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1 Foreword

The ever increasing amount of complex data gathered in scientific, technological

and business applications has created a need for new flexible data analysis methods.

Exploration of data in order to discover its main features has become a vital step in

many data management tasks as merely storing the data is not adequate for most
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present-day purposes. In this thesis mathematical tools for explorative data analysis

of scatter plots are developed. In particular, ways to make statistically reasonable

inferences about features in the data will be considered. As an important application

we will analyze past temperatures reconstructed on the basis of samples of modern

and past environmental indicators and responses.

Since exploration of data should not be left only to highly trained specialists we

try to provide results of inferences in a form that should be accessible for nonspe-

cialists, too. This is done through graphics that summarize the results of inference

in an easily understandable manner. Thus, one goal of this thesis is to develop

visualization techniques that could facilitate exploratory data analysis for these not

extensively trained in statistics.

2 Smoothing

We will concentrate on making inferences about two-dimensional scatter plot data

(yi, xi), i = 1, . . . , n. Let us denote y = [y1, . . . , yn]T and x = [x1, . . . , xn]T . Unless

otherwise stated, we consider a fixed design, where the values of the explanatory

variables xi are known and fixed. They could, however also be treated as random.

Two examples of such fixed design scatter plot data are stock price vs. time, and

temperature vs. time.

In real world situations it is usually reasonable to assume that the observed

responses yi are somewhat corrupted versions of the reality, that is, to assume that

Yi = m(xi) + εi, i = 1, . . . , n, (1)

where the εi’s are the errors often assumed independent and that
�
(εi) = 0, Var(εi) =

σ2. Sometimes, like in this work, the assumptions about the errors are weakened,

giving up in particular their independence and making more general distributional

assumptions about the observations.
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In the above formulation, the target of interest is the mean function m for which
�
(Yi) = m(xi). Estimation of m is a natural means for extracting interesting phe-

nomena in the data. Sometimes the estimate can also be used to calculate responses

for new values of explanatory variables (prediction). Assessing of m from a given set

of observations is a function estimation problem. We consider here one dimensional

regression, where the only assumption is that m is a mapping m : � → � with

some regularity properties assumed when needed. Two other function estimation

problems are classification, where m : � k → {1, 2, . . . , c}, and density estimation,

where m(x) ≥ 0 and
∫ �

k m(x)dx = 1, see e.g. [9, 41].

When studying the behavior of the unknown function m the first step often is

to consider a graphical representation of the data. The estimation of m can be

difficult in particular when the data exhibit large variation and the influences of

the random errors in the observations are unclear. A common approach for making

inferences about m is to smooth the data. A plot of the smooth can be a satisfactory

first step for most exploratory data analysis purposes and the smooth can also be

used for prediction. There exists a large family of methods for two-dimensional

scatter plot smoothing but probably the three most popular are kernel regression,

smoothing splines, and orthogonal decomposition methods, especially wavelets. For

more details on scatter plot smoothing, see e.g. [6, 19, 42, 43]. In this study we will

consider kernel regression and smoothing splines.

2.1 Kernel regression

In kernel regression, a special instant of kernel smoothing methods, a weight function

κ(x, ·, ·) is placed at the estimation point x and the observations yi are weighted ac-

cording to κ(x, xi, h), where h > 0 is a smoothing parameter that controls the width

of the weighting kernel. For an illustration, see Figure 1. Letting h → ∞ leads to

global smoothing while h = 0 corresponds to interpolation.

The basic idea of kernel regression is that after giving weights κ(x, xi, h) to the

observations Yi, the fit m̂(x;h) at x is calculated using a small class of simple func-

tions. Usually the fit is found in the sense of least squares which is the also criterion

used implicitly in the following. Note that estimation at x is carried out locally
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Figure 1: Weighting of the observations at xi = i, i = 0, . . . , 7 near the estimation

point x = 3.4 with two different smoothing parameters using a Gaussian weight

function. The length of the thick solid lines between the weight function and the

horizontal axis correspond to the weights of the observations Yi. In the upper panel

h = 0.8 while in the lower panel h = 2.
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with the degree of locality determined by h. This differs from global estimation of

m where one single estimation procedure is performed and the fit at x is calculated

by substituting in the value x into the global fitted function. The weight function κ

is usually selected so that

κ(x, xi, h) = K(|xi − x|/h) = K((xi − x)/h)

and this is also what we will do. Note that the weight of Yi can also be value of

some functional of K((xi − x)/h) that depends on the particular estimator. This

is the case for example in Gasser-Müller estimator [10]. The Gaussian probability

density function

K((xi − x)/h) =
1√

2πh2
e−

(xi−x)2

2h2 (2)

is commonly used as a weight function although it is not the best choice in the sense

of the mean integrated squared error
� ∫ {m̂(x;h) − m(x)}2dx, see e.g. [43]. For

other kernel functions, see [28,43]. The class of functions from which the estimate is

calculated can in principle be anything, but it is practical to choose some relatively

small set of functions for which the computational burden stays moderate. The most

popular choice is the class of polynomial functions of certain order p, in particular

constant (p = 0) or linear functions (p = 1). With p = 0 one obtains the classical

Nadaraya-Watson estimator,

m̂NW(x;h) =

∑n
i=1 K((xi − x)/h)Yi∑n
i=1 K((xi − x)/h)

,

where m̂NW(x;h) is the best constant fit at x that is, the weighted average of ob-

servations, see [32, 44]. For other local constant estimators, see e.g. [7, 43]. Note

that the simple running mean smoother can be seen as an another example of local

constant regression with the weight function giving symmetrically equal weights to

observations inside the smoothing window.

Another popular choice is local linear regression (p = 1), where a first order

polynomial t 7→ b + a(t − x) is fitted using weighted observations. The resulting

estimator m̂LLR(x;h) at x is the constant b̂ of the fitted polynomial and it can be

written in a closed form as

m̂LLR(x;h) =
1

n

n∑

i=1

[s2(x;h)− s1(x;h)(xi − x)]K((xi − x)/h)Yi
s2(x;h)s0(x;h)− s1(x;h)2

,
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where

sq(x;h) =
1

n

n∑

i=1

(xi − x)qK((xi − x)/h).

The upper panel of Figure 2 shows two local linear smooths of a simulated data set

with h = 0.5 and h = 60. The data are

Yi = 5 sin(Xi) + 0.5Xi + εi, (3)

with Xi = i, i = 0, . . . , 50, and independent εi ∼ N(0, 72). Note that the local

linear estimate converges to the (global) least squares linear fit as h→∞, since the

weights become equal regardless of the distance from the estimation point.

2.2 Smoothing splines

Smoothing splines are usually defined by finding the function m̂SS(·;λ) that minim-

izes

(y −m)T (y −m) + λ

∫ b

a

(m(d))2. (4)

Here m is assumed to have an absolutely continuous derivative m(d−1), a ≤ x1 <

· · · < xn ≤ b, λ ≥ 0, and we have used the shorthand notation m = [m(x1), . . . ,m(xn)]T .

The common choice is d = 2 and it is also used throughout this work. In the lower

panel of Figure 2 two smoothing splines are fitted to the data set (3) using values

λ = 0.6 and λ = 50.

For the analysis of piecewise constant or discrete signals we extend the term

smoothing spline to cover also a discrete version of the above where, with d = 2, we

minimize

(y −m)T (y −m) + λmTCTCm, (5)

and where C is a matrix that defines second order differencing [see section 2.1 of

Paper IV].

Both of the above minimization problems can also be seen as regularization

procedures, where the λ-term controls the regularity of the solution [34]. This is

practical since in many cases the unregulated procedure would produce numerically
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Figure 2: Smoothing of the simulated scatter plot data (3) shown as circles using

two different methods and two levels of smoothing. Panel A: Smoothing with local

linear regression using Gaussian weights and the smoothing parameter values h = 0.5

(solid curve) and h = 60 (dashed curve). Panel B: Smoothing splines using the values

λ = 0.6 (solid curve) and λ = 50 (dashed curve).

unstable solutions with unrealistically large variation and with poor prediction per-

formance. Two other popular methods that use such a regularization idea are ridge

regression and the penalized likelihood method; see e.g. [18] and [17].

2.3 Smoothing parameter selection

Both of the above smoothing methods use a smoothing parameter, h in local regres-

sion and λ in the smoothing spline. The smoothing parameter controls the roughness

of the smooth and therefore has a crucial influence on the inference about m. This

is graphically shown in Figure 2. Sometimes, when we have prior information about

the behavior of m, especially about its roughness or the number and/or the locations

of its maxima and minima, a subjective trial-and-error procedure for the selection

of the parameter may suffice. However, when no information is available or when
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one does not want to use it, we are usually forced to use some sort of automatic

data driven smoothing parameter selection. Especially for kernel methods, there ex-

ists a huge number of results on the best choice of h in different configurations and

contexts; see e.g. [17, 21, 37, 43] and the references therein. Most of the results are

based on asymptotic analysis and thus might not work in practice. Another, more

pragmatic solution, is to use cross-validation (CV), where one part of the sample at

a time is used as a prediction set and the parameter value that provides the best

prediction error averaged over the different prediction sets is chosen. This approach

is reasonable albeit sometimes rather computationally intensive. It may also happen

that the value of λ produced is very inconsistent with our prior beliefs about the

underlying m. An example of this can be found in Section 4 of [Paper IV]. See,

also [33].

3 The Bayesian paradigm

Local linear regression and kernel methods in general, as well as smoothing splines

are usually regarded as nonparametric methods. An alternative to this is the para-

metric approach where distributional assumptions about the data and other un-

known variables are stated in a parametric form. In function estimation, in addition

to the parameters of the distribution of the data, the variables of interest can be the

vector m of the values m(xi) or the parameters of the function m, for instance the

slope and the constant term of a linear fit. In this work we are mainly interested in

the function values m(xi). The overall inference about the parameters is based on

their posterior distribution which arises from combining the data likelihood and the

prior information. The likelihood describes the assumed relationship between the

parameters of the data generating process and the observed data themselves. In the

prior, our beliefs about the possible and probable values of the unknown quantities

are encoded in a parametric distributional form. The combination of the likelihood

and the prior is done according to Bayes rule that gives the posterior distribution of

the parameters θ given the observed data y as

p(θ|y) =
p(y|θ)p(θ)

p(y)
.

Thus, here p(θ|y) denotes the posterior, p(y|θ) the likelihood, p(θ) the prior and

p(y) =
∫
p(y|θ)p(θ)dθ, the unconditional distribution of the data which serves as a
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normalizing factor. Such a parametric approach is called Bayesian, due to the above

formula used to calculate the posterior. The normalizing factor is ignored when

possible and the posterior distribution is often written using the proportionality

sign ∝ as

p(θ|y) ∝ p(y|θ)p(θ),

because the posterior distribution as a function of θ does not depend on p(y). In

real world problems with many unknowns an explicit formula rarely exist for p(θ|y)

and we have to resort to numerical methods to draw a sample from it. Then various

Monte Carlo methods are typically used, see e.g. [11, 14,35,36].

One of the fundamental ideas of this work is to use a penalty approach similar

to smoothing splines in the prior structure for m. In the discrete case we take

p(m|λ) ∝ λ
n−2

2 exp

[
−λ

2

n−1∑

i=2

(
mi+1 −mi

xi+1 − xi
− mi −mi−1

xi − xi−1

)2
]
, (6)

where we have used the shorthand notation mi = m(xi). For the errors ε =

[ε1, . . . , εn]T we make the common assumption ε ∼ N(0,Σ), where Σ is a posit-

ive definite covariance matrix of size n× n. Defining C so that the exponent in (6)

is −(1/2)λmTCTCm and assuming (1), the posterior can be written as

p(m|y,Σ, λ) ∝ exp

[
−1

2

(
(y −m)TΣ−1(y −m) + λmTCTCm

)]
.

Note that maximizing this is equivalent to minimizing a weighted form of (5). The

minimizer is in fact the Bayesian maximum a posteriori (MAP) estimate when nor-

mal likelihood and the smoothing prior (6) are used [22]. Of course, the Bayesian

approach provides more information since, in addition to a point estimate, it in fact

provides the whole distribution of m|y,Σ, λ. When the prior (6) is used the dis-

tribution is in fact multivariate normal. In the Bayesian approach the smoothing

parameter λ and the covariance matrix Σ can also be treated as random. In standard

smoothing spline literature one uses a homoscedastic model with the actual value of

the variance usually fixed, ignored or estimated from the data [5,40]. In the random

design case the explanatory variables can be treated as random variables, too (see

[Paper V]).
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4 Multiscale analysis and SiZer

As discussed above, the selection of a smoothing parameter is not a straightforward

task. In fact, in many applications the use of one optimal value of a smoothing

parameter may be insufficient. The underlying signal may exhibit interesting be-

havior in many different scales and a single smooth may not capture all features.

Also, the features always have some characteristic scale or a range of scales at which

they are reasonably defined. An example of the use of different scales is given in

Figure 3 where three different views of an object are shown. At the largest scale

one detects only the main features of the underlying signal, while decreasing the

scale more details can be seen. At the smallest scale single local features such as

individual leaves can be seen.

In practical data analysis, the scale at which the behavior of the unknown func-

tion should be investigated can in fact be one of the unknowns posing a problem

that is not mathematically well defined. During the last few decades the problem

of scale selection has been studied intensively in computer science, especially in

computer vision. An important goal has been to provide visual signal processing

abilities to machines and robots to facilitate visually guided navigation and object

recognition [26].

A natural solution to the problem of scale selection is offered by multiscale ana-

lysis, where the unknown objects are investigated with different resolutions. On a

very general level this approach is thought to have an interesting connection to the

mammalian vision mechanism [20, 45, 46]. In the multiscale approach the signal is

investigated with a large number of different scales ranging from the smallest reason-

able to the largest at which the features are reasonable defined. More generally, the

object of multiscale analysis can also be the outputs of functions, algorithms etc. [13].

If necessary, the selection of one or a few scales can be made after multiscale analysis.

During the last few years methods based on the multiscale approach have gained

a lot of popularity in statistics and various fields of applications. This is in particular

due to new useful visualization tools. Early ideas in multiscale data analysis include
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Figure 3: Three different views on an object. The leftmost image uses a very large

scale, while in the center image a moderate scale has been used. The original image

is on the right.

mode hunting and mode trees [8, 27, 29–31]. Recently, the multiscale idea has also

been succesfully applied to classification and pattern recognition [12,13].

Above we have used the terms scale and resolution in the same meaning. Al-

though common usage in the literature, this is strictly speaking slight abuse of terms.

The term ’resolution’ is used in the somewhat similar idea of multiresolution analysis

of wavelets and it was also employed in the early versions of multiscale representa-

tions of images, such as quad-trees and pyramids; see e.g. [19] and [2,24]. Resolution

in those contexts is a quantity that can be changed only in discrete steps and it can

in principle be increased indefinitely. This, however, is not suitable for our purposes

because we define the scale, or resolution, as the effective length of the smoothing

window, a quantity assumed to be continuous.

4.1 Scale space analysis

Scale space analysis used in computer vision is one particular application of the

general idea of multiscale analysis. It uses multilevel smoothing with a continuous

smoothing parameter and with a constant sampling resolution in the explanatory

variables at all scales. In our own approach we also require that the smooths change

continuously with scale, that is, the smooths with different scales should be con-

sistent with each other. In scale space analysis one assumes a convolution type
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smoothing of the form

m̂(·, h) = g(·,X, h) ∗ y, (7)

where ∗ denotes the convolution operation between y and a weight function g which

is similar to κ in kernel smoothing [26]. It can be shown that the Gaussian weight

function (2) is the unique weight function that produces a decreasing number of

modes in the smooth with increasing h [25].

The definition (7) covers many types of smoothing, in particular local polynomial

regression. With this in mind, local linear regression with a Gaussian weight function

and a large set of smoothing parameters can be viewed as an instance of scale space

analysis. This is what is done in the SiZer method discussed next.

4.2 SiZer

One of the mainstays of this thesis is the idea of SiZer (Significant Zero Crossings

of Derivatives), where the trends in the smooth are inspected using various different

levels of smoothing [3,4]. Investigation of trends is a reasonable approach to finding

the features in the data as they are the natural indicators of changes in the signal

and they also directly identify the local minima and maxima. SiZer combines the

analysis of trends with the idea of scale space smoothing and summarizes inferences

about the slopes of the smooths in what is called a SiZer map. From this map infer-

ences can be made by simple visual inspection making analysis of features accessible

also to persons without a degree in statistics.

A crucial advantage of SiZer over traditional smoothing based approaches to find-

ing features in data is that SiZer avoids the bias problem present in nonparametric

function estimation. This is achieved by analyzing the features of the smooths and

not those of the “true” underlying function [3, 43]. Note the small but fundamental

difference to smoothing the original data and focusing on the features of the result-

ing smooth.

The original SiZer of Chaudhuri and Marron uses local linear regression smooth-
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ing. In our Bayesian approach to multiscale smoothing we use a roughness penalty

approach similar to smoothing splines (cf. Sections 3 and 2.2). The basic idea of

investigating the trends of the smooths and visualizing the results with a map re-

mains the same. This Bayesian version of SiZer is called BSiZer and the associated

visualization is called the BSiZer map. Next we describe the basic steps in drawing

a BSiZer map. For more details on map constructions, see [3] and Papers IV and V.

First, a level of credibility α > 0.5 is chosen. A slope (a difference quotient

in the discrete case) of the smooth at smoothing level λ > 0 is said to be signi-

ficantly positive (negative) if its probability of being positive (negative) is at least

α. Significantly positive or negative slopes are then marked with color blue or red,

respectively. Nonsignificant features are marked with color gray. This is done with

a range of values of λ and the pixels thus colored constitute the BSiZer map. Infer-

ences about the significant trends in the smooths can then be made by simple visual

inspection of colors. Note that the choice of colors is, of course, just a matter of

convenience and in some applications a different convention is perhaps more intuit-

ive [Paper II]. In Paper IV we further proposed to use tints of red and blue colors to

encode the magnitude of the posterior probability of the signs of the slopes instead

of binary style decisions. A BSiZer map of the simulated data set (3) is shown in

the lower panel of Figure 4. In this example a continuous m is assumed and the

penalty term λmCTCm of the discrete case is replaced with λmCTR−1Cm, where

matrix R is defined on p.13 of [17]. At the smallest values of λ the map hints at a

periodic nature of the underlying curve. The overall increasing trend is also clearly

visible with the largest scale of smoothing. In the map, pointwise or independent

features are shown, that is, the inferences may not be valid simultaneously for all

values of the explanatory variable with the selected level of credibility α. For details

on different hypothesis testing procedures and related concepts, see e.g. [3, 38] and

Papers IV and V.

In the SiZer and BSiZer maps, for each each level of smoothing, there is a cer-

tain smoothing method dependent degree of localness at which the inferences can

be thought to be made. In many applications this information can be of great value

in the inference phase of the data analysis problem. For local linear regression with
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Figure 4: Upper panel: Family plot with 6 different smooths together with the

original data shown as circles. Lower panel: The corresponding BSiZer map with

credibility level α = 0.95. The horizontal distance between the white curves shows

the width of the effective smoothing window for different values of λ.
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the Gaussian weight function the degree of localness is usually defined as 4h. For

smoothing splines the definition is it a bit more difficult due to the implicit nature in

which the smoother is defined. However, here asymptotic results on the equivalence

of spline smoothing and kernel regression can be used [39]. The effective degree of

localness, that is, the effective smoothing window width at each level of smoothing

is often depicted as the horizontal distance between two curves drawn in the BSiZer

map. An example is shown in the lower panel of Figure 4. Also the so-called family

plot, a plot of smooths with different levels of smoothing, is usually shown together

with the map to facilitate the analysis of features in different scales. Such a plot is

shown in the upper panel of Figure 4 together with the original data.

In addition to signs of slopes or difference quotients, the SiZer idea can also be

used to make inferences about other properties of the signal such as the smooth

itself or its higher order derivatives. One straightforward extension of the current

work would be to test the significance of the magnitude of the slopes. A mouse-

driven GUI could provide a convenient tool for inference by allowing one to select a

magnitude of threshold and then drawing the corresponding map. Other extensions

are discussed in [3]. One drawback of SiZer is that the visualization of inferences of

higher dimensional data becomes difficult. Some approaches are suggested in [15,16].

The idea of level set trees could also be used in the generalization to the multivariate

case [23].

5 Applications

The range of applications for the proposed methods is wide, extending from different

areas of science and technology to business and other areas. The fixed design regres-

sion configuration described above can also be extended to the random design case

as well as to observations with correlated error structures [Paper V]. In addition,

the methods can easily be extended to situations with more than one observation

of each m(xi). A central application in the development of the methods of this

thesis has been the analysis of the reconstructed temperatures during the Holocene,

a roughly 10000 year period in the Earth’s history extending from the end of the

last ice age to the present. Here the features of the smooths of the past temperat-

ure can be interpreted as representing temperature changes in different time scales.
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Understanding how temperature in the past has changed over different time scales

provides perspective for evaluating the present change of our environment.

Another interesting question is to consider the temperature reconstruction method

itself. This is done in Papers I, II and VI. The typical set-up is that modern tem-

peratures together with modern and historical values of a suitable response variable

are first collected. In our case the geographical area of interest has been northwest

Finnish Lapland and chironomid or diatom assemblages have been used as response

variables. Other possible indicators are e.g. tree rings. The modern responses and

their dependence on the temperature are assumed to be similar to past responses

and their dependence on past temperatures. Other variables affecting the responses

are ignored or assumed to be constant. Of course, the environmental variable under

interest could be other than temperature, e.g. pH or alkalinity. For more details on

the reconstruction problem see [1].

6 Summaries of the original papers

6.1 Paper I, Using Smoothing to Reconstruct the Holocene

Temperature in Lapland

A nonparametric inverse approach is used to regress the past temperatures in the

Finnish Lapland. First a dimension reduction is performed for the pre-processed

explanatory variables using principal component analysis or partial least squares.

Then local linear regression based on modern training data is used to predict values

of past temperatures based on past values of the explanatory variable. The best

reduced dimension and smoothing parameter in local linear regression are sought

using leave-one-out cross-validation. The responses used are relative taxon abund-

ances in diatom assemblages. The reconstructions obtained are in line with other

studies. Besides assuming a similar temperature dependence for the modern and

the past response variables, no other environmental assumptions are made.
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6.2 Paper II, Quantitative Holocene Climatic Record from

Diatoms in Northern Fennoscandia

The SiZer method of Chaudhuri and Marron is applied to the analysis of regressed

Holocene temperatures with diatom taxon abundances as the response variable. The

climatological events suggested by the SiZer map coincide well with events considered

in other studies but which usually discuss them without proper statistical analysis.

6.3 Paper III, Making Inferences about Past Environmental

Change Using Smoothing in Multiple Time Scales

Modifications of the original SiZer are discussed in the context of different assump-

tions about the modern training set and the prediction set of past responses. Dif-

ferent confidence intervals are derived when the training and prediction sets are

alternatively fixed or random.

6.4 Paper IV, Bayesian Multiscale Smoothing for Making

Inferences about Features in Scatter Plots

A Bayesian version of SiZer (BSiZer) for the regression case is proposed assuming

a fixed design and independent errors. The smoothing parameter of the prior can

be treated either as fixed or random. The conceptually simple Bayesian approach

leads to nice closed form posteriors without any approximations. The data analysis

examples demonstrate the practical usefulness of the new method. A new sampling

based greedy algorithm for calculating the simultaneous confidence bands of differ-

ence quotients is proposed. Use of tints of red and blue in the BSiZer map is used

to indicate the credibility of significant trends. A Matlab BSiZer software package

is made publicly available.

6.5 Paper V, Bayesian analysis of features in a scatter plot

with dependent observations and errors in predictors

In this paper BSiZer is extended to non-fixed designs and correlated errors. For

explanatory variables, a normal likelihood together with an application specific prior

distribution on their true values is assumed. General covariance matrix Σ is used

for the error structure. For random Σ an inverse Wishart prior distribution is
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used. Further, a modification for a continuous regression function is described. An

additional degree of simultaneousness in the construction of the BSiZer map is also

considered. Matlab software is provided.

6.6 Paper VI, Selection of Prior Distributions and Multiscale

Analysis in Bayesian Temperature Reconstructions Based

on Fossil Assemblages

Two Bayesian temperature reconstruction models proposed earlier, the Poisson and

the multinomial models, are compared. With the used data, both proposed models

seem to be sensitive to the selection of prior for the past temperatures. In addition,

the use of modern temperatures as informative priors of the past is questioned and a

non-informative smoothing prior is proposed. Bayesian SiZer methodology is applied

directly to the posterior distribution of the past temperatures. Software for this

“model within BSiZer” approach is provided.
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[23] J. Klemelä. Visualization of Multivariate Density Estimates with Level Set

Trees. Journal of Computational and Graphical Statistics, 13(3):599–620, 2004.

[24] A. Klinger. Pattern and search statistics. In J. S. Rustagi, editor, Optimizing

Methods in Statistics. Academic press, 1971.

[25] J. J. Koenderink. The structure of images. Biological cybernetics, 50:363–370,

1984.

[26] T. Lindeberg. Scale-Space Theory in Computer Vision. Kluwer Academic Pub-

lishers, 1994.

[27] D. J. Marchette and E. J. Wegman. The Filtered Mode Tree. Journal of

Computational and Graphical Statistics, 6:143–159, 1997.

[28] J. S. Marron and D. Nolan. Canonical kernels for density estimation. Statistics

& Probability Letters, 7:195–199, 1988.

[29] M. C. Minnotte. Nonparametric testing of the existence of modes. Annals of

Statistics, 25:1646–1660, 1997.

24



[30] M. C. Minnotte, D. J. Marchette, and E. J. Wegman. The bumpy road to

the mode forest. Journal of Computational and Graphical Statistics, 7:239–251,

1998.

[31] M. C. Minnotte and D. Scott. The Tree Mode: a tool for visualization of non-

parametric density estimates. Journal of Computational and Graphical Statist-

ics, 2:51–68, 1993.

[32] E. A. Nadaraya. On estimating regression. Theory of Probability and its Ap-

plications, 9:141–142, 1964.

[33] B. U. Park and J. S. Marron. Comparison of data-driven bandwidth selectors.

Journal of the American Statistical Association, 85:66–72, 1990.

[34] J. O. Ramsay and B. W. Silverman. Functional Data Analysis. Springer, 1997.

[35] C. P. Robert. The Bayesian Choice. Springer, 1994.

[36] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer, 1999.

[37] D. Ruppert, S. J. Sheather, and M. P. Wand. An effective bandwidth selector for

local least squares regression. Journal of the American Statistical Association,

90:1257–1270, 1995.

[38] M. P. Salganik, M. P. Wand, and N. Lange. Comparison of Feature Significance

Quantile Approximations. Australian & New Zealand Journal of Statistics,

46(4):569–582, 2004.

[39] B. W. Silverman. Spline smoothing: The equivalent variable kernel method.

The Annals of Statistics, 12:898–916, 1984.

[40] B. W. Silverman. Some Aspects of the Spline Smoothing Approach to Non-

parametric Regression Curve Fitting. Journal of the Royal Statistical Society

B, 47(1):1–52, 1985.

[41] B. W. Silverman. Density Estimation for Statistics and Data Analysis,

volume 26 of Monographs on Statistics and Applied Probability. Chapman &

Hall, 1986.

[42] G. Wahba. Spline Models for Observational Data. Society for Industrial and

Applied Mathematics, 1990.

25



[43] M. P. Wand and M. C. Jones. Kernel Smoothing, volume 60 of Monographs on

Statistics and Applied Probability. Chapman & Hall, 1995.

[44] G. S. Watson. Smooth regression analysis. Sankhya Series A, 26:359–372, 1964.

[45] H. R. Wilson. Psychophysical evidence for spatial channels. In O. J. Brad-

dick and A. C. Sleigh, editors, Physical and Biological Processing of Images.

Springer-Verlag, New York, 1983.

[46] R. A. Young. The Gaussian Derivative Model for Spatial Vision: I. Retinal

mechanisms. Spatial Vision, 2:273–293, 1987.

26


