattice decrease
to zero while keeping the region the same.

What are the scaling limits of random planar curves? First of all, the random
curves, that this thesis is about, converge as curves. The limiting object will be a
curve, not a nice polygonal curve like in Figure 1 but a rougher one. The paper
[iii] of this thesis is a study how this convergence can be established from a simple
estimate.

Since the origin of these random curves is in the statistical physics, we need to
consider what kind of curves it can produce. Usually there are some parameters in
the problems that determine the probability distribution. When these parameters
are tuned in exactly right way the system is at its critical point. In Figure 1, this
is a balance between red and white. Characteristic for this point is that the system
is scale invariant and there is no typical size of, say, the red droplets. Also for the
random curve this means scale invariance. There are details in every scale which
resemble each other. The scaling limit of the interface will be a random fractal.

When the parameters are not tuned to the critical point then there is still a
scaling limit of these random curves. However, the scaling limit is not that interest-
ing: the scaling limit is often a deterministic curve that is stuck to the boundary or
minimizing its length etc. This doesn’t mean that the system wouldn’t interesting
also in this case. Almost everything we see around us is not tuned to criticality.

The scaling limits of the random curves arising from a statistical physics model at
criticality are identified as Schramm–Loewner evolutions. In 1923, Charles Loewner
[13] had an idea to code the information of a curve γ(t) in the complex plane C
into a collection of conformal mappings gt. These mappings satisfy a differential
equation

∂gt(z)

∂t
=

2

gt(z)−Wt

(1)

thereWt is a real valued function unique for each curve γ(t). The functionWt acts as
a steering wheel. When it increases the curve turns to the right and when it decreases
the curve turns to the left. In 1999, Oded Schramm [16] used this equation to study
random curves by considering a random function Wt, i.e a stochastic process.

The conformal mappings are those that preserve the angles locally. So if g is a
conformal mapping and two curves make an angle of θ at a point p, then the image
of these curves under g make an angle of θ at the point g(p). In the plane, there
are plenty of these mappings. They are the analytic (also called holomorphic) and
one-to-one mappings. Figure 2 illustrates a conformal mapping in the plane.

Schramm noticed that if the random curve comes from the statistical physics and
has a symmetry so that the laws of the curve in two different regions are connected
through a conformal mapping, then Wt has to be a specific process, a Brownian mo-
tion. The random curves driven by suchWt are called Schramm–Loewner evolutions
(SLE). The papers [i] and [ii] are studies of some SLE specific questions.

In the section 2, we present lattice models of statistical physics and define what
is meant for the criticality. We also comment how the conformal invariance can be
seen in them. In the section 3, we give quite complete introduction to SLE. Finally
in the section 4, we present the context of the papers [i], [ii] and [iii].
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(a) The upper half-plane with a square grid. (b) The image of the grid.

Figure 2: The image of a grid under a conformal mapping from the upper half-plane
onto upper half-plane with a semidisc removed.

2 Lattice models of statistical physics

2.1 Statistical physics

Suppose there is given a physical system with finite number of states labelled by
1, 2, . . . , N . For example, there are n atoms lying on their sites on a lattice. Each
atom has s different states. The total number of the states of the whole system is
then N = sn.

It useful to model uncertainty as randomness. Therefore, suppose that there is
a probability distribution on the states of the systems, i.e. a set of real numbers pj
where j = 1, 2, . . . , N such that 0 ≤ pj ≤ 1 for each j and that

N∑
j=1

pj = 1. (2)

If we have an observable O that takes a value Oj on jth state, then the expected
value is denoted by

EO =
N∑
j=1

pjOj.

Our starting point in statistical mechanics is the Gibbs measure. Suppose next
that the energy of jth state is Ej. If we know the expected energy

∑
pjEj of the

system, then the Gibbs measure

pj =
1

Z(β)
e−βEj (3)

is maximally random in the sense of entropy. Here Z(β) is the partition function
determined from the condition (2), i.e.

Z =
N∑
j=1

e−βEj (4)

The parameter β can be identified as being inversely proportional to the thermody-
namical variable T , the temperature. We can choose the units so that β = 1/T .
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A probability measure of the form (3) is also called Boltzmann distribution and
the number exp(−βEj) is called a Boltzmann weight of the state j.

The partition function is very important object in statistical physics. Given an
observable O which is positive, we can define

Z(O) :=
N∑
j=1

Oje
−βEj =

N∑
j=1

e−βEj+logOj

which is also written in the form of partition function. Hence the expected value of
O can be written as

EO =
Z(O)

Z

i.e. as a ratio of two partition functions.

2.2 Ising model

Ideally, the Gibbs measure is defined using a real physical system. However, this
turns out to be a really tough job. The partition function (4) is a sum with N = sn

terms, where n is typically 1023 and s is a large number. Actually often there is
a continuum of one atom states and therefore it would be more accurate to take
s = ∞. If also the energy variable Ej is hard to calculate, the task is hopeless.
Therefore it is clear that some kind of modeling is needed.

A model of a physical system should be simple but still carry the essential features
of the physical system. The hope is that the macroscopic properties, in the infinite
system limit, don’t depend on the details of the system. This kind of universality is
expected at least under special circumstances, that is near the critical point of the
system.

One of the most studied models of statistical physics is the Ising model. It is
a model of ferromagnet or antiferromagnet. The system is formed of elementary
magnets, spins σx. The subindex x refers to the lattice site the spin is lying on. So
far the system is quite accurately physical. A big simplification is made when σx
takes only two possible values. If the lattice is planar, then think that the spin is
either pointing up, to the positive z-direction, or down, to the negative z-direction.
We use both the labels ↑ and ↓ and the labels +1 and −1 for these two possible
values. The state of the system is the collection of the all spins at different sites
σ = (σ1, σ2, . . . , σn), where the different lattice sites have been named 1, 2, . . . , n.
The setup is illustrated Figure 3(a).

The second simplification is that the interaction between the spins is really short-
ranged. The Ising Hamiltonian is defined as

H(σ) = −J
∑
〈xy〉

σxσy −B
∑
x

σx (5)

and it gives the energy of the configuration of σ. The first sum is over the neighboring
pairs of sites, and the second sum is over all the sites. The probability of the state
is then given by the Gibbs measure (3).

If J > 0 then the system is ferromagnetic and the spins tend to align. In the
Ising Hamiltonian (5), an aligned pair of spins has lower energy by 2J compared to
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(a) The Ising model: spins are the arrows on
the lattice sites and the lines are the interfaces
between an area of ↑-spins and an area of ↓-
spins.

(b) A sample of the Ising model on the square
lattice, T ≈ Tc and B = 0.

Figure 3: Two-dimensional Ising model.

non-aligned. Therefore there is a price for having non-aligned spins and this effect
tries to minimize the total length of interfaces, see Figure 3(a). The spins also tend
to align with the the external magnetic field represented by the variable B.

For the thermodynamical limit of the system, in the plane take first L × L box
of the lattice. Define the Ising probability distribution of the spins of the box, and
then take the limit L→∞. The result is a random spin configuration on the infinite
lattice. This is a different infinite system limit than the scaling limit where the region
is kept fixed and the lattice mesh taken to zero, whereas for the thermodynamical
limit the lattice mesh is kept constant and the size of the box is taken to infinity.

The formulation of the critical point is only possible in the infinite system. There-
fore assume that the thermodynamical limit is taken. Denote the magnetization

M(T,B) = E[σx]

which is a constant by translation invariance. There is a critical point T = Tc and
B = 0 in the following sense. For T < Tc, as the external magnetic field B is
decreased to zero some magnetization remain, i.e. M(T, 0+) > 0, and symmetrically
M(T, 0−) < 0. Hence there is a discontinuous phase transition between the phases
M < 0 and M > 0 as B changes its sign. For T > Tc, there is no spontaneous
magnetization, i.e. M(T, 0) = 0 and the B 7→ M(T,B) is continuous across B = 0.
Therefore the system is a ferromagnet only for T < Tc.

The region T > Tc is called the disordered phase. Even there the spins are
correlated, the correlations decay as

G(x, y) := E[σxσy]− E[σx] E[σy] ∼ e−
|x−y|
ξ(T,B) (6)

where ξ(T,B) is the correlation length. The correlation length ξ(T,B) also tells the
typical size of the connected component of aligned spins.
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The correlation length diverges ξ(T,B)→∞ as we approach the critical point.
This implies that there is no typical length scale and there should be some similarity
between different scales. In Figure 3(b) a sample of Ising model T ≈ Tc is presented.

2.3 Conformal invariance at criticality

Since 80’s it has been conjectured that statistical physics models at criticality are
conformally invariant in some sense. In Chapter 11 of [3] there is an excellent ex-
planation why conformal invariance should hold. We will review this in this section.
This argument is very much heuristic and any implication should be considered as a
conjecture that needs a proof. Think that the system is the Ising model; although,
the argument isn’t restricted to it.

The renormalization group (RG) is a widely used method in statistical physics
worth of a Nobel prize. The reader may want to check prize winner’s review paper
[27]. To illustrate the method, let’s consider Kadanoff’s block spin transformation.
Let Bx be a cube centered at x and of linear size b. Cover the lattice with separate
cubes Bx. The centers form a new, sparser lattice V ′. Define the block spin

σ′x =
∑
y∈Bx

σy

for each x ∈ V ′. Hence for the Ising model in the square lattice σ′x ∈ {−bn,−bn +
2, . . . , bn − 2, bn}

Redefine the Hamiltonian so that βH is repleaced by H, i.e. the parameter β
is absorbed to the constants J and B of the Ising model, and hence the partition
function is

Z =
∑
σ

e−H(σ)

Sum in the partition function first in each cube over spins keeping the value of
the block spin fixed. And only after this sum over the block spins. One can write
the partition function in the form

Z =
∑
σ′

e−H
′(σ′)

which defines the renormalized Hamiltonian H ′. Continue in the same manner and
define V ′′ and H ′′. For an infinite system you could repeat this infinitely many
times, but not for a finite system.

Denote
L1 : H 7→ H ′

and Ln = (L1)
n = L1 ◦ L1 ◦ . . . ◦ L1, where n maps are composed. The mappings

(Ln)n∈N form a semigroup which is called the renormalization group.
The critical points of stastitical physics systems are the fixed points of the renor-

malization group. To see why this is the case and to see some implications of this
consider the following. Since b is the linear size of Bx, a distance d in the lattice V
is mapped to distance db−1 in the lattice V ′. Hence the fixed point has to be scale
invariant. This is the lack of typical length scale, i.e. ξ =∞, that was characteristic
for a critical point.
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Also if the Hamiltonian of the system is symmetric under a large enough sub-
group of the rotation group, then it is not hard to believe that in the fixed point
Hamiltonian has full rotational invariance. For example, the Ising Hamiltonian is
invariant under 90 degrees rotations. In the same manner, invariance under the
lattice translations develops to full translation invariance.

So the fixed point should be at least invariant under global scaling, rotation
and translation. If the fixed point Hamiltonian has only short range interactions
then different scaling and rotation can be used in the different parts of the space.
Hence the Hamiltonian is invariant under transformations that are locally scaling
and rotation, or briefly it is invariant under conformal transformations.

This explanation is satisfactory in a heuristic level, but a question arises: what
are the limiting Hamiltonian and the limiting spin field? This kind of constructive
approach is not completely available. There is the method of conformal field theory
(CFT) which gives at least a partial, but non-constructive, answer in the planar
case. Using CFT it is possible to write explicit formulas for correlation functions
such as one in the equation (6). This is, in some extent, complementary to the math-
ematical method of Schramm–Loewner evolutions which gives more easily access to,
for example, global connectivity properties.

2.4 Percolation

One of the simplest models of statistical physics to formulate is the percolation. We
will here introduce the site percolation on the triangular lattice.

Each vertex or site of the triangular lattice is either open or closed. Pick a value
for the parameter p ∈ [0, 1]. We independently toss a coin and with the probability
p the site is open and with the probability 1− p it is closed.

There is a critical value pc for the percolation parameter in the following sense.
For p < pc, almost surely there is no infinite, connected cluster of open sites and
the probability that two sites x and y can be connected by a open path decays as
exp(−|x − y|/ξ(p)) where the constant ξ(p) depends only on p and is called the
correlation length. For p > pc, almost surely there is an infinite, connected cluster
of open sites. For the triangular lattice, the critical value is pc = 1/2.

Let V be the set of vertices of a finite piece of the triangular lattice. Consider the
percolation on these vertices. The Figure 1, in the section 1, illustrates this configu-
ration. The centers of the hexagons form the triangular lattice. The closed sites are
red hexagons and the open sites are white hexagons. The boundary conditions are
such that there are two boundary arc and the other has only red hexagons and the
other only white ones. An interface is formed between the cluster of red hexagons
attached to the red boundary arc and the white cluster attached to the white arc.

The model is named percolation, since we can think we have a piece V of porous
material, say porous rock: the red hexagons are the actual solid rock. The white
(open) hexagons are the free space and they form channels inside the piece of rock
and they cause the porousness. When you put the piece of rock into water it will
wet. The interface in Figure 1 can be interpreted to be frontier where the water
reaches. Here we assume that the elementary pieces of the rock (hexagons) are big
compared to the molecule size of the water etc.

The conformal invariance of the scaling limit of the percolation at criticality is
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seen from the Cardy–Smirnov formula. It is an example of an conformally invari-
ant observable. It was proposed in [4] and proven for the site percolation on the
triangular lattice in [21].

Theorem 2.1 (Cardy–Smirnov formula). Consider the critical site percolation on
the triangular lattice, p = pc = 1/2, in a simply connected domain U ⊂ C. Let
a, b, c, x be four boundary points of U in a counterclockwise order. The domain U
can be conformally mapped to an equilateral triangle ABC so that a, b, c are mapped
to A,B,C, respectively. Let X be the image of x. Then the probability that there is
an open path from the boundary arc xa to the boundary arc bc converges to the ratio

AX

AC
(7)

as the lattice mesh goes to zero.

2.5 Fortuin-Kasteleyn model

In this section we present a model that is closely related to the Ising model. It is
also a weighted version of the edge percolation (instead of the sites the percolation
is done on the edges of the lattice).

Consider the Ising model with vanishing external magnetic field, B = 0, on a
finite piece of the square lattice Z2. Let V be the set of vertices, i.e. lattice sites,
and let E be the set of edges, i.e. nearest neighbor pairs. Assume that the constant
β is absorbed in J , as before. Using the fact that σxσy = 21{σx=σy}−1, the partition
function of the Ising model can be written as

Z =
∑
σ

∏
〈xy〉

exp(Jσxσy) = exp(−Jn)
∑
σ

∏
〈xy〉

(1 + 1{σx=σy}v)

where v = exp(2J) − 1 and n is the number of lattice sites. The constant in the
front can be discarded. Upto a constant this can now be written as

Z =
∑
E′⊂E

2number of components vnumber of edges.

where sum is over all the subsets of the set edges E.
The above motivates the definition of the following probability measure on sub-

graphs ω ⊂ E: Denote

|ω| = number of edges in ω
C(ω) = number of components in the graph (V, ω).

For each 0 < p < 1, q > 0, define a probability measure by

P(ω) =
1

Z

(
p

1− p

)|ω|
qC(ω) (8)

where Z is a normalizing constant that makes this a probability measure. This is
the Fortuin–Kasteleyn model (FK model) with weight p per open edge (the edge is
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present in ω) and 1−p per closed edge (the edge is not present in ω) and weight q per
cluster. The construction can be modified so that ω is restricted to satisfy boundary
conditions: given a set EW ⊂ E the above probability measure is conditioned on
EW ⊂ ω.

The dual lattice of Z2 is the square lattice (Z + 1/2)2. The vertices of the dual
lattice are the centers of the faces of the original lattice, and for each edge of the
lattice there is one dual edge crossing it, in this case, perpendicularly. The dual
graph ω′ of ω is formed if for each edge e in E that is not present in ω, the edge e′
in the dual lattice crossing e is in ω′.

Figure 4: FK model: red lines form the subgraph ω of the lattice Z2 and blue lines
form the dual graph ω′ which is a subgraph of (Z + 1/2)2. In the picture these
lattices are rotated by 45◦.

The setup is illustrated in Figure 4. Similarly as for the percolation, EW is
chosen to be approximation of a boundary arc. There are interfaces between ω and
its dual ω′, and all but one of these interfaces are closed loops. One of the interfaces
is a curve running from near one end point of EW to the other. See Figure 4. Denote
this curve by γ(ω).

The probability measure P can be written using the loop configuration as

P(ω) =
1

Z ′

(
p

(1− p)√q

)|ω|
(
√
q)number of loops.

When the expression inside the first brackets equals 1, the sets ω and ω′ are in a
symmetric position. Hence, for a given q, the value p = pc(q) where

pc(q) =

√
q

1 +
√
q

is self-dual for the square lattice. It turns out that the self-dual value p = pc(q) is
also the critical value (at least for q = 1 and q = 2 [7]) in the same sense as for
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the percolation: in the thermodynamical limit, for p > pc(q), a lattice site is in an
infinite cluster with positive probability, and for p < pc(q), the cluster of a lattice
site is finite almost surely.

When q = 2 the FK model is related to the Ising model by the above calculation.
In fact, the models can be coupled in a useful way and the two point correlation of
the Ising model can be given in terms of a two point connectivity probability of the
FK model with q = 2. Hence we will call the FK model q = 2 as FK Ising model.
The critical value p = pc(2) on the square lattice corresponds to the critical value of
J of the Ising model on the square lattice; namely,

Jc =
1

2
[log(1 +

√
2)].

Conformal invariance of the scaling limit of the FK Ising model at criticality
is manifested in a conformally covariant observable. This means that there is a
function FU,a,b(z) for each domain U and for any boundary points a and b, which is
an expected value, and it transforms as

FU,a,b(z) = (φ′(z))αFφ(U),φ(a),φ(b)(φ(z))

for some α. In this case α = 1/2. The following result is also by Smirnov [24].

Theorem 2.2. Consider the FK Ising model at criticality, q = 2 and p = pc(2).
Denote the event that γ passes through z as γ → z and let w(γ, z) be the winding of
the curve γ from a to z measured in radians. The weighted probability

Fh(z) = E[1γ→z e
i 1
2
w(γ,z)] (9)

satisfies a discrete version of the Cauchy–Riemann equations and is hence discrete
holomorphic and the function h−

1
2Fh converges to (Φ′(z))

1
2 where Φ is the conformal

mapping from U onto the strip {z ∈ C : 0 < Im(z) < c} so that a and b are mapped
to the end points −∞ and +∞, respectively, and c > 0 is an universal constant.

3 Schramm–Loewner evolution
In this section we introduce the Loewner equation, Loewner chains and Schramm–
Loewner evolution.

3.1 Conformal mappings

Remember that the complex plain is denoted by C. The standard choices for a
reference domain with a boundary are the upper half-plane and the unit disc, which
are denoted as

H = {z ∈ C : Imz > 0} and D = {z ∈ C : |z| < 1},

respectively.
A complex valued function of a complex variable is a conformal mapping if it is

analytic and one-to-one. A function f that is analytic near z0 can be expanded as

f(z) = f(z0) + f ′(z0) (z − z0) +
1

2
f ′′(z0) (z − z0)

2 + . . .
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Locally near z0, f is conformal if it is analytic and f ′(z0) 6= 0. Then the modulus
λ = |f ′(z0)| is positive and acts as the scaling and R = f ′(z0)/|f ′(z0)| has unit
modulus and acts as the rotation, i.e.

f(z) ≈ f(z0) + λR (z − z0)

near z0. Hence, this is equivalent for the two other definitions of the conformal
mapping.

The conformal mappings, that are defined on the whole plane or rather in the
extended complex plane Ĉ = C ∪ {∞}, are always Möbius transformations, i.e. of
the form

f(z) =
az + b

cz + d

where a, b, c, d ∈ C and ad − bc 6= 0. Especially, the set of the conformal map-
pings of Ĉ are parameterized by three complex parameters and therefore it is finite
(dimensional) in a natural sense.

The special property of the plane C compared to Rn, n > 2, is that there is a
richness of the conformal mappings. To see this, the assumption, that the maps
are defined on the whole plane, has to be discarded. Hence it is essential that the
map is defined on a domain with a boundary. A simply connected domain is an
open subset of C so that the set and its complement are both connected. For such
domains we have the following theorem.

Theorem 3.1 (The Riemann mapping thorem). Let U be a simply connected domain
in C not equal to the whole plane C. Let z0 ∈ U . Then there is a unique conformal
map f from D onto U so that f(0) = z0 and the complex number f ′(0) is a positive
real number.

3.2 Domain Markov property and conformal invariance

As a motivation for the Loewner equation and Schramm–Loewner evolutions, let’s
introduce so called Schramm’s principle (originally in [16], a clear presentation in
[23]).

Given a model of statistical physics, the law of an interface in the model deter-
mines a collection of probability measures (PU,a,b), where each measure defined on
the corresponding set of curves γ in U connecting two boundary points a and b of
a simply connected domain U . Choose some consistent parameterization for such
curves so that they are parametrized by t ∈ [0,∞). Suppose that (PU,a,b) satisfies
the following two requirements:

(CI) Conformal invariance: For any triplet (U, a, b) and any conformal mapping
φ : U → C, it holds that φPU,a,b = Pφ(U),φ(a),φ(b).

(DMP) Domain Markov property: Suppose we are given γ[0, t], t > 0. The
conditional law of γ(t + s) given γ[0, t] is the same as the law of γ(s) in the
slit domain (U \ γ[0, t], γ(t), b). That is

PU,a,b( · | γ[0, t]) = PU\γ[0,t],γ(t),b
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Then Schramm’s principle states that such (PU,a,b) can only be one of the chordal
SLEκ-processes. We will comment this in the end of the section 3.6.

CI is the property that the law of the interface in U and the law of the interface
in φ(U) are connected through the conformal mapping φ. This property holds at
criticality.

The DMP holds basically for all interfaces of statistical physics, also outside
criticality. The interface is parameterized as a curve. If one moves along the curve,
one explores the configuration of the system next to the curve. In Figure 1, during
this exploration the curve meets red and white hexagons. The red hexagons are on
one side of the curve, let’s say on the left-hand side, and the white hexagons are
on the other side, on the right-hand side. If this process is stopped at any time,
then the left-hand side of the curve up to this moment consists of red hexagons and
the right-hand side consists of white hexagons. From the left-hand boundary, i.e.
from the tip γ(t) of the curve to the target point b, of the slit domain U \ γ[0, t]
consists of red hexagons. The boundary conditions in the slit domain are the same
as in the original domain: there is one red arc and one white arc. The DMP holds
if the model has a Markov property in the sense, that if the system is conditioned
to have a certain configuration in a part of the system, then the conditioned model
is the same model in the smaller region with the conditioning acting as a boundary
condition.

3.3 Capacity of a hull

Suppose we are given a simple curve γ in the upper half plane starting from the
boundary, i.e. γ is a continuous, one-to-one mapping [0,∞) to C so that γ(0) ∈ R
and γ

(
(0,∞)

)
⊂ H. For each t > 0, the set γ

(
(0, t]

)
⊂ H is closed in H and its

complement is simply connected. We want measure the size of such a set.

Definition 3.2. A subset K ⊂ H is said to be a hull, if K is bounded, K is closed
in H (i.e. K = H ∩K) and H \K is simply connected.

If K is a hull then the complement H = H \K is open and simply connected.
By the Riemann mapping theorem there are conformal mappings from H onto H.
Let gK be such a mapping. We can choose gK so that gK(∞) =∞.

Let’s state some consequences of choosing gK this way. Since K is bounded,

rad(K) = inf{r > 0 : K ⊂ B(0, r)}

is finite. The mapping gK extends continuously to the part of the real axis away from
K. Since R \ [− rad(K), rad(K)] is mapped in R, the imaginary part of gK vanishes
on this part of the boundary and therefore the mapping gK can be extended to
C \B(0, rad(K)) by the Schwarz reflection principle. This extended map is analytic
also at infinity in the sense that 1/gK(1/z) is analytic at 0. From this it follows that
the expansion

gK(z) = bz + a0 + a1z
−1 + a2z

−2 + . . . (10)

holds near the infinity, infact for z ∈ H and |z| > rad(K). Again since R \
[− rad(K), rad(K)] is mapped in R, the coefficients b, a0, a1, . . . are real. Further-
more, since the image of gK is H, b > 0.
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We want to choose gK uniquely. Any a mapping of the form βgK + α where
β > 0 and α ∈ R is a conformal map from H onto H so that infinity is mapped
to itself. Now it is clear that by using scaling and translation we can choose gK to
satisfy the hydrodynamical normalization

lim
z→∞

[
gK(z)− z

]
= 0.

With this choice the mapping is unique. This choice is equivalent for choosing a
mapping that has the expansion (10) with b = 1 and a0 = 0. Hence with this choice

gK(z) = z + a1z
−1 + a2z

−2 + . . . (11)

near infinity. The coefficient a1 = a1(gK) = a1(K) is called the upper half-plane
capacity of K or simply the capacity of K. Note that it is notationally useful to
think the capacity both a property of the hull and of the mapping.

A straightforward application of the expansion (11) can be used to check the
capacity satisfies the following properties:

• The additivity property: If g and h are hydrodynamically normalized, i.e.

g(z) = z +
a1(g)

z
+ . . . and h(z) = z +

a1(h)

z
+ . . .

then g ◦ h is hydrodynamically normalized and

a1(g ◦ h) = a1(g) + a1(h).

• The scaling property: For any λ > 0, define gλ(z) = λg(z/λ) whenever this
makes sense. If g is hydrodynamically normalized, then gλ is hydrodynamically
normalized and

a1(gλ) = λ2a1(g).

This implies that if the hull K scaled by λ is denoted by λK then a1(λK) =
λ2a1(K).

A collection of hulls (Kt)t≥0 is growing, if for each t < s, Kt ⊂ Ks. If γ is a
simple curve in H parameterized by [0,∞) and γ(0) ∈ R, then

Kt = γ
(
(0, t)

)
defines a hull and the collection (Kt)t≥0 is growing. In this case we identify (Kt)t≥0

with γ and say that (Kt)t≥0 is a simple curve γ.
It is possible to show that the capacity is strictly increasing in the sense of the

following lemma.

Lemma 3.3. (i) Let K and L be two hulls. If K ⊂ L, then

0 ≤ a1(K) ≤ a1(L).

The equality holds in the first inequality only if K = ∅ and in the second inequality
only if K = L.

(ii) Let (Kt)t≥0 be a growing collection of hulls. Then t 7→ a1(Kt) is a non-
decreasing map from [0,∞) to [0,∞).
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In short, the proof of the lemma is based on that hK(z) = Im(z − gK(z)) is a
bounded harmonic function with non-negative boundary values, and not identically
zero. By the minimum it is positive in the interior points. The capacity can be
written as a1(K) = 2R

π

∫ π
0
hK
(
Reiθ

)
sin(θ)dθ for any R > rad(K). The rest follows

from the additivity.
The capacity is continuous in the sense of the following lemma.

Lemma 3.4. (i) Denote Kε = H \ Hε, where Hε the unbounded component of
H \ {z ∈ H : d(z,K) ≤ ε}. Let M > 0. Then uniformly for any hull K so that
rad(K) ≤M the following holds: for each δ > 0 there is ε > 0 so that

a1(K
ε) < a1(K) + δ

(ii) Let M, δ, ε be as above. If K and L are hulls so that rad(K) ≤M , rad(L) ≤
M and K and L are closer then ε to each other in the sense that K ⊂ Lε and
L ⊂ Kε then

|a1(K)− a1(L)| < δ

This lemma can be proven almost the same way as Lemma 3.3. The function
ĥK,ε = Im(gK(z)− gKε(z)) is harmonic, and the boundary values can be proven to
be small.

This section can be summarized in the following way: the upper half-plane ca-
pacity measures the size of a hull, since the capacity is non-negative and strictly
increasing. By the additivity, the most natural way to use it as the parameteriza-
tion of a collection of hulls (Kt)t≥0 is linear in t so that

a1(Kt) = ct

for some constant c > 0. For historical reason, the standard choice is c = 2.

3.4 Loewner equation

In this section we present the Loewner equation which is an ordinary differential
equation (ODE) in t satisfied by gt(z) for each z as long as the collection of hulls
(Kt)t≥0 is parameterized so that a1(Kt) = 2t and the growth is local in a suitable
sense. Especially this applies to (Kt)t≥0 corresponding to a simple curve.

We will first motivate the form of the Loewner equation by considering an it-
eration of conformal mappings. Let x0 ∈ R and δ > 0. The mapping defined
by

φx0,δ(z) = z +
2δ

z − x0

(12)

is a conformal mapping from the upper half-plane with a semi-disc removed H \
B(x0,

√
2δ) onto the upper half-plane H. The mapping is hydrodynamically nor-

malized and a1(φx0,δ) = 2δ.
The inverse map φ−1

x0,δ
maps the upper half-plane to the upper half-plane with a

semi-disc removed. Add these semi-discs on top of each other by defining a map

fδn = φ−1
x1,δ
◦ φ−1

x2,δ
◦ . . . ◦ φ−1

xn,δ
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x1

gδn

xn+1

φxn+1,δ

Figure 5: An iteration of conformal mappings. The mapping gδ(n+1) can be decom-
posed as φxn+1,δ ◦ gδn.

for each n ∈ N. Here xn is a sequence of real numbers. Let the image of fδn be
Hδn. And let Kδn be the complement of Hδn. The shape of Kδ(n+1) is schematically
illustrated in the leftmost part of Figure 5.

The inverse of this map of fδn and the hydrodynamically normalized map of the
hull Kδn is

gδn = φxn,δ ◦ φxn−1,δ ◦ . . . ◦ φx1,δ.

We can write the difference of two consecutive mappings by

gδ(n+1)(z)− gδn(z) = (φxn+1,δ ◦ gδn)(z)− gδn(z)

=
2δ

gδn(z)− xn+1

. (13)

Suppose that we can approximate a simple curve γ with the above sets. As we take
δ ↘ 0 we have to take also the increments xn+1−xn smaller. Hence it is natural that
if this works, in the limit xn is replaced by a continuous function. The continuum
version of the difference equation (13) as δ ↘ 0 will be the ordinary differential
equation of the following theorem.

Theorem 3.5. Let γ : [0, T ] → C be a simple curve and let Kt = γ(0, t]. Assume
that γ(0) ∈ R, γ(0, T ] ⊂ H and a1(Kt) = 2t for each t ∈ [0, T ]. Then gt = gKt
satisfies for each z ∈ H \KT the ordinary differential equation

∂tgt(z) =
2

gt(z)−Wt

. (14)

Here Wt = gt(γ(t)) which is well-defined.

The equation (14) is called the upper half-plane Loewner equation or simply the
Loewner equation. Note that the Loewner equation applies upto time t when z
becomes a part of the hull: if z = γ(s) for some s > 0 then choose 0 < T < s. Then
z ∈ H \KT and gt(z) satisfies the Loewner equation by the above theorem.

The proof of Theorem 3.5 uses a uniform estimate such as the following lemma
from [11].

Lemma 3.6. Let fK = g−1
K . There is an universal constant C > 0 so that the

following holds: If K is a hull and x0 ∈ R and R > 0 are such that K ⊂ B(x0, R),
then ∣∣∣∣fK(z)− z +

a1(K)

z − x0

∣∣∣∣ ≤ C Ra1(K)

|z − x0|2

for any z ∈ H so that |z − x0| ≥ CR.
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The proof of the lemma shows more fundamental origin of the form of the right-
hand side of the Loewner equation. It comes from the Poisson kernel of the upper
half-plane.

Let t > 0 and δ > 0. Denote K̂t,δ = gt(Kt+δ \Kt) and denote the corresponding
mappings by ĝt,δ and f̂t,δ. The capacity of K̂t,δ is δ. Then Lemma 3.6 applies to the
mapping f̂t,δ and using gt = f̂t,δ ◦ gt+δ we have that∣∣∣∣gt+δ(z)− gt(z)

δ
− 2

gt+δ(z)−Wt

∣∣∣∣ =

∣∣∣∣∣gt+δ(z)− f̂t,δ(gt+δ(z))

δ
− 2δ

gt+δ(z)−Wt

∣∣∣∣∣
=

C Rt,δ

|gt+δ(z)−Wt|2
.

Here Rt,δ is the smallest radius r > 0 so that K̂t,δ ⊂ B(Wt, r). It can be shown
that for a given curve, uniformly in t ∈ [0, T ) the radius Rt,δ ↘ 0 as δ ↘ 0. Hence
Theorem 3.5 is proven.

3.5 Loewner chains

A nice feature of the Loewner equation is that any continuous function t 7→ Wt

corresponds to a growing family of hulls. Given a function that drives the Loewner
equation we construct the hulls (Kt)t≥0 as follows.

For each z ∈ H define gt(z) = zt as the solution of the Loewner equation

dzt
dt

=
2

zt −Wt

, z0 = z. (15)

The equation is the same as the equation (14), but written for just single point z.
Then gt(z) is well defined for 0 < t < T̂ (z) where

T̂ (z) = sup {t ≥ 0 : gs(z) 6= Ws for any s ∈ [0, t]} . (16)

Let’s define

Kt = {z ∈ H : T̂ (z) ≤ t} and Ht = H \Kt = {z ∈ H : T̂ (z) > t}. (17)

Indeed the following theorem shows Kt is a hull and gt is the conformal map gKt .

Theorem 3.7. Let Wt, gt, Kt and Ht be as above. Then for each t > 0, Kt a
hull and gt is the conformal map from Ht onto H so that gt is hydrodynamically
normalized, i.e.

gt(z) = z + 2tz−1 + . . . (18)
near infinity.

The proof is done by analyzing the ODE. For example, to prove that Kt is
bounded we need to separately analyze the real part and the imaginary part of the
equation (15). On the interval s ∈ [0, t], the real part xs = Re(zs) flows away from
Us and hence the point z with large |Re(z)| cannot be reached. The imaginary
part ys = Im(zs) is monotonically decreasing but we can control the speed so that
yt ≥

√
y2

0 − 4t. So the points z such that Im(z) >
√

4t cannot be reached during
the interval [0, t]. The proofs of the other claims can be found in [26].

The growing family of hulls (Kt)t≥0 constructed this way is called the Loewner
chain associated to driving function (Wt)t≥0. We say that (Kt)t≥0 is
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• a simple curve, if there exists a simple curve γ such that Kt = γ((0, t]),

• generated by a curve, if there exists a curve γ such that Ht = H \ Kt is the
unbounded component of H \ γ((0, t]),

In general, a Loewner chain is neither a simple curve nor generated by a curve.
Simplest example of such a pathology is an infinite spiral that first winds around, say,
a disc infinitely many times and then unwinds. Following theorem gives necessary
and sufficient condition for a collection of growing hulls to have a continuous driving
function.

Theorem 3.8. Let (Kt)t≥0 be an increasing family of hulls such that a1(Kt) = 2t,
for any t ≥ 0. Then the following are equivalent:

• (Kt)t≥0 is a Loewner chain associated to a continuous driving function (Wt)t≥0.

• For all T > 0 and ε > 0, there exists δ > 0 such that for all t ≤ T there exist a
bounded connected set S ⊂ H \Kt with diameter ≤ ε disconnecting Kt+δ \Kt

from infinity in H \Kt.

For the proof see [11]. The proof the direct implication if proved by the same
methods as Theorem 3.7 and the inverse implication by Lemma 3.6 as before.

3.6 Schramm–Loewner evolution

If the methods related to the Loewner equation are applied to a random curve, then
the driving function (Wt)t≥0 is random. The next definition gives a very important
example of this.

Definition 3.9. Let κ ≥ 0. The chordal Schramm–Loewner evolution SLEκ is the
Loewner chain associated withWt =

√
κBt, where Bt is a standard, one-dimensional

Brownian motion with B0 = 0.

A standard, one-dimensional Brownian motion is a continuous stochastic process
(Bt)t≥0 so that

• B0 = 0

• For each n and for any 0 ≤ s1 < t1 ≤ s2 < t2 ≤ . . . ≤ sn < tn, the increments
Bt1 −Bs1 , Bt2 −Bs2 , . . . , Btn −Bsn are independent.

• For each s > 0, the distribution of Bt+s−Bt is the normal distribution N(0, s),
the same of all t ≥ 0.

By the second and the third property, a Brownian motion is said to have independent
and stationary increments.

SLEκ can be seen as a limit δ → 0 of the iteration of the semi-disc maps as
in Figure 5. The fact that a Brownian motion has independent and stationary
increments corresponds to x1, x2−x1, x3−x2, . . . being independent and identically
distributed.

If we don’t want to emphasize the value of κ we often write just SLE. Consider
a chordal SLEκ in H, and let gt be the conformal maps associated with Kt. Let’s
list few properties of SLE.
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• SLE is scale-invariant: (λKtλ−2)t≥0 has the same law as (Kt)t≥0.

• The law of SLE is symmetric respect to the imaginary axis.

• SLE has the conformal Markov property: Let t ≥ 0. For any s ≥ 0 let

K̃s = gt(Kt+s \Kt)−Wt.

Then (K̃t)t≥0 has the same law as (Kt)t≥0 and (K̃t)t≥0 is independent of
(Kt)0≤t≤s.

The last property correspond to the DMP of the section 3.2. The fact that (K̃t)t≥0

has the same law as (Kt)t≥0 is called the stationarity of SLE and it is the main
concept in [ii].

Let U be a simply connected domain in C and let a and b be two boundary points.
Let Φ be a conformal map from H onto U such that Φ(0) = a and Φ(∞) = b. This
doesn’t determine Φ fully. It is determined up to a multiplicative factor: for each
λ > 0, Φλ defined by Φλ(z) = Φ(λz) would satisfy these conditions.

Definition 3.10. A collection (Kt)t≥0 of subsets of U is said to be the chordal SLEκ
in U from a to b if (Φ−1(Kt))t≥0 is a chordal SLEκ in H and Φ is as above.

Although Φ is only defined up to a multiplicative factor, SLEκ in U is unique
because SLEκ in H is scale-invariant. This definition makes conformal invariance
immediate. The DMP can be proven using CI and the conformal Markov property
of SLE.

The following result tells that chordal SLEs are curves.

Theorem 3.11. If κ ∈ [0, 4], SLEκ is a simple curve. If κ > 4, SLEκ is generated
by a curve that is not simple. If κ ≥ 8, it is a space filling curve.

For the proof see [15].

3.7 SLE martingales

In this section, a couple of example calculations are made using SLE. The goal is to
derive quantities which are related to the percolation and to the FK Ising model.

For a basic introduction to Itô calculus the reader is referred some introductory
text such as [14]. Our starting point is the following version of Itô’s lemma for
complex valued processes and analytic functions.

Lemma 3.12. Let f is analytic and Zt is a complex valued semimartingale, i.e.
Zt = Xt + iYt and Xt and Yt are (real) continuous semimartingales. Then

df(Zt) = f ′(Zt)dZt +
1

2
f ′′(Zt)(dZt)

2 (19)

where dZt = dXt+idYt, (dZt)
2 = (dXt)

2+2idXtdYt−(dYt)
2 and the notation (dXt)

2

really means the differential of the quadratic variation (for example (dBt)
2 = dt).
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The differential of the quadratic variation (dZt)
2 is is quite naturally interpreted

as (d(Xt + iYt))
2 expanded in using the usual arithmetics.

The first example we calculate is a local martingale depending on one point
z ∈ H. For a fixed z ∈ H, denote

Zt = gt(z)−Wt

At = g′t(z)

Calculate the Itô differential

d
(
Zα
t A

β
t

)
= Zα−2

t Aβt

[
2α +

κ

2
α(α− 1)− 2β

]
dt− Zα−1

t Aβt
√
κdBt (20)

If we set α = −β in the equation (20), then (At/Zt)
β is a local martingale if and

only if the drift vanishes, i.e. β = 0 or

β =
8

κ
− 1

For κ = 16/3, the non-trivial local martingale is (At/Zt)
1/2 which corresponds to

the observable of Theorem 2.2. If it is stopped before Zt hits zero, then it is a
martingale.

The second example is a martingale depending on two points. Let

Ẑt =
gt(z)−Wt

gt(1)−Wt

.

The Itô differential is

dẐt =
1

(gt(1)−Wt)2

[
2

Ẑt
− 2Ẑt + κ(Ẑt − 1)

]
dt− Ẑt − 1

gt(1)−Wt

√
κdBt (21)

One possible simplification to this formula is to define a time change

φ(t) =

∫ t

0

du

(gu(1)−Wu)2

and s = φ(t). Z̃s = Ẑφ−1(s) Then

dZ̃s =

[
2

Z̃s
− 2Z̃s + κ(Z̃s − 1)

]
ds− (Z̃s − 1)

√
κdB̃s. (22)

For a smooth function F we have

dF (Z̃s) =

[(
2

1 + Z̃2
s

Z̃s
+ κ(Z̃s − 1)

)
F ′
(
Z̃s

)
+
κ

2
(Z̃s − 1)2F ′′

(
Z̃s

)]
ds

− (Z̃s − 1)F ′
(
Z̃s

) √
κdB̃s (23)

which is a local martingale if

0 = F ′′(z) +

(
−4

κ

z + 1

z(z − 1)
+ 2

1

z − 1

)
F ′(z)

= F ′′(z) +

(
4

κ

1

z
+

(
2− 8

κ

)
1

z − 1

)
F ′(z).

24



For any solution F of this equation

F ′(z) = C zα0−1(z − 1)α1−1

where
α0 = 1− 4

κ
and α1 =

8

κ
− 1.

For 4 < κ < 8, this defines a conformal mapping F from H onto a triangle such that
the points 0, 1 and ∞ are mapped to the vertices of the triangle, and the triangle
has angles πα0, πα1 and πα∞, where

α∞ = 1− α0 − α1 = 1− 4

κ
.

It is an example of Schwarz–Christoffel mapping. This is useful since F is then
bounded and both ReF (Z̃s) and ImF (Z̃s) are martingales.

For κ = 6, α0 = α1 = α∞ = 1/3 and F is a conformal mapping from H onto an
equilateral triangle. This corresponds to the Cardy–Smirnov formula (Theorem 2.1).

4 On the results of this thesis

4.1 Convergence of an interface of a lattice model to SLE

Consider a model such as the percolation or the FK Ising model. The full conformal
invariance in the sense of random geometry is the conformal invariance of the law
of all the interfaces. The interfaces can be of two different types. There are curves
starting and ending to the boundary and curves that are closed loops. The starting
point of establishing the full conformal invariance is to prove it for a single interface.
The paper [iii] is proving large part methods needed for the convergence of a single
interface to SLE. The methods should be applicable for the full conformal invariance
since the collection of all the interfaces can also be described by SLE–type process,
called the exploration tree [20]. The authors of [iii] plan to report on this.

Let’s try to understand the general features of the proof that an interface of a
given model converges to SLEκ, for some κ > 0. As before take a bounded, simply
connected domain U and its boundary points a and b. Define a graph Uh which is
a piece of the lattice that the model is defined on. Here h > 0 is the lattice mesh.
Take vertices ah and bh of Uh that lying on the outer face of the graph. Assume that
Uh approximates the domain U in a suitable sense. This could be for example, so
that discrete harmonic functions Uh converge to the harmonic functions on U with
same boundary data.

The boundary conditions of the model are chosen so that an interface is formed
connecting ah and bh. Let the curve be denoted by γ and its law by Ph for fixed U, a
and b.

In order to make a mathematical theory on the convergence of random curves,
a metric is needed to measure distances between two curves in the space of curves.
A choice is made so that the curves are parametrized by the interval [0, 1]. Define a
metric as the infimum over all reparameterizations of the supremum metric:

dX(γ1, γ2) = inf

{
‖γ1 ◦ φ1 − γ2 ◦ φ2‖∞ :

for j = 1, 2, φj : [0, 1]→ [0, 1]
stricly increasing and onto

}
.
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It is then natural to identify γ1 and γ2 if dX(γ1, γ2) = 0. Consequently, the space
of curves X is defined as the set of continuous mappings γ : [0, 1]→ C modulo the
strictly increasing and onto reparameterizations of the interval [0, 1].

For a given model of statistical physics, the law of the interface defines a prob-
ability measure Ph on X such that the end points of the curve are ah and bh and
the curve is polygonal path in a lattice with lattice mesh h > 0. The interface has a
scaling limit as a curve if the sequence of probability measures (Ph)h>0 converges to
a probability measure P. There are many notions of the convergence of measures,
but the one used here is the weak convergence, which is natural in many ways. The
sequence (Ph)h>0 converges to P, if the expected values Ehf converge to Ef for each
continuous function f on X.

A general structure of the proof of the convergence is the following

(1a) Establish relative compactness of the sequence (Ph)h>0; consequently, each
subsequence has a converging subsequence. Hence, a sequence hn ↘ 0 can be
chosen so that Phn converges to a limit P.

(1b) The curves of the domain U can be transformed conformally to the upper-half
plane. Check that the limiting measure P is supported on curves such that
when transformed to the upper half-plane H, the curve can be parametrized by
the capacity and the corresponding hulls satisfy the assumption of Theorem 3.8
characterizing Loewner chains.

(2) Identify the limit as SLEκ, for a unique κ > 0.

First two aims of the theory, (1a) and (1b), are collectively called a priori bounds.
The question (1a) was already studied in [1] prior to the invention of SLE. The
study therein is not limited to C, but can be carried out for any Rn. In this thesis,
paper [iii] is intended to answer the questions (1a) and (1b) for a large range of
models. Namely, the paper gives a sufficient condition for (1a) and (1b); see the
section 2.5 therein and the equivalent conditions, Condition A and Condition B,
and the main result, Theorem 2.5. The condition is checked to hold for the FK
Ising model. Also paper [iii] deals the regularity of the random curve near the end
points. It has to be stressed that this is the more generic part of the above principle,
whereas (2) contains parts that are more specific for the model.

The common part of (2) for different models is the existence of an martingale
observable that has nice properties in conformal transformations. Consider a filtra-
tion (Ft) where Ft is generated by γ(s), 0 ≤ s ≤ t, and γ is parametrized, say, by
the length of the path. Remember that Ph is supported on quite regular curves such
as broken lines with line segments of length h. The quantities of the form

Mh
t = Eh[X | Ft ]

are martingales, where X is an integrable random variable. Note that this kind of
martingale is a martingale in any parameterization: if (F̂s) is another filtration then

M̂h
s = Eh

[
X
∣∣∣ F̂s]

is a martingale. Therefore we have a large freedom to choose a parameterization.
This can be seen in a more general level in the theory of martingales.
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Consider the site percolation introduced in the section 2.4. The Cardy–Smirnov
formula is the conformally invariant observable. In terms of the curve the event of
the Cardy–Smirnov formula can be written as

A = {γ : τx = τc}

where τx and τc are the times that the curve disconnects b from x and c, respectively.
So the event occurs when the curve disconnects both points at the same time. By
the domain Markov property the conditional expectation can be written as

PU,a,bh [A|Ft] = PU\γ(0,t],γ(t),bh [A] = F
U\γ(0,t],γ(t),b
h (x, c)

where FU,a,b
h (x, c) is the probability in the Cardy–Smirnov formula. If is some uni-

form continuity of this quantity with respect to γ, then the limit is a martingale
(with respect to P). If F = FH,0,∞ then

F (gt(x), gt(1))

is a martingale. This is enough to determineWt, since it implies thatWt andW 2
t −6t

are martingales. By Lévy’s characterization of Brownian motion Wt =
√

6Bt where
Bt is a standard, one dimensional Brownian motion. Therefore, if the scaling limit
of the percolation interface at criticality exists and can be described by the Loewner
equation, then it has to be SLE6. See more in [22]. The full scaling limit of the
critical site percolation is studied in [2].

The critical FK Ising (q = 2, p = pc(2)) converges to SLE16/3 based on the
convergence of the obsevable of Theorem 2.2 proven in [24] and the a priori bounds
proven in [iii] of this thesis κ = 16/3. Note that the result of [iii] relies on a
convergence of another but related observable of [25].

Other models that have proven to converge to SLEκ are the loop-erased random
walk (κ = 2) and the uniform spanning tree (κ = 8) [12] and two models the
harmonic explorer [17] and the Gaussian free field [18] related to κ = 4.

4.2 Reversibility and duality

The papers [i] and [ii] of this thesis are best introduced in the context of two sym-
metries, the reversibility and the duality, of SLE. The methods used in these papers
might be even more interesting than the partial results on the reversibility and the
duality.

The reversibility was stated as Conjecture 9.10 and the duality as Problem 9.6
in [15]. The reversibility is a property which is immediate for a interface of a
statistical physics model, but which doesn’t follow easily from the definition of SLE.
The reversibility of SLE means that a chordal SLEκ and its time inverse have the
same law. In the notation of the section 3.2, it means that if PU,a,b is the law of
γ and γ̂ is the time change of γ so that the order of time is inverted, especially
γ̂(0) = b, and γ̂ is parametrized by the capacity seen from a, then the law of γ̂
is PU,b,a. Although this definition is exactly formulated, even better formulation is
given in terms of SLEκ(ρ) where ρ = κ−6. For this see [i] and [ii]. The reversibility
was proven recently in [28].

27



The duality is less exactly formulated symmetry. It states that for κ > 4, SLE16/κ

and the outer boundary (the boundary of the hull of) of SLEκ look locally the
same. Although, it was more exactly formulated [5] in terms of SLEκ(ρ1, ρ2, . . . , ρn)-
processes, this formulation doesn’t shed more light on why the conjecture should
hold.

Consider the full trace γ(0,∞) of SLEκ. For κ < 8, it almost surely avoids a
given point x ∈ R. To study the component of x in H \ γ(0,∞), use a Möbius
transformation φ of H to map x to ∞. Let H be the unbounded component of
H \φ(γ(0,∞)) and let G be the hydrodynamically normalized map from H onto H.
This way SLEκ defines a law for a random hull K = H\H which describes the whole
SLEκ. This works best for κ ≤ 4 when SLEκ is a simple curve and hence there are
only two components in H \ γ(0,∞). For κ > 4, the joint law of many components
should be considered.

In the paper [ii], the stationarity of SLE is used to formulate the law G as a
stationary measure on conformal mappings under the SLEκ induced flow. This is a
novelty in the field: usually martingale methods are used in the SLE papers. The
results of [ii] are example calculations done with the method.

In the paper [i], the question of the reversibility and the duality is studied
using the fact that local martingales of SLE form a Virasoro module. Consider
SLEκ(ρ1, ρ2, . . . , ρN) with marked points Wt, Y

1
t , . . . , Y

N
t so that the driving process

is Wt. The process SLEκ(ρ1, ρ2, . . . , ρN) is a generalization of the chordal SLEκ,
for the definition see [19]. For a smooth function f(w, y1, . . . , yN), the drift of
f(Wt, Y

1
t , . . . , Y

N
t ) is given by (Af)(Wt, Y

1
t , . . . , Y

N
t ), which defines a partial dif-

ferential operator A.
The Virasoro algebra is a Lie algebra with a basis {C} ∪ {Ln : n ∈ Z} so that

[Ln, Lm] = (n−m)Ln+m +
1

12
(n3 − n)δn+m,0C and [Ln, C] = 0.

A set of partial differential operators Ln in the variables w, y1, . . . , yN is defined in
the section 3 of [i] and satisfies the commutation relations of the Virasoro algebra
as a result of [9].

The special property that connects Ln to SLEκ(ρ1, ρ2, . . . , ρN) is that they com-
mute with A:

[A,Ln] = 0.

This implies that for any local martingale of the form f(Wt, Y
1
t , . . . , Y

N
t ), f in a

suitable function space, any process of the form (Ln1Ln2 . . .Lnkf)(Wt, Y
1
t , . . . , Y

N
t )

is also a local martingale.
This method is used to construct local martingales so that all the expected values

of the form E(p), where p is a polynomial in the coefficients of the expansion of G
around ∞, can be determined. The reversibility and the duality are formulated
so that two different SLEκ(ρ1, ρ2, . . . , ρn)-processes produce the same polynomial
expected values.
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