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1. Introduction

This dissertation consists of the summary and the article [Ras05] which is
to be published in the journal Mathematische Zeitschrift. This work is also
available in electronic form on the web page:

http://ethesis.helsinki.fi.

The original publication is available at www.springerlink.com. In the article
we consider quasiregular maps in the n-dimensional Euclidean space Rn. In
particular, we study the relation between the multiplicity and the boundary
behavior. Our goal is to prove generalizations for a classical theorem of E. Lin-
delöf. Multiplicity, roughly speaking, means the cardinality of the preimage of
a point.

Quasiconformal and quasiregular maps in Rn are respectively natural general-
izations of conformal and analytic functions of one complex variable. Quasireg-
ular homeomorphisms, i.e. quasiconformal maps, are characterized by the prop-
erty that there exists a constant C ≥ 1 such that small spheres are mapped onto
small ellipsoids with the ratio of the larger semiaxis to the smaller one bounded
from above by C.

Quasiconformal maps were first introduced in the two-dimensional case by
H. Grötzsch in 1928 and in the higher dimensions by M. A. Lavrent’ev in 1938.
The systematic study of quasiconformal maps in Rn was begun by F. W. Gehring
[Geh61] and J. Väisälä [Väi61] in 1961. Quasiregular maps were first introduced
by Russian mathematician Yu. G. Reshetnyak in 1960’s (see e.g. [Res89]). His
work was further developed by Finnish mathematicians O. Martio, S. Rickman
and J. Väisälä (e.g. [MRV69]). Geometric concepts originating from the theory
of quasiconformal maps were introduced by them to the theory of quasiregular
maps. This new point of view combined with Gehring’s and Väisälä’s work in
the field of quasiconformal maps (see e.g.[Geh62], [Väi71]), provided important
tools for the research of quasiregular maps. A comprehensive reference on these
results is [Ric93]. Another important reference is [Vuo88], where the focus is on
methods involving Möbius transformations and conformal invariants. Results
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from these two books are used through the work. Our study in the theory
of quasiregular maps builds on the research traditions in the Helsinki School
of Analysis in geometric function theory, complex analysis and quasiconformal
maps.

2. Lindelöf-type theorems

The following result is known in the literature as Lindelöf’s Theorem (see e.g.
[Rud87, p.259]):

2.1. Theorem. Suppose that γ is a curve, with parameter interval [0, 1], such
that |γ(t)| < 1 if t < 1 and γ(1) = 1. If f is a bounded analytic function of the
unit disk and

lim
t→1

f
(
γ(t)

)
= α,

then f has angular limit α at 1, i.e. limit in each cone contained in the unit
disk with the vertex in 1.

There are various generalizations of Lindelöf’s theorem in the literature. An-
other question is if a weaker condition would be sufficient for the result. P. Koebe
proved that if a bounded analytic function tends to zero along a sequence of
arcs in the unit disk which approach a subarc on the boundary, then it must be
identically zero [Bie31, p.19].

The bibliography of [Vuo85] lists several authors who have studied this topic.
One of them is D. C. Rung, who studied the connection between the boundary
behavior and the hyperbolic metric in [Run68]. In Rung’s results, the values
attained by the function are assumed to approach a limit at a certain rate on
a sequence of continua of given hyperbolic diameters. By studying the balance
between the rate of convergence and the growth of the hyperbolic diameter, one
can make conclusions about the limit behavior of the function.

For example, Rung proved the following result. A path γ : [0, 1)→ D is called
a boundary path if |γ(t)| → 1 as t→ 1. LetM(r, f) = max{sup|z|<r log |f(z)|, 1}.

2.2. Theorem. [Run68, Corollary 1] Suppose that γ is a boundary path in the
unit disk D, and f is analytic in D such that for some finite w0 and some
positive function A(r), r ∈ [0, 1),

|f(z)− w0| ≤ exp

( −A(r)

(1− |z|)

)
,

for z ∈ |γ|, |z| ≥ r and

lim inf
r→1

M(r, f)/A(r) = 0,

then f ≡ w0.
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2.3. Remark. We may choose a sequence {γk} of subpaths of γ such that

1/2 ≤ min
z∈|γk|

|z| = rk → 1 as k →∞,

0 < lim inf
k→∞

ρ(|γk|) ≤ lim sup
k→∞

ρ(|γk|) <∞,

where ρ(|γk|) is the hyperbolic diameter of |γk|. The sets |γk| take the role of
the Koebe arcs in this result. The function A(r) gives the required speed of
convergence.

A very recent survey of the results of this type in the plane is given in [EE02].
Since the quasiconformal maps and quasiregular maps are natural general-

izations of conformal and analytic maps, respectively, the question arises as
to whether Lindelöf’s theorem holds for them as well. For the quasiconformal
maps, Gehring’s result (see [Geh63, p.21]) shows that this is indeed the case.

The situation is different for non-homeomorphic quasiregular mappings. The
counter-example of Rickman [Ric80] (see also [Ric93, p.193]) gives a bounded
quasiregular mapping f of the unit ball Bn, n ≥ 3 and a point b such that

(1) f has infinitely many asymptotic values at b,
(2) f has no angular limit at b.

Against this background, the question is: what results, if any, of this type can
be proved for quasiregular maps?

This question about the existence of angular limits has been studied by
M. Vuorinen in a series of articles in the 1970’s and 1980’s (see [Vuo81], [Vuo82]
and [Vuo85]). A survey article summarizing the results known in 1983 is [Vuo83].
An article of particular importance is [Vuo85], where Vuorinen outlines a re-
search plan that could be carried out provided that the following open problem
could be solved.

2.4. Question. [Vuo85, 3.8], [Vuo88, p. 193] Let n ≥ 2, K ≥ 1, and δ ∈ (0, 1).
Does there exist a number d0 = d0(n,K, δ) such that if f : Bn → Bn is a
nonconstant K-quasiregular mapping with |f(0)| ≥ δ, then cardZ ≤ d0, where
Z = {x ∈ Bn : |x| ≤ 1/2, f(x) = 0}?

This question was recently affirmatively answered by P. Järvi [Jär00]. Järvi
proved for quasiregular maps a variant of the Schwarz lemma with multiplicity.
The remarkable results of Järvi put the paper [Vuo85] into a new light and were
the main motivation for this study. His work along with the methods developed
by Rickman and Vuorinen are crucial for this work.

3. Main results

The main results in this work give criteria for a quasiregular mapping to have
a limit along tangential and non-tangential sets.

The next result is closely related to [Vuo85, Theorem 3.6.]. The difference is
that the estimates here involve the local topological index i(x, f). This result



8 ANTTI RASILA

gives a sufficient condition for a quasiregular mapping to have an angular limit
and also a stronger condition under which the mapping must be a constant.

3.1. Theorem. [Ras05, 5.4] Let f : Hn → Bn be a K-quasiregular mapping, let
tk = 2−k and f(tken) = 0 for all k = 0, 1, . . .

(1) If lim supk→∞ t
γ
kµ(tken, f) = ∞, where µ(tken, f) = d3i(tken, f)1/(n−1)

and γ = d6 log(1/β), then f ≡ 0.
(2) If µ(tken, f) → ∞ as k → ∞, then f has an angular limit 0 at the

origin.

Here d6 > 0, β ∈ (0, 1) and d3 ∈ (0, 1) depend only on n and K.

We also prove a similar result concerning the existence of a limit in a tangential
set. Note that the criterion of this result is between the conditions (1) and (2)
of Theorem 3.1 for α ∈ (1, 1 + log(2)/2).

3.2. Theorem. [Ras05, 5.9] Let f : Hn → Bn be a K-quasiregular mapping with
f(2−ken) = 0, for all k = 1, 2, . . . and let γ = d6 log(1/β), µk = d3i(2

−ken, f)1/(n−1),
where β ∈ (0, 1), d6 > 0 and d3 ∈ (0, 1) depend only on n,K.

Fix α > 1. Suppose that

log µk − 2γ(α− 1)k →∞ as k →∞.
Then f has limit 0 at the origin along the tangential set
E = {x = (x1, 0, . . . , 0, xn) : xn = xα1}.

The next result shows an explicit bound for the modulus of continuity of a
quasiregular map on a cone contained in the upper half space with the vertex
at the origin.

3.3. Theorem. [Ras05, 5.11] Let f : Hn → Bn be K-quasiregular, f(2−jen)→
α, with i(2−jen, f)1/(n−1) = j, and let x ∈ C(ϕ) for some ϕ ∈ (0, π/2). Let k be
such that 2−k−1 < |x| ≤ 2−k. Then

|f(x)− α| ≤M(|x|, n,K, ϕ)→ 0 as |x| → 0,

where

M(|x|, n,K, ϕ) = 2

(
2− s
1− s

)
sk ≤ 4

s(1− s) |x|
− log2 s,

Rϕ > 0 is a constant depending only on ϕ, s = (2/3)d3A ∈ (0, 1) , A = β1+d6Rϕ ∈
(0, 1) depend only on n,K, ϕ and β ∈ (0, 1), d3 ∈ (0, 1), d6 > 1 are constants
depending only on n,K. In particular, − log2 s = d3A log2(3/2) ∈ (0, 1).

In addition, we prove the following result, where a criterion for a quasiregular
map to be constant is given in terms of the local topological index on a sequence
of points taken from a cone.
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3.4. Theorem. [Ras05, 5.15] Let f : Hn → Bn be K-quasiregular, ϕ ∈ (0, π/2),
and let (bk), f(bk) = 0 be a sequence of points in Hn with bk → 0 as k →∞. If

i(bk, f)(bk)
d10
n →∞,

as k →∞, then f ≡ 0. Here d10 > 0 is a constant depending only on n,K.
In particular, if the points (bk) are in C(ϕ) and

i(bk, f)|bk|d10 →∞,
as k →∞, then f ≡ 0.

We also prove an improved version of [Vuo85, Corollary 4.9], which deals with
quasiconformal maps. The improvement is due to the improved estimate for the
modulus obtained by using the Teichmüller ring modulus function τ(s).

3.5. Theorem. [Ras05, 5.34] Let f : Bn → Rn be a quasiconformal mapping
or constant, α ∈ Rn and (Cj) a sequence of nondegenerate continua such that
Cj → ∂Bn and |f(x)− α| < Mj when x ∈ Cj, where Mj → 0 as j →∞. If

lim sup
j→∞

τ

(
1

d(Cj)

)(
log

1

Mj

)n−1

=∞,

then f ≡ α. In particular, if

lim sup
j→∞

(
log

1

d(Cj)

)1−n(
log

1

Mj

)n−1

=∞,

then f ≡ α.
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[Väi61] J. Väisälä: On quasiconformal mappings in space, Ann. Acad. Sci. Fenn. Ser. A

I 298 (1961), 1–36.
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MULTIPLICITY AND BOUNDARY BEHAVIOR OF
QUASIREGULAR MAPS

ANTTI RASILA

Abstract. We study the boundary behavior of a bounded quasiregular
mapping f : G→ Rn. In the main results, Lindelöf-type problems are studied
in connection with the local topological index i(x, f). The existence of certain
types of limits at a given boundary point b ∈ ∂G is shown. The assumptions
involve local topological index of the mapping f on a given sequence of points
approaching the boundary point b.

1. Introduction

The subject of this paper is the theory of quasiregular mappings in the n-
dimensional Euclidean space Rn. Quasiregular mappings were first introduced
by Yu. G. Reshetnyak in a series of papers in the 1960’s. The theory was
further developed by a group of Finnish mathematicians, O. Martio, S. Rickman
and J. Väisälä. Quasiregular mappings are a natural generalization of complex
analytic functions in the geometric sense. The theory extends the theory of
analytic functions in the plane and also generalizes to Rn. In fact, many of
the important results concerning quasiregular mappings are counterparts of the
classical theorems of complex analysis. Furthermore, this new point of view
contributes to the deeper understanding of the classical theory as well. Some
of the main results of the theory of quasiregular maps can be found in the
monographs [Res89], [Ric93] and [Vuo88].

A mapping is said to have an angular limit at a boundary point, if it has a
limit in each cone with vertex at this point. A function has an asymptotic value
at a boundary point b if it has a limit along a curve terminating at b. It is a
classical result by E. Lindelöf that a conformal mapping of the unit disk, having
an asymptotic value α at a boundary point b, also has an angular limit α at b.
Generalizations of the Lindelöf theorem can be found in the literature, e.g. a
similar result for quasiconformal mappings in R3 was proved by F. W. Gehring in
[Geh63]. Because Lindelöf’s theorem also holds for bounded analytic functions,
it was a natural question to explore whether a similar result holds for bounded
quasiregular maps of the unit ball in Rn for n ≥ 3. Rickman solved this question
by proving [Ric80b, Theorem 1.1] that this is not the case for n ≥ 3.

P. Koebe proved that if a bounded analytic function f tends to zero along
a sequence of arcs in the unit disk which approach a subarc in the boundary,
then f must be identically zero [Bie31, p.19]. Refinements of Koebe’s results

1
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were given by D. C. Rung in [Run68], where the relation between the hyperbolic
metric and the boundary behavior of an analytic function was studied. In Rung’s
results, the values attained by the function are assumed to approach a limit at a
certain rate on a sequence of continua of given hyperbolic diameter. By studying
the balance between the rate of convergence and the growth of the hyperbolic
diameter, one can make conclusions on the limit behavior of the function. An
extensive survey of Koebe-type results was recently published by V. Eiderman
and M. Essén [EE02].

M. Vuorinen [Vuo85], motivated by the work of Koebe, Rung and others,
proved similar results for quasiregular maps in Rn. In [Vuo85] Vuorinen also
raised an important question about the relationship between the growth and the
multiplicity of a bounded quasiregular mapping [Vuo85, p.100]. Very recently,
P. Järvi [Jär00] found an elegant solution to this question. Järvi’s work posed
the paper [Vuo85] in a new perspective. In this paper, we apply Järvi’s work in
[Jär00] to refine the results in [Vuo85]. For the purpose of easy reference, this
problem is given below in 3.1 and its solution in Corollary 3.7.

In what follows our main method is to combine Järvi’s result with Rickman’s
two-constants theorem. By applying this technique, we obtain improvements
and new variants of the various results for quasiregular mappings in Rn.

This paper is organized as follows:
In Section 2 we briefly introduce the basic tools, notation and terminology

used through this paper. The concepts introduced there include hyperbolic
metrics, local topological index, conformal modulus and capacity. Capacity
inequalities are the most important tools in the study of quasiregular mappings.
Capacity and radial densities are also introduced in Section 2. These quantities
are used in measuring the thickness of a set at a point in the sense of the
conformal capacity.

The main topic in Section 3 is the influence of the local topological index on
the value distribution of quasiregular mappings. This problem is studied in the
light of Järvi’s recent results. Järvi’s version of Schwarz lemma for quasiregular
mappings is presented here, together with some applications. For instance, we
prove a result of the same type as the main theorem of [RS86].

In Section 4, we apply Rickman’s two-constants theorem [Ric80a, Theorem
4.22] and combine it with Järvi’s results from Section 3. By means of the two-
constants theorem we extend Järvi’s local Schwarz lemma to a global version.
As applications, a few lemmas related to the measure density are also proved in
this section. Measure densities are quantities related to the measure theoretic
thickness of a set at a given point. They are related to the capacity and radial
densities introduced in Section 2.

The main results are presented in Section 5. Here the methods from Section
4 are applied to study the connection between the local topological index and
the limit behavior of the function. The study of the limit behavior involves
several different concepts of a limit. In the main results, a sequence of points
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approaching the boundary is studied. The function is assumed to have a limit
along the given sequence, and the topological indices are required to grow to
infinity at a sufficient rate. Some of our results are sharp as shown by an example
of P. Lappan [Lap03].

We obtain sufficient conditions for three types of conclusions:

(1) The function has an angular limit at the boundary point.
(2) The function has a limit along a tangential set at the point.
(3) The function is constant.

This paper was written under supervision of M. Vuorinen.

2. Notation and preliminary results

We shall follow standard notation and terminology adopted from [Väi71],
[Vuo88] and [Ric93]. For x ∈ Rn, n ≥ 2, and r > 0 let Bn(x, r) = {z ∈ Rn :
|z − x| < r}, Sn−1(x, r) = ∂Bn(x, r), Bn(r) = Bn(0, r), Sn−1(r) = ∂Bn(r),
Bn = Bn(1), Sn−1 = ∂Bn, Hn = {x ∈ Rn : xn > 0} and Bn

+ = Bn ∩Hn. The

space Rn = Rn∪{∞} is the one-point compactification of Rn. The surface area
of Sn−1 is denoted by ωn−1 and Ωn is the volume of Bn. It is well-known that
ωn−1 = nΩn and that

Ωn =
πn/2

Γ(1 + n/2)

for n = 2, 3, . . ., where Γ is Euler’s gamma function. The standard coordinate
unit vectors are denoted by e1, . . . , en. The Lebesgue measure on Rn is denoted
by m.

For nonempty subsets A and B of Rn, we let d(A) = sup{|x−y| : x, y ∈ A} be
the diameter of A, d(A,B) = inf{|x − y| : x ∈ A, y ∈ B} the distance between
the sets A and B, and we abbreviate d({x}, B) as d(x,B).

2.1. Hyperbolic metrics. The hyperbolic metrics ρHn and ρBn in the upper
half space Hn and the unit ball Bn are defined by

(2.2) cosh ρHn(x, y) = 1 +
|x− y|2
2xnyn

, x, y ∈ Hn,

and

(2.3) sinh2
(1

2
ρBn(x, y)

)
=

|x− y|2
(1− |x|2)(1− |y|2)

, x, y ∈ Bn,

respectively. If there is no danger of confusion, we denote both ρHn(x, y) and
ρBn(x, y) simply by ρ(x, y). A hyperbolic ball with the center x and the radius
M > 0 is denoted by D(x,M).

A well-known fact is that hyperbolic balls are balls in the Euclidean geometry
as well. This fact along with the observation that for, λ = eM , the points λten,
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(t/λ)en are in the boundary of D(ten,M), gives us the following formulas for
hyperbolic balls in Hn [Vuo88, (2.11)]:

(2.4)

{
D(ten,M) = Bn

(
(t coshM)en, t sinhM

)
,

Bn(ten, rt) ⊂ D(ten,M) ⊂ Bn(ten, Rt),

where r = 1− e−M and R = eM − 1.
Both for (Bn, ρBn) and (Hn, ρHn) one can define the hyperbolic distance in

terms of the absolute ratio. Since the absolute ratio is invariant under Möbius
transformations the hyperbolic metric also remains invariant under these trans-
formations.

2.5. Paths in Rn. A path in Rn is a continuous mapping α : ∆→ Rn, where
∆ is a (possibly unbounded) interval in R. The path α is called closed (open)
if ∆ is compact (open). The locus |α| of α is the image set α∆.

Let γ : [a, b]→ Rn be a closed path. The length `(γ) of the path γ is defined
by means of polygonal approximation (see [Väi71], pages 1-8). The path γ is
called rectifiable if `(γ) < ∞ and locally rectifiable if each closed subpath of
γ is rectifiable. If γ is a rectifiable path, then γ has a parameterization by
means of arc length, also called the normal representation of γ. The normal
representation of γ is denoted by γ0 : [0, `(γ)] → Rn. By making use of the
normal representation, one may define the integral over a locally rectifiable
path γ.

2.6. Modulus of a path family. Let Γ be a path family in Rn, n ≥ 2. Let
F(Γ) be the set of all Borel functions ρ : Rn → [0,∞] such that

∫

γ

ρ ds ≥ 1

for every locally rectifiable path γ ∈ Γ. The functions in F(Γ) are called admis-
sible for Γ. For 1 ≤ p ≤ ∞ we define

(2.7) Mp(Γ) = inf
ρ∈F(Γ)

∫

Rn
ρp dm

and call Mp(Γ) the p-modulus of Γ. If F(Γ) = ∅, which is true only if Γ contains
constant paths, we set Mp(Γ) = ∞. The n-modulus or conformal modulus is
denoted by M(Γ).

Let Γ1 and Γ2 be path families in Rn. We say that Γ2 is minorized by Γ1 and
write Γ1 < Γ2 if every γ ∈ Γ2 has a subpath in Γ1. If Γ1 < Γ2, F(Γ1) ⊂ F(Γ2)
and hence Mp(Γ1) ≥ Mp(Γ2). If Γ1 ⊃ Γ2 then Γ1 < Γ2.

The path families Γ1,Γ2, . . . are called separate if there exist disjoint Borel
sets Ei such that

(2.8)

∫

γ

χRn\Ei ds = 0

for all locally rectifiable γ ∈ Γi, i = 1, 2, . . ..
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2.9. Lemma. [Ric93, Proposition II.1.5] Let Γ,Γ1,Γ2, . . . be a sequence of path
families in Rn. Then

(1) Mp

(⋃
i Γi
)
≤∑i Mp

(
Γi
)
.

(2) If Γ1,Γ2, . . . are separate and Γ < Γi for all i, then

Mp(Γ) ≥
∑

i

Mp(Γi).

Equality holds if Γ =
⋃
i Γi.

(3) If Γ1,Γ2, . . . are separate and Γi < Γ for all i, then

Mp(Γ)1/(1−p) ≥
∑

i

Mp(Γi)
1/(1−p), p > 1.

For E,F,G ⊂ Rn we denote by ∆(E,F ;G) the family of all nonconstant
paths joining E and F in G. If G = Rn, we may omit G and simply denote
∆(E,F ;Rn) by ∆(E,F ). A domain G in Rn is called a ring, if Rn \ G has
exactly two components. If the components are E and F , we denote the ring
by R(E,F ).

In general, it is difficult to calculate the modulus of a given path family. The
following two lemmas give us an important tool, letting us obtain effective upper
and lower bounds for the modulus in many situations.

2.10. Lemma. [Väi71, 7.5.] Let 0 < a < b <∞, A = Bn(b) \B
n
(a) and

ΓA = ∆
(
Sn−1(a), Sn−1(b);A

)
.

Then

M(ΓA) = ωn−1

(
log

b

a

)1−n
.

2.11. Canonical ring domains. The complementary components of the
Grötzsch ring RG,n(s) in Rn are B

n
and [se1,∞], s > 1, and those of the

Teichmüller ring RT,n(s) are [−e1, 0] and [se1,∞], s > 0. We define two special
functions γn(s), s > 1 and τn(s), s > 0 by

{
γn(s) = M

(
∆(B

n
, [se1,∞])

)
= γ(s),

τn(s) = M
(
∆([−e1, 0], [se1,∞])

)
= τ(s),

respectively. The subscript n is omitted if there is no danger of confusion.
We shall refer to these functions as the Grötzsch capacity and the Teichmüller
capacity. It is well-known [Vuo88, Lemma 5.53] that for all s > 1

γn(s) = 2n−1τn(s2 − 1)

and that τn : (0,∞)→ (0,∞) is a decreasing homeomorphism.

2.12. Lemma. [AVV97, (8.65)] The following estimate holds for τn(t), t > 0:

τn(t) ≥ 21−nωn−1

(
log
(λn

2
(
√

1 + t+
√
t)
))1−n

,
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where λn ≥ 2 is the Grötzsch constant depending only on n.

The value of λn is known only for n = 2, namely λ2 = 4. For n ≥ 3 it is
known that 20.76(n−1) ≤ λn ≤ 2en−1. For more information on the Grötzsch ring
constant λn, see [AVV97, p. 169].

2.13. ACLp mappings. For j = 1, . . . , n let Rn
j = {x ∈ Rn : xj = 0} and

let Tj : Rn → Rn
j be the orthogonal projection Tjx = x − xjej. Let G ⊂ Rn be

an open set and u : G → Rn a continuous function. The function u is called
absolutely continuous on lines (ACL), if for every cube Q with Q ⊂ G, the set
Aj ⊂ TjG of all points such that the function t 7→ u(z+ tej), z+ tej ∈ Q, is not
absolutely continuous as a function of single variable, satisfies mn−1(Aj) = 0 for
all j = 1, . . . , n.

Such a mapping has partial derivatives Dif(x) a.e. in G, and they are Borel
functions [Väi71, 26.4]. If p ≥ 1 and the partial derivatives of f are locally
Lp-integrable, f is said to be in ACLp or in ACLp(G).

2.14. Capacity of a condenser. A condenser in Rn is a pair E = (A,C),
where A is open in Rn and C is a compact subset of A. The p-capacity of E is
defined by

(2.15) cap pE = inf
u

∫

A

|∇u|pdm, 1 ≤ p <∞,

where the infimum is taken over all nonnegative functions u in ACLp(A) with
compact support in A and u|C ≥ 1. The n-capacity of E is called the conformal
capacity of E and denoted by capE.

2.16. Remark. It is well-known [Ric93, Proposition II.10.2] that

(2.17) cap (A,C) = M
(
∆(C, ∂A;A)

)

for all condensers (A,C) in Rn.

2.18. Sets of zero capacity. A compact set E in Rn is said to be of capacity
zero, denoted capE = 0, if there exists a bounded set A with E ⊂ A and
cap (A,E) = 0. A compact set E ⊂ Rn, E 6= Rn is said to be of capacity zero if
E can be mapped by a Möbius transformation onto a bounded set of capacity
zero. Otherwise E is said to be of positive capacity, and we write capE > 0.

2.19. Capacity and radial densities. In what follows we need a condition
for the thickness of a set at a point. For this purpose we introduce the following
definition.

2.20. Definition. Let

Mt(E, r, x) = M
(
∆(Sn−1(x, t),B

n
(x, r) ∩ E;Rn)

)
,

M(E, r, x) = M2r(E, r, x)
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whenever E ⊂ Rn, x ∈ Rn and 0 < r < t. We define

cap dens(E, x) = lim inf
r→0

M(E, r, x),

cap dens(E, x) = lim sup
r→0

M(E, r, x),

where cap dens(E, x) is called the lower and cap dens(E, x) the upper capacity
density of E at x.

It is usually difficult to calculate or directly estimate the capacity density of
a given set E. Hence, we introduce another related definition which is useful in
obtaining lower bounds for the capacity density.

2.21. Definition. Let x ∈ Rn, E ⊂ Rn. If the set Ax = {r > 0 : Sn−1(x, r) ∩
E 6= ∅} is measurable we define the lower and upper radial densities of E at x,
respectively, by

rad dens(E, x) = lim inf
r→0

m1(Ax ∩ (0, r))

r
,

rad dens(E, x) = lim sup
r→0

m1(Ax ∩ (0, r))

r
,

where m1 is Lebesgue measure on R.

The relationship between capacity and radial densities is given by the follow-
ing lemma.

2.22. Lemma. [Vuo80, Lemma 2.2.] Let E be an open or compact subset of Rn
with 0 ∈ E and let A = {r > 0 : Sn−1(r) ∩ E 6= ∅}. Then there exists cn > 0
depending only on n such that for each r > 0

M(E, r, 0) ≥ cn log
2r

2r −m1(A ∩ (0, r))
.

In particular, if rad dens(E, 0) = δ, then

cap dens(E, 0) ≥ cn log
2

2− δ .

2.23. Remark. The constant cn in 2.22 has an expression cn = 2nbn, where bn
is the constant from the spherical cap inequality. The number bn > 0 has the
following expression

{
bn = 21−2nωn−2I

1−n
n , b2 = 1

2π
,

In =
∫ π/2

0
sin

2−n
n−1 t dt.

See also [Väi71, 10.2 and 10.9.] and [Vuo88, 5.28. and 5.30.].
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2.24. Quasiregular mappings. A mapping f : G→ Rn, n ≥ 2, of a domain
G in Rn is called quasiregular if f is in ACLn, and there exists a constant K,
1 ≤ K <∞ such that (see [Ric93], pages 10–11)

|f ′(x)|n ≤ KJf (x), |f ′(x)| = max
|h|=1
|f ′(x)h|,

a.e. in G, where f ′(x) is the formal derivative. The smallest K ≥ 1 for which
this inequality is true is called the outer dilatation of f and denoted by KO(f).
If f is quasiregular, then the smallest K ≥ 1 for which the inequality

Jf (x) ≤ Kl(f ′(x))n, l(f ′(x)) = min
|h|=1
|f ′(x)h|,

holds a.e. in G is called the inner dilatation of f and denoted by KI(f).
The maximal dilatation of f is the number K(f) = max{KI(f), KO(f)}. If
K(f) ≤ K, f is said to be K-quasiregular. A nonconstant quasiregular map-
ping is discrete and open. A quasiregular homeomorphism f : G→ fG is called
quasiconformal.

The following definitions for KI(f), KO(f) are given in [Väi71, p.41] for a
homeomorphism f : G → G′. For a sense-preserving homeomorphism f these
definitions coincide with the ones given above:

(2.25) KI(f) = sup
M(fΓ)

M(Γ)
, KO(f) = sup

M(Γ)

M(fΓ)
,

where the suprema are taken over all path families Γ in G such that M(Γ),
M(fΓ) are not simultaneously 0 or ∞.

The following lemma gives a definition of quasiconformality in terms of the
modulus of the path family. This so-called geometric definition is extensively
used in the literature. This geometric characterization gives an important
method for studying the quasiconformal mappings, and it has many applica-
tions.

2.26. Lemma. [Väi71, Theorem 34.3.] A homeomorphism f : G → G′ is qua-
siconformal if and only if

M(Γ)/KO(f) ≤ M(f(Γ)) ≤ KI(f)M(Γ)

for every path family Γ in G.

2.27. Multiplicity and normal domains. Let f : G→ Rn be a quasiregular
mapping. We denote by i(x, f) the infimum of supy cardf−1(y) ∩ U where U
runs through the neighborhoods of x. The number i(x, f) is called the local
(topological) index of f at x. For r > 0 and a ∈ Rn, the counting function
n(r, a) is defined by

n(r, a) =
∑

x∈f−1(a)∩Bn(r)

i(x, f).
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Let f : G→ Rn be a discrete and open mapping. A domain D ⊂⊂ G is called
a normal domain for f if f∂D = ∂fD. A normal neighborhood of x is a normal
domain D such that D ∩ f−1(f(x)) = {x}.

3. Consequences of P. Järvi’s results

In this section we study the influence of the local topological index i(x, f)
on the behavior of a quasiregular mapping following a recent paper by Järvi
[Jär00]. Applying Järvi’s results we give a new proof of a result of Rickman and
Srebro [RS86] type. Järvi’s results presented here will have several applications
in the later sections.

Järvi’s result was motivated by the following question:

3.1. Question. [Vuo85, 3.8], [Vuo88, p. 193] Let n ≥ 2, K ≥ 1, and δ ∈ (0, 1).
Does there exist a number d0 = d0(n,K, δ) such that if f : Bn → Bn is a
nonconstant K-quasiregular mapping with |f(0)| ≥ δ, then cardZ ≤ d0, where
Z = {x ∈ Bn : |x| ≤ 1/2, f(x) = 0}?

In order to answer the question Järvi proved the following theorem, which
yields the solution to 3.1 with

d0(n,K, δ) = d1

[(
log 2

)−3
log
(
1/δ
)]n−1

exp
(
d2

(
log 2

)(2−2n)/n
)
,

where constants d1 > 0 and d2 > 0 depend only on n,K. (See Corollary 3.7 and
Theorem 3.12 for details.)

3.2. Theorem. [Jär00, Theorem 3.8] Let f : Bn → Bn be a K-quasiregular
mapping. Then there is a constant d3 ∈ (0, 1) depending only on n and K such
that

|f(x)| ≤ exp
(
− d3

∫ 1
2

2
3
|x|

n(t, 0)1/(n−1)

t
dt
)

for all x ∈ Bn.

The constant d3 has the following expression

d3 =
(K2

IKO)1/(1−n)

d4

,

where d4 > 1 is the constant in the Harnack inequality (setting r = 3/2 and
R = 2 in [Ric93, Theorem VI.7.4]) depending only on n and K.

3.3. Schwarz lemma. The Schwarz lemma states that if f : B2 → B2 is
analytic, and f(0) = 0, then |f(z)| ≤ |z| for z ∈ B2. The counterpart of the
Schwarz lemma for quasiregular maps f : Bn → Bn with f(0) = 0 is given in
[Ric93, III.1.10.], [Vuo88, 11.2.].

The next result can be regarded as a refined version of this result involving
the local topological index i(0, f). The idea here is that the estimate becomes
better as i(0, f) grows. In fact, it is possible to show [Car50, 141.] that for
an analytic function f : B2 → B2 with f(0) = 0 and i(0, f) = p > 1 we have
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|f(z)| ≤ |z|p for all z ∈ B2. Theorem 3.4 is a counterpart of this result for
quasiregular mappings in Rn.

3.4. Theorem. [Jär00, 3.9.] Let f : Bn → Bn be a K-quasiregular mapping
with f(0) = 0. Then

|f(x)| ≤ d5|x|µ exp

(
− d3

∫ 1
2

2
3
|x|

n(t, 0)1/(n−1) − i(0, f)1/(n−1)

t
dt

)

for all x ∈ Bn, where d3 ∈ (0, 1), is a constant depending only on n, K as
in Theorem 3.2, d5 = (4/3)µ and µ = d3i(0, f)1/(n−1). In particular, |f(x)| ≤
(2/3)µ for all |x| ≤ 1/2.

Previously, a result similar to the second part of Theorem 3.4 was known to
hold only locally, in a neighborhood of 0, but nothing could be said about the
size of this neighborhood. See e.g. [Ric93, Theorem III.4.7] and the references
given in [Ric93, III.4.9].

Theorem 3.2 gives a new result of the same type as the main result of S.
Rickman and U. Srebro in [RS86].

3.5. Theorem. Let n ≥ 2 be an integer and K ≥ 1. Let d3 ∈ (0, 1) be as in
Theorem 3.2, and let f : G → Bn be a nonconstant K-quasiregular mapping.
Fix x0 ∈ G with µ ≡ d3i(x0, f)1/(n−1) > 1 and choose t0 ∈ (0, d(x0, ∂G)/2) such
that B

n
(x0, t0) is a subset of a normal neighborhood of x0.

Then there exist integers m > 2 and j ∈ {1, . . . ,m}, such that if
x1, . . . , xm ∈ B

n
(x0, t0) with |x0 − xm| ≥ t0 > 0 and |xk−1 − xk| < 10t0/m for

all k = 1, . . . ,m, then i(xj, f) < i(x0, f).

Proof. Suppose that this is not the case. Let x1, . . . , xm be as the points in the
theorem with i(xj, f) ≥ i(x0, f) > 1 for all j = 1, . . . ,m. For each xj, we define
a quasiregular mapping gj by gj(z) = 1

2
(f(t0z + xj) − f(xj)). We note that

gj : Bn → Bn with gj(0) = 0 and xj + t0z ∈ G for z ∈ Bn. By applying the
estimate of Theorem 3.4 to each gj, we may conclude that

|f(xj−1)− f(xj)| ≤ 2d5

∣∣∣xj−1 − xj
t0

∣∣∣
µ

,
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where d5 is as in Theorem 3.4. Then by the choice of t0

0 < d
(
f(x0), fSn−1(x0, t0)

)

≤ |f(x0)− f(xm)|

≤
m∑

j=1

|f(xj)− f(xj−1)|

≤
m∑

j=1

2d5
|xj − xj−1|µ

tµ0

≤ 2d5m
|10t0/m|µ

tµ0
≤ 2 · (40/3)µd5m

1−µ.

This is a contradiction, if m is large enough, as µ > 1 and
d
(
f(x0), fSn−1(x0, t0)

)
> 0 does not depend on m. ¤

Let R > 0 and let f : Bn(R)→ Rn be quasiregular. For r ∈ (0, R), we set

M(r, f) = M(r) = max{|f(x)| : x ∈ Sn−1(r)}.
Furthermore, if f is bounded, we define

M(R) = sup{|f(x)| : x ∈ Bn(R)}.
3.6. Lemma. [Jär00, Lemma 3.1.] Let r > 0 and let f : Bn(2r) → Rn be a
bounded K-quasiregular mapping. Then there is a constant
d7 = d8(ωn−1/KI)

1/(n−1) ∈ (0, 1) depending only on n and K such that

M(3
2
r)

M(2r)
≤ exp

(
− d7 n(r, 0)1/(n−1)

)
,

where d8 ∈ (0, 1) is the constant in [Ric93], Lemma VII.4.7 depending only on
n and K.

3.7. Corollary. [Jär00, Corollary 3.6.] Let f : Bn → Bn be a K-quasiregular
mapping with |f(0)| ≥ δ > 0. Then n( 1

2
, 0) ≤ ( 1

d7
log 1

δ
)n−1, where d7 > 0 is the

constant in Lemma 3.6.

3.8. Lemma. [Väi71, Example 16.2.] Let s ∈ (0, 1) and let h : B
n → B

n
be the

mapping

h(x) =

{
|x|ψ−1x if x ∈ B

n \ {0},
0 if x = 0,

where ψ = log 2

log 1
s

. Then h is quasiconformal and K(h) ≤ max{ψn−1, ψ1−n}.

3.9. Variational kernels. Let W 1,n(U) denote the Sobolev space consisting
of all real valued functions u in Ln(U) with weak first order partial derivatives
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also in Ln(U). Here U is an open set in Rn. The closure of C∞0 (U) in W 1,n(U)
is denoted by W 1,n

0 (U) (see e.g. [Ric93, pp. 5–7]).
Let F : U × Rn → R be a variational kernel (see [Ric93, VI.1.3]). Let v ∈

W 1,n(U). We say that u ∈W 1,n(U) is F -extremal for boundary values v if

(1) u− v ∈ W 1,n
0 (U) and

(2) ∫

U

F (x,∇u(x))dx ≤
∫

U

F (x,∇w(x))dx

for all w ∈ W 1,n(U) with w − v ∈W 1,n
0 (U).

A function u ∈ W 1,n
loc (U) is a (free) F-extremal if u|V is F -extremal for the

boundary values u|∂V whenever V ⊂⊂ U .

3.10. Lemma. Let G ⊂ Rn be a domain, and let f : G→ Rn be a nonconstant
quasiregular mapping. Set FI(x, h) = |h|n and let f#FI : G × Rn → R denote
the pullback kernel of FI with respect of f . Then f#FI satisfies the inequality

α|h|n ≤ f#FI(x, h) ≤ β|h|n

for all h ∈ Rn a.e. x ∈ G with α = KO(f)−1 and β = KI(f).

For the proof and discussion, see [Ric93], pages 130 and 135–136.

Let C ⊂ U be compact. If ϕ is a function in C∞0 (U) such that 0 ≤ ϕ ≤ 1 and
ϕ|V = 1 for some neighborhood V of C, we let u ∈ W 1,n(U \ C) ∩ C(U \ C) be
the F -extremal with boundary values ϕ. Then the function u is independent
of the choice of ϕ and 0 ≤ u ≤ 1. We call u the F -potential of the condenser
(U,C). The integral ∫

U\C
F (·,∇u)dm

is called the F -capacity of (U,C) and denoted by cap F (U,C).

3.11. An upper bound for multiplicity. In the statement of Problem 3.1
the role of the constant 1/2 is not very important. Next we show how Järvi’s
solution to Problem 3.1 can be modified in order to establish a result where 1/2
is replaced by an arbitrary s ∈ (1/2, 1).

3.12. Theorem. Let f : Bn → Bn be a K-quasiregular mapping with |f(0)| ≥
δ > 0 and 1/2 ≤ s < 1. Then

n(s, 0) ≤ d1

[(
log

1

s

)−3

log
1

δ

]n−1

exp

(
d2

(
log

1

s

)(2−2n)/n
)
,

where the constants d1 > 0 and d2 > 0 depend only on K and n.

Proof. Let g = f ◦ h−1, where h is as in Lemma 3.8. Then g is quasiregular and
K(g) ≤ K(f)K(h−1). Clearly g satisfies the conditions of Corollary 3.7.
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Let r > 0, C ⊂ Bn(r), V = Bn(2r) and let u be the g#FI-potential of
the condenser (V,C), as in [Ric93, VII.4.7]. By Lemma 3.10 g#FI satisfies the
conditions of [Ric93, VII.4.7], yielding the estimate

(3.13) u(x) ≥ d8cap(V,C)1/(n−1)

for x ∈ B
n
(3r/2) \ C. We study the constant d8 ∈ (0, 1) in (3.13) which is the

same as the constant d8 in Lemma 3.6. The proof of this lower bound gives for
each ε > 0 also the inequality

αcap(V,C) ≤ βdn−1
4

(
m+ ε

)n−1
cap
(
V,B

n
(3r

2

))
,

where α = KO(g)−1, β = KI(g), m = minSn−1(3r/2) u > 0, and d4 > 1 is the
constant in Harnack inequality for nonnegative continuous F -extremals, [Ric93,
Theorem VI.7.4]. The constant d4 has the representation

d4 = exp

[
2
(
b−1
n

( n

n− 1

)n
βα−1ωn−1

)1/n(
log

4

3

)−1
]
,

where bn > 0 is as in Remark 2.23. It follows that

(α
β

)1/(n−1)

cap
(
V,C

)1/(n−1) ≤ d4

(
m+ ε

)
cap

(
V,B

n
(3r

2

))1/(n−1)

,

and hence
(α
β

)1/(n−1)
[
cap
(
V,B

n
(3r

2

))1/(n−1)

d4

]−1

cap
(
V,C

)1/(n−1) ≤ m+ ε.

By Lemma 2.10

cap

(
V,B

n
(3r

2

))
= cap

(
Bn
(

2r
)
,B

n
(3r

2

))
= ωn−1

(
log

4

3

)1−n
.

Since by [Ric93, VI.7.16] u(x) ≥ m for x ∈ Bn(3r/2) \ C,

d8 =
(α
β

)1/(n−1)(
log

4

3

)
d−1

4 ω
1/(1−n)
n−1 .

Now we get the estimate for the constant d7 in Lemma 3.6,

d1−n
7 ≤

(
log

4

3

)1−n
KI(g)2KO(g) exp

(
En

(
KI(g)KO(g)

)1/n
)
,

where

En = 2
(
b−1
n ωn−1

)1/n
(

n

n− 1

)(
log

4

3

)−1

.

By the fact that

max{KI(g), KO(g)} = K(g) = K(f ◦ h−1) ≤
(

log 1
s

log 2

)1−n
K(f),
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we may conclude

d1−n
7 ≤

(
log

4

3

)1−n
K(f)3

(
log 1

s

log 2

)3(1−n)

exp

(
EnK(f)2/n

(
log 1

s

log 2

)(2−2n)/n)
.

By defining

d1 = K(f)3
(

log
4

3

)1−n(
log 2

)3(n−1)
, d2 = K(f)2/nEn(log 2)(2n−2)/n,

and by applying Corollary 3.7 we obtain

n(s, 0) ≤ d1

[(
log

1

s

)−3

log
1

δ

]n−1

exp

(
d2

(
log

1

s

)(2−2n)/n
)
.

¤

4. Applications of two-constants theorem

In this section, the main idea is to combine Rickman’s two-constants theorem
with the results of Järvi from Section 3. This allows us to extend the estimates
given by Järvi’s results to hold in the whole domain of definition. The results
proven here will be applied later in Section 5.

In Rickman’s two-constants theorem we consider a quasiregular mapping,
f : G→ Rn in two concentric balls, not necessarily contained in G, and obtain a
growth estimate for the mapping f . This result plays a central role in Rickman’s
proof of his version of Picard’s theorem for quasiregular mappings in Rn.

4.1. Theorem. [Ric80a, Theorem 4.22.] Let f : G → Rn be a nonconstant
K-quasiregular mapping, let 0 < m < M , and suppose

(1) |f(x)| ≤M if x ∈ G ∩Bn(z, s),
(2) lim supx→y |f(x)| ≤ m if y ∈ ∂G ∩B

n
(z, s).

Then there exist r0 ∈ (0, 1/2), C ∈ (0, ω
1/(1−n)
n−1 ) depending only on n and K

such that for all r ∈ (0, r0) and all x ∈ Bn(z, rs) ∩G
|f(x)| ≤ exp

(
β logm+ (1− β) logM

)
,

where

β = Ccap (Bn(z, s),B
n
(z, rs) \G)1/(n−1) log(1/r) ∈ [0, 1).

From the two-constants theorem one may derive a version in which the func-
tion is bounded with a constant ε on a compact subset F of G, and a bound is
obtained in the whole domain G. This version is due to M. Vuorinen.

The bound involves the quasihyperbolic distance kG(x, y) between two points
x, y ∈ G, see e.g. [Vuo88, p.33]. It is well-known that kHn = ρHn and ρBn ≤
2kBn ≤ 2ρBn .
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4.2. Lemma. [Vuo81, Lemma 2.22.] Let f : G→ Bn be K-quasiregular, F ⊂ G
compact, kG(F ) ≤ 2, cap(G,F ) ≥ δ > 0, and |f(x)| ≤ ε for x ∈ F . Then there
is a number β ∈ (0, 1) depending only on n,K, δ and d(F )/d(F, ∂G) such that

|f(y)| ≤ εA; A = β(1+d6kG(y,F )),

for y ∈ G and d6 = 1/ log(1 + λK) > 1, where λK ∈ (0, 1/2) is a constant
depending only on n and K.

F

fF
fG

f

G
εΑ

ε

Figure 1. The mapping f of Lemma 4.2.

4.3. Lemma. Let r ∈ (0, 1/2], and let f : Bn → Bn be a K-quasiregular map-
ping with f(0) = 0. Then

|f(y)| ≤
(4

3
r
)µA

; A = β1+d6ρ(y,0) ∈ (0, 1)

for y ∈ Bn, where µ = d3i(0, f)1/(n−1), d3 ∈ (0, 1), d6 > 1 are constants depend-
ing only on n, K as in Lemma 4.2 and β = β(r, n,K) ∈ (0, 1).

Proof. By Theorem 3.4,

|f(x)| ≤
(4|x|

3

)µ
,

for x ∈ Bn(r), and by applying Lemma 4.2 with G = Bn and F = B
n
(r), we

have

|f(y)| ≤
(4r

3

)µA
; A = β1+d6ρ(0,y),

for y ∈ Bn. ¤

4.4. Sequential limits. Next assume that a mapping f has a limit along a
sequence of points tending to a point in the boundary. We try to find conditions
under which the mapping has a limit in a larger set containing the sequence.

We observe that for a continuous f : Bn → Rn, bk ∈ Bn, bk → b ∈ ∂Bn,
f(bk) → β and β ∈ Rn, it is easy to see that there is an open set E, with
bk ∈ E, b ∈ E such that f(x)→ β when x ∈ E, x→ b.
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It should be noted that if bk → b ∈ ∂Bn and lim f(bk) = β, it does not
necessarily follow that f has a limit along the set E =

⋃∞
k=1 D(bk,m) for m > 0.

To see this consider the map f : B2 → B2 \ {0} defined by formula f(z) =
exp(g(z)), where g(z) = −(1 + z)/(1− z) for z ∈ B2. Fix β ∈ B2 \ {0} and let
bk ∈ B2, bk → 1 with lim f(bk) = β. Then there is m > 0 such that fD(bk,m) is
a set independent of k. This example shows that in the next result it is essential
that µk = d3i(zk, f)1/(n−1) →∞ as k →∞.

4.5. Lemma. Let (zk) be a sequence of points in Hn with zk = |zk|en and zk →
0. Let f : Hn → Bn be K-quasiregular with f(zk) = 0, let d3, β = β(1/2, n,K),
d6 be as in Lemma 4.3 and let µk ≡ d3i(zk, f)1/(n−1) →∞. If

Mk =
log µk

2d6 log 1
β

,

and E =
⋃∞
k=1 D(zk,Mk), then f(x)→ 0 as x→ 0, x ∈ E.

Proof. Let r = 1/2. Let gk be a Möbius transformation with gk(B
n) = Hn and

gk(0) = zk. Then by Lemma 4.3

|f ◦ gk(y)| ≤
(
2/3
)µkA,

for y ∈ Bn, where A is as in Lemma 4.3.
We need to find Mk such that for ρ(y, zk) ≤Mk,

µkβ
1+d6Mk →∞.

This holds for

βd6Mk =
1√
µk
,

which is equivalent to

Mk =
log µk

2d6 log 1
β

.

¤

4.6. Lemma. Let DM = D(en,M) and VM = Bn
+ \DM . Then

m(VM)

m(Bn
+)
≤ 2Ωn−1

Ωn

1

coshM
.

In particular,

m(VM)

m(Bn
+)
→ 0 as M →∞.

Proof. Let sM = d(∂DM ∩ Sn−1, ∂Hn), as in Figure 2.
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e

sinh(M)

0 1
e1

n

sM

M
x

Figure 2. Ball DM of Lemma 4.6.

By (2.4) we have

D(en,M) = Bn
(
(coshM)en, sinhM

)
.

By similar triangles we obtain the equality

sM =
1

coshM
.

Because m(VM) ≤ sMΩn−1 and m(Bn
+) = Ωn/2, we have

0 ≤ m(VM)

m(Bn
+)
≤ sM

2Ωn−1

Ωn

.

We conclude that
m(VM)

m(Bn
+)
≤ 2Ωn−1

Ωn

1

coshM

and thus sM → 0 as M →∞. ¤

4.7. Measure densities. Let E ⊂ Rn be a measurable set and x ∈ Rn. The
upper measure density of E at x is defined to be

θn∗(E, x) = lim sup
r→0

m
(
E ∩B

n
(x, r)

)

Ωnrn

where Ωn = m(Bn) and the lower measure density θn∗ (E, x) is the corresponding
lim inf. If θn∗(E, x) = θn∗ (E, x), this common value is the measure density
θn(E, x) of E at x.
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4.8. Lemma. Let zk ∈ (0, en), |zk| > |zk+1| and |zk| → 0. Let f : Hn → Bn

be a K-quasiregular mapping with f(zk) = 0, and µk = c2i(zk, f)1/(n−1) → ∞.
Then there is a set E such that {zk} ⊂ E, limx→0, x∈E f(x) = 0 and θn∗(E, 0) =

θn(Hn, 0). Furthermore, rad dens(E, 0) = 1.

Proof. By Lemma 4.5 we find Mk such that limx→0, x∈E f(x) = 0 if E =⋃∞
k=1 D(zk,Mk), and by Lemma 4.6

lim sup
k→∞

m(E ∩Bn
+(|zk|))

m(Bn
+(|zk|))

= 1.

It follows from (2.2) that rad dens(E, 0) = 1. ¤

4.9. Remark. An explicit construction for a function satisfying the conditions
of Lemma 4.8 is given in Example 5.21.

5. Multiplicity and convergence

In this section we use Järvi’s method to refine some results of Vuorinen [Vuo85]
concerning the speed of convergence of quasiregular mappings to a constant
along a sequence of points or continua. In the complex plane similar questions
for analytic functions have been studied by D. C. Rung [Run68] and recently
by V. Eiderman and M. Essén in [EE02].

In the main results of this section we give criteria for a quasiregular map-
ping to have an angular limit and a limit along a tangential set. The criteria
studied here involve the local topological index of the mapping on a sequence of
points approaching the boundary. An example by P. Lappan gives an explicit
construction of a mapping in the complex plane with no angular limit and local
topological index approaching infinity on a sequence of points.

5.1. Angular limits. If ϕ ∈ (0, π/2), then we write

C(ϕ) = {z = (z1, . . . , zn) ∈ Hn : zn > |z| cosϕ}.

Similarly we define the cone at the point b, C(b, ϕ) for b ∈ ∂Hn. For b ∈ ∂Bn,
we denote by C(b, ϕ) the cone {z ∈ Rn : (b|b− z) > |b− z| cosϕ}. Here (x|y) is
the inner product

∑n
i=1 xiyi.

Let f : Hn → Y be a locally integrable function, where Y = Rn or Y = R,
and let α ∈ Y . Then the function f is said to have an angular limit α at 0 if
for each ϕ ∈ (0, π/2), f(x)→ α when x→ 0 and x ∈ C(ϕ).

If E is a set in Hn with 0 ∈ E and E ⊂ C(ϕ) for some ϕ ∈ (0, π/2), then we
say that E is non-tangential at 0. Otherwise we say that E is tangential.
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0

ϕ

Figure 3. The cone C(ϕ)

We need the following two results by Vuorinen to prove the main results.

5.2. Theorem. [Vuo81, Theorem 3.1.] Let f : Bn → Bn be a quasiregular
mapping, b ∈ Sn−1, ϕ0 ∈ (0, π/2) and let E ⊂ C(b, ϕ0). If f(x) tends to 0 when
x approaches b through E and if cap dens(E, b) = δ > 0 then f has an angular
limit 0 at b, i.e. limx→b,x∈C(b,ϕ) f(x) = 0 for all ϕ ∈ (0, π/2).

5.3. Lemma. [Vuo85, Lemma 3.2.] For n ≥ 2 and K ≥ 1 there exist positive
numbers C and λK ∈ (0, 1/2) with the following properties. If f : Hn → Bn is a
bounded K-quasiregular mapping, F is a continuum in Hn with ρ(F ) ≥ w > 0
and if |f(y)− α| ≤ ε for y ∈ F , then

|f(x)− α| ≤ εA(1 + |α|)1−A; A = β1+d6ρ(x,F )

for all x ∈ Hn, where ρ stands for the hyperbolic metric,

β = a1(min{w, log(1 + λK)})1/(n−1) ∈ (0, 1)

d6 = 1/ log(1 + λK) > 1; a1 = Ca2

and a2 > 0 depends only on n.

The next result is closely related to [Vuo85, Theorem 3.6.]. The difference is
that the estimates here involve the local topological index i(x, f). This result
gives a criterion for a quasiregular mapping to have an angular limit.

5.4. Theorem. Let f : Hn → Bn be a K-quasiregular mapping, let d6, β be as
above, d3 as in Theorem 3.2 and let tk = 2−k and f(tken) = 0 for all k = 0, 1, . . .

(1) If lim supk→∞ t
γ
kµ(tken, f) = ∞, where µ(tken, f) = d3i(tken, f)1/(n−1)

and γ = d6 log(1/β), then f ≡ 0.
(2) If µ(tken, f) → ∞ as k → ∞, then f has an angular limit 0 at the

origin.

Proof. (1) Let x ∈ Hn with f(x) = 0 and r ∈ (0, d(x, ∂Hn)). We denote by fx,r
the restriction of f to the ball Bn(x, r). We define

gx,r(z) =
1

2
fx,r(x+ rz), z ∈ Bn.
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Now gx,r : Bn → Bn is K-quasiregular and gx,r(0) = 0. It follows from Theorem
3.4, that

|gx,r(z)| ≤ d5|z|µ(0,gx,r) =
(4

3
|z|
)µ(0,gx,r)

≤
(2

3

)µ(0,gx,r)

,

for z ∈ Bn(0, 1/2).
We choose x = tken and r = tk. By the definition of gx,r

|f(w)− f(tken)|
2

≤
(2

3

)µ(tken,f)

for w ∈ [tken, tk+1en]. Then ρ(tken, tk+1en) = | log 1
2
| > 0 and by Lemma 5.3

|f(en)| ≤ 2A
(2

3

)µ(tken,f)A

; A = β1+d6 log(1/tk) = βtγk

where γ = d6 log(1/β) > 0. It follows from the hypothesis, that f(en) = 0 and
by similar argument, f(x) = 0 for all x ∈ (0, en]. Hence f ≡ 0 and the claim
(1) is proved.

(2) Let gx,r(z) be as above. By Theorem 3.4 we get

gtken,tk(z) ≤ d5|z|µ(tken,f) ≤ (1/3)µ(tken,f)

for z ∈ Bn(0, 1/4), where µ(x, f) is defined as above. Now

1

2
|f(w)− f(tken)| ≤ (1/3)µ(tken,f)

and it follows
|f(w)| ≤ 2(1/3)µ(tken,f)

for w ∈ Ek = Bn(tken, tk/4). Let E = ∪k∈NEk. It is clear, that E is open and
rad dens(E, 0) > 0. Then it follows by Lemma 2.22 that cap dens(E, 0) > 0 and
by Theorem 5.2 the mapping f has the angular limit 0 at the origin if

2(1/3)µ(tken,f) → 0,

i.e. µ(tken, f)→∞ as k →∞. ¤
5.5. Lemma. Let α > 1, k = 1, 2, . . .. Then there is k0 ≥ 1 such that for k ≥ k0

(α− 1)k/2 ≤ ρ(xk, yk) ≤ 2(α− 1)k,

where xk = en
√
t2k + t2αk , yk = tke1 + tαken and tk = 2−k.

Proof. Let C =
√

1 + 1/(2α− 2). Then

t
2(1−α)
k ≤ t

2(1−α)
k + 1 ≤ C2t

2(1−α)
k

and hence

(5.6) t1−αk ≤
√
t2k + t2αk
tαk

≤ Ct1−αk .

We note that
1

2
exp(x) ≤ cosh(x) ≤ exp(x)
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for x ≥ 0 and thus

(5.7)
1

2
exp

(
ρ(x, y)

)
≤ 1 +

|x− y|2
2xnyn

≤ exp
(
ρ(x, y)

)

for all x, y ∈ Hn. Now

|xk − yk|2 = 2
(
t2k + t2αk − tαk

√
t2k + t2αk

)
,

from which we obtain

1 +
|xk − yk|2

2xnyn
=

√
t2k + t2αk
tαk

.

This, together with (5.6) and (5.7) gives us

t1−αk ≤ exp
(
ρ(xk, yk)

)
≤ 2Ct1−αk ,

or
(1− α) log tk ≤ ρ(xk, yk) ≤ (1− α) log tk + log 2C.

It follows that
(α− 1)k/2 ≤ ρ(xk, yk) ≤ 2(α− 1)k,

for k ≥ max{1, log(2C)1/(α−1)}. ¤

5.8. Limits on a tangential set. The next result gives a criterion for
a quasiregular mapping to have a limit along a tangential set. Note that the
criterion of this result is in between the criteria (1) and (2) of Theorem 5.4.

5.9. Theorem. Let f : Hn → Bn be a K-quasiregular mapping with f(2−ken) =
0, for all k = 1, 2, . . . and let γ = d6 log(1/β), µk = d3i(2

−ken, f)1/(n−1), where
β ∈ (0, 1), d6 > 0 are as in Lemma 5.3 and d3 ∈ (0, 1) is as in Lemma 3.4.

Fix α > 1. Suppose that

log µk − 2γ(α− 1)k →∞ as k →∞.
Then f has limit 0 at the origin along the tangential set
E = {x = (x1, 0, . . . , 0, xn) : xn = xα1}.
Proof. As in the proof of Theorem 5.4, we obtain by Lemma 3.4 the estimate

|f(z)| ≤
(
2/3
)µk ≡ εk

for z ∈ [2−k−1en, 2
−ken] ≡ Fk. Let xk, yk be as in Lemma 5.5 and β ∈ (0, 1),

d6 > 0 be the constants of Lemma 5.3 corresponding to Fk and depending only
on n, K. We may conclude by Lemma 5.3 that

|f(te1 + tαen)| < εAk ; A = β1+d6ρ(xk+1,yk+1)

for t ∈ [2−k−1, 2−k] as ρ(te1 + tαen, Fk) ≤ ρ(xk+1, yk+1).
It is sufficient to show that

εAk → 0 as k →∞.
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By Lemma 5.5 this follows if

β1+2d6(α−1)k log
1

εk
→∞ as k →∞,

or

2d6k(α− 1) log β + log log
1

εk
→∞.

This can be written

−2γ(α− 1)k + log µk →∞.
¤

5.10. Conical uniform continuity. Let f be a quasiregular mapping from
the upper half space into a ball. We study f on a cone contained in the upper
half space fixed at the origin. We assume that the function has a limit at the
origin along a fixed sequence of points and derive an explicit upper bound for
the speed of convergence in the cone.

5.11. Theorem. Let f : Hn → Bn be K-quasiregular, f(2−jen) → α, with
i(2−jen, f)1/(n−1) = j, and let x ∈ C(ϕ) for some ϕ ∈ (0, π/2). Let k be such
that 2−k−1 < |x| ≤ 2−k. Then

|f(x)− α| ≤M(|x|, n,K, ϕ)→ 0 as |x| → 0,

where

M(|x|, n,K, ϕ) = 2

(
2− s
1− s

)
sk ≤ 4

s(1− s) |x|
− log2 s,

Rϕ > 0 is a constant depending only on ϕ, s = (2/3)d3A ∈ (0, 1) , A = β1+d6Rϕ ∈
(0, 1) depend only on n,K, ϕ and β ∈ (0, 1), d3 ∈ (0, 1), d6 > 1 are constants de-
pending only on n,K as in Lemma 4.3. In particular, − log2 s = d3A log2(3/2) ∈
(0, 1).

Proof. Fix x ∈ C(ϕ) and let αk = f(2−ken). There exists a constant Rϕ de-
pending only on ϕ such that x ∈ D(2−ken, Rϕ). By [Vuo88, 4.23], we have the
following upper bound for Rϕ:

Rϕ ≤ log

(
9(1 + u)2

8 cos2 ϕ

)
,

where u2 = sin2 ϕ+ (cos2 ϕ)/9.
Let gk be a Möbius transformation such that gk(0) = 2−ken and gkB

n = Hn.
Then the mapping hk(x) defined by

hk(x) = (f ◦ gk(x)− αk)/2
is K-quasiregular on Bn, hk : Bn → Bn and hk(0) = 0. We apply Lemma 4.3
with r = 1/2 to obtain

(5.12) |hk(y)| ≤
(
2/3
)d3kA for y ∈ DBn(0, Rϕ),
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where A = β1+d6Rϕ ∈ (0, 1) and β, d6 are as in Lemma 4.3. Hence

|f(x)− αk| ≤ 2(2/3)d3kA,

and by the triangle inequality

(5.13) |f(x)− α| ≤ 2(2/3)d3kA +Mk,

where Mk = |αk − α|. It remains to estimate Mk.
As 2−k−1en ∈ D(2−ken, Rϕ), by (5.12), we have the upper bound

1

2
|αk+1 − αk| = |hk(yk)| ≤ (2/3)d3kA,

where yk = g−1
k (2−k−1en). Hence

|αk − α| ≤
∞∑

j=k

|αj+1 − αj| ≤ 2
∞∑

j=k

(2/3)d3jA.

Let s = (2/3)d3A. Then
∞∑

j=k

(2/3)d3jA =
s

1− s −
s(1− sk−1)

1− s =
sk

1− s.

This together with (5.13) gives

(5.14) |f(x)− α| ≤ 2
(2− s

1− s
)
sk.

As k + 1 ≥ − log2 |x|, we have

sk+1 ≤ s− log2 |x| = |x|− log2 s.

This together with (5.14) gives the second inequality. ¤
5.15. Theorem. Let f : Hn → Bn be K-quasiregular, ϕ ∈ (0, π/2), and let
(bk), f(bk) = 0 be a sequence of points in Hn with bk → 0 as k →∞. If

i(bk, f)(bk)
d10
n →∞,

as k →∞, then f ≡ 0. Here d10 > 0 is a constant depending only on n,K.
In particular, if the points (bk) are in C(ϕ) and

i(bk, f)|bk|d10 →∞,
as k →∞, then f ≡ 0.

Proof. Let gk be a Möbius transformation such that gk(B
n) = Hn and gk(0) =

bk. We let hk = f ◦ gk and r = 1/2. Now hk : Bn → Bn is a K-quasiregular
mapping with hk(0) = 0. By applying Lemma 4.3, we obtain the inequality

(5.16) |hk(y)| ≤
(
2/3
)µkAk ; y ∈ D(bk,Mk),

for Mk > 0, where Ak = β1+d6Mk and µk = d3i(0, hk)
1/(n−1).
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Next we find Mk such that en ∈ D(bk,Mk). We may assume that |bk| ≤ 1.
Then by (2.2)

cosh ρ(en, bk) = 1 +
|bk − en|2

2(bk)n
≤ 1 +

2

(bk)n
.

Since for t ≥ 2,

log
(
1 + t+

√
(t+ 1)2 − 1

)
≤ log(3t),

it follows that
ρ(en, bk) ≤ log

(
6/(bk)n

)

for (bk)n ≤ 1. We choose Mk = log
(
6/|bk|

)
. This together with (5.16) yields

(5.17) |f(en)| ≤
(
2/3
)µkBk ; Bk = β1+d6 log(6/(bk)n)

for k large enough. To obtain the result, we want that
(
2/3
)µkBk → 0,

or equivalently
µkBk log(2/3)→ −∞.

This can be written as

µkβ
1+d6 log(1/(bk)n)+d6 log 6 →∞,

which, in turn, is equivalent to

i(bk, f)1/(n−1)(bk)
d6 log(1/β)
n →∞.

By a similar argument, f(z) = 0 for every z ∈ (0, en], and hence f ≡ 0. By
choosing d10 = d6 log(1/β)(n− 1) the claim follows.

We note that if (bk) is a sequence of points in C(ϕ), then

|bk|/(bk)n ≤ 1/ sin(π/2− ϕ)

and hence by (5.17),

(5.18) |f(en)| ≤
(
2/3
)µkB̃k ; B̃k = β1+d6 log(1/|bk|)−d6 log(sin(π/2−ϕ)/6),

which yields the final observation. ¤

5.19. Interpolation sequences. A sequence {zk} of points in the unit disk
B2 is called a Blaschke sequence if

∞∑

k=1

(1− |zk|) <∞.

It is called uniformly separated if
∏

j 6=k

∣∣∣∣
zj − zk
1− z̄jzk

∣∣∣∣ ≥ δ, k = 1, 2, . . . ,

for some constant δ > 0 that is independent of k.
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A sequence {zk} is said to be an interpolation sequence if for each complex
sequence {wk} ∈ `∞ there exists a bounded analytic function f with f(zk) = wk
for k = 1, 2, . . .. Carleson proved in 1958 that {zk} is an interpolation sequence
if and only if it is uniformly separated.

5.20. Lemma. The sequence zk = 1− e−k is uniformly separated.

Proof. Let k ≥ 1 and let

Ak =
∏

j 6=k

∣∣∣∣
e−k − e−j

e−k + e−j − e−(j+k)

∣∣∣∣.

Then

Ak ≥
∏

j 6=k

∣∣∣∣
e−k − e−j
e−k + e−j

∣∣∣∣ =
∏

j 6=k

∣∣∣∣
1− e−j+k
1 + e−j+k

∣∣∣∣.

We note that
en − 1

en + 1
=

1− e−n
e−n + 1

and hence

Ak ≥
( ∞∏

n=1

∣∣∣∣
1− e−n
1 + e−n

∣∣∣∣
)2

.

Because
1− e−n
1 + e−n

≥ 1− e−n+log 2,

we conclude that there is δ0 ∈ (0, 1) such that
∞∏

n=1

∣∣∣∣
1− e−n
1 + e−n

∣∣∣∣ ≥ δ0

∞∏

n=1

(1− e−n).

Clearly
∞∏

n=1

(1− x−n) = δ1 > 0

for x > 1. By choosing δ = (δ0δ1)2 the claim follows. ¤
5.21. Example. (by P. Lappan [Lap03]) We construct a Blaschke product

f : B2 → B2 with f(b̃k) = 0 for b̃k ∈ (0, 1) with b̃k < b̃k+1 such that there is a

set E with {b̃k} ∈ E, limx→1, x∈E f(x) = 0, and θ∗2(E, 1) = θ2(B2, 1) but f fails
to have an angular limit at 1.

Let bk = 1 − e−k. By Lemma 5.20 this sequence is uniformly separated and
hence an interpolation sequence. If we form the Blaschke product B(z) having
zeros (of order one) at the points bk, then B(z) does not have a radial limit at
z = 1, since there is a sequence {ck} ⊂ (0, 1) such that bk−1 < ck < bk and a
number σ > 0 such that |B(ck)| ≥ σ for each k. This holds by (14) in [BS60,
Example 4].
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Let {mk} be any sequence of positive integers with mk →∞ as k →∞, and

let nk = mk + 2
∑k−1

j=1 mj. Note that nk+1 − nk = mk +mk+1. Let ak = bnk , let
pk = nk +mk, and let dk = cpk . We now have that

ak = bnk < bnk+mk−1 < cpk = dk < bpk < bpk+mk+1−1 < ak+1.

Now define

B0(z) =
∞∏

k=1

( |ak|(ak − z)

ak(1− ākz)

)mk
.

Next we show that |B0(dk)| ≥ |B(dk)|.
Just comparing the position of factors, we have that, for q < k, aq = bnq <

bnq+1 and hence
( |dk − aq|
|1− āqdk|

)mq
>

nq+mq∏

j=nq+1

|dk − bj|
|1− b̄jdk|

.

Also, for q ≥ k, as nq+1 −mq+1 = nq +mq, we have
( |dk − aq|
|1− āqdk|

)mq
>

nq∏

j=nq−mq+1

|dk − bj|
|1− b̄jdk|

.

Essentially, using the points cpk = dk, we have that the corresponding zeros of
B0(z), counted according to multiplicity, are farther away from the points dk
than the corresponding zeros of B(z). All of the factors of B0 are considered, but
there are some factors of B(z) not counted in this scheme. Now i(ak, B0)→∞
as k →∞ and by Lemma 4.8 the claim follows. ¤
5.22. Remark. The conditions of Theorem 5.15 are not satisfied in the setting
of Example 5.21. More precisely, we show by comparing mk = i(ak, B0) to
1− |ak| that a condition of the type

i(ak, B0)(1− |ak|)α →∞
does not hold for α = d10 > 0 as in Theorem 5.15 (or for any α > 0).

To see this, consider the zeroes of the mapping f at the points

ak = 1− exp(−mk − 2
k−1∑

j=1

mj).

Let nk = mk + 2
∑k−1

j=1 mj. By (2.3) we have the formula

sinh2
(1

2
ρ(ak, 0)

)
= (1− e−nk)enk = enk − 1.

This gives us

(5.23) ρ(ak, 0) = 2 log
(
enk − 1 + 2

√
e2nk − enk + enk

)
.

From (5.23) we obtain the following bounds for ρ(ak, 0):

(5.24) nk ≤ ρ(ak, 0) ≤ nk + log 4.
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Let h be a Möbius transformation such that h(B2) = H2 and h
(
[0, e1)

)
=

[e2, 0), and let bk = h(ak). Now g = f ◦h−1 is a quasiregular mapping, g : H2 →
B2, as in Theorem 5.15. Then by (2.2)

(5.25) cosh
(
ρ(bk, e2)

)
= 1 +

(1− |bk|)2

2|bk|
=
|bk| − 1

2
+

1

2|bk|
.

From (5.25) we see that

(5.26)
1

2
exp

(
ρ(bk, e2)

)
≤ cosh

(
ρ(bk, e2)

)
≤ 1

2|bk|
,

and

(5.27)
1

2
exp

(
ρ(bk, e2)

)
+

1

2
≥ cosh

(
ρ(bk, e2)

)
≥ 1

2|bk|
− 1

2
.

From (5.26) and (5.27) we obtain the inequalities

(5.28)
1

3
exp

(
− ρ(bk, e2)

)
≤ |bk| ≤ exp

(
− ρ(bk, e2)

)
.

Combining (5.28) and (5.24) yields

(5.29)
1

12
exp(−nk) ≤ |bk| ≤ exp(−nk).

Next we estimate the quantity

i(bk, f)1/(n−1)|bk|d6 log(1/β) = mk exp
(
− nkd6 log(1/β)

)

from Theorem 5.15. As mk ≤ nk, we have

mk exp
(
− nkd6 log(1/β)

)
≤ mk exp

(
−mkd6 log(1/β)

)
→ 0,

as k →∞, proving the claim.

5.30. Quasiconformal mappings. We give a bound for how close to a point
α the values attained by a quasiconformal mapping on a sequence of continua
approaching the boundary can be. The bound is given in terms of the diameter
of the continua involved. In order to prove this result, we need the following
lemmas.

5.31. Lemma. Let w > 0 and t ∈ (0,min{w2, 1/w}). Then

1

2
log

1

t
< log

w

t
< 2 log

1

t
.

Proof. For w = 1 the claim is trivial. We study the cases w > 1 and w ∈ (0, 1)
separately.
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Let w > 1. Then 1/w > t. Clearly

log
1

t
< log

w

t

=
(

log
1

t

)(
1 +

logw

log(1/t)

)

<
(

log
1

t

)(
1 +

logw

logw

)
= 2 log

1

t
.

Let w ∈ (0, 1). Then

(5.32) log
1

t
> log

w

t
=
(

log
1

t

)(
1− log(1/w)

log(1/t)

)
.

Now t < w2 and hence log(1/w2) < log(1/t). It follows that

log(1/w)

log(1/t)
<

1

2
,

and by (5.32) we obtain log w
t
> 1

2
log 1

t
. ¤

5.33. Lemma. Let C ⊂ Bn be connected and 0 < d(C) ≤ 1. Then m ≡
d(0, C)/d(C) <∞ and if m > 0, then

M(Γ) ≥ 1

2
τ(4m2 + 4m) ≥ 2−nτ(m); Γ = ∆(B

n
(1/2), C; Bn).

Proof. The second inequality holds by [Vuo88, 5.63.]. To prove the first inequal-
ity, we note that if C ∩ B

n
(1/2) 6= ∅, then M(Γ) = ∞ and there is nothing to

prove. In what follows we may assume that C ∩ B
n
(1/2) = ∅. Now the result

follows from the symmetry property of the modulus [Vuo88, Lemma 5.22.] and
the estimate [Vuo88, Lemma 7.38.]. ¤
5.34. Theorem. Let f : Bn → Rn be a quasiconformal mapping or constant,
α ∈ Rn and (Cj) a sequence of nondegenerate continua such that Cj → ∂Bn

and |f(x)− α| < Mj when x ∈ Cj, where Mj → 0 as j →∞. If

lim sup
j→∞

τ

(
1

d(Cj)

)(
log

1

Mj

)n−1

=∞,

then f ≡ α. In particular, if

lim sup
j→∞

(
log

1

d(Cj)

)1−n(
log

1

Mj

)n−1

=∞,

then f ≡ α.

Proof. Suppose that f is not constant. Let Γj = ∆(Bn(1/2), Cj;Rn). Then by
Lemma 5.33

M(Γj) ≥ 2−nτ

(
d(0, Cj)

d(Cj)

)
≥ 2−nτ

( 1

d(Cj)

)
.
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Let w = d(fB
n
(1/2), α) > 0. Now by Lemma 2.10

M(fΓj) ≤ ωn−1

(
log

w

Mj

)1−n
≤ ωn−1

(
1

2
log

1

Mj

)1−n
,

whenever Mj < min{w2, 1/w} by Lemma 5.31. Because M(Γj) ≤ K(M(fΓj)),
the estimates above yield

τ

(
1

d(Cj)

)(
log

1

Mj

)n−1

≤ 22n−1Kωn−1,

proving the first part of the claim.
The estimate (2.12) yields

τ(t) ≥ 21−nωn−1

[
log
(λn

2

(√
1 + t+

√
t
))]1−n

,

where t = 1/d(Cj). It follows that
[

log
(λn

2

(√
1 + t+

√
t
))]1−n

≥
[

log
(λn

2
(1 + 2

√
t)
)]1−n

=

[
log
(λn

2

(
1 +

2√
d(Cj)

))]1−n
.

We note that
[

log
(λn

2

(
1 +

2√
d(Cj)

))]1−n
≥
[
2 log

( λn√
d(Cj)

)]1−n

whenever j is large enough. Let v = λn. Now by Lemma 5.31
[
2 log

( λn√
d(Cj)

)]1−n
≥
(

2 log
1

d(Cj)

)1−n
,

for
√
d(Cj) < min{v2, 1/v}. Hence

τ

(
1

d(Cj)

)(
log

1

Mj

)n−1

≥ 22−2nωn−1

(
log

1

d(Cj)

)1−n(
log

1

Mj

)n−1

,

which gives the second part of the claim. ¤
Theorem 5.34 is an improvement of the following result from [Vuo85]:

5.35. Theorem. [Vuo85, Corollary 4.9] Let f : Bn → Rn be a quasiconformal
mapping or a constant, let α ∈ Rn, and let (Cj) be a sequence of connected sets
such that Cj → ∂Bn and |f(x)−α| < Mj for x ∈ Cj where Mj → 0 as j →∞.
If

lim sup
j→∞

d(Cj)
(

log
1

Mj

)n−1

=∞

then f ≡ α.
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