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Abstract

Genetics, the science of heredity and variation in living organisms, has a central
role in medicine, in breeding crops and livestock, and in studying fundamental topics
of biological sciences such as evolution and cell functioning. Currently the field of
genetics is under a rapid development because of the recent advances in technologies
by which molecular data can be obtained from living organisms. In order that most
information from such data can be extracted, the analyses need to be carried out
using statistical models that are tailored to take account of the particular genetic
processes.

In this thesis we formulate and analyze Bayesian models for genetic marker data
of contemporary individuals. The major focus is on the modeling of the unobserved
recent ancestry of the sampled individuals (say, for tens of generations or so), which
is carried out by using explicit probabilistic reconstructions of the pedigree struc-
tures accompanied by the gene flows at the marker loci. For such a recent history,
the recombination process is the major genetic force that shapes the genomes of
the individuals, and it is included in the model by assuming that the recombination
fractions between the adjacent markers are known. The posterior distribution of
the unobserved history of the individuals is studied conditionally on the observed
marker data by using a Markov chain Monte Carlo algorithm (MCMC). The exam-
ple analyses consider estimation of the population structure, relatedness structure
(both at the level of whole genomes as well as at each marker separately), and
haplotype configurations. For situations where the pedigree structure is partially
known, an algorithm to create an initial state for the MCMC algorithm is given.

Furthermore, the thesis includes an extension of the model for the recent genetic
history to situations where also a quantitative phenotype has been measured from
the contemporary individuals. In that case the goal is to identify positions on
the genome that affect the observed phenotypic values. This task is carried out
within the Bayesian framework, where the number and the relative effects of the
quantitative trait loci are treated as random variables whose posterior distribution
is studied conditionally on the observed genetic and phenotypic data.

In addition, the thesis contains an extension of a widely-used haplotyping method,
the PHASE algorithm, to settings where genetic material from several individuals
has been pooled together, and the allele frequencies of each pool are determined in
a single genotyping.
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1. Introduction

For thousands of years humans have made observations that certain characteris-
tics among individuals, whether animals or plants, are governed by heredity. In its
simplest form this is manifested by a tendency of offspring to resemble their parents
with respect to some trait like size, color or shape. These vague ideas were brought
under the scientific approach about 150 years ago by the Augustinian monk Gregor
Mendel (1822-1884), who conducted the famous series of breeding experiments with
pea plants [27]. Mendel’s experiments suggested that hereditary material was trans-
mitted in discrete units between the generations, and that the hereditary entities of
the parents maintained their integrity in the offspring, rather than blended together.
Later these units of inheritance were named genes ; the origin of the term may be
traced back to Greek words of genesis (”birth”) and genos (”origin”).

Genetics, as the study of heredity is now called, experienced a tremendous progress
during the 20th century, most notably because the advances in materials sciences
made it possible to reveal the molecular basis of inheritance. In the 1950s the
deoxyribonucleic acid (DNA) was already identified as the carrier of the genetic
information. In essence, DNA consists of a long sequence of molecules of four dif-
ferent types, conventionally denoted by letters A,C,G and T, whose ordering in the
sequence codes the hereditary information of the living organisms. The detection of
the genetic code with its seemingly simple structure of four-letter alphabet raised
high hopes of discovering the causes of complex traits. So far, however, these goals
have been fulfilled only partially.

In the 21th century genomic research is facing a flood of data from rapidly evolving
laboratory techniques. The Human Genome Project was completed in 2003, the
human variation at over 3 million loci has currently been cataloged by the HapMap
project [20] and an even more refined map of the human genome will follow in
the next few years as 1000 Genomes Project proceeds [1]. The question no longer
is how we can extract data from cells or genomes but rather how can we acquire
biologically meaningful knowledge from the available wealth of data. Excepting a
few simple Mendelian traits, the biological reality has turned out to be a complex
entanglement of the environment and the genome. The urgent need for quantitative
methods to discover the relevant pieces of information from a jungle of noise is ever
strengthening the role of statistics and computer science in genetics.

Bayesian statistics provides a consistent framework for learning from data. Its
roots are in the 18th century works of Thomas Bayes (c. 1702-1761) and Pierre-
Simon Laplace (1749-1827). After almost falling into oblivion during the first half
of the 20th century, Bayesian statistics experienced a new rise beginning in the
late 1980s, as the available computational resources and methods had advanced
to the level which enabled analyzing more realistic probability models. In partic-
ular, Markov chain Monte Carlo (MCMC) algorithms have had a key role in the
resurgence of the Bayesian computation.

This thesis brings together five scientific articles, four of which consider analyses
of Bayesian models in genetics by using MCMC methods. The remaining article I is
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of an algorithmic nature and introduces a method for building an initial state for the
MCMC algorithm that has been used in articles II, III and IV. A unifying theme in
these articles is an attempt to more thoroughly utilize our knowledge of the biological
processes in modeling genetic data sampled from contemporary individuals. This
work can be seen as another product of the Bayesian revolution that has taken
over during the 20 years: another step towards more realistic probability models
in different fields of science. Here the fundamental question is to estimate how are
the individuals related to each other in different parts of the genome, given their
genotype data. In addition to the direct applications to relatedness and relationship
estimation, the question is essential in gene mapping, where the purpose is to identify
such positions from the genome, that are shared among the individuals, who also
share certain phenotypic properties.

1.1. Main questions. Here is a short description of the specific questions that are
studied in this thesis. The rest of the summary part provides an introduction to the
concepts and terminology that are used below.

Article I introduces an algorithm that extends partially observed genotype data
at a single marker locus to the whole pedigree in accordance with the Mendelian
inheritance. The algorithm can be used to verify the consistency between the ob-
served pedigree and partially observed marker data as well as to create initial states
for MCMC algorithms on pedigrees.

Article II introduces a model for the unobserved recent history of the sam-
pled contemporary individuals. The model can be used to estimate the relatedness
between the individuals both in terms of pedigree relationships and of identical-by-
descent sharing of marker alleles. Furthermore, the model simultaneously captures
the relatedness structure in different scales (e.g. weaker population structure and
stronger family structure). The model is analyzed conditionally on the observed
marker data at unlinked loci.

Article III extends the model of article II to linked marker loci, which makes it
possible to estimate also haplotype configurations and allele sharing along a chro-
mosome.

Article IV extends the model of article III to settings where also a quantitative
phenotype has been measured from the sampled individuals. The model can be used
for gene mapping, i.e., to find locations and relative effects of genetic variants that
affect the observed phenotypic values.

Article V extends the widely-used haplotyping software PHASE [42] to settings
where the genetic material of the sampled individuals is divided into pools, and the
allele frequencies within each pool are determined in a single genotyping. The goal
is to estimate the haplotype frequencies of the sampled individuals based on the
observed pooled data.
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2. Bayesian probability modeling

The fundamental question in the field of statistics is that of inference. Some data
are observed and we wish to make statements about the unknown process or system
that gave rise to these data. Only in rare occasions are we able to gain the complete
certainty about the underlying circumstances. Instead, in most cases we remain
uncertain to some degree and our knowledge seems to be best described by using
statements that involve probabilities. Thus the modern statistics has become the
science of formulating, evaluating, updating and interpreting such probabilities.

The axiomatic probability theory laid down by Andrey Kolmogorov (1903-1987)
in 1933 has become the established mathematical description of the concept of
probability. Despite large unanimity with respect to the logical structure of the
theory, there exist several interpretations of probability when it is applied to the
real world phenomena.

2.1. Bayesian approach. The Bayesian interpretation considers probability as a
means to quantify one’s beliefs about any phenomenon that involves uncertainty.
Thus the role of the individual, the one whose beliefs are quantified, is decisive in
Bayesian modeling. Different individuals may have different prior knowledge on the
subject and hence their conclusions from the same data may also differ from each
other. Also the knowledge of any particular individual evolves in time as it becomes
updated by new information.

A fundamental idea in Bayesian statistics is to treat all unknown quantities in the
model equally as random variables, independently of the particular roles that they
have in the model, for example, whether they are parameters or latent or unobserved
quantities. This results in a universal framework where the information about any
unknown quantity is captured by a probability distribution. Bayesian statistics pro-
vides the rules for updating these distributions as new data are observed. Before the
observations are made, the knowledge of the modeler is represented by his/her prior
distribution. The observations then transform the prior to a posterior distribution,
according to the rules of probability calculus. This learning procedure can be con-
tinued in a natural way by always considering the achieved posterior distribution as
a new prior for subsequent observations.

The link between prior and posterior is Bayes’ formula. Its name comes from
Thomas Bayes (c. 1702-1761), a British mathematician and Presbyterian minister
who formulated a special case of it [4]. In order to express Bayes’ formula let us
divide the considered random variables into two sets Y and Θ, where the former
represents the variables for which we have observed some estimates and the latter
contains the unobserved variables in which our interest lies. The (density of the)
joint probability model p(Y, Θ) is usually specified in parts by using the chain rule
of probabilities

p(Y, Θ) = p(Y |Θ)p(Θ),

where p(Θ) is the prior distribution of Θ and the likelihood p(Y |Θ) describes our
conception of the structure of the process giving rise to the data Y in terms of the
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unknown variables Θ. If our observation is Y = y, then Bayes’ formula states that

p(Θ|Y = y) =
p(Y = y|Θ)p(Θ)

p(Y = y)
.(2.1)

In the Bayesian approach this is interpreted as a way to update the knowledge
about Θ. It tells how the observations Y = y transform the prior knowledge about
Θ, expressed by the probability distribution p(Θ), into the posterior distribution
p(Θ|Y = y). The additional term p(Y = y) is the marginal probability (density)
of the data and is thus a constant once Y = y has been observed. Comprehensive
references on Bayesian statistics are e.g. [32, 6].

2.2. Frequentist approach. An alternative to the Bayesian approach is frequentist
statistics. A fundamental difference between the two is that in frequentist statistics
the unknown quantities Θ are not treated as random variables, but instead it is
postulated that there exist some true and fixed values for them that need to be
estimated from the observed data. As a consequence there is no prior distribution
for Θ and the inference will be based completely on the likelihood function p(Y |Θ),
where Y represents the data. It also follows that, strictly speaking, frequentist sta-
tistics cannot make any probability statements about Θ, but instead the concept of
randomness is attached to the data. The inference about Θ thus proceeds indirectly
through questions like: What is the probability (here meaning the hypothetical rel-
ative frequency in a long series of repeated experiments) that if the true value of Θ
is in some set A, then we would observe data Y in some set B?

At times the controversies between the supporters of Bayesian and frequentist
viewpoints have been quite fierce. But as better understanding of the statistical
methodology is spreading, a more fruitful discussion is also possible, as illustrated
recently by Gelman [11].

Important merits for the Bayesian approach are that it seems to be fundamentally
sound, consistent and unified and that it gives a direct answer to the question we are
interested in: How does our personal degree of uncertainty change as we observe new
data? Also the formulation of modern complex hierarchical models is well suited for
the Bayesian approach.

A source of criticism towards Bayesian statistics has been the use of prior distri-
butions which, by definition, are subjective. By some this has been thought to be
contrary to the doctrine of objective science that would ideally have only one truth
and no room for subjectivity. However, any kind of probability modeling requires
subjective choices and usually quite stringent assumptions regarding, for example,
the form of the sampling distribution of the data p(Y |Θ). Thus it can also be seen
as a merit for Bayesian statistics that the subjectivity involved in the modeling is
clearly stated, admitted and understood. Furthermore, in cases where substantial
prior information exists it is essential to be able to include that into the model.

Another complication in adapting Bayesian statistics use to be the lack of compu-
tational methods and resources, which made it impossible to analyze more complex
models in practice. But this issue has changed dramatically during the last few

10



decades due to the development of both the theory of statistical computing and the
computer hardware. Some of these advances are considered next.

3. Analyzing Bayesian models

The posterior distribution p(Θ|Y ) is the basis for Bayesian inference. In high
dimensional cases the posterior must be summarized using, for example, moments
of some numerical functions with respect to the posterior distribution. In case
of complex models the analytic integration with respect to the posterior is often
impossible. Important ways to overcome this problem are importance sampling and
Markov chain Monte Carlo algorithms [35, 9]. In this thesis we consider only the
latter methods.

3.1. Monte Carlo. Monte Carlo (MC) methods apply randomness to explore prop-
erties of functions, for example, to compute integrals. These methods are named
after the famous casino, because they utilize repeatable random sampling which re-
sembles games of chance. MC methods trace back to 1930s and 1940s when several
physicists and mathematicians (E. Fermi, N. Metropolis, S. Ulam, J. von Neumann,
among others) who worked in Los Alamos were looking for ways to utilize new
computing devices in their physical calculations [3].

If, for example, we are about to estimate the expectation of function f under dis-
tribution π, an MC method would be to sample a sequence x1, . . . , xn independently
from π and approximate

Eπ[f ] ≈
1

n

n
∑

t=1

f(xt).(3.1)

Theoretical justification for the approximation comes from the law of large numbers,
which states that the right hand side of equation (3.1) converges to Eπ[f ] almost
surely as n → ∞, (given that the expectation is finite).

Monte Carlo integration turns out to be useful especially in high dimensional
spaces where numerical methods using integration grids become inefficient. On the
other hand, a necessary requirement for a successful application of an MC method
is a procedure to sample (efficiently) from the target distribution.

3.2. Markov chain Monte Carlo. In more complex cases it may not be possible
to sample efficiently an independent sequence from the target distribution π. For-
tunately the requirement of independence may be relaxed to Markov dependence
of the sequence. A stochastic process is said to be Markov, if the distribution of
the future states is conditionally independent of the past states, given the present
state. The goal of the MCMC methods is to produce a Markov chain (Xt)

∞
t=0 that

is ergodic and whose stationary distribution is π. Then the theory assures that the
chain converges to its stationary distribution and that (3.1) becomes a good ap-
proximation as n → ∞ for any π-integrable function f. In this thesis Markov chains
on finite spaces have a central role and below we will make the above terminology
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more precise in that setting. A comprehensive reference on Markov chains is e.g.
[29]; extensions to infinite spaces can also be found e.g. in [35, 9].

Suppose that the target distribution π is defined on a finite state space X . A
Markov chain (Xt)

∞
t=0 on X is a countable sequence of random variables taking

values in X and satisfying the Markov property for all t:

P (Xt+1 = y|Xt = xt, . . . , X0 = x0) = P (Xt+1 = y|Xt = xt).

Furthermore, we consider only chains that are time homogeneous, that is, the transi-
tion probabilities P (Xt+1 = y|Xt = x) between any states x, y ∈ X are independent
of t. Thus the distribution of our Markov chain (Xt)

∞
t=0 is completely defined by

its transition matrix K, with entries Kxy = P (X1 = y|X0 = x), together with the
initial state x0 (or initial distribution) of the chain. The rules of matrix algebra
and probabilities match in such a way that the transition matrix for n sequential
transitions of the chain, denoted by K(n), is given by the matrix power Kn.

A distribution µ (here a row vector) on space X is said to be a stationary distri-
bution of the Markov chain, if µK = µ, i.e., if the Markov chain remains distributed
as µ ever since it has reached µ for the first time. Every finite state space Markov
chain has at least one stationary distribution and the uniqueness of the stationary
distribution is guaranteed, if the chain is irreducible, i.e., if for all pairs of states

x, y there is a positive integer n for which K
(n)
xy > 0 (Thm 2.7. in [15]). In words

irreducible chains are those that are able to explore the whole space independently
of their initial values.

For finite state spaces the irreducibility already guarantees the following form of
the Law of large numbers for Markov chains. Suppose that (Xt)

∞
t=0 is an irreducible

Markov chain with stationary distribution µ and that f : X → R. Then

(3.2)
1

n + 1

n
∑

t=0

f(Xt) −−−→
n→∞

Eµ[f ],

regardless of the initial distribution of the chain (Thm 2.11. in [15]). This result is
known as the Ergodic theorem for Markov chains.

An irreducible chain may not converge towards its stationary distribution if the
chain exhibits certain cyclic behavior. To rule out the periodic chains we say that
an irreducible Markov chain (with transition matrix K) is aperiodic if for all x ∈ X

gcd{n ≥ 1 : K(n)
xx > 0} = 1,

where gcd denotes the greatest common divisor of numbers. Thus, for an aperiodic
chain the waiting times between consecutive visits to any state are not restricted
to be multiples of any basic period (larger than 1). An irreducible aperiodic chain
with stationary distribution µ converges towards µ in the sense that

K(t)
xy → µy as t → ∞,

for all x, y ∈ X (Corollary of Thm 2.9. in [15]). Thus, independently of the initial
state x0, the state Xt of the chain will eventually (for large enough t) be distributed
as closely according to µ as required.
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The above properties of the Markov chains suggest that if we could generate an
irreducible and aperiodic Markov chain which has a given target distribution as its
stationary distribution, then we would have a means to compute (approximately)
expectations with respect to the target distribution, as well as to sample (approxi-
mately) from it. A sufficient condition for the chain (with transition matrix K) to
have π as its stationary distribution is that the chain satisfies the detailed balance
condition with respect to π, that is,

πxKxy = πyKyx, for all x, y ∈ X .

This is because by summing both sides of this equation with respect to y yields
πx =

∑

y∈X πyKyx, which is equivalent to the matrix equation π = πK, thus showing
that π is the stationary distribution of the chain.

For simplicity we have so far formulated the properties and theorems only for
the Markov chains on finite state spaces, but they generalize also to infinite state
spaces, the difference being mainly in the need for measure theoretic concepts (see
e.g. [35, 9]). Next we look at a way to generate a suitable Markov chain for given
target distribution π and we no longer restrict the considerations to finite state
spaces.

3.2.1. Metropolis-Hastings algorithm. Suppose that our target distribution π is de-
fined on a state space X and that the distribution has a density function p (with
respect to some underlying measure), where we interpret p = π as the probability
mass function in discrete cases. Given that we can compute p pointwise up to a
normalizing constant, there exists a very general scheme to sample x1, . . . , xn from
a Markov chain which has π as its stationary distribution. The procedure is called
Metropolis-Hastings (MH) algorithm (Metropolis et al. [28] and Hastings [16]) and
it requires a specification of a proposal density q(·|x) that defines a probability dis-
tribution on X for any given x ∈ X . Metropolis-Hastings algorithm samples the
next state xt+1, based on the current state xt, by the following procedure:

(1) Sample yt ∼ q(·|xt).
(2) Set

xt+1 =

{

yt with probability a(xt, yt),
xt with probability 1 − a(xt, yt),

where

a(xt, yt) = min

{

p(yt)q(xt|yt)

p(xt)q(yt|xt)
, 1

}

.

The idea of the algorithm is to perturb the proposal distribution in such a way that
the chain satisfies the detailed balance condition with π as its stationary distribution.
This is achieved by modifying the sequence of the proposed states by an acceptance
probability a(·, ·), which in practice works by allowing the chain to maintain its
current position for one or more steps.

An advantage of Metropolis-Hastings algorithm is that the proposal distribution
can be chosen quite freely. The empirical average converges (with probability 1)
towards the expectation as in (3.2), if the chain is π-irreducible, and the convergence
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(in total variation norm) of the distribution of Xt to π is guaranteed, if the chain
is also aperiodic (Thm. 6.2.5 in [35]). However, the theoretical convergence results
are valid only in the limit as the length of the chain approaches infinity. In practice
the approximations must always be based on a finite subchain. Thus the design of
the applicable MCMC algorithms has become a craft of formulating rapidly mixing
proposal distributions which are able to explore the target distribution reasonably
well in some given finite time. This is also a central issue in this thesis.

3.3. Reversible jump MCMC. An extension of Metropolis-Hastings algorithm
called Reversible jump MCMC (RJMCMC) was introduced by Green [13]. It allows
the Markov chain to move between the spaces of different dimensions. This is
necessary in cases where the model consists of submodels that are defined with
different numbers of continuous parameters. Such problems are encountered, for
example, in mixture modeling, changepoint analysis, and model choice applications.

Suppose that we are studying a target distribution (a probability measure) on

space X =
∏M

m=1{m} × Rnm that includes M different models, and that the dis-
tribution can be decomposed into a discrete model probability p(m), as well as to
densities for parameters p(θm|m) for all m = 1, . . . , M (with respect to the underly-
ing Lebesgue measure of each space Rnm). RJMCMC operates through a collection
of proposal distributions ql(·|·), indexed by l, each of which proposes transitions
between two particular subspaces in either direction. The subspaces need not be
different and usually proposal distributions operating within a single model are also
necessary for the mixing of the chain. In line with the original Metropolis-Hastings
algorithm, an acceptance probability is then defined in such a way that each move
type satisfies the detailed balance condition with respect to the target distribution.

To see how this is usually done, let us consider a single move of type l that
operates between subspaces m1 and m2. Starting from a current state (m1, θm1

),
the parameter vector θm2

of the proposal state (m2, θm2
) is determined by first

sampling a random variable u ∈ Rd1 from a density ql
1(·) and then applying a

deterministic differentiable bijection tl : Rnl → Rnl to have (θm2
, u2) = tl(θm1

, u1).
Here u2 ∈ Rd2 and nl = nm1

+ d1 = nm2
+ d2. The move of type l also defines a

density ql
2(·) on Rd2, which allows us to go back from the state (m2, θm2

) to the
state (m1, θm1

) by reversing the process, now sampling u2 from ql
2(·) and setting

(θm1
, u1) = t−1

l (θm2
, u2).

By extending the parameter vectors θ1 and θ2 with u1 and u2 in such a way that
the dimensions match, we are able to express the density of the joint equilibrium-
proposal distribution with respect to a certain measure. This density can now be
used to define an acceptance probability that assures the detailed balance condition
for this move type with respect to the target distribution. The common form of the
acceptance probability is given by

a[(m1, θm1
, u1), (m2, θm2

, u2)] = min

{

p(m2, θm2
)ql

2(u2)j(l|m2, θm2
)

p(m1, θm1
)ql

1(u1)j(l|m1, θm1
)

∣

∣

∣

∣

∂(θm2
, u2)

∂(θm1
, u1)

∣

∣

∣

∣

, 1

}

,
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where j(l|mi, θmi
) is the probability of attempting a move of type l from state

(mi, θmi
) and

∣

∣

∣

∣

∂(θm2
, u2)

∂(θm1
, u1)

∣

∣

∣

∣

is the absolute value of the Jacobian of the transformation (θm2
, u2) = tl(m1, θm1

).
In addition to the works of Green [13, 14], more details and some examples of the

algorithm can be found e.g. in [39] and [32].

4. Genetic data

In this thesis we consider diploid, sexually reproducing species. The genome of
the species is divided into n chromosomes, separate entities that contain the DNA in
doubled strand form. (E.g. in humans n = 23.) Each individual carries two copies
of the genome, i.e., 2 × n chromosomes, half of which are inherited from each of
the two parents. Genetic material is transmitted from parents to offspring through
meiosis, genesis of germ cells. As a result of a meiosis, each germ cell contains
only a haploid genotype, i.e., only a single copy of each chromosome. In meiosis
chromosomes are susceptible to several physical processes, whose outcome is usually
that descendants do not carry exactly similar genetic material as their parents.
The two prominent causes of this variation are recombination and mutation. A
recombination happens when the two homologous chromosomes of the parent mix,
(or recombine), during the meiosis, whence the offspring will inherit a mosaic of
the two parental chromosomes. Mutation refers to the processes where the content
of the inherited material is different from the source chromosome either because
of a point mutation (change in one nucleotide of the DNA), deletion, insertion,
duplication, or translocation of the genetic material. Other known processes, such
as gene conversions, are not considered in this thesis.

Let us take a closer look at how the genetic data is transmitted from a parent
to a descendant. According to Mendel’s first law, at any single position (locus) on
the genome, the descendant is equally likely to inherit the material from each of the
parent’s two chromosomes. The updated version of Mendel’s second law states that
the segregations at two loci residing on different chromosomes are independent of
each other. Thus, what remains to be specified, is the behavior of the loci that are
located on the same chromosome.

Figure 1 gives a simplified illustration of the meiosis process for a single chromo-
some. First the parent’s two copies of the same chromosome (A) duplicate and line
up so that the homologous positions are next to each other (B). At this stage the
chromosomes may physically cross over (C), cut from the crossing over positions,
and recombine as four novel chromosomes that contain mixtures of segments from
the two original chromosomes (D). Each of the four new chromosomes ends up in a
separate gamete that may then be passed on to the next generation. If the material
at two particular loci on a newly formed chromosome originate from the different
source chromosomes, we say that there has been a recombination event between the
loci in the meiosis. Thus, for example, the leftmost chromosome in Figure 1D is
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Figure 1.

A B C D

non-recombinant, whereas in the other three a recombination has occurred between
any two loci that are colored differently. The fraction of the recombinant gametes
with respect to the two loci in a large number of meioses defines a proximity mea-
sure between the loci, taking values from 0 (complete linkage) to 1

2
(independent

segregation). Two loci having recombination fraction less than 1
2

are said to be
genetically linked.

The laboratory techniques that are considered in this thesis observe genetic data
at certain fixed positions on the genome (marker loci) that are known to be poly-
morphic in the population. Two types of markers considered in this work are mi-
crosatellites and single nucleotide polymorphisms (SNPs). Microsatellite loci consist
of varying numbers of repeatable units of short DNA sequences and may exhibit tens
of different variants, alleles, in a population. SNPs are usually diallelic (only two
variants in the population) and are formed by a difference in a single nucleotide of
the DNA.

5. Modeling genetic data with ancestry process

Population genetics studies how the genomes in the population change through-
out time as a consequence of natural selection, migration, stochastic drift, mutation,
recombination and other such forces. Foundations of the field were established by
S. Wright (1889-1988), J. B. S. Haldane (1892-1964) and R. A. Fisher (1890-1962)
during the 1920s and 1930s. For several decades the theory was developed accord-
ing to the prospective framework: How does the future look like, given the current
state of the population. In the 1980s the retrospective framework gained popu-
larity, especially through the seminal works of J. F. C. Kingman, who formulated
the coalescent process [22]. The population models in this thesis are built on the
retrospective ideas. Our interest lies in the contemporary individuals whose genetic
composition we model by taking into account their common past.

5.1. Pedigrees. When considering only a few generations backwards in time, the
appropriate structure for describing relationships is a pedigree, a family tree, which
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defines the parental relationships between the individuals (Figure 2a). A pedigree
does not specify the exact routes of genetic material, but it constrains the possibili-
ties. Usually pedigrees are not known reliably for many generations, excepting some
bred species. And even more rare are the cases where also genotype measurements
are available for ancestral individuals in pedigrees that extend several generations
backwards in time. The approach taken in this thesis extends the traditional frame-
work of pedigree analyses to settings where pedigrees may not be known a priori.
Instead, they are considered as latent, unobserved variables.

(a) Pedigree. Squares are males, cir-
cles are females, the sexes are not
specified at the youngest generation.

(b) Coalescent Tree. Time runs from top to
bottom. Two lineages join at their most recent
common ancestor.

Figure 2.

5.1.1. Pedigree model. Our pedigree model [10] considers nonoverlapping genera-
tions t = 0, . . . , T , where 0 refers to the contemporary generation and T to the
founder generation, i.e., to the most distant generation that is included in the model.
The model assumes that a fixed number of n0 individuals are sampled from the gen-
eration 0. The idea is to include explicitly only those individuals in the pedigree
who have descendants among the sampled individuals. The pedigree is embedded
in a population by specifying the number of males (N

′

t ) and of females (N
′′

t ) in the
population in each generation t, as well as two parameters αt and βt that govern
the mating behavior in the population.
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The model applies the Polya’s urn scheme to the assignment of parents to children.
The pedigree grows one generation at a time from the present to the founder level,
and given the parameters and the number of individuals included in generation t,
the family structures between generations t and t+1 are assumed to be independent
of the structures at the younger generations. Thus the model is specified by giving
the assignment probabilities of different choices of parents to individuals at a single
generation t.

First, the individuals belonging to generation t choose fathers from among the
N

′

t+1 males available in generation t+1. After the first k individuals have chosen the
fathers, the next individual will choose male i as his/her father with a probability

proportional to αt+1 + C
(k)
i , where αt+1 is a model parameter and C

(k)
i tells how

many of the first k individuals are already assigned to male i.
After the fathers have been assigned, the choice of mothers is such that the

(k + 1)th individual in generation t will choose female j in generation t + 1 with a

probability proportional to βt+1 + C
(k)
i,j , where i is the (already assigned) father of

this individual, C
(k)
i,j is the number of common children of couple i, j among the k

individuals who had already chosen their mothers, and βt+1 is a model parameter.
The ordering of the individuals was introduced here only to simplify the descrip-

tion of the model and it does not affect the probability of the pedigree.
By adjusting parameters αt and βt together with the population size different

mating behaviors from monogamy to random mating can be modeled. It is also
possible to constrain the model on the pedigrees that contain certain fixed parts, or
that conform to certain rules, such as those preventing close relatives from having
common offspring.

5.1.2. Model for gene flow. In this thesis the flow of genetic material on the pedigree
is completely determined by the recombination process. Mutations are not included
in the model, since the time scale of the pedigree based ancestry process is at most
tens of generations. The marker map, i.e., estimates of the recombination fractions
between the consecutive marker loci, is assumed to be given in advance. The genetic
material of each individual is divided into paternal and maternal haplotypes and the
meioses are modeled by choosing at each locus either the paternal or the maternal
allele according to the origins of the neighboring loci and the known recombination
fractions.

The final part of the joint probability model on the pedigree structures and gene
flows is given by the probability distribution of the founder alleles. There, the sim-
plifying assumptions of Hardy-Weinberg and linkage equilibria are made, meaning,
respectively, that the two chromosomes of a founder are assumed to be indepen-
dent of each other, and that a founder’s alleles at different loci are assumed to be
independent of each other. However, if some information on deviations from these
assumptions were available, that could easily be included into the model.

5.2. Model for phenotype. In pedigree based gene mapping the idea is to follow
the segregation of the marker alleles through consecutive generations and search for
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positions on the genome at which the segregation of the genetic material shows simi-
larities to the patterns observed in the distribution of the values of some phenotype.
The key point is to estimate the inheritance process between the markers, which is
governed by the recombination process conditioned on the marker information.

In article IV we add a model for a univariate quantitative phenotype to the model
for the genealogical history. The phenotype model is based on variance components.
This means that the phenotypic value is decomposed into a random number of
quantitative trait loci (QTLs), the polygene component, and the residual error.
The model specifies accurate locations of the QTLs with respect to the flanking
markers. There is a natural covariance structure for genetic components arising
from the pedigree and from the gene flow at each particular QTL. These covariance
structures then let us estimate the relative contribution that each genetic component
has on the total phenotypic variance.

The model described above extends the traditional one used in variance com-
ponent linkage analysis by modeling also the unknown part of the pedigree. It
has become a custom in linkage analysis first to analyze a set of small pedigrees
separately and then to combine the results by assuming that the subpedigrees are
independent of each other. Some work has recently been done also on the modeling
of the shared ancestry of different subpedigrees [19]. The novelty in our model is
that it more explicitly mimics the process as we know it: augmenting the available
data by unknown parts of the pedigree as well as by an unobserved gene flow. Our
approach can be expected to be powerful especially when the studied data come from
a setting where the subpedigrees are indeed related to each other through common
ancestors within the recent history (some ten generations or so), as is shown in
article IV.

5.3. Gene trees and recombination graphs. When the time scale is shifted
from tens to hundreds or thousands of generations, explicit pedigrees are no longer
feasible descriptions of the relatedness structure of DNA segments. Instead, one may
trace the ancestry of contemporary alleles backwards in continuous time ignoring
the individuals. This results in a tree structure for any particular locus (Figure 2b)
and in a graph structure for longer recombining segments.

The coalescent theory [22, 18, 31] is a mathematical description of the ancestry
process in continuous time. To give an idea of the theory, let us first consider the
coalescent process of a single locus in a Wright-Fisher population (constant size
N , random mating, non-overlapping generations), with no selection. The forward-
time dynamics of the model are simply described: the next generation is always
formed by choosing with replacement 2N copies of the alleles from the preceding
generation. Retrospectively the model corresponds to letting each offspring allele
choose its parent among the alleles of the parents’ generation.
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The probability that two alleles from the current generation maintain distinct
parents at least T generations backwards in time is then

(

1 −
1

2N

)T

=

(

1 −
1

2N

)2Nt

−→
N→∞

e−t,

where t = T/(2N) is the time scaled to the units of population size. Thus the coa-
lescing time for the pair of alleles becomes an Exp(1)-distributed random variable,
when the population is large and time is scaled in the units of 2N .

These ideas can be extended to the genealogy of n recombining sequences. One
starts with n separate sequences and proceeds into the past by drawing the waiting
time and the identity (coalescence, mutation or recombination) of the next event
from competing exponential distributions. If the event is a coalescence a randomly
chosen pair of lineages unite, in case of a mutation a randomly chosen sequence
experiences a mutation, and if the event turns out to be a recombination then a
randomly chosen segment splits into two subsequences.

The coalescent theory provides an efficient way to simulate genealogies for n DNA
segments, since it considers only that part of the history of the population that is
relevant to the sample. If the same simulation task were attempted using a forward-
time model, one would need to keep track of the history of the whole population,
which for the usual cases where n ≪ N would lead to an enormous waste of resources
compared to the retrospective approach.

In this thesis the continuous time coalescent theory comes into play in article V
which considers an extension of the haplotyping algorithm PHASE [42]. The original
PHASE algorithm models the ancestry of a population sample of contemporary
haplotypes by utilizing approximations to the coalescent theory.

6. Analyzing the models

It was relatively simple to formulate the models for genetic data in the previous
section. Such models can easily be used to derive null distributions of some summary
statistics under different evolutionary scenarios, but direct statistical inference on
the model parameters given the observed data (present day state of the process) is
a very challenging task [40].

6.1. Observed data. In this thesis the model for pedigrees and gene flows is ana-
lyzed conditionally on the genotype data at marker loci at the youngest generation.
Such data consist of unordered pairs of alleles at each locus and, in particular, they
do not include haplotype information. In addition to the marker data, we also fix
the values of the population parameters, the allele frequencies, and the recombi-
nation fractions in the model. Article II considers the case where the markers are
assumed to be unlinked, whereas in article III the recombination fractions between
the adjacent markers are about 0.05 per meiosis.

Article IV considers a situation where, in addition to the marker data, we also have
measurements of a univariate quantitative phenotype on the sample of individuals
belonging to the youngest generation of the population. In the examples, the number
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of markers varies between 100 and 120 and they are either all located in the same
chromosome or divided into 4 distinct chromosomes. The recombination fractions
between the adjacent markers in the same chromosome are about 0.04 per meiosis.

In article V the data are gathered from DNA pools, where genetic material from
several (about 2-5) individuals are mixed and the pool contents are measured in a
single genotyping. Thus the data contain the pool-specific frequencies of different
alleles at each locus, but do not specify which pairs of the alleles belong to the same
individual. The purpose of this kind of data is to reduce the overall genotyping
costs of the genetic study.

6.2. Goals of inference. The models of ancestry are harnessed to estimate how the
sampled contemporary individuals are related to each other. In that task the concept
of identity-by-descent (IBD) between the observed marker alleles has a central role.
Two alleles are said to be IBD if they descend from a common ancestral allele
within some specified time frame. Here the natural time frame is T , the number of
generations that are included in the pedigree model. However, we can also estimate
more accurate IBD-probabilities with respect to any generation that is covered by
the model. As the model includes the complete description of the inheritance process
within the given framework, the IBD-probabilities could be estimated jointly for
any group of individuals. In our examples IBD-distributions have been estimated
mainly for pairs of individuals, but also for a larger group of the carriers of the same
ancestral mutation (article III).

For unlinked marker data (article II) the IBD-estimates yield information on the
overall relatedness between the individuals. Because the pedigree model extends
over several generations, the relatedness can be studied simultaneously in different
time scales. Starting from the familiar relationship categories, such as siblings and
cousins, the model can also capture a weaker and more general population structure.

For linked data IBD-estimates can reveal information on varying degrees of re-
latedness that the same pair/group of individuals may possess at different regions
of the genome (article III). Such an IBD-distribution, when augmented with some
phenotype data, can serve as an input for several available gene mapping methods.
We have applied this idea in article IV, where the goal is to locate such positions
from the available marker map, that affect the observed phenotype values.

For linked marker data another goal is to estimate the haplotype configurations
of the observed genotype data. The haplotyping problem – to resolve the unordered
diploid genotype data into two haplotypes – is an important one in statistical ge-
netics, and it has gathered interest as well in the situations where the pedigree is
known as in the cases where the genotyped individuals are simply sampled from a
population [30]. In article III the data come without a pedigree record, but it would
be straightforward to condition the model on some fixed parts of the pedigree, if
such were available. In article V haplotyping is studied in a different context: the
time scale is extended by shifting from pedigrees to the continuous time coalescent
theory, and thereby the length of the considered chromosomal segment is decreased.
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Naturally these Bayesian models could also be utilized to study any other variable
that is included in the models. As an example, one could estimate the properties of
the unknown pedigree by, for instance, identifying pairs of full or half siblings from
the contemporary individuals.

6.3. Problems with simulation approach. Given the population parameters
and marker spacing, it is straightforward to simulate sample configurations from
these retrospective models. For the pedigree-based model one first simulates a pedi-
gree, then the founder alleles and finally the meioses on the pedigree, whence the
genetic state is completely determined. Continuous time recombination graphs are
sampled by drawing waiting times for the events (backwards in time) from com-
peting exponential distributions corresponding to the different possible types of the
events, (e.g. mutations, recombinations and coalescences). Unfortunately these sim-
ulation procedures are useless in evaluating the probabilities of different ancestral
configurations given the observed data. This is because only a tiny fraction of all
possible configurations are consistent with the observed marker data at the youngest
generations, and therefore by mere simulation we would almost never reach a single
one of them.

6.4. MCMC on pedigrees and gene flows. To overcome the computational
problem related to the direct simulation, we have designed an MCMC algorithm that
explores the space of the ancestral configurations that are consistent with the data.
The obvious advantage over the direct simulation approach is that every state of the
chain will respect the observed data. This is achieved by first generating a consistent
initial state for the chain and then applying a cycle of proposal distributions that
maintain the consistency between the proposed states and the data.

Several earlier applications of MCMC algorithms for analyzing genetic data on
pedigrees have been published [44, 37, 38]. A general challenge for the design of
the proposal distributions is posed by the structure of the space of the ancestral
configurations which includes the pedigrees together with the gene flows at the
marker loci. The variables are discrete and form highly dependent blocks of closely
related individuals and tightly linked markers. It follows that a large number of
variables need to be updated simultaneously in order to guarantee the irreducibility
of the Markov chain and the mixing of the sampler. This requires computationally
demanding block-updates.

Compared to the earlier works, the most notable differences in our approach are
the large block-updates that consider the chromosomes of several closely related
individuals simultaneously, and the ability to model also unknown parts of the
pedigree. The fact that we are not working with a fixed pedigree structure also
guarantees the irreducibility of our sampler, at least in the situations where the
population size is large enough (proof is given below). However, when the model
includes several generations and a large number of markers, the practical mixing
of the sampler remains a challenging issue and an application of computational
techniques like MCMCMC [12] could be a topic for further studies.
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For the MCMC applications it is possible to combine several proposal distributions
in order to enhance the mixing properties of the algorithm. This can be done either
by defining the transition kernel as a mixture of individual transition kernels or by
combining the kernels into a cycle that is run through in the same order at every
iteration [32]. In our work both of these approaches are utilized.

A summary of the ideas behind our proposal distributions is given next. More
details can be found in the appendices of article III and in article IV.

6.5. Proposal distributions for the pedigree and the allelic paths.

6.5.1. Block Update 1: Children choosing parents. In this update a random group of
individuals is chosen from the pedigree and their parents will be resampled. Because
the novel parents can be chosen also from outside of the current pedigree, the initial
phase of the update extends the pedigree structure by adding to it some individuals
from the population. Technically this update scheme is divided into many separate
proposal distributions, one for each combination of the choices of the (ordered) group
of children who are changing their parents and of the sampled pedigree structure on
the individuals outside of the current pedigree. Thus this update is implemented as
a mixture of separate transition kernels.

The construction of the proposal state is commenced by withdrawing such alleles
from the current parents that have been transmitted to only those of their children,
who are currently chosen to resample their parents. Then the children choose their
new parents sequentially according to the prior distribution on the pedigree graphs
and the (unlinked) transmission probabilities of alleles. Finally the phases of the
new parents are sampled by a forward-backward algorithm that also accounts for
the linkage between the markers.

While constructing the proposal state, we also calculate the probability of the
reverse move, which is needed in defining the acceptance probability of the proposal.
Because of that, the withdrawal of the alleles from the parents is done in the reverse
order compared to the one by which the children choose their new parents.

6.5.2. Block Update 2: Half siblings changing their parent. Block Update 1 trans-
mits the alleles from the children to their new parents sequentially and may thus
be unable to create large families. This block update provides and improvement
on that aspect by choosing one parent from the pedigree and by letting his/her
children to resample their other parent. Again we allow the parents to be chosen
from outside of the currently existing pedigree.

First the children will sequentially choose their other parent according to the
pedigree prior and the unlinked allele transmission probabilities. However, all allele
transmissions from the children to their parents occur jointly at the end of the up-
date. By creating the locuswise joint distributions of the children’s phases, parent’s
genotypes and parent’s phases, we can use a forward-backward algorithm to sample
a configuration that takes into account the recombinations that have taken place in
the parents.
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This update is computationally demanding and has been used only for up to 7
children in our examples.

6.5.3. Block Update 3: Switching sex. The fixed sexes of the parents restrict the
assignments of the children to the parents. Sometimes this may limit the mixing of
the algorithm. For instance, using only the two above mentioned block updates, it
is difficult to replace two genetically similar individuals in the parents’ generation
by a single individual, if the original individuals happen to be of the opposite sexes.
To enhance the mixing we introduce an additional updating procedure, where the
sexes of the parents belonging to the same connected component are proposed to
be switched. The acceptance probability of this proposal depends only on the prior
probabilities of the corresponding pedigree configurations.

6.5.4. Irreducibility of the sampler. Theoretically the irreducibility of the sampler
can be proven, for instance, by considering only Block Update 1 (BU1). To see that
this results in the irreducibility of the whole chain, we may assume that the other
updates do not change the configuration between successive applications of BU1.

Let us proceed by induction with respect to the number of individuals in the
youngest generation. This proof assumes that in each generation there are at least
n males and n females available outside of the current pedigree, where n is the
number of individuals in the youngest generation.

If there is only one individual in the sample, then by applying BU1 to this in-
dividual, the pedigree and the allelic paths are sampled completely anew. Thus it
is possible to reach any configuration consistent with the population size and the
mating parameters (called legal configuration in the sequel) in just one transition.
Thus the chain is irreducible.

For the induction assumption, suppose that for some n ≥ 1 it is possible to shift
between any pairs of legal configurations in at most 2n − 1 BU1-transitions, when
there are n individuals in the youngest generation, and when there are at least n
males and n females available outside of the current pedigree in each generation.

Consider the case where there are n + 1 individuals in the sample and where
there are at least n +1 representatives of both sexes outside of the current pedigree
in each generation. It is possible to separate any particular sampled individual i
from the rest of the current pedigree in one BU1-transition in such a way that there
remain at least n representatives of both sexes outside of the current pedigree in each
generation. According to the induction assumption, 2n−1 transitions are enough to
make the configuration on the remaining n individuals match any legal configuration
on those individuals. Finally it is possible to attach individual i to the rest of the
pedigree in any possible way in a single transition. Thus 2(n + 1) − 1 transitions
are enough for updating any initial configuration to any other legal configuration,
when the sample size is n + 1. This completes the proof by induction.

Note that in practice it is likely that there are possible transitions between differ-
ent legal configurations under much weaker conditions on the number of individuals
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outside of the current pedigree. Here the assumption of n males and n females was
utilized in order to make the proof simple and general.

6.6. MCMC for phenotype model. The MCMC updates for phenotype param-
eters are much simpler to implement than the pedigree updates. The variance
parameters related to the phenotype model are updated by multiplying with a log-
normally distributed random variables. The QTL positions are updated by a (nor-
mally distributed) random walk proposal and the number of QTLs is updated with
the reversible jump methodology. (Details are in article IV.)

6.7. Haplotyping with PHASE algorithm. PHASE is a widely-used haplotyp-
ing method for population samples [43, 41, 42]. As an input it requires the unphased
diploid genotype data (Gi)i∈I , and its goal is to estimate the probability distribu-
tion of the haplotype configuration of each individual (Hi)i∈I , as well as population
haplotype frequencies. PHASE can also be applied to estimate the recombination
probabilities for the marker intervals.

PHASE is based on the ideas from MCMC computing and in particular it applies
a Gibbs’ update scheme to sample sequentially each Hi given Gi and the current
state of the other haplotypes (Hj)j 6=i. Informally, the Gibbs’ sampling step favors
the haplotype configurations that are either similar to those in the remaining set
(Hj)j 6=i, or that can be formed from them by mutations and recombinations [42].

Article V of this thesis extends PHASE to the setting where the individuals are
not genotyped individually, but instead their genetic material is mixed into a pool of
DNA and analyzed with a single genotyping. By using several such pools, the goal is
to estimate the population frequencies of the haplotypes, instead of the individual
haplotype configurations. This requires an additional Gibbs’ update step in the
MCMC algorithm. The novel step pairs by a uniformly chosen random permutation
the current haplotypes within the pool, and in this way forms artificial genotypes Gi

on which the original PHASE algorithm can be run. This step allows the algorithm
to explore the whole space of the possible haplotype configurations given the pooled
observations.

7. Results

Article I. An algorithm (APE) that extends partially known genotype data to the
whole pedigree in line with the Mendelian inheritance was introduced. APE was
compared with the program START [25] that tackles exactly the same problem. In
the examples APE was found to outperform START, when the performance was
measured in running time.

Article II. The pedigree based gene flow model was analyzed with four data sets
containing unlinked microsatellite loci.

In example I the data contained individuals from nuclear families, which them-
selves were collected from three different populations. The relatedness estimates
visualized by a dendrogram and a multidimensional scaling plot revealed both the
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structures (families and populations) simultaneously. This was compared with the
program STRUCTURE [34], which classifies the individuals to a fixed number of
groups according to the genotype data. From STRUCTURE’s results it was difficult
to identify both levels of relatedness at the same time.

In examples II and III two real human data sets were analyzed. In example II the
results were similar to those reported earlier by Rosenberg et al. [36]. In example III
individuals from Eastern and Western Finland were analyzed, but no clear distinc-
tion between the groups was found. (Neither STRUCTURE nor previous analyses
with other methods had found any geographical structure from these data.)

In example IV the relatedness estimates obtained by our method were compared
with three moment-estimators [23, 26, 45] on a simulated data set. The moment
estimators do not answer exactly the same question as our method, since their
frame of reference for IBD-calculations cannot be specified at the level of genera-
tions. However, we were not aware of other methods that would have been more
suitable for that task. As a result, our method gave smaller average errors than
the moment estimators, when the reference generation was specified similarly in our
reconstruction as in the original simulated data from which the true values were
computed.

Article III. The pedigree based gene flow model was analyzed with two data sets
containing linked microsatellite loci with recombination fractions of about 0.05 be-
tween the adjacent markers.

In example I simulated data from a 10-generation pedigree was analyzed. Our
method gave good results in haplotyping when compared with the program PHASE
[42], and good accuracy in IBD-estimation when compared with the three moment-
estimators [23, 26, 45]. Note again that these moment-estimators were unable
to take into account the linkage and the exact reference generation for the IBD-
computations. The advantage of the linkage model on linked data over the unlinked
version of the algorithm was also confirmed.

In example II the simulated data set from a 20-generation pedigree were analyzed.
All carriers of one particular founder allele were sampled from the current genera-
tion and their joint ancestry was estimated. The highest IBD-sharing among the
sampled individuals was correctly estimated to be near the trait locus. No similar
phenomenon was observed when the similarity between the alleles was defined by
the states of the alleles. However, no clear sign of the excess haplotype sharing was
observed near the trait locus, even though in the original simulation such excess
sharing was present. A reason for this may be that the algorithm was started with
T = 9 generations right from the beginning. In article IV we found that it is better
to create an initial state for the algorithm by a sequential approach, where one gen-
eration at a time is added to the model, always conditionally on the already existing
generations of the pedigree.

Article IV. The pedigree and gene flow model was extended to include also a
model for a quantitative phenotype.
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The model was tested on two simulated data sets. In example I the children of
50 three-child nuclear families formed the sample in the youngest generation of the
population. The marker data were simulated on 4 chromosomes, each containing
30 markers, and spaced in such a way that the recombination fractions between the
adjacent markers were 0.04 per meiosis. Furthermore, a univariate phenotype was
simulated by an additive model which included two QTLs and a residual effect. The
results were compared to a variance component linkage analysis program SOLAR
[2] and to an association analysis program TASSEL [7]. Our method and SOLAR
produced qualitatively similar results that correctly indicated the locations of the
two QTLs, whereas the association analysis was not able to separate the true signals
from false positives.

In example II a more challenging situation was considered. This time a pedigree
was simulated for 50 two-child nuclear families and the variances of the two QTLs
relative to the total phenotypic variance were decreased compared to example I. The
population parameters were such that the pedigree of the sampled individuals had
experienced a bottleneck in the recent history (within 5 of the most recent genera-
tions). In the results it was clearly seen how the QTL signals were captured when
the model included 4 ancestral generations, while 3 or less ancestral generations
were not enough to produce accurate estimates. Also comparisons with SOLAR
and TASSEL suggested that if the recent ancestry could not be taken into account
for more than one generation backwards in time, it is difficult to capture the true
QTL signals.

Article V. An extension of the PHASE algorithm [42] for pooled genotype data
was compared with a deterministic greedy algorithm and a previously available
program LDPooled [21]. Both simulated data and real human data extracted from
the HapMap database were used. In simulated examples and in the majority of the
real data sets the proposed method outperformed two others in the accuracy of the
frequency estimates.

It was also shown that pooling DNA from 2-3 individuals before genotyping the
samples may be advantageous when estimating the population haplotype frequencies
with fixed number of genotypings. Thus, even though pooling results in some loss
of the haplotype information, that loss can be well compensated by the increase in
the overall sample size provided by pooling.

8. Conclusion

The main goal of this thesis has been an accurate, application-driven modeling of
some population genetic phenomena, and the design of computational methods by
which the models can be analyzed. This approach has required considerable efforts,
especially in the implementation issues, but they were considered worth taking so
that most information from the data could be extracted. The results summarized
above show that a more accurate modeling of the genetic processes has indeed proven
advantageous in several settings.
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In the field of genetics the development of the laboratory technologies is accel-
erating in an enormous pace. For instance the 1000 Genomes Project launched
in January 2008 aims to sequence the genomes of at least a thousand people from
around the world. During its three-year course the 1000 Genomes Project will gener-
ate 60-fold more sequence data than have been deposited into public DNA databases
over the past 25 years [1]. Such a project would have been impossible just a few
years ago.

It may thus be that in the near future the focus of (human) genetics will shift from
marker data towards sequence data, not only in the huge international projects, but
also in the smaller scale studies of individual research groups around the world. It
is not computationally feasible to fully exploit such data by the methods introduced
in this thesis, and there is an evident need for computationally new approaches to
handle the next generation of genomic data. At the same time, however, studies
on wild animal and plant populations continue to be carried out with only a dozen
microsatellite loci, simply because the resources for sequencing such species have not
been available. Furthermore, pedigree and relatedness estimation from marker data
is a timely topic in those fields of research [8, 33]. Naturally the methods developed
in this thesis will remain readily applicable to those settings.

There are several topics for further study where the pedigree and gene flow es-
timation algorithm presented here can be utilized. For example, one may fix some
parts of the pedigree and consider the model as a way to build bridges between
the known pieces of the pedigree. In the special case where the whole pedigree is
considered known, our method becomes comparable to some other MCMC meth-
ods like SimWalk2 [38] (IBD-estimation) and Loki [17] (QTL mapping). Since our
MCMC updating scheme is different from the other available methods, comparisons
in such settings would be of interest. On the other hand, when the pedigree struc-
ture is fixed, the questions of possible reducibility of the MCMC samplers must be
considered carefully [37].

Another question of interest would be the reconstruction of the families from
linked SNP data. As SNPs usually possess only two alleles, they are not very infor-
mative about the family structure unless the linkage can be taken into account or
unless there are very many SNPs available. The method introduced in this thesis
takes linkage into account and might thus be advantageous in certain settings com-
pared to the approaches that assume unlinked markers (e.g. COLONY2 [46]). On
the other hand, if/when hundreds of thousands of SNPs become routinely available
also with other species than human, then the recent history between the individuals
may be accurately revealed already by more straightforward methods than the ones
presented in this thesis.

Also the limits of the method are of interest, both in computational and theoretical
terms. The computational limits may be extended by switching to a tempering
version of the algorithm, where parallel chains are run on different processors, and
the chains are allowed to communicate and switch states at certain time points. This
idea called Metropolis-coupled Markov chain Monte Carlo (MCMCMC) is expressed
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by Geyer [12]. Interesting theoretical questions relate to the time scale within which
the reconstruction of the pedigrees is a reasonable task, given the amount of marker
data at hand.

Outside of this thesis we have extended the methods for haplotyping pooled ge-
netic data to situations, where some prior information about the haplotypes in the
population is available, for example, from a database such as HapMap. An inter-
esting task would be to combine such prior knowledge with a realistic model for the
population haplotype distribution (e.g. [24]).

Under the massive flood of genetic data, the data-specific models and software
are deemed to have a short lifespan. There are, however, the principles of good
modeling that are forever. As both theoretical and experimental knowledge on the
genetic processes keep accumulating, there remains an important role in genetics for
Bayesian modeling as a coherent and consistent way to combine the already known
to newly observed [5].
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[19] O. Hössjer. Modeling the effect of inbreeding among founders in linkage analysis. Theoretical

Population Biology, 70:146–163, 2006.
[20] International HapMap Consortium. A second generation human haplotype map of over 3.1

million SNPs. Nature, 449:851–861, 2007.
[21] T. Ito, S. Chiku, E. Inoue, M. Tomita, T. Morisaki, H. Morisaki, and N. Kamatani. Estima-

tion of haplotype frequencies, linkage-disequilibrium measures, and combination of haplotype
30



copies in each pool by use of pooled DNA data. American Journal of Human Genetics, 72:384–
398, 2003.

[22] J. F. C. Kingman. The coalescent. Stochastic Processes and their Applications, 13:235–248,
1982.

[23] C. C. Li, D. E. Weeks, and A. Chakravarti. Similarity of DNA fingerprints due to chance and
relatedness. Human Heredity, 43:45–52, 1993.

[24] N. Li and M. Stephens. Modeling linkage disequilibrium, and identifying recombination
hotspots using SNP data. Genetics, 165:2213–2233, 2003.

[25] Y. Luo and S. Lin. Finding starting points for Markov chain Monte Carlo analysis of genetic
data from large and complex pedigrees. Genetic Epidemiology, 25:14–24, 2003.

[26] M. Lynch and K. Ritland. Estimation of pairwise relatedness with molecular markers. Genet-

ics, 152:1753–1766, 1999.
[27] G. J. Mendel. Versuche über Plflanzenhybriden. Verhandlungen des Naturforschenden Vere-
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