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for funding a year-long research project, to the Department of Mathematics
and Statistics for the teaching experience (and salary!), and to the chancellor
for support while writing and publishing the thesis, and for funding to attend
conferences.

Warmest thanks to my family for their patience and curiosity, and especially
to my parents for their support and encouragement and everything they have
given, from the first lessons to the last welcome home.



CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3. Quantifier-rank equivalence between linear orders . . . . . . . . . . . . 17
3.1 Decidability: the consistency game . . . . . . . . . . . . . . . . . 19
3.2 Local equivalence at an element . . . . . . . . . . . . . . . . . . . 21
3.3 Labeling firsts and lasts . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Effective decision procedures and completions . . . . . . . . . . . 32
3.5 Semimodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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1. INTRODUCTION

This dissertation studies how the Dynamic Ehrenfeucht-Fräıssé Game computes
queries on ordered sets and how a finite number of automata running over ordi-
nals in ordinal time computes queries about truth in the universe of constructible
sets. In a sense, games are interactive computation. So we compute about lin-
ear orders, then once we are comfortable knowing that little can be said about
a linear order, we consider what can be said about computation along a linear
order. The thesis contains five papers:

I On quantifier-rank equivalence between linear orders, Submitted, accepted
pending revisions’ review, Information and Computation, WOLLIC2007
post-conference volume. I was proud to hear that something like 20%
of submissions to WOLLIC were accepted, and half of those invited for
post-conference publication. The paper changed a lot after the conference
because I was preparing it for this thesis.

II Dynamic Ehrenfeucht-Fraisse games on linear orders in first order and
infinitary logic. This is a manuscript.

III Minimality considerations for ordinal computers modeling constructibil-
ity, with Peter Koepke, Theoretical Computer Science, 394, 197-207,
2008.

IV Register computations on ordinals, with Peter Koepke, Archive for Math-
ematical Logic, 47, 529-548, 6, September 2008.

V Ehrenfeucht-Fräıssé Games on Linear Orders, in Logic, Language, In-
formation and Computation, Lecture Notes in Computer Science, 4576,
72-82, July 2007.

These papers grew out of questions about ordinal arithmetic: definitions and
computable enumerations. In 1996, I wondered

• what questions can be resolved by running a few linked pointers (automata
which can alter each others’ states, and sense when they collide) continu-
ously, or monotonically, through the ordinals?

I came to Finland hoping to work on infinitary logic and I was well satisfied.
Professor Väänänen assigned me a project on ordinals –

• interpreting ≡k classes of ordinals with the same quantifier-rank-k theory
as classes of ordinals with a common tail in their Cantor Normal Form
expressions, and

• playing Ehrenfeucht-Fräissé games on ordinals with additional structure,
such as ordinal arithmetic.
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The results showed how very little can be defined, even in infinitary logic – only
the first and last occurrence of each quantifier-rank-k-type. Out of this work we
get a normal form for a formula of the theory of linear order in first-order and
infinitary logic. All of the work for this thesis was researched and written while
I was a student at the University of Helsinki. The second paper was written
first, in 2004. The first paper came next, in 2005. The 3rd and 4th papers grew
out of a collaboration with Professor Koepke in 2005. They answer the question
posed earlier in this paragraph (the first item/bullet) which I had studied in
1996. The linear consistency game which now runs through the first paper was
written into it in 2007, though it was present as the framework I was thinking
in ever since I learned the model existence game in Professor Väänänen’s 2003
course on infinitary languages.

We review some early work on logics with a long semantic game, abstract re-
cursion, and linear order to put this thesis in a historical setting:

Tarski [T35] proved the decidability of some types of linear order after hav-
ing considered them during a 1926-28 seminar. Turing defined the mechanical
definition of definability or computability which is ubiquitous today. He used it
first [T39] to investigate the question: would a tower of logics, each resolving the
truth predicate of its predecessors, be complete? Gödel [G40] seems to have an-
swered this question in the affirmative with the constructible universe. Modern
treatments of this model of set theory carry out the axioms of comprehension
transfinitely, and phrases like “Silver machines” suggest that theorists implic-
itly view this as a mechanical process by which all queries can be computed and
answered in infinite time.

Tarski proved the decidability of the theory of ordinals. Kreisel [K53] asked
whether a broader class of linear orders might have a decidable theory. Ehren-
feucht [E59] remarked that the consequences of a theory are decidable just in
case there is an algorithm to produce, for each consistent extension of the the-
ory, a model of that extension. Thus, the difficulty in proving the theory of
linear order to be consistent, prima facia, was the great variety of models which
might have to be constructed (by a single program).

Fefferman and Vaught [FV59] showed how the theory of a whole model can
be derived from the theory of its summands or multiplicands – from its parts.
This is very useful in aligning a whole model to satisfy a particular theory.
In this thesis we will use only the shallowest notion of addition on theories of
linear order, addition on sets of pairs of theories, and addition and multipli-
cation on semi-models. Meanwhile, Tarski [T58] remarked that Lω1ω1 defines
wellorders by asserting the existence of an infinite descending chain, whereas in
Lω1ω wellorder is an axiom schema, as in Lωω. Ehrenfeucht [E60] addressed the
question of deciding ordinal arithmetic with a paper interpreting quantifier-rank
equivalence ≡k in terms of a game in which the second player tries to construct
a partial isomorphism of size k, and the first player insists that the most dis-
similar elements be included in that partial isomorphism. Implicit here was the
notion of satisfaction as a semantic game; the concatenation of two semantic
games is the comparison game. Büchi [B60] showed that queries on linear orders
can be treated as automata. It’s common nowadays to think of automata in
terms of the languages they accept. Büchi exploited the reverse: queries and
model-theoretic invariants can often be interpreted as simple repetitive compu-
tations. Kreisel [K65] and Sacks described metarecursive sets and metarecursive
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functions on the recursive ordinals.
The study of Lω1ω, constructibility, and deciding strong languages on linear

orders (e.g., by interpreting them as automata), grew into fields of their own.
Yet, the decidability of the theory of linear order remained unfinished. Läuchli
and Leonard [LL66] proved that the theories of ordinals are not as varied as
had been expected; indeed, three functions generate a family of linear orders
which satisfy any consistent extension of the theory of linear order. They asked
whether the theory of linear order is atomic; Amit and Shelah [AS76] proved that
a set of functions can simultaneously preserve the set of finitely axiomatizable
linear orders and generate models of any consistent extension of the theory
of linear order. Lopez-Escobar [L68] refined the proof that wellorder is not
definable in Lω1ω into a normal form expressing quantifier-rank ≡α classes in
Lω1ω(linear order) as the class of ordinals with a given Cantor Normal Form
tail. Of course, a Normal Form goes in quite a different direction than proving
that wellorder cannot be defined even with additional information.

The logic group in Helsinki studied logics whose truth predicate is defined by
a semantic game, see [O90] [T90] and [VV04]. Whereas Ehrenfeucht’s player I
was allowed to point out at most k most-different elements, these games replace
the finite number k by a clock (P,<). In this thesis, < is a linear order, but
trees and posets are interesting, too. Player II must continue to create a partial
isomorphism so long as the first player is able to continue diminishing the value
on the clock. This notion of a semantic game has been fruitful in philosophy,
as well as in mathematics. The question of whether player I would prefer to
use the clock (P,<) or (Q,<) when comparing models A,< and B,< becomes
complicated.

When I first planned this thesis, Professor Väänänen assigned a series of
games involving ordinals with structures, especially ordinal arithmetic. In 2004
I had meant to prove something to be decidable, or decidable relative to an
oracle. I still mean to publish those results, including some lovely and surprising
Ehrenfeucht-Fräıssé games. In this thesis you won’t find any ordinal arithmetic,
because other things happened. First, I have studied a notion of infinitely
repeated ordinal arithmetic – a finite number of registers moving continuously
through the ordinals and reading their instructions from a single, finite program
– and it turns out that this machine can compute truth in Gödel’s constructible
universe and effectively construct a model of set theory (and one that people
care about). Explicit computation of set-theoretic constructible truth may have
fruitful applications to studying interesting questions about constructible in set-
theory. While studying ordinal arithmetic, I was surprised to work out many
simplifications of what the literature presents as the theory of linear order;
publishing them now fills out this thesis:

• A normal form for quantifier-rank classes of linear orders, which is similar
to the Normal Form of [L68] for ≡α classes of ordinals, describes each ≡λ
class in terms of the definable ends of the linear order. This is useful for
constructing models of any theory containing a linear order.

• the decidability of the theory of linear order without appeal to Ramsey’s
theorem,

• a simpler construction of a linear order with undecidable theory, but de-
cidable Σn theories,
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• a feasible enumeration of the ≡4 classes of linear order and the ≡k classes
of ordinals.

• the atomicity of the Boolean algebra of theories of linear order from a
different direction than that in [AS76] (they simplify the linear orderings,
we simplify the propositions),

and with a few comments about semi-models the thesis is finished and our
abiding interest in ordinal arithmetic is now invisible in the following articles.
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2. SUMMARY OF CONTENTS

I On quantifier-rank equivalence between linear orders

A An introductory section

1 Theorem 3.0.1 gives a precise criterion for Lω1ω quantifier-rank equiva-
lence µ0 ≡α µ1 in terms of the Cantor Normal Form of µi.

2 Theorem 3.0.2 gives a similar criterion for Lω1ω or first-order quantifier-
rank equivalence µ0 ≡k µ1. We don’t have a Cantor Normal Form for
arbitrary ordinals. What we have, instead, is an ordering of first and last
occurrences in {x : φ(x)} which is a natural generalization of the Cantor
Normal Form.
Suppose φ(x) and ψ(x) are formulas of quantifier-rank k−2 with a single
free variable, x. Then in quantifier-rank k we have sentences such as

∃x(φ(x) ∧ (∀y(ψ(y)→ x < y)))

which expresses that inf{x : φ(x)} < inf{x : ψ(x)}. By switching φ for
ψ, < for >, and negating the formula, the reader will see that ≡α can
express the ordering on the set A of inf{x : φ(x)} and sup{x : φ(x)} for
each formula φ, and whether those suprema and infima are realized. Fur-
thermore, we could substitute for φ in the displayed sentence a formula
of quantifier-rank k − 1, and in this way, ≡α knows the quantifier-rank
k − 1 formulas realized between adjacent elements of A. The theorem
asserts that this is all that ≡α can express. Furthermore, we can enumer-
ate A efficiently by decomposing an arbitrary formula φ(x) into its local
part and a global part, the global part is the determined by 2α-many
iterations of adding inf and sup to A.
The global part of φ indicates where the constant lies in A, and the local
part describes the area around the constant. We form A in stages: for
each cut (b, c) : b∪ c = A, b < c, we add to A the inf (and, symmetrically,
the sup) of {x : φ(x)}, for every local formula φ(x) of quantifier rank β
such that:
• β is larger than the local types in some cofinal segment of b, or
• elements satisfying φ are not cofinal in b, and above them all is some

element of b which has quantifier rank > β,
For this reason, A is closed under 2α-many iterations of the process of
adding to A the inf and sup of each ≡loc

β class, for β the least bit in the
index γ < 2α of this closure process.

3 Theorem 3.0.3 introduces a Model Existence Game for the theory of
linear orders: A sentence is consistent just in case there is a function
which tells how, for any constant, we could split the linear order into
two parts, and describe both parts in the same quantifier rank as the



2. Summary 10

original theory, such that the two parts add up to the original theory.
The original sentence is a set of “promised types,” along with the promise
that these are the only types realized. If it is possible to consistently split
this sentence on any of its promised types, and likewise for the “split”
sentences, then all of these sentences are consistent.
If the subject matter were trees or planar graphs, rather than linear or-
ders, we might say: “if a sentence has any model, then it has a fractal
model” – that fractal model being the model created by repetitively re-
placing the promise of a linear order satisfying φ, which promises a set
U of types, with, randomly for an element x ∈ U , the pair of promises ψ
and ξ which split φ at x.

B A section on decidability and the consistency game.

1 Definition 3.1.1 defines the linear consistency game, which can prove a
linear order to be consistent. Different versions of the game all work –
player II stores a database of information about tne intervals, and player
I can have various fields – so long as the database determines the ≡α
class of each interval.

2 A winning strategy for player II witnesses the consistency of φ. In this
way, we find that the theory of linear order is decidable, and that the
decision procedure does not require any essential use of Ramsey theory,
except to provide a (poor) upper bound on the length of the game, and
so on the effectiveness of this procedure.

C A section on local equivalence at an element.

1 ≡loc
α is defined. Various definitions are equivalent – we could say that a

formula φ(x) is local if the variables it refers to can’t tend uniformly away
from x, or we could insist that the theory between x and any variable
mentioned be “small,” in the sense of a metric on sentences. Maybe the
best definition is in terms of games: µ0 ≡loc

α µ1 holds just in case Player
II wins the EF game in which either player can add new elements to
either end of either linear order, and play there. We give a definition
based on the arithmetic of linear orders, because:

2 All the useful results we need about ≡loc follow quickly from the defini-
tion.

D A section on labeling inf{x : φ(x)} and sup{x : φ(x)}, or firsts and lasts.

1 We define “cuts” and “intervals.” We define a label to be inf{x : φ(x)∧b <
x < c} or sup{x : φ(x) : ∧b < x < c}, for any cut (b, c) such that A = b∪c.

2 Definition 3.3.2 spells out the conditions under which a label is definable.
For finite quantifier ranks, the definable labels are a significant fraction
of all labels. However, for infinite quantifier ranks, vast numbers of labels
are “undefinable,” and this author is grateful whenever the final ordered
set A turns out to much smaller than the set of labels, rendering the
theory of the linear order in that quantifier rank much shorter.

3 Definition 3.3.3 indicates how we index a sequence of closure, the union
of which is an efficient enumeration of that set A of infima and suprema
which ≡α can order.

4 A lemma shows that if player I preserves a “discrepancy” in A, player I
can win.
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5 Theorem 3.3.1 shows how player I can get a “discrepancy” in the initial
game, from any difference between A or the ≡loc

β classes realized in any
cut in A.

6 A lemma shows how the local ≡loc
α types of the left end of an interval

orders some labels inf{x : φ(x)} and sup{x : φ(x)} in the interval, and
that the left and right ends of the interval label every element of A that
≡α orders in the interval.

7 Theorem 3.3.2 shows that the labels in A are sufficient to insure µ0 ≡k µ1

when the same labels A have the same order in µi and the same ≡loc
β

classes between elements of A for every β < α.

E A section called “effective decision procedures and completions” which in-
troduces a local version of the linear consistency game. We prove that the
two games are equivalent. The local game offers each player far fewer moves
than the linear consistency game, and so it is possible to write down win-
ning strategies in the local game even when the linear consistency game’s
game tree is prohibitively large.

1 The local consistency game is defined – rather than split ≡k theories at
the types they promise, we split unordered sets of promised local types
into subsets.

2 Definition 3.4.2 indicates how we will “weave” the orderings implied by
a series of ≡loc

β classes into a single ordering of a large number of con-
stants. The result is closed under the function from (an ≡loc

β class τ
and a subformula φ which τ promises) to (an ≡loc

β class which extends φ
and information about how its promises are ordered with respect to the
promises of τ).

3 Definition 3.4.3 and 3.4.4 define completions in case 1. the set of promised
local types can be realized in a single almost locally closed set, or 2. not.

4 We define a linear order which is in the desired ≡k class, and which is
finitely axiomatizable, indeed, axiomatized by the formula in the previous
two definitions.

5 Theorem: the linear order constructed in the previous definition is a
model of the “piecewise dense” of definitions 3.4.3 and 3.4.4.

6 Theorem 3.4.2 shows that those formulas are complete, by finding the
≡k+m class of the formula, for all m. This uses in an essential way our
proof about the normal form of an ≡k+m+2 class – we show that the
complete formula determines which ≡loc

k+m classes φ are realized in any of
its models, by induction on m and by the theorem that an ≡loc

k+m class,
as a set of ≡k+m classes, only knows where some labels inf{x : ψ(x)} and
sup{x : ψ(x)} occur; then we prove that the complete formula implies
the ordering on the labels inf{x : φ(x)} and sup{x : φ(x)} for various
such φ.

F A section about semi-models. A semi-model is a way of storing information,
which is something like a formula, in that it is nested, and something like
a model, in that its constituents are ordered, and that ordering is intended
to be reflected in any model of the the semi-model.

1 We define semi-models, modifying slightly the definition of [3].
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2 We prove the theorem stated (but not proved) in [3] that if semi-models
provided a way of constructing a model for any consistent sentence φ
(namely, an easy part would be to order the subformulas of φ, then we
find a function from nodes to subtrees such that copying those subtrees
below those nodes provides another semi-model of φ; the hard part is
this: when we iterate this process infinitely, until the tree is closed (and
probably infinite), how does the theory of the resulting infinite tree relate
to φ?), then a corollary would be the decidability of the theory of liner
order.

3 A lemma proves the minimal semi-models of ω, the natural numbers.
4 A lemma proves the minimal semi-models of η, the rational numbers.
5 A theorem proves that there is a semi-model for any consistent theory φ.

An example then shows that these semi-models are very concise ways to
represent φ – in fact, the semi-model is at once a compressed statement
of φ and an ordered set which shows how to construct arbitrarily large
semi-models of φ.

II Dynamic Ehrenfeucht-Fraisse games on linear orders in first order and infini-
tary logic..

A An introductory section We enumerate the theory of topologies induced
by linear orders. This conveniently isolates the theory of “transitive sets
of types limiting to elements.” To this, the theory of linear order adds
exactly the permutations on the set of types. This introduction gives a
simple definition of ≡loc

k which works only for topologies, but which perhaps
illustrates how local types can be used in a simple setting, before we turn
our attention to the theory of linear order.

1 Theorem: We use the linear consistency game to prove an enumeration
of ≡2 classes of linear orders.

2 Theorem: We use the local linear consistency game to prove an enumer-
ation of ≡left

3 classes of linear order.
3 A definition explain the local linear consistency game, and a theorem

proves that it works. The theorem is a corollary of our work on the
normal form for an ≡α theory of linear orders.

4 Theorem: the ≡loc
2 classes, enumerated.

5 Theorem: the sets of ≡loc
2 classes which appear in the local linear con-

sistency game are enumerated, and each is shown to be inconsistent or
consistent. As a result, we find an enumeration of ≡3 classes of linear
orders.

B The ≡4 classes of linear order are numerous; we can estimate their number
to within 1% accuracy by hand, but to resolve those 1% of cases which are
difficult, we submit them to a computer program.

1 The program is defined.
2 Theorem: the program faithfully tests ≡4 classes by playing the local

linear consistency game.

C Section: show that the Lω1ω theory of linear order is decidable and we prove
that the criterion we have established for finite ≡k holds also for infinitary
≡α.
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1 Definition 4.3.1 decides whether labels inf{x : φ(x) ∧ b < x < c} or
inf{x : φ(x) ∧ b < x < c} – for φ a local formula and b ∪ c a set of labels
– are known to ≡α.

2 Definition 4.3.2 describes the closure process which results in the set A
of labels inf{x : φ(x)} or sup{x : φ(x)}. This process runs for ordinal
2α-many timesteps, one for each possible sequence of clocktimes in the
dynamic Ehrenfeucht-Fräıssé Game of length α.

3 Lemma 4.3.1 shows that if player I preserves a “discrepancy” in A, player
I can win.

4 Theorem 4.3.1 shows that player I can find that discrepancy if the order-
ing on A is different, or if for some ≡loc

β class φ and some labels b∪c ⊆ A,
the formula (φ(x) ∧ b < x < c) is realized in one model and not in the
other.

5 Theorem: If some moves are played, an interval [a, b] has been identified,
and α′-many moves remain, then the fact that the same local types were
realized between the same labels in the original game implies that the
same holds now in the interval [a, b], with reduced quantifier rank α′.

6 Theorem 4.3.3 explains our normal form for ≡α+1, in terms of labels
inf{x : φ(x)} and sup{x : φ(x)}.

7 Theorem: as an example of the theorem, we prove a criterion for Z ×
k0 ≡ω+m Z × k1 which can be easily verified by playing the game. How-
ever, a more interesting corollary is the following:

D Section: We prove a normal form for Lω1ω quantifier-rank ≡α classes of
ordinals – each such ≡α class defines the class of ordinals which share a
certain Cantor Normal Form tail.

1 Theorem: the almost locally closed sets of ordinals are very simple. In
fact, ordinals’ regularity or homogeneity (away from the tail) imply that
there are in fact very few locally closed sets, even fewer than the number
of ≡loc classes, at each quantifier rank.

2 Theorem: the criterion, the same as 3.0.1, is proved as a corollary of the
normal form for Lω1ω over ordered sets.

3 We find a function from the ≡k and ≡k−2 classes of ordinals which gen-
erates the ≡k+2 classes of ordinals. This allows:

4 Theorem: a precise enumeration of all (roughly 2k
2...) ≡k classes of or-

dinals.

E Section: We create an undecidable linear order on which Σn is uniformly
decidable.

1 The linear order is defined;
2 We give an algorithm for computing Σn;
3 The linear order has been defined by diagonalizing against all algorithms,

so no algorithm uniformly decides its theory.

F Section: We extend the criterion to the very interesting non-wellfounded
logics whose queries are computed by Dynamic Ehrenfeucht-Fräıssé Games
along ordered sets which are not wellfounded (in our case, linear orders,
but more generally, trees or posets).
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1 Lemma: each such games is, in one sense, a wellfounded sequence of
nonwellfounded games whose length is not fixed by diminishing a clock,
but by a simple cardinal upper bound, since the order type of any set of
moves which are strictly weaker than each other is wellfounded.

2 Theorem: replacing the tree of labels 4.3.2 of infinitary logic by a tree
of labels indexed by the wellordering described in the previous lemma,
we find the normal form for an ≡λ quantifier-rank-λ equivalence class of
linear orders.

III Minimality considerations for ordinal computers modeling constructibility, with
Professor Peter Koepke.

A We argue that continuous computation along a linear order can model com-
putations in which continuity is lost at a limit time.

B A continuous automaton with a finite number of registers pointing to or-
dinals, running over ordinal time, is defined and many of its properties are
proved.

C We prove that the automaton can model the behavior of seemingly more
complicated automata, by stacking information about them into its regis-
ters.

D We prove that the number of pointers required is between 4 and 17.

E We describe the speed of this automaton, when compared to an automaton
which runs over ordinals and is allowed to write messages to itself at any
ordinal, i.e., an infinite Time Ordinal Turing Machine.

IV Register computations on ordinals, with Professor Peter Koepke.

a Section: introduction

1 We describe other work on hypercomputation.
2 Our main theorem: A set of ordinals is computable (some program halts

on exactly those ordinals) if and only if it is in L, Gödel’s set of con-
structible sets.

b A section defining the ordinal register machines precisely.

1 We define the Ordinal register machines,
2 We define the process of ordinal computation,
3 We define what it means for a function from sequences of ordinals to

ordinals to be computable.

c A section on algorithms

1 We prove that addition, multiplication, and composition of ordinals are
ordinal computable.

2 We prove that inverses to computable functions are all computable.

d A section on Stacks of ordinals

e A section on recursion

1 We prove that anything definable by recursion is ordinal computable.
2 We write the program for reading code and executing it.
3 We prove that this stacking/simulation program faithfully reads and ex-

ecutes code.
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f We prove that truth in the constructible universe is definable by recursion.

g We translate truth in the constructible universe into truth in the theory of
sets of ordinals.

h We list axioms for the theory of Sets of Ordinals and prove that any model
of that theory contains a model of ZFC.

1 Any element of ZFC is wellfounded; If R is a wellfounded collection of
sets of ordinals in this notion of ∈, then we call R a “point”; the theory
of points under extension will be the model of ZFC that we build within
the theory of sets of ordinals.

2 We define when two points are equivalent, so that the theory will be
extensional.

3 We define a point to be “in” another point if, as wellfounded relations,
the former is equivalent to a sub-ordering of the latter.

i The set of points and “in” satisfies ZFC.

1 Lemma: comprehension.
2 Theorem: the other axioms of ZFC.

V Ehrenfeucht-Fräıssé Games on Linear Orders

A Section: We write a finite database in which both players in the EF game
can find their winning strategies.

B Section: We write semi-models for the elements of the Läuchli-Leonard hi-
erarchy. These are very inefficient semi-models of formulas, when compared
with the semi-models of item 6.

1 We define equivalence between models and semi-models.
2 We define the class of consistent semi-models.
3 We enumerate the Läuchli-Leonard hierarchy, i.e., 〈1,×ω,×ω∗,finite

∑
, σ〉,

the closure of the singleton order under the four functions: take λ to λ×ω
or to λ× ω∗; take (λi)i<n to

∑
i<n λi or to a dense shuffle of the λi.

4 We write semi-models for the results of those functions.
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3. QUANTIFIER-RANK EQUIVALENCE BETWEEN LINEAR
ORDERS

Abstract

We construct winning strategies for both players in the Ehrenfeucht Fräıssé
Game on linear orders. To this end, we define the local quantifier-rank k theory
of a linear order with a single constant, (λ, x) and prove a normal form for ≡k
classes, expressed in terms of local classes. We describe two implications of this
theorem: 1. a decision procedure for whether a set U of pairs of ≡k classes is
consistent. – whether for some linear order λ, U is the set of pairs (φ, ψ) such
that λ |= ∃x(φ<x ∧ ψ>x) – which runs in time linear in the size of the formula
which expresses that exactly the pairs of ≡k classes in U are realized. The only
obstacle to effectively listing the theory of linear order is the vast number of
different ≡k classes of theories of linear order. 2. a finitely axiomatizable linear
order λ which we construct inside any ≡k class of linear orders. We relate our
winning strategies to semimodels of the theory of linear order. First, we situate
our result in a historical background.

Introduction

That the theory of ordinals is decidable is proved in [2] and [10] and [11] as an
initial step in other directions. In [4] we find the decidability of the theory of
ordinals proved from a game-theoretic view. The reader of this paper must be
aware of the game defined in [4]. We will not use any theorem from [4], but that
paper is, in any case, the right introduction to our subject. In [6] (Theorem 3,
page 411) we find infinitarily equivalent ordinals, generalizing the ≡k-equivalent
ordinals of [4] (Theorem 12). On the other hand, Scott sentences of infinitary
logic define any ordinal. In [8] we find smaller ≡k ordinals than those in [6] as a
result of analyzing the Ehrenfeucht-Fräıssé Game (hereafter, the EF game) to
the precise solution of theorem 3.0.1:

For any ordinals µ, δ, let δ be a cutoff, with respect to which we see µ as
having a body and tail: βδ(µ) = {x ∈ µ : x+ωδ ≤ µ}, τδ(µ) = {x ∈ µ : x+ωδ >
µ}. The separation of µ into these two pieces is useful in defining the Cantor
Normal Form (hereafter CNF). Note that µ = βδ(µ) + τδ(µ) and ωδ divides
βδ(µ).

Theorem 3.0.1: ([8]) For any ordinals µ0, µ1, α, µ0 6≡α µ1 holds just in case for
some δ < α, one of the following holds:

1. 2 × δ < α and ((δ > 0) ∧ (ωδ < µ0 ⇐⇒ ωδ < µ1)) ∨ ((δ = 0) ∧ (0 <
µ0 ⇐⇒ 0 < µ1)).
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2. (∃γ(2× δ < γ < α)) and

∨i<2((βδ+1(µi) = βδ(µi)) ∧ (βδ+1(µ1−i) 6= βδ(µ1−i))∧

((τδ(µi) = ∅) ∨ (τδ(µi) \ {βδ(µi)}) 6≡α−1 ω
δ+1 + τδ(µ1−i))).

3. χδ(µ0) 6= χδ(µ1) and ∨i<2χδ(µi) < 2α−(2×δ) − 1.

where χδ(µi) is:

• The number of x such that ωδ × x < µi and ωδ × x+ ωδ+1 > µi,

• +3 if ωδ+1 ≤ µi,

• −1 if δ > 0 and µi < ωδ+1,

• −1 if τδ(µi) 6= ∅ and (τδ(µi) \ {βδ(µi)}) 6≡2×δ ω
δ + τδ(µi).

The Cantor Normal Form (hereafter CNF) of µ is similar to
∑
δ ω

δχδ. The
first two conditions require µi to have the same CNF exponents δ; the final
condition requires that the CNF coefficients are the same, or large. From the
CNF of µ0 and µ1 we find a finite set of δ such that if the theorem fails at
those δ, it must fail at all other δ. Theorem 3.0.1 describes the theory of
ordinals precisely and can be used to imply other results. Our main theorem is,
similarly, a solution to the EF game for linear orders:

Theorem 3.0.2: If λ is a linear order and k is a finite number then there is a
finite function Aλ mapping labels into λ∪λ+ such that for any two linear orders
λ and λ0 and any clock k, λ ≡k λ0 holds just in case Aλ and Aλ0 have the
same labels in their domains and induce the same ordering on them, and the
sequences (Thloc

k−1(λ, a) : a ∈ A∩λ) and ({Thloc
k−1(λ, a) : b < a < c} : (b, c) ∈ A+)

are identical.

This theorem generalizes to Lω1ω, except that A is no longer finite; A is now
an infinite tree of labeled elements with ranks B for each descending sequence
B of ordinals in the quantifier rank ordinal α. It holds, too, for linear orders
with unary relations. If we add unary relations to our vocabulary, there is an
≡loc

0 class for each unary relation. With no unary relations, there is a unique ≡0

class, i.e., (λ, x) ≡0 (λ, y) for all x ∈ λ and y ∈ λ. Patterns and words in this
vocabulary are described by almost locally closed sets, in definition 3.4.2. Of
course, these patterns arise even without unary predicates in the vocabulary. For
instance, in the set of linear orders of the form λ =

∑
i∈ω+Z×η+ω∗(η+ f(i)) + η

for various functions f with domain ω + Z × η + ω∗ and range n, a finite
number, ≡loc

4 classes define {(λ, x) : ∃i((i ∈ ω+Z×η+ω∗)∧ (x ∈ f(i))∧ ((f(i−
1), f(i), f(i + 1)) = (p, q, r))} for each triple (p, q, r) of numbers ≤ 9. Thus, if
we choose n = 10, then a consistent set of ≡loc

4 sets is a set of triples (p, q, r)
which can be strung together in a consistent way. There exist consistent sets of
≡loc

4 classes for which the smallest minimal almost locally closed sets are very
long.

This theorem continues the following line of research: The decidability of
certain linear orders was studied in [12]. In [3] we find semimodels and the
theorem that it is not easier to decide the theory of a semimodel and to relate
that theory to that of a (infinite, normal, non-semi) model containing it, than
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to decide the theory of linear order. The decidability of the theory of linear
order was proved in [7] using Ramsey’s theorem and noting the monotonicity of
{Thk({z ∈ λ : x < z < y}) : a < x < y < b} as a function of a and b. Our proof
of the same theorem avoids Ramsey’s theorem. When we state this theorem in
its local form, it can be used to prove many sentences of Lω1ω to be consistent:

Theorem 3.0.3: A set U of pairs of ≡k classes is {(Thk({a ∈ λ : a < b}),
Thk({a ∈ λ : a > b}))} for some linear order λ just in case 1. there is an
≡k class ξ(U) such that for any (φ, ψ) ∈ U , we have ∃x(φ<x ∧ ψ>x) ≡k ξ(U),
and 2. there is a set W containing U and other sets of pairs of ≡k classes
such that every V ∈ W has ξ(V ) as in part 1 and such that for any V ∈ W
and any element (φ, ψ) ∈ V there exist two elements V0, V1 of W such that
(ξ(V0), ξ(V1)) = (φ, ψ) and V0 + {(∅, ∅)}+ V1 = V .

In [1] we find a modification of the construction in [7] to generate a family of
linear orders which intersects every ≡k class and which all have not only decid-
able, but finitely axiomatizable theories. Theorem 0.3 permits the elimination of
Ramsey’s theorem also from our construction of a finitely axiomatizable model
in any ≡k class. A more practical sort of effectiveness can also be obtained: In
[9] we learn that the theory of linear order is (decidable, but) intractable. In
[5] we find an enumeration of the ≡3 classes of linear orders and the statement
that current methods of deciding the theory of linear order cannot enumerate
the ≡4 classes of linear orders. As a proof of concept we wrote a simple com-
puter code which enumerates the 82988077686330 ≡4 classes of linear orders.
On my laptop, it took the program two minutes to write those 8E13 sentences.
There are 4E23769 sets of pairs of ≡3 classes, almost all of which are incon-
sistent. The computer avoids these by eliminating small inconsistent sentences,
and then ignoring any theory which contains that sentence. We cannot list the
≡5 classes of linear order, but we can describe them both locally and globally.
Size, not complexity, prevents the enumeration of ≡5. From the point of view
of finite model theory, the most interesting results are the implications for semi-
models. semimodels are finite strings which often have interesting relationships
to infinite models. semimodels admit addition and multiplication, they can
code the formation of a model by iterated application of functions (e.g., Skolem
functions), and they handle local information quite easily.

3.1 Decidability: the consistency game

If φ and ψ are ≡k classes of linear orders, then {λ + µ : λ ∈ φ, µ ∈ ψ} is
contained in a single ≡k class, which we call the sum of φ and ψ. If φ is an
≡k class of linear orders, choose a sentence φ0 in which the variable x does not
appear which defines φ (that is, each linear order λ models φ0 just in case it is
in φ), and let φ<x be the formula, with the variable x free, obtained from φ0

by replacing every subformula ∃y(ψ) by ∃y((y < x) ∧ ψ) and replacing every
subformula ∀y(ψ) by ∀y((y < x)→ ψ).

We define φ>x similarly. We define φ(x,y) similarly – by choosing a formula
φ0 which defines the ≡k class φ and in which neither x nor y appears, and in
φ0 we replace every subformula ∃z(ψ) by ∃z((x < z < y)∧ψ) and replace every
subformula ∀z(ψ) by ∀z((x < z < y) → ψ). Because λ |=[a/x] φ

<x just in case
{m ∈ λ : m < a} |= φ, we can read φ<x as “φ holds left of x.”
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For any set U of pairs of ≡k classes, let U0 be the set of formulas {∃x(φ<x ∧
ψ>x) : (φ, ψ) ∈ U} and let U1 = {¬∃x(φ<x∧ψ>x) : (φ, ψ) is a pair of ≡k classes
not in U}, and let σU = ∧{U0, U1}. For any ≡k+1 class µ with linear order
λ ∈ µ, the set U(λ) = {pairs of ≡k classes (φ, ψ) : λ |= ∃x(φ<x ∧ ψ>x)} is such
that σU(λ) defines µ. Now U(λ) depends only on the ≡k+1 class of µ (more,
λ0 ≡k+1 λ1 holds just in case U(λ0) = U(λ1)) so we write U(µ). The function
from µ to U(µ) and from U to σU are inverses, i.e., µ is defined by σU(µ) and
U(σV ) = V for any consistent set V of pairs of ≡k classes.

If W is a set of sets U of pairs of ≡k types for which there exists an ≡k
class ξ(U) such that for any (φ, ψ) ∈ U , ∃x(φ<x∧ψ>x) ≡k ξ(U), then we define
addition on W : U + V =

{(φ, ψ + Thk(1) + ξ(V )) : (φ, ψ) ∈ U} ∪ {(ξ(U) + Thk(1) + φ, ψ) : (φ, ψ) ∈ V }.

If σU and σV are consistent sentences, and hence elements of ≡k+1, then we
define σU + σV as above to be the ≡k+1 class of λ + µ for any/all λ such that
λ |= σU and any/all µ such that µ |= σV . The notion of addition we have
now defined for sets of pairs of ≡k classes then agrees with addition on ≡k+1

classes: σU+V = σU + σV . So addition on W extends addition of ≡k+1 classes
to some inconsistent sentences σU . This is important because we will search for
the consistent sentences in W , using W ’s structure as a monoid.

Definition 3.1.1: The consistency game is as follows: On each turn, the game
state is a finite sequence (ci : i < n) of constants and a sequence (Ui : i ≤ n)
of sets of pairs of ≡k classes each of which has an ≡k class ξ(Ui) such that
for any (φ, ψ) ∈ Ui, ∃x(φ<x ∧ ψ>x) ≡k ξ(Ui). The first player chooses i ≤ n
and an element of Ui. The second player then adds a new constant c left of
ci and right of ci−1 and chooses two sets V0 and V1 of pairs of ≡k classes so
that for each i < 2 there exists an ≡k class ξ(Vi) such that for any (φ, ψ) ∈ Vi,
∃x(φ<x ∧ψ>x) ≡k ξ(Vi). Player II loses unless the following conditions hold, in
which case we say that player II has survived this round:

• (ξ(V0), ξ(V1)) is the element of Ui which player I chose, and

• V0 + {(∅, ∅)}+ V1 = Ui.

If player II has survived, then the game continues, with its game state (c′j :
j < n + 1) and (U ′j : j ≤ n + 1) where c′j = cj if j < i, c′j+1 = cj if j ≥ i,
and c′i = c, the new constant; U ′j = Uj if j < i, U ′j+1 = Uj if j > i, and
U ′i = V0, U ′i+1 = V1, where Ui has been replaced by V0 and V1. The initial state
has n = 0, an empty sequence of constants, and a single set U0 of pairs of ≡k
classes.

Now we prove theorem 3.0.3: If W exists as in the statement of the theorem,
then player II can play the consistency game indefinitely. If player II can play
the consistency game indefinitely, and if player I exhausts every set U of pairs
of ≡k classes which is ever created during the game, then the set of constants
played, with the ordering on each pair ca, cb determined at the moment when
the latter was added to the set of constants, is a linear order C; we will prove
that C |= σU0 . How can player I “exhaust” the set U if, when player I plays
the first element of U , that set is immediately replaced by a pair of sets, V0, V1?
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Each element of the sum V0 + {(∅, ∅)} + V1 corresponds to an element of U .
In particular, {(ξ(V0) + ∅, ∅+ ξ(V1))} corresponds to the element that player I
chose, after which U was replaced by V0 and V1. We say that player I exhausts
U if player I plays elements in U , or in a summand such as V0 or V1 in a sequence
of sets of pairs of ≡k classes which sums to U , so that element of the summand
corresponds to the desired element of U . Consider an interval T in C – either the
interval left of c, right of c, or between ca and cb. Suppose that the parameters
defining the interval existed already on the n-th move, as ci, for i < n, or as
ci0 < ci1 , for i0 < i1 < n. Define UT to be the sum of Ui over the interval -
(
∑
j<i Uj +{(∅, ∅)})+Ui for the interval left of ci, (

∑
j>i,j<n Uj +{(∅, ∅)})+Un

for the interval right of ci, or (
∑
j>i0,j<i1

Uj + {(∅, ∅)}) + Ui1 for the interval
between ci0 and ci1 . Now each constant in the interval T in C corresponds to
an element of UT , since either the constant already existed in (ci : i < n), in
which case there is a summand in UT for it, or the constant was created on the
n-th move or later. In that case, when the constant is played, some U will be
split into V0 and V1; each element of that U corresponds to some elements of
UT . On the other hand, if player I exhausts each set of pairs of ≡k classes which
is created, then UT will be exhausted when each of its summands is exhausted.
At that moment, there will be total functions mapping the interval T in C
into the set UT , and the set UT into C, so that for c ∈ T and (φ, ψ) ∈ UT ,
(c, (φ, ψ)) being in either function or its inverse implies that the set UT can
be split into intervals V0 and V1 in W so that ξ(V0) = φ and ξ(V1) = ψ and
V0 + Thk(1) + V1 = UT . Now we prove the following: for each j < k, for each
interval T in C, T ≡j ξ(UT ). We prove this simultaneously for all intervals T ,
by induction on j – the correspondence between elements of UT and elements
of T such that (φ, ψ) corresponding to c ∈ T implies that the interval of T left
of c satisfies Thj(φ) and the interval of T right of c satisfies Thj(ψ) is enough
to show that T satisfies Thj+1(ξ(UT )). The base case, j = 0 is in fact the same
argument: if UT is empty, let n be the turn immediately after the last parameter
was defined. Then either T is the interval left of c0, or right of cn, or between
ci and ci+1 (if the parameters are not adjacent, then UT contains a nonempty
summand {(∅, ∅)}, and so it is not empty!). So UT is, then Ui = ∅ for some i.
Player I can never choose an element from Ui, so player II never defines a new
constant that splits Ui. So the set of constants which are ever created satisfies
σUT = σ∅ = Thk+1(∅). On the other hand, if UT is nonempty, let n be the turn
immediately after the last parameter was defined. Then either there is already
some constant in T , or UT has a single summand Ui 6= ∅. Player I will play
to exhaust Ui, so in particular player I will eventually play in Ui, player II will
then add a constant in T . �

3.2 Local equivalence at an element

If λ and µ are linear orders and r and s are assignments of variables or constants
into λ and µ, then (λ, r) ≡ (µ, s) just in case the domain of r and s are the same
set d, and the same logical formulas, with free variables among the elements
of d, are the same in both models. This holds just in case r and s induce the
same ordering on d and for each (b, c) ∈ d+, {a ∈ λ : b < a < c} ≡ {m ∈ µ :
b < m < c}. If ≡ classes of theories of linear orders respect addition, then ≡
classes of formulas (of finitary logic, infinitary logic, or even non-wellfounded
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logic) with free variables admit addition: φ+ ψ is the ≡ class containing those
linear orders λ and assignments s such that s assigns the free variables of φ and
ψ into λ and for some cut (µ, π) ∈ λ+, s is the union of assignments t and u,
where t assigns the free variables of φ into µ and u assigns the free variables of
ψ into π, so that µ |=t φ and π |=u ψ. In particular, if λ |=s φ+ψ, then s must
assign the free variables of φ into λ so that they are all to the left of the free
variables of ψ. We say that ≡ respects addition if φ ≡ φ0 and ψ ≡ ψ0 imply
that φ + ψ ≡ φ0 + ψ0. Finitary and infinitary quantifier-rank classes ≡k and
≡α, as well as nonwellfounded infinitary quantifier rank ≡λ respect addition.

Definition 3.2.1: If ≡ respects addition, we define left equivalence: φ ≡left ψ if
there is some ≡ class γ such that for all ≡ classes α and β and all ≡ variations
α0 ≡ α and β0 ≡ β,

φ+ α+ γ + β ≡ ψ + α0 + γ + β0.

Likewise, φ ≡right ψ if there is some ≡ class γ such that for all ≡ and classes α
and β and all ≡ variations α0 ≡ α and β0 ≡ β,

α+ γ + β + φ ≡ α0 + γ + β0 + ψ.

Finally, for any linear orders λ and µ and assignments r and s of a nonempty
domain into λ and µ, we say λ ≡loc µ just in case

λ(≡left)rightµ.

The following are properties of ≡left and ≡loc:

• If ≡ is an equivalence relation, then ≡left is, too.

• If ≡ respects addition, then ≡left does, too.

• (≡left)left is the same as ≡left.

• (≡left)right is the same as (≡right)left.

• If φ and ψ have at least one free variable, then φ ≡left ψ and φ ≡right ψ
together imply φ ≡ ψ.

• If φ and ψ have at least one free variable, then for (λ, ai)i<n ∈ φ and
(µ,mi)i<n ∈ ψ, (λ, a0, . . . an−1) ≡loc (µ,m0, . . .mn−1) holds just in case:

– {a ∈ λ : a < a0} ≡right {m ∈ µ : m < m0},
– for each i < n − 1, {a ∈ λ : ai < a < ai+1} ≡ {m ∈ µ : mi < m <
mi+1},

– {a ∈ λ : a > an−1} ≡left {m ∈ µ : m > mn−1}.

• ≡loc
0 and ≡loc

1 are trivial ≡ relations, i.e., for i < 2, (λ, r) ≡loc
i (µ, s) holds

just in case r and s have the same domain and induce the same ordering
on it.
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• If ≡ is an equivalence relation on theories of linear order which respects
addition and if there is an ≡ class σ0 such that for every other ≡ class δ
it holds that σ0 + δ + σ0 ≡ σ0, then for any ≡left class φ, the sum φ+ σ0

is inextensible in the sense that for any ≡ class ψ, φ+ σ0 +ψ ≡left φ+ σ0.

• if σ0 exists as in the previous item, then for any ≡ classes φ and ψ with
no free variables, φ(≡left)rightψ.

• Give ≡λ some linear ordering E. On a dense linear ordering η0 such
that every interval has cardinality > |E||λ|, we can define a function to
E so that the sum σ0 =

∑
a∈η0 f(a); if f−1(a) is dense, then σ0 satisfies

σ0 + δ + σ0 ≡λ σ0.

• If σ0 exists as in the previous items, then σ0×ω or indeed any linear order
γ such that σ0 +γ = γ is sufficient to prove ≡left in the following theorem:
any ≡left class is ≡left ∨U for U a set of inextensible ≡left classes (adding
any ≡ class to the right leaves each of these ≡left classes unchanged).

• There are three ≡left
2 classes of formulas with a single free variable: those

(λ, a) such that a has an immediate successor, those (λ, a) such that a is
the limit of a sequence descending from above, and those (λ, a) such that
a is the greatest element of λ. The third ≡left

2 class is the disjunction of
the first two, which are inextensible.

3.3 Labeling firsts and lasts

For any linear order λ, let λ+ = {(b, c) : b ∪ c ⊆ λ and ∀d ∈ b∀e ∈ c(d < e)
and ∀a ∈ λ((∃d ∈ b(a ≤ b)) ∨ (∃d ∈ c(c ≤ a)))} modulo the equivalence (b, c) ≡
(b′, c′) which holds just in case ∀d ∈ b(∃e ∈ b′(d ≤ e)) and ∀d ∈ b′(∃e ∈ b(d ≤ e))
be the set of cuts in λ. There is a natural ordering on λ ∪ λ+ induced from the
ordering on λ: a < (b, c) holds just in case ∃d ∈ b(a ≤ d); (b, c) < (d, e) holds
just in case ∃f ∈ b(∀g ∈ d(g < f)).

If the range of a function is a linear order then that order is induced on the
function itself. If b is a function with range ⊆ λ ∪ λ+ then let sup b be the cut
({a ∈ λ : ∃c ∈ b(a ≤ c)}, {a ∈ λ : ∀c ∈ b(c < a)}). We define the infimum
similarly. If b and c are functions into λ ∪ λ+, let λ(b,c) = {a ∈ λ : sup b < a <
inf c}.

Definition 3.3.1: If I is a set of labels with any ordering and (b, c) is any cut
(b, c) ∈ I+, then for each formula τ with a single free variable (rather, for every
≡loc class τ which is inextensible in the universe of ≡ classes of intervals of λ)
we create four new labels, the elements: the least τ in (b, c) and the greatest
τ in (b, c) and the cuts: the unrealized infimum of an unbounded descending
sequence of τ in (b, c) and the unrealized supremum of an unbounded ascending
sequence of τ in (b, c). We will abbreviate these phrases with the symbols: lτ ∈
(b, c), gτ ∈ (b, c), dτ ∈ (b, c), and aτ ∈ (b, c). When the context (b, c) can be
inferred, we will write them simply as lτ, gτ, dτ, aτ All labels are constructed in
a wellfounded way by this rule, from f = ∅.

For instance, if E0 and E1 and E2 and E3 are two equivalence relations on
theories of linear order, and if for each i < 4, τi is an equivalence class, then
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lτ0 ∈ (b, ∅), where b is a function with domain {lτ1 ∈ (gτ2 ∈ (∅, ∅), gτ3 ∈ (∅, ∅))}
is a label.

The element lτ0 ∈ (b, c) is the least element of type τ0 above sup b... there
is no need to refer to c, unless we want to say that the least τ0 above sup b
happens to be below inf c. Viewing lτ0 ∈ (b, c) as the least (or infimum of a
descending sequence of) τ0 above (say) the least τ1 above (say) the greatest (or
supremum of an ascending sequence of) τ2 below . . . , we can write the set of all
labels as a tree. The first rank of the tree contains the least (or infimum) and
greatest (or supremum) appearance of each type τ ; the next rank of the tree
contains the least appearance of each type above an element of the first rank, or
the greatest appearance of each type below an element of the first rank. From
the tree structure and the ordering induced by λ on its branches, we can write
each label in the form given in the preceding definition.

Definition 3.3.2: If λ is a linear order and≡ is an equivalence relation on theories
of linear order and I is an assignment of labels into λ ∪ λ+ then the ≡loc-
refinement of I is the smallest assignment containing I and for each (b, c) ∈ I+,
one or two elements or cuts to indicate the definable least (or infimum) and/or
greatest (or supremum) of the elements of ≡loc class τ in (b, c). If τ is realized
in (b, c) then τ ’s least element(s) are definable just in case one of the following
holds:

• b = ∅, or if that fails, then

• there is a maximal element of b of any form except aτ ′ ∈ (e, f) for τ ′ a
high-order equivalence class – i.e., an equivalence class in an equivalence
relation which is equal to, or refines, ≡, or that fails and

• elements of type τ are bounded in aτ ′ ∈ (e, f) below some element of λ.

If τ ’s least element(s) are definable, then I ′ assigns either lτ ∈ (b, c) or dτ ∈ (b, c)
into λ(b,c):

• the label lτ ∈ (b, c) assigned to the least h ∈ λ(b,c) such that (λ, h) ∈ τ if
there is a least such, or

• the label dτ ∈ (b, c) assigned to the greatest cut (g, h) such that h contains
all elements of λ(b,c) of ≡loc class τ , if that set h has no least element.

Similarly, for all τ realized in (b, c), the greatest element(s) of ≡loc class τ are
definable just in case:

• c = ∅, or c 6= ∅ and

• c has a minimal label, and that label is not dτ ′ ∈ (e, f) for τ ′ a high-order
equivalence class, or c has either no least element or has the tricky least
element just described, but

• elements of type τ are bounded in dτ ′ ∈ (e, f) above some element of λ.

If the greatest element(s) of ≡loc class τ are definable, then I ′ contains either:

• the label gτ ∈ (b, c) assigned to the greatest h ∈ λ(b,c) such that (λ, h) ∈ τ ,
or
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• the label aτ ∈ (b, c) assigned to the least cut (g, h) such that g contains
all elements of λ(b,c) of ≡loc class τ , if that set g has no greatest element.

It is sufficient to consider only inextensible ≡loc classes τ , since if τ = ∨U ,
then if the least element of type τ is definable, then so are all the elements of
U , and inf τ is infτ ′∈U inf τ ′.

For instance, if we write e for the unique ≡loc0 class, the seven ≡2 classes of
linear order can be enumerated as:

le < ae, de < ge, de < ae, ∅, le = ge, le < ∅ < ge, le < ∃xe(x) < ge.

That this list is a complete list of ≡2 classes of linear orders will be proved
later by appeal to theorem 3.0.3: a single set W contains five of the seven
consistent sets of pairs of≡2 classes, another setW contains three; the remaining
nine sets of pairs of ≡1 classes are quickly proved inconsistent. For quantifier
rank k > 2, however, theorem 3.0.3 is quaint and useless; we enumerate ≡k
classes by describing trees of labels and ≡loc

k−1 classes.

Definition 3.3.3: Order the finite sets σ of natural numbers lexicographically:
by the largest element, then the next largest, etc. Let I∅(λ) = ∅. For each finite
set σ of natural numbers, let σ′ be its immediate successor in the lexicographical
order1 and n be the least element of σ′ and let Iσ′(λ) be the ≡loc

n -refinement of
I.

Consider the EF game of length k between two linear orders µ0 and µ1

which realize the same ≡loc
k−1 classes. The following lemma explains how player

I can use the tree of labels to find non-local differences between µ0 and µ1.
Later, we will prove that this strategy is complete – ≡k holds if player I cannot
find a way to use this lemma; 6≡k holds if player I can.

Lemma 3.3.1: Player I has a winning strategy in the game EFk(µ0, µ1) game if
after ai ∈ µi are chosen on the first move, the condition (1∧ 2∧ 3)∨ (4∧ 5∧ 6)
holds at some rank σ ⊆ k − 1, σ 6= k − 1, in the tree of labels:

1. k − 2 6∈ σ and

2. Iσ(µ0) and Iσ(µ1) induce the same order on the same tree of labels and
a0 and a1 are in the same cut (b, c) in (Iσ(µi))+, and

3. for some i < 2, some ≡loc
k−2 class ρ is realized in µi between sup b and ai

and is not realized in µ1−i between sup b and a1−i and ρ is definable above
sup b in the sense of definition 3.3.2, or

4. k − 2 ∈ σ and

5. I{i:i<k−2}(µ0) and I{i:i<k−2}(µ1) induce the same order on the same tree
of labels and a0 and a1 are in the same cut (b0, c0) in (I{i:i<k−2}(µi))+,
and

1 The sets σ < σ′ are a pair of immediate predecessor and successor just in case
∑
i∈σ′ 2

i =

1 +
∑
i∈σ 2i.
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6. For some ≡loc
k−2 class ρ and some i < 2, there is some pi ∈ µ(b,ai)

i such that
for all p1−i ∈ µ(b,a1−i)

1−i , if (µ0, p0) ∈ ρ and (µ1, p1) ∈ ρ and p0 and p1 are in
(b0, c0) and if Iσ\{k−2}(µ

>pi
i ) and Iσ\{k−2}(µ

>p1−i
i ) assign the same labels

in the same order, then conditions (1 ∧ 2 ∧ 3) ∨ (4 ∧ 5 ∧ 6) hold at rank
σ \ {k − 2} in the tree of labels after a0 ∈ µ>p00 and a1 ∈ µ>p11 are played
on the first move in the game EFk−1(µ>p00 , µ>p11 ).

Proof: Suppose condition (1 ∧ 2 ∧ 3) holds. Player I plays the element of
type ρ in µi between sup b and ai. Player II must respond with an element
in ≡loc

k−2 class ρ, since k − 2-many moves will remain after this second move in
EFk(µ0, µ1). By condition 3, player II will only find such an element below
sup b in µ1−i. If this were a winning second move for player II in EFk(µ0, µ1),
then it is a winning first move in EFk−1(µ<a0

0 , µ<a1
1 ). But by theorem 3.3.1

for k − 1 in place of k, the first move of player II in EFk−1(µ<a0
0 , µ<a1

1 ) must
be in the same interval in Iσ(µ<aii ); since k − 2 6∈ σ, b ⊆ Iσ(µ<aii ). Suppose,
on the other hand, that conditions (4 ∧ 5 ∧ 6) hold. Player I then plays the
element pi mentioned in condition 6. Player II must answer with an element
p1−i of the same ≡loc

k−2 class and (by theorem 3.3.1 for k = 1 in place of k) in the
same interval of I{i:i<k−2}(µi). If now the tree of labels Iσ\{k−2}(µ

>pi
i ) differ,

then player II has lost; if they agree but the elements ai are in different cuts
(b, c) ∈ (Iσ\{k−2}(µ

>pi
i ))+, then by theorem 3.3.1, player II has lost. Finally,

if these data are the same, then condition 6 implies that we can now re-apply
the lemma to rank σ \ {k − 2} of the tree of labels Iσ\{k−2}(µ

>pi
i ). But since

σ 6= k − 1, eventually it will be conditions 1 ∧ 2 ∧ 3 which hold, rather than
conditions 4 ∧ 5 ∧ 6. �

If after the first move of the EF game identifies ai ∈ µi, player I finds that
the lemma holds for σ and n < k−1 such that n 6∈ σ, ai are in the same cut (b, c)
of Iσ\n(µi), and there is an ≡loc

n class ρ which is definable above sup b so that
an element of ≡loc

n class ρ exists between sup b and ai but not between sup b and
a1−i then we call ρ the anomaly between sup b and ai. The following theorem’s
modest claim: “if player II has a winning strategy, and player II disrespects the
next refinement, this leaves a game in which player I has a winning strategy”
can be repeated over any series of ≡n refinements, when n is not in the index
set σ, producing an index set with n as its least element. This can produce trees
with various ranks, but the one way to produce a maximal tree is to consider
each σ ⊆ k − 1 in lexicographical order. This then implies that if player II has
a winning strategy, player II must respect I{i:i<k−1}, so that µ0 ≡k µ1 implies
that the same labels are sent into µ0 and µ1 in the same order.

Theorem 3.3.1: If player II has a winning strategy in EFk(µ0, µ1), then for each
σ ⊆ k − 1,

• Iσ(µ0) and Iσ(µ1) induce the same order on the same tree of labels, and

• if player I plays the first move at the image of a label in one model, then
either player II plays the image of that label in the other model or player
I has a winning strategy in the remainder of the game, and

• if (b, c) ∈ (Iσ(µ0))+ and player I plays the first move in µ(b,c)
i , then either

player II plays in µ(b,c)
1−i or player I has a winning strategy in the remainder

of the game.
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Proof by induction on σ ⊆ k−1, ordered lexicographically: If σ = ∅, then the
first two conditions require nothing and the third condition, with (b, c) = (∅, ∅)
and µ

(b,c)
i = µi, is nothing more than one of the rules of the EF game: if

player I plays in µi then player II answers in µ1−i or loses. Now we suppose the
theorem is proved up to σ0, the immediate predecessor of σ in the lexicographical
ordering, and we prove the theorem for σ itself. Since Iσ0(µi) must be respected
by player II on the first move, we can define a cut (b, c) ∈ (Iσ0(µi))+ so that the
first move is played between sup b and inf c. To apply lemma 3.3.1, note that
the least element of σ is not in σ0. The least element of σ is that n for which
respecting Iσ means respecting Iσ0 and respecting the first and last occurrences
of elements of each definable ≡loc

n class. Now n is the least number not in σ0

– 1 +
∑
i<n 2i = 2n – but the lemma applies to the greatest number not in σ0.

But if there is an anomalous ≡loc
n class ρ between sup b and ai, the first played

element, then there is an anomalous ≡loc
n+1 class, since the ≡loc

n+1 class of any
element realizing ρ isn’t realized in µ1−i between sup b and a1−i, and likewise
there is an anomalous ≡loc

m class, for every m > n.
Player I’s goal is to preserve a winning condition: that the first moves ai ∈ µi

were played in the same cut (b, c) ∈ (Iσ0(µi))+ and an anomaly exists - i.e.,
some ≡loc

m class ρ is realized in µi between sup b and ai and not realized in
µ1−i between sup b and a1−i, for n 6∈ σ0. Player I then plays pi ∈ I{k−2}(µi) \
I{i:i<k−2}(µi); player II must preserve Iσ0\{k−2}(µi) above pi, and player I finds
that the anomaly has been preserved. Player I repeats this until there are
m+ 1-many moves left. That is, player I plays the first move to the lower end
of the interval in I{k−2} which contains ai, then the lower end of the interval
in I{k−2,k−3} which contains ai, and so on, until on the j-th (j = k − 1 −m)
turn player I plays the lower end of the interval (bj , cj) in I{k−2,k−3,...,k−j} for
j ≤ k− 1−m in which ai occurs. We will discuss 1. how player I can play close
enough to a cut and below it (or above it) to define all the ≡loc

∗ classes which
are definable above it (or below it) and 2. which model player I should play
in so as to prevent new ≡loc

m classes from entering the interval between sup b
and a1−i. We will assume, throughout, that player II plays, on the j-th move,
an element of the same ≡loc

j class as player I. We will prove that player I can
preserve a winning condition – the existence of the same anomaly – until there
are m+ 1-many moves left.

Player I’s winning strategy after playing at the anomaly: On the k −m-th
move (after which there will be m-many moves remaining), player I will play the
anomaly – an element of type ρ which exists between sup b and ai, such that ρ
is not realized in µ1−i between sup b and a1−i. Since there will remain m-many
moves, player II must respond with an element of ≡loc

m class ρ. This can only be
found below sup b in µ1−i. If player II has played the second through k−m−1-th
moves according to a winning strategy in the EF game of length k, the first move
of which identifies ai ∈ µi and the k−m−1-th move of which identifies pi ∈ µi,
then (µ>p00 , a0) ≡m+1 (µ>p11 , a1). Iterating theorem 3.3.1, with k replaced by
m + 1, for all subsets of m + 1, we find: I{j:j<m}(µ

>p0
0 ) and I{j:j<m}(µ

>p1
1 )

induce the same order on the same tree of labels and the first move, in which
player I plays at the anomaly and player II plays below sup b ∈ µi, must respect
I{j:j<m}(µ

>pi
i ). However, the labels of b which depend, in the tree of labels, on

bk−1−m or ck−1−m, the lower and upper ends of the interval (bk−1−m, ck−1−m)
can be redefined in terms of pi – which was played near bk−1−m with this goal
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in mind, or in terms of ai, which is certainly < ck−1−m. Thus, every label in b

of tree-rank > σ0 corresponds to a label of I{j:j<m}(µ
(pi,ai)
i ), where the latter

labels are mapped monotonically into λ, so that no element of ≡loc
m class ρ exists

between sup b and a1−i, but yet player II must respect sup b. So player II loses.
Player I’s algorithm for determining which linear order to play in: If on the

j-th move (for j ≥ 1 and j < k −m− 1) player I plans to play at sup bj , where
(bj , cj) is the interval in I{k−2,k−3,...,k−j} in which ai occurs, player I must find
an element close to sup bj (see the next paragraph) in µi or µ1−i, choosing the
correct model so as to prevent player II from “widening” the interval between
sup b and a1−i to allow an element of type ρ to be realized there, eliminating
the anomaly, or “narrowing” the interval between sup b and ai to remove all
elements of ≡loc

m class ρ there.

• Player I plays dτ ∈ (b, c) or lτ ∈ (b, c) in µi. Player II must respond with
an element of type τ , which is ≥ the least element of type τ in µ(b,c)

1−i , which
will preserve the defined elements of b, or will shift all defined elements
monotonically to the right, and so preserve or narrow the interval between
sup b and and a1−i.

• Player I plays aτ ∈ (b, c) or gτ ∈ (b, c) in µ1−i. Player II either plays the
image of that label in µi, or plays some other, lower, realization of τ in
µ

(b,c)
1−i , shifting all the defined elements (in particular, all of b) monotoni-

cally to the left in µi. This preserves or widens the interval between sup b
and ai and preserves the anomaly.

Players can play close enough to any cut: To play the label lτ ∈ (b, c) or
gτ ∈ (b, c) player I plays the image of that label. To play near dτ ∈ (b, c)
or aτ ∈ (b, c) player I plays plays an element of type τ above dτ ∈ (b, c) and
below aτ ∈ (b, c) and near the cut – closer to the cut than any other label
which is not assigned to the same cut, and closer to the cut than any upper
bound or lower bound which in definition 3.3.2 triggers the third condition and
allows some type τ ′ to be definable. If player I plays xj above the lower bound
on elements of type τ ′ below aτ ′′ ∈ (b′′, c′′), then the least element of type τ ′

above aτ ′′ ∈ (b′′, c′′) is the least element of type τ ′ above xj . Thus, the tree
of definable labels which depend on aτ ′′ ∈ (b′′, c′′) for their definition and are
> aτ ′′ ∈ (b′′, c′′) is unchanged if we replace aτ ′′ ∈ (b′′, c′′) by x0.

If player II does not respect Iσ, then the winning condition is established:
We examine all cases and show that player II must play above some element
of each ≡loc

n class τ such that player I played above some element of ≡loc
n class

τ . On the other hand, player II must play below some element of each ≡loc
n

class τ which player I played below. This will imply that player II must respect
the ≡loc

n -refinement of Iσ0 or lose. Thus, if the ≡loc
n -refinement of Iσ0(µ0) and

the ≡loc
n -refinement of Iσ0(µ1) are not identical, player II will have lost. In

particular, we now prove that in each interval of Iσ0(µi), the same ≡loc
m classes

begin and end in the same order for i = 0, 1: First we prove that the same ≡loc
m

classes τ are realized in any cut (b, c) in (Iσ0(µi))+ and then that different ≡loc
m

classes τ begin and end with 1. a terminal element in both linear orders or 2.
no terminal element in both linear orders, and that labels for those terminal
elements (or for those suprema/infima) have the same order. For if τ is realized
in (b, c) in (Iσ0(µi))+ and not in µ(b,c)

1−i , then player I can play τ on the first turn,
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player II will play below sup b (or above inf c) and player I can then exhaust
sup b by playing the greatest element of b ∩ I{k−2,k−3,...,k−j} on the j-th move.
If τ is realized a least time in µ

(b,c)
1−i but no least time in µ

(b,c)
i , then player I

plays the least element of type τ in µ(b,c)
1−i . Whatever element ai player II plays,

there will be an anomalous element of type τ in µ
(b,c)
i below ai. Now we show

that these firsts and lasts have the same order in µi and µ1−i.
Suppose the ≡loc

n -refinement of Iσ0(µi) maps a label to si, the greatest re-
alizations of some type, or maps a label for an unrealized supremum of an
ascending sequence of realizations of that type to the cut si ∈ µi. Suppose the
≡loc
n -refinement of Iσ0(µi) maps a label for the least realization of some type,

or for an unrealized infimum of a descending sequence of realizations of that
type to the cuts r0 ∈ (µ0)+ and r1 ∈ (µ1)+. We now list cases to show that the
following occur in both models simultaneously: r < s, r > s, r = s.

• If r < s holds in µi but not in µ1−i, then player I plays the first move at ai
between r and s. By assumption, player II must respect Iσ0(µi) and reply
with a move a1−i ∈ µ

(b,c)
1−i in the same cut (b, c) ∈ (Iσ0(µi))+ for which

ai ∈ µ(b,c)
i . The type that r labels is realized in (b, c) to the left of ai and

the type that s labels is realized in (b, c) to the right of ai. Respecting
both of these conditions means playing the first move between the cuts r
and s in µ(b,c)

1−i . Of course, this is only possible if those cuts have the same
ordering, r1−i < s1−i.

• Suppose s < r holds in µ1−i and s ≥ r holds in µi. Player I plays a1−i

between s and r in µ1−i. Whatever element ai player II plays in µ
(b,c)
i ,

either the type that r labels is realized in (b, c) to the left of ai or the
type that s labels is realized in (b, c) to the right of ai, which is a winning
condition for player I.

• Suppose r = s holds in µ1−i and fails in µi. Then r < s or r > s holds in
µi. Proceed as in the previous two cases.

There remains one more case to check: suppose r and s are both the suprema
of ascending sequences of different type in (b, c) in µi. Then r < s holds just
in case player I can play an element of the type which s labels, and bound all
elements of type r to one side; r = s holds just in case r 6< s and s 6< r, since
then they are equivalent cuts. �

This theorem proves that player II must respect I(σ0∪{n}\n) if player II must
respect Iσ0 and n 6∈ σ0 and n < k − 1. This explains why ≡k is equivalent to
local equivalence in the intervals defined by exactly 2k−1 − 1 -many iterations
of the refinement process. For example, if ≡5 requires player II to respect I{1,0}
then we can prove that player II further respects the ≡loc

n -refinement of this for
n = 2 or n = 3. If we take the ≡loc

3 -refinement, and then the ≡loc
0 , ≡loc

1 , ≡loc
0 ,

≡loc
2 , ≡loc

0 ,≡loc
1 , and ≡loc

0 -refinements, we will have a tree of labels that player
II must respect. But, in fact, a much larger tree of labels must be respected,
and we can build it by taking the ≡loc

2 -refinement first (and then the ≡loc
0 , ≡loc

1 ,
and ≡loc

0 -refinements) before taking the ≡loc
3 -refinement. It is interesting to see

that the range of the smaller tree of labels is contained strictly in the range of
the larger tree of labels, often with very different labels for the same element.
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The largest possible tree of labels which adds a singleton {n} and removes the
set n whenever n 6∈ σ, for σ indexing a rank in the tree, is clearly the tree
given in definition 3.3.3. However, when we argue that a certain label can’t
be realized, we don’t need the largest possible tree of labels, but only enough
labels to define the one we want to discuss. For instance, we can describe the
greatest limit point below x without calling it “the greatest limit point below
the immediate predecessor of x.”

Lemma 3.3.2: For any linear order λ and finite set of natural numbers σ ⊆ k−1,
let I left

σ (λ) be the intersection of Iσ(µ) as µ ranges over the ≡left
k class of λ and

let Iright
σ (λ) be the intersection of Iσ(µ) as µ ranges over the ≡right

k class of λ.
Then

Iσ(λ) = I left
σ (λ) ∪ Iright

σ (λ).

Proof: every label in the tree of labels depends ultimately on a rank-{0} label
which is one of lτ > ∅ or dτ > ∅ where ∅ refers to the left end, or gτ < ∅ or
aτ < ∅, where ∅ refers to the right end. The first two are in I left

σ (λ) and the latter
two are in Iright

σ (λ). Similarly, all labels which depend on labels which depend
ultimately on the left end (and in the next higher rank, on lτ > ∅ or dτ > ∅)
are in I left

σ (λ) and all labels which depend on labels which depend ultimately
on the right end are in Iright

σ (λ). Of course, adding ≡k classes to the right can
extend the ≡loc

n classes of the labels in I left
σ (λ) and thereby superficially change

the definition of the label, but it cannot change where each of these labels is
assigned in λ. �

Theorem 3.3.2: For any linear order λ and any element a ∈ λ, from

• the ordered set A of I{i:i<k−1}(λ), the functions (Thloc
k−1(λ, a) : a ∈ A∩ λ)

and ({Thloc
k−1(λ, a) : b < a < c} : (b, c) ∈ A+), and

• the location of a in A, and the ≡loc
k−1 class of (λ, a),

we can construct the structures in the first item, with k − 1 replacing k, and
either {d ∈ λ : d < a} or {d ∈ λ : d > a} replacing λ.

Proof: The left labels I left
{i:i<k−2}({d ∈ λ : d < a}), those labels which depend

for their definition on the left end of the interval {d ∈ λ : d < a}, correspond to
labels of relatively extended ≡loc

n classes in I left
{i:i<k−1}(λ). We can compute the

≡loc
k−2 class of each of those left labels as the truncation of Thk−2 of the ≡loc

k−1

class given in the first item, above, truncated at a. That truncation can be
performed by altering I left

{i:i<k−1}(λ) through every possible I left
{i:i<k−1}(λ

′) which
agrees with I left

{i:i<k−1}(λ) to the left of a, and taking ∨ of the ≡loc
k−2 class in

each model, or by treating the ≡loc
k−2 class as a formula, and removing that

part of it which is satisfied to the right of a. In this way, we replace the ≡loc
k−2

class (λ, a) with the ≡loc
k−2 class of ({d ∈ λ : d < a}, b). The right labels

Iright
{i:i<k−2}({d ∈ λ : d < a}) can be read from the ≡loc

k−1 class of (λ, a). It remains
to determine an ordering of the union I = I left

{i:i<k−2}({d ∈ λ : d < a}) and

Iright
{i:i<k−2}({d ∈ λ : d < a}), and to determine which ≡loc

k−2 classes exist in each
cut in I+.
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For any cut (b0, b1) ∈ (I left
{i:i<k−2}({d ∈ λ : d < a}))+ and for any cut

(c0, c1) ∈ (Iright
{i:i<k−2}({d ∈ λ : d < a}))+, we compute from (c0, c1) the set C1

of sequences (τσ : σ ⊆ k − 2) for which there exist elements of type τσ in order
between (c0, c1) and a and the set C0 of sequences which do not exist between
(c0, c1) and a. We reverse these: There is an element of ≡loc

k−2 class τ below C1

below a, but not below C0 below a just in case for each sequence (τσ : σ ⊆ k−2)
of ≡loc

n classes, where n is the least element of k−2, we form the following label
and find it to be < a:

• the least element(s) of ≡loc
k−2 class τ above b0

• for each ≡loc
n class, in descending lexicographical order, from τ{j:j<k−1} to

τ∅, the least element of type τ above the previous label.

Similarly, we invert the dependency of ∃τ ∈ (c0 ∈ . . . gτ0 ∈ (∅, a), c1 . . . aτ0 ∈
(∅, a)) on a into a dependency of a on sequences in I left

{i:i<k−2}({d ∈ λ : d < a}).
For instance, if a is very far from the left end, then I left

{i:i<k−2}({d ∈ λ : d <

a}) < Iright
{i:i<k−2}({d ∈ λ : d < a}); the total order on their union is that the one

linear order simply precedes the other.
On the other hand, for each ≡loc

k−2 class τ there is a sequence of labels in-
verting c ∈ c0∪ c1 such that there is an element of type τ above b0 and below b1
and above c in {d ∈ λ : d < a} just in case the location of a in I{n : n < k − 1}
shows a < the label. Let c′ be the label on which the assignment of c depends:
c is the least τ0 above c′ or the greatest τ0 below c′. If c is in c0, then we define
the next label to be the greatest τ0 below the previous label in the sequence.
If c is in c1, then we define the least τ0 above the previous label. Repeat this
for each label in the sequence of dependency, until c is the greatest τi below a
(i.e., there are no more labels on which c depends). Define the next label to
be the element of type τi closest to the previous label (where closest means the
greatest τi below the label, if c < the label, and where closest means the least τi
above the label, if c is above the label). If a < some label, then the lτ ∈ (b0, b1)
mentioned in the definition of the label is an element of type τ between b0 and
b1. If c is in c1, then the label mentions the least element of type τ0 above this
element of type τ , and by induction, a > the label implies that c′ and the rest
of what defines the right labels will be found between this element of type τ and
a. If c is in c0, then the label mentions the greatest element of type τ0 below
this element of type τ , and by induction, a > the label implies that c′ and the
rest of what defines the right labels will be found between this element of type
τ and a. This ends the proof of the lemma.

Now by induction on subsets σ of k − 2, we can locate each element of
Iright
{i:i<k−2}({d ∈ λ : d < a}) within the ordering I left

{i:i<k−2}({d ∈ λ : d < a}) and
determine the set of ≡loc

k−2 classes between those left and right assignments of
labels. By the induction hypothesis, we know the ≡loc

k−2 classes realized between
any elements of I left

{i:i<k−2}({d ∈ λ : d < a}) and of Iright
σ0

({d ∈ λ : d < a}), for σ0

the lexicographical predecessor of σ. So, a fortiori, we know the ≡loc
k−2 classes

realized, for n ≤ k − 2, since ≡loc
k−2 refines ≡loc

m . This allows us to compare,
in any interval (b, c), the least τ and the greatest element of some other ≡loc

k−2

class – the least τ precedes the greatest τ1 just in case something of type τ is
realized between b and the greatest τ1. Further, when a right label lies between



3. Quantifier-rank equivalence between linear orders 32

left labels b and c, we can determine which ≡loc
k−2 classes are realized between

sup b and the right label and which ≡loc
k−2 classes are realized between the right

label and c. This ends the proof of theorem 3.3.2. �
Now we prove theorem 3.0.2: That ≡k implies identical trees of labels, iden-

tical orderings A on them, and identical ≡loc
k−1 sequences on A and A+ follows

from theorem 3.3.1. That ≡k holds when these data are identical follows from
theorem 3.3.2, since if the data are identical, then player II can choose to play
so as to respect I{i:i<k−1}(λi) and ≡loc

k−1. Then, by theorem 3.3.2, data sufficient
to prove ≡k−1 will be identical on either side of the played elements ai ∈ λi,
since this data depends only on the location of ai within the I{i:i<k−1}(λi) and
on the ≡loc

k−1 class of (λ, ai).�

3.4 Effective decision procedures and completions

Searching näıvely for a witness W as in theorem 3.0.3 is not effective at deciding
the ≡3 or ≡4 classes of linear orders, since there are 6E14 sets of pairs of
≡2 classes and 4E23769 sets of pairs of ≡3 classes; the number of potential
witnesses is the power of those sets. We would do better to search for the data
of theorem 3.0.2. Then we will need an alternate game, a local consistency game
to determine which datasets are consistent.

If U is a set of ≡loc
k−1 classes, with or without an additional single ≡loc

k−1 class
on the left, and with or without an additional single ≡loc

k−1 class on the right,
and V is likewise, then we define U +V just in case the same ≡loc

k−1 class τ is on
the right of U and on the left of V , or there is no ≡loc

k−1 class on the right of U or
on the left of V . If that holds, then let U +V = U ∪V ∪{τ} or U +V = U ∪V
if there is no ≡loc

k−1 class on the right of U or on the left of V , and U + V has
on the left the ≡loc

k−1 class that U has on the left (if any), and U + V has on the
right the ≡loc

k−1 class that V has on the right (if any).

Definition 3.4.1: The local consistency game is the following: On each turn, the
game state is a finite sequence (ci : i ≤ n) of constants, a sequence (mi : i ≤ n)
of markers that either mark ci as a cut or mark ci with an ≡loc

k−1 class, and a
sequence (Ui : i < n) of sets of ≡loc

k−1 classes. The first player has two types of
moves:

• Player I chooses i < n and an element m of Ui. The second player then
adds a new constant c left of ci and right of ci−1, with mark m an ≡loc

k−1

class, and chooses two sets V0 and V1 such that V0 + V1 = Ui such that
V0 has the element m on the right and V1 has the element m on the left.
The game state is then the finite sequence of n + 1-many elements and
n + 2-many sets obtained by marking c with m and replacing Ui by the
pair V0, V1.

• Player I chooses i ≤ n and a label in I loc
{i:i<k−1}(mc), say, to the right of

ci, such that every label on which this label depends has already been
played. Player II chooses a constant c > ci (c may exist already or not; c
may by necessity be beyond all ci, especially if k is large and (Ui : i < n)
is small – either in that it is a short sequence or in that its elements Ui
are small). The constant c is marked with an ≡loc

k−1 class just in case the
label describes the least or greatest τ , and not the unrealized infimum or
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supremum of an infinite sequence of elements of type τ – player II intends
that in the resulting linear order, c will be where that label, relative to ci,
must be assigned. Otherwise, the constant c is marked as a cut. Player II
chooses new sets V0, V1 such that if V0 is the set between ci and the new
constant c, {Thloc

k−2(ρ) : ρ ∈ V0} is the set of ≡loc
k−2 classes which mc says

exists below the label.

The conditions on whether player II has survived grow as the game pro-
gresses. They are a set of conditions of two types: 1. that between certain
constants c and d, all Ui ever created must omit ≡loc

k−1 class τ , or 2. that for
a certain constant c, every interval immediately to the right of c must realize
≡loc
k−1 class τ . A new condition is created every time player I plays a move of

the second type. If the label is lτ0 ∈ (b, c) or dτ0 ∈ (b, c), then the omission
condition is that τ0 is never realized between b and the new constant. If the
label is gτ0 ∈ (b, c) or aτ0 ∈ (b, c), then the omission condition is that τ0 is never
realized between the new constant and c. If the label is aτ0 ∈ (b, c), then we
require that every set ever created immediately below the new constant realizes
τ0. If the label is dτ0 ∈ (b, c) then we require that every set ever created imme-
diately above the new constant realizes τ0. Player II survives this move if all
the conditions developed so far are met.

The initial state has any number of constants with any markings, and sets
Ui. For instance, the initial state could be the data of theorem 3.0.2, which
determine a general ≡k class. Or the initial state could be a single set U0 with
an element on the left or not, and an element on the right or not. If the initial
state has a single set U0, then there is an initial constant c0 on the left; it is
marked with ≡loc

k−1 class τ just in case U0 has τ on the left. There is an initial
constant c1 on the right and the ≡loc

k−1 class U0 has on the right is m1 (nothing,
or an ≡loc

k−1 class).
We say that player I plays an exhaustive strategy if player I mentions ev-

ery ≡loc
k−1 class in every interval Ui ever created, and mentions every label in

I loc
{j:j<k−1}(mi) for every constant ci ever created which is marked with an ≡loc

k−1

class and not marked as a cut. If player II has a winning strategy in the consis-
tency game and if player I plays an exhaustive strategy, then the set of constants
which are not marked as cuts order grows into a model of the local classes in
the initial state - a linear order λ with an element for each initial constant ci
for i ≤ n which is not marked as a cut, and which realizes exactly the local
types in Ui for each i < n. On the one hand, every constant ci marked with an
≡loc
k−1 class eventually realizes that ≡loc

k−1 class, as player I exhausts the labels
in I loc

{j:j<k−1}(mi) and marks them accordingly and player II can’t violate mi

without losing. On the other hand, every element τ in every set Ui ever created
corresponds to some constant c, because player I has exhausted each set Ui.

The consistency of a set U0 of ≡loc
k−1 classes can be decided quickly, since the

conditions on consistency are that for each τi ∈ U0 which is postulated to exist,
the labels in I loc

{j:j<k−1}(τi) have, in turn, fuller descriptions as ≡loc
k−1 classes.

The set of things realized between a constant ci and its neighbors is a set ⊆ U0

which omits some type, and hence is a strict subset of U0. In this way, we
reduce the question of whether U0 is consistent to a myriad of questions about
whether smaller sets are consistent. Once those smaller questions are solved,
call H(τ0,U,label) the set of formulas φ(ρ,V ) which expresses that the set V of
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local types is realized, and ρ is realized at the end, for each pair (ρ, V ) such that
ρ ∈ U0 could extend a particular label in I loc

{j:j<k−1}(mi) and V could be the set
of ≡loc

k−1 classes realized between ci and its label ρ. U0 is consistent just in case
the Horn theory∧

τ∈U0

∧
(label∈Iloc

{j:j<k−1}(τ0))

(τ(x)→ (
∨

H(τ0,U,label)

φ(ρ,V )))

is consistent. Satisfying that Horn theory means constructing strings of ≡loc
k−1

classes until the local labels of each ≡loc
k−1 class is satisfied. However, as in

the linear consistency game of theorem 3.0.3, we can stop satisfying local la-
bels as soon as the satisfaction process becomes repetitive. The resulting finite
structures which show how to string local classes together in a model λ are the
following:

Definition 3.4.2: An almost locally closed set is any nonempty A ⊆ λ ∪ λ+

such that for each a ∈ A there is some a0 ∈ A such that (λ, a) ≡k−1 (λ, a0)
and there is a homomorphism h from the ordered set I loc

{i:i<k−1}(λ, a0) into A

sending lτ ∈ (b, c) to the least element between h(b) and h(c) of ≡loc
k−1 class

τ , and sending dτ ∈ (b, c) to the greatest cut (e, f) in λ+ such that f contains
every element between sup b and inf c of ≡loc

k−1 class τ , and likewise for gτ ∈ (b, c)
and aτ ∈ (b, c). For each label dτ ∈ (b, c) or aτ ∈ (b, c) of I loc

{i:i<k−1}(λ, a0), A
also contains an example: an element of type τ above dτ ∈ (b, c) (or an element
of type τ below aτ ∈ (b, c)) such that for any g ∈ λ between the cut and the
example, there is an h ∈ A not between the example and the cut, such that
(λ, c, d, g) ≡k−1 (λ, c, d, h). For each ≡loc

k−2 class τ which Thloc
k−1(λ, a0) knows to

exist between two labels, A contains an example: an element of type τ between
h of those two labels.

Among the almost locally closed sets which contain an element with ≡loc
k−1

class τ , we are especially interested in the minimal sets, i.e., those sets A for
which there is no almost locally closed proper subset of A which also realizes τ .

These sets help us to define a finitely axiomatizable linear order in any ≡k
class. We call σ a cut-state if it contains a single set U0 of ≡loc

k−1 classes, with
or without an ≡loc

k−1 class on the left end and with or without an ≡loc
k−1 class

on the right end, since it is the state of the linear consistency game at a cut
({ci−1}, {ci}) in the set of constants. We call a cut-state σ consistent if player
II can win the linear consistency game in which σ = (c0, c1), (m0,m1), (U0) is
the initial condition. For each consistent cut-state σ we will write a sentence
δσ which expresses that the elements of σ are realized densely. We might be
tempted to insist that for all x0 ∈ λ and for all x1 ∈ λ( if (λ, x0, x1) satisfies σ,
then (λ, x0, x1) |= δ

(x0,x1)
σ ). This invites a study of the consistency of a family

{δσ : σ ∈W} of complete sentences, on overlapping intervals. If the consistency
of such a set of sentences can be decided, then we can define completions without
≡loc classes. But theorem 3.0.2 allows us to construct a generic ≡k class of linear
order in stages, as in the linear consistency game, while controlling only the local
≡loc
k−1 classes in each gap, and not the set of pairs of ≡k classes realized in each

gap. Admittedly, the theory of linear order can be described, decided, and
completed, using overlapping intervals as the basic building block. Instead, we
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use local neighborhoods as the basic building block with which we construct,
decide, and complete theories of linear order.

Definition 3.4.3: Suppose x0 ∈ λ, x1 ∈ λ and there is an almost locally closed
set A ⊆ λ containing {x0, x1} ⊆ A such that (λ, x0, x1) satisfies σ, and A is
minimal among the almost locally closed sets containing {x0, x1}. Then let δσ
be

(∃xa : a ∈ A, x0 < a < x1)∧
a,b∈A∩λ,adjacent

δ
(xa,xb)

Thloc
k−1(λ,x0),{Thloc

k−1(λ,x):x0<x<x1},Thloc
k−1(λ,x1)

.

If σ indicates a non-empty set of ≡loc
k−1 classes between x0 and x1, then for τ

the ≡loc
m class of any element of σ, the label lτ > x0 or dτ > x0 will be assigned

below x1. On the other hand, each element of A is defined in relation to some
other element of A, so that in each gap between elements of A, some part of
σ is not realized. Therefore we have defined δσ in terms of {δρ : ρ is a proper
subset of σ}.

Definition 3.4.4: Suppose σ is not satisfied within one minimal almost locally
closed class, as was the case in the preceding definition. Suppose x0 ∈ λ and
y1 ∈ λ+ (and consider the possibilities, too, that the left end is a cut or the
right end is an element) and that (λ, x0, y1) satisfies the cut-state σ. Since
x0 ∈ λ, find an almost locally closed set A0 ⊆ λ containing x0. Let δσ assert
the existence of A0:

(∃xa : a ∈ A0 ∩ λ, x0 < a < y1)(∧
a,b∈A0∩λ,adjacent

δ
(xa,xb)

Thloc
k−1(λ,xa),{Th

loc
k−1(λ,x):xa<x<xb},Th

loc
k−1(λ,xb)

)

Let σ−A0 be a set of almost locally closed sets (subsets of λ) such that σ requires
the existence of exactly the ≡loc

k−1 classes ∪{{Thloc
k−1(λ, a) : a ∈ A} : A ∈ σ−A0}∪

{Thloc
k−1(λ, a) : a ∈ A0, x0 < a}. Let δσ assert that every x in (x0, y1) is ≡k−1

to a first move made in A0, or is part of an almost locally closed set ≡k−1 to
something in σ−A0 :

∀x((x0 < x < y1)→ (∃z((∨b∈A0z < xb) ∧ (λ, x0, x, y1) ≡k−1 (λ, x0, z, y1)))∨

(∨A∈σ−A0
(∃xa : a ∈ A ∩ λ)(∨a∈A∩λxa = x)∧∧

a,b∈A∩λ,adjacent

δ
(xa,xb)

Thloc
k−1(λ,xa),{Th

loc
k−1(λ,x):xa<x<xb},Th

loc
k−1(λ,xb)

))

Let δσ further assert that above A0 the elements of σ−A0 are realized without
either upper or lower bound, so that every element is ≡k−1 to a first move in
A0 or all possible elements of σ−A0 are realized below it, and that, without
condition (since y0 ∈ λ+), all elements of σ−A0 are realized above it:

∀x((x0 < x < y1)→ (

((∃z((∨b∈A0z < xb) ∧ (λ, x0, x, y1) ≡k−1 (λ, x0, z, y1)))∨

(∧A∈σ−A0
((∃xa : a ∈ A ∩ λ)(x0 < xa < x)∧
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∧
a,b∈A∩λ,adjacent

δ
(xa,xb)

Thloc
k−1(λ,xa),{Th

loc
k−1(λ,x):xa<x<xb},Th

loc
k−1(λ,xb)

)))

∧(∧A∈σ−A0
((∃xa : a ∈ A ∩ λ)(x < xa < y1)∧∧

a,b∈A∩λ,adjacent

δ
(xa,xb)

Thloc
k−1(λ,xa),{Th

loc
k−1(λ,x):xa<x<xb},Th

loc
k−1(λ,xb)

))))

Let δσ further require that the elements of σ−A0 are realized densely – for every
pair of elements x < y, if x is not ≡k−1 to a first move played in A0 and such
that {x, y} is not spanned by a single element of σ−A0 then every element of
σ−A0 is realized between x and y:

∀x∀y((x0 < x < y < y1)→ (

(∃z((∨b∈A0z < xb) ∧ ((λ, x0, x, y1) ≡k−1 (λ, x0, z, y1))))

∨ ∨A∈σ−A0
((∃xa : a ∈ A ∩ λ)

((
∧

a,b∈A∩λ,adjacent

δ
(xa,xb)

Thloc
k−1(λ,xa),{Th

loc
k−1(λ,x):xa<x<xb},Th

loc
k−1(λ,xb)

)

∧(∨a∈A∩λxa = x) ∧ (∨a∈A∩λxa = y)))

∨(∧A∈σ−A0
((∃xa : a ∈ A ∩ λ)((x < xa < y)∧∧

a,b∈A∩λ,adjacent

δ
(xa,xb)

Thloc
k−1(λ,xa),{Th

loc
k−1(λ,x):xa<x<xb},Th

loc
k−1(λ,xb)

))))).

The conjunction of the foregoing four sentences is what we call δσ.

If σ indicates that no ≡loc
k−1 classes are realized between x0 and x1, then δσ =

Thk(∅)∧ some information about the local class of the left end (if there is one)
to the right of the interval, and information about the local class of the right
end (if there is one) to the left of the interval. E.g., if there is an ≡loc

k−1 class on
the left and an ≡loc

k−1 class on the right, but σ is empty, then these two classes
can be realized at a pair of immediate predecessor and successor. The formula
δσ is then much like an ≡loc

k−1 class, in that it determines an ≡left
k−1 class right

of the pair, and an ≡right
k−1 class left of the pair. If σ has no ≡loc

k−1 class on the
left or on the right and is empty, then δσ is Thk(∅) since the second sentence in
the definition above says that every x is part of an almost locally closed set in
σ−A0 : ∀x((y0 < x < y1)→ ∨∅) is Th(∅).

Now we define, by induction again on σ, a model of δσ. Suppose that models
of δρ exist whenever ρ is a proper subset of σ.

Definition 3.4.5: If A ⊆ λ is an almost locally closed set, minimal among those
realizing a particular ≡loc

k−1 class, then let µA contain A ∩ λ and a copy of λρ
in every cut in A+ (note that we include all of A, not only A ∩ λ, on purpose)
in which the set ρ is realized, perhaps with an ≡loc

k−1 class on the left or an
≡loc
k−1 class on the right. Let the least and greatest elements of A be a0 and

a1. By the definition of an almost locally closed set, there exist b0, b1 ∈ A such
that (λ, ai) ≡k−1 (λ, bi). Let the half-open interval in µA between ai and bi,
including ai and not bi, be µi. Let λA = µ0×ω∗+µA +µ1×ω. In this way we
make out of an almost locally closed set an interval for the linear order λA.
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Suppose σ is as in definition 3.4.3, i.e., that there is a single almost locally
closed set A such that if σ describes an ≡loc

k−1 class on the left, there is some
x0 ∈ A such that (λA, x0) is in that class, and if σ describes an ≡loc

k−1 class
on the right, there is some x1 ∈ A such that (λA, x1) is in that class, and
such that between x0 (or x0 = (∅, λA), if σ does not describe an ≡loc

k−1 class
on the left) and x1 (or x1 = (λA, ∅), if σ does not describe an ≡loc

k−1 class on
the right), (λA, x0, x1) satisfies σ, and such that A is minimal among all almost
locally closed sets containing two elements x0, x1 of the given ≡loc

k−1 classes.
Then choose that A ⊆ λ and elements x0, x1 for which 3.4.3 defines the density
formula δσ and add to λσ constants for elements of A realizing the ≡loc

k−1 class
that σ describes on the left, if there is one, and the ≡loc

k−1 class that σ describes
on the right, if there is one. For instance, if σ describes neither a left nor a right
element, then λδ = λA.

Suppose otherwise, i.e., that no one almost locally closed set A, minimal
among those that realize two ≡loc

k−1 classes, realizes every ≡loc
k−1 class described

by δ. If σ has the ≡loc
k−1 class |tau on the left and no ≡loc

k−1 class on the right,
let A0 be the minimal almost locally closed set containing an element a0 ∈ A0

of type σ as chosen in definition 3.4.4, let σ−A0 be the set of almost locally
closed sets chosen in definition 3.4.4, and let λδ be (λA, a0)+ a dense shuffle of
{λA : A ∈ σ−A0}.

Theorem 3.4.1: If σ is a set of ≡loc
k−1 classes with or without a single ≡loc

k−1

class on the left and with or without a single ≡loc
k−1 class on the right, λσ is a

linear order with one ore more constants which satisfies δσ, with the constants
satisfying δσ’s single type on the left or right; the remaining ≡loc

k−1 classes are
realized between these constants.

Proof: If σ is satisfied within a single linear order λA, forA a single almost locally
closed set, then λσ was chosen in the previous definition’s first paragraph to
satisfy σ. If σ is not satisfied within a single λA, then δσ requires that the ≡loc

k−1

class on the left is part of a minimal almost locally closed set A0 – the second
paragraph of the previous definition defines λA0 – and δσ requires that the δσ
requires something similar on the right. Finally, δσ requires that almost-locally
closed sets in σ−A0 be densely ordered. In the last paragraph of the previous
definition, we find that λδ does in fact densely order {λA : A ∈ σ−A0}. It
remains to check that in each interval in each λA, between any a0 and a1 ∈ A,
such that the set ρ of ≡loc

k−1 classes is realized between a0 and a1, then λρ,
with constants for a0 and a1 if they are in λ and not λ+, satisfies δρ with the
constants ai interpreting whatever ≡loc

k−1 classes ρ requires on the left and right.
By induction on strict subsets of σ, we may assume this is true. As the base
case, if σ is empty, then δρ describes the empty set and λρ is the empty set. �

By theorem 3.0.2, µ0 ≡k µ1 holds just in case µ0 and µ1 have certain data in
common. That data form an initial state of the local consistency game. So, for
any ≡k set, we take this initial state, extend its ≡loc

k−1 classes to almost locally
closed sets, and write δσ. For any finite number k, for any linear order λ, the ≡k
class of λ is determined by one such initial state for the local consistency game.
For such a state, we form λσ in each interval, for σ = Ui, and by cutting the
models λσ at the constants which refer to the locations of the ≡loc

k−1 classes on
the left of Ui and the right of Ui−1, we form a model of the entire initial state.
A subsequence (ci : i0 < i < i1) of the constants may be close, in that the sets



3. Quantifier-rank equivalence between linear orders 38

Ui between them is small. Then it is likely that a single almost locally closed
set which is minimal among almost locally closed sets containing even ci0 will
contain them all. We could then form the single set λA to explain the whole
sequence (ci0 , Ui0 , ci0+1, . . . ci1), though the theoretically simpler definition is
simply to form λA on each triple ci, Ui, ci+1, to cut it at the constants for ci and
ci+1, and to add these linear orders together. In any case, wherever there are
constants ci < ci+1 such that no one almost locally closed set which is minimal
among those containing elements with the ≡loc

k−1 classes of ci and ci+1 realizes all
of Ui, then we choose an almost locally closed set Ai which is minimal among
those containing an element with the ≡loc

k−1 class of ci and an almost locally
closed set Ai+1 which is minimal among those containing an element with the
≡loc
k−1 class of ci+1 and realize the ≡loc

k−1 classes left over from Ui densely between
(λAi , ci) and (λAi+1 , ci+1). By the following theorem, we are justified in calling
the linear order which is the piecewise sum, over constants (ci, i ≤ n), of dense
linear orders λδ, the piecewise-dense model PWD(Thk(λ)) of Thk(λ).

Theorem 3.4.2: Let k be any finite number; let λ be any linear order. Then the
followin equivalence holds: λ ≡k PWD(Thk(λ)) and PWD(Thk(λ)) is finitely
axiomatized by

Thk(λ) ∧
∧

a,b∈I{i:i<k−1}(λ),adjacent

δ
(a,b)

{Thloc
k−1(λ,x):a<x<b}

where instead of postulating the existence of elements xa for each a in the set of
indices I{i:i<k−1}(λ) and restricting δ to occur between xa and xb, we instead
use the fact that a and b are definable elements and cuts in λ, and we restrict
δ to occur among the set of elements d ∈ λ such that d is above the defined cut
a and below the defined cut b.

Proof: As in the previous theorem, PWD(Thk(λ)) satisfies δσ for each ad-
jacent pair of elements a, b ∈ I{i:i<k−1}(λ), where δ describes the ≡loc

k−1 class
classes realized between the defined elements or cuts a and b. That is, Thk
of the interval between a and b only requires that the local classes in σ be
realized between the definable elements or cuts a and b. The formula δ

(a,b)
σ

adds to this a choice about how the local classes form into almost locally closed
sets, insists that this happens regularly (uniformly within the interval (a, b)),
and insists that these almost locally closed sets are realized densely. But since
this certainly implies that exactly the ≡loc

k−1 classes in δ are realized, for any
first move played in (a, b) in λ or PWD(Thk(λ)), player II can answer with
an element which has its ≡loc

k−1 class in δ and which is realized between a
and b. This implies by theorem 3.3.2 that the linear orders left and right of
the played elements are ≡k−1. To see that λ ≡k PWD(Thk(λ)) is finitely
axiomatized by the given formula, we will compute its ≡k+m class from the
given formula, for any natural number m. By theorem 3.0.2, the ≡k+m class
is determined by sequences (Thloc

k+m−1(λ, a) : a ∈ I{i:i<k+m−1}(λ) ∩ λ) and
({Thloc

k+m−1(λ, a) : b < a < c} : (b, c) ∈ (I{i:i<k+m−1}(λ))+). For each natu-
ral number m, I{k+m}(λ) adds labels for the first and last occurrence of each
≡loc
k+m class. Those ≡loc

k+m classes which are realized in λAi for Ai the almost
locally closed element containing the i-th element of I{i:i<k−1}(λ), are realized
as λA orders them – by induction on proper subsets ρ ⊆ σ, the intervals in
λA determine where these ≡loc

k+m classes begin and end. The remaining ≡loc
k+m
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classes which are realized in PWD(Thk(λ)) are realized in λA for A ∈ σ−A0 (or
A ∈ σ−A0,−A1), sets of almost locally closed sets which realize all ≡loc

k−1 classes
not realized in A0 (or not realized in A0 or in A1). Again, by induction on
proper subsets of σ, we can determine which ≡loc

k+m classes are realized in λA. It
is easy to see that density will force these ≡loc

k+m classes to be realized without
lower or upper bound and to be realized all the way down to the cut (λA0 , the
shuffle of σ−A0). �

3.5 Semimodels

Unlike previous sections, this section describes a topic without the motivation
of a main theorem to which everything trends. Instead we gather together some
results on semimodels, a rich concept.

Theorem 3.0.3 shows that for any consistent set U of pairs of ≡k classes,
a finite set W of information witnesses the consistency of U . The proof of
theorem 3.0.3 adds this twist: if player I plays an exhaustive strategy in the
linear consistency game in definition 3.1.1, and if player II plays according to a
function (f0, f1) from W to W ×W , then other variations in player I’s strategy
have no effect on the linear order λ which is created during the game – each
element of λ is waiting to be created because W defines it in terms of other
elements of λ which are waiting to be created, and the order in which player
I goes about turning these into played constants does not change the set of
elements which are ultimately created, nor its ordering. That is, “λ is built in
stages according to W, (f0, f1)” is a complete description of λ. However, we went
ahead and defined PWD(Thk(λ)) and proved in theorem 3.4.2 that this λ has
a complete description in first-order logic over the vocabulary <. The simpler
definition “λ is built in stages according to W, (f0, f1)” can be expressed over
the vocabulary < in a logic which is first-order and has the additional capacity
that it recognizes “stages.”

Given any linear order λ, for each pair x0, x1 of elements of λ, let U(λ, x0, x1) =
U(Thk+1({x2 ∈ λ : x0 < x2 < x1})) be the set of pairs of ≡k classes re-
alized as (Thk(x0, x2), Thk(x2, x1)) for various x2 between x0 and x1. The
relationship between W, (f0, f1) and the ≡k+1 class U(λ) of λ is complicated.
If it were possible to interpret each complete description W, (f0, f1) as a set
U(λ), we would have a complete theory in the given ≡k+1 class. Theorem 3.0.3
checks that Thk+1(λ) is consistent by finding that for any constants x0 and x1

which are defined and adjacent at some stage, those constants define an inter-
val (x0, x1) (similarly, one constant which was at some stage the least defined
constant defines intervals with no left endpoint or no right endpoint, and no
constants define the entire linear order itself) such that U(x0, x1) is an element
of a set W = {UI : I is an interval in λ} so that for U ∈ W and for any
of U ’s elements, e.g., (Thk(x0, x2), Thk(x2, x1)) ∈ U(x0,x1), there exists a pair
(V0, V1) of elements of W such that (ξ(V0), ξ(V1)) = (Thk(x0, x2), Thk(x2, x1))
and V0 + (∅, ∅) + V1 = U(x0,x1). In λ, there must exist an element x2 between
x0 and x1 such that Thk(x0, x2) = ξ(V0) and Thk(x2, x1) = ξ(V1). There
must exist Skolem functions f0 and f1 for the formula ∀U ∈ W (∀(φ, ψ) ∈
U(∃V0∃V1(((ξ(V0), ξ(V1)) = (φ, ψ)) ∧ (V0 + (∅, ∅) + V1 = U(x0,x1))))), which ex-
presses consistency. But for triples x0, x1, x2 ∈ λ such that x0 and x1 were
never adjacent during the construction of λ, x0 and x1 can have the same set
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U(x0,x1) and the triples x0, x1, x2 can have the same (Thk(x0, x2), Thk(x2, x1)),
while the pair (U(x0, x2), U(x2, x1)) may be very different from the value

(f0(U(x0,x1), (Thk(x0, x2), Thk(x2, x1))), f1(U(x0,x1), (Thk(x0, x2), Thk(x2, x1))))

of those Skolem functions! If λ has been created in stages according to the
functions (f0, f1) from W to W×W , then λ has some triples which obey (f0, f1)
(at least, those triples x0, x1, x2 for which x0 and x1 were at one point adjacent),
but λ might well have triples which do not obey (f0, f1). That every triple in
λ obeys W, (f0, f1) can be expressed in first-order logic as ∀x0(∀x1(χ)) where χ
is the formula:

∧U∈W (σ(x0,x1)
U → (∀x(∧(φ,ψ)∈U ((φ(x0,x) ∧ ψ(x,x2))→

((f0(U, (φ, ψ)))(x0,x) ∧ (f1(U, (φ, ψ)))(x,x1))))))

If this formula is consistent, it finitely axiomatizes any model λ. For we could
compute Thk+m of any interval (x0, x1) in λ as σQ where Q is the set of pairs
of Thk+m−1 theories of intervals (x0, x) and (x, x1) for various x in the interval
(x0, x1).

That is, if player II has a winning strategy in the consistency game and plays
that strategy as a function, and if that strategy turns out to hold of all triples
the resulting linear order is complete. Every linear order can result from player
II’s play in the consistency game, so long as player II adds some randomness to
the strategy. For some initial states U0 there are sets W which prove that U is
consistent, so there is always a function f which constructs a linear order. But
in general, there are pairs x0, x1 which arise in the tree of constants constructed
during play which were never neighbors during the game, and yet which, at
the end of the game, have the same state U(x0,x1) as some pair y0, y1 which
were neighbors during the game. How can we describe the linear order which is
built during the consistency game in which player II plays a strategy which is
a function? semimodels are a good way to describe, up to ≡, models which are
built according to repeated rules, because they address the notion of “stages.”

Definition 3.5.1: ([3]) A semimodel is a nested sequence (Mi : i < ω) of finite
sets with a common ordering on ∪i<ωMi. We call (Mi : i < k) the rank k
part of M . We say M |=semi φ if (Mi : i < ω) |= φsemi, where φsemi is the
relativization of φ in which we replace any subformula ∃xψ of φ which occurs
within the scope of n-many quantifiers by ∃x((x ∈Mn)∧ψ) and we replace any
subformula ∀xψ of φ which occurs within the scope of n-many quantifiers by
∀x((x ∈Mn)→ ψ).

Let χ1 = ((∀x0∀x1χ) ∧ (∀x1∀x0χ)).

Now {χ1,∃y0(χ1),∃y0(∃y1(χ1)), . . . }, the set containing χ1 with any number of
dummy quantifiers prepended in front of χ1, describes up to ∼= the countable
semimodel built by iterating the Skolem functions f0 and f1. Thus, every ≡k
class contains a linear order with a simple semimodel description. semimodels
were introduced with the following theorem in mind:

Theorem 3.5.1: ([3]) If U is a class of finite semimodels, and the following hold:
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1. U is recursively enumerable,

2. For any formula φ and any semimodel L ∈ U such that the rank of L as a
semimodel is the rank of φ as a formula, if L |=semi φ, then L extends to
a full linear order λ, such that λ |= φ,

3. For any formula φ and any linear order λ such that λ |= φ, φsemi holds in
some semimodel L ∈ U ,

then the theory of linear order is decidable.

Proof: Enumerate the implications of the theory of linear order, and look for
¬φ. Meanwhile, enumerate elements of U , and look for L ∈ U of rank equal to
the quantifier rank of φ, such that L |= φ. By condition 2, some linear order λ
models φ, too. By condition 3, if φ is consistent, then this procedure terminates
in the discovery of a semimodel of φ. �

The second condition rejects a number of intuitive semimodels, if the semi-
models (Mi : i < ω) which are defined by repetitive play of a winning strategy
in a consistency game are intuitive and if (Mi : i < ω) extends to ∪i<ωMi.
These structures are described up to ∼= in the class of countable semimodels,
by a theory which affixes dummy quantifiers to the formula χ1, given above.
If there were a model of any element of that semi-theory, there is a model of
the whole theory, since dummy variables dont alter whether a model satisfies
a sentence, or not. The model would be finitely axiomatized by χ1. For some
winning strategies in the consistency game, there is no model of χ1. These
semimodels must be excluded from U . Even if χ1 is not consistent, the semi-
models (Mi : i < ω) have a consistent union and a simple semi-theory, even
though the theory of the linear order ∪i<ωMi is not χ, i.e., for some natural
number k, it holds, for many winning strategies in the consistency game, that
(Mi : i < k) 6≡semi

k −1∪i<ωMi. We write the rank k part of a semimodel as the
sequence (si : i < n) where si is the least number n such that the i-th element
of Mk−1 is is Mn. From such a sequence we recover the semimodel’s stages as
Mj = {i : si ≤ j}. We add semimodels by concatenating their sequences –
i.e., we write one after the other. We multiply semimodels N ×M by replacing
every element of M of rank i by a copy of N in which every number has been
increased by i. This usually produces a lot of waste which we can then trim
away, finding a smaller sequence which is ≡k.

Lemma 3.5.1: If M is a semimodel and µ is a model, then the following are
equivalent:

• For every sentence φ of quantifier rank k, M |=semi φ just in case µ |= φ.

• Player II has a winning move in the EF game between M and µ, where
on the j-th move, any move played in M must be played in Mj .

Proof: If there is a sentence φ violating the first item, then player I can
use that as a winning strategy in item II. On the other hand, from a winning
strategy for player I in item II we can create a formula φ which is satisfied in µ
just in case it is not semimodel satisfied in M . �

If one or both of those conditions occur, we say M ≡semi
k µ. The ≡2 classes

of linear orders have semimodels:

∅, 0, 00, 000, 100, 001, 101.
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Lemma 3.5.2: (0)2
k−1

(1)2
k−2

(2)2
k−3

. . . (k − 1)2
0 ≡semi

k ω.

Proof: We play the EF game between the semimodel and ω – in the semi-
model the j-th move is restricted to Mj . We answer a large natural number
with the last 0. To the right, this leaves the statement of the lemma for k − 1,
which holds by induction. To the left, this leaves (0)2

k−1−1 which is ≡semi
k to

any large, finite linear order, as the reader may wish to prove by induction. �
A sequence (si) is an ≡semi

k semimodel for the integers, Z if 1. it tapers,
from 0 to k, at least as slowly as in the preceding lemma, and 2. it is continuous
- it never ascends from j to j+ 2 or descends from j+ 2 to j, without the value
j in between.

Lemma 3.5.3: If E ≡semi
k η, the countable dense linear order without endpoints,

then E with every element increased by one +(0) + E with every element in-
creased by one ≡semi

k+1 η. 101 ≡semi
2 η; 2120212 ≡semi

3 η.

Proof: Like E, η has only one type of element. If we assign the variable x
to an element of that type, the k-quantifier theory of η left of x or right of x is
the k-quantifier theory of η. Base case: ∅ ≡semi

0 η. �
To these examples, and the properties of × and

∑
for linear orders, we can

also add semimodel versions of the random shuffle of a number of linear orders,
and create a semimodel for any element of the hierarchy MLL of [7], since that
hierarchy is defined by +, ×ω, ×ω∗ and shuffle. But we don’t find semimodels
especially convenient for defining the shuffle – the resulting semimodel is very
large, and repeats many sequences so that it’s easy to define but unwieldy
to work with. Instead, semimodels handle ≡loc

k classes gracefully, and short
semimodels in each ≡k class can be obtained from the data of theorem 3.0.2.
The following theorem allows us to write semimodels in each ≡k class which
are shorter than MLL semimodels, and much shorter than those expressing the
Skolem functions of theorem 3.0.3:

Theorem 3.5.2: For any linear order µ and any finite k, there is a semimodel M
which is ≡semi

k µ such that |M0| = |I{i:i<k−1}(λ) ∩ λ| +
∑
{|{Thloc

k+m−1(λ, a) :
b < a < c}| : (b, c) ∈ (I{i:i<k+m−1}(λ))+} the size of Mk is bounded by |M0|
times an upper bound on the size of the semimodels which express the various
≡loc
k−1 classes in µ.

Proof: We write semimodels for ≡loc
k−1 classes as follows: let 0 represent

the element whose ≡loc
k−1 class we wish to describe, and add on either side add

semimodels for ≡left
k−1 and ≡right

k−1 classes. An ≡left
k−1 class has as its semimodel

any M such that each ≡k−1 class φ in the ≡left
k−1 class has a semimodel M +

N . A model in which a set of local types exists can be obtained by simply
concatenating semimodels for those local classes. By theorem 3.0.2, we know
that an ≡k class is equivalent to a sequence of elements with determined ≡loc

k−1

classes, and sets of ≡loc
k−1 classes between them. The concatenation of a sequence

of semimodels, one for each label and one for each ≡loc
k−1 class supposed to exist

between the labels |=semi the desired ≡k class. �
The inextensible ≡loc

2 classes of a single free variable have semimodels:

{12021, 101, 1201, 1021}
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. An ≡3 class realizing |U |-many of these has a semimodel with at most 3 +
3 + |U | × 5 elements. This upper bound is almost tight: the smallest semimodel
of the theory le < lf < le < {12021, 101, 1201, 1021} < ge < gf < ge has 14
elements, while this theorem suggests the semimodel

000 + 12021 + 101 + 1201 + 1021 + 000,

i.e., we can eliminate 8 of the lower-order elements without affecting the ≡semi
3

class of the semimodel.
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4. DYNAMIC EHRENFEUCHT-FRAISSE GAMES ON LINEAR
ORDERS IN FIRST ORDER AND INFINITARY LOGIC

Abstract

This paper continues the previous chapter of this thesis. Here we carry out
the enumeration described in that paper, for some small values. We solve the
Dynamic Ehrenfeucht-Fräıssé Game for linear orders and in strong logics – logics
in which the semantics is an Ehrenfeucht-Fräıssé Game played whle a clock runs
towards 0, but in which the clock is not a finite number. We write a normal
form for formulas of Lω1ω over ordinals, we enumerate the first ≡k classes of
linear orders, we discuss a linear order with undecidable theory, in which there
is uniform decidability of its Σn theory for any n, and we go about extending
our normal form, or criterion for equivalence, to nonwellfounded logics.

Transitive sets described by descending sequences

This section is intended as an introduction – it indicates how we enumerate a
model class by enumerating its local types, and why it is important to compute
transitive sets. Topological spaces are inherently local, so their enumeration via
local types is simpler than in the model class of linear orers.

Definition 4.0.2: Let E0 = {e}. Let E1 be the power set of E0. Let f1 be the
function with domain E1 and range E0. For each k > 0,

Transitivity: we call U ⊆ Ek fk-transitive just in case: whenever φ ∈ ψ and
ψ ∈ U , there is some ξ ∈ U such that fk(ξ) = φ.

The next level: Let Ek+1 be the set of fk-transitive subsets of Ek. Define fk+1

to have domain Ek+1 and value f(U) = {f(φ) : φ ∈ U}.

For instance, f2 maps {∅, {e}} and {∅} and {{e}} to {e}, and maps ∅ to
∅. The elements U ∈ Ek can be viewed as descriptions of transitive sets in a
semantics in which k-many variables x0 . . . xk−1 are assigned, in turn – x0 to
an element of U , x1 to an element of x0, and so on. If player I aims to show
that transitive sets U and V with atom e are different elements of Ek, player I
can assign x0 to an element of U or y0 to an element of V ; player II assigns the
other, and the game continues, with player I trying to show that x0 and y0 are
different elements of Ek−1. Player I wins if, for some i < k, xi is empty and yi
is not, or yi is empty and xi is not. These are not quantifier-rank-k descriptions
of transitive sets, for in the Ehrenfeucht-Fräıssé game on two transitive sets,
player I doesn’t have to play a descending sequence of elements, xi+1 ∈ xi. For
each k > 0, fk is the function which determines the rank-k − 1 theory of each
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rank-k theory of a transitive set, and thus we view E as a language in which
transitive sets are described by their descending sequences.

f3(U) ∈ E2 is extended by U ∈ E3

{∅, {e}} is extended by {{∅, {e}}, {∅}, {{e}}, ∅}
{∅, {e}} is extended by {{∅, {e}}, {∅}, ∅}
{∅, {e}} is extended by {{∅, {e}}, {{e}}, ∅}
{∅, {e}} is extended by {{∅, {e}}, ∅}
{∅, {e}} is extended by {{∅}, {{e}}, ∅}
{∅, {e}} is extended by {{∅}, ∅}
{∅, {e}} is extended by {{{e}}, ∅}
{∅} is extended by {∅}
{{e}} is extended by {{{e}}}
∅ is extended by ∅

By definition 4.0.2, {U ∈ Ek : f(U) = V } = {U : (∀x ∈ V ∃y ∈ Uf(y) =
x) ∧ (∀y ∈ U∃x ∈ V f(y) = x)}, so the size of the first set is∏

x∈V
(2|{y∈Ek−1:f(y)=x}| − 1).

Let U0 contain every element y ∈ Ek−1 : f(y) 6= Ek−2. Because {U ∈ Ek :
f(U) = Ek−1} contains {U ∈ Ek : f(U) = Ek−1 ∧ U0 ⊆ U}, the size of the first
set is at least the size of the latter, which is (2|{y∈Ek−1:f(y)=Ek−2}| − 1). So, by
recursion, |Ek| > tk, where t1 = 2 and tk+1 = 2tk − 1. By counting some initial
sets more carefully, we can estimate Ek more precisely from below.

Simply because transitive sets are sets, |Ek| < Tk, where T1 = 2 and Tk+1 =
2Tk . We can bring this down by counting Ek precisely, and beginning the T -
recursion at |Ek|. For instance, |E4| = 148, of which t4 = 127 indeed counts
the set of U ∈ E4 such that f4(U) = E2. We could improve the lower bound t5
with extra information about f4:

E3 = f4(U) for 127 elements U ∈ E4

E3 \ {{e}} = f4(U) for 7 elements U ∈ E4

E3 \ {∅} = f4(U) for 7 elements U ∈ E4

{{∅, {e}}, ∅} is f4 of {{{∅, {e}}, ∅}, ∅}
{{∅}, {{e}}, ∅} is f4 of {{{{e}}}, {∅}, ∅}
{{∅}, ∅} is f4 of {{∅}, ∅}
{{{e}}, ∅} is f4 of {{{{e}}}, ∅}
{{{e}}} is f4 of {{{{e}}}}
{∅} is f4 of {∅}
∅ is f4 of ∅

Thus, the number of U ∈ E5 such that f5(U) = E4 is (2127− 1)× (27− 1)×
(27 − 1). This is close to the trivial upper bound 2148 on E5.

Order-topological spaces

Consider OT , the class of finite disjoint unions of linear orders, with the topology
which is the disjoint union of the order topologies on the linear orders. I.e., OT
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is the class of first-order structures (X, τ, ε) – in which the only atomic formulas
are x ∈ U , for x ∈ X, U ∈ τ – for which the topological space (X, τ) which
can be extended to models (X = λ0 ∪ . . . , λn−1, <0 · · · <n, τ), where <i is a
linear order on λi, and τ is the topology with basis the set of open intervals
{x ∈ λi : a < x < b}, for any parameters a, b ∈ λi.

Definition 4.0.3: For T0, T1 in OT and for x0 ∈ T0 and x1 ∈ T1, we say these
order-topological spaces are locally equivalent, symbolized (T0, x0) ≡loc

k (T1, x1),
if there is some R in OT such that, taking Si for the disjoint union of R and Ti,
(S0, x0) ≡k (S1, x1).

Topology is a convenient class in which to discuss local formulas. The first-
order theory of (Q + Z, 0 ∈ Q, 0 ∈ Z, 1 ∈ Z) does not know that 0 ∈ Z and 1 ∈ Z
are neighbors in the ordering. What it can say about these three parameters is
entirely local to them – that 0 ∈ Q is a limit of limits of limits . . . ... and that
0 ∈ Z is isolated. For any natural number k, and for any T in OT , let Tk be
the disjoint union of k-many copies of T . Thk(Tk) is determined by the set of
≡loc
k−1 classes realized in T .

Theorem 4.0.3: The ≡loc
2×k classes and ≡loc

2×k+1 of order-topological spaces cor-
respond one-to-one with sets in Ek, where the correspondence c maps the ≡loc

2×k
class of an element which is a limit of the ≡loc

2×k−2 classes U to the element
{c(V ) : V ∈ U} of Ek.

Proof:The set U of ≡loc
2×k−2 classes which limit to x must be transitive, for

if elements of type φ(y) ∈ U limit to x, and the formula φ(y) requires that
elements of type ψ limit to y, then elements of type ψ limit to x, and a full
≡loc

2×k−2 description of those elements is part of the ≡loc
2×k+1 class of (Ti, xi). �

Furthermore, a set U of ≡loc
k classes is the set of ≡loc

k classes realized in some
order-topological space just in case U is transitive.

Thus, the first-order classes of topological spaces derived from linear orders
can be enumerated with arbitrary accuracy. E.g., the number of ≡1 0 classes of
topological spaces T10 (which contains 10 copies of T , which prevents the logic
from counting the number of elements of some type) is the number of transitive
subsets of E4. Among those transitive subsets are (2127−1)× (27−1)× (27−1)
subsets of E4 whose image under f5 is all of E4 (i.e., they are transitive by
virtue of being large enough); on the other hand, |E4| = 148.

When we study the ≡k classes of linear orders, we have an extra compli-
cation: that each different permutation of the order in which the various ≡loc

k

classes have their least element is noticed by Thk+2 of the linear order, and
likewise the order in which the various ≡loc

k classes have their greatest element.
Thus, the enumeration of ≡k classes of linear orders requires

• the enumeration of transitive sets of local types which can limit to any
element, and

• the enumeration of permutations on the ordering of the local types as
they approach an element which maintain transitivity in each interval
between the appearance or disapperance of one type and the appearance
or disapperance of another.



4. Dynamic Ehrenfeucht-Fräıssé Game & strong logic 48

The permutations expand the ≡k classes of linear orders, relative to the ≡k
classes of their induced topologies: there are expk2(ck)-many ≡k classes of lin-
ear order (where ck tends to 1.23 with the first 6 values of k), and there
are expb(k+1)/2c

2 (cb(k+1)/2c)-many ≡k classes of order-topological spaces where
c = (1, 1, 1, 0.8, 0.6, 0.59) – i.e., the exponential function is iterated twice as of-
ten when computing ≡k classes of linear orders as when computing ≡k classes
of order-topological spaces.

4.1 ≡2 and ≡3 classes of linear orders

Theorem 4.1.1: Writing 1 for Th1(1) and 0 for Th1(∅), the following sets of
pairs of ≡1 classes of linear orders are consistent:

{(1, 1)}, {(1, 1), (1, 0)}, {(0, 1), (1, 1)}, {(0, 1), (1, 1), (1, 0)}, {(1, 0), (0, 1)}, {(0, 0)}, ∅,

and the following sets of pairs of ≡1 classes of linear orders are inconsistent:

{(0, 1)}, {(1, 0)}, {(0, 0)} ∪ U, if U 6⊆ {(0, 0)}.

Let WZ = {{(1, 1)}, {(1, 1), (1, 0)}, {(0, 1), (1, 1)}, {(0, 1), (1, 1), (1, 0)}, ∅}.
The function ξ is uniformly 1 on WZ , except that ξ(∅) = 0.

• To (1, 1) ∈ {(1, 1)}, assign the pair ({(1, 1), (1, 0)}, {(0, 1), (1, 1)}). Writ-
ing 1 for ξ({(1, 0), (1, 1)}), ξ({(0, 0)}), and ξ({(0, 1), (1, 1)}) and apply-
ing the definition of addition for sets of pairs of ≡1 classes, we find:
{(1, 1), (1, 0)} +{(0, 0)} +{(0, 1), (1, 1)} = {(1, 1+1+1), (1, 0+1+1), (1+
0, 0 + 1), (1 + 1 + 0, 1), (1 + 1 + 1, 1)} = {(1, 1)} and the pair of ξ values
(ξ({(1, 1), (1, 0)}), ξ({(0, 1), (1, 1)})) = (1, 1) is the chosen element.

• To (1, 1) ∈ {(1, 1), (1, 0)} ∈WZ we assign the pair in WZ : ({(1, 1), (1, 0)},
{(0, 1), (1, 1), (1, 0)}). The value of ξ on either element of that pair is 1, so
the pair of values of ξ is (ξ({(1, 1), (1, 0)}), ξ({(0, 1), (1, 1), (1, 0)})) = (1, 1)
is the chosen element, and {(1, 1), (1, 0)}+{(0, 0)} +{(0, 1), (1, 1), (1, 0)} =
{(1, 1), (1, 0)} is the chosen set.

• To (1, 0) ∈ {(1, 1), (1, 0)} assign the pair ({(1, 1), (1, 0)}, ∅). The value
of ξ on this pair is (1, 0), the chosen element. The sets of pairs sum
to: {(1, 1), (1, 0)} +{(0, 0)}. On those summands, ξ has the value 1, so
= {(1, 1 + 1), (1, 0 + 1), (1 + 0, 0)} = {(1, 1), (1, 0)} is the chosen set.

• The choices in {(0, 1), (1, 1)} are symmetric.

• To (0, 1) ∈ {(0, 1), (1, 1), (1, 0)}, assign the pair (∅, {(0, 1), (1, 1), (1, 0)}).
The value of ξ on this pair is (0, 1), the chosen element. The sets of pairs
sum to: {(0, 0)} +{(0, 1), (1, 1), (1, 0)} = {(0, 0+1), (1+0, 1), (1+1, 1), (1+
1, 0)} which is the chosen set.

• To (1, 0) ∈ {(0, 1), (1, 1), (1, 0)} we assign the pair ({(0, 1), (1, 1), (1, 0)}, ∅),
symmetric to the previous item.
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• To (1, 1) ∈ {(0, 1), (1, 1), (1, 0)} we assign the pair ({(0, 1), (1, 1), (1, 0)},
{(0, 1), (1, 1), (1, 0)}). Since ξ({(0, 1), (1, 1), (1, 0)}) = 1, the pair of ξ val-
ues is (1, 1), the chosen element. Further, the the sum {(0, 1), (1, 1), (1, 0)}
+{(0, 0)}+ {(0, 1), (1, 1), (1, 0)} = {(0, 1), (1, 1), (1, 0)} is the chosen set.

If that strategy is played against an exhaustive strategy of player I, with
initial set {(1, 1)}, the set Z × η is constructed: Every time player I plays
(1, 1) ∈ {(0, 1), (1, 1), (1, 0)}, we begin a new copy of Z. Every time player
I plays (1, 0) or (0, 1), we add the immediate predecessor or successor to the
greatest or least element of a copy of Z which is already being built. With the
other elements of WZ as initial sets, we get Z×λ for λ = η+1, 1+η, or 1+η+1.

Next, let W2 = {{(1, 0), (0, 1)}, {(0, 0)}, ∅, }. Again, the value of ξ are 1,
except ξ(∅) = 0.

• To (1, 0) ∈ {(1, 0), (0, 1)} we assign the pair ({(0, 0)}, ∅). The pair of ξ
values are the chosen element. The sum is: {(0, 0)} +{(0, 0)} = {(0, 0 +
1), (1 + 0, 0)} = {(1, 0), (0, 1)}, the chosen set.

• To (0, 1) ∈ {(1, 0), (0, 1)} we assign the pair (∅, {(0, 0)}). The pair of ξ
values are the chosen element. The sum is: {(0, 0)} +{(0, 0)} = {(0, 0 +
1), (1 + 0, 0)} = {(1, 0), (0, 1)}, the chosen set.

• To (0, 0) ∈ {(0, 0)} we assign the pair (∅, ∅). The pair of ξ values are the
chosen element. The sum is ∅+ {(0, 0)}+ ∅ = {(0 + 0, 0 + 0)} = {(0, 0)},
the chosen set.

If that strategy is played against an exhaustive strategy of player I, with
initial set {(1, 0), (0, 1)}, then we construct the model 2. If we play with initial
condition {(0, 0)}, then we construct the model 1.

To see that a set is inconsistent, we use first-order logic.

• Suppose {(1, 0)} = {(φ, ψ) : λ |= ∃x(φ<x ∧ ψ>x)}. Since 1, or Th1(1),
is defined by ∃y(y = y), we have: λ |= ∃x(∃y(y < x) ∧ ¬(∃y(y > x))).
But since {(1, 0)} is a singleton, we also have: λ |= ∀x(∃y((y < x) ∧ (y =
y)) ∧ ¬(∃y((y > x) ∧ (y = y)))). Assign the variables of the first conjunct
to a ∈ λ, b ∈ λ so that b < a. Now the second conjunct does not hold if we
assign x to b. That is: {(1, 0)} requires that some element is maximal and
not minimal, and that every element is maximal and not minimal. But if
a is not minimal, there exists b < a, and then b is not maximal.

• We treat {(0, 1)} symmetrically.

• {(0, 0)} ∪ U where U 6⊆ {(0, 0)}. The element of U \ {(0, 0)} implies
∃x(∃y(y < x)) or ∃x(∃y(y > x)). But (0, 0) implies ∃x(¬∃y(y < x) ∧
¬∃y(y > x)). If the former is satisfied with x, y assigned to a, b and the
latter is satisfied with x assigned to c, then by totality, a and b are related
to c, violating the second formula. �

Applying a similar analysis to ≡3 is not profitable. Recall that different ≡3

classes are separated by their labels I{0,1}(λ) or by the ≡loc
2 classes at labels and

between labels, and the lemma that

Ik(λ) = I left
k (λ) ∪ Iright

k (λ).
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Theorem 4.1.2: Labeling the ≡loc
0 class e0, and the ≡loc

1 class e1, if the linear
order λ has at least five elements, then I left

{0,1}(λ) is one of the following:

(de0 ∈ (∅, ∅)) = (de1 ∈ ((de0 ∈ (∅, ∅)), . . . )) = (de0 ∈ ((de1 ∈ ((de0 ∈ (∅, ∅)), . . . )), . . . )),

(le0 ∈ (∅, ∅)) < (de1 ∈ ((le0 ∈ (∅, ∅)), . . . )) = (de0 ∈ ((de1 ∈ ((le0 ∈ (∅, ∅)), . . . )), . . . )),

(le0 ∈ (∅, ∅)) < (le1 ∈ ((le0 ∈ (∅, ∅)), . . . )) < (de0 ∈ ((le1 ∈ ((le0 ∈ (∅, ∅)), . . . )), . . . )),

(le0 ∈ (∅, ∅)) < (le1 ∈ ((le0 ∈ (∅, ∅)), . . . )) < (le0 ∈ ((le1 ∈ ((le0 ∈ (∅, ∅)), . . . )), . . . )).

Proof: The label de0 is assigned to (∅, λ) to indicate that λ has no least
element. So for any k, there must be some ≡loc

k class such that λ has no least
element of that type. There is only one ≡loc

1 class, e1. So there is no least
element of ≡loc

1 class e1. Similarly, the label de1 must be followed by de0 again.
If λ has at least five elements, then the four labels

(le0 ∈ (∅, ∅)) < (le1 ∈ ((le0 ∈ (∅, ∅)), (ge0 ∈ (∅, ∅)))) <

(ge1 ∈ ((le0 ∈ (∅, ∅)), (ge0 ∈ (∅, ∅)))) < (ge0 ∈ (∅, ∅))

don’t exhaust λ. �

Definition 4.1.1: If τ0 and τ1 are ≡loc
k−1 classes and if U is a set of ≡loc

k−1 classes,
then we call the triple (τ0, U, τ1) consistent just in case there is some linear order
λ with elements a and b such that (λ, a) has ≡loc

k−1 class τ0 and (λ, b) has ≡loc
k−1

class τ1 and the set of ≡loc
k−1 classes realized between a and b is U . If U is a

set of ≡loc
k−1 classes and τ0 is an ≡loc

k−1 class, then we call the triple (τ0, U,−)
consistent just in case there is some linear order λ and element a ∈ λ such that
(λ, a) has ≡loc

k−1 class τ0 and the set of ≡loc
k−1 classes realized to the right of a is

U . Similarly, we define consistency of (−, U, τ1). (−, U,−) is consistent just in
case it is the set of ≡loc

k−1 classes realized in some linear order.

Theorem 4.1.3: A triple as defined above is consistent just in case there is a set
W of such triples, so that for any (τ0, U, τ1) ∈W , the following holds:

• For any label described by τ0, (or, symmetrically, τ1) defining the least
element of type τ ′, either 1. there is no element of U extending τ ′, and
either 1a. τ0 itself extends τ ′, and the union of what all elements of U
imply about the the least element of type τ ′ is consistent with τ1 being
that least element, or 1b. the union of what τ0 and all elements of U
imply about the least element of type τ ′ is extended by τ1’s description
of the least element of type τ ′ to the right of the triple, or 2. there is a
pair ((τ0, U0, τ), (τ, U1, τ1)) of triples in W such that τ extends τ ′ and U0

contains no element extending τ ′, and U0 ∪ {τ} ∪ U1 = U .
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• For any label described by τ0, (or, symmetrically, τ1) defining a descending
sequence of elements of type τ ′, either 1a. that sequence limits to τ0, and
(−, U, τ1) is consistent and whenever the strategy splits (−, U, τ1) into a
pair (V0, V1) of triples in W , there is an element extending τ ′ in V0, or
1b. there is no element of U extending τ ′, and conditions 1b from the
previous item hold, or 2. there is a pair ((τ0, U0,−), (−, U1, τ1)) of triples
in W such that U0 contains no element extending τ ′ and U0 ∪ U1 = U ,
and, further, whenever the strategy splits (−, U1, τ1) into a pair (V0, V1)
of triples in W , there is an element extending τ ′ in V0.

• Symmetric conditions explain how each label described by τ1 is realized at
τ0 or is realized below τ0 or can be realized within U , splitting the triple
into two triples, to be realized to its right and its left.

• For any element τ ∈ U , there is a pair ((τ0, U0, τ), (τ, U1, τ1)) of elements
of W such that U0 ∪ {τ} ∪ U1 = U .

Proof: Given W , player II can last arbitrarily long in the linear consistency
game. If player I plays an exhaustive strategy, then the result will be a linear
order λ of elements between τ0 and τ1 in which τ0 implies Thleft

k−1(λ), τ1 implies
Thright

k−1 (λ), and U is the set of ≡loc
k−1 classes realized. If τ1 exists, then the

conditions in the first two items imply that the description of the linear order
right of the triple given by τ1 extends what all other played constants imply
about any label, we can choose {c ∈ λ : c > b} to be any element of the ≡left

class that is the right part of τ1; we can choose likewise {c ∈ λ : c < a} and
we have the linear order with constants (λ, a, b) that proves the triple to be
consistent. �

Now we apply the theorem to enumerate ≡3 classes of linear orders. In
I left
{0,1}(λ), all of the labels either 1. label the same gap as the preceding label,

or 2. label the element of λ which is the immediate successor of the preceding
label. If λ = 5, then I left

{0,1}(λ) and Iright
{0,1}(λ) overlap. If |λ| > 5, they don’t.

This simplifies using the local linear consistency game: we hypothesize differ-
ent combinations of I left

{0,1}(λ) and Iright
{0,1}(λ), hypothesize different ≡loc

2 classes for
the greatest element of I left

{0,1}(λ) and the least element of I left
{0,1}(λ), hypothesize

a set of ≡loc
2 classes to be realized between them, and the determine the result-

ing set to be consistent (using the preceding theorem) or inconsistent (using
first-order logic).

Theorem 4.1.4: There are four inextensible ≡loc
2 classes.

Proof: I left
{0} describes nothing (and is extensible) or describes either le or de,

and nothing more. Iright
{0} likewise describes nothing (and is extensible) or de-

scribes ge or ae. The four formulas ge>x∧le<lx, ge>x∧de<lx, ae>x∧le<lx, ae>x∧
de<lx are 6≡loc

2 and exhaust the inextensible ≡loc
2 classes. �

We abbreviate the ≡loc
2 classes in U as (ge, le), (ge, de), (ae, le), (ae, de) and

as gl, gd, al, ad. We abbreviate the ≡loc
2 class of the left element τ0 as d or l

(since there’s no reason examining τ0 = ad and τ0 = gd independently) and we
allow d to stand for d or −, the absence of any τ0, since either one is consistent
just in case the other is. We abbreviate the ≡loc

2 class on the right as a or g and
let a represent both a and −, likewise. We proceed to consider which triples are
consistent:
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Theorem 4.1.5: The following lists all triples and which are consistent and in-
consistent:

1. (l, ∅, g) is consistent.

2. (l, ∅, a), (d, ∅, g), and (d, ∅, a) are inconsistent.

3. (d, {ad}, a) is consistent.

4. (l, {ad}, g), (l, {ad}, a), and (d, {ad}, g) are inconsistent.

5. (l, {ad, gd}, a) is consistent.

6. (l, {ad, gd}, g), (d, {ad, gd}, g), and (d, {ad, gd}, a) are inconsistent.

7. (d, {ad, al}, g) is consistent.

8. (l, {ad, al}, g), (l, {ad, al}, a), and (d, {ad, al}, a) are consistent.

9. Any triple with U = {al, gd}, U = {al, gd, ad}, or U containing {gl} is
consistent.

10. Any triple with U = {al} or U = {gd} is inconsistent.

Proof:

1. In the local linear consistency game, we only have to explain where l,
the least element above the left end, is realized and where g, the greatest
element below the right end, is realized. l is realized at τ1 and g is realized
at τ0. Both of these satisfy condition 1a. in the theorem on the local linear
consistency game.

2. If there is no element of λ between two cuts, those cuts are the same cut.
We can’t have different cuts separated by ∅. Consider, for instance, that
the left end of the cut is − or d, either because I left

{0,1}(λ)’s last element is
de . . . , or because I left

{0,1}(λ) = le ∈ (∅, ∅) < lf ∈ (le, . . . ) < le ∈ (lf, . . . ),
and that last element has ≡loc

2 class (ge, de). These situations require an
infinite descending sequence of elements, which is not supplied by U = ∅.

3. The label d describes a sequence which limits to τ0; likewise, the label a
describes a sequence which limits to τ1. For the unique element of U , we
split U into (−, U, a), (d, U,−).

4. l describes the immediate successor to τ0. If we are to realize both τ0 and l
in a linear order, then l must have an ≡loc

2 class consistent with its having
an immediate predecessor.

5. For l, the immediate successor of τ0, we choose gd ∈ U and split U into the
pair: (l, ∅, gd), (gd, {ad}, a). Those are found to be consistent in previous
items.

6. g describes the immediate predecessor to τ1. So it must have an ≡loc
2 class

consistent with having an immediate successor. To gd ∈ U corresponds a
cut, in which U is split into (?, U0, gd) and (gd, U1, ?). The g in the first
of these triples requires an immediate predecessor, so either U0 contains
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some ≡loc
2 class consistent with having an immediate successor (which

doesn’t exist in U = {gd, ad}) or U0 = ∅. But (d, ∅, gd) is inconsistent, by
a previous item.

7. symmetric to item 5.

8. symmetric to item 6.

9. Let U = {al, gd}. In (l, U, ?), we assign to l the pair (l, ∅, gd), (gd, U, ?).
Symmetrically, in (?, U, g), we assign to g the pair (?, U, al), (al, ∅, g).
In (−, U,−), to gd ∈ U we assign the pair (−, U, gd), (gd, U,−), and
to al ∈ U we assign the pair (−, U, al), (al, U,−). Now the five triples:
{(l, U, g), (l, U, a), (d, U, g), (d, U, a), (l, ∅, g)} are all consistent, since we can
pass from any information in any of the first four to a pair of them,
satisfying consistency conditions, and the fifth is consistent. We can
split (?, {al, gd, ad}, ?) on ad into (?, {al, gd}, ad), (ad, {al, gd}, ?), which
we have just found to be consistent. If gl ∈ U , we have a simple pro-
cedure: answer any l in (l, U, ?) with (l, ∅, gl)(gl, U, ?); answer any g in
(?, U, g) with (?, U, gl), (gl, ∅, g); split U always into U0 = U1 = U .

10. Realize al ∈ {al} at x0. x0 requires a sequence of predecessors in with ≡loc
2

class in {al}. Realize one such at x1. x1 requires an immediate successor.
Let x2 be that successor. Now the ≡loc

2 class of (λ, x2) recognizes that x2

has an immediate predecessor, so it is not al. The case of U = {gd} is
symmetric. �

With that theorem it is easy to enumerate the ≡3 classes of linear orders:

• 1. The linear order 6, in which I left
{0,1} assigns its maximal element to 2 ∈ 6

and Iright
{0,1} assigns its minimal element to 3 ∈ 6, and no element of 6 is

realized between them: 1.

• 3. There are four ways I left
{0,1} could assign its maximal element to a cut, or

assign its maximal element into λ, to an element with ≡loc
2 class (ge, de).

Likewise, there are four ways Thright(λ) could require an ascending se-
quence (a), not a maximal element (g): +16.

• 5. Only one I left
{0,1} assigns its maximal element into λ, to an element of

≡loc
2 class (ge, le). There are four ways Iright

{0,1} could assign its minimal
element to a cut, or assign its minimal element into λ, to an element with
≡loc

2 class (ae, le): +4.

• 7. Symmetric to the previous item: +4.

• 9. These 10 sets U are consistent with all 5 possible Thleft(λ) classes and
all 5 possible Thright(λ) classes: +10× 25.

• There are five linear orders of size ≤ 4: +5.

• In the linear order 5, the greatest element of I left
{0,1} and the least element

of Iright
{0,1} are assigned to the same element 3 ∈ 5: +1.

It was not profitable to form ≡loc
2 -almost locally sets, because the ≡loc

2 classes
are very independent. To enumerate ≡4, we will surely need to know ≡loc

3 -almost
locally sets.
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4.2 Enumerating ≡4 classes of linear order

In this section we generate trees of labels that might be I{2,1,0}(λ) for some
linear order λ and we will hypothesize ≡loc

3 classes that might complete Th4(λ).
We’ll use the local consistency game to find which of these are in fact consis-
tent. The result is an effective algorithm for enumerating ≡4 classes of linear
orders. We will write e for the unique ≡loc

0 class and f for the unique ≡loc
1 class.

We first consider “short” assignments I{1,0}, and then we consider assignments
I{1,0} = I left

{1,0}+Iright
{1,0} (by + we refer to the union of I left

{1,0} and Iright
{1,0}, with every

element of I left
{1,0} preceding every element of Iright

{1,0}). There are many different

≡loc
2 refinements of I left

{1,0} + Iright
{1,0} because, unlike ≡loc

0 and ≡loc
1 , ≡loc

2 is not a
singleton. It has four inextensible elements and the intervals in which the ≡loc

2

classes exist can overlap in various ways. We refine each possible assignment
I{2} with three singleton equivalence relations, in turn, and the results are all
the possible assignments I{2,1,0}. Then we assign an ≡loc

3 class to each element
of I{2,1,0} and we assign sets of ≡loc

3 classes to each gap in I{2,1,0}.

Definition 4.2.1: This is our algorithm for enumerating ≡4 classes of linear or-
ders:

1. Enumerate assignments I{0} = I∅, I{1} = I{0}, and I{1,0} = I{1} (where
the last refinement adds no labels) and assignments I{0}, I{1}, and I{1,0}
in which the last label in I left

τ and some right label in Iright
τ are assigned

to the same element.1 Hereafter, assume that the first three refinements
of I∅ are nontrivial and that I{1,0} = I left

{1,0} + Iright
{1,0}.

2. Start with the Stack = {I left
∅ } = {∅}.

3. For each sequence A in the Stack, refine (A, ∅) with respect to the single-
ton equivalence relation ≡loc

0 and append to A any labels defined in the
refinement which are constant across an ≡left

4 class. Put the result in the
Stack.

4. For each sequence A in the Stack, refine the left half of the final cut, (A, ∅)
with respect to the singleton equivalence relation ≡loc

1 and put the list of
all possible refinements in the Stack.2

5. For each sequence A in the Stack, refine the left half of the final cut, (A, ∅)
with respect to the singleton equivalence relation ≡loc

0 and put the list of
all possible refinements in the Stack.3

6. Remove each sequence A from the Stack and do the following:
1 There are only five such assignments, and they are enumerated in the proof.
2 If the last label in A is ′de′, the only left refinement of (A, ∅) is A with a new label ′df ′

assigned to be equal to the last element of A. Otherwise, return the two assignments: A with
the new greatest element ′lf ′, and A with the new greatest element ′df ′.

3 If the last label in A is ′df ′, the only left refinement of (A, ∅) is A with a new label ′de′

assigned to be equal to the last element of A. Otherwise, return the two assignments: A with
the new greatest element ′le′, and A with the new greatest element ′de′.
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(a) For each label m which could follow A, append m to A and put the
result back onto the Stack.4

(b) if A doesn’t end ′de−′ or ′df−′, add A to the list of I left
{2} assignments.

7. Group I left
{2} assignments into a common class if they agree on I left

{2} \I
left
{1,0}.

5

8. Group I left
{2} assignments by the set of ≡loc

2 classes which are labeled.

9. Generate and group Iright
{2} assignments, repeating steps 2 through 8.

10. For each I left
{2} and Iright

{2} which label the same ≡loc
2 classes, we now deter-

mine all orderings of I left
{2} ∪ I

right
{2} = I{2}starting with the Stack containing

one element – the assignment I left
{2} + Iright

{2} . Remove each assignment I
from the Stack, and do the following:

(a) Add I to the set of orderings of I left
{2} ∪ I

right
{2} .

(b) For each ordered pair of labels p < q in I, if p is “d . . . ” or “l . . . ” and
q is “a . . . ” or “g . . . ” and p and q don’t label the same ≡loc

2 type,
switch them so that q < p and push the result onto the Stack.

(c) For each ordered pair of labels p < q in I, if p = “lα ∈ (I left
{1,0}, ∅)”

and q = “gα ∈ (∅, Iright
{1,0})”, replace p and q by the single label “oα ∈

(I left
{1,0}, I

right
{1,0})”

6 and push the result onto the Stack.

11. Part (a) of the previous item has listed the set of possible I{2} assignments.
For each assignment I{2}, initialize a set Available of ≡loc

2 classes so that
Available = ∅. Go through the ordered pairs of labels p < q in I{2} in turn
from least to greatest (from left to right) and:

(a) if p is “d . . . ” or “l . . . ” and m labels ≡loc
2 class α, then add α to

Available.
(b) if q is “a . . . ” or “g . . . ” and m labels ≡loc

2 class α, then remove α
from Available.

(c) look up the triple (p, Available, q) in a Branching Table, which de-
termines the possible refinements I{2,0} I{2,1} and I{2,1,0} in that cut
of I{2} and, for each refinement, the possible ≡loc

3 class of each label
and the set of ≡loc

3 classes realized in each cut.

The Branching Table constructs all possible assignments I{1,0}[p, q] = {labels
m ∈ I{2,1,0} such that p ≤ m ≤ q} as the union I left

{1,0}[p, ∅) ∪ I
right
{1,0}(∅, q] so as

to list the possible left and right assignments in the ≡loc
0 refinement of the

≡loc
1 refinement of the ≡loc

0 refinement of (p, q) separately. The ≡loc
0 and ≡loc

1

refinements label the least element above p just in case p 6= ′a . . .′. In that case,

1. If (p, q) could be empty7 then add that to the set of possible assignments
4 The subroutine which finds the labels which could follow A is called the routine of Left

Legal Extensions and is described at the end of this definition.
5 This is similar to the classification of ≡left

3 classes into {de, le− df, le− lf − de, le− lf − le
with the last label in (ge, de)} and {le− lf− le with the last label in (ge, le)} which was useful
when enumerating ≡3 classes.

6 This labels the “only” element of type α in the cut (Ileft{1,0}, I
right
{1,0}) ∈ I

+
{1,0}.

7 That is, p could be the predecessor of q, and q could be the successor of p.
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I{1,0}[p, q].

2. If least elements above p and greatest elements below q are both labeled by
≡loc
n refinements of {p, q}, for n < 2, consider that (p, q) may be exhausted

before we refine it three times.

3. If the least elements above p are labeled, and the greatest elements below
q are not, consider that (p, q) may be exhausted before we define three
successors to p.

4. If the last elements below q are labeled, and the least elements above
p are not, consider that (p, q) may be exhausted before we define three
predecessors to q.

5. Hereafter, assume that I{1,0}[p, q] = I left
{1,0}[p, ∅)+I

right
{1,0}(∅, q], where + refers

to the ordering on the union in which the left ordered set precedes the right
ordered set. We’ll list possible assignments I left

{1,0}[p, ∅) first. If the least
element(s) greater than p should be labeled in the ≡n refinement of {p, q}
for n < 2, start with Stack the singleton containing only I left

∅ [p, ∅) = {p}.
If the least element(s) greater than p should remain unlabeled in a low-
rank refinement of {p, q}, let Stack the singleton containing only the word
unlabeled and skip steps 6 through 9. 8

6. For each sequence A in the Stack, refine the left half of the final cut, (A, ∅)
with respect to the singleton equivalence relation ≡loc

0 and put the list of
all possible refinements in the Stack.9

7. For each sequence A in the Stack, refine the left half of the final cut, (A, ∅)
with respect to the singleton equivalence relation ≡loc

1 and put the list of
all possible refinements in the Stack.10

8. For each sequence A in the Stack, refine the left half of the final cut, (A, ∅)
with respect to the singleton equivalence relation ≡loc

0 and put the list of
all possible refinements in the Stack.11

8 We will pair this Stack to the list of possibilities for Iright
{1,0}(∅, q] and sets U of ≡loc

3 types

and determine which sets U are consistent with which left and right ends.
9 The possible refinements of the left half of (A, ∅) are:

(a) If the last label in A is ′l . . .′ or ′g . . .′ or ′o . . .′ and labels the ≡loc
2 type (ge, de) or

(ae, de) and Available is not ∅, then the only refinement of the left end of (A, ∅) with
respect to a singleton equivalence relation is the assignment which assigns the label
′de ∈ (A, ∅)′ to immediately follow the last element of A (by the natural ordering on
elements and cuts, p < ({x ∈ λ : x ≤ p}, {x ∈ λ : x > p}), and no cut or element is
between that element and that cut), and that assignment is a consistent refinement of
the left end of (A, ∅).

(b) If the last label in A is ′le′ or ′lf ′ and Available contains (ge, de), then the label ′de′

can follow A.

(c) If the last label in A is ′l . . .′ or ′g . . .′ or ′o . . .′ and labels the ≡loc
2 type (ge, le) or

(ae, le), then the label ′le′ can follow A.

(d) If the last label in A is ′le′ and Available contains (ge, le), then the label ′le′ can follow
A.

10 This is the same as the previous item, but with ≡loc
1 class f replacing ≡loc

0 class e.
11 This is the same as footnote 10.
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9. For each sequence A in the Stack, choose the possible ≡loc
3 classes of the

last element of A.12

Symmetrically, construct possible assignments of labels Iright
{1,0}(∅, q] and pick ≡loc

3

classes for each label. Then, for each assignment I left
{1,0}[p, ∅) and ≡loc

3 classes for

those labels, for each assignment Iright
{1,0}(∅, q] and ≡loc

3 classes for those labels,
construct all possible sets U of ≡loc

3 types to be realized between (I left
{1,0}[p, ∅) and

Iright
{1,0}(∅, q]).

13 The ≡loc
3 types are always realized in groups, which describe

1. A sequence of n elements with a sequence of elements descending from
above to the greatest of the n elements and a sequence of elements as-
cending from below to the least of the n elements, for 1 ≤ n ≤ 7.

2. The ≡loc
3 class (l, r) such that l describes 3 elements ge − gf − ge, the

least of which is in ≡loc
2 class (ae, le) indicating that it is the limit of a

sequence of elements ascending from below, and r describes 3 elements
le− lf − le, the greatest of which is in ≡loc

2 class (le, ge) indicating that it
has an immediate successor.

3. The ≡loc
3 class (l, r) such that r describes 3 elements of which the greatest

is the limit of a sequence of elements descending from above and l describes
3 elements of which the least has an immediate predecessor.

4. The ≡loc
3 class (l, r) such that r describes 3 elements, the third of which

has an immediate successor and l describes 3 elements, the third of which
has an immediate predecessor.

We name these sets of ≡loc
3 classes:

1. 1 = {(ae = af = ae, de = df = de)} contains the isolated element by
itself.

2. 2 = {(ae = af − ge, de = df = de), (ae = af = ae, le − df = de)}
contains a pair of 2 elements, one the immediate successor of the other,
with sequences limiting to them from above and below.

3. N = {3, 4, 5, 6, 7}, where 3 = {(ae − gf − ge, de = df = de), (ae = af −
ge, le − df = de), (ae = af = ae, le − lf − de)} and in general, n has n
elements (2 < n < 8), describes the finite set of between three and seven
element elements, with sequences limiting to them from above and below.

4. The last three sets of a single ≡loc
3 class each, as enumerated above, we

name: W , X, and Z.
12 If the last label of A is ′le . . .′ and if Available contains (ge, le) then assign the ≡loc

3 class
(l, r) where l is determined by A (that is, l gives the names ge − gf − ge to the elements
p− le− lf of A, and l assigns the ≡loc

2 class to ge or p which is the ≡loc
2 class which p labels)

and r is the ≡left
3 class with Ileft{1,0} = le−lf−le and the last element in ≡loc

2 class (ge, le). If the

last label of A is ′le . . .′ and if Available contains (ge, de) then assign the ≡loc
3 class (l, r) where

l is determined by A, and r is any of the four ≡loc
3 classes with Ileft{1,0} = de, le−df, le− lf−de,

or le− lf − le with the last element in ≡loc
2 class (ge, de).

13 That is done by the subroutine Con(U).
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The subroutine Con(U) declares the triple (I left
{1,0}[p, ∅), U, I

right
{1,0}(∅, q]) to be

consistent just in case the following tests are met:14

1. Each element of U implies the existence of a number of ≡loc
2 types. Check

that all of those are in Available.

2. If I{1,0}[p, q] contains the label ′de′ or ′ae′, then U 6= ∅.

3. If p is ′dx′0 = ′dx′1 . . . or q is ′ax′0 = ′ax′1 . . . , check that U contains an
extension of each xi into ≡loc

3 .

4. If U contains W then it must contain X or Z or Iright
{1,0}(∅, q] has three

predecessors to q, the least of which requires a predecessor.

5. If U contains X then it must contain W or Z or I left
{1,0}[p, ∅) has three

successors to p, the last of which requires a successor.

6. If I left
{1,0}[p, ∅) has three successors to p, the last of which requires a suc-

cessor, then U contains X or Z or U is empty and Iright
{1,0}(∅, q] has three

predecessors to q, the least of which requires a predecessor.

7. If Iright
{1,0}(∅, q] has three predecessors to q, the least of which requires a

predecessor, then U contains W or Z or U is empty and I left
{1,0}[p, ∅) has

three successors to p, the last of which requires a successor.

8. If I left
{1,0}[p, ∅) requires a sequence limiting to p or to p− le or to p− le− lf

or to p− le− lf − le, then U contains 1 or 2 or Z or an element of N or
both W and X.

9. If Iright
{1,0}(∅, q] requires a sequence limiting to q or to ge−q or to gf −ge−q

or to ge− gf − ge− q, then U contains 1 or 2 or Z or an element of N or
both W and X.

10. If W ∈ U then U contains 1 or 2 or Z or X or an element of N .

11. If X ∈ U then U contains 1 or 2 or Z or W or an element of N .
14 Footnote 7 carefully describes the case in which (p, q) = ∅ and the ≡loc

0 refinement of
[p, q] describes q as the immediate successor of p and describes p as the immediate predecessor
of q. This leaves the case in which the ≡loc

0 refinement of [p, q] doesn’t describe the least
element(s) above p or doesn’t describe the greatest element(s) below q, so that the current
subroutine will describe, for instance, [p−unknown left −U = ∅−unknown right−q]. Step
2 of the branching table describes [p − le − df = de = q = (U = ∅) =unknown right= q],
since (p, q) is exhausted before three refinements can be made, with Ileft{1,0}[p, ∅) preceding

Iright
{1,0}(∅, q]. However, le − df = de is a complete Ileft{1,0}[p, ∅) assignment, so we will consider

that triple again in this subroutine. Rather than make arbitrary distinctions, when writing
code we double-check the counting of U = ∅ by listing all short possibilities (for I{1,0}[p, q],

≡loc
3 classes of those labels, and the set U = ∅ of ≡loc

3 classes in the center) and then listing
those which are accepted by Con(U), and then identifying and removing redundancy.

This is not to blur the theoretical distinction between assignments I{1,0}[p, q] which assign

the least and greatest (sequences of, or single) elements of ≡loc
0 type e or declare that element

to be unknown, and those which know the least and greatest elements but find the interval to
be empty – either the ≡loc

0 refinement of I∅({p, q}) = {p, q}, I{0}[p, q], or the next refinement,
I{1}[p, q], or the next, I{1,0}[p, q], assign the least and greatest element to be equal, and be
the unique element, or assign no labels at all.
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The subroutine Left Legal Extensions accepts an assignment A and deter-
mines which labels might follow A as parts of an ≡loc

2 refinement of I{1,0}.

1. initialize a set Available

2. If A labels the ≡loc
2 class (ae, le) or (ge, le), add the term predecessor to

Available.

3. If A labels the ≡loc
2 class (ge, de) or (ge, le), add the term successor to

Available.

4. If A labels the ≡loc
2 class (ge, le) or (ae, de) or both (ae, le) and (ge, de),

add the term repeatable to Available.

5. if the last label in A is ′le′ or ′lx′ for x one of the ≡loc
2 classes (ae, le) or

(ge, le),

(a) if Available contains the term successor,

i. if Available contains the term predecessor, then ′lx′ can follow A,
for x either (ge, de) or (ge, le).

ii. ′lx′ can follow A, for x either (ae, le) or (ae, de).
iii. A can be followed by dx0 = dx1 = . . . , for {xi : i ≤ n} any

consistent descending sequence.15

(b) if Available doesn’t contain the term successor, then only ′lx′ can
follow A, for x either (ge, de) or (ge, le).

6. if the last label in A is ′le′ or ′lx′ (for x one of the ≡loc
2 classes (ae, de) or

(ge, de)) or ′dx′ for any ≡loc
2 class x,

(a) if Available contains the term repeatable,

i. if Available contains the term predecessor, then ′lx′ can follow A,
for x either (ge, de) or (ge, le).

ii. ′lx′ can follow A, for x either (ae, le) or (ae, de).

(b) A can be followed by dx0 = dx1 = . . . , for {xi : i ≤ n} any consistent
descending sequence.16

Theorem 4.2.1: The program in the preceding definition enumerates ≡4 classes
of linear orders.

Proof:

• Steps 1 through 5 list all possible assignments I{1,0}. Step 1. lists those
assignments I{1,0} for which it does not hold that I left

{1,0} < Iright
{1,0}. Those

are I{0} = ∅, I{0} = oe, I{1} = le − ∅ − ge, I{1} = le − of − ge, I{1,0} =
le − lf − ∅ − gf − ge, I{1,0} = le − lf − oe − gf − ge. This same list

15 For each nonempty set U of ≡loc
2 types, if

A. ((ae, le) ∈ U → ((ge, le) ∈ U or (ge, de) ∈ U or Available contains the term predecessor))
and

B. ((ge, ae) ∈ U → ((ge, le) ∈ U or (ae, le) ∈ U or Available contains the term successor)),

then the labels {′dx′ : x ∈ U} can all be equal, and be the next distinct element of A.
16 See the previous footnote.
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was constructed as an initial step in enumerating ≡3 theories of linear
order. Steps 2 through 5 define I left

{1,0}: Step 2 initializes I left
∅ = ∅. Steps 3

through 5 add ′de′ or ′le′, ′df ′ or ′lf ′, and ′de′ or ′le′. When enumerating
≡3 theories of linear order, we found that there are four possibilities for
I left
{1,0}. But at this point our program ceases to imitate the enumeration

of ≡3 classes of linear orders.

• Step 6 defines the ≡left
4 equivalence class of the ≡loc

2 refinement of I left
{1,0}

by adding a label to A, then putting the result back on the stack. Step 6
calls a subroutine to determine which labels can be next.

We claim that if A is ever on the stack (each label of an ≡loc
2 class mentioned

in A is a legal extension of the preceding sequence) and the last label is not ′de′,
then then A is the assignment I left

{2}(λ) for some linear order λ. Conversely, we
claim that if A is ever on the stack and its last label is ′de′, then A is not the
assignment I left

{2}(λ) for some linear order λ, and if m is a label which is not a
legal extension of A, then appending m to A produces an inconsistent sequence.

First, suppose the last label of A is ′de′. That label corresponds to a sequence
of elements limiting to the left, each of which has some ≡loc

2 classes x0, x1 . . . , so
if A were I{2}(λ) for some λ, A should label the least elements of type x0, x1, . . . ,
so A should end ′de′ = ′dx′0 = ′dx′1 . . . . To be precise, suppose B = Iright

{2} (λ)
so that A < B is I{2}(λ). Now A and B should label the same ≡loc

2 classes.
Since the last label in A is ′de′, A labels no ≡loc

2 classes, so in the initial state of
the local linear consistency game is (de, ∅, B). As we argued in the enumeration
of ≡3 classes, this is inconsistent, since de < B and de requires a sequence of
elements to descend from above, a terminal segment of which is < B, hence in
the gap.

The other A = I left
{1,0} which can be on the stack when we first read step 6

is le − lf − le. This is consistent. Let B = ge − gf − ge, A < B, U = ∅; the
triple (le, ∅, ge) is consistent, since le can refer to the right end and ge can refer
to the left end.

The subroutine Legal Extension announces in steps 5 and 6 which labels can
follow A. For instance, le − le − le − l(ge, de) − l(ae, de) is inconsistent, since
the fourth label requires something to limit to it from the right, and nothing is
available yet to make up that limiting set. On the other hand, le − le − le −
l(ge, le)−l(ae, de) is consistent, since the fourth label requires a successor, which
can have ≡loc

2 type (ge, le) and the fifth label requires something to limit to it
from the left, which can be an infinite sequence of elements in ≡loc

2 class (ge, le).
If A labels no ≡loc

2 classes, and m is a label, then m can follow A just in case the
triple (A, ∅,m) is consistent. 17 Now suppose A contains already some labels in
I left
2 . In the next triple (A,U,m), U will contain only ≡loc

2 types labeled in A.
Steps 1 through 4 describe possibilities for U . Step 2: A predecessor is an element
of U that player II can play, in response to player I’s play at g in (?, U, g). Step 3:
A successor is an element of β that player II can play in response to l in (l, U, ?).
Step 4: A repeatable subset of U is a set U0 of ≡loc

2 classes such that for each
τ ∈ U0, player II can answer τ in (?, U, τ) or in (τ, U, ?) with another element
of U0 and such that (d, U0, a) is consistent – i.e., U0 can form infinite sequences

17 For that reason, ′le′ can be a final element of A and ′de′ cannot be a final element of A
–∅ cannot follow ′de′.
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which ascend to a and descend to d. A repeatable element satisfies every need it
creates during the local linear consistency game. Step 4 claims that {(ge, le)},
{(ae, de)}, and {(ae, le), (ge, de)} have this property and that any repeatable
set contains one of those. That these sets are repeatable is clear. Conversely,
the only sets which contain none of {(ge, le)} or {(ae, de)} or {(ae, le), (ge, de)}
are: ∅, {(ae, le)}, and {(ge, de)}. Clearly, ∅ doesn’t contain anything that can
be repeated infinitely and descend to d or ascend to a. {(ae, le)} requires an
immediate successor, and doesn’t contain one; {(ge, de)} requires an immediate
predecessor and does not contain one. Steps 5 and 6 of the subroutine legal
extension match situations, in which player I can force a certain ≡left

2 or ≡right
2

class, to requirements on U having a successor or a predecessor or repeatable
elements.

Suppose A is on the stack in Step 6 and the last label of A is not ′de′ nor ′le′.
Then a nonempty set x0, x1, . . . of ≡loc

2 types are labeled in A. Until the first
≡loc

2 type, it has sufficed to check whether two labels will label the same gap,
and to check triples (l, ∅, g). Only when we introduce the second, third, and final
≡loc

2 classes do we consider nonempty triples. We create a simple Thright(λ) to
pair with A, in order to determine the consistency of A followed by a given next
label. We choose: ax0 = ax1 = · · · = ae for the right end. If the last element of
A is the ≡2

loc class (x, y), e.g., (x, y) = (ae, de), then (y, {x0, x1, . . . }, ae) is the
triple between A and (λ, ∅), the common image of all labels in the right end. A
is only consistent if this triple is consistent.

• Step 7 is justified because the initial labels of I left
{2} are irrelevant in every

further situation where we use I left
{2}.

• Step 8: We must only pair assignments I left
{2} and Iright

{2} which label the
same elements. For, in the definition of the ≡loc

2 -refinement of I{1,0}, we
label every ≡loc

2 type which is realized in λ because 2 is greater than the
indices of I{1,0}.

• Step 10: Let’s check that this process constructs all orderings of the union
of the left assignment and the right assignment. For instance, given 12345
and abc, we’d initialize the stack with 12345abc, then find the pair that
can be switched, yielding the order 1234a5bc, then find further pairs that
can be switched, yielding the orders 123a45bc and 1234ab5c, and again,
yielding the orders 12a345bc and 123a4b5c (twice) and 1234abc5, and so
on. We claim that every ordering of two sets A ∪ B respecting an initial
order on A and an initial order on B is found this way: if we want the
least element of B to precede n0-many elements of A, we switch it n0-
many times with the greatest elements of A; then, if we want the next-
least element of B to precede n1 < n0-many elements of A, we switch it
n1-many times with the greatest elements of A; and so on. This routine is
inefficient for finding all the orderings of A ∪B. But it is efficient for our
purposes for two reasons: 1. each switch is illegal just in case it considers
switching an element of A and an element of B which label the least
and greatest elements of the same ≡loc

n class (the least must precede the
greatest), and 2. if we consider elements of A and B which label the least
and greatest elements of an ≡loc

n class, we can enumerate the possibility
that those labels are equal, labeling the unique element in that class.
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• Step 11: We claim that this pass correctly finds the set of ≡loc
2 classes α

which can be realized in each cut (b, c) ∈ I+
{2}, i.e., the set of α such that

the least element(s) in α is/are labeled in b and the greatest element(s) in
α is/are labeled in c. For each α, we put α in the set available when we see
the least element(s) in that class, and we take α out of the set available
when we see the last element(s) in that class.

Now we claim that the subroutine branching table correctly describes the
≡4-different possibilities for the interval [p, q], where (p, q) ∈ I+

{2}.

• Step 1: The interval [p, q] could be just the pair {p, q}, if p is the least or
greatest (or unique) element of type (ae, le) or (ge, le) and q is the least
or greatest element of type (ge, le) or (ge, de). That happens, as in step
1, just in case p can be a predecessor and q can be a successor. In any
other case, the interval must be nonempty – p = ′d . . .′ or p = ′lx′ for
x = (ae, de) or x = (ge, de), so that the triple for [p, q] is (−, U, ?).

• For n < 2, steps 2 through 4 consider whether an ≡loc
n -refinement of I{2}

labels the first element(s) in ≡loc
n class α above p ∈ I{2} (and below q).

That occurs just in case: p = ′d . . .′ or p = ′l . . .′ or p = ′g . . .′, since the
condition n > 2 fails, and the final condition – that p = ′a . . .′ and there
exists a boundary b < p such that α is not realized in (b, p) – fails because
≡loc
n is a singleton equivalence class, hence every element of (b, p) realizes

α; further, (b, p) is not empty because p = ′a . . .′.

• In step 2, if (p, q) is such that both the least elements and the greatest
elements there are labeled in a ≡loc

0 refinement, the interval (p, q) could
have < 6 elements so that three refinements exhaust the interval and label
some element twice just in case p is ′g . . .′ or ′l . . .′ or ′o . . .′ and labels ≡loc

2

type (ae, le) or (ge, le), if q is ′g . . .′ or ′l . . .′ or ′o . . .′ (where o means that
the least and greatest element are assigned to the same element, a unique
element of the describe type) and labels ≡loc

2 type (ge, de) or (ge, le), and
if z is in Available. In this case, we add all possible ≡loc

0 refinements in
the cut (p, q) for which some labels are assigned to the same element, ≡loc

1

refinements of ≡loc
0 refinements in the cut (p, q) for which some labels are

assigned to the same element, and ≡loc
0 refinements or ≡loc

1 refinements
of ≡loc

0 refinements in the cut (p, q) for which some labels are assigned
to the same element: the least of this is the possibility that ′le > p′ is
assigned to q and ′ge < q′ is assigned to p or that ′le > p′ and ′ge < q′

are assigned to the same element; next-least is: ′oe ∈ (p, q)′; largest is
possibility that the first two refinements occur without overlap, and then
the final refinement assigns the least and greatest element to be equal.
The full list is: p− oe− q, p− le− ge− q, p− le− of − ge− q, p− le− lf −
gf − ge − q, p − le − lf − oe − gf − ge − q. The next-larger assignment,
p − le − lf − le − ge − gf − ge − q, is a case in which the third element
after p has 3 successors, the greatest of which has ≡loc

2 type (ge, le) and in
which the third element before q has 3 successors, the least of which has
≡loc

2 type (ge, le), and in which the cut (I left
{1,0}[p, ∅), I

right
{1,0}(∅, q]) happens

to contain no ≡loc
3 classes at all.



4. Dynamic Ehrenfeucht-Fräıssé Game & strong logic 63

• In step 3, if (p, q) is such that the least elements are labeled and the
greatest elements are not labeled, then add all ≡loc

0 refinements on the left
of ≡loc

1 refinements on the left of ≡loc
0 refinements on the left in (p, q) for

which I left
{1,0}[p, ∅) defines every element between p and q, leaving no ≡loc

3

elements in the gap (I left
{1,0}[p, ∅), q), without defining all three refinements

and assigning ≡loc
3 types to them. This is possible just in case p is ′g . . .′

or ′l . . .′ or ′o . . .′ and labels ≡loc
2 type (ae, le) or (ge, le). Then, if x is in

Available, add p− le−∅− q to the list of possible I left
{1,0}[p, q]. The list has

one or two elements: if (ge, de) ∈ Available, then p− le− q could exhaust
[p, q]; if if (ge, de), (ge, le) ∈ Available, then p − le − le − q could exhaust
[p, q].

• Step 4 is symmetric.

• We have not considered all possibilities in which p leaves the least element
unlabeled or q leaves the greatest element unlabeled– we have only consid-
ered the possibilities in which that happens and in which one side can be
labeled but its labels don’t get refined three times without exhausting the
interval (p, q). We must still consider the 6≡4 possibilities in which three
refinements of the left side of (p, q) and and their ≡loc

3 class exhaust the
gap, while the right side is not labeled, and we also consider the possibility
that both left and right ends are unlabeled. We achieve this by making
Stack the singleton containing the word unlabeled, if that side is unlabeled,
in Step 5.

• Steps 6,7,8 develop the possible labels on the left end of (p, q) if that end
of the interval should be labeled. This completes I{2,1,0}

• If we find ≡loc
3 types for the elements discovered in step 8, then we will

know ≡loc
3 types for all elements of I{2,1,0}.

Let’s prove the grouping of ≡loc
3 classes described in the definition.

Let’s introduce a shorthand notation for inextensible ≡left
3 classes: ′de′,′ le−

df ′,′ le− lf − de′,′ le− lf − le′ with the third element in ≡loc
2 class (ge, de), and

′le− lf − le′ with the third element in ≡loc
2 class (ge, le) imply the existence of

exactly 0, 1, 2, or 3 least elements, or 4 or more least elements. So we’ll refer to
these ≡left

3 classes as 0, 1, 2, 3, 4. From this we obtain shorthand notations for
≡loc

3 class: (n,m) where n,m < 5.
Whenever the ≡left

3 classes (2, 4) is realized, it has 4 or more immediate
successors; the first of these is in ≡left

3 class (3, 4) or (3, 3). In this way, many
types imply each other:

1. (0, 0) implies nothing.

2. (0, 1)⇔ (1, 0)

3. (0, 2)⇔ (1, 1)⇔ (2, 0)

4. (0, 3)⇔ (1, 2)⇔ (2, 1)⇔ (3, 0)

5. (0, 4)⇐ (1, 3)⇔ (2, 2)⇔ (3, 1)⇒ (4, 0)

6. (0, 4)⇐ (1, 4)⇐ (2, 3)⇔ (3, 2)⇒ (4, 1)⇒ (4, 0)
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7. (0, 4)⇐ (1, 4)⇐ (2, 4)⇐ (3, 3)⇒ (4, 2)⇒ (4, 1)⇒ (4, 0)

8. (3, 4)⇒ (4, 3) ∨ (4, 4)

9. (4, 3)⇒ (3, 4) ∨ (4, 4)

10. (4, 4) implies nothing.

The lines of this enumeration are not an equivalence relation on ≡loc
3 classes,

but they have the following properties: they are a set of sets of ≡loc
3 classes

such that any ≡loc
3 class is in one of the given sets, the sets are closed under the

implication between ≡loc
3 classes (l, r) and (p, q) which holds in case ∃x(l<x ∧

r>x) → ∃x(p<x ∧ q>x), any any two sets A and B are distinguished by some
≡loc

3 class which is in one and not in the other.
If the ≡loc

3 class (n,m) for n < m < 3 exists, its existence is implied by the
existence of its neighbor (n + 1,m − 1). The ≡loc

3 classes are thereby grouped
into between 1 and 7 elements in a short chain of immediate predecessors and
successors, and the final three classes.

When the program asserts that N exists, that should be interpreted as saying
that one of the groups of 2, 3, 4, 5, 6 or 7 chains of ≡loc

3 classes in the list above
exists.

• In Step 1, if a ≡loc
3 type γ exists in the gap (b, c) ∈ I{2,1,0} and implies the

existence of an ≡loc
2 type γ′ then (b, c) is a subinterval of (e, f) ∈ I{1,0}. So

the type γ′ must exist in the interval (e, f) and the least element(s) and
greatest element(s) of type γ′ should be labeled in the ≡loc

2 -refinement of
I{1,0}. Two ≡loc

3 classes in the same group imply the same sets of ≡loc
2

classes:

– ≡loc
3 classes in 1 imply {(ae, de)},

– ≡loc
3 classes in 2 imply {(ae, le), (ge, de)}.

– ≡loc
3 classes in N imply {(ae, le), (ge, le), (ge, de)}.

– ≡loc
3 classes in W imply {(ae, le), (ge, le)}.

– ≡loc
3 classes in X imply {(ge, le), (ge, de)}.

– ≡loc
3 classes in Z imply {(ge, le)}.

• Step 2 is necessary, since if U = ∅, then in the labeled linear consis-
tency game beginning with no labels (A = ∅) and α((∅, ∅)) ≡left

3 the ≡left
3

class that the the main program picked (in step 9.) for the last element
of I left

{1,0}[p, ∅) and the α((∅, ∅)) ≡right
3 the ≡right

3 class that the the main
program picked (in the paragraph after step 9.) for the least element of
I left
{1,0}(∅, p].

• In the labeled linear consistency game beginning with no labels (A = ∅)
and α((∅, ∅)) an ≡3 class which implies the existence of x0, x1, . . . , player
II has lost unless there is an extension of each of those classes in β((∅, ∅)) =
U . So Step 3 is necessary.

• The remaining steps, 6 through 11, describe how W and Z and one ≡left
3

class require a successor, which require a predecessor, which requires a
sequence limiting from below or above, and under what conditions these
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requirements are satisfied. The linear consistency game makes that sort
of reasoning precise.

This notion of “grouping” can be extended to almost locally closed sets. For
instance, each of the ≡loc

2 classes {ad, al, gd, gl} requires either an ascending
sequence of elements or a greatest predecessor and requires either a descending
sequence of elements or a least successor. We can track when those requirements
are satisfied. But we could consider, instead, a set of four ≡loc

2 -almost locally
closed sets, each of which is always consistent:

• {97, 98, 99} ⊆ ω is an almost-locally closed set in which every element has
≡loc

2 class gl.

• {97, (ω, ω× 2 \ ω), ω, ω+ 1, ω+ 2} ⊆ ω× 2∪ (ω× 2)+ is an almost-locally
closed set realizing the two ≡loc

2 classes gl and al.

• A symmetric subset of (ω × 2)∗ realizing the ≡loc
2 classes gl and gd.

• {(0,−97), ({b ∈ 2 × η : b < (0, 0)}, {b ∈ 2 × η : b ≥ (0, 0)}), (0, 0), (1, 0),
({b ∈ 2×η : b ≤ (1, 0)}, {b ∈ 2×η : b > (1, 0)}), (0, 99)} ⊆ 2×η∪ (2×η)+

is an almost-locally closed set realizing the two ≡loc
2 classes gd and al.

If we want to completely replace ≡loc
2 classes by ≡loc

2 - almost locally closed sets,
one further item is sufficient:

• {−97, ({b ∈ η : b < 0}, {b ∈ η : b ≥ 0}), 0, ({b ∈ η : b ≤ 0}, {b ∈ η :
b > 0}), 99} ⊆ η is an almost-locally closed set in which every element has
≡loc

2 class ad.

Similarly, for ≡3, we can realize all of the ≡loc
3 classes in each of the first 7

groups in an almost locally closed set of size n + 4, containing n + 2 elements
of n × η and two cuts, where n is 1, 2, . . . , or 7. The remaining ≡ classes are
realized in the following almost-locally-closed sets:

• {(0,−97), ({b ∈ 2 × η : b < (0, 0)}, {b ∈ 2 × η : b ≥ (0, 0)}), (0, 0), (1, 0),
(2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0), ({b ∈ 2 × η : b ≤ (8, 0)}, {b ∈
2 × η : b > (8, 0)}), (0, 99)} is an almost-locally closed set found in the
linear order 8 × η, realizing the ≡loc

3 classes {(0, 4), (1, 4), (2, 4), (3, 4),
(4, 3), (4, 2), (4, 1), (4, 0)}.

• {95, (ω, ω × 2 \ ω), ω, ω + 1, ω + 2, ω + 3, ω + 4, ω + 5, ω + 6, ω + 7} is an
almost-locally closed set realizing in ω × 2 the ≡loc

3 classes {(0, 4), (1, 4),
(2, 4), (3, 4), (4, 4)}, since (ω × 2, ω + 4) ≡3 (ω × 2, 95).

• A symmetric subset of (ω × 2)∗ realizes the ≡loc
3 classes {(4, 0), (4, 1),

(4, 2), (4, 3), (4, 4)}.

• {91, 92, 93, 94, 95, 96, 97} ⊆ ω is an almost-locally closed set realizing in ω
the ≡loc

3 class (4, 4).

Different sets of these almost locally closed sets realize the same set of ≡loc
3

classes. For instance, the almost locally closed sets in (ω × 2)∗ and ω × 2 given
as examples above together realize the same elements as the almost locally closed
sets in 8× η and ω. Thus, the power set of this set of almost locally closed sets
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counts certain consistent sets of ≡loc
3 classes multiple times, and this should be

discounted in an enumeration of ≡4 classes.
This concludes the proof that definition 4.2.1 defines an enumeration of the

≡4 classes of linear orders. �
Implementing the program described in the definition in Perl, it ran on this

laptop in about two minutes and counted 82988077686330 ≡4 classes of linear
orders.

4.3 Infinitary logic

For any linear order λ, let EFλ(µ, π) be the game in which player I chooses an
element a ∈ λ, players I and II choose elements m ∈ µ and p ∈ π (a normal turn
of the EF game) and then the players play EF{b∈λ:b<a}((µ,m), (π, p)). After
this process has been repeated, and elements ai : i ∈ I of λ have been chosen
by player I, and pairs mi ∈ µ, pi ∈ π have been played by both players, then
the players play EF{b∈λ:∀i∈I(b<ai)}((µ,mi)i∈I , (π, pi)i∈I). We call λ the clock in
this game. If player II wins EFλ(µ, π), then we say µ ≡λ π.

For the rest of this section, suppose that the clock λ is an ordinal. We want
to express ≡λ as a tree of labels of local classes; now that tree will have a rank
for every descending sequence A ∈ λ and have infinitely wide ranks.

Definition 4.3.1: If α is an ordinal and µ is a linear order and I is an assignment
of labels into µ ∪ µ+ then the ≡loc

α -refinement of I is the assignment I ′ which
contains I and in addition, for each cut (b, c) in I and for each inextensible ≡loc

α -
equivalence class τ realized in λ between b and c, a label for the least element
or elements of type τ if one of the following conditions hold:

1. b = ∅ or

2. there is a maximal b′ ∈ b (for all e ∈ b, b′ ≥ e) such that the label of b′

begins “g . . . ” or “l . . . ” or “d . . . ” or b′ is “aτ ′ ∈ (e, f)” for τ ′ an ≡loc
β

class such that β < α or

3. labels xτ ′ . . . where τ ′ has quantifier rank ≥ α are bounded in b by some
element of µ or

4. elements n ∈ µ such that (µ, n) is in ≡loc
α class τ are bounded in b by some

element of µ. 18

In those cases, I ′ labels the least element in class τ above b with the label
“lτ ∈ (b, c)”, or I ′ labels the cut below the least decreasing sequence of elements
in class τ above b with the label “dτ ∈ (b, c)”. 2. Similar conditions determine
whether I ′ labels the greatest element or elements of type τ below c.

The item which allows τ to be defined above sup b if b is ultimately of low
rank (the 3rd item in the preceding definition) does not pass over limits: suppose
β is the least element of A and α < β and α is a limit and τ is an ≡loc

β class and
“aτ . . . ” is a label in IA assigned to the cut (b, c) in λ+. Suppose that for each
γ < α no ≡loc

γ class which is realized in λ is realized in b is not bounded in b. It

18 That is, there is some bounding element m: ∃m ∈ µ((m < supb) ∧ ¬∃n(n ∈ µ(m,supb) ∧
(µ, n) ∈ τ)).
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does not follow that the ≡loc
α type τ is realized in b. Nor does it follow that, if

τ is realized in b, then it is not bounded in b. Thus, the least α for which some
≡loc
α type’s least occurrence above b is defined in the ≡loc

α refinement of IA can
be any α < β.

Let’s see how condition 3 (in the preceding enumeration) works in an exam-
ple.

• For any n < ω there is an m < ω such that ωm ≡n ωω. In particular, the
equivalence holds if n ≤ 2m.

• ωω ≡ω ωω + ωω (So for any ordinal α, ωω + α ≡ω ωω + ωω + α).

• ωω × 2 ≡ω+1 ω
ω × 3 (So for any ordinal α, ωω × 2 + α ≡ω+1 ω

ω × 3 + α).

• ωω × 4 ≡ω+2 ω
ω × 5.

Now let’s compute the labelings of those last two linear orders. For n = 4 or
n = 5, the assignment ∪n∈ω ∪A⊆n IA(ωω × n) labels every element of the least
copy of ωω and labels the gap at the right end, (ωω×n, ∅). The elements of ωω×n
which are not labeled by ∪n∈ω ∪A⊆n IA(ωω × n) form an interval. Let’s name
the interval of unlabeled elements in each model λ0 ⊆ ωω × 4 and µ0 ⊆ ωω × 5
so that ωω × 4 = ωω + λ0 and ωω × 5 = ωω + µ0. The assignment I{ω}(ωω × n)
labels the least and greatest element of each ≡ω type in λ0 and µ0. This labels
every element of the second copy of ωω in ωω×n. The elements of ωω×n which
are not labeled by I{ω}(ωω×n) are an interval, too. Let’s call that interval λ1 in
one model and µ1 in the other model, so that ωω× 4 = ωω +λ0 = ωω +ωω +λ1

and likewise ωω × 5 = ωω + ωω + µ1.
For any finite set A ⊂ ω, for n = 4 or n = 5, the assignment I{ω}∪A(ωω ×n)

labels nothing; if the least ordinal not in A is n, no ≡loc
n type can be labeled

in the interval (b, c) = (ωω + ωω, ∅) between the elements of ωω × n which have
been defined by I{ω}(ωω × n), because b is an unbounded sequence of labels of
quantifier rank ω and ω > n. For each label in I{ω}(ωω × n), the ≡loc

ω+1 class of
that label is the same in both models. All intervals (b, c) are empty, since every
element is defined, except for the interval (b, c) = (ωω+ωω, ∅). There, the ≡loc

ω+1

classes (Thright
ω+1 (ωω + α), Thleft

ω+1(ωω)) and (Thright
ω+1 (ωω + α), Thleft

ω+1(ωω + ωω))
are realized, for all ordinals α < ωω, and nothing else is realized.

The reader who has patiently followed this description of the labels relevant
to ≡ω+2 will now see the role of condition 3: if condition 3 were not required
and I{ω}∪A(ωω × n) were to define every element of the third copy of ωω, then
the interval of elements not defined in ωω × 4 would not contain the ≡loc

ω+1 class
(ωω×2 +α, ωω×2), whereas the interval of undefined elements of ωω×5 would
indeed contain that ≡loc

ω+1 class, indicating that these linear orders would be
6≡ω+2.

The four conditions enumerated in definition 4.3.1 prevent the labeling of
many ≡loc

α classes in many intervals. In the case of finite k, these conditions
make the assignment of labels which is relevant to ≡k seem to me like an unusual
subset of the set of all first and last elements of all types in all intervals. But
when the quantifier rank is infinite, defining τ only above b which are not aτ and
which are ultimately of low rank eliminates many labels from the assignment,
often reducing the cardinality of the assignment which labels the first and last
element of each ≡loc

α class in all intervals.
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Definition 4.3.2: For any linear order µ, for any finite sets A and B of ordinals
in λ, we define IA(λ) before IB(λ) just in case

∑
α∈A 2α <

∑
α∈B 2α.19 Let

I∅(λ) = ∅.
For each ordinal β, for each finite (possibly empty) set A of ordinals all

greater than β, let IA∪{β}(λ) be the ≡loc
β refinement of ∪{IA∪B(λ) : B is a finite

subset of β}.

The reader should notice that if β 6= 0, I{β}(λ) is the ≡loc
β refinement – not

of ∅, but of an already rich set of labels, indeed, the union of labels in the tree
up to the rank indexed by {β}.

Lemma 4.3.1: Let α+1 be any successor ordinal. Player I has a winning strategy
in the game EFα+1(µ0, µ1) after the first move has identified ai ∈ µi if there is
a finite subset A ⊆ α such that conditions 1 ∧ 2 ∧ 3 or 4 ∧ 5 ∧ 6 hold:

1. for some β < α, A ⊆ β, and

2. IA(µ0) and IA(µ1) induce the same ordering ≤ on the same labels and the
elements a0 and a1 are in the same cut (b, c) ∈ (IA(µi))+, and

3. some ≡loc
β type δ (the discrepancy) is realized between sup b and ai in µi

and δ is not realized between sup b and a1−i in µ, and the least occurrences
of δ are definable above sup b in the sense of definition 4.3.1, or

4. 1 A contains the predecessor, α− 1, of α and

5. for each B ⊆ α−1, IB(µ0) and IB(µ0) induce the same ordering ≤ on the
same labels and there is some cut (b, c) ∈ (∪B⊆α−1IB)+ such that ai and
a1−i are between b and c, and the same ≡loc

α−1 classes are realized between
b and ai as are realized between b and a1−i, and

6. for some ≡α−1 class ρ, for some i < 2 and pi ∈ µi and for all p1−i ∈ µ1−i
if IA\{α−1}(µ

>p0
0 ) and IA\{α−1}(µ

>p1
1 ) assign the same labels in the same

order, then conditions (1 ∧ 2 ∧ 3) ∨ (4 ∧ 5 ∧ 6) hold at rank A \ {α − 1}
in the tree of labels after a0 ∈ µ>p00 and a1 ∈ µ>p11 are played on the first
move in the game EFα(µ>p00 , µ>p11 ).

Proof: Suppose there exists a finite set A ⊆ α such that conditions 1∧ 2∧ 3
hold. Player I plays the element of ≡loc

β type δ (the discrepancy) between sup b
and ai in µi. Player II must respond with an element of type δ, since β-many
moves will remain after this turn is completed (player I could begin the next turn
by choosing β < α to be the “number of moves” remaining). By assumption,
player II will only find such an element below ≤ b or above ≥ c in µ. But if
this was a winning second move in EFα+1, then it was a winning first move in
EFα({a ∈ µi : a < ai}, {a ∈ µ1−i : a < a1−i}). This contradicts theorem 4.3.3.

Suppose there exists a finite set A ⊆ α such that conditions 4 ∧ 5 ∧ 6 hold.
Player I plays so that on the second move the players have identified p0 ∈ µ0

and p1 ∈ µ1 with the properties described in condition 6. If the antecedent
of condition 6 fails, then by theorem 4.3.3, player I has a winning strategy in

19 This is the usual lexicographical ordering on decreasing sequences of ordinals where A < B
holds just in case the greatest element of B is larger than any element of A or the greatest
elements of A and B are both α, and A \ {α} < B \ {α}.
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the game in which (a0, a1) was the first move in the game EFα({a ∈ µi : a >
pi}, {a ∈ µ1−i : a > p1−i}), since that move did not respect the labels which are
known to ≡α. So the antecedent of condition 6 holds, and by its conclusion we
find that the lemma is repeated in EFα−1({a ∈ µ0 : a > p0}, {a ∈ µ1 : a > p1}),
i.e., we can repeatedly drop quantifier rank using conditions 4∧5∧6 and preserve
the discrepancy of condition 3. �

Theorem 4.3.1: If player II has a winning strategy in EFα+1(µ0, µ1), then for
each finite A ⊆ α,

• IA(µi) is the same ordered set of labels assigned into µi ∪ (µi)+, and

• if player I plays the first move at the image of a label in one model, either
player II plays the image of that label in the other model or player I has
a winning strategy in the remainder of the game, and

• if (b, c) ∈ (IA(µi))+ and player I plays the first move in µi between sup b
and inf c, then player II plays in µi between sup b and inf c, or player I has
a winning strategy in the remainder of the game.

Proof by induction on
∑
β∈A 2β .20

Suppose that for all B < A that player II must respect IB or lose. So we
can define a cut (b, c) in ∪{IB(µi) : B < A} such that the first move (a0, a1) is
played between sup b and inf c in either model. If IA labels the least element in
≡loc
β class τ in (b, c), then by the definition of 2β , there is a cofinal set of B such

that B < A and β is not in any of these B. If some B < A is the immediate
predecessor of A, then A = B ∪ {n} \ n, for n the least natural number not in
B.21 However, it is very possible that no IB , for B in that set, have added any
labels to b. By definition 4.3.1, that happens just in case b∩IA\{β} is nonempty
(condition 1) and has no greatest element labeled “xτ” for τ an ≡loc

δ class, δ ≥ β
(condition 3) or b ∩ IA\{β} is nonempty and has a last element labeled “a . . . ”
in which elements of every ≡loc

δ class are not bounded (condition 2). In one
of those cases, we see that IA would not label the least element in ≡loc

β class
τ in (b, c). If condition 3 were violated, then that same cofinal subset of b of
quantifier rank ≥ β means that condition 3 is violated in the ≡loc

β refinement of
∪B<AIB . If condition 2 were violated in the ≡loc

δ refinement of IA\{β} for every
δ < β, it does not hold that each element of every ≡loc

β type τ is unbounded
below sup b.

We say player I has a winning condition if after the players have identified
a0 and a1 the preceding lemma has held, with conditions 4∧ 5∧ 6 so that pairs
(p0, p1) have been played on each turn, preserving the lemma, as though in the
game EFβ+1(µp00 , µ

p1
1 ), for some β < α, the first move had been to identify

a0 ∈ µ0 and a1 ∈ µ1. This lemma identifies a discrepancy between µ0 and µ1 in
its 3rd condition, which player I tries to exploit. When the discrepancy, an ≡loc

β

class τ , exists in µi in (b, c), player I plays in µ1−i in answer to gτ0 ∈ (b′, c′)
or in answer to aτ0 ∈ (b′, c′) or if b has no greatest element. In the latter two
cases, when player I is to play in b0, an initial segment of b, player I needs to
play above a possibly infinite number of upper bounds in b. Let βb0 be such that

20 We use that sum to define the function 2α for infinite ordinals α: 2α is the least ordinal
number greater than

∑
β∈A 2β for all A ⊂ α.

21 {B : B < A,B = A \ {β} ∪B′, B′ ⊆ β is finite } are the final sets B such that B < A.
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≡loc
βb0

classes are defined confinally in b0. All ≡loc
γ classes for γ > β are definable

above b0. Further, ≡loc
γ classes ρ for γ ≤ β are definable above b0 if occurrences

of ρ are bounded below b0. Player I will be unable to exploit the discrepancy
just in case the following occurs: b0 is IA\{α−1} ∩ b. There is a discrepancy, an
≡loc
β class δ between sup b and ai, and no element of ≡loc

β class δ between sup b
and a1−i in µ1−i. Player I plays q1−i ∈ b0 in µ1−i, and player II answers in µi,
and the set of labels corresponding to b\b0 in IA\{α−1}(µ

>q
1−i) is now bounded by

an element of ≡loc
β class δ between sup b and a1−i in µ1−i. As we increase q in b0

and it passes over various upper bounds defining elements of b \ b0, we find that
IA\{α−1}(µ

>q
1−i) assigns various labels to the same element as in b \ b0, including

– all high-rank elements (as soon as we pass the last high-rank element of b0)
and an increasing number of low quantifier-rank classes. But if q > the upper
bound of some ≡loc

β class, then it’s least realization above q is the same as it’s
least realization above b0. All further labels are the same, too. So if player I
intends to play in a series of cuts b0 < b1 < . . . b, then it is enough to choose
some

To determine which of these player I’s move pi must exceed, player I looks
ahead to defining the anomaly δ. Player I finds a finite set of

So, some aspects of the induction, such as the claim that players can play
arbitrarily close to a cut and the argument for player I playing labels “d” and
“l” in π and labels “a” and “g” in µ, go through just as in the case where the
clock is finite.

We have supposed that ∪{IB : B < A} assigns the same labels into π ∪ π+

and µ ∪ µ+ and that β is the least element of A. Now suppose that the (b, c) is
a cut, (b, c) ∈ (∪{IB : B < A})+ in which the ≡loc

β refinement of ∪{IB : B < A}
will differ between π and µ. We follow the definition 4.3.1 to see how this could
happen. First, suppose ≡loc

β class τ exists in π between sup b and inf c, but not
between sup b and inf c in µ. Then player I plays the first move at the realization
of τ . For player II to play a realization of τ , player II must play outside the
interval (b, c). Player II therefore plays below some element of b or above some
element of c. That label and element exist in IB for some B < A. So player II
has not respected IB , and by the induction hypothesis, loses.

Next, suppose that τ is bounded below sup b by m ∈ π but τ is not bounded
below sup b in µ. Player I plays the first move between m and sup b in π.
By assumption, the second player respects ∪{IB : B < A}. Now a winning
condition exists, since the type τ exists between the first move and sup b.

That labels of quantifier rank greater than that of τ are cofinal in sup b in µ
but not in π is a property of the order of labels agreed on by ∪{IB : B < A}(π)
and ∪{IB : B < A}(µ).

If there is a least element of type τ in (b, c) in π but not in µ, then player
I plays that least element, player II plays an element of type τ in (b, c) in µ by
the inductive assumption, and now a discrepancy exists – the elements of type
τ above sup b and below the second player’s first move in µ, which are absent
in the analogous interval of π.

Now to see that IA has the same ordering on labels in both models, we follow
the argument in Theorem 2.1 in Ehrenfeucht–Fräıssé Games on Linear Orders,
specifically, the itemized list on the last page of that proof. �

Lemma 2.2 of Ehrenfeucht–Fräıssé Games on Linear Orders also holds for
infinitary assignments: For any linear order π and for any finite set A of ordinals,
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for every label m assigned by IA(π) to a ∈ π, for any order types α, β, and γ,
the assignment IA(π+α+ γ+β) assigns m to a ∈ π. On the other hand, every
label m in the domain of IA(π + α+ γ + β) which is fixed under varying α and
β is, in fact, assigned to π.

Theorem 4.3.2: For any linear order π and any element a ∈ π, for any ordinals
α > β, from

• ∪{IA(π) : A ⊆ α},

• Thright
β ({b ∈ π : b < a}) and Thleft

β ({b ∈ π : b > a}), i.e., Thloc
β (π, a),

we can construct ∪{IB({b ∈ π : b < a}) : B ⊆ β}.

As in the case when k is finite, we must truncate local types, i.e., we can’t
say that every label in IB({b ∈ π : b < a}) appears in IA(π) or the assignment
of labels into Thleft

β ({b ∈ π : b > a}), but that any label in IB({b ∈ π : b < a})
is the truncation of some label appearing in the latter assignments. The proof
goes through as for finite k. �

Theorem 4.3.3: If α+ 1 is a successor ordinal, π ≡α+1 µ holds just in case

• for all finite sets A ⊆ α, IA(π) and IA(µ) assign the same labels to elements
and cuts in π and µ in the same order, and

• for each finite set A ⊆ α and for each label e, if (e, f) ∈ IA(π) and
(e,m) ∈ IB(µ) then f ∈ π just in case m ∈ µ; if both those conditions
hold, then for some ≡loc

α class τ , (π, f) ∈ τ and (µ,m) ∈ τ , and

• for each cut (b, c) ∈ (IA(π))+ and cut (b′, c′) ∈ (IA(µ))+ such that b and
b′ contain the same labels, for each ≡loc

α class τ , there is some element n ∈
π(b,c) such that (π, n) ∈ τ just in case there is some element m ∈ µ(b′,c′)

such that (µ,m) ∈ τ .

If B is an unbounded set of ordinals, π ≡∪B µ holds just in case, for all
β ∈ B, π ≡∪β µ.

Proof: This is a corollary of the preceding two theorems. �

Theorem 4.3.4: For any finite k ≥ 1,

• ω + Z × (2k − 2) + ω∗ 6≡left
ω+k ω + Z × (2k − 1) + ω∗ and

• Z × (2k − 1) ≡ω+k Z × 2k.

Proof: The following establish the base case, k = 1:

• For any finite number k, a unique ≡loc
k class is realized in Z (or Z × λ for

any nonempty λ). Call it ζk = (φk, ψk).22

• For any finite number k, any ≡loc
k class realized in ω, Z, or ω∗ is either

(φ, ψk) for some φ such that φk ⊆ φ or (φk, ψ) for some ψ such that
ψk ⊆ ψ.

22 Translation is an automorphism of the integers.
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• For any finite set A ⊂ ω and for any linear order λ, I left
A (ω+Z ×λ) labels

a finite subset of ω, since the least element of type ζk above any finite
subset of ω occurs within ω.

• Let I be the union of I left
A (ω + Z × λ) over all finite sets A ⊂ ω, for some

linear order λ. I is independent of λ. I labels every element of ω, since
if the element a ∈ ω is the least element not labeled and if every element
below a is labeled in IA(ω + λ) and if k is the least number not in A and
if the ≡loc

k class of a is (φ, ψk), then l(φ, ψk) ∈ ({b ∈ ω : b < a}, ∅) labels
a in IA∪{k}\k(ω + λ).

• Only one ≡loc
ω type is realized in Z (or Z × λ for any nonempty λ). Call

it ζω.23

• ω+Z+ω∗ 6≡ω+1 ω+ω∗ because ζω is realized in (I, ∅) in the former model
and not in the latter.24 This inequivalence is 6≡left

ω+1 or left-invariant: for
any ≡k class γ there is some ≡k class α and a label m25 in the domain of
both assignments I left

ω (ω + Z + ω∗ + α) and I left
ω (ω + ω∗ + α) such that

ω + Z + ω∗ + α + γ + β 6≡ω+1 ω + ω∗ + α + γ + β because ζω is realized
in (I,m) in the former model and not in the latter.

• On the other hand, Z + Z ≡ω+1 Z because all labels are assigned to the
cuts at the left and right ends of the linear order, and ζω occurs in both
models.

Now we proceed by induction: Suppose ω+Z×(2k−2)+ω∗ 6≡left
ω+k ω+Z×(2k−

1)+ω∗ has been proven for some k. Let δ be the≡ω+k class of ω+Z×(2k−1)+ω∗.
Now (Thright(δ), Thleft(δ)) is an ≡loc

ω+k class. Call it ζω+k. Now ζω+k is not
realized in ω + Z × (2k+1 − 2) + ω∗ because no element of that model has
(2k − 1)-many copies of Z to its left and to its right. On the other hand, ζω+k

is realized in ω+Z× (2k+1− 1) +ω∗ because 2k+1− 1 = (2k− 1) + 1 + (2k− 1).
If we let α = Z, then the greatest element of ω∗ is labeled “l(ge, de) ∈ (∅, ∅)” in
ω + Z × n+ ω∗ + α+ γ, where (ge, de) is an ≡loc

2 equivalence class, so that we
have proved ω + Z × (2k+1 − 2) + ω∗ 6≡left

ω+k+1 ω + Z × (2k+1 − 1) + ω∗.
Let’s define a shorthand: Write n for the ≡left

ω+k class of ω + Z × n + ω∗, if
n < 2k and write (m,n) for the ≡loc

ω+k class of pairs (λ, a) such that λ = Z × µ
for some µ and there are m-many copies of Z left of a and n-many copies of Z
right of a. Now the ≡loc

ω+k classes imply one another in the following way:

• (m,n) → (m + 1, n − 1) and (m,n) → (m − 1, n + 1) if m < 2k − 1 and
n < 2k − 1,

• (m,n)→ (m,n− 1) if m = 2k − 1 and n < 2k − 1,

• (m,n)→ (m− 1, n) if n = 2k − 1 and m < 2k − 1,

• (m,n)→ (m+ 1, n) ∨ (m+ 1, n− 1) if n = 2k − 1 and m < 2k − 1,

23 ≡loc
ω classes are types in the traditional sense of that word – infinite sets of formulas which

we hope to realize at a single element of some model – and they are diverse, in general.
24 We are using theorem 4.3.3.
25 If we let α = 1 + Z, then m = “l(ge, de) ∈ (I, ∅)” labels the least element of α. If we let
α = Z, then m = “l(ge, de) ∈ (I, ∅)” labels the greatest element of ω∗.
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• (m,n)→ (m,n+ 1) ∨ (m− 1, n+ 1) if m = 2k − 1 and n < 2k − 1.

If n = 2k − 1, then Thω+k+1(Z × (2k − 2)) assigns the labels

d(0, n) < d(1, n) < d(2, n) < . . . d(2k−1 − 3, n) < d(2k−1 − 2, n) <

a(n, 2k−1 − 2) < a(n, 2k−1 − 3) < . . . a(n, 2) < a(n, 1) < a(n, 0)

and doesn’t realize ζω+k in the central gap ({d(2k−1− 2, n)}, {a(n, 2k−1− 2)}).
For m ≥ n, Thω+k+1(Z ×m) assigns the same labels, and does realize ζω+k in
the central gap. By theorem 4.3.3, nothing but assignments of labels and the
realization of different ≡loc

ω+k classes separate ≡ω+k+1 classes. So in particular,
that Z ×m for m ≥ n label the same elements and realize the same ≡ω+k+1

classes between labels implies that Z × n ≡ω+k Z × (n+ 1). �
This proof applies theorem 4.3.3. We now sketch a simpler proof: During

the Ehrenfeucht–Fräıssé game of length ω+k, if the first k-many moves identify
a0 . . . ak−1 in λ and b0 . . . bk−1 in µ, then player I has a winning strategy if for
some i < k−1, {a ∈ λ : ai < a < ai+1} is finite and {b ∈ µ : bi < b < bi+1} is not
finite, or visa versa. On the other hand, if the interval between ai and ai+1 is not
finite, then its ≡ω theory is Thω(ω+ω∗), so player II has a winning strategy just
in case for all i < k − 1, {a ∈ λ : ai < a < ai+1} and {b ∈ µ : bi < b < bi+1} are
finite and equal, or infinite. It is possible to give a proof which is simpler than
applying theorem 4.3.3 because it is easy to say in this case what ≡ω classes of
intervals exist in the model and how those classes limit the first k-many moves
of either player.

4.4 Quantifier ranks ≡α on wellorders

For any linear order µ, let D(µ) be the set of elements a ∈ µ such that a is the
limit of an infinite sequence of elements tending towards a from the left. I.e.,
D(µ) = {a ∈ µ : (∃b ∈ µ(b < a)) ∧ (∀b ∈ µ(b < a)→ (∃c ∈ µ(b < c < a)))}. For
a limit ordinal δ < λ, we define the δ-th iterate of D, Dδ, to be ∩γ<δDγ(µ). For
a successor ordinal δ = γ + 1, Dδ is the compound function which computes D
of Dγ(µ).

Dδ(λ) is definable by the δ-fold iteration of the preceding definition: The
sentences φδ, defined as

φγ+1 = (∃yφ<yγ ) ∧ (∀y∃z(y < z ∧ φ<z)),

φsupB = ∧β∈Bφβ
have quantifier rank 2 × δ and for any ordinal α, α |= φδ just in case for all
ordinals β > α, α ∈ Dδ(β).

For δ any ordinal, consider Th2×δ(ωδ) and Th2×δ+1(ωδ).

Theorem 4.4.1: Two minimal almost locally closed sets – a minimal almost lo-
cally closed set which contains 0 and a minimal almost locally closed set Aδ
which contains ωδ × 99 – realize all ≡loc

2×δ and ≡loc
2×δ+1 classes which are realized

in ωδ+1. Further, if we let Aγ be the minimal almost locally closed set which
contains a typical element of Dγ(ωδ+1) \ Dγ+1(ωδ+1) (an element a of Dγ is
typical if each of its minimal almost locally closed sets is ≡2×δ to a minimal
almost locally closed set of a + ωγ), then for any interval in ωδ+1 there is an
initial segment (Aγ : γ < δ0) of (Aγ : γ < δ) realizing exactly the set of ≡loc

2×δ
classes realized in the interval.
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Proof, by induction on δ. The ≡loc
2×δ+2 class of a ∈ ωδ+2 is determined by

Th2×δ+2(ωδ+1, a). This is determined, in turn, by the tree of labels I≤2×δ and
≡loc

2×δ+2+1 classes at labels and between labels. By induction on this theorem,
for any j ≤ 2 × δ, we can replace each ≡loc

j class by the almost locally closed
class Aγ which realizes it and has least γ, and we can replace any set U of ≡loc

j

classes by initial segments of the sequence (Aγ : γ < δ). We can’t easily list
the ≡loc

2×δ+2 classes because there is a variety of possibilities. But for any a,
copies of Aδ either: 0. don’t occur below a, or occur below a and 1. there is a
last copy of Aδ below a, or 2. are unbounded below a. In those three cases, 0.
the ≡loc

2×δ+2 class of a is realized in any minimal almost locally closed set which
contains 0, 1. the ≡loc

2×δ+2 class of a follows from its ≡loc
2×δ class, from the fact

that ωδ+2 is an ordinal, and from the fact that there is a last copy of Aδ below
a, and 2. the ≡loc

2×δ+2 class of a is realized in Aδ+1. The theory of ordinals and
the fact of whether Aδ occurs below a and then unboundedly below a or not
isn’t enough to determine the ≡loc

2×δ+2 class of a, but it is enough to determine
the ≡loc

2×δ+2- almost locally closed set around a. For in case 1, this set must
contain that last copy of Aδ below a. In case 2, this set contains the cut which
is the supremum of the copies of Aδ below a. Adding the least ordinal above
this cut gives Aδ+1. In the end, the result is an almost locally closed set from
which either 1. a cannot be eliminated, without giving up almost closure, so
that a is realized in Aδ+1, or 2. a can be given up, in which case its ≡loc

2×δ+2

class is realized in Aδ+1. Similarly, we induct quantifier rank 2 × δ + 3 from
quantifier rank 2× δ + 1. �

The following theorem can be proved directly, by showing that for any clock
β < α, for any element of one model there is an element of the other model such
that the same theorem holds in either direction with the clock β. The details
seem to be inevitably gory.

By the preceding theorem, on the first move in EF2×β+1 or EF2×β+2, player
I can distinguish locally a variety of ≡loc

2×β classes or ≡loc
2×β+1 classes, but the

minimal almost locally closed set containing that local class is≡2×β+1 or≡2×β+2

to Aγ , for some γ < β. These are the only definable sets of ordinals that player I
can use to choose a first move. Player I can 1. show that Dδ is nonempty in one
model and not in the other, or 2. show that Dδ has a greatest element in one
model and not in the other, or 3. show that the finite part of Dδ(µi) = ω×πi+ni
is different in the two models (n0 6= n1).

Theorem 4.4.2: For any ordinals δ and x, let

πi,δ = {y ∈ µi : y + ωδ > µi},

which is empty or has as its least element ωδ × xδ.
For any ordinals α, µ0, µ1, µ0 ≡α µ1 holds just in case, for each δ < α, the

following hold in both µi or fail in both µi:

1. ∃β(2× δ ≤ β < α) and (δ > 0 ∧ ωδ < µi) ∨ (δ = 0 ∧ 0 < µi),

2. ∃β0∃β1(2× δ ≤ β0 < β1 < α) and ∃x < µi(µi = ωδ+1 × x+ πi,δ) and

(πi,δ = ∅) ∨ (πi,δ \ {ωδ+1 × x}) 6≡α−2 ω
δ+1 + πi,δ, and

3. χδ(µ0) = χδ(µ1) or χδ(µ0) and χδ(µ1) are both ≥ 2α−(2×δ) − 1,
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where χδ(µi) is:

• The number of x such that ωδ × x < µi and ωδ × x+ ωd+1 > µi,

• +3 if ωd+1 < µi,

• −1 if δ > 0 and µi < ωδ+1,

• −1 if πi,δ 6= ∅ and (πi,δ \ {ωδ × xδ}) 6≡2×δ ω
δ + πi,δ.

Further, if one of those final three summands applies to µi and not to µ1−i and
this difference renders ξδ(µi) small and equal, then there is another δ′ 6= δ which
witnesses µ0 6≡α µ1.

Proof: The three conditions correspond to properties of µi of quantifier-
rank α, describing three properties of the elements of Dδ(µi) which are not
individually definable in ≡α:

1. Dδ(µi) 6= ∅. The formula φ<xδ has quantifier rank 2 × δ = β < α, so the
sentence ∃x(φ<xδ ) has quantifier rank α. In the game EFα(µ0, µ1), player
I plays ωδ ∈ µi, then proceeds to verify ωδ |= φδ.

2. If this condition holds, the Cantor normal form of µi has no term with
exponent δ, and πi,δ is small enough that we can express this fact with a
formula φ+

δ which is similar to φδ and says ∀x ∈ Dδ(µi)∃y ∈ Dδ(µi)y > x
and y 6∈ πi,δ.

3. The set of elements of Dδ(µi) which are not individually definable in ≡α
are pseudo-finite – i.e., we replace all of Dδ(µi) before and including the
last element of Dδ+1(µi) with 3 elements of Dδ(µi) and play EF as though
Dδ(µi) were finite sets. Hence the upper bound 2α−(2×δ) on the definably-
sized sets Dδ(µi).

We should explain the summands of χδ.

• If δ is not the largest exponent in the Cantor normal form of µ, the infinite
set of elements ofDδ(µi) less than some element ofDδ+1(µi) are equivalent
to 3 elements of Dδ(µi), since when 2× δ + 2 moves are left, this infinite
subset of Dδ(µi) can be confused with le0 < le1 < le2, the three elements
that I left

<2 (Dδ(µi)) defines.

• The least multiple of ωδ with no multiple of ωδ+1 beyond it is, in fact,
the last multiple of ωδ+1, if that exists. This point is available to be
played, unless there are absolutely no multiples of ωδ+1 in µi at all, i.e., δ
is maximal. On the other hand, if δ = 0, then the element 0 is playable.
Just in case δ > 0, the least multiple ωδ × 0 of ωδ is not playable as an
element of Dδ(µi).

• If this condition holds, then the last element of Dδ(µi) is individually
definable because it is close to the right end.

If these three conditions fail, then for the same δ (2 × δ < α), Dδ(µi) is
nonempty (condition 1); for the same δ (2 × δ < β0 < α) Dδ(µi) has a final
element; and the elements of Dδ(µi) which are not individually definable in
Th2×δ(µi) as 0 or as the final element of Dδ(µi) which is definably close to
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the right are either equinumerous or numerous enough that ≡α−(2×δ) cannot
count them. By the preceding theorem, player I’s first move will be locally
trivial, in the sense that µi ∈ ωµi , and interpreting player I’s move in ωµi ,
it will be equivalent to something in the minimal almost locally closed set of
0 or of the minimal almost locally closed set containing a typical element of
Dδ(ωµi)\Dδ+1(ωµi). Player I in fact has a variety of first moves just in case the
ordinal µi has a complicated Cantor normal form, so that different extensible
local types occur close to the right end of µi. The deficiencies of those local
types are revealed by adding ωδ to the ≡loc

β class of the first move of player
I, for various δ, and checking whether a smaller ≡loc

β class results. Thus, the
only difference that player I can find between µ0 and µ1 is a different number
of elements in Dδ after the last limit element of that set (if it is infinite). In
summary: the final three summands of χδ should be intuitive: 1. the infinite
initial part of Dδ(µ) will be encountered when there are ≡2×δ+2 moves left, at
which time it plays the same as three undefinable elements of Dδ(µ). 2. If δ > 0
is maximal in the Cantor Normal form of µ, then the first copy of ωδ contributes
to Dδ(µ) the element 0, which is ≡1-definable, and hence useless when counting
Dδ(µ). 3. A final element of Dδ(µ) – the initial element of πi,δ is useless when
counting Dδ(µ) if the set of elements of πi,δ greater than it is ≡2×δ-definable.
�

A corollary of the preceding theorem is an enumeration of ≡k classes, for
finite k: For any ordinal µ, let D(µ)\{the least element of D(µ), if D(µ) contains
any element} \ {a definable greatest element, if there is one} = D+(µ).

Theorem 4.4.3: For any ordinal α, the ≡2+α classes of ordinals can be enumer-
ated by enumerating the Thα(D+(µ)) and the following:

• If Thα(D+(µ)) = 0 then µ ∈ {0 . . . 22+α − 2} or µ ≡2+α 22+α − 1 is finite
or µ ∈ {ω, ω + 1, ω + 2, ω + 3}.

• If ∃π(Thα(D+(µ)) = π + 1) then µ = ω × π + n for n ∈ 4 . . . 22+α − 5} or
µ ≡2+α ω × π + 22+α − 4 or µ = ω × π + ω + n for n ∈ {0, 1, 2, 3}.

• If Thα(D+(µ)) is a limit ordinal π, then µ = ω×π+n for n ∈ {0, 1, 2, 3}.

Furthermore, each ≡α class has one extension into an ≡2+α class which describes
a limit ordinal, and these exhaust the ≡2+α classes which describes a limit
ordinal.

Proof: Apply the previous theorem with δ = 1 throughout. When we add
n ∈ {0, 1, 2, 3}, then either n = 0, in which case πi,1 = ∅, or n > 0, in which
case πi,1 is definable. In these four cases, πi,1 adds no ≡2-undefinable final
element to D(µ). When we add n ∈ {4 . . . 2α − 2}, then we do add a final
≡2-undefinable final element to D(µ), and this is taken into account in the
enumeration. �

So, writing e(k,WO) for the number of ≡k classes of wellorders,

e(k,WO) = e(k − 2,WO)× (2k − 3)− e(k − 4,WO)× (2k − 7) + 7.

For instance, there are two ≡1 classes (let α = 1). We enumerate the ≡3

classes of ordinals as:

• {0 . . . 7, ω, ω + 1, ω + 2, ω + 3} extending Thα(D+(µ)) = 0 and
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• ω + 4 and ω + ω + n for n ∈ {0, 1, 2, 3} extending Thα(D+(µ)) = 1.

Similarly, there is a single ≡0 class of linear orders and there are five ≡2

classes of ordinals, so the formula indicates 5 × 13 − 2 = 63 ≡4 classes of
ordinals. 20 of them have D+(µ) = 0, 13 of them have D+(µ) = 1, 13 of them
have D+(µ) = 2, 13 of them have D+(µ) = 3, and 4 of them have D+(µ) = ω.
The ≡4 classes of ordinals are {ω × α+ n : α ∈ A,n ∈ N} as (A,N) range over
the following set:

• A = {0}, N = {n}, for n = 0..14;

• A = {0}, N = {n : n ≥ 15};

• A = {1}, N = {n}, for n = 0..11;

• A = {1}, N = {n : n ≥ 12};

• A = {2}, N = {n}, for n = 0..11;

• A = {2}, N = {n : n ≥ 12};

• A = {3}, N = {n}, for n = 0..3;

• A = {α : α ≥ 3}, N = {n}, for n = 4..11;

• A = {α : α ≥ 3}, N = {n : n ≥ 12};

• A = {α : ∃β : α = 3 + β + 1}, N = {n}, for n = 0..3;

• A = { limit ordinals }, N = {n}, for n = 0..3;

The ≡3 class containing most random Cantor normal form polynomials has
as its smallest member ω+ 4. So we could say that ω+ 4 is ≡3-typical. A more
precise definition is that ω + 4 is the smallest Cantor normal form polynomial
such that increasing any coefficient (even adding a term which is not there)
leaves it ≡3. The typical ≡4 ordinal is ω×3+12, and the typical ≡5 polynomial
is ω2 + ω × 4 + 28.

Theorem 4.4.4: For k ≥ 6, e(k,WO) = 2q(k)−εk , where q(k) = (k+1)×(k+1)/4
if k is even, q(k) = (k + 2)× k/4 if k is odd, and εk ∈ (0.20, 0.37).

Proof: This follows from iterating the formula above – e(3,WO) = 2×5−0+7
(if we set e(−1) = 0), and e(4,WO) = 5× 13− 1× 9 + 7 = 63, and e(5,WO) =
17× 29− 2× 25 + 7 = 450; e(6,WO) = 63× 61− 5× 57 + 7 = 3565; e(7,WO) =
450× 125− 17× 121 + 7 = 54200. For k = 0, 1, 2, 3, 4, 5, 6, 7, log2(e(k,WO)) =
0, 1, 2.3, 4.1, 6.0, 8.8, 11.800, 15.726. Thereafter, log2 e(k,WO) ≤ k + log2 e(k −
2,W =), and log2 e(k,WO) ≥ log2 e(k− 2,WO) + k− e(k− 4)/e(k− 2,WO)×
loge / log2. The sums of all numbers below k and of the same parity is q(k).
Finally, ε <

∑
k<∞,k even e(k − 4,WO)/e(k − 2,WO) is bounded by a geo-

metric series
∑

(2−1/4)k = 0.841k (so every time k increases by 4, another
bit of ε is determined), which is bounded by 6.3 times its first term, and
6.3 × e(4,WO)/e(6,WO) < 0.1604; 6.3 × e(5,WO)/e(7,WO) < 0.077 give the
bound. �
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We compute the limiting εeven and εodd by numerically iterating the compu-
tation of e(k,WO) and inverting the formula in the preceding theorem:

2εeven = 1.19411673235052; 2εodd = 1.23201682615002.

Computing e(k,WO) for k ≤ 52 gives these two values of 2ε to 14 digits of
accuracy. i.e., we get one more bit in one of the εi with each increase in k.

4.5 Undecidable linear orders

In [1] we find a linear order λ for which Th(λ) is undecidable, though the set
of all Σn-formulas is computable over λ, for all finite n. These formulas have
nested sequences of quantifiers which alternate at most n times between ∃ to
∀. Counting the number of alternations is different than counting the quantifier
rank of a formula – Σn corresponds to a game in which player I plays a finite
sequence of elements in one model – rather than a single element. The authors
of that paper ask whether a simple construction for such a λ exists. Their
construction, using iterated dense shuffles, is intuitive. Ordinals are another
way to hide some information from Σn, and we make a construction on that
basis:

Definition 4.5.1: Let (Ui : i ∈ ω) be a nested sequence of sets of natural num-
bers: U0 ⊇ U1 ⊇ U2 . . . . For any β < ωω, choose δ maximal such that
∃xβ = ωδ×x. Now for some ordinal y and some finite number n, x = ω×y+n.
That n is the last Cantor normal form coefficient of β. Let f(β) be the nth
element of Uδ.

Let λ =
∑
β<ωω

ω + ((η + Z)× f(β)).

Now η and Z both have finite axiomatizations in ≡3, since they realized only
one ≡loc

k−1 class, for each k ≥ 3. The ≡loc
2 class in η is ∀∃, and the ≡loc

2 class in
Z is ∃∀. We will capture this unfortunate difference in 5, a constant error term:

The following is a Σ5+δ formula: A copy of ((η+Z)×m) occurs immediately
above the β-th copy of ω for some β ∈ Dδ(ωω) just in case m ∈ Uδ. On the
other hand, if we rendered the sequence (Ui : i < ω) eventually constant, this
would not affect Σn(λ) for low n, for Σn cannot define Dn+1(ωω), since that
set is definable only with n + 1-many quantifier alternations. If the sequence
Ui is eventually constant and each set Ui is periodic, then Σn(λ) is finitely
axiomatizable – For “whenever β is divisible by ωδ but not ωδ+1 and there exist
n such β′ below β and above the last element divisible by ωδ+1 then there are
f(β)-many copies of η + Z before the next copy of ω” is a different sentence
of Σn for each f(β), unless f(β) is simply f(β − 1) + k for some constant k,
in which case we can express the periodic part of Ui with a single formula. If
some Ui is not periodic, then any Σn which defines {0 ∈ ωβ : β ∈ Di(λ)} is not
finitely axiomatizable.

If we choose Ui to be undecidable, then that Σn which defines {0 ∈ ωβ : β ∈
Di(λ)} is undecidable. On the other hand, if we choose each Ui to be decidable
but the sequence (Ui : i < ω) to be undecidable (e.g., by diagonalizing that
sequence against all programs), then all Σn are decidable, but Th(λ) is not.
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4.6 ≡λ for λ not wellordered

The sequence of elements A = (ai : i ∈ I) of λ which will be chosen during the
game EFλ will decrease in λ as the game progresses; the reversed ordering A∗

will be a wellorder. Suppose λ0 is an initial segment of λ. The same player wins
EFλ(µ, π) as wins EFλ0(µ, π), for all linear orders µ and π, if player II wins the
clock-comparison game between λ and λ0. Player I plays a ∈ λ and player II
responds with b ∈ λ0. After player I has played ai : i ∈ I in λ and player II has
played bi : i ∈ I in λ0, player I plays an element a ∈ λ such that ∀i ∈ I(a < ai),
and player II plays an element b ∈ λ0 such that ∀i ∈ I(b < bi). The first
player who cannot play loses. Now λ0 may replace λ as a clock if player II have
a winning strategy in the clock-comparison game, for then we can translate
clock moves in λ into clock moves in λ0 until λ is exhausted. Informally, player
II can survive just as long using λ0 for a clock as player II can survive using
λ for a clock. On initial segments of λ we form equivalence classes: For all
b < a ∈ λ, we say b ≡clock a just in case player II has a winning strategy in the
clock-comparison game between {c ∈ λ : c < a} and {c ∈ λ : c < b}.

Lemma 4.6.1: The ≡clock classes of λ are wellordered.

Proof: We expand the notion of ≡clock to a quasi-ordering on linear orders:
µ <clock π holds just in case the first player wins the clock-comparison game
in which the first player plays in π and the second player plays in µ. Now
µ ≡clock π if neither µ <clock π nor π <clock µ – i.e., the second player wins
the clock-comparison games of µ versus π and π versus µ. That λ0 is an initial
segment of λ shows λ 6<clock µ.

Suppose ei : i ∈ ω is a descending sequence of ≡clock classes of λ. If for some
i ∈ ω, |ei| < |ei+1|, then for any a ∈ ei and b ∈ ei+1, player II can win the clock-
comparison game between {c ∈ λ : c < a} and {c ∈ λ : c < b} with the following
strategy: Play slowly in ei+1, until player I has exhausted ei. Then play again
in ei+1. Player I will now play in ej , for j > i, a move ≡clock or ,clock to the move
player II has just played. That equivalence shows how to play the remaining
moves in the game. This contradicts the idea that ei and ei+1 are equivalence
classes. So for all i ∈ ω, |ei+1| 6> |ei|. Suppose that there is some i ∈ ω such
that for all j ≥ i |ej | = |ej+1|. Then for any a ∈ ei and b ∈ ei+1, player II can
win the clock-comparison game between {c ∈ λ : c < a} and {c ∈ λ : c < b}
with the following strategy: play in ej+1 while player I is playing in ej . The
players will reach inf ∪i∈ω ei together. Then it will be player I’s turn to play,
and player II can copy and remaining moves. This contradicts the idea that ei
and ei+1 are separate equivalence classes. So for infinitely many i ∈ ω it holds
that |ei−1| > |ei|. Now playing the clock-comparison game in which the smaller
clock is an ≡clock class is simpler than the general clock-comparison game since
on any move after {ai : i ∈ I} has been played, if player II has not yet lost, then
{c ∈ ei : ∀i ∈ Ic < ai} ≡clock {c ∈ ei : c < a} for any single element a ∈ ei. If
player I can win this game, the winning strategy cannot depend finely on what
element player II plays in ei, since all of those elements are ≡clock. That is,
player I never finds that b ∈ ei−1 is a winning response to a ∈ ei, but b ∈ ei−1

would lose as a response to a′ ∈ ei, since a and a′ are ≡clock. A winning strategy
which is, in this sense, “blind” to the choices of player II, can only exist if there
is an ordinal α such that α∗ injects into ei−1 and not into ei. The set Ui of
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ordinals which inject into ei is closed under embedding, i.e, if α embeds into
β and β embeds into ei, then α embeds into ei. So Ui is in fact the set of all
ordinals less than αi, for αi = supUi. Now if Ui is a decreasing function of i,
then (αi : i < ω) is a sequence of ordinals which decreases infinitely often. �

Now we turn our attention to the expressive power of play within an ≡clock

class. For instance, if a ∈ λ and b ∈ λ and a > b and (λ, a) ∼= (λ, b) and f is
the isomorphism mapping (λ, a) onto (λ, b), then b = f(a) and (λ, b) ∼= (λ, f(b))
and likewise (λ, fn(a)) ∼= (λ, fn+1(a)) for all finite numbers n. So the game
EF{b∈λ:b<a} presents player I with, at least, a string of ω-many initial moves,
each of which has the same descriptive power. Indeed, if a ∈ λ and b ∈ λ
and c ∈ λ and a > b > c and ≡{d∈λ:d<a} is the same as ≡{d∈λ:d<c}, then
the following hold: First, by monotonicity, ≡{d∈λ:d<b} is equal to those two
equivalence classes. Second, ≡{d∈λ:d<a} describes the first and last elements of
each equivalence class in ≡{d∈λ:d<c}, which is ≡{d∈λ:d<a} again.

Rather than define ≡loc
α∗ sets, we directly define which A ⊆ λ∪λ+ are locally

closed; we call Thα∗(λ, x)x∈A of such a set its ≡loc−closed
α∗ class. We then call an

≡loc
α∗ class the pair (A, a) where A is an ≡loc−closed

α∗ class and a ∈ A is a chosen
element. We don’t insist on A being minimal, lest this reduce A to the empty
set. The locally closed sets of λ is the smallest set LC of subsets of λ∪ λ+ such
that each element of λ is in one, and such that for each element A ∈ LC, each
β < α, each set A0 = (ai : i ∈ β) ⊆ A, each cut (b, c) ∈ (A0)+ and each ≡loc

(α\β)∗

class τ 1. if Thloc
α∗ ((λ, ai)i∈β) implies the existence of an element of type τ in

(b, c) then there is an element of type τ in A, 2. if Thloc
α∗ ((λ, ai)i∈β) implies there

is a least element of type τ in A between b and c then that element is in A, and
3. if Thloc

α∗ ((λ, ai)i∈β) implies there are elements of type τ descending towards
b without bound then A contains both 2a. the cut describing the limit of those
least elements of type τ in (b, c), and 2b. a descending sequence of elements of
≡loc

(α\β)∗ class τ in (b, c), indexed by (α− β).
The minimal set A0 = ∅ requires an ≡loc

α∗ -closed set A to contain, for
(∅, ∅) ∈ ∅+, an element of each type τ which is implied by ≡loc

(α\β)∗ . But as
that equivalence class is trivial, it implies nothing. So A0 = ∅ requires nothing
of a local closure. Indeed, the empty set is locally closed. Let A0 be a singleton,
containing a ∈ λ of ≡loc

α∗ class τ0. If α ≤ 1, then nothing is required of A so that
A0 is locally closed – indeed, A0 is its own ≡loc

1 -closure. If α > 1, then assign
0 ∈ 1 = β to a ∈ A0 and consider any ≡(α\1)∗ class τ such that Thloc

α∗ ((λ, a))
implies the existence of an element of type τ near a. For instance, if α = 2
and we analyze the linear order η + ω + 3 + Z + Z and consider a = 1 ∈ 3,
then the ≡loc

2 class of a determines that a has an immediate successor and an
immediate predecessor. So a locally closed set containing a must contain all of
3. Thloc

2 (0 ∈ 3) determines that 0 ∈ 3 is a limit of elements from below, so
a locally closed set contains (η + ω, 3 + Z + Z) and contains an element of ω.
Closing under immediate predecessors and successors brings us to 0 ∈ ω, so an
element of η is in the locally closed set. That element of η has limits from above
and below.

So the minimal locally closed set containing 1 ∈ 3 contains, for φ some
homomorphism of Z into η, φ∪{(η, ω+ 3 +Z+Z)}∪ω∪{(η+ω, 3 +Z+Z)}∪
3 ∪ {(η + ω + 3, Z + Z)}∪ the first copy of Z. This might seem unnecessarily
large, especially to a reader who, like me, enjoys the notion of almost locally
closed sets – sets that are cut off when they become repetitive. A locally closed
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set, on the other hand, must continue propagating until it is closed under its
own local Skolem functions. We define an almost-locally closed set in the same
way, except that we do not add to A the closure of each A0 = (ai : i < β) ⊆ A,
but only close A under one example of each Th(α\β)∗(λ, ai)i<β class.

If λ is a single ≡clock class, then µ ≡λ π holds just in case the same ≡loc
α∗ -

closed sets exist in both µ and π, for each ordinal α such that α∗ injects into
λ.

More generally, we construct Iλ(µ), a tree of labeled elements of µ, by in-
duction on the ≡clock classes (ei : i < γ) of λ. For each class ei in turn except
the last one, with a ∈ ei, we create the tree at rank ei: above each branch
B of the tree passing through ranks (ej : j < i), for each ≡{b∈λ:b<a}-class of
≡loc
{b∈λ:b<a}-closed sets in µ with a single starting element b ∈ µ (for a much

narrower tree, use almost-locally closed classes), we label the least realization
of τ above B – either the least copy of τ in µ (ordered by where they realize the
element equivalent to b ∈ µ, or the gap below which no copy of τ in µ realizes
an element equivalent to b ∈ µ above B, and above which every element exceeds
the element equivalent to b ∈ µ in a copy of τ in µ.

Theorem 4.6.1: For any linear orders λ, µ, π, µ ≡λ π holds just in case Iλ injects
the same tree of labels into µ and π, and if for all a ∈ λ, the same ≡loc−closed

{b∈λ:b<a}
classes are realized in µ and π at each label of Iλ and in each gap between labels
of Iλ.

Proof: With the notion of ≡loc
λ as the ≡λ type of a ≡λ locally closed set

with a chosen element given just before this theorem, we can define for which
≡loc
λ classes τ the least occurrence(s) of τ can be defined in an interval (b, c)

in the set of labels already defined, using the conditions that definition 4.3.1
gives. Likewise, the tree of labels for a nonwellordered λ can be defined as in
definition 4.3.2, of the tree of labels for a wellordered clock λ, since the ≡clock

classes in λ are wellordered. With those definitions, theorem 4.3.1 holds even
if the clock λ is not wellordered, since for every finite (descending sequence)
A = (ai : i < n) ⊆ λ the labels which are definable in I{a∈λ:a<ai} can in fact
be played by player I in a descending sequence, leading eventually to the ≡clock

class of an−1, at which we wish to define IA. If there is a discrepancy in the
models at this level, player I can play down the sequence of elements of A, and
play a sequence of nested intervals, eventually exploiting the discrepancy as in
lemma 4.3.1. Theorem 3.2 can be carried out as in the case of finite k – we
can reverse the indices of trees and labels, so that they depend on the leftmost
label and describe the rightmost, or so that they depend on the rightmost and
describe the leftmost. �

If λ < κ are infinite cardinals, is ≡κ∗ a strict refinement of ≡λ∗? Of course,
≡κ∗ can express the sentence φκ = “there exists a decreasing sequence of κ-many
elements.” In [2] we find a construction of large, ≡λ linear orders, one of which
satisfies φκ and one of which does not, for λ any linear order which does not
satisfy φκ. These can be constructed by iterated application of a rule like that
creating the “surreal” numbers, or by the exponentiation of linear orders. Our
criterion can guide the construction of linear orders which are ≡λ, even though
they are not highly homogeneous, and of linear orders close to the “watershed”
between linear orders which are ≡λ and those which are not.
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5. MINIMALITY CONSIDERATIONS FOR ORDINAL
COMPUTERS MODELING CONSTRUCTIBILITY

with Professor Peter Koepke, Mathematisches Institut, Universität Bonn.

Abstract

We describe a simple model of ordinal computation which can compute truth in
the constructible universe. We try to use well-structured programs and direct
limits of states at limit times whenever possible. This may make it easier to de-
fine a model of ordinal computation within other systems of hypercomputation,
especially systems inspired by physical models.

We write a program to compute truth in the constructible universe on an
ordinal register machine. We prove that the number of registers in a well-
structured universal ordinal register machine is always ≥ 4, greater than the
minimum number of registers in a well-structured universal finite-time natural
number-storing register machine, but that it can always be kept finite. We
conjecture that this number is four. We compare the efficiency of our program
which computes the constructible sets to a similar program for an ordinal Turing
machine.

5.1 Computation at a limit time – continuity and loops are
enough.

Let an ordinal computer be a register machine in the sense of [8], storing ordinals
and running for ordinal time. Abstract computation, which puts non-integer
register values into the registers of a computer, was pursued in [2] and recently
in [9]. Ordinal runtimes were described in [1] and [4] and [5], among others. In
[6] we related that model of computation to set theoretic notions including the
recursive truth predicate and the theory of sets of ordinals. This paper presents
ordinal computation from a machine-focused point of view, and considers the
structure of algorithms, direct limits, and complexity.

The active command line cannot be a continuous function of time at a limit
time, and some registers will not be continuous at limit times. Legal programs,
whose if-switches are monotonic or are recently computed from monotonically
increasing variables, compute their results without any assumption – beyond
continuity – on how register values behave at limit times. Well-structured pro-
grams (written as loops of loops as in [3]) compute their results without any
assumption on how the command control behaves at a limit time, other than
that control does not pass out of a loop until the loop’s condition is met. We
define ordinal register machines to include illegal and illstructured program,
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and in Claim 7 we present their “wellstructured,” ”legal” version definition and
prove, by the end of this section, that these two definitions are equivalent.

Definition 5.1.1: An ordinal register machine contains a finite number of reg-
isters, each of which can store an ordinal. A program is a numbered list of
commands, each of which has one of the following three forms:

• Zero(x) : Erases the content of register x, leaving 0.

• x ++ : Increments the value of register x.

• if x = y goto i else j : switches line control.

The value of a register x must be a continuous function of time, over any interval
of time in which the command Zero(x) is not executed. In addition, the state
(register values and active command) obeys the following rules at limit times:

1. If the command Zero(x) is executed at each time t ∈ T , then the value
of register x at time supT is zero.

2. At a limit time λ, command passes to the minimum of the commands
which have been active cofinally often before λ.

The last rule is the same as in [5]. In [4], the active command is stored in binary
memory; each bit becomes the lim-sup of its previous values at a limit time. On
such a machine, we can code the active command so that it becomes the lim-sup
or the lim-inf of the commands active previously. However, for well-structured
programs, we can replace all requirements, beyond continuity, on how registers
behave at limit times by the requirement that any repeating loop should begin
again, at a limit time, by first checking the conditional, and then executing the
loop again, and so on.

Definition 5.1.2: A program is well-structured if ... goto ... switches are
only used to model the following two commands:

• if x = y (loop).

• for x to y (loop) where the command Zero(x) is not among the in-
structions in the loop, or

• while x ≤ y (loop), where the command Zero(x) is not in the loop,
and where it is provable that x will be incremented at least once during
the loop.

The loop for x to z (L) is defined in terms of goto as 1. if x > z
goto 2; L; x++; if x ≤ z goto 1; 2.

The command for x from 0 to z (L) is Zero(x); for x to z (L).
The command while x ≤ y (L) is defined from goto as 1. if x > z

goto 2; L; if x ≤ z goto 1; 2.... That x++ will be executed at least once
during the loop L, and that Zero(x) is not allowed to appear within L assures
that x will grow monotonically, and therefore it will eventually reach or exceed
the loop bound.

The loop while x = 0 (L), in which x does not necessarily increment
during L, is not considered wellstructured programming. Since x need not in-
crement, the loop could be repeated forever, unlike loops which halt at the
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fixed points of the normal functions computed by wellstructured programs.
while(x = 0) (L) is defined from goto as 1. if x > 0 goto 2; L; if
x = 0 goto 1; 2... where L does not necessarily increment x.

The well-structured programs form the smallest set of programs containing
the basic commands Zero(x) and x ++ of definition 5.1.1 for all register val-
ues of x and y, and closed under concatenation and repeating any sequence of
wellstructured programs within a wellstructured loop.

A for loop increments its index during each loop, and halts when x = z. To
make this act like traditional for loops, we say that the loop is executed one
more time once x = z is reached. The for loop must be programmed on the
ordinal register machine so that the conditional is checked first.

On the other hand, a program which increments x and then checks whether
x = y, and halts if so, and then increments y, and repeats those three steps, will
never halt, unless at some limit time, control passes to “if x = y” or “y++”
rather than to “x++.” For instance, if the condition on the loop is f(x, y, z) <
g(x,w), then at the end of the loop, we compute u = f(x, y, z) and v = G(x,w),
and the minimum instruction in the loop is to compare whether u < v. When
u = v, the loop ends, after executing one more time.

However, checking the conditions which could terminate a loop, immediately
on reaching any limit times, leads to:

Lemma 5.1.1: Well-structured programs halt.

Proof: By induction on loops, considered as subprograms for which the
lemma is proved. During the execution of the loop for x to y (loop), the
register values are all bounded by c+ time, for any c which bounds the initial
values of the registers. The absolute number of timesteps used, limited by the
length of the program and the register values, is a normal function of the loop
index, register x, and so at fixed points of this function, the value of x is time.
Therefore, on or before the first such fixed point, the condition x ≥ z is met. �

Any register which is not erased for a long time, like the index of a loop,
becomes frequently equal to the value of absolute time. On the other hand,

Lemma 5.1.2: If registers {xi : i < ω} are erased cofinally often before limit
time λ, then at some time ≤ λ, all the registers are simultaneously zero.

Proof: Let π0 and π1 be functions from ω to ω, such that (π0, π1) enumerates
ω × ω. Let t0 < λ. If tn−1 has been defined, then let tn be the next time after
tn−1 when register xπ0(n) is erased. For each i, sup{tn : n < ω} = sup{tn : n < ω
and π0(n) = i}, so at that time, register i contains the value zero. �

During the execution of a loop, some registers will be erased and others (at
least the indices of the loop) will never be erased, from which we define

Definition 5.1.3: Within a loop, call register x scratch if the command Zero(x)
occurs; if not, monotone if the command x++ occurs; and constant otherwise.

In programs presented in this paper, we will use the symbols MON or SCR to
define a variable to be monotone or scratch in this sense.

We want to make the following program illegal:

• for i from 0 to ω (Zero(x); x++);
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• if x = 0 (Zero(y))

because it tests the limit of a noncontinuous register value. We want to call x a
scratch variable and prevent a variable which, like x, has been erased infinitely
often from appearing in the conditional of an if-switch until after it has been
erased again. Suppose f and g are normal functions of two variables, that can
be computed without using the commands Zero(x) or Zero(y). The following
program should be legal:

• for i from 0 to ω (x = f(x, y); y = g(x, y));

• Zero(v);

• for i from 0 to y (for u from 0 to v (v++));

• if v = f(x, x) (Zero(z))

We might abbreviate the last two lines as if 2y = f(x, x) (Zero(z);). In case
v were larger than 2y, we had to erase v before we could increase it monotonically
to v = 2y. This should be legal because y is monotone and v depends only on
y.

Definition 5.1.4: If a program contains the following:

• a loop A which contains the command Zero(x); let X be the first com-
mand in the loop A (writing the program using increment, goto, and
zero commands, X appears as the earliest command),

• a path B from the command X to the command Y ,

• Y performs a switch on the variable x, and

• in the path B the command Zero(x) doesn’t occur,

then the program is illegal.1

An illegal program can test the limit of a discontinuous variable. This is
because the program could loop infinitely often through the loop A, each time
possibly zeroing x, and then switch on the value of x. The switch would then
notice whether x is zero after being zero’d (and perhaps increased) infinitely of-
ten. We want to write programs independent of the limiting behavior of scratch
variables, i.e., independent of condition 1 in definition 1. Using this notion,
we can say formally that a scratch variable is not legal in an if conditional
immediately after it has been incremented and erased infinitely often, but that
immediately after it has been erased one more time, it becomes legal for use
in an if conditional. Now we have replaced both conditions 1 and 2 of defini-
tion 1 with restrictions on how programs are written, so it turns out that those
conditions are not necessary to the proper working of an infinitary machine.

Lemma 5.1.1: The class of computable functions remains the same if, in defini-
tion 5.1.1, we require the program to have the form while(x = 0) loop, where
loop is a wellstructured program obeying the following two programming tech-
niques:

1 We thank the anonymous referee for suggesting this definition, which simplifes and corrects
an earlier definition of illegal programming.



5. Minimal Ordinal Computers Modeling Constructibility 87

• Explicitly empty all scratch registers at the beginning of the loop.

• Registers used in a switch or the conditional of a loop should depend in a
wellfounded way on monotone registers.

The assumptions we need on how a state behaves at a limit time can be relaxed
from conditions 1 and 2 in definition 1 to:

1. at a limit time, a wellstructured program evaluates the (unique) active
loop, and determines whether to continue looping, and

2. monotone register values pass continuously to their limits (i.e., don’t jump)
at limit times.

Wellstructured programs always halt, since they compute normal functions
and halt when the loop bound is reached by the loop index. Nonwellfounded
programs can certainly perform unbounded search. Hence, the while loop in
the statement of this claim is necessary.

During the rest of this section, we will prove the claim as a generalization
of the theorem in [3] reducing all branching programs to loops. That theorem
applies only to finite-time computers storing ordinals. However, the theorem
still applies if we make the signature (the set of functions and predicates that
can be performed instantaneously in a particular model of computation, as in
[9] page 322.) include ordinal arithmetic and Gödel pairing.

A finite-time ordinal-storing register machine with only the successor in its
signature (an ORM operating for finite time has the successor and Zero in
its signature) cannot do arithmetic on its memory elements. The functions of
addition, of finding the predecessor of a successor, etc., all take infinite time.
However, it is clear that an ordinal register machine can perform these opera-
tions of arithmetic, since ordinal addition is iterated succession, multiplication
is iterated addition, and exponentiation is iterated multiplication (see details
before Lemma 12). Further, the Gödel pairing function, sending (α, β) to the
order type of (α×β,<g), where <g is the ordering that first compares maxima,
then compares lexicographical order (more details in [6], section 2) is also clearly
computable by an ordinal register machine that enumerates α×β in the desired
order and increments G(α, β) with each step.

Definition 5.1.5: Let G be the pairing function taking (a, b) to the order type
of pairs (c, d) <g (a, b), where (c, d) <g (a, b) iff max(c, d) < max(a, b), or
max(c, d) = max(a, b) and c < a, or max(c, d) = max(a, b) and c = a and d < b.

It is clear how to program the preceding definitions, so ordinal register ma-
chines surely compute the signature Σ = (Ord, 0, 1,+,×, exp, G,G−1). Ordinal
computers performing finite sequences of operations in that signature form the
set of While-computable functions over Σ, defined in [9] page 323. That is
equivalent to any other reasonable notion of what a finite-time computer could
compute, with ordinals in storage and oracles for the functions in Σ.

Definition 5.1.6: Call a finite-time register machine storing ordinals and able to
compute the functions in signature Σ in one step an abstract ordinal computer.
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Since the signature Σ can code sequences of ordinals as a single ordinal, and
since ordinals contain the natural numbers, many natural notions of abstract
computability agree over the ordinals, including the interesting machine models
described in section 8 of [9].

Proof (of claim 5.1.1): Suppose a model of ordinal computation is proposed,
so that on input x it produces output y iff φ(x, y, α0...αn) holds, where φ is a
∆1 concept of set theory. For instance, φ might say that there is a computation
that starts with x (and the parameters), proceeds according to ∆0 rules (where
ψ(x, y) is ∆0 if all quantification is bounded to x and y) and ends with a
designated output register holding the value y. Then φ has a Σ1 representation.
If any computation which starts with x and proceeds legally must end with y,
then the model has a ∆1 description. For instance, any reasonable variation on
our definition of ordinal computer has a ∆1 description. We mean to show that
all of these can be modeled on our computer. To determine the truth of φ, we
search through L to find either an example that proves φ in its Σ1 form, or a
counterexample that disproves φ in its Π1 form. The while loop in the claim
5.1.1 can perform this search, if the following lemma holds.�

Lemma 5.1.3: Wellstructured programs can determine the truth of any ∆0 sen-
tence, with constant symbols referring to ordinals, of ZFC.

Proof: Fix an enumeration of formulas with ordinal parameters to prove
this lemma by induction. The abstract ordinal computers in definition 5.1.6 are
Church-Turing complete, so they can compute syntactic operations on formulas,
in their codes as ordinals (we will mention this again in definition 16). For
instance, we can make the description of φ be shallowly accessible in the ordinal
coding of φ and its parameters α1...αn as G(nφ, G(α0, G(...))), where nφ is the
Gödel number of the formula. We can choose that the operations ¬,∧,∨ increase
the Gödel number of a formula, so that to prove the lemma by induction, we only
have to deal with formulas ∃z < xψ or ∀z < xψ. The program corresponding to
φ has an outer loop for z from 0 to x loop, where the loop pushes z into the
stack of variables, and then runs the program corresponding to ψ to determines
whether ψ holds for that particular value of z. �

5.2 A universal ordinal register machine program

In this section we write a universal program. This improves on Lemma 9 which
found a wellstructured program to decide each bounded formula φ. The univer-
sal L-program reads a code for φ and its parameters as input, and determines
the truth of φ in time at most ordinal-exponential in the size of those param-
eters. To be precise about the size of the parameters, the reader may wish to
check that G(nφ, G(α0, G(α1, ...))) is ≤ the first ordinal of the form ωω

α

which
is larger than all of the αi.

Lemma 5.2.1: G(γ, γ) = γ iff γ is a ×-closed ordinal.

Proof: Exercise. Hint (only if) Prove G(α × β, α × β) > α × β unless α or
β is 1, by finding a large ordinal product contained in the order type of <g in
definition 5.1.5. Hint (if) Prove by induction that if α-many Cantor-Bendixon
derivatives (which “derivative” eliminates all the successor elements) reduce γ
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to a finite set, then α× 2 + 1-many Cantor-Bendixon derivatives reduce G(γ, γ)
to the empty set. As a result, every element of |G(ωω

α

, ωω
α

), <g | is eliminated
by < ωα-many derivatives. �

Proof (only if): We prove G(α × β, α × β) ≥ α2 × (−1 + β) (by −1 + β we
mean the ordinal which is β if β is infinite, and β−1 if β is finite... it is obtained
during our proof as a set isomorphic to β, but missing its first element, hence
we write it in this way). Label the elements of α × β as {(a, b) : a ∈ α; b ∈ β}.
The ordering on the ordinal α × β is <l, the reverse lexicographical ordering:
(a, b) <l (a′, b′) if b < b′ or b = b′ and a < a′. Now for each b ∈ β, b not maximal
in β, G(α×β, α×β) gives Sb := {((a, b), (a′, b+1) : a, a′ ∈ α} its lexicographical
order because the pair ((a, b), (a′, b + 1)) achieves its maximum on its second
element. G orders Sb as α × α, there are at least −1 + β many sets Sb, and G
orders the sets Sb in the same order as β orders the pairs (b, b+1). Proof (if): The
×-closed ordinals are the ordinals ωα for various α. We proceed by induction
on α. If α is a successor, then G(ωα, ωα) =

∑
n<ω G(ωα−1 × n, ωα−1 × n).

Taking Cantor-Bendixon derivatives (passing from a set to the set of its limit
points) of that order type α many times leaves the emptyset, so the order type
is ≤ ωα. If α is a limit ordinal, G(ωα, ωα) ≤

∑
β<αG(ωβ , ωβ) since that sum

simply repeats some intervals in the construction of G(ωα, ωα). But if c ∈ γ is a
successor and b ∈ β is a successor, then (c, b) is a successor in G(γ, β), and, more
generally, if c is not in the ε-th Cantor-Bendixon derivative of γ, and b is not in
the δ-th Cantor-Bendixon derivative of β, then (c, b) is not in the max(ε, δ)-th
derivative of G(γ, β). Hence, G(α, α) ≤ ωα. �

We will define Push and Pop on an ordinal register called Stack which stores
the decreasing sequence of ordinals β > β1 . . . βn−1 ≥ βn, where the last two
values are allowed to be equal only if βn is a limit. The elements of this sequence
code formulas. The formula coded by β1 is being considered, to determine
whether it witnesses the truth of β. Each βi+1 was found while searching for a
witness to the truth of βi, so the sequence is decreasing.

Definition 5.2.1: We code a finite, monotonically decreasing sequence of ordi-
nals β > β1 . . . βn−1 ≥ βn, where βn−1 ≥ βn occurs only if βn is a limit,
as Stack = 2β+1 +

∑
i=1...n−1 2βi+1 + 2βn if βn is a limit, and as Stack =

2β+1 +
∑
i=1...n−1 2βi+1 + 2βn+1 if βn is not a limit.

We include βi on the stack as 2βi+1 so that the stack has as its least term
the value 2λ, for λ is a limit ordinal, if and only if that term has been reached as
the limit of considering all finite sequences of ordinals < λ. That is, whenever
we Push an element βi onto the stack, the intended exponent is a successor.
A final exponent which is a limit only occurs “magically” at a limit time, and
indicates that our infinitely-long attempt to prove the formula coded λ is true
has failed. So, we conclude λ is false, and go on.

Recall that ordinal multiplication and exponentiation are defined to be con-
tinuous in their second term: α × (β + 1) = α × β + α, and for X a set of
ordinals, α × supX = sup{α × x : x ∈ X}. (Lemma 14 about Push uses this)
2β+1 = 2β × 2 and for X a set of ordinals, 2supX = sup{2x : x ∈ X}. On the
other hand, 2β is isomorphic to the set of finite descending sequences of ordinals
less that β, ordered lexicographically:

Lemma 5.2.2: (βi : i < n) 7→
∑
i<n 2βi is an isomorphism between the set of

finite, descending sequences of ordinals all less than β, and 2β .
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Proof: We construct the inverse: Given an ordinal α < β, let β0 be the
supremum of those γ such that 2γ ≤ α. Ordinal exponentiation is continuous, so
2β0 ≤ α < β. If α 6= 2β0 , let α1 be such that α = 2β0 +α1. Let β1 = sup{γ : 2γ ≤
α1}. Again, α1 ≥ 2β1 . If β1 ≥ β0, then α ≥ 2β0 + 2β1 ≥ 2β0+1, contradicting
the definition of β0. So β1 < β. So continue, to find β0 > β1 > ... > βn,
such that αn = 2βn . The sequence is finite since β is a wellorder. So the
sequence of exponents of α is a finite sequence of ordinals, all < β. Since
{γ : 2γ ≤

∑
i<n 2βi} = {γ : γ ≤ β0}, we have inverted the summation of a

decreasing sequence of ordinals. �

Definition 5.2.2: The program Push(Stack, β) is the following routine:
MON Stack;
SCR i, γ = 0, δ;
for δ from 0 to Stack (

for (i from 0 to 2β+1) (γ++);
if (γ > Stack) (for Stack to γ; halt)

)

Lemma 5.2.3: Push(Stack, βi) increases the Stack to the next full multiple of
2βi+1.

Proof: So Push sets Stack equal to 2β+1×δ, for δ the least ordinal for which
2β+1 × δ > Stack. �

Recall how we read the register Stack from definition 5.2.1. If β was on the
stack (Stack = σ + 2β+1 + τ), then Push increases τ to 2β+1, leaving Stack
= σ+2β+2). I.e., the least element on the stack is changed from β to β+1. If β
was not on the stack (Stack = σ+ τ, σ = 2βi+2 × δ, for some δ, and τ < 2β+1),
then Push increases τ to 2βi+1, leaving (Stack = σ + 2β+1). Pushing β onto a
stack erases all stack values less than β.

From Stack =
∑

2αi we will want to read the least exponent αi which is ≥
a certain threshold. We set a “small stack” to be τ =

∑
i>j 2αi , represent the

stack as σ + 2ε + τ , and check whether ε = αi is > than the threshold. Unless
α is a limit, we will interpret α as a stack element. If α is a limit, we will only
be interested in it, in case it is the predecessor of the next-larger exponent, α′,
in which case α witnesses that α′ is false. We can find the representation Stack
= σ + 2ε + τ in many ways, but simply trying all possibilities is one option:

We define two functions Pop, one to take the smallest value off the stack,
and one to take successive values off the stack:

Definition 5.2.3: PopLeast(Stack, β) is the following routine:
CONSTANT Stack, β;
SCR σ, ε;
for ε from 0 to β + 1 (

for σ from 0 to Stack (
if (σ + 2ε = Stack) ( return ε)

)
)

Definition 5.2.4: PopNext(Stack, Threshold, β) is the following routine:
CONSTANT Stack, Threshold, β;
SCR SmallStack = 0, TempStack = 0, σ, ε, κ;
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for ε to β (
for σ from 0 to Stack (

if (σ + 2ε+1+SmallStack = Stack) (
if (ε ≥ Threshold) (return ε);
for TempStack to Smallstack ();
for Smallstack to 2ε+1 ();
for κ from 0 to TempStack (Smallstack++)

)
)

);
return ε

We intend these programs to be applied when the value of Stack is between
2β+1 and 2β+2. In that situation, there is always something on the stack smaller
than β. If there were not, then these programs would return nothing, which is
reasonable when PopNext is designed to find a stack element less than β and
larger than a given threshold.

Neither program Pop really changes the stack. They just read the least
element βj + 1 of the stack which is not larger than β, or the least element
which is >Threshold. We read the whole exponent, βj + 1, not just βj , since
the stack might contain, as its last term, 2λ for λ a limit.

Abstract ordinal computers as in definition 5.1.6 can compute syntactic op-
erations on the codes of formulas, in the signature Σ. We would like to show
that ordinal computers can compute, in addition to Σ, the truth predicate T ,
determining whether any ∆0 formula is true. Let’s gather all of the syntactic
formula manipulation into an abstract ordinal program called W for Witnessing,
as is done in [6], section 6. We have used this notion already in lemma 9.

Definition 5.2.5: Let W (β, γ, T (γ)) be an abstract ordinal computer program
that determines whether γ and its truth value T (γ) are sufficient information
to witness the truth of β. Let the output of W be 0 unless some pair (γ, T (γ))
with γ < β witnesses the truth of β, in which case W outputs 1. In particular,
W (β, γ, T (γ)) is the program which finds the syntactic structure of β, and then

• if β codes an atomic sentence with constant symbols for ordinals and
for T (γ), in the signature {<,G}, the program W evaluates that atomic
sentence.

• if β and γ code the sentences φ and ¬φ, W = 1− T (γ).

• if β codes the sentences φ∨ψ and γ codes ψ, then W (β, γ, T (γ)) = T (γ).

• if β codes the sentences ∃x < cφ, where c is a constant symbol, and if
γ codes the sentence c′ < c ∧ φ(c′/x) where the constant c′ replaces the
variable x, then W (β, γ, T (γ)) = T (γ).

Then β is true iff there is some witness γ < β such that W (β, γ, T (γ)) = 1.
We will find the truth value of β by searching through decreasing sequences of
ordinals < β, until we find a witnessing sequence, a stack which conveys its wit-
nessing – through pairs of ordinals of the form α′ > α such that W (α′, α, T (α))
holds, or of the form α′ = α+ 1 such that T (α) is known – from a limit ordinal
α which appears twice in the stack. This situation arises as the limit of a search
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over all ordinal sequences < α during which we did not find a witnessing se-
quence for α. This is the falsehood from which we conclude, via the witnessing
sequence, the truth value of β.

Definition 5.2.6: Say β = β0 > β1 > β2... > βn−1 = βn is a witnessing sequence
for β if for each i = 1 . . . n−1, W (βi−1, βi, T (βi)) = 1 = T (βi−1) or βi−1 = βi+1
and T (βi−1) = 0 and βn is a limit ordinal and T (βn) = 0.

The terminal value of the stack will be 2β+1 +
∑
i=1...n−1 2βi+1 + 2βn , where

βn = βn−1 is a limit, and no other βi is a limit. That last summand witnesses
that we have examined every possible witness for βn−1 and found none, hence
βn−1 is false. Each summand then witnesses the truth value of the preceding
summand, back to β, and we are done. We cannot simply loop through all
decreasing sequences. If we know that βj is true, but that βj doesn’t witness
βj−1, we must skip the sequence · · ·βj , βj−1 · · · , since that sequence, as soon as
we know the truth value T (βj−1) and check that W (βj , βj−1, T (βj−1)) = 0, we
intend to interpret to mean that βj is false. We should only reach that sequence
if no βj+1 < βj could witness that βj is true. This “skip” is performed by Push-
ing the Stack to

∑
i<j 2βi+1 + 2βj+1 + 2βj+1. Of course, this also speeds up the

program: once we know that βj is true but that that our current witnessing
sequence 2β+1 +

∑
i=1...j−1 2βi+1 +2βj+1 doesn’t witness β’s truth, we move on,

and consider 2β+1 +
∑
i=1...j−1 2βi+1 + 2βj+2.

Definition 5.2.7: Truth(β) is the following program: CONSTANT: β;
MONOTONE: Stack, i;
SCRATCH: α, α′;
Push(Stack,β);
for i from 0 to 2β (

α = PopLeast(Stack, β);
if α is a successor (Stack ++; α = 0);
α′ = PopNext(Stack, α, β);
if α′ 6= α (Push(Stack, α));
if α′ = α (
ν = 0; % This is the truth value of α′.

while α′ ≤ β (
if α′ = β (return ν);
α = α′;
α′ = PopNext(Stack,α+ 1,β);
if W(α′,α,ν)= 0 and α′ 6= α+ 1 (

α′ = β; % to terminate the while loop
Push(Stack,α)

);
if W(α′,α,ν)= 1 (ν = 1);
if W(α′,α,ν)= 0 and α′ = α+ 1 (ν = 0)

)
)

)

If there is a witnessing sequence for β, then this search will find it. The only
stack value which witnesses β being false is 2β+1 + 2β if β is a limit, and if β
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is a successor, then 2β+1 + 2β + τ , where τ witnesses the truth value T (β − 1),
and W (β, β − 1, T (β − 1)) = 0.

Theorem 5.2.1: Truth(β) computes the truth value of the sentence in the lan-
guage {∈} with constant parameters which β codes.

Proof: We reduce truth in ZFC with parameters to a computation of the
recursive truth predicate for the constructible universe, as in ([6], section 6).
Then we write an abstract ordinal program to compute the syntactic operations,
as in lemma 5.1.3, to satisfy definition 5.2.5. As we explained before and after
definition 17, a proof of T (β) is contained in a witnessing sequence β > β1 >
· · · betai > · · ·βn−1 = βn. If Stack codes a witnessing sequence with the coding
described in definition 11, then Truth(β) will halt and return the truth value
of β, for in the computation of Truth(β), the pair (α′ + 1, α) become the least
two exponents of the stack. If α is a limit and α′ = α, then the while loop
repeatedly sets (α′α) equal to each pair (βi, βi+1) of stack elements and checks
that T (βi) = 1 = W (βi, βi+1, T (βi)) or T (βi) = 0 = W (βi, βi+1, T (βi)) and
βi = βi+1 + 1. We need to know that Stack will eventually code the witnessing
sequence for β. But focusing on how Push(Stack, · · · ) is called in the program,
we see that Stack will eventually code every decreasing sequence of ordinals
β > β1 > · · · betai > · · ·βn−1 ≥ βn for which βi+1 ≤ the least witness for T (βi).
�.

5.3 How many registers are necessary in a universal ordinal
register machine?

Consider, first, ordinary register machines storing natural numbers.

Definition 5.3.1: A register machine has the following three commands

• Zero(x) : erases the value of register x.

• x ++ : increments the value of register x.

• if x = y goto i else j : a general switch.

A For program uses goto loops only to model the commands

• for x from 0 to z (loop).

• if (x = y) (instructions).

A While program lacks Zero(x) and goto, but has the commands

• x -- : decrements the value of register x.

• while(x > 0; x--) loop.

Theorem 5.3.1: ([7] p. 205) 5-variable While-programs simulate Turing ma-
chines.

The proof is by storing the bit strings on the Turing tape left and right of
the active head as register values. When the active head goes right, the bit
string to the left increases by 2×, and the bit string to the right decreases by
1/2.
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Theorem 5.3.2: ([7] pp. 255-8) While-programs using 2 variables can simulate
all While-programs. FOR-programs using 3 variables can simulate all While-
programs.

The proof is by storing all the registers as 2x0 × 3x1 × ...pnxn , then copying
these values to another register, and meanwhile altering or comparing them
according to how the many-register program would have altered or compared
them in its active command.

Definition 5.3.2: Let OCn be the set of n-register well-structured ordinal com-
puter programs (as in definition 2). Say ρ : Ordn → αn reflects OCn if for each
P in OCn, the function fP which takes the inputs to P to the output of P ,
commutes with ρ. Let Ln be the vocabulary with a function for each n-register
program: Ln = {Ord,<,=} ∪ {fP : P ∈ OCn}, and let FOk(L) be the first
order formulas in the language L, to quantifier depth k.

Definition 5.3.3: Let ρ0 be the function ρ0(α) = αmodω.
Let ρ1 be the identity below ω, and be ω + ρ0 above ω.
Let ρ2 be the identity below ω × 2, and be ω × 2 + ρ0 above ω × 2.
Let ρ3(α) = αmodωω.
Let ρ4 be the identity below ωω, and be ωω + ρ3 above ωω.
Let ρ5(α, β) be the pair (ρ4(α), ρ4(α)+ρ4(β−α)) if α ≤ β and be undefined

if α > β.

Lemma 5.3.1: ρ1 : Ord→ ω× 2 reflects OC1, is the minimal reflection preserv-
ing FO1(L1), and preserves even FO2(L1). ρ2 preserves FO3(L1).

Proof: In a well-structured program with only 1 variable, for a to a (L)
never executes its loop, and if a = a (L) always executes its instructions.
The result of the computation, on input a, is a + nP or nP , depending on
whether the instruction Zero(a) occurs and executes. It is easy to check that
ρ(P (a)) = P (ρ(a)). If ∀aP (a) 6= Q(a), then, as P and Q are constants or linear
functions, we get four cases, in all of which ∀aρ(P (a)) 6= ρ(Q(a)), and similarly
for ∀aP (a) < Q(a) and other atomic relationships replacing 6=, we can check
the language’s preservation. �

Lemma 5.3.2: ρ5 : Ord2 → (ωω × 3)2 reflects OC2, is minimal such that it
preserves FO2(L2), and preserves FO(L2).

Proof (that ρ5 is minimal): If L×ω = Zero(b); forb to a (a+ +)., then
L×ω(a, b) = (a×ω, a×ω). (Proof: Let a initially be a0. When b reaches a0×n,
a reaches a0 × (n+ 1). �) If L×ωn = L×ω repeated n times, then L×ωn(a, b) =
(a×ωn, a×ωn); If Lp = Zero(b); for b to a (for b to a (a++); a++),
then Lp(a, b) = (a×ω+ω2, a×ω+ω2). (Proof: The first run through the inner
loop produces (a× ω + 1, a× ω). Further runs through the inner loop produce
(a×ω+ω×n+1, a×ω+ω×n), which are finally equal at (a×ω+ω2, a×ω+ω2).
In this way, we can generate Lq for any linear (in a) polynomial (in ω) q(a, ω)
we wish to see as the output. � Proof (reflection) First, observe that P ∈ OC2

is equivalent to a program P ′ ∈ OC2 which is only one loop deep.
For instance, we can write a two-loop-deep program to produce the value

ω2: Zero(x); for x to y (for x to y (y++); y++) takes any finite input
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to ω2, just the same as running y up to ω and then running x up to y. Similarly,
Zero x; for x to y (for x to y(for x to y(y++); y++); y++) takes any
finite input to ω3, just the same limit as running y up to ω, then running x up to
y, then running y up to x. The proof relies on the rule in definition 2 which pre-
vents a loop index or bound from being erased. As a result, the order between
them is fixed, and can only be made to fail during the loop by incrementing
the index. Then, this finite difference can be exploited by an interior for loop.
However, the variables could be imagined to be switched, then, so that the order
relation “index < bound” can be imagined to be strict throughout the whole
operation of the main loop. In this case, repeatedly chasing the bound only
results in finding the next “limit of f -closed ordinals,” and ωn provide infinitely
many limits of limits of... f -closed ordinals, where f is any function that can
be produced within an interior loop. Those same functions can be computed,
then by a sequence of loops without inner loops, which push the loop bound
high enough, and then run the index up to it.

As was observed in the run of Lp now happens generally: after the inner
loop has run, a = b. Subsequent operations inside the outer loop can only make
b finitely larger than a. Second, inside any loop, the loop index grows at least
linearly in time, and the loop bound grows at most linearly in time. To “Zero”
the index or bound of a loop, in the loop, is illegal by definition 2, so if a loop is
called, the order relation between the variables is fixed (up to a finite amount)
throughout. An interior for loop forces the loop and index to be the same, and
if has no effect on the values. So for any P ∈ OC2, P is bound by a function
q(a, ω), linear (in a), polynomial (in ω). �.

Lemma 5.3.3: Ord3 reflects below εω×4, and not lower.

Proof (not lower): The program y + +; for x to y (Zero(z); for z
to y (y + +)) halts at the first ε-number (closed under α → ωα) above the
initial value of y. Repeating the loop n-many times finds the n-th ε-number
above the initial value of y. � Proof(reflection): Suppose the first loop is L0 =
for(x = a;x < y;x++), where a can be x, z, or 0 (same as Zero(x); for(x =
x...). This same loop format can be repeated, as in for(x = 0;x < y;x+ +)
(for(x = x;x < y;x + +) (L); y + +). Let f(x, y, z) be the supremum of
the register values after applying the loop L to the initial register values x, y, z.
The inner loop ends when x reaches an ordinal γ which is closed under f (γ
is f -closed if f(x, y, z) < γ whenever x, y, z < γ). Then in the outer loop, y
increments, and so we reach γ1 f -closed, and so on. The outer loop ends at the
first γ which is a limit of f -closed ordinals. Now x < y is fixed for the duration
of the computation. For if x were incremented above y infinitely often, then
y is also incremented above x infinitely often (before each consideration of the
bounding clause x < y), so that at time sup ti, where t2i+1 is the next time
x is larger, and t2i+2 is the next time y is larger, then x = y again, and as
this is a limit time, we are checking the bounding clause x < y, and the loop
ends. So if x exceeds y infinitely often, then the loop ends. So, without loss of
generality, suppose x < y always holds, and consider what an inner loop can
do. Incrementing x is counter-productive, since it hastens the time when x = y
will be attained. Incrementing y is a great idea, but the only clock available
is Zero(z); for z to y(f(y)), which executes until z + α, incrementing once
each loop, reaches fα(y), the α-th iteration of f , whatever function is in the
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innermost part. This function could, at most, be for z to x or for x to z,
in which cases f(y) would increase y some infinite number of times, but never
more than its own value, so f(y) < y + y.�

If the initial register values are 0, then we cannot compute anything beyond
εω. But if the initial register values are given, then we reflect the first one into
(εω, εω×2) and the next into (εω×2, εω×3), the third into (εω×3, εω×4), and the
same proof shows that subsequent computation stays below εω×4.

Theorem 5.3.3: An ordinal computer with fewer than four registers cannot be
a universal ordinal computer. However, an ordinal computer with ten registers
can model a universal ordinal computer.

Proof: We have proven in the lemmas that fewer than four registers is in-
sufficient, since these computers reflect below small ordinals. The program in
definition 5.2.7 is written using ten registers. That is, it uses the five variables
β, Stack, i, α, α′, (we can recompute the loop limit 2β each time we check
i < 2β) and then calls Pop, which uses as local variables a Small Stack, a Temp
Stack, ε to search between 0 and β + 1, γ, and a fifth register, which might
sometimes store the sum α+2ε+ SmallStack, and sometimes be the loop index
κ in the last line of Pop. The register for Pop’s γ, which we could call Large
Stack in analogy with Small Stack never exceeds Stack; we can make it larger
than Stack when it’s time for the while loop in definition 5.2.7 to halt. If γ can
code the bit of information that halts the while loop, then that loop doesn’t
need a register dedicated to indexing it. �

We would like to indicate how four registers are sufficient for a universal
program on an ordinal register machine. We simulate an n-register machine
by putting all n variables onto two stacks. We copy the information from one
stack to the other, and change the appropriate i-th register in the process, as
in the proof of theorem 5.3.2. The fourth variable contains the value of a single
element. When that element is erased on the stack, we copy its value more
deeply into the stack, where it won’t be erased by the varying and limiting of
values lower on the stack. We do not have a clear and convincing proof of this.

Conjecture 5.3.1: Four registers suffice for a universal program on an ordinal
register machine.

5.4 Complexity

For ordinal register machines, it is possible to compare the runtime of a program
to its input values, and therefore it is reasonable to talk about the bounds on
the complexity of problems for such machines.

Our program for computing truth (definition 5.2.7) runs in time at most
ordinal-exponential in the input β. A similar program, described in [5], runs
in ordinal-polynomial time: to determine the truth predicate, when ordinally
many bit registers are available, search the registers below α to find a witness
for α. This takes time

∑
{β : β < α} If α = ωγ for some γ, this is α. In any

case, the sum is < α2. This program runs faster than definition 5.2.7 because
it can store the whole recursive truth predicate up to β when computing F (β).
It seems intuitively clear that a computer with finitely many ordinal registers
cannot run in time faster than O(2β), i.e., that it must compute F (β1)...F (βn)
for every finite sequence {βi : i < n} of ordinals < β.
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6. REGISTER COMPUTATIONS ON ORDINALS

with Professor Peter Koepke, Mathematisches Institut, Universität Bonn.

abstract

We generalize ordinary register machines on natural numbers to machines whose
registers contain arbitrary ordinals. Ordinal register machines are able to com-
pute a recursive bounded truth predicate on the ordinals. The class of sets of
ordinals which can be read off the truth predicate satisfies a natural theory SO.
SO is the theory of the sets of ordinals in a model of the Zermelo-Fraenkel
axioms ZFC. This allows the following characterization of computable sets: a
set of ordinals is ordinal register computable if and only if it is an element of
Gödel’s constructible universe L.

Introduction.

There are many equivalent machine models for defining the class of intuitively
computable sets. We shall model computations on ordinals on the unlimited
register machines (URM ) presented in [2]. An URM has registers R0, R1, . . .
which can hold natural numbers, i.e., elements of the set ω = {0, 1, . . .}. A
register program consists of commands to reset, increase, or copy a register.
The program may jump on condition of equality between two registers. An
obvious generalization from the perspective of transfinite ordinal theory is to
extend such calculations to the class Ord = {0, 1, . . . , ω, ω+ 1, . . .} of all ordinal
numbers so that registers may contain arbitrary ordinals. At limit ordinals
one defines the program states and the registers contents by appropriate limit
operations.

This notion of ordinal (register) computability obviously extends standard
register computability. By the Church-Turing thesis recursive operations on
natural numbers are ordinal computable. The ordinal arithmetic operations
(addition, multiplication, exponentiation) and Gödel’s pairing function G :
Ord×Ord→ Ord are also ordinal computable.

Using the pairing function one can interpret each ordinal α as a first-order
sentence with constant symbols for ordinals < α. One can then define a recursive
truth predicate T ⊆ Ord by:

T (α) iff (α,<,G ∩ α3, T ∩ α) � α.

This recursion can be carried out on an ordinal register machine, using stacks
which contain finite decreasing sequences of ordinals. For ordinals µ and ν the



6. Register Computations on Ordinals 100

function T codes the set

X(µ, α) = {β < µ|T (G(α, β))}.

The class
S = {X(µ, α)|µ, α ∈ Ord}

is the class of sets of ordinals of a transitive proper class model of set theory.
Since ordinal computations can be carried out in the ⊆-smallest such model,
namely Gödel’s model L of constructible sets, we can characterize ordinal
computability:

Theorem 6.0.1: A set x ⊆ Ord is ordinal computable if and only if x ∈ L.

This theorem may be viewed as an analogue of the Church-Turing thesis:
ordinal computability defines a natural and absolute class of sets, and it is
stable with respect to technical variations in its definition. Register machines
on ordinals were first considered by the second author [1]; the results proved
in the present article were guided by the related ordinal Turing machines [7]
which generalize the infinite-time Turing machines of [5].

6.1 Ordinal register machines

Ordinal register machines (ORM’s) basically use the same instructions and pro-
grams as the unlimited register machines of the standard textbook by N. Cut-
land [2].

Definition 6.1.1: An ORM program is a finite list P = P0, P1, . . . , Pk−1 of in-
structions acting of registers R0, R1, . . .. The index i of the instruction Pi is
also called the state of Pi. An instruction may be of one of four kinds:

a) the zero instruction Z(n) changes the contents of Rn to 0, leaving all other
registers unaltered;

b) the successor instruction S(n) increases the ordinal contained in Rn, leaving
all other registers unaltered;

c) the transfer instruction T(m,n) sets the contents of Rn to the contents of
Rm, leaving all other registers unaltered;

d) the jump instruction Pi =J(m,n,q) is carried out within the program P as
follows: the contents rm and rn of the registers Rm and Rn are compared,
all registers are left unaltered; then, if rm = rn, the ORM proceeds to the
instruction Pq of P ; if rm 6= rn, the ORM proceeds to the next instruction
Pi+1 in P .

ORM programs are carried out along an ordinal timeline. At each ordinal
time t the machine will be in a configuration consisting of a program state
I(t) ∈ ω and register contents which can be viewed as a function R(t) : ω → Ord.
R(t)(n) is the content of the register Rn at time t. We also write Rn(t) instead of
R(t)(n). The machine configuration at limit times t will be defined via inferior
limits where

lim inf
s→t

αs =
⋃
s<t

⋂
s<r<t

αr.
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Definition 6.1.2: Let P = P0, P1, . . . , Pk−1 be an ORM program. A pair

I : θ → ω,R : θ → ω Ord

is an ordinal (register) computation by P if the following hold:

a) θ is a successor ordinal or θ = Ord; θ is the length of the computation;

b) I(0) = 0; the machine starts in state 0;

c) If t < θ and I(t) 6∈ k = {0, 1, . . . , k − 1} then θ = t+ 1; the machine stops if
the machine state is not a program state of P ;

d) If t < θ and I(t) ∈ {0, 1, . . . , k − 1} then t+ 1 < θ; the next configuration is
determined by the instruction PS(t) :

i. if PS(t) is the zero instruction Z(n) then let I(t+1) = I(t)+1 and define
R(t+ 1) : ω → Ord by

Rk(t+ 1) =
{

0, if k = n
Rk(t), if k 6= n

ii. if PS(t) is the successor instruction S(n) then let I(t+ 1) = I(t) + 1 and
define R(t+ 1) : ω → Ord by

Rk(t+ 1) =
{
Rk(t) + 1, if k = n
Rk(t), if k 6= n

iii. if PS(t) is the transfer instruction T(m,n) then let I(t + 1) = I(t) + 1
and define R(t+ 1) : ω → Ord by

Rk(t+ 1) =
{
Rm(t), if k = n
Rk(t), if k 6= n

iv. if PS(t) is the jump instruction J(m,n,q) then let R(t+ 1) = R(t) and

I(t+ 1) =
{
q, if Rm(t) = Rn(t)
I(t) + 1, if Rm(t) 6= Rn(t)

e) If t < θ is a limit ordinal, the machine constellation at t is determined by
taking inferior limits:

∀k ∈ ω Rk(t) = lim inf
r→t

Rk(r);

I(t) = lim inf
r→t

I(r).

The ordinal computation is obviously recursively determined by the initial reg-
ister contents R(0) and the program P . We call it the ordinal computation by P
with imput R(0). If the computation stops, θ = β+ 1 is a successor ordinal and
R(β) is the final register content. In this case we say that P computes R(β)(0)
from R(0) and write P : R(0) 7→ R(β)(0).

The definition of the state I(t) for limit t can be motivated as follows. Since
a program is finite its execution will lead to some (complex) looping structure
involving loops, subloops and so forth. This can be presented by pseudo code
like:
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...
17:begin loop

...
21: begin subloop

...
29: end subloop

...
32:end loop

...

Assume that for times r → t the loop (17 − 32) with its subloop (21 − 29)
is traversed cofinally often. Then at time t it seems natural to put the machine
at the start of the “main loop”. Assuming that the lines of the program are
enumerated in increasing order this corresponds to the lim inf rule

I(t) = lim inf
r→t

I(r).

The interpretation of programs by computations yields associated notions of
computability.

Definition 6.1.3: An n-ary partial function F : Ordm ⇀ Ord is ordinal (register)
computable if there are a register program P and ordinals δ0, . . . , δn−1 such that
for every m-tuple (α0, . . . , αm−1) ∈ domF holds

P : (α0, . . . , αm−1, δ0, . . . , δn−1, 0, 0, . . .) 7→ F (α0, . . . , αm−1).

A subset x ⊆ Ord is ordinal (register) computable if its characteristic function
χx is ordinal computable.

6.2 Algorithms

Since ordinal register machines are a straightforward extension of standard reg-
ister machines, all recursive functions can be computed by an ordinal register
machine. We shall now show that basic operations on ordinal numbers are ordi-
nal register computable. We present programs in an informal pseudo code where
variables correspond to registers.

Ordinal addition, computing gamma = alpha + beta:
0 alpha’:=0
1 beta’:=0
2 gamma:=0
3 if alpha=alpha’ then go to 7
4 alpha’:=alpha’+1
5 gamma:=gamma+1
6 go to 3
7 if beta=beta’ then STOP
8 beta’:=beta’+1
9 gamma:=gamma+1
10 go to 7

Observe that at limit times this algorithm, by the lim inf rule, will nicely cycle
back to the beginnings of loops 3 - 6 or 7 - 10 resp.
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Ordinal multiplication, computing gamma = alpha * beta:
0 beta’:=0
1 gamma:=0
2 if beta=beta’ then STOP
3 beta’:=beta’+1
4 gamma:=gamma + alpha
5 go to 2

We interpret the program line gamma:=gamma + alpha as a macro, i.e., the
above addition program has to be substituted for that line with reasonable
modifications of variables, registers and line numbers. Also adequate transfer
of arguments and values between variables has to be arranged.

In general this substitution technique yields the closure under composition
for the class of ordinal computable functions:

Theorem 6.2.1: Let f(v0, . . . , vn−1) and g0(−→w ), . . . , gn−1(−→w ) be ordinal comput-
able functions. Then the composition h(−→w ) = f(g0(−→w ), . . . , gn−1(−→w )) is ordinal
computable.

The Gödel pairing function for ordinals is important for coding information
into single ordinals. It is defined recursively by

G(α, β) = {G(α′, β′)|max(α′, β′) < max(α, β) or
(max(α′, β′) = max(α, β) and α′ < α) or
(max(α′, β′) = max(α, β) and α′ = α and β′ < β)}.

We sketch an algorithm for computing γ = G(α, β), it proceeds by increasing
a pair (α′, β′) along the well-order of Ord×Ord implicit in the definition of G
until (α, β) is reached and simultaneously increasing the ordinal γ along the
ordinals.

Goedel pairing, computing gamma = G(alpha,beta):
0 alpha’:=0
1 beta’:=0
2 eta:=0
3 flag:=0
4 gamma:=0
5 if alpha=alpha’ and beta=beta’ then STOP
6 if alpha’=eta and and beta’=eta and flag=0 then

alpha’:=0, flag:=1, gamma:=gamma+1, go to 5 fi
7 if alpha’=eta and and beta’=eta and flag=1 then

eta:=eta+1,alpha’:=eta,beta’:=0,gamma:=gamma+1, go to 5 fi
8 if beta’<eta and flag=0 then

beta’:=beta’+1, gamma:=gamma+1, go to 5 fi
9 if alpha’<eta and flag=1 then

alpha’:=alpha’+1, gamma:=gamma+1, go to 5 fi

The inverse functions G0 and G1 satisfying

∀γγ = G(G0(γ), G1(γ))

are also ordinal computable: compute G(α, β) for α, β < γ until you find α, β
with G(α, β) = γ; then set G0(γ) = α and G1(γ) = β. This is a special case of
the following inverse function theorem.
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Theorem 6.2.2: Let the function f : Ordn → Ord be ordinal computable and
surjective. Then there are ordinal computable functions g0, . . . , gn−1 : Ord →
Ord such that

∀αf(g0(α), . . . , gn−1(α)) = α.

6.3 3-adic representations and ordinal stacks

We shall compute a recursive truth function using a stack that can hold a (finite)
sequence α0 > α1 > . . . > αn−2 > αn−1 of ordinals which is strictly decreasing
except possibly for the last two ordinals. This sequence of ordinals will be coded
into a single ordinal by 3-adic representations.

Proposition 6.3.1: Let δ > 1 be a fixed basis ordinal. A representation

α = δα0 · ζ0 + δα1 · ζ1 + . . .+ δαn−1 · ζn−1

with α0 > α1 > . . . > αn−1 and 0 < ζ0, ζ1, . . . , ζn−1 < δ is called a δ-adic
representation of α.

It is an easy exercise in ordinal arithmetic to show that every α ∈ Ord
possesses a unique δ-adic representation. So a decreasing stack α0 > α1 > . . . >
αn−2 > αn−1 of ordinals can be coded by

α = 〈α0, α1, . . . , αn−2, αn−1〉 = 3α0 + 3α1 + . . .+ 3αn−2 + 3αn−1 .

We call the natural number n the length of the stack α. The elements αn−1,
αn−2, . . . of this stack can be defined from α as follows:

αn−1 = the largest ξ such that there is ζ with α = 3ξ · ζ
αn−2 = the largest ξ such that there is ζ with α = 3ξ · ζ + 3αn−1

. . .

Since the ordinal arithmetic operations are ordinal computable, the ordinals
αn−1, αn−2 are ordinal computable by some programs last, llast resp. We
assume that these functions return a special value UNDEFINED if the stack is too
short.

The computation in the subsequent recursion theorem proceeds by ranging
over previous arguments and values in a systematic way. This can be organized
by a stack, due to the limit behaviour of stacks.

Proposition 6.3.2: Let t ∈ Ord be a limit time and t0 < t. For time τ ∈ [t0, t)
let the contents of the stack register stack be of the form

ατ = 〈α0, . . . , αk−1 , ρ(τ), . . .〉

with fixed α0, . . . , αk−1 and variable ρ(τ) 6 αk−1. Assume that the sequence
(ρ(τ)|τ ∈ [t0, t)) is weakly monotonously increasing and that the length of stack
is equal to k + 1 cofinally often below t. Then at limit time t the content of
stack is of the form

αt = 〈α0, . . . , αk−1 , ρ〉

with ρ =
⋃
τ∈[t0,t)

ρ(τ).
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6.4 A recursion theorem

Theorem 6.4.1: Let H : Ord3 → Ord be ordinal computable and define F :
Ord→ Ord recursively by

F (α) =
{

1 iff ∃ν < α H(α, ν, F (ν)) = 1
0 else

Then F is ordinal computable.

Given an algorithm for the recursion function H we compute F with a stack
as considered above and a register value which can hold a single value of the
function F : we let value = 2 stand for “undefined’. The following program P
accepts an input ordinal α on the singleton stack 〈α〉 and stops with the output
stack 〈α〉 and value= F (α). During the recursion the program will call itself
with non-empty stacks α = α0, α1, . . . , αn−1 and compute the value F (αn−1).
The main loop of the program serves to let the bounded quantifier ∃ν < α
range over all ν < α. The subloop evaluates the kernel H(α, ν, F (ν)) = 1 of the
quantifier and returns the result for further calculation of values.

value:=2 %% set value to undefined
MainLoop:
nu:=last(stack)
alpha:=llast(stack)
if nu = alpha then

1: do
remove_last_element_of(stack)
value:=0 %% set value equal to 0
goto SubLoop
end

else
2: do

stack:=stack + 1 %% push the ordinal 0 onto the stack
goto MainLoop
end

SubLoop:
nu:=last(stack)
alpha:=llast(stack)
if alpha = UNDEFINED then STOP
else
do
if H(alpha,nu,value)=1 then

3: do
remove_last_element_of(stack)
value:=1
goto SubLoop
end

else
4: do

stack:=stack + (3**y)*2 %% push y+1
value:=2 %% set value to undefined
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goto MainLoop
end

end

The correctness of the program is established by

Theorem 6.4.2: The ordinal computation I,R by the program P has the follow-
ing properties

a) If I,R is in state MainLoop at time s with stack contents 〈α0, . . . , αn−1〉
where n > 1 then I,R will get into state SubLoop at a later time t with the
same stack contents 〈α0, . . . , αn−1〉 and the register value holding the value
F (αn−1). Moreover in the interval [s, t) the contents of stack will always be
at least as big as 〈α0, . . . , αn−1〉.

b) Let I,R be in state MainLoop at time s with stack contents α0 > . . . >
αn−1 where n > 1. Define ᾱ = the minimal ordinal ν < αn−1 such that
H(αn−1, ν, F (ν)) = 1 if this exists and ᾱ = αn−1 else. Then there is a
strictly increasing sequence (ti|i 6 ᾱ) of times ti > t such that I,R is in
state MainLoop at time ti with stack contents 〈α0, . . . , αn−1, i〉. Moreover
in every time interval [ti, ti+1) the stack contents are > 〈α0, . . . , αn−1, i〉.

c) If I,R is in state MainLoop with stack contents 〈α〉 then it will later stop
with stack contents 〈α〉 and the register value holding the value F (α).
Hence the function F is ordinal register computable.

Proof a) and b) are proved simultaneously by induction over the last element
αn−1 of the stack. Assume that P is in state MainLoop at time s with stack
contents 〈α0, . . . , αn−1〉 where n > 1 and that a) and b) hold for all stack
contents 〈β0, β1, . . . , βm−1〉 with βm−1 < αn−1. Define ᾱ as in b).

We first prove b) by defining an appropriate sequence (ti|i 6 ᾱ) by recursion
over i 6 ᾱ.
i = 0. Inspection of P shows that the computation will move to state 2 and ob-
tain stack contents 〈α0, . . . , αn−1, 0〉 before immediately returning to MainLoop.
i = j+1 where j < ᾱ. By recursion, P is in state MainLoop at time tj with stack
contents 〈α0, . . . , αn−1, j〉. j < ᾱ 6 αn−1 so that the inductive assumption a)
holds for 〈α0, . . . , αn−1, j〉. So there will be a later time when P is in state
SubLoop with stack contents 〈α0, . . . , αn−1, j〉 and value= F (j). Also during
that computation the stack contents will always be > 〈α0, . . . , αn−1, j〉. Inspec-
tion of the program shows that it will further compute H(αn−1, j, F (j)). This
value will be 6= 1 by definition of ᾱ. So the computation will move on to state
4 with stack contents 〈α0, . . . , αn−1, j + 1〉. At the subsequent time ti = tj+1

the computation is in state MainLoop with stack contents 〈α0, . . . , αn−1, i〉. i is
a limit ordinal. Then by the limit behaviour of the machine and in particular
by the above proposition, at time ti =

⋃
{tj |j < i} the machine will be in state

MainLoop with stack contents 〈α0, . . . , αn−1, i〉.
Now we prove a).

Case 1 : ᾱ < αn−1. Then F (ᾱ) = 1. By b) the computation will get to
state MainLoop with stack contents 〈α0, . . . , αn−1, ᾱ〉. By the inductive hy-
pothesis, the machine will then get to state SubLoop with stack contents
〈α0, . . . , αn−1, ᾱ〉 and value equal to F (ᾱ). Then the program will compute
H(αn−1, ᾱ, F (ᾱ)) = 1 and move into alternative 3. The register value obtains
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the value F (αn−1) = 1 and the computation moves to state SubLoop with the
last stack element removed: stack = 〈α0, . . . , αn−1〉, as required.
Case 2 : ᾱ = αn−1. Then F (ᾱ) = 0. By b), the computation will get to
state MainLoop with stack contents 〈α0, . . . , αn−1, ᾱ = αn−1〉. Inspection of the
program shows that it will get into alternative 1, set stack:= 〈α0, . . . , αn−1〉,
value:= 0 and move to SubLoop, which proves a) in this case.

Finally, c) follows readily from a) and inspection of the program. �

6.5 A recursive truth predicate

The ordinal arithmetic operations and the gödel pairing function G allow us
to code finite sequences of ordinals into single ordinals. The coding can be
made ordinal computable in the sense that usual operations on finite sequences
like concatenation or substitution are computable as well. This allows to code
formal languages in an ordinal computable way.

We shall consider a language LR appropriate for first-order structures of the
type

(α,<,G,R)

where the Gödel function G is viewed as a ternary relation on α and R is a
unary relation on α. The terms of the language are variables vn for n < ω and
constant symbols cξ for ξ ∈ Ord; the symbol cξ will be interpreted as the ordinal
ξ. The language has atomic formulas t1 ≡ t2, t1 < t2, Ġ(t1, t2, t3) and Ṙ(t1).
The symbol Ġ will be interpreted by the Gödel relation G. If ϕ and ψ are
(compound) formulas of the language, n < ω, and t is a term then

¬ϕ, (ϕ ∨ ψ), and (∃vn < t) ϕ

are also formulas; thus we are only working with bounded quantifications. We
assume an ordinal computable coding such that a bounded existential quantifi-
cation (∃vn < cξ) ϕ is coded by a larger ordinal than each of its instances ϕ cζ

vn
with ζ < ξ:

ϕ
cζ
vn

< (∃vn < cξ) ϕ).

An LR-formula is an LR-sentence if it does not have free variables. If ϕ is an
LR-sentence so that all constants symbols cξ in ϕ have indices ξ < α then the
satisfaction relation

(α,<,G,R) � ϕ

is defined as usual. Bounded sentences are absolute for sufficiently long initial
segments of the ordinals. If ϕ is a bounded sentence such that every constant
symbol cξ occuring in ϕ satisfies ξ < β < α then

(α,<,G,R) � ϕ iff (β,<,G,R) � ϕ.

We may assume that the coding of formulas by ordinals ϕ will satisfy that
ξ < ϕ for every constant symbol cξ occuring in ϕ. So the meaning of a bounded
sentence ϕ is given by

(ϕ,<,G,R) � ϕ.
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This leads to the recursive definition of a bounded truth predicate T ⊆ Ord over
the ordinals

T (α) iff α is a bounded LR-sentence and (α,<,G, T ∩ α) � α.

We shall see that T is a strong predicate which codes a model of set theory. We
first show that the characteristic function χT of T can be defined according to
the recursion scheme

χT (α) =
{

1 iff (∃ν < α) H(α, ν, χT (ν)) = 1
0 else

with an appropriate computable recursion function H.

H(α, ν, χ) = 1 iff α is an LR-sentence and
∃ξ, ζ < α (α = cξ ≡ cζ ∧ ξ = ζ)

or ∃ξ, ζ < α (α = cξ < cζ ∧ ξ < ζ)

or ∃ξ, ζ, η < α (α = Ġ(cξ, cζ , cη) ∧ η = G(ξ, ζ))

or ∃ξ < α (α = Ṙ(cξ) ∧ ν = ξ ∧ χ = 1)
or ∃ϕ < α (α = ¬ϕ ∧ ν = ϕ ∧ χ = 0)
or ∃ϕ,ψ < α (α = (ϕ ∨ ψ) ∧ (ν = ϕ ∨ ν = ψ) ∧ χ = 1)
or ∃n < ω ∃ξ < α ∃ϕ < α

(α = (∃vn < cξ) ϕ ∧ (∃ζ < ξ) ν = ϕ
cζ
vn
∧ χ = 1).

Then χT and T are ordinal register computable by the recursion theorem 6.4.1.

6.6 The theory SO of sets of ordinals

It is well-known that a model of Zermelo-Fraenkel set theory with the axiom of
choice (ZFC) is determined by its sets of ordinals (see [6], Theorem 13.28). We
define a natural theory SO which axiomatizes the sets of ordinals in a model
of ZFC. The theory SO is two-sorted: ordinals are taken as atomic objects, the
other sort corresponds to sets of ordinals. Let LSO be the language

LSO := {Ord,SOrd, <,=,∈, g}

where Ord and SOrd are unary predicate symbols, <, = and ∈ are binary
predicate symbols and g is a two-place function. To simplify notation, we use
lower case greek letters to range over elements of Ord and lower case roman
letters to range over elements of SOrd.

1. Well-ordering axiom:
∀α, β, γ(¬α < α ∧ (α < β ∧ β < γ → α < γ) ∧
(α < β ∨ α = β ∨ β < α)) ∧
∀a(∃α(α ∈ a)→ ∃α(α ∈ a ∧ ∀β(β < α→ ¬β ∈ a)));

2. Axiom of infinity (existence of a limit ordinal):
∃α(∃β(β < α) ∧ ∀β(β < α→ ∃γ(β < γ ∧ γ < α)));

3. Axiom of extensionality: ∀a, b(∀α(α ∈ a↔ α ∈ b)→ a = b);
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4. Initial segment axiom: ∀α∃a∀β(β < α↔ β ∈ a);

5. Boundedness axiom: ∀a∃α∀β(β ∈ a→ β < α);

6. Pairing axiom (Gödel Pairing Function):
∀α, β, γ(g(β, γ) ≤ α↔ ∀δ, ε((δ, ε) <∗ (β, γ) → g(δ, ε) < α)).
Here (α, β) <∗ (γ, δ) stands for
∃η, θ(η = max(α, β) ∧ θ = max(γ, δ) ∧ (η < θ ∨
(η = θ ∧ α < γ) ∨ (η = θ ∧ α = γ ∧ β < δ))),
where γ = max(α, β) abbreviates (α > β ∧ γ = α) ∨ (α ≤ β ∧ γ = β);

7. g is onto: ∀α∃β, γ (α = g(β, γ));

8. Axiom schema of separation: For all LSO-formulae φ(α, P1, . . . , Pn) postu-
late:
∀P1, . . . , Pn∀a∃b∀α(α ∈ b↔ α ∈ a ∧ φ(α, P1, . . . , Pn));

9. Axiom schema of replacement: For all LSO-formulae φ(α, β, P1, . . . , Pn) pos-
tulate:
∀P1, . . . , Pn(∀ξ, ζ1, ζ2(φ(ξ, ζ1, P1, . . . , Pn) ∧ φ(ξ, ζ2, P1, . . . , Pn)→ ζ1 = ζ2)
→ ∀a∃b∀ζ(ζ ∈ b↔ ∃ξ ∈ a φ(ξ, ζ, P1, . . . , Pn)));

10. Powerset axiom:
∀a∃b∀z(∃α(α ∈ z) ∧ ∀α(α ∈ z → α ∈ a)→ ∃=1ξ∀β(β ∈ z ↔ g(β, ξ) ∈ b)).

6.7 Assembling sets along wellfounded relations

In standard set theory a set x can be represented as a point in a wellfounded
relation: consider the ∈-relation on the transitive closure TC({x}) with distin-
guished element x ∈ TC({x}). By the Mostowski isomorphism theorem x is
uniquely determined by the pair (x,TC({x})) up to order isomorphism.

Definition 6.7.1: An ordered pair x = (x,Rx) is a point if Rx is a wellfounded
relation and x ∈ dom(Rx). Unless specified otherwise we use Rx to denote the
wellfounded relation of the point x.

Obviously, (x,∈� TC({x})) is a point. Conversely, any point x = (x,Rx)
can be interpreted as a standard set I(x). Define recursively

Ix : dom(Rx)→ V , Ix(u) = {Ix(v)|vRu}.

Then let I(x) = Ix(x) be the interpretation of x. Note that for points x and y

Ix(u) = Iy(v) iff {Ix(u′)|u′Rxu} = {Ix(v′)|v′Ryv}
iff ∀u′Rxu ∃v′Ryv Ix(u′) = Iy(v′)) ∧

∧(∀v′Ryv ∃u′Rxu Ix(u′) = Iy(v′).

This means that the relation Ix(u) = Iy(v) in the variables u and v can be
defined recursively without actually forming the interpretations Ix(u) and Iy(v).
Wellfounded relations and points can be handled within the theory SO. This
will allow to define a model of ZFC within SO. So assume SO for the following
construction.
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Definition 6.7.2: Define a relation ≡ on points x = (x,Rx), y = (y,Ry) by
induction on the product wellorder Rx ×Ry:

(x,Rx) ≡ (y,Ry) iff ∀uRxx ∃vRyy (u,Rx) ≡ (v,Ry) ∧
∧∀vRyy ∃uRxx (u,Rx) ≡ (v,Ry).

Theorem 6.7.1: ≡ is an equivalence relation on points.

Proof We only check transitivity; reflexivity and symmetry may be proved
similarly.

Transitivity . Consider points x = (x,Rx), y = (y,Ry) and z = (z,Rz). We
show by induction on the wellfounded relation Rx ×Ry ×Rz that

(u,Rx) ≡ (v,Ry) ∧ (v,Ry) ≡ (w,Rz)→ (u,Rx) ≡ (w,Rz).

Assume that the claim holds for all u′Rxu, v′Ryv and w′Rzw. Assume that

(u,Rx) ≡ (v,Ry) ∧ (v,Ry) ≡ (w,Rz).

To show that (u,Rx) ≡ (w,Rz) consider u′Rxu. By (u,Rx) ≡ (v,Ry) take
v′Ryv such that (u′, Rx) ≡ (v′, Ry). By (v,Ry) ≡ (w,Rz) take w′Rzw such
that (v′, Ry) ≡ (w′, Rz). By the inductive assumption, (u′, Rx) ≡ (v′, Ry) and
(v′, Ry) ≡ (w′, Rz) imply that (u′, Rx) ≡ (w′, Rz). Thus

∀u′Rxu ∃w′Rzw (u′, Rx) ≡ (w′, Rz).

Similarly
∀w′Rzw ∃u′Rxu (u′, Rx) ≡ (w′, Rz)

and thus (u,Rx) ≡ (w,Rz). In particular for x = (x,Rx), y = (y,Ry) and
z = (z,Rz)

x ≡ y ∧ y ≡ z → x ≡ z.

�

We now define a membership relation for points.

Definition 6.7.3: Let x = (x,Rx) and y = (y,Ry) be points. Then set

x J y iff ∃vRyy x ≡ (v,Ry).

Lemma 6.7.1: The equivalence relation ≡ is a congruence relation with respect
to J, i.e.,

x J y ∧ x ≡ x′ ∧ y ≡ y′ → x′ J y′.

Proof Let x J y∧x ≡ x′∧y ≡ y′ → x′ J y′. Take vRyy such that x ≡ (v,Ry).
By y ≡ y′ take v′Ry′y′ such that v ≡ v′. Since ≡ is an equivalence relation, the
relations x ≡ x′, x ≡ v and v ≡ v′ imply x′ ≡ v′. Hence x′ J y′. �
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6.8 The class of points satisfies ZFC

We show that the class P of points with the relations ≡ and J satisfies the
axioms ZFC of Zermelo-Fraenkel set theory with the axiom of choice. For
the existence axioms of ZFC we prove a lemma about combining points into a
single point.

Lemma 6.8.1: (SO) Let (xi|i ∈ A) be a set-sized definable sequence of points,
i.e., A is a set of ordinals and the function i 7→ xi ∈ P is definable. Then there
is a point y = (y,Ry) such that for all points x holds

x J y iff ∃i ∈ A x ≡ xi.

Proof For i ∈ A let xi = (xi, Ri). Define points x′i = (x′i, R
′
i) by “colouring”

every element of dom(Ri) by the “colour” i:

x′i = (i, xi) and R′i = {((i, α), (i, β))|(α, β) ∈ Ri}.

The points (x′i, R
′
i) and (xi, Ri) are isomorphic and so (x′i, R

′
i) ≡ (xi, Ri). We

may thus assume that the domains of the wellfounded relations Ri are pairwise
disjoint. Take some y 6∈

⋃
i∈A dom(Ri) and define the point y = (y,Ry) by

Ry =
⋃
i∈A

Ri ∪ {(xi, y)|i ∈ A}.

Consider i ∈ A. If x ∈ dom(Ri) then the iterated Ri-predecessors of x are equal
to the iterated Ry-predecessors of x. Hence (x,Ri) ≡ (x,Ry).

Assume now that x J y. Take vRyy such that x ≡ (v,Ry). Take i ∈ A such
that v = xi. By the previous remark

x ≡ (v,Ry) = (xi, Ry) ≡ (xi, Ri) = xi.

Conversely consider i ∈ A and x ≡ xi. Then x ≡ xi = (xi, Ri) ≡ (xi, Ry) and
xiRyy. This implies x J y. �

We are now able to canonically interpret the theory ZFC within SO.

Theorem 6.8.1: (SO) P = (P,≡,J) is a model of ZFC.

Proof (1) The axiom of extensionality holds in P:

∀x∀y(∀z(z J x↔ z J y)→ x ≡ y).

Proof . Consider points x and y such that ∀z(z J x↔ z J y). Consider uRxx.
Then (u,Rx) J (x,Rx) = x. By assumption, (u,Rx) J (y,Ry). By definition
take vRyy such that (u,Rx) ≡ (v,Ry). Thus

∀uRxx ∃vRyy (u,Rx) ≡ (v,Ry).

By exchanging x and y one also gets

∀vRyy ∃uRxx (u,Rx) ≡ (v,Ry).

Hence x ≡ y. qed(1)
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(2) The axiom of pairing holds in P:

∀x∀y∃z∀w(w J z ↔ (w ≡ x ∨ w ≡ y)).

Proof . Consider points x = (x,Rx) and y = (y,Ry). By the comprehension
lemma 6.8.1 there is a point z = (z,Rz) such that for all points w

w J z ↔ (w ≡ x ∨ w ≡ y).

qed(2)
(3) The axiom of unions holds in P:

∀x∃y∀z(z J y ↔ ∃w(w J x ∧ z J w)).

Proof . Consider a point x = (x,Rx). Let

A = {i ∈ dom(Rx)|∃u ∈ dom(Rx) iRxuRxx}.

For i ∈ A define the point xi = (i, Rx). By the Comprehension Lemma 6.8.1
there is a point y = (y,Ry) such that for all points z

z J y ↔ ∃i ∈ A z ≡ xi.

To show the axiom consider some z J y. Take i ∈ A such that z ≡ xi. Take
u ∈ dom(Rx) such that iRxuRxx. Then z ≡ xi = (i, Rx) J (u,Rx) J (x,Rx) =
x, i.e., ∃w(z J w J x).

Conversely assume that ∃w(z J w J x) and take w such that z J w J x.
Take uRxx such that w ≡ (u,Rx). Then z J (u,Rx). Take iRxu such that
z ≡ (i, Rx) = xi. Then z J y. qed(3)

(4) The replacement schema holds in P, i.e., for every first-order formula
ϕ(u, v) in the language of ≡ and J the following is true in P:

∀u, v, v′((ϕ(u, v)∧ϕ(u, v′))→ v ≡ v′)→ ∀x∃y∀z(z J y ↔ ∃u(u J x∧ϕ(u, z))).

Proof . Note that the formula ϕ may contain further free parameters, which
we do not mention for the sake of simplicity. Assume that ∀u, v, v′((ϕ(u, v) ∧
ϕ(u, v′))→ v ≡ v′) and let x = (x,Rx) be a point. Let A = {i|iRxx}. For each
i ∈ A we have the point (i, Rx) J (x,Rx) = x. Using replacement and choice
in SO we can pick for each i ∈ A a point zi = (zi, Rzi) such that ϕ((i, Rx), zi)
holds if such a point exists. By the Comprehension Lemma 6.8.1 there is a point
y = (y,Ry) such that for all points z

z J y ↔ ∃i ∈ A z ≡ zi.

To show the instance of the replacement schema under consideration, assume
that z J y. Take i ∈ A such that z ≡ zi. Then (i, Rx) J (x,Rx) = x,
ϕ((i, Rx), zi) and ϕ((i, Rx), z). Hence ∃u(u J x ∧ ϕ(u, z)).

Conversely, assume that ∃u(u J x ∧ ϕ(u, z)). Take u J x such that ϕ(u, z).
Take iRxx, i ∈ A such that u ≡ (i, Rx). Then ϕ((i, Rx), z). By definition of
zi, ϕ((i, Rx), zi). The functionality of the formula ϕ implies z ≡ zi. Hence
∃i ∈ A z ≡ zi and z J y. qed(4)

The replacement schema also implies the separation schema.
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(5) The axiom of powersets holds in P:

∀x∃y∀z(z J y ↔ ∀w(w J z → w J x)).

Proof . By the separation schema it suffices to show that

∀x∃y∀c(∀w(w J c→ w J x)→ c J y).

Consider a point x = (x,Rx). Let F = dom(Rx) ∪ ran(Rx) be the field of Rx.
By the powerset axiom of SO choose some set P such that Pow(P, F ):

∀z(∃α(α ∈ z) ∧ ∀α(α ∈ z → α ∈ F )→ ∃ξ∀β(β ∈ z ↔ (β, ξ) ∈ P )).

Choose two large ordinals δ and y such that

∀α ∈ F α < δ and ∀ξ(ξ ∈ ran(P )→ (δ, ξ) < y).

Define a point y = (y,Ry) by

Ry = Rx ∪ {(β, (δ, ξ))|(β, ξ) ∈ P} ∪ {((δ, ξ), y)|ξ ∈ ran(P )}.

To show the axiom consider some point c = (c,Rc) such that ∀w(w J c→ w J
x). Define a corresponding subset z of F by

z = {β ∈ F |∃vRcc (v,Rc) ≡ (β,Rx)}.

We may assume for simplicity that z 6= ∅. By the powerset axiom of SO choose
ξ ∈ ran(P ) such that

∀β(β ∈ z ↔ (β, ξ) ∈ P ).

We claim that ((δ, ξ), Ry) ≡ c and thus c J y.
Consider βRy(δ, ξ). By the definition of Rywe have (β, ξ) ∈ P and so β ∈ z.

By the definition of z choose vRcc such that (v,Rc) ≡ (β,Rx) ≡ (β,Ry).
Conversely, consider vRcc. Then (v,Rc) J (c,Rc) = c. The subset property

implies (v,Rc) J (x,Rx) = x. Take βRxx such that (v,Rc) ≡ (β,Rx) ≡ (β,Ry).
By definition, β ∈ z, (β, ξ) ∈ P and βRy(δ, x). qed(5)

(6) The axiom of choice holds in P:

∀x((∀y, z(y J x ∧ z J x→ (∃u u J y ∧ (¬y ≡ z → ¬∃u(u J y ∧ u J z))))) →
→ ∃w∀y(y J x→ ∃u((u J w ∧ u J y) ∧ ∀v((v J w ∧ v J y)→ u ≡ v)))).

Proof . Let x = (x,Rx) ∈ P be a point such that

∀y, z((y J x ∧ z J x)→ (∃u u J y ∧ (¬y ≡ z → ¬∃u(u J y ∧ u J z)))).

Choose an ordinal α ∈ dom(Rx) and define the point w = (α,Rw) by letting its
“elements” be least ordinals in the “elements” of x:

Rw = Rx ∪ {(ξ, α)|∃ζ(ξRxζRxx ∧
∧(∀ξ′ < ξ ∀ζ ′((ζ,Rx) ≡ (ζ ′, Rx)→ ¬(ξRxξ′Rxζ))))}.

To show that w witnesses the axiom of choice for x consider a point y with
y J x. We may assume that y is of the form y = (ζ,Rx) where ζRxx. By the
assumption on x there exists u J y. Take some ξ such that (ξ,Rx) ≡ u. We
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may assume that ζ and ξ with these properties are chosen so that ξ is minimal
in the ordinals. Then

ξRxζRxx ∧ (∀ξ′ < ξ ∀ζ ′((ζ,Rx) ≡ (ζ ′, Rx)→ ¬(ξRxξ′Rxζ))) (6.1)

and so ξRwα. Thus u J w. To show the uniqueness of this u with u J w∧u J y
consider some v with v J w ∧ v J y. We may assume that v is of the form
v = (ξ′, Rw) with ξ′Rwα. By the definition of Rw we choose some ζ ′ such that

ξ′Rxζ
′Rxx ∧ (∀ξ′′ < ξ′ ∀ζ ′′((ζ ′, Rx) ≡ (ζ ′′, Rx)→ ¬(ξ′Rxξ′′Rxζ ′))). (6.2)

Now
v J y J x and v = (ξ′, Rw) J (ζ ′, Rw) J (x,Rx) = x.

Since the “elements” of x are “pairwise disjoint”, we have y ≡ (ζ ′, Rw). Since
y ≡ (ζ,Rx) the conditions (2) and (3) become equivalent and define the same
ordinal ξ = ξ′. Hence

u ≡ (ξ,Rx) ≡ (ξ′, Rw) ≡ v.

qed(6)
(7) The foundation schema holds in P, i.e., for every first-order formula ϕ(u)

in the language of ≡ and J the following is true in P:

∃u ϕ(u)→ ∃y(ϕ(y) ∧ ∀z(z J y → ¬ϕ(z)).

Proof . Note that the formula ϕ may contain further free parameters, which
we do not mention for the sake of simplicity. Assume that ∃u ϕ(u). Take a
point x = (x,Rx) such that ϕ(x). Since Rx is wellfounded one may take an
Rx-minimal y ∈ dom(Rx) such that ϕ((y,Rx)). Letting y also denote the point
(y,Rx) then ϕ(y). To prove the axiom, consider some point z J y . Take vRxy
such that z ≡ (v,Rx). By the Rx-minimal choice of y we have ¬ϕ((v,Rx)).
Hence ¬ϕ(z). qed(7)

(8) The axiom of infinity holds in P, i.e.,

∃x((∃y y J x) ∧ (∀y(y J x→ ∃z(z J x ∧ ∀u(u J z ↔ (u J y ∨ u ≡ y))))))

Proof . In SO let ω be the smallest limit ordinal. We show that

x = (ω,<� (ω + 1)2)

witnesses the axiom. Since (0, <� (ω+1)2) J (ω,<� (ω+1)2) we have ∃y y J x.
Consider some y J x. We may assume that y = (n,<� (ω+1)2) for some n < ω.
Set

z = (n+ 1, <� (ω + 1)2).

It is easy to check that

z J x ∧ ∀u(u J z ↔ (u J y ∨ u ≡ y)).

qed(8) �
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6.9 T codes a model of SO

The truth predicate T contains information about a large class of sets of ordinals.

Definition 6.9.1: For ordinals µ and α define

X(µ, α) = {β < µ|T (G(α, β))}.

Set
S = {T (µ, α)|µ, α ∈ Ord}.

Theorem 6.9.1: (Ord,S, <,=,∈, G) is a model of the theory SO.

Proof The axioms (1)-(7) are obvious. The proofs of axiom schemas (8) and
(9) rest on a Levy-type reflection principle. For θ ∈ Ord define

Sθ = {X(µ, α)|µ, α ∈ θ}.

Then for any LSO-formula ϕ(v0, . . . , vn−1) and η ∈ Ord there is some limit
ordinal θ > η such that

∀ξ0, . . . , ξn−1 ∈ θ((Ord,S, <,=,∈, G) � ϕ[ξ0, . . . , ξn−1] iff
iff (θ,Sθ, <,=,∈, G) � ϕ[ξ0, . . . , ξn−1]).

Since all elements of Sθ can be defined from the truth function T and ordinals
< θ, the right-hand side can be evaluated in the structure (θ,<,G ∩ θ3, T ) by
an LR-formula ϕ∗ which can be recursively computed from ϕ. Hence

∀ξ0, . . . , ξn−1 ∈ θ((Ord,S, <,=,∈, G) � ϕ[ξ0, . . . , ξn−1] iff
iff (θ,<,G ∩ θ3, T ) � ϕ∗[ξ0, . . . , ξn−1]).

So sets witnessing axioms (8) and (9) can be defined over (θ,<,G ∩ θ3, T ) and
are thus elements of S.

The powerset axiom of SO can be shown by a similar reflection argument.
�

6.10 Ordinal computability corresponds to constructibility

Kurt Gödel [4] defined the inner model L of constructible sets as the union
of a hierarchy of levels Lα:

L =
⋃

α∈Ord

Lα

where the hierarchy is defined by: L0 = ∅, Lδ =
⋃
α<δ Lα for limit ordinals δ,

and Lα+1 = the set of all sets which are first-order definable in the structure
(Lα,∈). The model L is the ⊆-smallest inner model of set theory. The standard
reference for the theory of the model L is the monograph [3].

The following main result provides a characterization of ordinal register com-
putability which does not depend on a specific machine model or coding of
language:

Theorem 6.10.1: A set x of ordinals is ordinal computable if and only if it is an
element of the constructible universe L.
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Proof Let x ⊆ Ord be ordinal computable by the program P from the ordinals
δ1, . . . , δn−1, so that for every α ∈ Ord:

P : (α, δ1, . . . , δn−1, 0, 0, . . .) 7→ χx(α).

By the simple nature of the computation procedure the same computation can
be carried out inside the inner model L, so that for every α ∈ Ord:

(L,∈) � P : (α, δ1, . . . , δn−1, 0, 0, . . .) 7→ χx(α).

Hence χx ∈ L and x ∈ L.
Conversely consider x ∈ L. Since (Ord,S, <,=,∈, G) is a model of the

theory SO there is an inner model M of set theory such that

S = {z ⊆ Ord |z ∈M}.

Since L is the ⊆-smallest inner model, L ⊆ M . Hence x ∈ M and x ∈ S. Let
x = X(µ, α). By the computability of the truth predicate, x is ordinal register
computable from the parameters µ and α. �
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7. EHRENFEUCHT–FRAı̈SSÉ GAMES ON LINEAR ORDERS

abstract

We write strategies for both players in the Ehrenfeucht-Fraisse game played
between two linear orders. We prove that our strategies win whenever possible.
The strategy in a game of fixed, finite length focuses the attention of both
players on certain finite sets called ”total information.” These finite sets are
semimodels in the sense that if one player does not have a winning strategy,
then the other player can win, even when forced to choose only elements of a
model which are indicated by the total information.

These sets are semimodels– finite, nested models, such that a formula is sat-
isfied in a linear order iff the formula is semimodel-satisfied in the corresponding
semimodel. The strategy implies the decidability of the theory of linear order,
and gives a completion of any formula by one with quantifier rank only 2 larger
than the original formula. The strategy generalizes directly to the infinitary
theory of linear order.

7.1 “Total information” is sufficient for the EF game

For any linear order λ, let λ+ be the ordered set of cuts in λ, i.e.

Definition 7.1.1: λ+ = ({(X,Y ) : X ∪ Y = λ, ∀x ∈ X∀y ∈ Y x < y}; (X,Y ) ≤
(W,Z) iff X ⊆W ).

Definition 7.1.2: For any linear order λ and element x, let Thloc
k (λ, x) be {formulas

φ of quantifier rank k with the single variable v free : ∃E ∀A,B,C,D(A+ E +
B + λ+C +E +D |=[x/v] φ(v))} where A,B,C,D,E range over linear orders.

Our goal is to prove theorem 7.1.1, i.e., to find in any linear order λ and for
any natural number k a finite set Ik(λ) ⊆ λ+ such that λ ≡k λ′ iff Ik(λ) = Ik(λ′)
and the same k−1-quantifier local types Thloc

k−1(λ, x) are realized in both λ and
λ′ at and between the elements of Ik.

Definition 7.1.3: Let Seq be the set of decreasing sequences of natural numbers.
For k any natural number, let Seq(k) be the set of descending sequences of
natural numbers ≤ k − 2. Let <seq be lexicographical ordering on Seq.

Definition 7.1.4: For λ any linear order and (a, b) = ((L0, L1), (R0, R1)) any pair
of adjacent elements of λ+, define λ(a,b) = {x ∈ λ : (x ∈ L1 ∧ ∃z(z ∈ L1 ∧ z <
x)) ∧ (x ∈ R0 ∧ ∃z(z ∈ R0 ∧ z > x))}.

Definition 7.1.5: For λ any linear order, we define I∅(λ) = ∅. If s ∈ Seq and
Is(λ) is defined and s <seq s′ and s′ is the <seq-successor of s, let l be the least
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member of s′, and let Is′(λ) contain Is(λ) and for each adjacent pair of elements
of Is(λ), elements of λ+ representing the appearance and disappearance of each
local l-quantifier type. Precisely:

For each pair (a, b), a < b, of adjacent elements of Is(λ) and for each t ∈
{Thloc

l (λ, z) : z ∈ λ(a,b)}, define the cuts (A(a,b)
t , B

(a,b)
t ) ∈ λ+ and (C(a,b)

t , D
(a,b)
t ) ∈

λ+ as follows:

• A(a,b)
t = {x ∈ λ : ∀z ∈ λ(a,b)t(z)→ z > x)},

• B(a,b)
t = the complement of At, i.e. {x ∈ λ : ∃z ∈ λ(a,b)(t(z) ∧ z ≤ x)},

• C(a,b)
t = {x ∈ λ : ∃z ∈ λ(a,b)(t(z) ∧ z ≥ x)},

• D(a,b)
t = the complement of Ct, i.e. {x ∈ λ : ∀z ∈ λ(a,b)(t(z)→ z < x)}.

If the cut a = (L0, L1) ∈ λ+ was created as (C(a1,b1)
u , D

(a1,b1)
u ) (rather than

(A(a1,b1)
u , B

(a1,b1))
u )) and u = Thloc

m (λ,w) and m > l and ∀x ∈ Cu∃y ∈ Cu(y >
x ∧ t(y)), then we say a covers t. Similarly, if b = (R0, R1) was created as
(A(a1,b1)

u , B
(a1,b1))
u ) (rather than (C(a1,b1)

u , D
(a1,b1)
u )) and u is a local type of

higher quantifier rank than t and ∀x ∈ Bu∃y ∈ Bu(y < x ∧ t(y)), then we
say b covers t.

Let Is′,(a,b) = {(A(a,b)
t , B

(a,b)
t ) : (∃z ∈ λ(a,b)(t = Thloc

l (λ, z))) ∧ a does not
cover t} ∪ {(C(a,b)

t , D
(a,b)
t ) : (∃z ∈ λ(a,b)(t = Thloc

l (λ, z))) ∧ b does not cover t}
be the set of first and last appearances of each local type t in the interval λ(a,b).

Let Is′ = Is ∪ ∪{Is′,(a,b) : (a, b) is a pair of adjacent elements of Is}.
For any k ≥ 2, let Ik(λ) = ∪Is(λ) : λ ∈ Seq(k). (This choice of index is

made because of lemma 7.1.1.)

Definition 7.1.6: For any linear orders λ and λ′ and s a decreasing sequence of
natural numbers, we define λ ≡s λ′ by induction on s. Say λ ≡∅ λ′ holds for any
linear orders. Let s ∈ Seq and s′ be the <seq successor of sand let l be the least
number in s′ as in definition 7.1.4. Then λ ≡s′ λ′ iff λ ≡s λ′ and for any pair of
adjacent elements of Is (a, b) = ((L0, L1), (R0, R1)), the cuts of definition 7.1.5,
for any two types t, u ∈ {Thloc

l (λ, z) : z ∈ λ(a,b)} satisfy each of the following
conditions in λ iff they satisfy the same condition in λ′:

1. (A(a,b)
t , B

(a,b)
t ) = (L0, L1) = a or (C(a,b)

t , D
(a,b)
t ) = (R0, R1) = b.

2. B(a,b)
t ∩ C(a,b)

t is a singleton and ¬(a covers t and b covers t).

3. B(a,b)
t has a least element, and a does not cover t.

4. C(a,b)
t has a greatest element, and b does not cover t.

5. ∃z ∈ (B(a,b)
t \B(a,b)

u ) and a does not cover u.

6. ∃z ∈ (B(a,b)
t ∩ C(a,b)

u ) and ¬(a covers t and b covers u).

7. ∃z ∈ A(a,b)
t ∩D(a,b)

u and a doesn’t cover t and b doesn’t cover u.

8. B(a,b)
t ∩ C(a,b)

t = ∅.
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Lemma 7.1.1: If λ ≡k λ′, then for all s ∈ Seq(k), λ ≡s λ′.

Proof: Suppose λ ≡s λ′, but λ 6≡s′ λ′, where s′ is the <seq-sucessor of s. We
show that player I has a winning strategy in EFk(λ, λ′), hence λ 6≡k λ′.

We first prove, by induction, claim k: If, in the game EFk(λ, λ′), player I
plays the first move in (as, bs) for all s ∈ Seq(k), where if s′ is the <seq-sucessor
of s and s < s′ ∈ Seq(k), then {as′ , bs′} ⊆ Is′ \ Is and as′ = (L(as′), R(as′))
and is defined in Is′ as (A(as,bs)

u(as′ )
, B

(as,bs)
u(as′ )

) where u(as′) was not covered by as,

or as′ = (C(as,bs)
u(as′ )

, D
(as,bs)
u(as′ )

) where u(bs′) was not covered by bs, then player II
must answer in (as, bs), for all s ∈ Seq(k).

Proof: suppose player II answer inside (ar, br), for all r ≤ s, but outside
(as′ , bs′). Without loss of generality, suppose player I plays x0 above as′ , and
player II plays y0 below as′ . Writing as = (L(as′), R(as′)), this means that
player I played in R(as′), and player II played in L(as′).

Let the least number in s′ be l, so that u(as′) = Thloc
l (λ, x) is a local type of

quantifier depth l. If x0 is the least element of R(as′), or the greatest element
of L(as′), then player II has lost, for then x0 has quantifier-rank-l local type
u(as′), and there is no y ∈ λ′(as,bs) such that Thloc

k (λ′, y) = u(as′) and y < as′ ,
by the formula defining A and B or C and D in definition 7.1.5.

Let the greatest number in s′ be j ≤ k − 2; let j− be the <seq-precessor of
(j), with domain {i : i < j}. Player I plays x1 at an element of λ of type u(a(j))

near a(j) in (aj− , bj−), where “near” means: if aj = (A
(aj− ,bj− )

u(a(j))
, B

(aj− ,bj− )

u(a(j))
),

then player I plays x1 ≥ aj in λ and x1 should be the least element of B
(aj− ,bj− )

u(aj)

if there is one, and otherwise, for each t ∈ {Thloc
j−1(λ, z) : z ∈ λ} (a finite set)

which is realized for some z ∈ λ(aj− ,bj− ), if realizations of t are bounded from
below in B

(aj− ,bj− )

u(aj)
, then all of those realizations occur above x1, and if t is

realized below every y ∈ B(aj− ,bj− )

u(aj)
, then t is realized a large number of times

(say, 10 + 210+210+k
or more) above x1. This is done to assure that I(j)∪r(λ>x1)

will contain an ≡(j) copy of I(j)∪r(λ>as) whenever r is a descending sequence of

numbers < j. On the other hand, if aj = (C
(aj− ,bj− )

u(a(j))
, D

(aj− ,bj− )

u(a(j))
), then player

I plays x1 ≤ aj in λ′ near the cut a(j), where, again, “near” means that x1

bounds to the left all quantifier-rank < j local types which can be bound to the
left.

If player I plays x1 < a(j) = (C,D) < y0 ∈ λ′, and player II plays y1
in the interval (aj− , bj−) and y1 < a(j) ∈ I(j), then we may consider the game
EFk−1(λ>y1 , λ′>x1), in which player I has played x0, and player II has answered
with y0. We will show that this violates the induction hypothesis. We check,
for r any decreasing sequence of numbers < j, that the set Ir defined in λ>x1

and λ′>y1 are ≡(j) to the sets I(k∪ r) defined in λ and λ′ to the right of a(j). In
this case, x1 was played close to as so that the only t ∈ {Thloc

j−1(λ, z) : z ∈ λ}
which are realized to the right of x1 are those t which are realized to the right
of as or which are covered by as. A cut c enters I(k ∪ r) only if it was not
covered by a(j). Therefore, player I was able to play x1 < a(j) large enough
that no elements of type c exist in (x1, a(j)), when c ∈ I(k ∪ r). So, by claim
k − 1, player II loses. If player I plays x1 < a(s) = (C,D) < y0 ∈ λ′, and player
II plays y1 outside the interval (aj− , bj−), then y1 < aj− , then we may consider
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the game EFk−1(λ<a(j) , λ′<a(j)) in which player I has played x1 and player II
has played y1. Player II’s move disrespects Is, for s ∈ Seq(j). If player I plays
x1 > a(j) = (A,B) ∈ λ, of the type for which a(j) was defined, and player II
plays y1 < a(j) ∈ λ, then we know that y1 is not of the same j-quantifier local
type as x1. This concludes the proof of claim k.

Now we assume λ ≡s λ′ and that player II must answer player I’s moves
at the same elements or in the same interval between elements of Is, and we
show that λ 6≡s′ λ′ gives player I a winning strategy. The definition of ≡s′ lists
conditions under which it fails, so we show that player I can exploit each of
those eventualities and win. Suppose that ≡s′ fails in the interval (a, b) of Is.

Case 1: Suppose (A(a,b)
t , B

(a,b)
t ) = (L0, L1) in λ, but not in λ′. That is,

elements of type t exist below any z ∈ λ(a,b). Then player I plays x0 ∈ λ′(a,b)

below every element of type t in λ′
(a,b), where t has quantifier rank l, the least

element of s′. By Claim k, player II answers with y0 ∈ λ′(a,b). Now, for each
initial segment sj of s the least element of which is > l, player I plays xj near
asj in (a(sj)− , b(sj)−), as described in claim k, and player II answers, by claims
k − 1 . . . k − j, in the same intervals. After both players have played xj and yj
close to asj , for all initial segments sj , there is an element z of type t below y0
and above xj or yj (say, xj) in λ′. There may well be an element z′ of type
t below x0 and above yj in λ, but for any such z′, Il(yj , z′) 6≡l Il(yj , as). So
player I plays xj+1 = z, and as the remaining l-many moves would prove that
Thl(λ, yj+1) 6= t, player II plays some z′ of type t below asj . Player I proceeds,
as in claim l, to prove that Il(yj , z′) 6≡l Il(yj , as).

As a result of case 1, we could add the condition – a covers t – to the list of
the conditions in definition 7.1.6, the definition of λ ≡s λ′.

Case 2: Suppose z is the only element of B(a,b)
t ∩C(a,b)

t in λ and that there are
two elements z0 < z1 of B(a,b)

t ∩C(a,b)
t in λ′. If a does not cover t, player I plays

x0 = z1. If b does not cover t, player I plays x0 = z0. If t has quantifier-rank l,
then the next k− l− 2-many moves are spent isolating (a, b), after which player
I plays xk−l−1 = z0 after which player I spends the remaining l-many moves
defining Il(zs, z0), where zs = xj or zs = yj , zs is near the cut (L0, L1) = as,
and since as did not cover t, the interval (zs, z) has no realization of t.

Case 3: Suppose B(a,b)
t has a least element, z ∈ λ(a,b), but no least element

in λ′
(a,b) and a does not cover t. Player I plays x0 = z, and then proves that

(a, y0) contains an element of type t, as in the previous case.
Case 5: Suppose z ∈ (B(a,b)

t \ B(a,b)
u ) in λ but B(a,b)

t = B
(a,b)
u in λ′, and a

does not cover u. Player I plays x0 = z, and then proves that (a, y0) contains
an element of type u, as in case 2.

Case 6: If b doesn’t cover u, player I plays x0 = an element of type t,
x0 ∈ (B(a,b)

t ∩ C(a,b)
u ) and shows ∃z ∈ (x0, b) of type u. If a doesn’t cover t,

player I plays x0 = an element of type u, x0 ∈ (B(a,b)
t ∩ C(a,b)

u ) and shows
∃z ∈ (a, x0) of type t.

Case 7: Player I plays x0 = z and shows (x0, b) contains no element of type
u and (a, x0) contains no element of type t.

Case 8: This holds iff ¬∃z(z ∈ λ(a,b) ∧ t(z)). By claim k, player I can play
the element of type t in the model in which such an element exists, and then
show that player II has replied outside λ(a,b). �
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Definition 7.1.7: For λ any linear order and k any number, let t be the func-
tion with domain {min(Bt) : (At, Bt) ∈ Ik and Bt has a minimal element} ∪
{max(Ct) : (Ct, Dt) ∈ Ik and Ct has a maximal element}, taking the value
Thloc

k−1(λ, x) on argument x; let g be the function with domain I+
k taking the

value {Thloc
k−1(λ, x) : x ∈ λ(a,b)} on argument (a, b). We call Ik, t, g total infor-

mation for λ, k.

Lemma 7.1.2: If x ∈ λ, then from Thloc
k−1(λ, x) and total information for λ, k we

can determine total information for {y ∈ λ : y < x}, k − 1.

Proof: Every element of Ik−1({y ∈ λ : y < x}) is an element of Ik(λ) or
an element of ∩A,BIk−1(A + E + B + {y ∈ λ : y < x}). The value of t on
z ∈ Ik−1({y ∈ λ : y < x}) ∩ Ik(λ) is determined by finding Thloc

k−2(λ, z) from
Thloc

k−1(λ, z); the value of t on z ∈ Ik−1({y ∈ λ : y < x})∩∩A,BIk−1(A+E+B+
{y ∈ λ : y < x}) is the value which the intersection of total information for any
large linear order which ends in a copy of {y ∈ λ, : y < x}, i.e, ∩A,BIk−1(A +
E + B + {y ∈ λ, : y < x}) assigns to z. We can also say that this is the the
value which the local theory of x in λ assigns to z. If a, b is an adjacent pair
of elements of Ik−1({y ∈ λ : y < x}), and both a = (L0, L1) and b = (R0, R1),
are in Ik−1({y ∈ λ : y < x}) ∩ Ik(λ), then the value g((a, b)) is determined by
I(k−2)(λ), which names the first and last occurrences of each k − 2-quantifier
type between a and b; the k−2-quantifier types realized in (a, b) are, then, those
that I(k−2)(λ) finds to exist in (a, b). If both a = (L0, L1) and b = (R0, R1)
are in Ik−1({y ∈ λ : y < x}) ∩ Ik−1({y ∈ λ : y < x}) ∩ Ik(λ), then the
value of g is given by Thloc

k−1(λ, x). The value of g(a, b) for b an element of
∩A,BIk−1(A+ E + B + {y ∈ λ : y < x}), is determined by the location of x in
Ik(λ). �

For instance, suppose I(k−2)(λ) lists the appearance of quantifier-rank-k− 2
local types t0 . . . tn left of x, and then lists quantifier-rank-k − 3 local types
between these, and x appears between the first appearances of two quantifier-
rank-k− 3 local types, r0 and r1, but that r0 and r1 both appear between tn−1

and tn. Then, in the gap left of x and all points bound locally to x by lower-rank
types, there appear the quantifier-rank-k − 2 local types t0 . . . tn−1. tn appears
left of x, but only after the disappearance of local type r1, and not before then
(since r1 disappeared between the last appearances of tn−1 and tn).

Theorem 7.1.1: For any two linear orders, λ, λ′, and for any number k, Player
II wins EFk(λ, λ′) iff the following holds: For all sequences s <seq (k− 1), there
exists an equivalence λ ≡s λ′ – bijections between Is(λ) and Is(λ′) identifying
the cuts (A(a,b)

t , B
(a,b)
t ) and (C(a,b)

t , D
(a,b)
t ) in both models, for all t and all

adjacent pairs a, b of elements in ∪r<seqsIr such that whenever Bt has a least
element or Ct a greatest element, t of that least element is the same in both
models, and such that in every interval in Ik, g has the same value in both
models.

Proof (only if): By claim k in lemma 7.1.1, player II must answer player
I’s first move x0 with some y0 in the same interval in Ik. But then, Player
II can go on to win only if Thk−1(λ, x0) = Thk−1(λ′, y0), so Thloc

k−1(λ, x0) =
Thloc

k−1(λ′, y0).
Proof (if): If k = 2, then Th0(λ, x) = {x = x} = {t0} = Thloc

0 (λ, x), so
I2 = I(0) describes the first and last elements of type x = x, and between them
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determines which subset of Thloc
1 (λ, x) = {x = x} = {A+E+B+λ+C+E+D |=

∃y(x > y) ∧ ∃y(y > x)} = {t1} is realized. The reader can check that this
accurately describes the various ≡2 classes of linear orders. That the theorem
holds for k ≥ 3 is proved by induction on lemma 7.1.2. �

Remark 7.1.1: The generalization of Is to infinitary logic (where s is a descend-
ing sequence of ordinals) is clear; the lemma that ≡α implies ≡s goes through
as well, except that Is is no longer finite, and so we must edit the “covering
conditions.” The restriction of the Is to the class of ordinals reproduces known
results about the theory of ordinals and the infinitary theory of ordinals. For
instance, in a finite linear order, for each sequence s, Is′ identifies the least and
greatest element of the central gap in Is; the number of nontrivial sequences s
of numbers ≤ k−2 is 2k−1−1, so the k-quantifier theory of a finite linear orders
identifies that many elements on each end of the linear order (If there are any
elements of λ not named in that process, they are indistinguishable by formulas
of quantifier rank k.

By induction, we build the set of local types {∃xt(x) : t = Thloc
k (λ, x) in some

model λ} of quantifier-rank k out of structures ILs (where we only consider the
cuts of the form (A(a,b)

t , B
(a,b)
t ), and not of the form (C(a,b)

t , D
(a,b)
t )), and in turn

the structures Is are built by identifying the first and last elements of each local
type. Thus, defining Is from local types and local types from simplified Is, we
construct the set of local types of the next quantifier rank. Consistency requires
that whenever local types t and s are realized and require an element between
them which satisfies φ, a local formula of lower quantifier rank, then there is
some local type r which extends φ. We can prove that if these necessary and
propositional formulas are satisfied by a set of local types of uniform quantifier
rank, then there is a model realizing exactly those local types, via a Model
Existence Game (proving that a model can be constructed element by element,
and that at no stage is there any obstruction), or by constructing the model at
once and in its entirety. The resulting models involve many arbitrary choices
about whether to realize s left of t, or t left of s. If we consistently decide to
realize both, whenever possible, then the models which are constructed contain
intervals which are determined by the total information, and intervals in which
all possible types are realized densely.

The inherent complexity of deciding the theory of linear order consists only
in the difficulty of extending a formula of quantifier rank k to a total information
triple of quantifier rank k, because any total information triple is then easily
extended to a complete piecewise-dense model in quantifier rank k + 2. By
comparison, the proof in [1] is surely the most direct proof that the theory
of linear order is atomic, but no reasonable bound on the quantifier rank of
the completion can be obtained using that argument. In fact, [4] describes
the quantifier rank of the completion obtained by that method, and finds an
enormous upper bound, involving towers of exponents in the arguments (page
341, middle paragraph). Studying the propositional theory of sets of local types
describes the complexity of the set {total information triples for λ,k : λ is a
linear order and k a natural number}. In any case, simply because the theory
is propositional, this set is recursively enumerable, thus the theory of linear
order is decidable. We have come to that theorem by constructing large finite
approximations to a linear order, and I would venture to say that these finite
sets are what were described in [2] as the semimodels of a linear order. From
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our total information triples, we can construct semimodels for the linear orders
– the proof of Lemma 1.1 indicates what elements of the model should be played
as corresponding to the various elements of Is.

7.2 Semimodels and the complexity of deciding Th(LO)

A semimodel for the vocabulary {<} is, in general, a nested sequence of linear
orders M = (M0 ⊆M2 ⊆ ...Mk−1, <

Mn) where we intend to evaluate formulas φ
of quantifier rank ≤ k. We write φs.m. for the result of replacing the subformula
∃xψ, when it occurs in φ within the scope of lψ-many quantifiers, by the bounded
quantification ∃x ∈Mlψ. More precisely,

Definition 7.2.1: A semimodel is a nested sequence M = M0 ⊆ M1 ⊆ ...Mk−1

of finite sets, with an ordering on Mk−1. The rank of M is k.
We say M |=s.m. φ if M |= φs.m., where φs.m. is the relativization of φ in

which any subformula ∃xjψ(x0 . . . xj) which appears within the scope of j-many
quantifiers is replaced by ∃xj ∈Mjψ(x0 . . . xj), for all j < k.

Theorem 7.2.1 (Ehrenfeucht [2]): If U is a class of finite semimodels, and the
following hold:

1. U is recursively enumerable,

2. For any formula φ and any semimodel L ∈ U such that the rank of L as a
semimodel is the rank of φ as a formula, if L |=s.m. φ, then L extends to
a full linear order λ, such that λ |= φs.m.,

3. For any formula φ and any linear order λ such that λ |= φ, φs.m. holds in
some semimodel L ∈ U ,

then the theory of linear order is decidable.

Proof: Enumerate the implications of the theory of linear order, and look
for ¬φ. Meanwhile, enumerate elements of U , and look for L ∈ U of rank equal
to the quantifier rank of φ, such that L |= φ. By condition 2., some linear order
models φ, too. By condition 3, if φ is consistent, then this procedure terminates
in the discovery of a semimodel of φ. �

Definition 7.2.2: If M is a semimodel of rank at least k, and λ is a linear order,
we say M ≡s.m.

k λ if for any sentence φ of quantifier rank at most k, λ |= φ just
in case M |=s.m. φ.

We write a semimodel of rank k as a string si : i < n of numbers < k, from
which Mj = {i : si ≤ j} recovers the semimodel.

Given a semimodel M , let M+ be the semimodel formed by shifting the sets
Mi; i.e., (M+)i+1 = Mi; (M+)0 = ∅.

Addition of semimodels is the same as addition of orders; if M and N are
disjoint and of the same rank, form (Mk−1, <) + (Nk−1, <), and let (M +N)i =
Mi ∪Ni for i < k.

Definition 7.2.3: We call M consistent if when M |=s.m. φ then from φ is not
inconsistent with the theory of linear order.
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Note that when we determine M |=s.m. φ, we restrict the quantifiers of φ to
the ranked sets in M , and when we determine whether φ is consistent, we do
not restrict its quantifiers.

For instance, 01 is not a consistent semimodel, since 01 |=s.m. LO∧(∀x∃y(y >
x)) ∧ (∀x¬∃y(y < x)), where LO is the theory of linear order. Of course, that
is not consistent.

Theorem 7.2.2: For any model M and sentence φ satisfied in M , there is a
semimodel N such that N |=s.m. φ.

Proof: To determine that M |= φ, it is never necessary to play more than
finitely many elements of M and M+. To be precise about which elements
are played was the work of the previous section, where we found that total
information is a finite set, sufficient for determining the k-quantifier theory of M .
Turning a total information triple into a semimodel can be done automatically:
The elements ofM which appear there should be simply added to the semimodel;
elements of M+ which appear in the total information triple represent families
of types which are realized cofinally often; if that family of types is codified in
the semimodel M , then M+MM is a semimodel in which each of the types in
the family is realized left of any other. �

If that sketch of how to write a string from total information triple seems
unsatisfying, I suspect that the problem is mostly that total information triples
are complicated objects, which obviously are not necessary in so simple a theo-
rem. Below, we will re-prove this theorem, by constructing semimodels for the
linear orders used in [3].

As a result of this theorem, deciding the theory of linear order can be done
by deciding which strings are consistent semimodels for the theory of linear
order.

Theorem 7.2.3: (0)2
k−1

(1)2
k−2

(2)2
k−3

...(k − 1)2
0 |=s.m. Thk(ω).

Proof: We play the EF game between a semimodel and a model, where in
the semimodel the l-th move is restricted to Ml. We answer a large natural
number with the last 0. To the right, this leaves the statement of the theorem
for k − 1, so we appeal to induction. To the left, this leaves 02k−1−1, whihc is
equivalent to any large, finite linear order, as the reader my check, again by
induction. �

We can also see this proof in terms of total information: For each descending
sequence s of numbers < k − 1, Is contains an element right of those definable
in Ir, where r is the predecessor of s. Any of these could be played on the first
move. This accounts for 2k−1 − 1-many elements on the left end of both ω and
the semimodel. The next element of ω, corresponding to the last element of M0

in the semimodel, is an element not definably close to the left end. It’s k − 1-
quantifier type is that it is preceded by a large finite linear order of unknown
size, and followed by something equivk−1ω.

Theorem 7.2.4: If E ≡s.m.
k η, the dense linear order without endpoints, then

E+ + (0) + E+ ≡s.m.
k+1 η. 101 ≡s.m.

2 η; 2120212 ≡s.m.
3 η.

Proof: Like E, η has only one type (of quantifier rank k) t(x), and after
playing x to any element of η, the k-quantifier theory of η<x or η>x is the
k-quantifier theory of η. Base case: ∅ ≡s.m.

0 η. �
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Definition 7.2.4: In the game EF s.m.
k (L, λ) played on a semimodel and a model,

player I plays in L or λ, and player II replies in the other structure. On the
j + 1-th move, the player who assigns xj to an element of L must assign xj to
an element of Lj .

Given two semimodels M and N , call M × N the semimodel obtained by
replacing every element x ∈ N such that x ∈ Nj \Nj−1 by a copy of M (+)j .

Note that player II has a winning strategy in EF s.m.
k (L, λ) just in case

L ≡s.m.
k λ.

Theorem 7.2.5: If M ≡s.m.
k µ and L ≡s.m.

k λ, then M × L ≡s.m.
k µ× λ.

Proof: Suppose player II has a winning strategy in EF s.m.
k (L, λ) and in

EF s.m.
k (M,µ). On the j-th move of EF s.m.

k (M ×L, µ×λ), if player I has moved
in the same element of λ or L as in the previous move, player II follows the
winning strategy of EF s.m.

k (M,µ) in that copy of M . If player I plays in a new
element of λ or L, player II responds as in EF s.m.

k (L, λ), and in the corresponding
copy of M and µ, begins a new game of EF s.m.

k (M,µ). If player I plays in λ×µ,
then player II has answered with an element of (M × L)i. �

Definition 7.2.5: ([3]) MLL is the smallest set of linear orders containing the
singleton order, 1 and closed under the operations

• +, where M + N forms disjoint copies of M and N , and then orders all
the elements of M before any element of N .

• ×ω, where M × ω contains countably many copies of M , indexed by ω,
and if n < m ∈ ω, all the elements of Mn occur before any element of
Mm.

• ×ω∗, which has the same domain as M ×ω, but if n < m, then in M ×ω∗
all elements of Mm precede any element of Mn.

• σ: Let η be the ordering on the rationals, and let χ be any function from η
to n such that χ−1(i) is dense for each i < n. The domain of σ{Mi : i < n}
contains a copy Mq of Mi for each rational number q such that χ(q) = i
– and Mq and Mp are disjoint if p 6= q – and if p < q then every element
of Mp precedes any element of Mq.

If we understand that M∗ is the ordering with the domain of M in which
a <M

∗
b if a >M b, then we could define M × ω∗ = (M∗ × ω)∗.

Definition 7.2.6: Let En be the semimodel such that Enj = (En+
j−1 +(0))×n+

En+
j−1. Let χ map En to n, sending the i-th occurrence of 0 in the construction

of Enj to i, for all j. Let σ({Mi : i < n}) be the semimodel obtained from En
by replacing every element x ∈ En such that χ(x) = i and x ∈ Nj \Nj−1 by a

copy of M (+)j

i .

Theorem 7.2.6: Enk ≡s.m.
k η. χ−1(i) ≡s.m.

k η. Let En, χ, and σ({Mi : i < n}) be
as in the preceding definition. If Mi ≡s.m.

k µi, then the shuffle of the semimodels
is ≡s.m.

k to the shuffle of the linear orders: σ({Mi : i < n}) ≡s.m.
k σ({µi : i < n}).
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Proof: As in the proof of the product, Player II follows E,χ ≡s.m.
k η, χ, and

begins a new game of EF s.m.
k (Mi, µi) whenever whenever player I changes from

one element of E or η to another. Player II follows EF s.m.
k (Mi, µi), whenever

player I keeps the element of E or η constant. �
We can formulate semimodels of rank k for elements of MLL as follows:

• 1 ≡s.m. 1,

• M + L ≡s.m.
k µ+ λ if M ≡s.m.

k µ and L ≡s.m. λ,

• M × L ≡s.m.
k µ× ω if M ≡s.m.

k µ and L ≡s.m.
k ω,

• M × L ≡s.m.
k µ× ω∗ if M ≡s.m.

k µ and L ≡s.m.
k ω∗,

• σ({Mi : i < n}) ≡s.m.
k σ({µi : i < n}) if Mi ≡s.m.

k µi for each i < n.

Now, the set of semimodels M such that M ≡k µ for some µ ∈ MLL is
clearly recursively enumerable, and clearly each such M extends to a linear
order (namely, µ), so conditions 1 and 2 in Ehrenfeucht’s theorem are clear.
The final, third, condition is what was proved in [3].

What is the complexity of determining whether a string is consistent? We
can show that this question can be determined quickly in the length of a string,
i.e., in linear time. However, the length of a string which represents, as a semi-
model, a random k-quantifier equivalence class, has length tower-of-exponential
in k.
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