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Chapter 1

Introduction

1.1 Background

There is a broad agreement within the high energy physics community that the next ac-

celerator facility on the 21th century should be an electron-positron (e� e+) collider with

a center of mass energy of 500 GeV and a luminosity above 1033 cm�2 s�1 [3]. Such a

collider would provide a discovery of Higgs particles. Several research groups worldwide

are pursuing di�erent linear collider design e�orts. One of them is the TESLA (TeV En-

ergy Linear Superconducting Accelerator) collaboration [7]. The fundamental di�erences

of the TESLA approach compared to the other designs are the choices of superconducting

accelerator structures and a low frequency.

One of the major problems in the accelerator components operating in vacuum is the elec-

tron multipacting. Multipacting is a phenomenon of resonant electron multiplication in

which a large number of electrons build up an electron avalanche. This avalanche absorbs

the rf energy, leading to remarkable power losses and heating of the walls, making it impos-

sible to raise the �elds by increasing the input power. Multipacting may cause breakdown in

high rf power components such as couplers, cavities and windows. In the superconducting

structures a large rise of temperature can eventually lead to a thermal breakdown.

Multipacting starts when certain resonant conditions for electron trajectories are ful�lled

and the impacted surface has a secondary yield larger than one. Since there are only a

few special cases where the multipacting resonances can be determined analytically, usually

numerical methods are applied. Traditionally the numerical methods are based on straight-

forward Monte-Carlo type electron trajectory simulations. Since the trajectory calculation

of a relativistic electron is sensitive even to small perturbations of the electromagnetic �eld,

especially close to the structure walls, the �elds must be computed very accurately. This

sets a high quality requirement for the accuracy of the �eld computation algorithm.

The problem of computation of electromagnetic �elds in the particle accelerator structures

may be mathematically formulated as interior boundary value or eigenvalue problems for

time-harmonic Maxwell's equations. Since electromagnetic �elds can be found exactly only

in few simple cases, in the practical applications usually numerical methods are required.

The numerical methods can be divided into two categories, based either on di�erential equa-

tions (�nite element method and the method of �nite di�erence) or on integral equations

(boundary and volume integral equation method). Traditionally the �nite element method

has been the most popular method for interior problems with inhomogeneous media. In

the integral equation approach the original boundary value problem for partial di�erential

equations is reformulated as integral equations. If the medium is homogeneous, the integral
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equations can be transformed to operate on the boundary of the domain. This gives a rise

to the boundary integral equation method.

1.2 Goals and outline of this thesis

This work has arisen from a practical need to analyze electron multipacting in the TESLA

accelerator structures. TESLA is an international linear collider research and development

project based on superconducting accelerator components. The project is co-ordinated

by Deutsches Elektronen-Synchrotron (DESY), Germany. Although multipacting can be

avoided in most � = (v=c) = 1 cavities, multipacting is still a major problem in many types

of vacuum rf components [33]. Hence, it is very important to get information about the

possible multipacting resonances and to master various methods to suppress multipacting.

In order to carry out the multipacting analysis, the electromagnetic �eld map should be

available. Since the TESLA accelerator structures include homogeneous, or piece-wise

homogeneous, medium only, the boundary integral equation method becomes a considerable

choice. Although it might be easier to model complicated 3D structures with the boundary

integral equation method than, for example, with the �nite element method, the numerical

implementation usually becomes much more demanding because of the singularities of the

boundary integral operators. For the boundary integral equation method to be e�ective,

the computation of singular integrals requires a special attention.

The goal of this work has been twofold. Firstly, to develop numerically e�ective and accu-

rate methods for solving (interior) boundary value problems for time-harmonic Maxwell's

equations by the boundary integral equation method. Secondly, to develop computational

methods for a systematic analysis of electron multipacting. In particular, in this work,

these two goals are combined to carry out the multipacting analysis in the TESLA super-

conducting accelerator cavities and input power couplers. This study have been carried out

during the joint research project of Rolf Nevanlinna Institute and DESY in 1993 - 1999.

The thesis consists of this overview and �ve publications. The publications are referred by

Roman numerals I-V and they are listed in Section 1.3.

The problem of computation of electromagnetic �elds in particle accelerator structures is

considered in Publications II and V. Publication II con�nes to axially symmetric structures,

like rf cavities and coaxial input couplers with ceramic windows, whereas in Publication

V arbitrary 3-dimensional geometries, like junctions and discontinuities of rectangular and

coaxial waveguides, are considered. In both cases, special attention is paid to developing

computational methods for the accurate �eld computation near the boundaries. Further-

more, in Publication III the numerical eÆciency and stability of various boundary integral

equation formulations is studied in the axisymmetric case. It is found that the accuracy

may signi�cantly depend on the type of the formulation and the choice of the test functions.

In Publication I, we present systematic methods to analyze electron multipacting in arbi-

trary rf structures based on the standard electron trajectory calculations combined with

new advanced searching and analyzing methods for multipacting resonances. The developed

methods are applied to analyze multipacting in simple geometries like straight and tapered

coaxial lines. In straight coaxial lines we have found simple scaling laws for multipacting

resonances and studied the e�ect of biasing DC voltage to multipacting. In particular, we

give scaling laws by which one can optimize the biasing voltage to suppress multipacting in

any coaxial line. In Publication IV the multipacting analysis of the TESLA superconduct-

ing single and multi-cell accelerator cavities and two designs of the TESLA input power

coupler with a ceramic window is considered. Because of the complexity of the window

geometries and varying �eld conditions, the multipacting analysis in the input couplers
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becomes rather demanding and time consuming.

In addition, to a review of the material presented in Publications I - V, this overview presents

a brief theoretical introduction to the boundary integral equation method in nonsmooth

domains, so called Lipschitz domains. The presentation is not complete, e.g. the proofs of

the theorems are omitted, and it should be seen more as a review of the recent results of

the theoretical study of the boundary value problems for Maxwell's equations in Lipschitz

domains.

The outline of this overview is the following. In Chapter 2 we consider electromagnetic

�eld computation by the boundary integral equation method. Sections 2.1 - 2.3 review the

theoretical background. The required boundary integral equations are derived in Section 2.4

starting from the well-known Stratton-Chu integral representations and the main ideas of

the developed numerical algorithms are introduced in Section 2.5. In Chapter 3 we consider

multipacting as a dynamical system and present the developed numerical methods. Finally,

Chapter 4 reviews the main results of the multipacting analysis and the �eld computations

of the Publications I - V.

Some of the material of this thesis has been also presented in the following reports.

� P. Yl�a-Oijala: Analysis of electron multipacting in coaxial lines with traveling and

mixed waves, TESLA Reports 97-20, pp. 1-21, DESY Print, 1997.

� P. Yl�a-Oijala: Suppressing electron multipacting in coaxial lines by DC voltage, TES-

LA Reports 97-21, pp. 1-14, DESY Print, 1997.

� P. Yl�a-Oijala: Application of the boundary integral equation method to interior

boundary value problems for Maxwell's equations, Licentiates Dissertation, Rolf Nevan-

linna Institute Research Reports C29, pp. 1-120, Helsinki 1998.
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1.3 List of Publications

The thesis consists of this overview and the following �ve publications.

I. E. Somersalo, P. Yl�a-Oijala, D. Proch and J. Sarvas: Computational methods for

analyzing electron multipacting in RF structures, Particle Accelerators, Vol. 59, pp.

107-141, 1998.

II. P. Yl�a-Oijala and E. Somersalo: Computation of electromagnetic �elds in axisym-

metric RF structures with boundary integral equations, Journal of Electromagnetic

Waves and Applications, Vol. 13, pp. 445-489, 1999.

III. P. Yl�a-Oijala: Comparison of boundary integral formulations for electromagnetic �eld

computation in axisymmetric resonators, submitted for publication, preprint in Rolf

Nevanlinna Institute Research Reports A24, pp. 1-21, Helsinki 1999.

IV. P. Yl�a-Oijala: Electron multipacting in TESLA cavities and input couplers, to appear

in Particle Accelerators, 1999.

V. P. Yl�a-Oijala and M. Taskinen: Computation of mixed waves in 3-dimensional waveg-

uide discontinuities by the boundary integral equation method, Rolf Nevanlinna In-

stitute Research Reports A25, pp. 1-28, Helsinki 1999.
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Chapter 2

Field Computation by Boundary

Integral Equations

The boundary integral equation method (BIEM) has been one of the most popular methods

for solving various electromagnetic �eld problems. Especially BIEM has been applied to

scattering problems where the advantages compared to the methods based on di�erential

equations (e.g. �nite element method, FEM) are obvious. Namely, the radiation conditions

are automatically enforced and diÆcult (3D) mesh generation and truncation problems

with some additional absorbing boundary conditions can be avoided. In the BIEM the

unknowns are not the electromagnetic �elds on the entire space, but some tangential vector

�elds on the boundaries. Thus, by applying BIEM, the dimensionality of the problem can

be reduced by one. The drawbacks of the method are that the numerical treatment of

singular integral equations is rather involved and the resulting system matrix is dense.

The problem of computation of electromagnetic �elds in the accelerator devices can be

mathematically formulated as interior boundary value or eigenvalue problems for Maxwell's

equations. In the case of smooth boundaries, the problem can be reduced to weakly singular

integral equations, hence giving a rise to compact operators which can be readily handled

via classical Fredholm theory [5]. Although the approach based on the Fredholm theory

is available for C1 domains, it no longer works for general nonsmooth (Lipschitz) domains

and new techniques are required. In recent years, this topic has received much attention,

see e.g. [51], [45], [29], [48], and references therein. As well-known, the theoretical study of

boundary value problems using boundary integral equations (often called a layer potential

approach) becomes very involved if the boundary of the domain is not smooth. One of the

main reasons for this is that some of the resulting integral operators have to be interpreted

as principal value integrals. However, the need for a realistic modelling of engineering and

physical problems naturally leads to domains with corners and edges, and discontinuous

boundary data. This is the case in the present application of the �eld computation in the

particle accelerator structures.

The �rst numerical applications of the BIEM to electromagnetic scattering problems were

rotationally symmetric obstacles, [26], [27], [13], etc. In [39] the authors developed special

base functions for solving electromagnetic scattering by arbitrary shaped three dimensional

perfectly conducting bodies. More recently the same approach has been applied to dielectric

obstacles [50], [40] and to dielectrically coated conducting bodies [41]. The BIEM has been

also applied to interior problems, like waveguide discontinuities and waveguide junctions

[16], [20]. As well-known, the BIEM is available for homogeneous bodies only. Therefore, in

recent years a lot of e�ort has been put to develop methods for coupling FEM and BIEM,

in order to treat inhomogeneous bodies. See e.g. [52] and [42] for the latest developments.
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We begin this overview by giving a short review of the main results of the layer potential

technique applied to the (interior) boundary value problems for Maxwell's equation in non-

smooth domains. The main aim of this thesis is, however, to develop numerical methods for

solving various (interior) boundary value problems for Maxwell's equations with boundary

integral equations and apply the results to the analysis of electron multipacting.

2.1 Function spaces

When using the layer potential approach, the question of regularity of the tangential com-

ponents of solutions to Maxwell's equations on the boundary is important. As it has been

pointed out in [22], the function space for both electric and magnetic �elds must be the

same, since the electric and magnetic �elds occur in Maxwell's equations in a symmetric

fashion. Furthermore, for solutions to Maxwell's equations, the regularity of the �elds up to

the boundary automatically ensures regularity of the curl of the �elds up to the boundary.

Let 
 � IR3 be an open, bounded, simply connected region with a connected boundary

@
. A domain 
 is called Lipschitz or Ck; k 2 IN+, if @
 is given locally by the graph

of a Lipschitz or Ck function ([46]), respectively. By Lp(
); 1 < p < 1, we denote the

usual space of functions f : 
 7! C with the property
R


jf(x)jp dx <1. For vector valued

functions ~F : 
 7! C3 we denote ~F 2 Lp(
)3 if all components of ~F are in Lp(
).

In the case of C1 and Lipschitz domains with noncontinuous boundary data it is customary

to treat the space of tangential Lp functions on the boundary, see e.g. [28] and [46]. Let


 � IR3 be a bounded Lipschitz domain and let 1 < p <1. Then we de�ne

TLp(@
) :=
n
~F : @
 7! C3 j~n � ~F = 0 a.e. and ~F 2 Lp(@
)3

o
:

Here a.e. is an abbreviation for almost everywhere or almost every point, with respect to

the surface measure, and ~n denotes the unit normal of @
 pointing into the exterior of 
.

Furthermore, in the case of irregular boundary we have to require some boundedness condi-

tions for the nontangential maximal functions ~E� and ~H� in order to guarantee the existence

of pointwise boundary values for ~E and ~H. At every point x 2 @
 we assume that an open

right circular, doubly truncated cone �(x), with vertex at x and two convex components

(one in 
 and the other in IR3 n �
), has been chosen so that the resulting family of such

cones is a regular family as described in [51]. The components of such cones are denoted

by �� 2 
 and �+ 2 IR3 n �
. For a function f de�ned in 
 (in IR3 n �
), the nontangential
maximal function f�

�
is de�ned as follows [28], [46]

f�
�
(x) := sup

y2��(x)

jf(y)j:

The boundary values of functions de�ned in 
 (in IR3 n �
) are assumed to be taken as

nontangential limits almost everywhere. That is, we de�ne f� j@
 as follows

f�(x) := lim
y!x

f(y); y 2 ��(x); for a.e. x 2 @
:

Similar de�nitions apply for the partial derivatives of a function, and for each component

of a vector-valued function [46].

Next we de�ne the surface divergence for Lipschitz domains [28]. For the smooth case see

e.g. [6].

De�nition 2.1.1 A vector �eld ~F 2 TLp(@
) has a surface divergence, denoted by Div ~F ,

if there exists a (unique) scalar valued function Div ~F in Lp(@
) such that for all functions
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' 2 C1(IR3) it holds Z
@


'Div ~F dS = �
Z
@


Grad' � ~F dS:

Here Grad denotes the surface gradient and 1 < p <1.

Now we can state the following lemma [46], which is well-known for smooth domains ([6]).

Lemma 2.1.2 Let ~F be a smooth vector �eld de�ned in 
, e.g. ~F 2 C2(
)3. If ~F and

r� ~F have nontangential limits almost at every point x 2 @
, and if ~F � 2 Lp(@
)3 and

(r� ~F )� 2 Lp(@
)3 for some 1 < p <1, then ~n� ~F has a surface divergence in Lp(@
).

That is, ~n� ~F 2 TLpDiv(@
) and

Div (~n� ~F ) = �~n � (r� ~F ):(2.1.1)

Time-harmonic Maxwell's equations (in a linear, homogeneous and source free medium),

with the time-factor e�i!t,

r� ~E = i!� ~H; r� ~H = �i!
 ~E;

together with (2.1.1) imply

Div (~n� ~E) = �i!�~n � ~H and Div (~n� ~H) = i!
 ~n � ~E:(2.1.2)

Hence, the existence of boundary values for the normal components of the �elds imply some

extra regularity for the tangential components of the �elds on the boundary. In particular,

the tangential components of ~E and ~H should have a surface divergence in Lp(@
). This

motivates us to de�ne the following function space. Let 
 � IR3 be a bounded Lipschitz

domain and let 1 < p <1, then we de�ne

TLpDiv(@
) :=
n
~F 2 TLp(@
) jDiv ~F 2 Lp(@
)

o
:

It is worth of noticing that in [47] and [48] the author considers electromagnetic transmission

problems with the boundary data in TL2
Div(@
).

2.2 Statement of the problem

In this work we consider propagation of time-harmonic electromagnetic �elds in a piecewise

homogeneous medium. The space dependent parts of the �elds satisfy the time-harmonic

Maxwell's equations

r�~E(x)� i!�(x) ~H(x) = 0 and r� ~H(x) + i!
(x) ~E(x) = 0;(2.2.1)

in 
 � IR3, with piecewise constant �(x) and 
(x) = "(x) + i�(x)=!. First we formulate

an interior Maxwell problem in a bounded Lipschitz domain 
 � IR3 with homogeneous

interior ([28], [29]).

Problem 2.2.1 (Interior Maxwell) Find ~E; ~H, with ~E�; ~H� 2 Lp(@
)3, satisfying Maxwell's

equations (2.2.1) in 
 with constant 
 and �, and the boundary condition

~n� ~E = ~F on @
;(2.2.2)

where ~F 2 TLp(@
) is a given tangential �eld and 1 < p <1.
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In a similar fashion as in the smooth case [5], the interior Maxwell problem does not have a

unique solution if k is the Maxwell eigenvalue of the domain 
. A wavenumber k = !
p

� >

0 is called a Maxwell eigenvalue for domain 
 if for each k there exists nonzero eigen�elds

~E; ~H satisfying Maxwell's equations in 
 and the homogeneous boundary condition ~n� ~E =

0 on @
. As well-known for each bounded domain there exists a countable set of such

eigenvalues accumulating only at in�nity. For the interior Maxwell problem we have the

following result [29].

Theorem 2.2.1 If k > 0 is not a Maxwell eigenvalue for 
, then there exists � > 0

depending only on @
 such that for each 1 < p � 2 + � the interior Maxwell problem has

a unique solution if and only if ~F 2 TLpDiv(@
). In the case in which k is a Maxwell

eigenvalue for 
, the interior Maxwell problem is solvable if and only if ~F 2 TLpDiv(@
)

and ~F satis�es �nitely many linear conditions. In such a case the solution is not unique.

For the present application of the �eld computation in the particle accelerators we have

to consider more general interior boundary value problems for Maxwell's equations. The

medium may be piecewise homogeneous and on the boundary we assume various boundary

conditions. Let a bounded domain 
 � IR3 be divided into n open and homogeneous regions

�
 =
n[
j=1

�
j ; 
i \ 
j = ;; i 6= j:(2.2.3)

Here we assume that subdomains 
j; j = 1; : : : ; n, are Lipschitz domains with constant

electromagnetic parameters 
j and �j . We divide the boundary of 
j , @
j , into three sep-

arate regions as follows. Let �j � @
j denote a portion of @
j where an electric boundary

condition ~nj � ~Ej j�j= ~Fj is given. This kind of boundary segment is often called an elec-

tric wall. In a similar fashion, a boundary segment �j � @
j where a magnetic boundary

condition ~nj � ~Hj j�j= ~Gj is given, is called a magnetic wall. Functions ~Fj and ~Gj are

given (smooth) tangential vector �elds de�ned on the boundary. In practical applications

we usually set ~Fj = 0 and ~Gj = 0, corresponding to physical perfectly conducting electric

and magnetic boundary conditions. Furthermore, let us denote the intersections of the

subdomains by �j;m = @
j \ @
m.

To be more precise, let ~Ej = ~E j
j
; ~Hj = ~H j
j

denote a solution to Maxwell's equations

in 
j and let ~nj denote the unit normal of @
j pointing into the exterior of 
j . We de�ne

the following subboundaries

�j =
n
x 2 @
j j ~nj(x)� ~Ej(x) = ~Fj(x)

o

�j =
n[

m=1;m6=j

�j;m

�j =
n
x 2 @
j j ~nj(x)� ~Hj(x) = ~Gj(x)

o
;

for j = 1; : : : ; n, so that

@
j = �j [�j [ �j :

On �j;m we require the transmission conditions

~nj � ~Ej = �~nm � ~Em and ~nj � ~Hj = �~nm � ~Hm:(2.2.4)

In this work we consider rather complicated interior problems by generalizing Problem 2.2.1

for a piecewise homogeneous domain 
; 
 de�ned as in (2.2.3). First we consider a Maxwell

eigenvalue problem, see [29]. Physically, such an eigenvalue problem corresponds to a closed

cavity resonator (with piecewise homogeneous interior). Here we use p = 2 motivated by

[47].
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Problem 2.2.2 Let k be a Maxwell eigenvalue for a domain 
 with 
 de�ned as in (2.2.3).

Find the nonzero �elds ~Ej ; ~Hj, with
~E�

j ;
~H�

j 2 L2(@
j)
3
, called Maxwell's eigen�elds, sat-

isfying Maxwell's equations (2.2.1) in 
j with constant 
j and �j, and the homogeneous

boundary conditions

~nj � ~Ej = 0 on �j ; ~nj � ~Hj = 0 on �j ;(2.2.5)

and the transmission conditions (2.2.4), for all j;m = 1; : : : ; n; m 6= j.

Obviously, the problem of �nding the eigenvalues k for an arbitrary domain is a non-

trivial question. In fact, the above problem has non-zero solutions only if k is the Maxwell

eigenvalue of 
. In such a case the solution is not unique.

In addition to the above problem, referred here to a cavity problem, we also consider

propagation of electromagnetic �elds in waveguides with piecewise homogeneous medium.

The waveguide can be open in the sense that after the possible discontinuity, the structure

continues (to the in�nity) as a uniform waveguide. We assume that the frequency is chosen

so that in the regular section only one �eld mode is propagating. This kind of �eld problem

can be considered by closing the computation domain with properly placed electric or

magnetic walls, and treating it as a closed cavity resonator. An other way is to utilize

the fact that in the homogeneous sections the �eld distribution is known up to a constant

complex multiplier. In the latter case the waveguide problem is formulated as follows.

Problem 2.2.3 Let ~Ep
j ; ~H

p
j , be a given incident �eld in 
j; j = 1; : : : ; n. Find ~Ej =

~Ep
j +

~Es
j ;
~Hj = ~Hp

j +
~Hs
j , with

~E�

j ;
~H�

j 2 L2(@
j)
3
, satisfying Maxwell's equations (2.2.1)

in 
j with constant 
j and �j, and the boundary conditions (2.2.5) and (2.2.4).

In practice the computation domain is closed by walls, placed far enough from the discon-

tinuity, and the source terms ~Ep
j and ~Hp

j are generated by the surface currents on these

walls.

In the complicated cases of Problems 2.2.2 and 2.2.3, the questions of uniqueness and

existence of a solution are open. Thus, this theoretical introduction does not give answers

to these questions in the practical situations where the numerical computations are carried

out. Motivation to this theoretical section is to show that the boundary integral equation

method is applicable to nonsmooth domains, too.

2.3 Layer potential operators

In this section we de�ne appropriate integral operators, so called layer potential operators,

needed on the formulation of the boundary integral equation method in the context of

Maxwell's equations. In particular, we present the nontangential traces of the operators

to the boundary (so called jump relations). In the smooth case the classical results with

H�older continuous density functions can be found from [5] (and [59]). See also [22] and [6].

In the Sobolev space setting the results are presented in [14] ([38], [12]).

Let

�k(x� y) :=
eikjx�yj

4�jx� yj

with k = !
p

�, denote the fundamental solution of Helmholtz equation in IR3. Often

�k is called a free space Green's function. We de�ne the following integral, or potential,

operators.
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De�nition 2.3.1 Let 
 be a bounded Lipschitz domain, ~F 2 Lp(@
)3; ~G 2 TLp(@
) and
~W 2 TLpDiv(@
), 1 < p <1. Then for all x 2 
 we de�ne

(S
 ~F )(x) :=

Z
@


�k(x� y) ~F (y) dS(y)

(K

~G)(x) := r�

Z
@


�k(x� y) ~G(y) dS(y)

(D

~W )(x) := (r�)2

Z
@


�k(x� y) ~W (y) dS(y):

The next theorem involves the question of the traces of the potential operators to the

boundary.

Theorem 2.3.2 Let 
 be a bounded Lipschitz domain and ~F 2 Lp(@
)3; ~G 2 TLp(@
),
~W 2 TLpDiv(@
) with 1 < p <1, then we have the following nontangential boundary traces

for almost any point x0 2 @
 (x 2 
)

lim
x!x0

(~n(x0)� (S
 ~F )(x)) = (~S~F )(x0)

lim
x!x0

(~n(x0)� (K

~G)(x)) = (~K ~G)(x0)�

1

2
~G(x0)

lim
x!x0

(~n(x0)� (D

~W )(x)) = (~D ~W )(x0);

where the boundary integral operators ~S; ~K and ~D are de�ned at x0 2 @
 as follows

(~S ~F )(x0) :=

Z
@


~n(x0)�
�
�k(x0 � y) ~F (y)

�
dS(y)

(~K ~G)(x0) := p.v.

Z
@


~n(x0)�rx0 �
�
�k(x0 � y) ~G(y)

�
dS(y)

(~D ~W )(x0) := p.v.

Z
@


~n(x0)� (rx0�)2
�
�k(x0 � y) ~W (y)

�
dS(y):

Here p.v. stands for the Cauchy principal value integral.

For the proof of the jump relations of the scalar and vector layer potentials in Lipschitz

domains see e.g. [51], [45], [28], [29] and [47], and references therein.

Let S; K and D denote the operators ~S; ~K and ~D without taking the vector products with

~n. In the sequel, we will need the following lemma [46].

Lemma 2.3.3 Let 
 be a bounded Lipschitz domain and let 1 < p <1. Then for a vector

�eld ~G 2 TLpDiv(@
) it holds
r � (S
 ~G) = S
(Div ~G):

The identity is valid on @
 by interpreting the operator r�S
 in the principal value sense.

By this lemma, we may write

(~D ~F ) = ~n�
�
rS(Div ~F )

�
+ k2~S(~F );(2.3.1)

where rS has to be interpreted in the sense of principal value. Next we give the mapping

properties of the potential operators [28], [29].
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Theorem 2.3.4 Let 
 be a bounded Lipschitz domain. Then

~S : Lp(@
)3 7! Lp(@
)3

is compact and

~K : TLp(@
) 7! TLp(@
)

~K : TLpDiv(@
) 7! TLpDiv(@
)

~D : TLpDiv(@
) 7! TLpDiv(@
)

are bounded, for all 1 < p < 1. If 
 is a C1
domain, then ~K is actually compact in

TLp(@
).

In the case of transmission problems the original boundary value problem is usually reduced

to a set of boundary integral equations involving di�erences of the layer potential operators

([31], [48]). Therefore, it is also important to know the properties of these di�erence opera-

tors. The next theorem is a straightforward corollary of the corresponding results given in

[47] for the operators ~K� ~K0 and ~D� ~D0. Here ~K0 and ~D0 denote ~K and ~D with k = 0.

Theorem 2.3.5 Let 
 be a bounded Lipschitz domain and let ~Kj and
~Dj denote operators

~K and ~D with wave numbers kj ; j = 1; 2; k1 6= k2. Then

~K1 � ~K2 : TL2(@
) 7! TL2(@
)

~D1 � ~D2 : TL2(@
) 7! TL2(@
):

are compact.

2.4 Boundary integral equations

The boundary integral equation method is based on certain integral representations. A

usual method of representing �elds is to express them as integrals over sources or �elds on

surfaces or volumes. Typical sources, for instance, are electric and magnetic currents and

electric and magnetic charges. Integral equations can be obtained by various methods, such

as using Green's theorem, the reciprocity theorem or �eld expressions in the terms of vector

potentials or Hertz vectors [30]. Here we apply the method based on the (vector) Green's

theorem. This method yields the well-known Stratton-Chu representation formulas.

In the sequel we will apply the fact that the electromagnetic �elds can be represented in a

bounded, homogeneous and source free domain by certain integral operators operating on

the boundary of the domain. Let us �rst de�ne the equivalent electric and magnetic surface

currents
1 as

~J = �~n� ~H j@
 and ~M = ~n� ~E j@
 :

Then the Stratton-Chu representation formulas can be written as follows (for the smooth

case see [5]). Here, and in the sequel, ~n is always the outward unit normal of @
.

Theorem 2.4.1 Let 
 be a bounded Lipschitz domain and let ~E and ~H be smooth �elds

de�ned in 
, e.g. in C2(
)3, with ~J; ~M 2 TLpDiv(@
), 1 < p <1. Assume that ~E; ~H and

1Note that in Publications II and III, and in [59] we de�ned ~J = �~n� ~H and ~M = �~n� ~E.
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r� ~E; r� ~H exist a.e. on @
 and ~E�
and ~H�

are in Lp(@
)3. If ~E; ~H is a solution to

homogeneous Maxwell's equations in 
, then we have

� 1

i!


�
D


~J
�
(x)�

�
K


~M
�
(x) =

(
~E(x); if x 2 
;

0; if x 2 IR3 n �
;
(2.4.1)

�
K


~J
�
(x)� 1

i!�

�
D


~M
�
(x) =

(
~H(x); if x 2 
;

0; if x 2 IR3 n �
:
(2.4.2)

The representation formulas for Maxwell's equations follow from the corresponding formulas

for the vector Helmholtz equation when proper conditions for ~E and ~H are required, because

divergence free solutions to the vector Helmholtz equation satis�es Maxwell's equations, and

vice versa [5], [46]. The representation formula for the vector Helmholtz equation in the

Lipschitz domains is given e.g. in [46].

Next the boundary value problems introduced in Section 2.2, i.e., Problems 2.2.2 and 2.2.3,

are reduced to a set of boundary integral equations by applying the boundary conditions

to the Stratton-Chu representation formulas. There are several alternative ways to derive

the equations [11], [25]. The method based on the �eld representations is called a direct

method, or a �eld formulation.

Let K
j
and D
j

denote the operators K
 and D
 with

�kj (x� y) :=
eikj jx�yj

4�jx� yj ; kj = !
p
�j 
j :

Suppose that in 
 the total electromagnetic �eld consists of a known primary �eld ~Ep; ~Hp,

and an unknown secondary �eld ~Es; ~Hs. Furthermore, we de�ne

~Ep
j =

~Ep j
j
; ~Hp

j =
~Hp j
j

; ~Es
j =

~Es j
j
and ~Hs

j =
~Hs j
j

:

Since in the case of the eigenvalue problem, Problem 2.2.2, we have no primary �eld, the

following equations hold for the eigenvalue problem too, when the primary �eld is omitted.

Let us introduce a notation ~F = ~n� ~F and de�ne the following surface currents

~Jsj = � ~Hs
j ;

~M s
j =

~Es
j ;

~Jpj = � ~Hp
j and ~Mp

j =
~Ep
j :

Then the total surface currents are given by

~Jj := ~Jpj + ~Jsj and ~Mj := ~Mp
j +

~M s
j :

We represent both the scattered and primary �elds by the Stratton-Chu formulas in 
j as

follows

� 1

i!
j

�
D
j

~Jpj

�
(x)�

�
K
j

~Mp
j

�
(x) =

(
0; if x 2 
j;

~Ep
j (x); if x 2 
 n �
j ;�

K
j
~Jpj

�
(x)� 1

i!�j

�
D
j

~Mp
j

�
(x) =

(
0; if x 2 
j ;

~Hp
j (x); if x 2 
 n �
j;

and

� 1

i!
j

�
D
j

~Jsj

�
(x)�

�
K
j

~M s
j

�
(x) =

(
~Es
j (x); if x 2 
j ;

0; if x 2 
 n �
j;�
K
j

~Jsj

�
(x)� 1

i!�j

�
D
j

~M s
j

�
(x) =

(
~Hs
j (x); if x 2 
j;

0; if x 2 
 n �
j :
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Then by adding the above equations together, we get in 
j

� 1

i!
j

�
D
j

~Jj
�
(x)�

�
K
j

~Mj

�
(x) = ~Es

j (x);�
K
j

~Jj
�
(x)� 1

i!�j

�
D
j

~Mj

�
(x) = ~Hs

j (x):
(2.4.3)

Letting x! @
j , taking the vector product with ~nj on the both sides of equations (2.4.3),

and by applying the (nontangential) traces of the tangential components of K and D, we

get the following set of boundary integral equations

� 1

i!
j
(~Dj

~Jj)(x)�
�
~Kj +

1

2
IMj

�
( ~Mj)(x) = � ~Ep

j (x); a.e. x 2 @
j ;(2.4.4)

�
~Kj +

1

2
IJj

�
( ~Jj)(x)�

1

i!�j
(~Dj

~Mj)(x) = � ~Hp
j (x); a.e. x 2 @
j;(2.4.5)

for all j = 1; : : : ; n. Here

IMj
(x) =

(
I; if x 2 @
j n �j ;
0; if x 2 �j;

and IJj (x) =

(
I; if x 2 @
j n �j ;

0; if x 2 �j ;

and I denotes the identity operator. Equation (2.4.4) is called an electric �eld integral

equation (EFIE) and (2.4.5) is called a magnetic �eld integral equation (MFIE).

From (2.4.4) and (2.4.5) we �nd that on the perfectly conducting portion of the boundary,

i.e, as ~Mj = 0, EFIE leads to an integral equation of the �rst kind, whereas MFIE leads to

an integral equation of the second kind. Obviously a converse result holds on the magnetic

wall �j . On the transmission boundary �j;m, on the other hand, both EFIE and MFIE

lead to integral equations of the second kind.

Usually the fundamental integral equations (2.4.4) and (2.4.5) are combined on the trans-

mission boundaries �j;m in order to get as many equations as unknowns. Let us multiply

the equations arising from @
j by complex constants aj and bj , and the equations arising

from @
m by constants am and bm, respectively. Next we subtract the equations from each

other. The transmission conditions on �j;m imply

~Jj j�j;m
= � ~Jm j�j;m

and ~Mj j�j;m
= � ~Mm j�j;m

:

Let ~J := ~Jj j�j;m
and ~M := ~Mj j�j;m

. Then the combined equations on �j;m read

� 1

i!

�
aj


j
~Dj �

am


m
~Dm

�
( ~J)�

�
aj ~Kj � am ~Km +

1

2
(aj � am)IM

�
( ~M) = 0(2.4.6)

�
bj ~Kj � bm ~Km +

1

2
(bj � bm)IJ

�
( ~J)� 1

i!

�
bj
�j
~Dj �

bm
�m

~Dm

�
( ~M) = 0:(2.4.7)

There are a lot of possible choices for the coeÆcients aj ; am; bj and bm, see e.g. [11] and

[25].

2.5 Numerical solution to the integral equations

There are various alternative ways to solve boundary integral equations (see e.g. [21] and

[30]). The most popular methods in 3D are the point-matching and Galerkin methods. Here

we apply the Galerkin method. By the Galerkin method the degree of the singularity of the

operator ~D can be decreased by integrating by parts. Furthermore, we assume that the base

and test functions are piecewise linear functions. Since various axisymmetric structures are

very common in the particle accelerators, we consider separately axisymmetric and arbitrary

3D geometries.
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2.5.1 The Galerkin method

In this work we �nd nonzero solutions to the equations of the following form

Lf = 0; and Lf = g;(2.5.1)

where L is a linear integral operator, f is an unknown function and g is a known function.

The operator L is either an integral operator of the �rst kind

(Lf)(x) =

Z
@


K(x; y) f(y) dSy(2.5.2)

or an integral operator of the second kind

(Lf)(x) = f(x)�
Z
@


K(x; y) f(y) dSy:(2.5.3)

Generally L can be a combination of (2.5.2) and (2.5.3). The kernel K is a function

involving Green's function (�k) or derivatives of Green's function, or both. The method for

solving equations (2.5.1) in Hilbert spaces via orthogonal projection into �nite dimensional

subspaces leads to the method called Galerkin method [21].

Let us consider more precisely how the Galerkin method is applied in the present situation.

In order to simplify the notations we drop out the subindex j. The unknown surface currents
~J and ~M are expanded by base functions ~jl and ~ml as

~J(x) =
NX
l=1

�l~jl(x)(2.5.4)

~M(x) =
MX
l=1

�l ~ml(x):(2.5.5)

Let

~'k; k = 1; : : : ; P and ~ k; k = 1; : : : ; Q

denote the electric and magnetic test functions (not necessarily equal with ~jl and ~ml)
2.

At this point the choice of base and test functions is arbitrary. They are �xed later in

Sections 2.5.2 and 2.5.3. The testing procedure is carried out through the following lines.

The EFIE (2.4.4) is multiplied by the electric test functions via a symmetric scalar product,

or a bi-linear form, de�ned by D
~F ; ~G

E
S
=

Z
S

~F � ~Gdx;

where S is the area of integration. This gives the following equations for k = 1; : : : ; P ,

� 1

i!


NX
l=1

�l
D
~'k; (~D~jl)

E
Sk
�
 

MX
l=1

�l
D
~'k; (~K~ml)

E
Sk
+
1

2

MX
l=1

�l
D
~'k; ~ml

E
Sk
IM

!
= �

D
~'k; ~E

p
E
Sk
:

Here Sk � @
 is the support of ~'k, so that S = [Pk=1Sk is the portion of @
 where the

testing procedure is carried out (either �; � or �). In a similar fashion the MFIE (2.4.5) is

tested by the magnetic test functions. This leads to the following equations for k = 1; : : : ; Q, 
NX
l=1

�l
D
~ k; (~K~jl)

E
Sk
+
1

2

NX
l=1

�l
D
~ k;~jl

E
Sk
IJ

!
� 1

i!�

MX
l=1

�l
D
~ k; (~D~ml)

E
Sk

= �
D
~ k; ~H

p
E
Sk
;

2In the literature there are various de�nitions for the Galerkin method. In the electromagnetic engineering

community above method is called a Galerkin method if the test and base functions are identical, otherwise

the method is called the method of moments. Here we follow the de�nition of [21].
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where Sk = supp(~ k).

The above discretized EFIE and MFIE can be written shortly by the following matrix

equations

� 1

i!

A(E;J)��

�
B(E;M) +

1

2
C(E;M) IM

�
� = �eE ;(2.5.6) �

B(H;J) +
1

2
C(H;J) IJ

�
�� 1

i!�
A(H;M)� = �hH ;(2.5.7)

where (after integrating by parts twice)

A
(E;J)
k;l =

Z
@Sk

~�k � (~'k � ~n) (SSl Div~jl) dl �
Z
Sk

Div (~'k � ~n) (SSl Div~jl) dS;

�
Z
@Sk

~�k � (~'k � ~n)
Z
@Sk

�~�k �~jl dl dl +
Z
Sk

Div (~'k � ~n)
Z
@Sk

�~�k �~jl dl dS

+ k2
Z
Sk

(~'k � ~n) � (SSl ~jl) dS; k = 1; : : : ; P; l = 1; : : : ; N

(2.5.8)

B
(E;M)

k;l =

Z
Sk

~'k �
Z
Sk

~n� (r�� ~ml) dS dS

=

Z
Sk

(~'k � ~n) � (KSl ~ml) dS; k = 1; : : : ; P; l = 1; : : : ;M;
(2.5.9)

C
(E;M)

k;l =

Z
Sk

~'k � ~ml dS; k = 1; : : : ; P; l = 1; : : : ; N;

eEk =

Z
Sk

~'k � ~Ep dS; k = 1; : : : ; P;

Ij and Im are unit matrices, and the coeÆcient vectors are

� = [�1; : : : ; �N ]
T
; � = [�1; : : : ; �M ]

T
:

Above ~�k stands for a unit outward normal of @Sk. In order to apply the integration by

parts, we have to assume that the surface divergence of functions ~'k � ~n and ~jl (~ k � ~n

and ~m, respectively) exists. In the operators SSl
~F and KSl

~F the integration is extended

over the support of ~F , which we have denoted by Sl. The other matrix and vector elements

are obtained with obvious modi�cations. In a similar fashion we may write the matrix

equations due to the combined equations (2.4.7) and (2.4.7) ([59]).

Repeating this procedure for all integral equations in each homogeneous region leads to a

homogeneous (block-)matrix equation (Problem 2.2.2)

S c = 0;(2.5.10)

or to a nonhomogeneous (block-)matrix equation (Problem 2.2.3)

S c = b:(2.5.11)

Here S is a block matrix whose components are A(E;J); B(E;M); etc., and c is a vector

containing the coeÆcients of the piecewise linear base functions. We �nd that the original

problem is reduced to the problem of �nding a nonzero c satisfying one of the above matrix

equations. How to �nd a solution to the latter equation is obvious. Let us consider the
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former case. Obviously, if S is nonsingular, the only solution of the homogeneous matrix

equation is c = 0. Thus, the matrix S must be singular for a nonzero solution. At resonance,

i.e., when S is singular, the condition number of S explodes, and the solution c 6= 0 of the

equation (2.5.10) is a constant times the eigenvector of S corresponding to the least singular

value of the matrix S. The resonances of a given structure may be found by studying the

condition number of S(�), denoted by condS(�), depending on a free parameter �. The

parameter � can be either the frequency of the �eld or the length (or size) of the resonator.

Once the coeÆcients c are found, the �elds ~E and ~H can be evaluated using the Stratton-

Chu representations (2.4.1) and (2.4.2). Because of the singularities of the integral opera-

tors, the �eld computation near the boundaries requires a special attention. Note that at

the boundary the �elds are determined by the surface currents as follows

~E j@
 = ~n� ( ~E � ~n) + (~n � ~E)~n = �~n� ~M � 1

i!

Div ( ~J)~n

~H j@
 = ~n� ~J � 1

i!�
Div ( ~M )~n:

In the following two sections we brie
y recall the essential features of the numerical com-

putation of the matrix elements (2.5.8) and (2.5.9), and the computation of the �elds. In

particular, we consider the questions of the choice of the test and base functions as well as

numerical implementation of the singular integral equations. These questions are essential

in order to get a numerically eÆcient algorithm.

2.5.2 Axisymmetric case

The problem of electromagnetic �eld computing in axisymmetric structures with dielectric

windows is considered in Publication II. In this section we shortly recall the main features

of the developed numerical methods.

For the boundary surface of an axisymmetric domain with the z axis of the cylindrical

coordinate system (r; �; z) coinciding with the symmetry axis of the domain we have the

following parameter representation

u(s; �) = f(x1; x2; x3) jx1 = r(s) cos �; x2 = r(s) sin �; x3 = z(s)g;(2.5.12)

where (x1; x2; x3) are the Cartesian coordinates in IR
3, s is the arc length along the boundary

curve � = 0, i.e., r0(s)2 + z0(s)2 = 1, 0 � s � S and 0 � � � 2�.

The tangential unit vector ~es and the azimuthal unit vector ~e� of the boundary @
 are

given by

~es(s; �) =
@u(s; �)

@s
/

����@u(s; �)@s

���� = (r0(s) cos �; r0(s) sin �; z0(s))

~e�(s; �) =
@u(s; �)

@�
/

����@u(s; �)@�

���� = (� sin �; cos �; 0):

Typically the boundary of an axisymmetric domain is divided into conical elements and

the surface currents are approximated in angular direction by Fourier series expansions and

along the boundary pro�le of the domain by some low order polynomials. For example, in

[26] and [27] the following approximation is used

~F (y) �
PsX
l=1

PtX
k=1

(�k;l ~es + �k;l ~e�) ul(s) e
�ik� ;(2.5.13)
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where ~F stands for ~J or ~M , and ul is a scalar valued piecewise linear base function de�ned

on the boundary pro�le of the domain. However, for the present application of the �eld

computation in the axisymmetric particle accelerator structures it is suÆcient to con�ne

the discussion to the �elds in TM0ml-mode. This implies that the �elds are independent of

the �-variable and can be written in the cylindrical coordinates as

~E(r; �; z) = Er(r; z)~er +Ez(r; z)~ez
~H(r; �; z) = H�(r; z)~e� :

Thus, we may choose the base functions as ~jl(x) = jl(s)~es and ~ml(x) = �0ml(s)~e� and have

the following approximations for the currents

~J(s; �) �
PX
l=1

�l jl(s)~es

~M(s; �) � �0

QX
l=1

�lml(s)~e�:

(2.5.14)

Here �0 =
p
�0="0 is the wave impedance in vacuum, jl and ml are scalar valued piecewise

linear roof-top functions. Constant �0 is included to improve the balance of the numerical

computations. Thereafter, the test functions are chosen as follows

~'k = ~n�~jk and ~ k = ~n� ~mk:

It is essential to test with ~n�~jk and ~n� ~mk instead of ~jk and ~mk, because the boundary

integral equations are derived by applying ~n� to the integral representations.

After applying the parameter representation (2.5.12) and dividing the boundary into conical

segments at points s1 < : : : < sP , on the boundary pro�le, we observe from (2.5.8) and

(2.5.9) that we have to calculate the following integrals (the possible boundary terms are

omitted here)

sp+1Z
sp

sq+1Z
sq

2�Z
0

�k(t; s; �)Div ~vj(t)Div ~ul(s; �) d� ds dt

sp+1Z
sp

sq+1Z
sq

2�Z
0

�k(t; s; �)~vj(t) � ~ul(s; �) d� ds dt

sp+1Z
sp

sq+1Z
sq

2�Z
0

~vj(t) � (rx�k(t; s; �)� ~ul(s; �)) d� ds dt;

and
sp+1Z
sp

~vj(s) � ~ul(s) ds;

for all p; q = 1; 2; : : :. Here ~vj and ~ul are piecewise linear functions (either of electric or

magnetic type). Obviously the �rst three integrals have singularities at x(t) = y(s; �). Note

that the test point x can be assumed to be independent of the angular variable, since in the

TM0ml-mode the �elds and, thus, also the surface currents are independent of the angular

coordinate. Above singular integrals are considered in two parts by writing

�k = (�k � �0) + �0 and r�k = r (�k � �0) +r�0;
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where �0(x� y) = 1=(4�jx� yj). We readily see by the series expansion of the exponential

function that the kernels involving di�erences �k � �0 are weakly singular and allow a

straightforward numerical integration. Hence, it remains to consider the integrals with the

static kernel �0. We have shown in Publication II that the following � integrals

2�Z
0

�0(t; s; �)(1 + cos �) d� and

2�Z
0

r�0(t; s; �)(1 + cos �) d�;

can be eÆciently evaluated by elliptic integrals of the �rst and second kind, K and E .
When integrating with respect to t and s variables the elliptic integral of the �rst kind, K,
is logarithmically singular as jt� sj ! 0. This singularity can be, however, extracted and

computed analytically.

Furthermore, we have developed accurate numerical quadratures with special weight func-

tions for calculating the �elds close to the boundaries. After integrating the � direction

by elliptic integrals and extracting the singular terms, we need to calculate the following

singular integrals Z S

0

f(s) ln(d20 + s2) ds and

Z S

0

f(s)

d20 + s2
ds;

where d0 is the distance from the boundary and f is a regular function. Here s is a

(normalized) arc length along the boundary at � = 0. These integrals are evaluated using

Gaussian quadrature with the weight functions

ln
1

x2 + d2
and

1

x2 + d2
:

The evaluation of the weights and quadrature points is discussed in Publication II.

2.5.3 3D case

In Publication V we consider the problem of electromagnetic �eld computation in 3-

dimensional waveguide discontinuities. In this section we introduce the used base and test

functions and shortly consider the numerical computation of the singular integral equations.

The boundary of an arbitrary 3D domain is usually divided into 
at or curved patches of

triangular or rectangular shape. Thereafter, the unknown surface currents are expanded

by some low order polynomial approximations. For various applications of di�erent base

and test functions, see e.g. [39], [15] and [44]. In this work the surface is divided into


at triangular elements and the surface currents are presented by so called Whitney face

functions, or RWG (Rao-Wilton-Glisson) base functions [39]. See also [50], [40] and [41] for

other applications of the RWG functions. In a recent paper [10], the authors develop more

general higher order base functions.

An RWG function is de�ned on a triangle pair T+; T� having a common edge as follows

~f(y) =

8>>>>><
>>>>>:

l

2A+
(y � p+); y 2 T+;

� l

2A�
(y � p�); y 2 T�;

0; otherwise:

Here A� is the area of the triangle T�, l is the length of the common edge and p� is the

\free" vertex of T�. These base functions have two important features. Firstly, the surface

diverge is constant (�l=A�) on each triangle and secondly the normal component of the
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current is continuous across the common edge vanishing on the other edges. Naturally an

RWG function is tangential on the boundary.

Let T denote the triangularization of the boundary. In a similar fashion as in the axisym-

metric case we have to evaluate the following integralsZ
Tp

Z
Tq

�k(x� y)Div ~vj(x)Div ~ul(y) dSy dSx

Z
Tp

Z
Tq

�k(x� y)~vj(x) � ~ul(y) dSy dSx

Z
Tp

Z
Tq

~vj(x) � (rx�k(x� y)� ~ul(y)) dSy dSx;

and Z
Tp

(~nj(x)� ~vj(x)) � ~ul(x) dS(x);

for all triangles Tp; Tq 2 T . Here both ~vj and ~ul are RWG functions (possibly multiplied

by constant �0). The boundary terms vanish if we expand both ~J and ~M by the RWG

functions and choose the test functions as ~n� ~fk. Obviously the �rst three integrals have

singularities if Tp\Tq 6= ;. As in the axisymmetric case we �rst add and subtract the static
kernel �0. Then we have applied the formulas presented in [54], [9] and [8] to evaluate the

integrals with the static kernel �0 over the triangles. For instance, it has been shown that

the following integralsZ
T

 (y)�0(x� y) dy and

Z
T

 (y)rx�0(x� y) dy;

where  is a constant function or a linear shape function of T , can be evaluated analytically.

This permits a very e�ective numerical evaluation of the system matrix elements, since only

the outer integration of the Galerkin method has to be treated numerically. Also the �eld

computation becomes accurate even very close to the boundaries. Again the remaining

terms including kernels

�k � �0 and rx (�k � �0)

are weakly singular and can be evaluated numerically.

2.5.4 Generating mixed waves

For a complete analysis of electron multipacting in input power couplers it is essential to

consider a large number of di�erent �eld distributions, because during the operation of the

system, i.e., while �lling the accelerator cavity, the re
ection conditions on the coupler vary.

Next we shortly consider how arbitrary wave forms can be obtained in irregular waveguides

by combining two �eld solutions which are found by the techniques explained in the previous

sections. We assume that outside the possible irregularity the structure continues as a

homogeneous waveguide with a uniform cross section, either coaxial or rectangular, to the

in�nity. Generally we may consider a junction of n regular waveguides, but here in order

to simplify the notations we consider only a junction of two waveguides, or more precisely,

a discontinuity of a single waveguide.

Suppose �rst that outside the discontinuity the waveguide is uniform in z direction and

that the wave propagation along the z-axis is of the form ei�z, where � is the propagation
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constant. We consider a superposition of the waves propagating into positive and nega-

tive z directions with amplitudes A and B. Such a wave is called a mixed wave. The

electromagnetic �elds can then be written in the rectangular coordinates (x; y; z) as ([36])

~E(x; y; z) = Et(x; y)~et
�
Aei�z +B e�i�z

�
+Ez(x; y)~ez

�
Aei�z �B e�i�z

�
;(2.5.15)

~H(x; y; z) = Ht(x; y)~et
�
Aei�z �B e�i�z

�
+Hz(x; y)~ez

�
Aei�z +B e�i�z

�
:(2.5.16)

Here Et and Ht represent the transverse electric and magnetic �eld components, while Ez

and Hz are the longitudinal electric and magnetic �eld components. We want to get an

electromagnetic �eld whose z dependence in the regular waveguide section is of the form

~E(z) = Et ~et
�
ei�z +Re�i�z

�
+Ez ~ez

�
ei�z �Re�i�z

�
~H(z) = Ht ~et

�
ei�z �Re�i�z

�
+Hz ~ez

�
ei�z +Re�i�z

�
;

(2.5.17)

where R 2 C; R = B=A; B � A > 0, is a given re
ection coeÆcient. Actually, we want to

generate an entire family of mixed waves with given R 2 C; jRj � 1.

We have applied two methods. In the �rst method, applied in Publications II, III and IV,

we close the waveguide by properly placed electric walls. The positions of these \pseudo-

walls" have to be chosen so that the re
ected electromagnetic wave, generated by the

discontinuity, has settled down to the fundamental waveguide mode (TEM-mode in coaxial

lines and TE10-mode in rectangular waveguides) at the walls. Furthermore, we require

that the given frequency, in addition to be chosen so that only the fundamental mode is

propagating in the regular waveguide sections, is also a resonant frequency of the resulting

cavity. The resonance state of the system is found by studying the condition number of

the system matrix as a function of the location of the \pseudo-walls". By this procedure

we get standing waves (SW) in a waveguide. By shifting the electric walls (so that the

resonance condition is still satis�ed) we may model several di�erent SW �eld patterns in

irregular waveguides. The traveling waves (TW) and partially re
ected waves, or mixed

waves, MW, can be obtained by combing two SW solutions as follows. Let ~E(1); ~H(1) and
~E(2); ~H(2) denote the SW �eld solutions with electric walls at z = 0; L1 and at z = L0; L2,

where 0 < L0 < L1 < L2. We calibrate and normalize the �elds so that ~E(1); ~H(1) and
~E(2); ~H(2) have the same peak voltage of 1 V. We look for a MW, in the region z � L0 or

z � L1, with a given R as a linear combination of the SW �elds as follows

~E = c1 ~E
(1) + c2 ~E

(2);
~H = c1 ~H

(1) + c2 ~H
(2):

(2.5.18)

Here c1 and c2 are complex constants, depending on R. The coeÆcients c1 and c2 are solved

by substituting the representations of the �elds ~E(j); ~H(j); j = 1; 2, ((2.5.15) and (2.5.16))

with A = 1; B = �1 for ~E(1); ~H(1) and A = e�i�L0 ; B = �ei�L0 for ~E(2); ~H(2) into (2.5.18)

and by requiring that the z-dependence of the �elds ~E and ~H outside the discontinuity is

of the form (2.5.17).

The second method is to apply the fact that the electromagnetic �elds are known up to a

complex multiplier in the regular sections of the structure. We again close the waveguide,

far enough from the discontinuity so that the �eld is settled down to the fundamental

�eld mode, but now the �eld form is not �xed at the ends. Rather we suppose that the

electromagnetic �elds at the ends (numbered by 1 and 2) are given by formulas (2.5.15) and

(2.5.16), where constants Aj (input amplitudes) and Bj (output amplitudes), j = 1; 2, are

unknown. Then we set A1 = 1 and A2 = 0 and �nd the coeÆcients B1 and B2 by solving

the waveguide problem, Problem 2.2.3. Let B
(1)

1 and B
(1)

2 denote the found coeÆcients

and ~E(1); ~H(1) the corresponding �elds. Next we set A1 = 0 and A2 = 1, and solve the
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coeÆcients B
(2)

1 ; B
(2)

2 and the �elds ~E(2); ~H(2). The wanted �eld is obtained as in the

�rst method above by substituting the representations of the �elds ~E(j); ~H(j); j = 1; 2,

(2.5.15) and (2.5.16) with A1 = 1; A2 = 0; B1 = B
(1)

1 ; B2 = B
(1)

2 , and thereafter, with

A1 = 0; A2 = 1; B1 = B
(2)

1 ; B2 = B
(2)

2 , into (2.5.18) and by requiring that (2.5.17) holds

outside the discontinuity. Now the (unnormalized) scattering matrix of a two port system

can be given as follows

S =

"
B

(1)

1 B
(1)

2

B
(2)

1 B
(2)

2

#
:

In order to get a unitary scattering matrix, the matrix elements Sij ; i; j = 1; 2, are normed

by factors
q
Pj=Pi, where Pj is the power 
ow in the waveguide number j. Thus, we may

conclude that solving the coeÆcients B
(l)
j is identical with the computation of the scattering

matrix.

This method is applied in Publication V in the case of 3-dimensional waveguides. The

method is also applied in the axisymmetric case with ceramic windows (but is not reported).
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Chapter 3

Electron Multipacting

The mechanism for multipacting can be described as follows [33]. An electron is sponta-

neously emitted from the surface of an rf structure and driven by the electromagnetic �eld.

When the electron impacts the wall, it may release one or more electrons from the surface

of the wall. The number of the secondary electrons depends on the impact energy of the im-

pacting electron and the wall material characteristics at the location of the impact. These

secondary electrons are again accelerated by the �eld, yielding new impacts and possibly

new secondary electrons. In appropriate conditions the process repeats and the number of

electrons may increase exponentially, leading to an electron avalanche - multipacting. The

conditions for multipacting can be summarized as follows:

1. An electron emitted from the cavity wall is driven by the electromagnetic �eld and

returns back after an integer number of rf cycles to the same point of the cavity wall.

2. The impacting electron produces more than one secondary electron.

Multipacting phenomena can be divided into two categories. In the �rst case multipacting

is predominantly due to the electric �eld [55], [56], [43]. The electrons are accelerated

by a high electric �eld in the region of a low magnetic �eld. This kind of multipacting

is called electric multipacting. In the second category, so called magnetic multipacting,

the electrons are again primarily accelerated by the electric �eld, but the shape of the

multipacting trajectories is mostly due to a high magnetic �eld [1], [17], [34]. Typically

similar multipacting processes of di�erent order repeat on discrete �eld levels. The order of

the multipacting process is de�ned as the number of full rf periods needed for a complete

trajectory cycle.

In the past, up to late 70's, multipacting was a major performance limitation especially in

the superconducting cavities so that it was impossible to increase the cavity �elds by rising

the incident power [1], [24]. The accelerating gradient was practically limited up to a couple

of MV/m. A signi�cant step towards higher gradients was the �nding that multipacting

can be overcome by changing the cavity shape from a cylindrical to a spherical or elliptical

one [17]. Nowadays multipacting can be avoided in most � = v=c = 1 cavities by choosing

a proper cavity shape. However, multipacting still plays a signi�cant and unpleasant role in

many types of rf vacuum structures, such as low � cavities, couplers, transmission lines and

rf windows [33]. Especially, it is crucial for the input couplers to avoid such rf operation

conditions which lead to multipacting.

A general cure against multipacting is to avoid the resonant conditions by either a proper

choice of the geometry or by coating the critical areas by a material with a lower secondary

yield [32], [37]. In many cases, however, it might not be possible to change the rf geometry
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suÆciently and the coating, which is typically used to reduce the secondary yield of a

ceramic window, does not suppress completely multipacting and the success rate of the

reduced secondary yield is often unsatisfactory. In those cases, other suppressing methods

must be applied, like static electric [49] or magnetic perturbations, or grooving [35] the

surfaces.

3.1 Multipacting and dynamics

Let 
 denote a void cavity with the boundary @
 and with the time-harmonic rf �eld given

by
~E(x; ') = ~E(x) sin' and ~B(x; ') = ~B(x) cos';

where x 2 
 and ' = !t 2 [0; 2�] is the phase of the �eld. Let us de�ne a phase space as

X = @
� [0; 2�[:

An electron may escape the wall only if the electric �eld ~E points against the wall. There-

fore, we divide X into an electron emitting and non-emitting part by writing X = G [W ,

where

G = f p = (x; ') 2 X j~n(x) � ~E(x; ') > 0 g and W = X nG:
Here ~n is the unit normal of @
 pointing into the exterior of 
. The set G is called a bright

set andW is called a shadow set. Consider an electron emitted from G at position x0 2 @
,
the phase at the time of emission being '0 2 [0; 2�[. A relativistic electron is accelerated

by the rf �eld ~E; ~B, according to the following system [23] (assuming that the �eld of the

electron itself is neglected)8>>>><
>>>>:

d~v

dt
= � e

m

 
1�

�
v

c

�2!1=2 �
~E + ~v � ~B � 1

c2
(~v � ~E)~v

�
;

d~x

dt
= ~v ;

(3.1.1)

where e(> 0) is the charge of the electron, m is the rest mass of the electron, ~v is the

velocity of the electron, v = j~v j and c is the speed of light in vacuum. Let p1 = (x1; '1)

denote the �rst impact point in X. We de�ne the following mapping

P : p0 7! p1:

This mapping de�nes a dynamical system in the phase spaceX; each point p0 2 X generates

a discrete trajectory fp0;P(p0);P2(p0); : : :g. The process stops at step k if Pk(p0) 2W .

For each impact k = 1; 2; : : :, let Æ(xk; Ek) be the number of new secondary electrons emit-

ted. Here Æ is the secondary yield function depending on the wall material characteristics

at the location of the impact xk and the impact energy Ek of the impacted electron. The

function Æ is strongly material dependent, but for most materials it is larger than one in

the range from a few tens of electron-volts to a few thousand electron-volts [33]. Even for

the same material Æ may vary signi�cantly, depending on the treatment and contamination

of the surface.

In suitable conditions the procedure repeats leading to new impacts and new secondary

electrons. The number of secondary electrons due to a single electron launched at p0 =

(x0; '0) after n impacts is given by

Nn(p0) =
nY

k=1

Æ(xk; Ek(pk�1)):
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For multipacting we require that the number of secondary electrons explodes, that is

Nn !1 as n!1:

Obviously this is satis�ed if the electron stays at the bright set and if Æ > 1 for all impacts.

3.2 Numerical methods for analyzing multipacting

The basis of our method consists of standard trajectory calculations in relativistic dynamics.

The novel feature is to analyze nearly periodic structures of the resonant trajectories by

using special counter and distance functions de�ned in a multidimensional phase space X.

The method has been successfully applied in several structures with various �eld patterns,

such as straight coaxial lines, superconducting cavities, ceramic windows and rectangular

waveguides (Publications I and III).

Suppose that the electromagnetic �eld map is available. Then the electron trajectories

can be calculated by integrating the equations of motion (3.1.1), e.g. by the Runge-Kutta

method. For a �xed �eld level j ~Ej we send a suÆciently large number of electrons from

di�erent points in G and calculate the electron trajectories. The initial velocity is typically

a few eV and perpendicular to the wall. Let p
(j)
0 = (x

(j)
0 ; '

(j)
0 ); j = 1; : : : ; N0, denote the

initial sites and p
(j)
1 = (x

(j)
1 ; '

(j)
1 ) = P(p(j)0 ) the corresponding points of the �rst impact in

X. If p
(j)
1 2 G the trajectory calculation is continued. Let n be a given maximum number

of impacts. The trajectory calculation is continued up to n impacts, if Pk(p
(j)
0 ) 2 G for

all k � n, otherwise we stop the calculation. In other words, we compute the discrete

trajectories

fp(j)0 ;P(p(j)0 );P2(p
(j)
0 ); : : : ;Pn(p

(j)
0 )g;

and the corresponding impact energies E
(j)
1 ; : : : ; E(j)

n , for all j = 1; : : : ; N0.

After n impacts (usually 20 or 30 impacts are calculated), the number of electrons in the

bright set is counted. Depending on whether the secondary yield is taken into account,

we call this total number of electrons as a counter function (no secondary yield included),

given by

cn(j ~Ej) = #fp(j)0 2 G j Pn(p
(j)
0 ) 2 G; j = 1; : : : ; N0g;

or the enhanced counter function (secondary yield included),

en(j ~Ej) =
N0X
j=1

Nn(p
(j)
0 ):(3.2.1)

Note that we naturally de�ne

Nn(p
(j)
0 ) = 0; if Pk(p

(j)
0 ) 2W for some k � n;

i.e., the secondary yield of the shadow set is zero.

We repeat the trajectory calculations with several �xed �eld levels. The scanning of j ~Ej
must be suÆciently dense so that none of the multipacting resonances is missed. The

maxima of the counter function cn are the potential multipacting �eld levels, however, it is

not necessary that multipacting occurs at those �eld levels, because the secondary yield is

not yet taken into account. Rather cn indicates the stability of the process. The enhanced

counter function en is a good indicator whether the conditions for multipacting are ful�lled.

Basically multipacting occurs at the �eld level j ~Ej, if the number of secondary electrons is

(much) larger than the number of initial electrons, i.e., if

en(j ~Ej)� N0;(3.2.2)
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with a suÆciently large n. Usually multipacting occurs on discrete �eld levels, or rather

at �eld level bands, which might be rather broad. The broadness of the multipacting �eld

levels may be explained by the stability of the process with respect to the perturbations of

the �eld (variation of the �eld level and phase of the �eld), rather than by the variation

of the initial velocity. In our computations the initial velocity is �xed. Also other factors,

such as stability of the rf �eld, contamination of the surface and multipacting itself, e�ect

to the multipacting. These aspects are, however, not taken into account in our model.

After the possible multipacting �eld levels are found, we locate the multipacting processes

in the phase space X by measuring the distance between the initial and nth impact point

in the phase space by the following distance function

dn(p0) =
q
jx0 � xnj2 + �jei'0 � ei'n j2;(3.2.3)

where � is an appropriately chosen scaling factor (e.g. � = �=(2�)). Obviously, the minima

of the function dn point out the starting points and phases of those resonant trajectories

that survive n impacts and are able to multipact. By recalculating the electron trajectories

by using these minima as initial points we may identify the multipacting processes. In other

words, we can determine the order of the process and whether multipacting is due to the

electric or magnetic �eld.
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Chapter 4

Numerical Results and

Multipacting Analysis

In this section we review the main results of our multipacting analysis and �eld computa-

tions in the TESLA particle accelerator structures. We begin by considering the analysis of

electron multipacting in a simple geometry where the electromagnetic �elds allow analyt-

ical expressions, but the multipacting resonances cannot be solved analytically, namely in

a straight coaxial line. This simple case is considered in Publications I and further results

are presented in reports [57] and [58]. A coaxial line is of a great interest since many of

the present input couplers include long straight coaxial sections. Thereafter, we consider

the electromagnetic �eld computation and multipacting analysis in the TESLA accelerator

cavities and input power couplers with ceramic windows. The results are presented in Pub-

lications II, III, V (�eld computations) and in Publication IV (multipacting analysis). In

rf cavities multipacting has been analyzed by numerous authors, see e.g. [1], [2], [17] and

[24], but the input couplers with ceramic windows were not systematically analyzed before.

4.1 Multipacting in coaxial lines

In the coaxial lines with the standing wave (SW) operation, i.e., R = 1, we have found that

both one-point multipacting on the outer conductor and two-point multipacting between the

conductors appear always close to the maxima of the electric �eld (electric multipacting).

Outside the maxima the electrons tend to drift away from the maxima due to the magnetic

�eld, eventually drifting into shadow regions. Thus, the processes are defocusing in the

spatial direction. Furthermore, we have found that the electric multipacting is focusing in

the phase direction.

In the traveling wave (TW) operation, i.e., when R = 0, we have found that the distribution

of the multipacting power levels and the multipacting processes resemble the SW case, but

the electrons are traveling along with the wave as the wave form moves. This traveling

is, however, rather slow; the distance between successive wall impacts is typically a couple

of mm. This tells that, the magnetic �eld must play a crucial role in the process and

multipacting is due to both electric and magnetic �elds. The wall impacts of the stable

trajectories appear still close to the maximum of the electric �eld. In addition, we have

found that the corresponding SW and TW multipacting power levels of di�erent order

satisfy the following simple scaling law

PTW = 4PSW :(4.1.1)
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For more general waves, 0 < R < 1, we have found two families of multipacting processes,

which clearly have a di�erent behavior. The �rst one appears close to the electric �eld

maxima (electric multipacting) and the multipacting power levels allow the follow scaling

law

P electric
R � 1

(1 +R)2
PTW =

4

(1 +R)2
PSW ;(4.1.2)

as the re
ection coeÆcient R is varied. The other processes appear close to the maxima of

the magnetic �eld (magnetic multipacting). Magnetic multipacting is found to be focusing

in both phase and spatial directions. In the TW operation (R = 0) these two families are

merged together, but they start to separate as the re
ection coeÆcient is increased.

By varying the dimensions of the line and the �eld frequency, we have found the following

scaling laws for the multipacting power levels

Pone�point � (f d)4 Z; Ptwo�point � (f d)4 Z2;(4.1.3)

where f is the frequency, d is the outer diameter and Z is the impedance of the line. These

scaling laws are valid for all wave forms with 0 � R � 1. However, if the impedance is very

low, Z < 20, the situation starts to resemble the case of parallel electrodes (see Publication

I) and the one-point multipacting processes disappear.

It is worth of noticing that in homogeneous geometries where the �elds are translation

invariant, like in straight coaxial lines and rectangular waveguides, the multipacting analysis

may be con�ned to the real values of the re
ection coeÆcient R. Actually, a complex R

shifts the wave by arg(R)=(4�)�, where arg(R) is the argument, or phase, of R and � is

the wavelength.

4.2 Suppressing multipacting in coaxial lines by DC voltage

Usually multipacting is avoided by a proper choice of the geometry. In many cases, however,

it is not possible to suÆciently change the design. Thus, it is important to know the e�ect

of various suppressing methods to multipacting. In Publication I we have considered the

suppressing method where the electric �eld is perturbed by a DC biasing voltage between

the conductors of a coaxial line as follows

~E(r; z; ') = ~E(r; z; ') +
V

r ln(b=a)
~er;(4.2.1)

with a constant biasing voltage V . By varying the voltage V and computing the multi-

pacting �eld levels, we have found that in the straight coaxial lines the biasing DC voltage

scales according to the following scaling laws, for one-point and two-point multipacting,

Vone�point � (f d)2 Z; Vtwo�point � (f d)2 Z2:(4.2.2)

These scaling laws are valid for all wave forms with 0 � R � 1. However, because the

impact energy scales di�erently, the DC voltage which is required to suppress multipacting

satis�es roughly the following rule [58]

V � f dZ:

4.3 Field computation and multipacting in cavities

A key component of a particle accelerator is the device which imparts energy to the beam.

This is an electromagnetic cavity resonating at a certain resonant or eigen frequency. When
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the particle beam passes through the accelerating cavity, the beam absorbs the energy

increasing the velocity of the particles. Typically accelerating cavities consist of a chain

of coupled single-cell cavities. The dimensions of the cavity must be chosen so that the rf

electric �eld is inverted in the time a particle needs to travel from one cell to the next one

[33]. Thus, for � = 1 cavities the length of the cavity cells must be �=2.

In order to carry out the multipacting analysis in the axisymmetric TESLA cavities the

electromagnetic �elds must be calculated. The superconducting TESLA cavities consist of

nine cells made of niobium. Due to the symmetry of the accelerating �eld mode, TM010-

mode (or �-mode), there are magnetic walls between the cavity cells. The �eld computation

problem in a single-cell cavity can be formulated as follows.

Problem 4.3.1 Let 
 denote a single-cell cavity with a superconducting (� =1) conduct-

ing wall � and let �1 and �2 denote the magnetic ends so that the boundary of 
 is given

by @
 = � [ �1 [ �2. Find the non-zero electromagnetic �elds ~E and ~H satisfying the

time-harmonic Maxwell's equations

r� ~E = i!�0 ~H and r� ~H = �i!"0 ~E; in 
;

with the boundary conditions

~n� ~E = 0 on � and ~n� ~H = 0 on �j ; j = 1; 2:(4.3.1)

Here "0 and �0 are the electromagnetic parameters in vacuum.

The unknowns are the electric surface current ~J = �~n� ~H j� on � and the magnetic surface

currents ~Mj = ~n � ~E j�j on �j ; j = 1; 2. The resonance state of the system with a �xed

geometry is found by studying the condition number of the system matrix while varying

the frequency. The eigen frequency of the TESLA cavity is 1.3 GHz.

In a similar fashion we may consider multi-cell cavities, too. In the multi-cell cavities the

situation is however more involved. A chain of n coupled cells has n di�erent eigen modes

with n di�erent amplitude relations [33]. In Publication IV we consider a 3-cell cavity with

so called 0, �=2 and �-modes, according to the di�erent amplitude relations. In the case of a

3-cell cavity, the �eld computation problem is identical with Problem 4.3.1 when � denotes

the conducting surface of all three cells, �1 denotes the left end of the �rst cell and �2

denotes the right end of the third cell. In a typical accelerator cavity only the �-mode, i.e.,

all cells are excited to the same �eld level, is used for acceleration. However, the existence

of the other modes is possible because of the di�erent excitation of the individual cells.

The boundary integral equations are derived by applying the boundary conditions (4.3.1)

to the integral representations as explained in Section 2.4. In the numerical experiments

we have applied two integral equations, EFIE (Electric Field Integral Equation) and MFIE

(Magnetic Field Integral Equation), on both conducting boundaries and magnetic walls.

This leads to four formulations, referred to EE, EH, HE and HH-formulations. The �rst

letter in the pair stands for the conducting boundary � and the second one stands for the

magnetic walls �j ; j = 1; 2. Furthermore, E stands for EFIE and H stands for MFIE. In

Publication III we show that the solution is rather sensitive to the type of an integral formu-

lation on the magnetic walls. Actually, MFIE on the magnetic walls, becomes numerically

unstable as the discretization gets denser. This is due to the fact that in the axisymmetric

case Div ~Mj = 0 and the MFIE on �j leads to an integral equation of the �rst kind

i!"0(~S ~Mj)(x) = 0; x 2 �j :
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As well-known, the integral equations of the �rst kind (with a compact operator) are nu-

merically unstable [21]. More details about the �eld computations are given in Publications

II and III.

Once the electromagnetic �eld distribution is known and given in a suÆciently �ne grid

inside the cavity, we can start the multipacting analysis, see Publication IV. The �eld values

at a given point are evaluated by a (bi-)linear interpolation. In the case of a single-cell

cavity with TM010-mode, the analysis reveals a broad �eld level region where the number

of secondary electrons is increased. This �nding corresponds to a well-known two-point

(side-to-side) magnetic multipacting of order one close to the cavity equator [53], [18], [19].

The electrons will drift towards the cavity equator due to the shape of the cavity, eventually

ending up to a region with a very low electric �eld, where the impact energy is not strong

enough for electron multiplication. Thus, although the electrons start to repeat resonant

trajectories the process does not usually lead to multipacting, because the secondary yield

is rather low.

The single-cell case contains the � mode in the multicell cavities, since all cells are excited

to the same �eld level. Furthermore, in the 3-cell cavities with � and 0-modes the �eld

distribution in each individual cell is almost identical, therefore multipacting resonances

can be reliably predicted by the single-cell case. In the �=2-mode, on the other hand, the

�eld distribution in the midmost cell, called an empty cell, is di�erent. Thus, this case

needs a special treatment. The analysis �nds an one-point multipacting of di�erent order

clearly outside the equator of the empty cell. Also in this case the shape of the multipacting

trajectories is predominantly due to the magnetic �eld and the secondary yield is rather

low.

4.4 Field computation and multipacting in coaxial couplers

with windows

The input power coupler transfers the rf �eld to the cavity and to the beam. The input

coupler must also provide a match between the generator impedance and the combined

impedance of the cavity-beam system, so as to minimize the wasted re
ected power. The

input coupler design for TESLA has been developed at DESY and Fermi National Accel-

erator Laboratory (FNAL), USA. Both designs consist of two windows, one at 70 K (cold

window) and one at room temperature (warm window), bellows, coaxial line and waveguide

to coaxial transition. In the FNAL design the cold window has a conical shape, while in the

DESY design the cold window is cylindrical. Also the designs for the waveguide to coaxial

transitions are di�erent.

In this section we consider the cylindrically symmetric coaxial sections of the coupler de-

signs (Publications II, III and IV). The coaxial to waveguide transitions are typically 3D

geometries and so called doorknob transition is discussed in the following section (Publica-

tion V). The most critical components in the sense of multipacting are the ceramic windows,

which may be broken by a heavy bombing of multipacting electrons. Therefore, the multi-

pacting analysis is especially con�ned to the surfaces of the (cold) windows. The primary

function of the window is to protect the cavity vacuum. The two-window solution is chosen

to give a better protection for the cavity against window failures during the operation of

the accelerator. Because a pure ceramic (made of aluminum oxide, Al2O3) would have a

very high secondary yield coeÆcient [33], it is essential to reduce the secondary emission

coeÆcient of the ceramic by a thin coating of special material. The most usual coating is

titanium nitride (TiN). Here, we assume that the ceramic window has the same secondary
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yield function as a metallic (niobium) surface.

During the operation of the rf pulse, i.e., while �lling the accelerator cavity, the re
ection

conditions on the input coupler vary. This leads to operating with the mixed waves, and for

a complete multipacting analysis we have to consider a large number of electron trajectory

simulations with changing re
ection conditions. The various wave forms (mixed waves) can

be obtained by combining two SW solutions as explained in Section 2.5.4.

For the �eld computation the input coupler, which in reality is an open ended waveguide

with a discontinuity (the window), is modelled as a closed cavity resonator by properly

placed electric walls. The resonance state of the system is found by varying the location of

the \pseudo"-walls while keeping the frequency �xed (1.3 GHz). The computation domain

consists of three homogeneous regions so that the region in the middle is the ceramic window

with "r = 9 and �r = 1. The other regions are assumed to be vacuum. We formulate the

�eld computation problem as the following boundary value, or eigenvalue, problem.

Problem 4.4.1 Let 
j ; j = 1; 2; 3, denote the homogeneous regions of the input coupler

with constant electromagnetic parameters 
j and �j so that


j =

(
"0; if = 1 or 3

9"0; if j = 2
and �j = �0 for all j = 1; 2; 3:

Let �j ; j = 1; 2; 3, denote the conducting walls of @
j and �j = @
j \ @
j+1; j = 1; 2,

denote the interfaces of the homogeneous regions (surfaces of the window). Find the non-

zero electromagnetic �elds ~Ej and
~Hj satisfying the time-harmonic Maxwell's equations

r� ~Ej = i!�j ~Hj and r� ~Hj = �i!"j ~Ej ; in 
j ; j = 1; 2; 3;

with the boundary conditions

~nj � ~Ej = 0 on �j ; j = 1; 2; 3;(4.4.1)

~nj � ~Ej = �~nj+1 � ~Ej+1 on �j; j = 1; 2;(4.4.2)

~nj � ~Hj = �~nj+1 � ~Hj+1 on �j ; j = 1; 2:(4.4.3)

Here ~nj denotes the exterior unit normal of @
j.

The unknowns are the electric surface currents ~Jj on @
j ; j = 1; 2; 3, i.e., on the conducting

and dielectric surfaces, and the magnetic surface currents ~Mj on the dielectric surfaces

�m; j = 1; 2; 3; m = 1; 2. The boundary integral equations are derived by applying the

boundary conditions (4.4.1) - (4.4.3) to the integral representations, see Section 2.4.

On the conducting surfaces we have applied both EFIE and MFIE. On the surfaces of the

window, we have used the following choices for the coeÆcients of the combined equations

(2.4.7) and (2.4.7)

aj = 1; am = 1; bj = 1; bm = 1; (CFF+)

aj = 1; am = �1; bj = 1; bm = �1; (CFF�)

aj = "rj ; am = �"rm; bj = �rj ; bm = ��rm; (M�uller)

where j = 1; 2; m = j + 1 and "rj = "j="0 and �
r
j = �j=�0. Furthermore, we have applied

an additional formulation where the equations due to the transmission conditions are not

combined. This gives overdetermined equations on �j. In Publication III we show that by

this overdetermation we can improve the numerical stability of the equations. Especially

CFF+ and CFF� turn out to be rather sensitive to the choice of the test functions at the
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singular junctions of the metallic and dielectric surfaces, and to the perturbations of the

resonance conditions as the discretization gets denser.

The multipacting analysis (Publication IV) �nds the following main features. In the DESY

design we have found one-point multipacting of di�erent order on the inner surface of the

window on the cold side (the section from the cold window to the cavity). On the warm side

(the section from the cold window to the waveguide) we have found one-point multipacting

of di�erent order on the outer conductor. These multipacting processes, however, appear

on rather small areas on the re
ection chart, and may be avoided by a proper optimization

of the design. For example, by placing the window at the right distance from the coupler

end.

In the FNAL design we have found two-point multipacting of order one on the cold side

between the inner conductor and the surface of the window, and on the warm side between

the outer conductor and the surface of the window. In this geometry multipacting appears

on a very broad area on the re
ection chart and it is not possible to avoid multipacting

by optimizing the design. Therefore, other methods such as DC voltage are required to

suppress multipacting. However, the e�ect of biasing DC voltage to multipacting in ceramic

windows is still an open question.

4.5 Field computation in doorknob transition

In this section we consider �eld computation in a special waveguide to coaxial transition, so

called doorknob design, see Publication V. In this geometry the multipacting analysis has

not yet been carried out. The doorknob transition is a 3-dimensional waveguide to coaxial

transition that incorporates a cylindrical knob as the impedance transformation device.

Because the computation of the singular values and vectors is a very time consuming task,

especially for large dense matrices, we do not close the design by electric walls and �nd the

resonance state by studying the condition number of the system matrix as a function of

the distance between the ends, but we apply another idea, which is introduced in the latter

part of Section 2.5.4. The �eld computing problem can be formulated as follows.

Problem 4.5.1 Let 
 denote the doorknob design and let � denote the conducting wall

of 
. Suppose that the domain 
 is closed by walls �1 and �2 and let ~Ep; ~Hp denote a

(primary) �eld generated by the surface currents at the walls �1 and �2. Find the non-

zero electromagnetic �elds ~E = ~Ep + ~Es and ~H = ~Hp + ~Hs satisfying the time-harmonic

Maxwell's equations

r� ~E = i!� ~H and r� ~H = �i!" ~E; in 
;

with the boundary condition

~n� ~E = 0 on �:(4.5.1)

For the unknown surface current ~J we derive an EFIE by applying the integral represen-

tation of the electric �eld (2.4.1) and requiring that condition (4.5.1) holds. The derived

equation is solved by applying the methods reviewed in Sections 2.5.1 and 2.5.3.

The walls, often called ports, [36], �1 on the waveguide side, and �2 on the coaxial side, are

placed far enough from the doorknob area so that the electromagnetic �eld is settled down

to the fundamental �eld mode. This implies that the source currents ~Jj and ~Mj ; j = 1; 2 are

known up to a constant complex multiplier. These constants can be found by computing

the scattering matrix of the system.
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Because the doorknob design is a complicated 3D structure, a lot of unknowns are required

to get an accurate �eld solution. In the computer used here, the maximum number of un-

knowns is about 3200. It is not clear whether 3200 is enough for an accurate solution. Thus,

some additional methods are required to increase the number of unknowns, for instance,

the multipole method [4].
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Chapter 5

Conclusions

Electron multipacting is a serious problem in many high power rf structures operating in

vacuum. The knowledge of the possible multipacting resonances may be crucial when plan-

ning new rf designs and when struggling against multipacting in already existing structures.

To this end, we have developed systematic methods to analyze multipacting in arbitrary rf

structures. The methods have been applied in various rather complicated structures, such as

straight and tapered coaxial lines, ceramic windows, input power couplers, superconducting

cavities and rectangular waveguides.

In straight coaxial lines we have found simple scaling laws for the multipacting �eld levels

with respect to the dimensions and frequency of the line. By these laws one can shift the

multipacting resonances by appropriately altering the design of the line. However, in many

cases it is not possible to change the design suÆciently and other methods are required

to avoid multipacting. Therefore, in straight coaxial lines we have studied the e�ect of a

biasing DC voltage to multipacting. In particular, we have found simple scaling laws by

which one can optimize the biasing voltage to suppress multipacting in any coaxial line.

In the past, multipacting was the major performance limitation in rf cavities. Therefore,

multipacting simulations in rf cavities have received a lot of attention. Eventually it was

found that in most � = 1 cavities multipacting can be overcame by a proper choice of

the cavity geometry. In more complicated structures, such as input couplers and ceramic

windows, it is more diÆcult to reliably predict multipacting resonances. In this work we the

�rst time systemically study multipacting in two special window geometries. Because of the

complexity of the coupler and window geometries and of the varying �eld conditions during

the operation of the system it is not possible to give any general rules for multipacting.

Therefore, in each new design the multipacting resonances have to be recalculated. An

interesting open question is how the biasing DC voltage e�ect to multipacting in ceramic

windows.

An important requirement for a reliable multipacting analysis is that the electromagnetic

�elds are known accurately, especially close to the surfaces, since even small errors in the rf

�eld may destroy the trajectory calculation of a relativistic electron. Therefore, in this work

a special emphasis has been given to the development of numerical methods to improve the

accuracy of the electromagnetic �eld computation near the boundaries. We have applied

the boundary integral equation method with special integration quadratures and analytical

formulas for computing singular integral equations.

Furthermore, in the axisymmetric geometries we have studied the numerical eÆciency of

various boundary integral equations used frequently in the literature. We have found that

in certain cases the choices of an integral formulation and test functions are critical in order
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to maintain the numerical stability of a solution as the discretization is made denser. To

overcome this instability, we derived an overdetermined formulation which turns out to be

suÆciently robust and always leads to a stable solution.
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