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ABSTRACT. Itis well known that an integrable (in the sense of Arnold-
Jost) Hamiltonian system gives rise to quasi-periodic motion with tra-
jectories running on invariant tori. These tori foliate the whole phase
space. If we perturb an integrable system, the Kolmogorow-Arnold-
Moser (KAM) theorem states that, provided some non-degeneracy con-
dition and that the perturbation is sufficiently small, most of the invari-
ant tori carrying quasi-periodic motion persist, getting only slightly de-
formed. The measure of the persisting invariant tori is large together
with the inverse of the size of the perturbation.

In the first part of the thesis we shall use a Renormalization Group
(RG) scheme in order to prove the classical KAM result in the case of
a non analytic perturbation (the latter will only be assumed to have con-
tinuous derivatives up to a sufficiently large order). We shall proceed
by solving a sequence of problems in which the perturbations are ana-
lytic approximations of the original one. We will finally show that the
approximate solutions will converge to a differentiable solution of our
original problem.

In the second part we will use an RG scheme using continuous
scales, so that instead of solving an iterative equation as in the classical
RG KAM, we will end up solving a partial differential equation. This
will allow us to reduce the complications of treating a sequence of itera-
tive equations to the use of the Banach fixed point theorem in a suitable

Banach space.
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Chapter 1

Introduction

The Year 1885 is fundamental in the history of the modern theory of dynam-
ical systems: in that year King Oscar Il of Sweden and Norway decided to
award a prize to the first person who would be able to provide an analytic
solution to then-body problem; the problem read: "Given a system of arbi-
trarily many mass points that attract each other according to Newton’s law,
try to find, under the assumption that no two points ever collide, a represen-
tation of the coordinates of each point as a series in a variable that is some
known function of time and for all whose values the series converges uni-
formly". The mathematician Henri Poincaré, after three years of hard work,
was awarded the prize despite the fact that he couldn’t fully accomplish the
given task. Even though he was not able to find a complete solution to the
n-body problem, the contribution given to the modern understanding of dy-
namical systems by the research he had done in the attempt to win the prize
was inestimable. Later on, gathering his notes, he published the Ba@pk [
which is considered to be the cornerstone of the modern theory of dynamical
systems. The new point of view developed by Poincaré was still in accordance
with the assumption that dynamical systems are to be considered determinis-
tic; however his revolutionary idea was that, instead of looking for analytic
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solutions to the equations governing the motion, one has to start thinking ge-
ometrically and quantitatively. In this way, abandoning the goal of finding
accurate predictions on the configuration of a system at each time, one can
still recover geometrical and quantitative properties which provide a deep in-
sight into the global behavior of the motion. Poincaré’s was the first attempt
to rigorously define mathematical "chaos" and to deal with it. The reader
interested in the historical development of "chaos theory" can read the book
[1Q].

KAM Theory can be considered one of the many offsprings of Poincaré’s
pioneering work. It deals with stability problems that arise in the study of cer-
tain perturbed dynamical systems. A brief preliminary discussion is in order:
if a dynamical system is very sensitive to the smallest changes in the model
used to study it, one has to be careful in understanding whether it is possible
to apply the mathematical results to the real world. In fact, whatever model
one uses, the latter is necessarily an "approximation” due to the imprecision
of measurement instruments, to the idealization of the real model and so on.
A very simple example of such "approximations" is the solar system: strictly
speaking it is not true that the planets describe elliptical orbits around the sun;
that would happen if, studying the motion of a single planet around the sun,
one could neglect the perturbative effect produced by the other planets in the
solar system; such effect is indeed very small (the masses of the planets are
tiny compared to the mass of the sun), but unfortunately not to be neglected:
the results of such perturbation can be seen by studying, for instance, the
orbits of Venus and Mercury, who describl®wly processional ellipsesra-
jectories that slightly deviate from the Keplerian ellipses at each revolution
around the sun. The conclusion we wanted to draw by bringing up the latter
example is: the two-body problem (fully described by Keplerian ellipses) is
only good as a first approximation of the motion of the planets in the solar
system. Keeping that example in mind we can pass to describe the main goal
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of the KAM theory: if we are given a dynamical system that can be written as
a perturbation of a "simpler” one, whose behaviour is well known, we would
like to answer the following question: which of the properties of the simple
system are preserved under the effect of the perturbation, assuming that the
latter is sufficiently small? Returning to the solar system, we can translate
the general question above into the following one: if we take into account
the gravitational effect of all the planets among each other, will the keplerian
ellipses get destroyed? Will periodic motion no longer exist? Will the plan-
ets fall into the sun? Will they escape the gravitational attraction of the sun
and drift away from the solar system? Leaving these very dramatic questions
openfjwe shall now translate this heuristic discussion into the more formal
language of mathematics. The natural framework we shall operate in is the
theory of Hamiltonian systems (on Hamiltonian systems see for instaf)ce [

1. The KAM problem

Given a Hamiltonian functiorfi (p, ¢) : R? x R? — R, it is possible un-
der certain conditions (Seé@] Appendix A.2) to introduce a special set of
canonical coordinated, §) € R¢ x T¢ calledaction-anglevariables, so that

in the new coordinates the Hamiltonian is a function of the new "momenta”
only: H = H(I). In such case the system describedbis calledintegrable

and the motion in the new variables is very simple:

170 pe honest, despite a lot having been written about the solar system’s stability, the mutual interactions
between the planets are probably too strong for the KAM theorem to be applied directly; nevertheless the example
is still very instructive. Also, with the solar system being the main historical reason for studying dynamical systems,
we thought it would be good to mention it.

Some interesting results on the stability of the planets of the solar system have been obtained by numerical
integrations over large intervals of time: for instance the maximum orbit’s eccentricity of the biggest planets (Nep-
tune, Jupiter, Saturn, Uranus) seems to stay virtualy constant; the diffusion of the eccentricity of the Earth and Venus
is moderate while that of Mars is large, finally Mercury is the planet with the biggest chaotic zone and its orbit's

eccentricity experiences the largest diffusion. (86
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=1l (1.1)

0(t) = 6o +wt where w:=31|,_,.
The trajectories are bound to run on the invariant ®yi := {(1y,0) |60 €
T?}. Notice that the frequencies = w;, depend on the particular invariant
torus considered. In view of this remark we shall restrict our discussion to the
nondegeneratease, in which one can number univocally the invariant tori
T,, with the frequencies: the non-degeneracy condition reads
0*H
oI?

Oow

i = det

det

£ 0. (1.2)

Using the assumed one to one correspondence between frequencies and in-
variant tori, we shall calhon resonanthose tori numbered by rationally in-
dependent frequencies: - ¢ # 0 for all ¢ € Z\ {0}, and in this case the
trajectories fillT;, densely. Otherwise, fiq € Z¢\ {0} s.t.w-q = 0, T;, will

be said to beesonaniand the trajectories will run on a subtorus of dimension

s < d. We immediately see that the probability of ending up on a resonant
torus is zero, hence for almost all the initial conditions the motion is dense on
an invariant torus; such trajectories are catje@dsi-periodic

Unfortunately the problems at our disposal described by integrable Hamil-
tonians are not numerous. Nevertheless, as pointed out in the heuristic intro-
duction, one can still exploit the knowledge about integrable systems, by con-
sidering many important non-integrable systems as "small" perturbations of
integrable ones. According to Poincaré (S28) the "fundamental problem
of dynamics" is the study of a Hamiltonian of the form

H(I,0) = Hy(I) + \V(I,6) (1.3)

where)\ < 1 is a small parameter. Since we already studied and completely
solved the integrable case = 0, we are now interested in what happens
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as\ # 0 and the perturbation is "turned on". Will invariant tori and quasi-
periodic motion still exist or will they instead be destroyed by the perturba-
tion? The remarkable discovery of the KAM theory was that a large number
of non-resonant invariant tori do not get destroyed, instead they get only de-
formed a little bit and still carry quasi-periodic motion. More precisely the
non resonant tori that survive the perturbation (provided small enough)

are those numbered by the so caltkdphantinefrequencies, that is, suckis

for which

lw-q| >~|q|™" forsome yeR,/,v>d. (1.4)

Hencew cannot satisfy any resonance relation, not even approximately (the
reason of the importance of the conditipn {1.4) will soon become clear).

Without loss of generality, from now on we shall concentrate on the study
of the Hamiltonian function of a perturbed system of rotators:

[2

H(1,0) = 5 + AV (0), (1.5)
wheref = (0y,...,0;4) € T? are the angles describing the positions of the
rotators andl = (I,...,1;) € R? are the conjugated actions. It generates
the equations of motion

ot) =I(t
0 =10) o)
I(t) = —=X0,V(0(1)).

To look for a "distorted" invariant torus df (1.6) means to find an embed-
ding of thed-dimensional torus it x R4, given by ld+ X : T¢ — T¢, Yy :
T¢ — R?, such that the solutions of the differential equation

O=w a.7)
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are mapped into the solutions of the equations of mofion (1.6), so that the
trajectories read

0(t) = wt+ X,(wt)

(1.8)
[(t) = Y)\(wt).
Plugging [(1.8) into[(1]6) we get a well known equation for
D*X(0) = =MV (0 + X(0)), where D:=w- 0. (1.9)

Trying to invert the operataP will lead us to deal with the infamous “small
denominators”: if we formally write the Fourier expressionfr!, the latter

is of the form(wl—.q), wherew - ¢ can become arbitrarily small gs/aries inZ<.

As we shall see, the diophantine condition plays a crucial role in controlling

the size of such denominators.

2. The "Lindstedt series" and the first KAM proofs

One of the oldest methods of tacklirig (1.9) is to look for a solufiafd) in

the form of a\-formal power seriesA \-formal power series expansion &f

is a sequencéX; }ren, such thatX, : T¢ — T¢, and it is customary to write
X(0) ~ > 72, Xk(0)\F. Expanding both sides of (1.9) in powers obne

gets an infinite sequence of equations Xy, £ = 0, 1,2, ..., which can be
solved inductively. The formal power series associated to the proplem (1.9) is
called theLindstedt series

However, although this method is old and widely used in perturbation the-
ory, it has a shortcoming: the convergence of the sérigs, X;\* is not ob-
vious. For instance one can experience that, even in much simpler problems,
though the full series stays bounded for all times, if one truncates it up to or-
der N, the truncated series blows up in time, and the blow up gets more and
more severe the larger the number of teriss taken. Nowadays we know
that one cannot rely on the predictions given by the truncated series at order
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N except for an interval of time much smaller th@a. Back in Poincaré’s
times, when he showed that the solar system is unstable to all orders in pertur-
bation theory, the latter discovery caused consternation, and Poincaré himself
became pessimistic about the fact that the perturbative series he was using
could converge:

Il semble donc permis de conclure que les series (2) ne con-
vergent pas.

Toutefois la raisonement qui précede ne suffit pas pour
établir ce point avec une rigueur compléte.

[...]

Ne peut-il pas arriver que les series (2) convergent quand
on donne aux! certaines valeurs convenablement choisies?

Supposons, pour simplifier, qu’il y ait deux degrées de
liberté les series ne pourraient-elles pas, par example, con-
verger quand? etz ont été choisis de telle sorte que le rap-
port 1 soit incommensurable, et que son carré soit au con-
traire commensurable (ou quand le rapporest assujetti a
une autre condition analogue a celle que je viens d’ennoncer
un peu au hassard)?

Les raisonnements de ce Chapitre ne me permettent pas
d’affirmer que ce fait ne se présentera pas. Tout ce qu'il
m’est permis de dire, c’est qu’il est fort invérsemblae.

In 1954, at the International Mathematical Congress held in Amsterdam,
A.N. Kolmogorov presented the papdd] in which he gave a proof of the
persistence of quasi-periodic motions for small perturbations of an integrable
Hamiltonian. Despite the fact that his proof did not make use of the formal se-
ries expansion, the solution was proven to depend analytically, showing

2Henri Poincaré|22|
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indirectly that the Lindsted series converges. Kolmogorov’s result was later
improved by V.I.Arnold [, 2] and J.Moser2Q,[2]]: the apparently mysteri-
ous letters K, A and M that give the name to the whole theory are the initials
of these three mathematicians

3. Inside the Lindstedt series

Even though after Kolmogorov's, Arnold’s and Moser’s work it was known
that the Lindstedt series is convergent, it was only in 1988 that Eliasson,
in [9] proved it directly. By working on the series terms, Eliasson showed
the mechanisms that rely on the compensations that happen inside the se-
ries, compensations which counter the effect of the small denominators, and
make the series converge. Later on, J. Feldman and F.TrubowitzZl(ige [
noticed that Eliasson’s method could be performed using the same diagrams
that physicists had been using since Feynman. Namely one can associate to
the Lindstetd series a particular kind of diagrams without loops caiéssl
graphs By means of such graphs one can conveniently express the Fourier
coefficients)?k(q) of the terms in the Taylor expansion of the formal solution
> XkAF. The coefficienﬂA(k(q) will be given by a sum running over all tree
graphs withk vertices.

Finally, the analogies between the methods used in Quantum Field Theory
and Eliasson’s proof of KAM were fully understood by Gallavotti, Chierchia,
Gentile et al., who, in many influential papers (see for instaid¢é, 14/ 13,
12,/19), proved the convergence of the Lindstedt series by using a tool of
QFT: theRenormalization Group By using RG techniques, one can group
the "bad terms" (particular subgraphs calledonanceswhich will be re-
sponsible for contributions insid&},(¢) of the orderk!® for s > 1. ) that
plague the Lindstedt series into particular families inside which the diverging
contributions compensate each other.
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The Renormalization Group has been applied to the KAM problem also
by J. Bricmont, K. Gawedzki and A. Kupiainen i§]{ here the small denom-
inators are treated separately scale by scale, and the mechanism responsible
for the compensations that make the Lindstedt series converge is shown to
rely on a symmetry of the problem, expressed by certain identities that are
known in QFT: the so calletiVard identities The approach adopted in the
latter paper is the same we adopt in the present work, for whjdhgs been
the main source of inspiration. By using the Ward identities in a slightly un-
usual fashion, we shall prove in the first part the KAM theorem in the case of
a finitely many times differentiable function; in the second part we shall prove
the KAM theorem for an analytic perturbation, using a continuous renormal-

ization scheme.






Part 1

Differentiable

perturbation






Chapter 2

The KAM theorem and

RG scheme

As said in the Introduction, we are interested in the existence of invariant tori
and quasi-periodic solutions df (1.5) far > 0. We shall investigate such
problem in the special case of a non analytic perturbdtipthe latter being
assumed to b&’ for a sufficiently large integef; whose size will be estimated
later on. Even though, as we already said, the main inspiration for this paper
has beend], on the case of a non analytic perturbation we are in debt to the
papers!¥] and [26] for many fruitful ideas.

From now on, we shall work with Fourier transforms, denoting by lower
case letter the Fourier transform of functions#pfvhich will be denoted by
capital letters:

X(0) =Y ex(q), where z(q) = (2;)d /T ) X (0)do.  (2.1)

q€eZd

The rest of the first part of this thesis will be devoted to the proof of the
following result:
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Theorem 1. Let H be the Hamiltonian(1.5), with a perturbationl” such
that its Fourier coefficients satisfy’, lq|“v(q)] < C (i.e. OV € CY), and
fix a frequencyw satisfying the diophantine proper(f.4). Provided|}| is
sufficiently small, i = ¢(v) is large enough, then fof < %6 there exists a
C® embedding of thé-dimensional torus i x RY, given by Id+ X, : T¢ —
T¢, Y, : T — R?, such that the solutions of the differential equation

O=w (2.2)

are mapped into the solutions of the equations of motion generatéd bpd
the trajectories read

0(t) = wt+ Xy(wt) (2.3)
I(t) = Y)\(wt),

running quasi-periodically on d-dimensional invariant torus with frequency

Ww.

1. Scheme

In view of the discussion at the end of the previous section, let us define
Wo(X;0) := X0V (0 + X(0)). (2.4)

Denote byG, the operatof—D?)~! acting onR?-valued functions off? with

zero average. In terms of Fourier transforms,

z(q)
(Goz)(q) = ap fOr 470 (2.5)

0 for ¢=0;

we know that by inserting (2.3) into the equations of motion we get[Eq} (1.9)
(see p[ B), so we write the latter as the fixed point equation

X = GoPW,(X), (2.6)

whereP projects out the constant®X = X — [, X (0)d6.
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As we are not granted analyticity, we are not able to s¢lve (2.6) by using a
standard renormalization scheme for analytic perturbations (See for instance
[5]): we have to proceed by means of analytic aproximations, easier to treat.
Letus setforj = 1,2,... the constants;, o, &; as follows

v = M8
1 1
o = = -
’ Yi-2 Mgi—2
1
a; = 2.7)
Yi+1

whereM will be a large constant that we shall fix at the end of the proof. We
define the analytic approximations

ViQ = [ VoD, c-od= 3 uger. @8

|QI<>O§’YJ'

where

d . 1
sin (N + 3)0;
Dy(0) = — 27

v 211 sin%

is the Dirichlet Kernel (see Fig)] 1).

(2.9)

With the latter setup, we get a sequence of “analytically” perturbed Hamil-

tonians:
2

H(I,0) = % + AV (0), (2.10)
givinge rise to a sequence of “analytic” problems
X(0) = GoPW{(X;0). (2.11)
where
WI(X;0) = N0V (0 + X(6)) (2.12)

For eachj using for instance the renormalization schemeSh éne could
solve [2.11) for a fixed set of frequencies and foi-dependenf\, but that
would not work, as eithek or the set of allowed frequencies, could shrink to
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80

60

44

A
AV,

I//\Q/ \M/II{II T Vl\y\-;
T \[ |

Figure 1. The Dirichlet kernel ford = 1 plotted atN = 10 and N = 40

zero asj grows, making the procedure useless. Instead we shall show that,
by a slight modification of the scheme, we obtain a sequence of “approxi-
mated” problems, whose solutions will allow us to construct/flig enough
and|\| < )\, a sequence (solving (2]11)) converging t6°ssolution of our
original problem, fors < §



1. Scheme 19

We can assume inductively, as discussed earlier, that\foK ), and
k =0,...j7—1we have constructed real analytic functioXig(¢) such that

X4(6) = GoPWE(X,:6), (2.13)

we shall look for a solution td (2.13) with = j, and in order to do that we
shall exploit the fact thak;_, is a good aproximation to it.

From now on we shall writ&X := X; , = GoW7 ' (X;_,) and set
WI(Y)=WI(X +Y) - Wi H(X). (2.14)
We notice that if the fixed point equation
Y = GoWE(Y) (2.15)

has a solutiorY}, thenX; = X + Y}, is a solution to[(2.11) fok = j that we
were looking for.

In this setup we shall start our renormalizative scheme: in the same fash-

ion as in ], we decompose
Go = Gy + T (2.16)

wherel’, will effectively involve only the Fourier components witl - ¢|
larger thanO(1) andG, the ones withw - ¢| smaller than that.

We want to prove the existence of mﬁ# such that
Wi(Y)=WI(Y +ToWE (Y)). (2.17)
Inserting

FI(Y)=Y + ToWi(Y) (2.18)
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into Eq. [2.15) we notice
F/(Y) is a solution to[(Z.1]5)
— Y +ToWi(Y)
= (G1 +To) PW (Y + ToW{ (Y))
e Y =G PWI(Y + T Wi(Y))
— Y =G, PWi(). (2.19)
Thus [2.15) reduces tp (2]19) up to solving the easy large denominators prob-

lem (2.1T) and to replacing the ma@gf by W7 .
After n — 1 inductive steps, the solution of Eq. (2115) will be given by

Fl_(Y)=Y +TuaW)_(Y) (2.20)
whereY must satisfy the equation
Y = G PWI_(X) (2.21)

whereG,,_; contains only the denominatdts-q| < O(n™) whered < n < 1
is fixed once for all. The next inductive step consists of decompasing =
G, + I',—1 wherel',,_; involves|w - ¢| of ordern™ andG,, the ones smaller
than that.

Let's now definéVi (Y') as the solution of the fixed point equation
Wi(Y) =W/_,(Y + D, Wi(Y)), (2.22)
and set
Fo(Y) = Fo i (Y 4+ T WI(Y). (2.23)

We infer thatF7 (Y') is the solution of[(Z.15) if and only i = G, PWi(Y),
completing the following inductive step.
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Finally it is easy to recover the inductive formulae
Wi(Y) =W (Y + T Wi(Y)) (2.24)
Fi(Y)=Y + T, Wj(Y), (2.25)

wherel'_,,= Z;é I'y. Using [2.24) and (2.25) we see thatFjf(0) converges
for n — oo to F7, we have

Fi(0) = I, Wi(0)

= T Wi (T<uW;i(0))

= T, Wi (FJ(0)), (2.26)
and taking the limit fom — oo,

Fi = GoWi (FY) (2.27)

so thatF" is the solution of[(2.15) we are looking for.






Chapter 3
Setup and preliminary
results
1. Spaces
Letq € Z%, v € N4, we will use the following notation
d d
ohlx
- il = il ': ' !, 87X:1—,
4] ;’fﬂ il ;M M=ml 7 PN
(3.1)
Denote by=, the complex strip
Eqi={6€C?: Imé| < a}. (3.2)

Fora > 0 we define

Rao(T4RY):={X € C(T¢ R") with analytic and bounded extension &}
(3.3)
Lemma 2. We can almost exactly characterize the function®jinin terms

of the decay of their Fourier coefficients:

(i) X € Ry, forsomen > 0= |z(q)| < Celd

(i) |z(q)| < Ce o, for somen > 0= X € R, forall n<a
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Proof. Letd = (6,...,0,) € R%, ¢ = (qu,...,qq) € Z°.
(2) If 0 <n < «, we have

X (0 + in-Lyelr O+ gp

[2(q)| = g 4]

S/
Td

which yields|z(q)| < Ce™l%" with C' = sup,= | X (€)].
(i)

X(0+ m%)’ df el

sup [X(€)] = sup | > w(q)e’s

¢ex, se2y | o

< sup  _ [a(g)le™”
ge:w] qEZd
EGETI qud

<3 Cetreld < o (3.4)
q€Z4

O

Recalling the definitior{(2]8), we writé’ (6) = >~ v7(¢)e'” by setting

, v f <,
V(g = { (q) forlgl <~ (3.5)

0 for|g| > v;,

We shall denote
H = {(w(@)gez | lw] == |w(q)| < oo} (3.6)
B(r)={w e H||wl| <r}. (3.7)

and let H>(B(r), H) denote the Banach space of analytic functians
B(r) — 'H equipped with the supremum norm.
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From now on we shall writ¢ = z,_, for the inductive solution of the

(j — 1)-th analytic problem as discussed in secfipn 1, that is
T = Gowl '(z) Z(0) =0, (3.8)

and assume inductively the following decay:

_ ldal
e "

7(q)] < CEAalq’—g/g

j—1 I3
. 4 3
W|th A] = E é' (W) ands — OWhen|)\| — O,
k=0
(3.9)

wherelM is as in [2.7).

From now onC, C1, Cs, Cs ... will denote different constants which can
vary from time to time. We can omit their dependence on the parameters when
we think it is not important.

2. A priori bounds for the approximated problems

The mapsV’ defined in [[Z.B) clearly belong t® -1, so that there exists
C' > 0 such that for allj
sup [VI(§)] < C (3.10)

£eE 1
7j

which implies the following

Lemma 3. For each|o| < ﬁ there existd > 0, such that the coefficients
V. 1(6 + X (6)) belonging to the space atlinear mapsL(CY, ..., C4 C?),
of the Taylor expansion
, _ 1 _
oV O+ X(0)+Y)= Z HV,ZH(H + X(0)(Y,...,Y) (3.11)
n=0 "

have Fourier coefficients that decay according to the following bound

Z ea|‘1|‘|vi+1(q;x)”£(cd .... Cd;Cd) < bn'(2fy])” (312)

qE€Z
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Proof. First of all we notice that, iflm¢| < 4% then|im (£ + X (¢))| < %

in fact

ImX(€)] = [Im (X(¢) - X (Re)) |
< |X(6) — X (Reg)|
1

< — 0 X
<o e [0:X(9)]

T

1 B i
< 7o sup > lallz(q)le
Vi €€E 4
ko q

1 _ la|
<— |qllz(q)|e™ "
4, Z

(3.13)

using [3.9) fore (i.e. |A|) small enough; hence from the Cauchy estimates for
analytic functions we get

||VT{+1(9 + X(Q))l|£(c2d C2d;C2d) < Cn! (2’7j)n JCeR (314)

-----

and finally using Cauchy Theorem we have forra#t R such thatn| < ﬁ

vl (g 2)(Ye,. .., )| =

Gt L, VR O+ X0+ i) (i )

1 : .5 . .
(2r)d /Td‘V75+1(0+Z77+X(0+“7))(Y17'"7Yn)}6 o

IN

< Cnl (2;)" e Vi - |V, (3.15)

hence

9] 1 (@ 2) || 2(ca.....cocay < Cml (29;)" €797 (3.16)

'''''
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and taking) = -4 we geﬂ

o ’ (0—12-)ldl n
Z € |q|||U£L+1(Q; 7)| g(ca,... cacty < C Z e’ wyl n!(2v;) (3.17)

qeZ4 qez

J/

Z:l:;OO
1
forall0 <o < T

O

In view of the latter Lemma, let us introduce a translatigrby a vector
B e Cl (15Y)(0) =Y (0 — ). OnH, 75 is given by(75y)(q) = y(q)e“?’. It
induces a map — wg from H*(B(ry), H) to itself if we set

ws(y) = 75(w(T-5y)) (3.18)

The fixed-point equationd, (2.22) ad (2.24) may be written in the form

@5(y) = Win-1)p(y + Tn-1Wns(y)) (3.19)
@5(y) = @os(y + Tcnas (y)) (3.20)

Remark 4. Note that, because of the definitiofs (2.14) 4nd (3.18), one has
Ws(y) = Towd(T + Ty) — Tewg (%) (3.21)

and the right hand side is nof,(z + y) — w);' (2).

Similarly, the equationg (2.23) ar{d (2] 25) translate in the Fourier space to
the relations

15W) = fonns(y + Taca @, 4(y)) (3.22)

75(y) =y + D@y (y) (3.23)

Ihote that with that choice of, because of (3:13),4in+ X (6 +1n) is in the analyticity strip of the integrand

function
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Proposition 1. Let |[Imj| < % and|jy|| < a?z (See(2.7)at p.) we have

i 2y
> ws(yi q) < N Caer?

q€Z7

and furthermore, writing

@éﬁ(y) = {Déﬁm) + Dwéﬁ(o)y + 52@6,@(1/)7

we have
A st
w305 q)| < C1|A| =
qls

1D@5(0)y]| < CalA

182w75(y) | < Csl Al
Proof. Let us set
(1) / — 1
w(])( )(75,(],%,7%): ' n+1 qu)
inserting the Fourier expansion bf, we can compute

S l@s(yiq)l = Y Imawd (T + m_py; q) — maw) (T 9)|

q€Z4 q€Z4

WY Y e

n=0 ¢,q1,--,qn

—Zﬁwﬁ@m
MEIZ

n=1q,q1,..

+Zwoﬁ ‘

q ZQJ (TL)(

(g— ZQJ

f%%Qla s JQH)(y(QI)v s

M@ g g )W), .

(3.24)

(3.25)

(3.26)

(3.27)
(3.28)

(3.29)

,y(an))+

,Y(qn))

(3.30)

from which (3.27) follows immediately from Lemnja 3, and (3.28) follows

2
from Lemmaﬂz and from the fact thay|| < ozjf
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To prove [3.2B), forin| < ﬁ we use|[(3.13), the hypotheses Bnof
Theorenj 1L and (2]7) to get

OV (6 + in + X (0 +1in)) — OVI~1(0 + in + X (6 + in))|

_ Z qv(q)eiq(e-i-in-&-)_((ﬁ-&-in))

vi—1<lq|<;
lgl 52
< Yl
vi—1<lq|<;
1 1
< Z ‘q’€+1 ( ) \‘1|273 <C (3.31)
% L i i<lql<y; % !

Then we choosé)| = 4Li| and use[(3.31) to proceed as in Lenﬁa 3in
order to get

|@7(0; q)] = \em (wj(ﬂ?"'cJ) —w) N (7:9))|

< e\lmﬁqu ‘ —VITY (0 +in+ X (0 +in))| e do
2¢
8 £/3 ol
< |A|C E \Imﬁ\ 4'y |q| < |)\|C ( PYJ) 5 < j@ - (332)
7—1 fY]— |Q| / |Q| /

forall [Im 3| < & = a;.
J

Finally, in view of (3.2%5) we combing (3.26), (3]27), (3.28) andftarge
enough we obtain (3.24). This concludes the proof of the Lemma.

O

3. Cauchy Estimates

We state now some standard estimates we shall use throughout the paper. Let
h, i’ be Banach spaces, we defifie°(h; h') as the space of analytic functions
w : h — h' equipped with the supremum norm. We shall make use of the
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following Cauchy estimates throughout the proof:

1
sup [[Dw(y)l| < sup <[lw(y)] (3.33)
Iyl <r—5 lyll<r
k
sup [|dpw(y)| < sup [lw(y)|l (3.34)
lyll<r's Kyl

Furthermore we will also make use of the following estimateuwlet H>°(B(r) C
hih/)fori=1,2,andw € H>*(B(r') C I/ ;h"), then, ifsup,, <, [[wi(y) | <
7', we have

2
supl|w o w1 (y) — w o wy(y)llwr < = sup [lw(y)|[nr supflwi(y) — wa(y)|w

lylln<r Pyl <r lylln<r

(3.35)

4. The Cutoff and n-dependent spaces

To define the operatots, - that establishes our renormalization- we will di-
vide the real axis in scales. We shallfix< 1 (once and for all) and introduce
the so-called "standard mollifier" by

CerT if |k <1

h(k) = (3.36)

0 if k] >1
with the constant” chosen such thay,f[R hdx = 1. Now let us definey €
C=(R) by

Sl o 2 [, (2(s]—-y)
X(k) =1 1—77/1J2rnh( - dy (3.37)
so that
~ 1 if || <n
) = (3.38)
0 if k] >1

and trivially
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sup [, ()] , sup 2K ()] < C (3.39)
kER KER
Xn(k) = X(n"K) (3.40)

and set

Xo(K) = 1= X1(k)

Xn(K) = Xn(K) — Xns1(k) for n>1. (3.41)
Finally we define the diagonal operaiioy : H — H

/ n(W g
Ln(q,q') = wéq,q’ = (W @)0q.q (3.42)

so that suppl',_1(¢)) = {n"™* < |w-¢| < n"'}. The formulae coming
from our renormalization scheme, suggest us to defiteependent norms
and spaces: far > 2 we define the seminorms

[l =Y |w(g)l. (3.43)

|w-q|<nn—1

Let H_,, denote the corresponding Banach spﬁ:eﬁlext we consider the
projection

if lw-qgl <nrt
() (a) = y(q)  iflw-ql <n (3.44)

0 otherwise

and define the spaces
H, = P/H, (3.45)

2in fact, since||| —,, is @ seminormH _,, is @ Banach space up to identifying the mag(g) that coincide on
the set{|w - g| < n™~1}, but that is all we need.
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equipped with the norm inherited frof:

Wl => lw@l= >yl (3.46)

|w-g|<n™—1
Remark 5. Fory € H,, ||y|| = ||y||-», even though in genergl || # || - |-,
Note the natural embeddings for> 2:
Hy, — Hp1 = H—H_py1 — H_,y, (3.47)
We shall denote b/ (r) the open ball ir#{,, of radiusr;.
If we define the cutoff with “shifted kernel”
[[k](q) = (W - ¢+ k) (3.48)

we can prove the following:

Lemma 6. Fori = 0,1,2 and|x| < n™, the cutoff functions obey the follow-
ing estimates

0T []]| < O~ o (3.49)
Proof. The proof is trivial, since fok = k + w - ¢ we have, by definition,
[no1]6](q@) = xno1(R)/R? andy,_1(x) = 0 for |x| < n". O
5. n-dependent bounds

Our final goal is to show that the magg and f7 exist for allj andn, provided

A is small enough in an-independent way. For later purposes it will be useful
to show first some simple-dependent bounds. Such bounds are carried out
quite easily in the next proposition:

Proposition 2. For any sufficiently smalt > 0, |A\| < A, and|Im 3| < «;/2
. 2
the equationg3.20Q)have a unique solutiofi? € HOO(B(ozj’gr”), H) with

sup [yl < Casary || (3.50)

2y
yEB(a;’ rm)
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whereCy, is as in Propositiorﬂl. Furthermore the maﬁ% defined by Egs.
(3.23)belong toHOO(B(oéEr”), H). They satisfy the bounds

. 2y n
sup (| fas (W)l < 205" (3.51)

Y4
lyli<ad‘rm

Moreover,wzﬁ and fgﬁ are analytic in\ and $ and they satisfy the recursive
relations(3.19)and (3.22) respectively.

Proof. Consider the fixed point equatidn (3120) and write itas: F(w), for

o~
w = Wy and

F(w)(y) = Wy + Tenw(y)), (3.52)
Let
; 0o 20, 2¢
B, =qwe H*(B(a]r"),H) | [w]z = sup [w(y)]| < Caec [N ¢,
yGB(ajgzr")
(3.53)

whereCyis asin Prole. Let us choose such thatCn=2"Cy ,\,, < r" for

all n, with C as in Lemma 6. It follows from the latter that far € B2 and
2

y € B(oz;’gr") C H,

2¢

a?, (3.54)

J

DN | —

2y _on 2y 20 .
ly + Tenw(y)|| < o r™ + Cp~>"Cypai |A| < 203 7" <

soF(w) is defined inB(ager”) and, by PropositioHl,

J

I1F ()|l < Caead' Al (3.55)
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HenceF : B) — BJ. Forw;, w, € B2 use [3:3p) to conclude that

17 (wi) = Fw)ll gy = sup [y + Tntr (v)) = Wop(y + Tz ()]

£
lyll<ad rm

2 20 _
< 2 Cuead NOT 2wy — w5
ol
J

< 2r"|lwy — wallz
1
< §||w1 — wa| (3.56)
i.e. F is a contraction. It follows thaf (3.20) has a unique soluﬁd@ in BJ

satisfying the bound (3.50), which, besides, is analytis and .

Consider now forn > 2 the mapF':
F'(w)(y) = wos(y + Tn-1tns(y) + anrw(y)); (3.57)

2
. . . C s EL4
againF" is a contraction ir3), since, for(|y|| < «} r", we have

2y
ol (3.58)

[y 4+ Tn1ng(y) + Danrw(y)]] < 30 17" < Saj

N —

for r sufficiently small. But from Egs. [ (3.20) one deduces tﬁé/g and
W, _1y50 (14 Tuaw ), bothinBj, areits fixed points (just plug them into

n—1

(3.57)), hence by uniqueness they have to coincide,[and (3.19) follows.
By virtue of the estimatg (3.54) and definitign (3.23),

sup  [[fosW)l = sup |y +Tnwys(y)l <207 7" (3.59)

< 3¢ < %e n
lyll<ad‘r lyl<ad ‘e

The recursion(3.22) follows easily from Eq. (3.19):
25) = Y+ Tcny(y)
=Y+ anliﬁig(?ﬂ + F<n71@ig(y)
=Y + Fn—lﬂjglﬂ(y) + P<n—1ﬁ7{n_1)g(y + Fn—l{ﬁzg(y))

= fh s+ Taa @) (3.60)
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Chapter 4

The Ward identities

(revised)

We shall prove in this chapter some properties of the majpsvhich will

be essential in the proof of the main theorem, namely in the part that deals
with the compensations of the so-calledonanceghe latter being the terms
that make the convergence of the Lindstedt series problematic. We will prove
some idientities, which will be a sort of "modified Ward identities" (for the
"standard" Ward identities used to prove a KAM theorem Spd¢r the maps

w’ that we constructed in Propositiﬁh 2. We will omit the indegesriting
X=X,V=V,V=V,_,W=WJandU = W1, and the summations
over repeated indeces will be understood. The basic identity reads

/w W (Y;0)do = /T Y(0) 0, WS (X +Y + Ty W, (Y); 6)do

+ / G U (X 0)0, W (Y 6)d6. (4.1)
Td
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Once [(4.1) is proven, we can transpose it into the Fourier space language:

@ (y;0) = = Y ig"y* (@w§ (@ + y + T enin(y); —q)
q#0
= g Xn(w - @) (@) (y; —q), (4.2)
q#0

so it immediately follows that

@(0;0) = = iq"Xu(w - )2 (q) W5 (0; —q). (4.3)
q#0

Differentiating [4.2) with respect tg*(¢) and evaluating it ay = 0, we get

ouy(y;0) ) ., N
ayQ,(q) y:O Zq wO (ZU + F<7’LwN(O)7 Q)
owy (y; ¢')
. N\, 4 ) 4.4
=) g Xu(w - ¢)Z%(q) Ty (0) ymo (4.4)

q'#0

Let us finally prove[(4]1), starting with = 0,

W (Y;0)d6 = A /d(&,V)(@ + X(0) +Y(0))do — /d(af/)(e + X(0))do

Td

[ o, (v +x0) +Y(0)) s
2 / (OV)(O+ X(6) + Y (8)) (0,Y°(0) + 0, X7(6)) dF

A / 0, (V(0+ X(0))) o — X /d(aj)w + X(6))0, X (6)do.
(4.5)

The first and the third term in the right hand side vanish, and by integrating
the second and the fourth term by parts we get

Wi (Y:0)d0 = —X | 0,(0.V)(0 + X(0) + Y (0)) (Y*(0) + X*(6)) db

— X[ 8,(0.V)(0+ X (0))X(6)d6. (4.6)

Td
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Writing (0,V)(0 + X(0) + Y (0)) = WX +Y;0), we get:

Td

W (Y;0)do = / YO)O,WE(X +Y:0)d) + [ X(0)0,We(Y;0)d6.
Td

Td

4.7)

that is [4.1) forn = 0, sinceX(9) = GoUy(X;6). To prove the claim for
n > 1, we use the relation (2.24):

W(Y,0)d0 = | W (Y + T, Wo(Y);0)df
Td Td
© / (¥ + T Wa(0) QWG (X + Y + T (Y); 0)d0
Td

+ [ xe0,Wavio)as
@) /ﬂr YOG +Y 4 ToalVa(Y); )
+Afgmmx+Y+P¢Wﬁ%@&WﬁX+Y+ﬂﬂiUW@M
- /T Tl (GO0, WE (X +Y + T oalVa(YV);0)d8
+ /T XWX Y + Ty Wa(Y);0)d0
-/ GoUS(X;0)0,U8(X;0)
(1) /T YOOWEX Y+ TV );0)d0

+/ G US(X;0)0,WH (X +Y + T W, (Y);6)do
Td

(4.8)

39
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where (*) comes from[(4]7), (**) fromX = GoUy(X), (***) from X —
I'.,Uo(X) = G,UpX plus

b/rmw—wn%mx+y+r@ﬁﬁyymmwmx+y+r@ﬁqymﬂww'
Td
—/cmww%mxm@wuwwM%ﬂ) (4.9)
Td

which is obtained performing two integrations by parts and using the sym-
metry of ', and Gy; the latter shows that the L.h.s. in (4.9) is equal to its
opposite, hence it vanishes.

1. Resonances and compensations

To use the identities we worked out in the last section, we introduce small
interpolations of the kernels of the mapsu,,, constructed in Propositidr] 2
for |A\| < \,. Differentiating [3.2D) we get

Dﬁjnﬂ(y) = [1 - DiDOﬁ<yn)F<n]71 DwOﬁ(yn) Wlth Un =Y + F<niﬁnﬁ(y)
(4.10)

We will show that the diagonal part of the kern@etv,s(y; ¢, ¢) depends on
q only throughw - ¢. In order to show this, fop € Z, lett, : L(H;H) —
L(H;H) be the continuous automorphism that maps £(H; H) into ¢,a €
L(H;H):

(tpa)(a:q') = alg +p,q +p), (4.11)

that is, ¢, shifts the kernel of the operatarby p. Forn = 0 we have that
t,Du;, = Dy for all p € Z¢, since the kereDw),(y; ¢, ¢) is function

of ¢ — ¢ only. The latter observation and the definitipn (3.48) allow us to
conclude that, applying, to (4.10), we get

t, D 5(y) = [1 — Diy(yn)Tenlw - p)] Ditts(yn), (4.12)
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showing thaitprﬁLﬁ(y) depends omp only throughw - p. Therefore we can
define a smooth interpolation ngﬁfw(y) in the following way: denote
m5(y) = Digs(y) and define forn > 1 and|x| < ",

-1

a5 y) = [1 = 705 (n)Tan(k)] " mhs(yn)- (4.13)

Inequality [3.54) shows that for € B(a?r”) CH, |lyn]| < %aj%e, so Propo-
sition[] and the Cauchy estimafe (3.33) imply for sych

I )lleoirn < sup DT (w)lleoire

20

<o
9 »
< —; sup flwps(y)ll < [A2C4,. (4.14)
ol 3¢
7 Iyl<al

The latter discussion implies thaf ;(x; y) is analytic for|A| < A,,, [Im 8| <
2
aj, Yy € B(a;ffr”) C 'H, andC® for || < n™ with norm, say,
Hﬂig("ﬁy)ﬂa(wm < VAl (4.15)

Furthermorezriﬁ(n; y) is a smooth interpolation of the kernel QD w,s(y),
meaning that fop € Z¢

t, Dlnp(y) = m5(w - 4;y). (4.16)
Differentiating Eq. [(4.1]3) with respect towe get the useful identity
O g (ks y) = 2 55 Y)OaT < (K) T (K5 ). (4.17)
For [|y|| < ajggr” and|x| < n™ the following recursive relation holds:
. . -1 .
WZLB(KQ y)=|1- Wgn_ng(/ﬁ Pln-1(k) Wgn_nﬁ(/ﬁ 9) (4.18)

wherej =y + I',_1Wns(Yy)-






Chapter 5

The Main Proposition

To simplify the notations, we shall denote By, the open ball ir{/ of radius
2
ozfgr" and by A’ the space?>(BJ, H_,). Finally I will stand forT’,,_;.

Proposition 3. (a) There exist positive constants )y, anda;,, where
n+2 _
Oz(jm) = ma] n Z 1, (51)

such that, for[lmg| < o,y and|A| < |Xo| there exist solutions
wiﬁ = w’ of Egs.(3:19)such thatw’ belong toA’, and are analytic

in M.
(b) Writing
w),(y) = w}(0) + Dwd, (0)y + S, (y) (5.2)
we have
Oz%z
|7 (0;q)] <e (2" —1) W for 0<|w-q <n"! (5.3)
q 3

162 ||y < ealren (5.4)

wheres — 0 as)\ — 0.
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(c) Furthermore
D@, ()| iy < €™ (5.5)
1. Proof of (a)

First of all, we show thaf (5]3) implies for all > 1:
IPEOn= Y [@0:q)] <ol r (5.6)
|w-g|<nn—t
In fact the diophantine conditioh (1.4), forces the sum defining the norm to be

—1

taken over; such thatq| > v»1~">" , hence we can estimate

Z lw, (05 )] < Z [0, (0; q)

Jw-ql<n™ =1 PESEE mie
2y 1
<e (2’”rl — 1) o Z 7
1 _n—1 |q|3
lg|>yvn~ "7
- 2¢ . o1 n=1L_g
<ey oo (2" —1)77v(3 )
¢ 2n
<eajr (5.7)

fore = e(d,v,v) andl > 12vlog, (r/2) + 3d.

Remark 7. In the diophantine conditioj (1.4) we would like to takeas

small as possible in order to have more diophantine frequencteswhich
Theoren) 1L applies . In order to ggT(5.7) we got the constraint=/ () where

f — oo when/ — oo. The latter accords with the intuitive fact that as the
perturbation grows and the regularity decreases, one expects fewer invariant
tori to survive.

Remark 8. Note that[(5.5) can be trivially improved with
[@7,(0)]|—n < wj%ﬂn (5.8)

for all m < n. Anyway we shall not need the latter bound and in the following
we shall always us¢ (5.6).
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Consider now the equatioh (3]19). The decomposifion (5.2) implies
@ (y) = @_,(0) + D@ _,(0)(y + T (y)) + 6@, (y + T (y)) (5.9)
from which we deduce that
@i (y) = Hw)_y(0) + HDw,_(0)y + u(y) (5.10)
where

u(y) = Hoyw!,_(y + T (y)) = Hoyiw_(TH@._,(0) + Hy + Tu(y))
(5.11)

with H = (1—Da@?_,(0)[)*andH = 14T HD@’ _,(0) = (1-T'Da’_,(0))™.
The bound[(5]5) with: replaced byr — 1, together with Lemm@]|6 and the
definition of the norms imply

1H | enitns1)» 1H [l eniimn <1+ Ce <2, (5.12)

for || small enough.

To solve Eg. [(5.111) we use the Banach Fixed Point Theorem. @nce
is given, we can recover the existenceudf solving (5.10). The solution of
(5.11) can be given as the fixed point of the néagefined by

G(u) = How' () with §=THa&?_,(0)+ Hy+ Tu(y). (5.13)

n—1

We shall show thag is a contraction in the ball

, - 3 (e
B ={uc HOO(BiL’il,H_nH) | ||w]lgi = Su_p5 lu(y)]| —ne1 < 25(1?7"2( 1)}7
yeB)’)

(5.14)

. 2
whereBﬁ;f1 C H,_1 is the open ball of radius[;.*zr”—5 for0 <6 < 1and

2
r; = r;(6). Indeed, fory € H,_; such that||y|/,—1 < aj’gr”—(s, we get
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7 € H,_y with
2
[1Glln-1 < 207" [ win-1)8(0) || -ns1 + QQ;ET”_E + 207]_2R5CY§T%(H_1)

2 2
= 207772”50‘567”2(”71) + 20‘;’127“”75 + 2077*2”50;70%(%1)

win

< ol (5.15)

N | —
<

for » small enough. Thus,w’_, is defined atj, since the latter is in
the domain of definition ofi’ _,. It follows thatG(u) : B, — H_,.1.
Moreover
1G (@) ()l|l—ns1 <2 sup |G ]| —nir < 2ealr2D, (5.16)
yeBI?
where we used the bounds (5.4) and (5.12). Héhe®’ — B7.
To prove thay is a contraction, we use the estimate (8.35) for

Ji(y) = TH®)_,(0) + Hy + T'ui(y) (5.17)

andu; € B, 1 = 1,2. We get immediately thaj;, € H,,_; and by inequality
G.159), ||l < %affr"—l. Hence the bound$ (335), (b.4), (5.12), together

with the relations between thedependent spaces and their norms, imply

1G(w1) = G(us)|lgs =sup ||Hoaw) (51) — Hoow) y (2) | —n1

7,8
yeanl

—2p ) ~ _
<day T sup [[02@ () l|l—ns sup (|90 = Gl
yEBJ yEBg,jil

n—1

(LU TORED i —
< 40cj ET?2 sup 71 — ol -ns1

5
yeB)®

1 1
< daj er2OR sup ua(y) = up(y) |l -ns
yeB)’,

< Ylunty) — w@)lls (5.18)

for r ande small enough, proving the contractive propertyyabn 5’. Hence
the existence of the fixed point e B’ of G solving the equatiorf (5.11) and



2. Proof of (b) 47

providing @’ : B, — H_,., given by [5.ID). Using the natural embed-
dings we may consideB’ a subset oiBf;fl, andw’ may be regarded as an
element of the spacd’. Note also that, sincg = y + T'w’ (y) (see[(5.11L)),
the inequality[(5.15) can be rewritten as

¢ 1

_ 12 :
ly+Tan )l < 5ajr= for ye B, (5.19)

which implies thaty 4+ T'w/ (y) € B/_, for suchy.

2. Proof of (b)
In view of the decomposition (5.1L0), we write

@ (y) = @,(0) + D (0)y + 6, (y), (5.20)
where

@l (0;q) = Hw)_,(0; ) +u(0; q)

D@’ (0) = HDw’._,(0) + Du(0)
8o3,(y) = Gou(y) (5.21)

Let us first iterate the bound (5.3). Note that, with the projeciatefined
at page¢ 16
Pw}(0;q) = PHPw,_;(0;q) + Pu(0; q) (5.22)

sinceH = HP. Sinceu € B’ (See definition[(5.14)), we have for <
w-gq| <n"

(05 )] < [[u(0)]| g1 < 2ealrz™=D. (5.23)

and Eq.[(5.22), using the estimgie (5.3), yields
2¢
~ n a;
|@7,(0; )] < (2" — 1)€| ”’z + [u(0; 9); (5.24)
q 3
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we omitted here the technical details of the estimatePdf P’ ,(0;q),
which is obtained by expanding in a Neumann series; such details are car-
ried out at p.[ 5B in the estimate of the quantjty ($.51). Now the inequality
(5.24), in view of [5.2B), seems less than what we need to itérafe (5.3), but in
fact itis much more, as we need a bound only|for 3| < ay;,,). For suchg,

using the estimaté (5.23) we get fok |w - ¢| < np"!

[ug(0; ) @m0l = Jug, (0; )| < 2eafrz™D (5.25)

where
3 =3 z(o‘f?"jq? %) sothat M 3| < 1. (5.26)
From the definition[(5]1) we can write;,,_; — o, = % It follows

from (5.25) that foi0 < |w - ¢| < n"!

lup(0; q)| < 26@?7’%("_1)6(Wj+1>)\q|
2y
/ i
7 73 (n=1) [2n(n + 1)}5; -
lal3 6
ol
=Ty (5.27)
q 3

Q
< 2e

for » small enough. Now, combining (5]24) arid (5.27) we get the desired
bound:

2
Y

@ (0;q)] < (271 — 1) el for |w-q| <y (5.28)

lq|3

We can now iteratd (5.4) fahw! (y) = du(y) (See[(5.211)). We already
proved that for|y||,_1 < a?ﬁr"“s we have|u(y)||—n+1 < 2calr2-Y (see
(5.14)). We can apply the estimafe (3.34) with= 2 andy = r?, so that
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2
for||yl|, < oz;i”grn we get

1620, (W) ln < sup [[6u(y)]|-nia

2y
lylln—1<a3 ‘s

T26

<t s e
Hy||n—1§oc‘?ern76
P23 N
S T (5.29)

Takingd > 2 andr small enough, we infer thats,@’ ()|, < ealr:®,

which concludes the inductive proof of (b).

3. Proof of (¢)

This is the part of the proof where the identities introduced in sefiion 1 are
needed. We will make use of the maps; : B(r}) C H — L(H;H),
constructed fofA| < A,. In view of the embedding$ (3.47) such maps can be
viewed as

m s Bl CHy— L(Hp Hon). (5.30)

We shall show that they can be extende@\jo< )\,, and the bound (5 5) will
be proven by

Lemma 9. Denote byD,, the disk{x € C||x| < n"} and splittingwflﬂ(n; 0)
into its diagonal and off diagonal parts

™5k 0) = 03 4(k) + p (), (5.31)

Whereoiﬁ(/ﬁ; q,q) = ﬂiﬁ(/@;O; q,¢ )04y The mapSﬂi/B : D, x Bl —
L(H,; H-,) extend analytically tgA\| < )\, their extensions will still be
smooth interpolations of the kernel@Dw,3(y), i.e.

tpriﬁ(y) = Wiﬁ(w -p;y) and tpﬂ'flﬁ(li; y) = Wiﬁ(li +w-p;y) (5.32)
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they will depend analytically oy and y and belong toC>(D,,). Fori =
0,1, 2, they obey the bounds

j j £,
Ha;(slﬂfzg(’ﬁ; y)”ﬁ(?—ln;an) < 504;7"2+i (5.33)
||820i5(ﬁ)||£(ﬁn;n_n) < ep®in (5.34)
1

9Lp) 5(kiq.q)| < & (5.35)

g =5’
Whereélﬁiﬂ(/{;y) = Wiﬁ(li; y) — Wiﬁ(li; 0).

Remark 10. By using the diophantine condition as we did af p] 44 in order
to get [5.6), we see that the bound (5.35) implies

1000 5(8) | crmint_y < €T3, (5.36)

for ¢ large enough.

Takingp = 0in (5.32) and combining Eqs| (5)33), (5134) apd (b.35) we

obtain [5.5), so we are only left with

Proof. (Of Lemmd ) Differentiating[(3.319) with respectgave get
Dwj(y) = (1 = Dl (§)T1) " Dul_y(5) (5.37)

wherey = y + Fn_lwiﬁ(y). The right hand side is well defined fgr €
B\ C H,_,, in fact by inequality[(5-19)j € B.._, for suchy’s. Lemmd §
and the inductive hypothesés (5.5) imply that

HDw%(g)rn_l‘|£(H77z+1§H7n+1) S 05 (538)

Using the relation(4.18) we define

. . -1
mha(kiy) = |1 =70 (R i) laa(R)| 7, _qy5(K: 0)- (5.39)

The relations[(5.32) follow by simply applying to (5.37) and[(5.39). By the
inductive hypotheses, for € D,,_; andy € B2?, 7 ;(k;y) € L(Hn; Hon)
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and it is an analytic function of its arguments. Hence, by induction, it coin-
cides for|\| < A, with the mapsr, 5 constructed in sectidrj 1. Note that

. -1 -
w4 (k3 0) = [1 — g O)Fn,l(m)] Tl (3 0), (5.40)
where0 = I'w),(0).

To get an a priori bound fronp (5.B9), we formulate an easy Lemma

Lemma 11. Let H!(x,y)
and allm <n

. -1 .
1= )T (e)] . Fory € Bl

1OLH (5, )| 01 4y) < 207700 for i=0,1,2 (5.41)

Proof. Fori = 0 (5.38) implies trivially thaq|Hg,L(/<a,y)||£(Hn_hH_n+1) < 2.
Fori = 1 we have
10w H, (5 )] £ i) =
= 3,05, )0 11553 9) om0 V(5 ) 204
< o~ (m=1), (5.42)
In the same fashion one gets
”82H73n</€7 y)HE(anlnyrwkl) S 277_2(m_1) (543)
O

From the latter Lemmal (5.89) and the inductive hypotheses we get the a
priori bound

||8i77£5(’f§ y) ||C(Hn—1;7'l—n+1) < 0577(2—1')(71—1)‘ (544)

To prove [5.3B) we note the identity
. . . -1
Hn(’%; g)ﬂ-gnfl)ﬁ(ﬁa g) = ﬂ-gnfl)ﬁ(’%a g) 1- Fn—lﬂ-gnfl)ﬁ(ﬁ; g)

- ”{n—nﬁ("‘v §)H (5 9), (5.45)
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which, fory € B2’ yields

5177{15('“53 y) = 7%5(’“ y) — Wiﬁ(’ﬁ 0)

= H) (5 9)],,_15(5:§) — 7, _1)5(5; 0) HJ (k5 0)

= Hj(k;9) [an_l)g(ﬁ;ﬂ)(ﬁi)*l(ﬁ;ﬁ) — (H3) ™ (k5 §)m(,, _1)5(5; 0) | H3 (w5 0)

= HI(k;7) [W{n_l)ﬁ(ﬁ; ) <1 — Pn_1<l€)ﬂ'{n_1)ﬁ(ﬁ; C)))
j
(

1105 5) = S1e g3 0) | H (5. (5.46)

From Lemma IJ1 with = 0 the inductive hypotheses arid (5.46) we get the a
priori bound fory € B,

. . [
101755 (k3 Y i) < 0175 (Ks Y) ety 17t in) < Beafr 2. (5.47)
To get [5.3B) withi = 0, we restrict toy € B/ and using[(3:34) we extract

16170 5 (83 | crtnirey = 1016072 5 (53 9 crine)

< sup (1610172 5(555 )| s

yEB,
rd ;
< 75 S 0ms(ms )l cotnim-.)
yEBﬁl’_l
ro Lo Lon
< 1_r585aj’r 7 <eajrz. (5.48)

To get [5.3B) withi = 1 we first obtain another a priori bound fgre B,
by differentiating [(5.46) with respect toand using[(5.44) and the inductive
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hypotheses:

Haﬂalﬂiﬂ(ﬁ"? y) HL:(Hn;an) =

= (|03 (%3 9) [51% 1R 9) = 017,y 5K 0)] H} (;0)
+ H; (; 9)0s [&an_l)g(ﬁ; §) = 617, _1)(k ;0)] Hj (0)
+ H%(“? ﬂ) [517T{n_1)g(’f§ ?j) - 517Tgn_1)5(’f§ 6)] 8,_;]?]2(/@; O)HL(Hn;H_n)

= n—1

Lo L op
< 477_”504]?”7“71 + 4504;’7”7177_” +4n eair 2
Lo
<12e0ir"5, (5.49)

then we consider again the balf to squeeze the correct estimate out:

) 70 24 2
||a,4(5171'zlﬁ(li;y)“£(7_{n Mo < - 125a P < e o

‘5. (5.50)

The same procedure (establish an a priori bound, then restrict the domain of
y's) yields [5.38) withi = 2.

Leaving the more difficult bound (5.84) for last, we can now iteffate {5.35).
In order to do that inductively, we write

Paa) = [1 =705y s ()] ) 05%) 4+ RI()  (8.50)

TZL(H)

where
J (e N = 1 ! !
Rn(li7q, q) = (1 — (W(O) n (57T)F57TF1 — W(O)Fﬂ(()) + méﬁ)
(5.52)

with m = w{n_l)ﬁ(n) eor = 517r(n (A 0). Using the inductive hypotheses
itis not hard to show that

. i
100, (1) || 27y < €05 (5.53)

In order to estimate the first term in (5]51) we notice that it can be written as
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1) (k5 ¢, q") Z:E:WOQQI q1) 7054, ¢u)n-1(22)7(05 Gns ¢)

k=0 q1,...,qk

(5.54)

where, againg = w{nflm(n). Thek-th term in the series reads (leaving the
sums over repeateg’s understood

Y. o@T(@)]" p(q:4)T (i) - p(dia156ia)T (a:2)

0<iy <ig+-<ip=k
[O_(Qi2)r(qh)]i37i2 p<qi2> ql3)r(%3) T p<qi4717 qi4)F(Qi4)
o [O-(qizl)F((]Z‘zx)]ikil7%72 p(‘]ik_zv Qik—l)r(q’ik—l) e P(C]k, C],), (555)

Using the inductive hypothesis again, and the diophantine condition (1.4), we
get

Ti(kiq.¢) <e) ¢ - z
k=0 =1 |w-qs|<nn—1 |q_QI|3 |QI_QQ|3 |Qj_q,|§
(5.56)
) Ookk —2not 1n1£(—d)] 1
<ed ey Iyt ) Y
k=0  j=1 lg —q'|3
1 1
< e~ (5.57)
2 lg—qls

for ¢ large enough and small enough. To obtain (*) we repeatedly used the
estimate

L(2L
! L _ 2@y s (5—)
z = z
a1 A= Dl3 =5 la— |5

(5.58)
forall |w-q|, |w-¢| <n*' and ¢ # ¢, which is obtained by using the
diophantine condition as ifi (5.6) and Minkowski inequality for thepaces:

110 beveryexact and consistent with the expressiok i§ not even, we should take the sum oGex i; <

i -+ - < ir41 = k, and perform some formal changes in a couple of subindices; we hope the reader will forgive us.
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I1f +glle < 171, + llgll,- Now combining[(5.58) and (5.57) we get

1
for |w-ql, lw-q| <n""

e 1
lpns (K ¢, )| < eaf + e (5.59)

2 g —q5
Reasoning exactly in the same way we did af pl 47, we notice that the last

bound holds for alllm 8| < a(;,,—1), hence we can shift, and making use
of the diophantine property af (Cf. p[48) we get fofim 3| < ;.

|pns (K54, 4")| < 6% for |w-ql, [w-q'| <77, (5.60)

lg— ¢
that is, [5.3b) fori = 0. Without any difference one obtairs (5/57)
andd?p, which combined with[(5.33) and the diophantine conditiordsee
(5.59)-(5.60)) yieldg[(5.35) for= 1, 2.
To prove [5.3%) we need to establish a Lemma that will follow from the

discussion of chaptei 4 as a consequence of the Ward idgntity (4.4)(the indices
j are omitted and the upper indeces stand for the components):

Lemma 12. The following inequalities hold

|003(0; 0)] < er, (5.61)
10.0,5(0;0)] < en®. (5.62)

Proof. Using Eq{(4.4) evaluated at= 0, we get

0';/7‘1(/{; O) = nga(/@; y; 0, O) 0= Dwg,a(y; 0, 0)
k=0 Z;O y=0
= =3 i Xu(w - )7 (9)p (0 —4.0), (5.63)
qeZ4

so (5.61) follows from the decay of the coefficieritg) and from [(5.3b)

[925(0: 0)] < 1190 (0) | c(rty i) < €72 (5.64)
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Using (4.17) we get

0x0 (0007 =Y w205 05 g, 0) Dy (w - q)7)°(0; 05 —g; 0)
q
= Dg’(0;¢,0)dxven(w - ) D@ (0; —¢;0),  (5.65)
q

using [4.4) the latter takes the form
0,0,(0;0) = Z, + Q,, (5.66)
where

Z0T == q"q" (wh(Z + T <@, (0); =) Dnyen(w - @) (wh(Z + Ty (0); —q))

(5.67)

and

Q=" igxn(w - )T ()7 (0;0;¢, ) uyen(w - q)- (5.68)

qulyql/
i X (w - )7 (¢") 7200505 4", q).

The expression summed in the right hand sid€ of (5.67) is odd rence
Z, =0, so, using Lemmpg|6 and (5/44), we have

1050(0; 0)| = [Qn] < N7l 2t 10T <n () Il crtire )

< O < e (5.69)

for e small enough. 0
Using (5.39) we write

oh5(R) = 1= 01s(k) i (k)] _ia(n—l)ﬁ(/€> + S/ (k) (5.70)

-~

Kig(”)
where

| 1 1 1
o
Salr) = d'ag<1 P 3 A s L P

R) (5.71)
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with o = of,_, ,(k) @R = pl,_; 4(k) + 617, _; 4(r; 0). Using the inductive
hypotheses it is not difficult to show that

10LS3 (k)| cripe_yy < €72 (5.72)

asR appears as a factor in both terms|of (5.71).

We shall now describe a crucial propertyff (): fixing n and|x| < n",
we have thatk’/ (k; q) restricted to the seftg € Z¢ : |w - ¢| < 7" 71}, is the
identity for allm < n — 2. In fact, for suchx’s andg’s, we havew - ¢ + k| <
n"~2. On the other handl,,(x) is supported on the s@t - ¢ + x| > n™, i.e.
whenever"~2 < n™, we havel',, (k) = 0. Summarizing forn < n — 2 and

k| <"

Ki,(k5q) = [1 = 0(uevs(k)Daci(k)] " (q) = 1d(q), for |w-q| <!
(5.73)

So, for allm < n — 2 and|x| < n" we have
05k q) = 0l 5(kiq) + Rl (kiq) for |w-g <y (5.74)

In view of (5.73) we notice that "on the scal¥, o, stays almost constant
until m = n — 2, in fact if we assumﬂa%gﬁ(m)HE(HMHW) < ;=& which we
can always do, it follows fronj (5.74) and (5172),

n—2
10207, a5 e (16+Zr’5>=—. (5.75)

k=1

Now we can prove (5.34). Faor= 0 we use[(5.7/0) twice and make use of
the fact that for alin o7, (q; k) = 07 (0; &) with & := k + w - ¢, SO we get

al,5(r) = K3 5 (R) K,y 5(K)0(n2)5(K) + Kb 5(5) S5 (k) + Sj (k)
:Kiﬁ( (n 13 <// 92 T(n—2)8 (k"5 0)dr"” d/{’—l—kaa(n_g)ﬁ(O;O)-I-U(n_g)ﬂ(O;O))

+ K2 5(r)S% (k) + S5 (k) (5.76)
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from which, using Lemmp 1], (5.61), (5162) and (5.72) we get
j 1%2 n— n—1 n
loms(F)lertnreny) < € (Z + R 4 7“22) +2er;? +er?
<en (5.77)

Differentiating [5.76) with respect te and using Lemmp 11| (5.61), (5/62)
and [5.72), we get

0 () = O (K35 (K KT, 1)) ) 0-215(5)
+ Ky () K, 1) (9021 (5) + OG5 (4) 5]y ()
+ K7 4(K)0.S3_ (k) + 0. R (k), (5.78)
and proceeding as ifi (5]77) we get
10k 5 (K) | 210y < €N (5.79)
In the same way we get obtain the bound
10207 5(K) | £y < € (5.80)

which concludes the proofs of Lemrp 9,(0j (p.[44) and, hence, of Propo-
sition[3. O



Chapter 6

Proof of Theorem(1

In this chapter we shall show thaf/ = F’(0) converges to an analytic
function Y7 with zero average fon — oo, solving [2.15). Furthermore
X; = Y2, Y converges to a differentiable functioxi with zero average
for j — oo, solving [2.6), which proves Theorgm 1.

First of all in Propositiofi 2 we constructed fov] < ), the analytic maps
,{ﬁ from BJ C 'H to'H, satisfying the relation§ (3.22) arjd (3.23) and obeying
the bound

sup || fisll < 2a7 ", (6.1)
yE€By,

They may be also viewed as analytic maps frBfnC ‘H,, to H. As such they
may be analytically extended ta| < X, for n > ny by iterated use of (3.22)

if we recall the bound (5.19). The new maps are clearly bounded uniformly in
n (e.g. by204§£7";‘0). Let us prove now the convergencefinof ¢, = f7,(0)
obtained this way. The recursidn (3/22) implies

yiﬁ - fiﬁ(o) - f{ﬁ—l)ﬁ(rn—lﬁfﬁ(o)) = ygn_ng + 51f{;l_1)5(11n_1@£5(0))-
(6.2)

59
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Using Lemma B, the bounfl (%.6) and (3.34) we infer

[T ygn—n/jH = ||51f(jn—1)5(rn71w7]@3(0))H
< s R W)l
Iyl <Cn—2nea 3 ren

Cn~2ngrntt
= 1= Oyzgpn+

. T
Sup 1@l < Cn et r

0
lyll<a 3 rn-1

(6.3)
The sequence is hence Cauchy, and therefore it convergés in
Yos > Y (6.4)
with
4]l < Cea} (6.5)

uniformly in the stripim g| < %dj. This last estimate implies that, pointwise,

. 2 aj
¥/ (q)| < Ceal’e 7, (6.6)

For |A| < A, Eqs[[3.2B) and (3.20) imply that
yh = f(0) = To,@(yy) and @j(y)) = @) (0). (6.7)

From the first Eq. in[(617) we ge¥ (¢)|,—0 = 0 and from the second one
using [4.8) and (5]6) it follows

@5 (43 0)] = |@5,(0;0)| = Y g Xn(w - @)Z(q) - @5(0; —q)
q#0

. 2
< || P@E|| -y < ear?" (6.8)

By analyticity these relations have to hold also & < )¢, SO we can take
the limit forn — oo in EQgs. [6.7) and infer that

¥y (0)=0, 3 =Gow(g;y’)forq+#0. (6.9)
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Once we have constructed inductivel(0) we setz; = y’ + x;_1; using
(6.9), the inductive hypotheses an_, and [2.1#) we get;(q)|,—0 = 0 and

forq > 0,
vy =1y + 21 = Gow(q;y’) + Gowl ' (q;25-1)
= Gow)(g; zj-1 +y7) — Gowl ™ (g3 w5-1) + Gowd(q; z5-1)
= Gow)(q; 2;), (6.10)
sox; solves[(2.1B) fok = j. Furthermore, using (3.9) and (b.6) we get

lq|

e Y

j 20 %
()| < 1y (@)] + |2j-1(a)] < Ceaj'e” 21+ Ce4, PE
q 3
£ aj i e _ld
402\ 3 e~ 7l i1 4 3 e b
< Cel! (_—J> — +Ce ) (! ( — ) -
a /) lqls kZ:O MEF=2) g5
lal

(4 aj i—1 £ —
4 3 67T|q| J 4 3 e Y
= (Ce/! . C g 1l
) (M8]_5> IR (M8H) lql
k=0

_ _lal
e Yi+1

S CEA]’Jrl 7> (611)
lal=

that is [3.9) forz;.

If we can show that; converges foj — oo to some function:, we can
take the limit for; — oo on both sides of (6.10) to obtain

z(0) =0, z=Gowy(g;x)forg#0 (6.12)

which is the Fourier transformed version pf (2.6). To conclude the proof of
Theorem|[(Il) we only have to show that fpr— oo, z,(¢) — z(q), for all
q # 0, with 374 q/*z(g)| < oo (which impliesX € C?). In order to do
that, we define; := z; — x( so that

lim z; — 2o = lim u; = Zuj —Uj_1, (6.13)

J—00 J—00 .
J=1
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and using[(6J6) we get, for adl
|(u;(q) — uj-1(q))

J 5= lal
= |y (q)] < Cea)'e

2¢—s—d
o3
< 2s+dg3std) (5 4 @) ICe—2
|q|s+d
ge—s—d
= Oy ge——+, (6.14)
) |q|s+d
from the latter bound we get for< %f,
>, lal” lim Ju;(q)] < > D lal*lui(@) = u-a(g)]
qez? qezd j=1
00 a%ffsfd
<Y ) Copet—— <. (6.15)
gezd =1 lal
Finally
S gz =Y lal* JlLITOlej(CI)‘ = g Jlim u;(g) +@o(q)| < o0
qezd qezd qezd

(6.16)
which implies thatX € C* and proves Theorefy 1.
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Chapter 7
Introduction and
continuous RG scheme
Once again, we study the Hamiltonian function
H(I,0) = %12 + AV (0) (7.1)

with 7 € R%, 0 € T¢, A € R. We shall relax the hypotheses 6fbeingC‘+!
as in Parf and assume it real analytidinin chaptef [L we studied in detail
the flow generated by in the case\ = 0

After X is turned on, we want again to investigate which of the non-
resonant invariant tori persist; let me recall that by an invariant torus with
frequencyw,we mean an embeddirg, : TV — TV xRY, 7, : ¢
(0(v), I(p)), where the solutions of

O=w (7.2)

are mapped into the solutions pf ([7.1). More precisely we write the embedding
as

T.(p) = (W +Y(p),00 + ¢+ X(0)) (7.3)

65
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whereX : TV — TV 'Y : TV — RY are analytic and()). Let us recall

that by plugging the quasiperiodic solutions
I(t) =w+Y(wt) (7.4)
0(t) = by + wt + X (wt), (7.5)

into (1.6) we are led, after some straightforward algebra, to the differential
equation

D?°X(0) = -\ V(0 + X (0)) where D =w- 0. (7.6)

Solving (7.6), as we saw in the first part, turns out to be rather complicated:
when we try to invert the operatd? in the Fourier space, it has the form
ﬁ; the denominators - ¢ can become arbitrarily small, causing troubles
in the convergence of the formal power seriesXaf We have a way to cure
this: if w satisfies the diophantine conditign (1.4), we can sdlvg (7.6)Xor

sufficiently small. We shall prove the following

Theorem 13(KolmogorovArnold-Moser) LetV be real analytic ird and
assume that satisfieq[1.4). Then, if|\| is sufficiently small, Eq{7.G) has a
solution X with zero average, analytic ik and real analytic irg.

In order to prove theorein L3 we will split the real axis intdependent
scales, where € R and it does not have anything to do with the time of the
dynamical system; we shall separate small and big denominators and solve
at each step only the part containing the large denominators. Iterating this
method for bigger scales will lead us to a convergent sequence of problems
which will become trivial fort — oo and provide us the wanted solution.

1. The continuous scales

To get a scale separating small and large denominators at tiewgial ton’
for some fixed) < 1, we define an operatoi(¢) using a continuous partition
of unity that will divide the real axis in scales.
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Let us introduce the so-called "standard mollifier" by

Ce T if x| <1
(k) = (7.7)
0 if k] >1
the constan€ selected such thaf, ndz = 1. Now let us definge € C>*(R)
by
._ 2 [ (20sl=y)
x(k) =1 1_17/127777( - dy (7.8)
so that
0 if |k| <n
x(k) = (7.9)
1 if |k >1
and trivially
0ux(R)], |02x(R)] < C 3C < 0. (7.10)

Let us now define
xi(k) = x(n”"'k) (7.11)

and forq,q¢' € Z ,t € R, the kernels of a diagonal linear operator in the

Fourier space

N — _atxt(w ) Q)) /
Yla,q) = W 6(q,4), (7.12)

andfors <t eR

Tisn(q,q) = ' : q), 7.13
5.(0,9) (0 0)? (¢:4) (7.13)
so that
t
/ (0 ¢ )dr = ~Tron(a,d). (7.14)
Furthermore we shall use the notation

—t
/ : / w - /
Peilg:d) = lim T(e,q) = Xt - g)) Q))(S(q,q ), (7.15)
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2.8

2.6

Xt (,‘{,) 2.4

o 02 04 06 08 112 14 16 18 2

k

Figure 1. The cutoff functiony:(x), with n = i, plotted againsk at differentt’s

and define the operatef|x| with shifted kernel,

_atXt(w'Q"i_"i)) /
g @), (7.16)

wlsl(a,q)
Lemma 14. There existg’ > 0 such thatfori = 0,1,2and allx € R

|KFD 0, [k](0)] < C. (7.17)
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o 02 04 06 08 177712 14 16 18 2

k

Figure 2. The functionl'<(q) = x:(w - q)/(w - ¢)*, withn = 1, plotted against

Kk = w - q at different times

Proof. Using the definition(7.32) and the bounfs (7.10), the estimate is straight-
forward sincey,[«]|(0) = k2x(n~'x) where Suppy) = O(1).

O



70 7. Introduction and continuous RG scheme

fal
rrrrrrrrrrrrrrPJorrrrrrrrrrrrrrl

-3 -2 -1 0 1 2 3

Figure 3. The function—~.(¢)(x)x?, with = 1, plotted against at different

N

K=w-q

2. Renormalization Group scheme

Returning to the KAM theorein 13, we were left with the problem of finding
a solution to Eq.[(7]6). We can formally write the latter in the form

X =GW(X,90), (7.18)
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-
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-
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n
r—FeJ rr rr 1 rr r i1 rr r rr rr rr 11 117711

2 4 6 8 10

Figure 4. The function—~:(q), withn = % plotted againsk = w - ¢ at differentt.

where we defined? = D=2 andW = — 9V (6 + X (#)). In order to solve
Eq. (7.18) we use the cutoff introduced in secfipn 1 and for eaehR we
split the operato€ in two parts

G=G,+T. (7.19)



72 7. Introduction and continuous RG scheme

If forall —oo < s <t € R we can find map$V; that verify the fixed point
equation

WY, 0) = W(Y + T gWi(Y),0),  with  lim W(Y,0) = W(Y,0),

(7.20)
then by writing
Zi(Y,0) =T Wy(Y,0), (7.21)
we see that taking the limit for — —oc in (7.20),7,(Y") satisfies

so, if we splitX (0) = Y (0) + Z,(Y,0), we have

X(0) = GW(X,0)

= Y(0)+ Z(Y,0) = GW(Y + Z,(Y),0) + T, W (Y + Z,(Y), 0)
= Y(0) = G (Y + T, W,(Y),0)
= Y(0) = G,W,(Y, 0), (7.23)

henceX (0) = Y (0) + Z,(Y,0) = F,(Y) is a solution of Eq. [(7.18) if and
only if Y(0) = G,W,(Y,0). Note also the cumulative formulas that follow
easily by taking the limit fox — —oo in (7.20)

Wi(Y) = W(Y + T Wi(Y)) (7.24)

The main idea is the following: provided that the map$ in ([7.20) (or equiv-
alently the maps irj (7.22)) exist and are analytic fot &l somet-dependent
ball, if W,(Y,6) == 0 sufficiently fast, then the sequence

X,(0) = Z,(0,6). (7.25)

has a limit, andim, .., X;(#) = X (#) will be a solution of [(7.18). At an
intuitive level, this happens because the operatdi’; approaches to a linear
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operator whert tends to infinity, s = 0 will satisfy (7.23) fort — co. In
a formal (and straightforward) way:

Xe(0) = Z:(0,0)
=T, W(Z,(0),0)
- F<tW(Xt7 9)7 (726)

and taking the limit fort — oo we get

X(0) = GoW (X, 0). (7.27)

We reduced our original problem to the existence of analytic maps veri-

fying (7.20), whose decay, farincreasing to infinity, is fast enough to make

the sequencé (7.25) (whose terms are plagued by small denominators of order

n') converge. Proving the existence of such analytic maps will be the goal of

the rest of the paper.






Chapter 8

Preliminaries

Taking the derivativé|;_; on both sides of (7.20), we get
OWi(Y,0) = DW,(Y;0)y(t)Wi(Y) (8.1)

where DWW denotes the Frechet derivative Bf with respect toY” and
Ve = —E)SF[SJ}{S:t like in (7.12).

It will turn out to be useful to introduce the functiongl(Y"):

S/(Y) = —%<Ztm, T2 Z0(Y)) gy + /\/TV(Q LY (0) + Z(Y.0))d0
(8.2)

in order to notice thatV; is its derivative in the following sense:
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DS(Y)X = — /T T W,(Y, 6) DW,(Y, 0) X (6)d0+
A /T 900+ Y (60) + Z,(Y,0))(1 + T -.DWi(Y, 0)) X (0)d6
- / T Wi(Y.0) - DW,(Y, 0)X (6)d0+
/ WY + Z,(Y),0)(1 + T, DW,(Y, 0)) X (6)

/Wt (Y,0)X (8.3)

SoW,(Y, ) is the integral kernel oD.S;(Y).
In terms ofS Eqg. (8.1) reads

0.DS(Y;0) = D*S(Y)(7(t) DSH(Y))(0), (8.4)

and writing it in terms of the kernels

aSt(Y) _/ aQSt(Y) YA/ 8St(Y) ! 10l
)~ Jowoow @0V (@) N gy @Y

)
. 1 0 8St(Y> YA/ aSt<Y) ! gl
_ 56Y—@/’H‘N><TN or 0 Gy (69)

where
7(0,0") = Z% -0, (8.6)

we can rewrite[(8]1) as

71 aSt( ) Y 8St(Y) 1 100
atSt(Y)_ﬁ/Tww ) S e

8,5.Y) = L DS,V 1()DS(Y). (8.7)

Now it is a matter of taste to solve eithér (8.1)[or [8.7); our choice anyway is
to tackle EQ[(8.1) keeping in mind (8.3) when needed.
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1. Fourier Spaces

We shall work with Fourier transforms, denoting by lower case letter the
Fourier transform of functions &f, which will be denoted by capital letters:

Aﬂﬁzka%@,WM@x@zcmNAwa@M.@&

qezZN

We write the formal Taylor expansion af;(y; q)

o0

wiy; ) = DY wi (g a) W), y(). (8.9)

n=0 gq

in the Fourier variables the equatiops (7.24) (8.1) become:

wy(y; q) = w(y + T'cqwi(y); q) (8.10)

Owi(y;q) =Y Dwily; ¢, ¢ )n(d )wily; ¢) (8.11)

q

Remark 15. We shall adopt the following convention:

—_—

dw(y;q)  OW(Y;0)

Dw(y;q,q') = () = V@) aw (8.12)
or equivalently in terms of
L _0sly) _ 95(Y)

We can recover some standard but useful bounds from the analyticity of
V. The Taylor expansion with respect¥oc TV is

8V@+Y}=§32%¥QQL”JQ, (8.14)
n=0 ’

We shall use the Cauchy estimates in the following way:

Lemma 16. There exisp > 0, @ > 0 andb < oo such thatv,,(q) satisfy
the bound

> Mo (@l ees,...cnen < bulp™. (8.15)

qeZN
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Proof. From the Cauchy estimates for analytic functions we get
Vir1(@)lle < Cnlp™ 3C € R, p >0; (8.16)
using Cauchy theorem, for ajlin the analyticity strip oft”

|Un+1<Q)(Y17 cee 7Yn)|

1 o
= |— / Vi1 (0 +in)(Ye, ... Y,) e+ dg
27T TN

1

< — Vi1 (0 + i) (Y, ... Y,)| e 9"df
27 TN
< Cnlp™Yi| ... |Yale @ (8.17)
hence
[vn+1(@)] £(ca,...cacay < Cnlp™ e, (8.18)

Takingn = ]n|%| we get for0 < a < |n|

Z ™ |vpa ( Dllzen,...cvie < bnlp™ (8.19)

qezN

Taking the Fourier transform df (8./14) we obtain
G 1
=D > Z a;)( (), (8.20)
n=0 q ’

whereq = (q1,...,qn)-
Recalling that from the boundary condition[in (7.20) we hawe, . . W; =
W where

W(Y;60) = AOV)(0+Y(0)), (8.21)
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and taking the Fourier series on both sides and u§ing|(8.20), we obtain

w(y;q) = A Z > %qvn Z g)( y(an))

= ZZ—qv q—qu H(q—Z%‘) ~y(qr)
n=0 gq =1 k=1 J=1

=> > 0" g a, - 0) @), y(g): (8.22)

n=0 gq

The formula[(8.2R) implies that one can consider the ma&s an analytic
function ofy, wherey belongs to a suitable Banach Space. For the sake of
convenience we denote

="' ={y = {y(@)}eez, 9(0) €CV : [yl =) ly(a)] < o0} (8.23)

Let B(7) be the open ball of radiusin 4 centered at zero and I1&t°(B(7), h)
the Banach space of analytic functioms: B(r) — h equipped with the
supremum norm.

In order to encode the decay property of the kermgl8 inherited from
the analyticity ofl/, properties which we shall exploit later on, tetdenote
the translation bys € RY | (73Y)(0) = Y (6 — ). Onh, 75 is realized by
(T5y)(q) = eP9y(q). ltinduces a map — sz from H to itself if we set

ug(y) = Tou(T-py). (8.24)
On the kernels:™ this is given by

ugl)(ql, ) = €Ty (g ), (8.25)

and makes sense also forc CV. We have

sup [lwgl| < Z sup Z MA@ |1 5™ (qrqr, .., )T (8.26)

Hy” n=0 q1;---s Adn

Combining this with the boundl (8.119) we get
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Proposition 4. There exist, @ > 0 andD < oo, suchthatog € H>*(B(T), h)
and it extends to an analytic function @in the region|Im 3| < @ with values
in H>°(B(7), h) satisfying the bound
sup |[wg|| < DJA|. (8.27)
lyll<r
Let us finally state some standard estimates that we shall use throughout
the proof. Leth, ' be Banach spaces, and we deffi& (h; h’) as the space

of analytic functionsw : h — h’ equipped with the supremum norm. We
shall make use of the following Cauchy estimates throughout the proof:

1
sup || Dw(y)|| < sup 5||w(y)|l7 (8.28)
lyll<r—o llyll<r
,yk
sup [|gpw(y)l < 5 sup [[w(y)][- (8.29)
llyll<r'~y - Tyl

Furthermore we will also make use of the following estimatewlet H*>(B(r) C
hih/)fori=1,2,andw € H*(B(r') C ' ; h"); then, ifsupy,, <, [[wi(y) |l <
', we have

2
sup [Jwowy(y) —wows(y)|lw < = sup |lw(y)[w sup [lwi(y) — wa(y)|ln
lylln <7 "y < lylln<r

(8.30)

2. Atemporary solution

We shall construct now a solution df (8.1); the inconvenient is that for the
latter to be defined until we shall need to takg\| < \, with \, == 0. This
preliminary result will allow us, by choosing a sufficiently large indexto
start with a “shifted” initial condition defined fd\| < |Ar,|. From such a
new initial condition we shall be able to extend (uniformlyinthe solution

to allt > Tj. In the following Lemma we will only show how to construct

solutions for allt € R with || < \;; the indexT; will be chosen later on.



2. A temporary solution 81

Proposition 5. For all ¢t and for any sufficiently small > 0, |A\] < A, and
lIm 3| < & the equationg7.24) have a unique solution;, € H>(B(r'), h)
with

sup [Jw]| < DI (8.31)

yeB(rt)
whereD is as in Proposition . Moreovet; is analytic in\ and 3 and it
satisfies the recursive relatifd.2Q)

Proof. Consider the fixed point equatidn (7]24) and write itas: F(w), for
w = wyz and

Fw)(y) = wp(y + Tcrw(y)). (8.32)

Let
yeB(rt)

B = {w € H*(B(r'),h) | lwlls, = sup [uw| < DW}, (8.33)

whereD is as in Prop] 4. Choosg so thatCn=%*D), < ¢, with C' as in
Lemmd 1. It follows from the latter that fas € B, andy € B(r") C h,

1
ly + Tow(y)|| < 7'+ Cn #CIA| < 2r' < 3" (8.34)
soF(w) is defined inB(r') and, by Propositioh|4,
[F(w)lls, < DA (8.35)

HenceF : B, — B,;. Forw;,w, € B, we use[(8.30) to conclude that

[F (wi) = Fwa)lls, = sup [lws(y + Fewi(y)) — wsly + Fwa(y))]

lyl| <rt
2 —2t
< -COn DX |lwy — wyl|s,
2rt
< —Jwy — wa|s,
T
1

< §||w1 — ws|5,, (8.36)
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i.e., F is a contraction. It follows thaf (7.24) has a unique solutignin B;
satisfying the bound (8.81) which, besides, is analytig end 3. Consider
now the mapF':

f/<w>(y) = u_)ﬁ(y + F[s,t]wtﬂ<y) + F<sw<y)); (837)

againF’ is a contraction ir3; since, for||y|| < r*, we have

1
ly + Tsqwes(y) + Tesw(y)|] < 3rf < 57 (8.38)

for r sufficiently small. But from Eqs/[ (7.24) one deduces thgtandws o
(1 + Tsqwig), both inB,, are its fixed points (just insert them info (8.37)),
hence by uniqueness they have to coincide, gnd](7.20) follows. O

3. t-dependent Banach Spaces

Let us first introduce the projection

if |w - K
P(y)(q) = {y@ flo-al<n (8.39)

0 otherwise

We define now the-dependent spaces (see the footnote atjp. 31)

hoe={ul@): Jul o= Y 1Pl = Y lu(@l},  (8.40)

q€Z |w-g|<nt

hy := Ph, (8.41)
so that we have, fos < ¢, the obvious inclusions:

hi Chs ChCh_s Ch_, (8.42)

Remark 17. The space%; as subset of, will naturally “inherit” the same
t-dependent seminorms defined[in (8.40): fog A,

lll = > @)= llyl- (8.43)

lw-q|<nt
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We shall also writé| L||¢,—; := || L||z(n.n_,) fOr the norm of a linear oper-

ator L from h; to h_;.

We shall adopt the notatioB; = {y € h; : |ly|| < r'}, and define a
continuous automorphismy, : Z(h;h) — Z(h;h), for p € Z", shifting
both arguments of the kernel of an operatoin the following way:

t,A(q,4") = Alg+p,d +p). (8.44)

We shall defing; as the space of functions: B, — h_,

ulyi)) =Y > uga, - a) (@), y(an), (8.45)

n=0 q1,..., qn

such that the kerndbw,(y; ¢, ¢’), on the diagonay = ¢, depends or only
throughw - ¢, that is, fork € R, there exists a functiol(x;y) € L(hs; h—_y),
twice differentiable ik € R andy € B, such that

t,Du(y;q,q¢) = (w - p;y,q,¢) and T(k;y) = O(k?) (8.46)

Let us now writell,(x;0) as the sum of its diagonal and off-diagonal part
I1,(0; k) = 0+(k) + pt(K), Where

or(k;q,q") = L(05 K54, 4')d(q, 4)
pe(k;q,q") =11(0s K5 ¢,¢") — 0wk, q,q). (8.47)

and equipgH; with the norm

e, =2 @)+ sup (200001 s

(8.48)

+ 1775 )| 9Lpe(K) || st + sup P23t 10 DPIL(0; &) Ht;—t)
p>1 (p—1)!
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4. The Banach Spacé{

Let us fix7y > 0 once and for all, and defiri® as the space consisting of all
functionsu : (Ty, 00) — UpspHe, such thatu : ¢ — u; € H;, obeying the
following condition

w(y;0) = =i > q" y(q) wly; —q). (8.49)

‘H will be endowed with the norm

ull# = sup sup |lueglln, (8.50)
t>Tp [ImB|<ay
where
t+1 215
= — = . 8.51
W=y =Tl (8.51)

The condition[(8.49) is calleward identity which, expressing a translation
symmetry of the original problem, allows the compensations needed in the
so calledresonancegwe shall mention them later on in a slightly unusual
fashion. For the classical definition of “resonance” (€914, 13| 1P,

such compensations will overcome the small denominators problem.



Properties of w (Ward

|dentities)

1. Ward Identities

Chapter 9

Let us show now that the maps constructed in Propositidr] 5 fok| < X,

obey the Ward identity (8.49).

We notice that the scalar function
S(Y) = )\/TN v(0+Y(0))do
is invariant under translations of the type
Ts:Y(0) = Yp(0) Ys(0) =Y(0+5)+0.

This means

0

a—m‘ﬁz())\ /TN (0 + Y5(0))do = 0;

from which we get the equati¢h

TN TN

IThe summations over the repeated indeare understood

W(Y:0)do — — / DY), Y (6)"do.

(9.1)

(9.2)

(9.3)

(9.4)
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Integration by parts of the right hand side yelds the basic identity:

W(Y:0) / Yo,V (Y 6)db. (9.5)

TN TN

Let us now show that equation (P.5) holds alsolfigrconstructed fofA| <
A, in fact using[(7.24) we obtain

W,(Y;0)do = W(Y + < tWy(Y);0)df
N N

=Y+ ([<tW)*(Y))(0)0p- W (Y + < tW(Y);6)7db

= / Y0 Wi (Y5 0)%d6 + / (T< tW,(Y)) 0 Wi (Y;0)%d6.  (9.6)
TN

TN
The last integral, after two integrations by parts, turns out to be equal to its op-

posite, hence it vanishes, yieldirig (9.5) 1d%. In the Fourier representation
itis

wi(y;0) = =i > q" y(q) wi(y; —q). 9.7)

To derive a first consequence of the Ward idenfity](9.7), which will be
used later, we evaluate it at= 0 to get the following

Lemma 18. The mapsy, constructed in Propositign 5 fdn| < \; satisfy
w;(0;0) =0 (9.8)
It is also very important to notice the following:
Lemma 19. The derivative, Dw,3(y) depends op only throughw - p.

Proof. First of all, we have

t,Dw(y; q,q") = Dw(y; q,q'), (9.9)
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which follows easily writing the explicit expansion férw(y) from (8.22):

Di(y; q,¢)" = Z vig—4q qu
m=0
n+2 n+2

X (q— q—ZqJ - q—ZqJﬁHq q— Z ‘y(q),  (9.10)

this is a functlon of; — ¢’ only, hence[(g]Q) follows. To finish the proof it is
enough to differentiaté (8.1L0) to get

)\,lm+2

tyDwis(y) =1, ([1 — Diwg(y )T ™ Dwg(yy))
= [1 — Dg(y,)Toilw - p]) " Dig(y,) (9.11)

wherey; = y + I'cywis(y), and [9.111) depends gnonly throughw - p as
claimed. O

Lemma 20. According to the discussion above, let us write,|fdr< )\, the
kernels

m(w - pyy;q,q) = t,Dws(y;q,4), (9.12)

and denote their smooth interpolations(x;y; q,¢') for k € R. Fori =
0,1,2, y € B(rT) andx| < n' we obtain

177, (53 9) | cnsny < A2 (9.13)
furthermore,
71, (K395 0,0)ly=0 = O(K?) (9.14)

The proof of Lemm& 20 is straightforward and follows exadfydection
5. Taking|A| < A, small enough, we have

Corollary 21. In view of Propositiof b, for\| < Ay, and|Imj| < &, we
havewr,s € Hr,, furthermoref|wr, (|3, < €, wheres — 0 wheni — 0






Chapter 10

The integral operator ¢

In order to solve equatiof (8.11) we define the operétoru — &(u) on'H
such that fort > Tj, ®(u) : t — ®(u),; € H, in the following way:

t

D(u)ip(y) = wry (y) + . Du(y)vru-(y)dr. (10.1)

If ® has a fixed pointu, the latter will solve[(7.20) for alt > Tp; in order

to show that such fixed point exist, we shall prove thats a contraction in

H. We shall divide the proof in several lemmata. The next remark is also
important:

Remark 22. Since the zero function belongs to our ball, we can always as-
sume that: is such that

Duy(y;9,q') = Dui(y; =4, —q), (10.2)
as® preserves such property. The latter claim is easy to check: first of all
Dw(y;q,q') = Dw(y; —q', —q), (10.3)

sincew(q) = azs((f’;); by differentiating Eq. [(8.10) it is easily seen that also
Dwry(y;4,q') = Dwr,(y; —¢', —q); finally using Eq. [(ZI0]1) the claim is

proven.
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10. The integral operator ®

1. ® preserves the properties of the the functions in{

We shall show tha® preserves the propertiés (8.49) and (B.46).

Lemma 23. Letu € H; then, for all ¢t > T;, (u); obeys the Ward identity

O(u)i(y;0) = =i > q" y(q)"®(u)i(y; —q)*. (10.4)

Furthermore, fork € R, there exist functionsl}(x;y) € L(hy; h_y), twice

differentiable ink € R andy € By, such that

tp

that is

D®(u)i(y;¢,q) =M (w-p;y,q,¢") and TI;(k;4;0,0)],=0 = O(x?),
(10.5)
IT3(%; 93 0, 0) =g = 0, (10.6)
y:
Ol (5 y; 0, 0)|s=0 = 0. (10.7)
"=

Proof. Letu € H. Differentiating [8.49) with respect tg(¢')° we get

Duy(y;0,¢')"° = —iq"uy(y; —¢) —@Zq y(q)* Dus(y; —q;¢)™, (10.8)

and we can us¢ (10.1) to get

By (1) (4:0)7 = wrys(y:0)7 / S D50, Y572 (¢ s Yol

l

t
—i Y q"y(@) wrs(y; —q)* — /T > g sy =4 e (@) urs(y; )
q 0

q/

-~

=0

— @Zq (@) Dui(y: —a: ) (a Yurp(y: ¢')dr

—i Y q"y(g)” <wT0,H v;q)" / ZDut v =4 ¢) (s (y; q’)5d7>
—i > qy(q)*(w)is(y; —q)%, (10.9)
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which is [8.49) for®(u), and it proves the first part of the claim.
Let us now provel (10]5):

t
t,D®(uw)i(y; ¢, ¢ ) =t,Dwr, (y; ¢, ¢ )+ E tyD*ur (y; 4,4, 4" )v-(q"u-(y; ¢")
TO 1"
q

+Y " Dur(y;q + p,q")7-(¢") Du-(y: ¢", ¢ + p)dr
q

t
= g (w - p; q,q’)+/ > DI(w-p;yiq.q, " )v(q"Yu-(y; q")
TO q//

+ ) T (w - psy; g, ¢ )velw - Pl (@) (w - pry; ¢ )dr

q//

=Ij(w p;yiq,q). (10.10)

We interpolate[(10.10), defining

t
(x93 4,4) EWTO(H;y;q,q’H/ > DL (k;y;0.4, 4" )v-(a" Yu-(y; ¢")

Tt
0 q//

+ Y e(k5y50,0") v 6 () (k593" ¢ )dr - (10.11)

q//

which is smooth irk and yields[(10.5).
Differentiating [10.9) w.r.ty and evaluating it ay = 0 we get

D®(u),(0;0,¢')° = —ig"®(u),(0; —¢')’, (10.12)
and settingy/ = 0 we obtain
D& (u)i(y; 0, 0)ly=o = TT;(%; 93 0, 0) =g = 0, (10.13)
y:

that is, [10.p).
Next, using[(10.11), we have

t

OIT) (55 3 0,0) = D, (15353 0,0)+ [ Y DIy (15; 93 0,0, ¢) - ()~ (5 q)
To q

+ 0 > (w5930, 0) v [6] ()1 (3 3 4, 0).

q
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When evaluating this at = 0, y = 0 the first term vanishes because of lemma
. The second term is zero as well, sie8,(x; y; 0, 0, ¢) is differentiable

at zero and even im for all ¢ € Z". The third term vanishes as the ex-
pression inside the parentheses is once again differentiable at zero and even
in ; to check the latter claim it is enough to use two fadi$x, v, q,q') =
II(—k,y,—q', —q) (see the discussion in RemarK 22 and the definifion8.46))
and~[k](q) = v]—«|(—q), so that we get

> (55930, 0) v K] ()T (k5 5., 0)
= Z I (= k5 95 =, 0) 7 (K] ()T (=393 0, —q)
= ZH —r59; 0, 4)7- K] (@)TL (= #; 93 ¢, 0) (10.14)
showing that[(10.14) is even in Thus we have obtained
0.I1,(k; 50, 0>|Z§8 =0, (10.15)

which proves[(10]7).

2. ® preserves the balls inH

In view of the results obtained in Lemrpal 23, we prove the following result

Proposition 6. Let 5 be the ball inH of radiuse (wheree is as in Corollary
[21)), then® preserved3, thatis: ® : B — B

Proof. Letu € B; we already know from Lemna 3 that, for> Tj, ®(u);
satisfies[(10J4) and (10.6). We are left to show thétf;; < . We shall
estimate the different terms in (8]50) separately, sorting them in an increasing
order of difficulty.
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2.1. Estimate of high orders. We shall start with the high order terms of the
norm (8.50), using the fact thate B implies for|x| < n* and|Im 3| < o,

r  |ugg(0)]| ¢ < e (10.16)
02 Mg (k; 0)]| ¢ < & (10.17)
'Y
sup - Ao 10D L (O R)llee (10.18)
p>1 ( — 1).

Keeping in mind Corollary 21, the relatiobu,(y) = I1,(0;y) and writing
DL, (0;y) = u,(y), forp > 1,4 =0,1,2 andr < n* we estimaté|
10 DPTI (55 0) |5 < 105 DP 7y (153 0)| -

t P
+/ Z( >||3ZDJ“H (153 0) ||+ ||y~ [[[| DP =7~ L (05 0) || - dm

To

YD (") o D 0l 102 el D2 (500
eN* To j=o0
la|=
p—2 p t
< (|0, DP g, (153 0) | -7, + (p — 1)1 €2 %/,ﬂ
| o (K3 0) || =1, + ( ) ;@f])(payq) K
¢ 3—i t 3—i
+ (p - 1)‘62/ prf(pr)TdT + (p _ 1)[52/ prf(prfl)Tan'rdT
To To
+ —(p—-1)le - ‘/7“_ T Ty(R2me)T g,
el = (=) Jz,
|| =1
il St sa
D
aen? (o To
|| =1

IThe subindexg does not play any role here, hence it is understood, and fer1 the sumzp,0 is to be

considered zero.



94 10. The integral operator ®

t X t s
+(p— 1)!522p/ PP DT 2T g (1)l / pro =TT dr
To To

! t _i 34a
+ Y - / e e

To

t
i!
+ E a(pfl)!éj/ r= @2y

(%) ¢ —i
< -4 (p- 1)!{—:221p/ i T
To

—(p=3t _ = (0-3NTo

e r
< - +(p—1)e21 :
T TR
< é(p — 1)ler= =250, (10.19)
1 o 1
where we obtalned (*) by simply nOtICIHEJ 0 T S 2?21 i =
land} i~ (**) we usedup;_q 1 5 Y acne Lp-1=

|a|=i

9.

2.2. Estimate of®(u),(0) (using the diophantine condition). The quantity

whose norm we want to estimate is
t

D (u)is(0) = wrp(0) + | Durg(0)y7urs(0)dr, (10.20)

To

Let 3 € CV such thaflmg| < a; , and shiftit tog’ = 5 — Z’(algloft)q, -
that|Img’| < a. Using Corollary 211, we get, fay # 0,

_ rTo
lwr5(0; q)|e @™ < Nwgy 5 (0) || -7y < ¢ (10.21)
which implies, using Definitiort@l@,
rTo t—Tq -
> om0l < e Y e m (10.22)
|w-q|<n* |w-g|<n*

q#0
The diophantine condition forcég to be large whefw-¢| is small, i.e.,[(1.4)
yields|w - q| < ' = |¢| > Cy~+, hence we can extract a super-exponential

Note thatja, — | < & 57 anda = ag,.
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factor from the sum:

(L Cemy
Z lwr5(0; )| < 766 w2z E e~ a2 oldl
-gl< t :
‘wquéOn lq|>Cn
1 2t
=5 (10.23)

As for the second term irf (10.R0), we set, for all< ¢, 5, = [ —

i(aflq_,lc”)q’, in order to getimg,| < a, and—(Img,.—Impg)-¢' = (a, —ay)|¢|,

so, carrying out all the details, we obtain pt£ 0

plar—anldl

> Durg(0;.4,¢) 7+ (¢ )urp(05¢')

q

= > Durs(y: 4, ¢)7- (g )urg (05 ¢') | e~ (M- —mAa

q

=) Durp(0;¢, )72 (q Yurp(0; ¢ )™M = (M- mimB) o =(mi-—imB) q
q/

<> [Durp (05, ¢) e ™MD () [ur (0; ¢/ e MmO
q/

= [Durg (0:,0) |1+ (q)|trg, (05 )|

q

< 1Dz, (0)lrs—r 77 lltrp, (O) | -
< éerQT. (10.24)

From the latter estimate, using again the diophantine condition @s in {(10.23)
and|Img| < a4, we can squeeze out the bound we need: the conditioh (1.4)
yields |w - g| < 2 = |¢| > Cn~+ and keeping this in mind we use (10.24)
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to get

> Durg(q.q)v-(q Yurs(q)dr

t To q/

2.

|w-q|<2n
q#0

1 t . t=T %t
< 65 e 2D () r2Tdr

To

1 t __t=T ot
< —5/ e 202 Y 2Ty

To
t 7_7t t T ﬁ_ n r
<1 ge 2(041)2/ e <2(t“)2 2t/ )> dr
6 0
]_ 7t0n77t 1 T eﬁ
= —ge 20t+1)? _
2In(1/r) — t+1)
L
686
1
S5 (10.25)
6
whereTy is chosen large enough, so that
C’n_TO
2/ = o e 10.26
n( /7’) 2(T0—|—1)2 > ( )
We have hence proved
1
Z / ZUT,B (0; ¢)v-(q) Dur5(0; —q, ¢ )dr| < 657‘ (10.27)
|w-q|<nt ¥ 1O

Finally we notice that due to the Ward identity (110.9), it follows thaf(w)(0;0) =
0 for all t > Tj,. Hence combinind (10.23) and (10/27) we get

1
sup sup [ @(u)(0)]|; < - (10.28)

t>T [Im ] <ay 3
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2.3. Estimate of the linear termII’ (using diophantine and Ward). The
bound onII’ is the most complicated to achieve and its proof is where the
consequences of the Ward identities are needed. The actual difficult part is in
estimating the norm of’ i.e., the diagonal part dii’. In the KAM literature
it corresponds to what in the tree graphs language is caltesamance i.e.,
for the acquainted reader, being a multiple of, , corresponds to a subtree
carrying the same incoming and outgoing "momentum” (see for inst&hce [
14,[13[13).

We shall write, as on f. 83[}(x;0) = o;(k) + p,(x). When needed we
shall use the notation

oi(R) = 01(R; 0) = ous(k, q), (10.29)

wherek = k + w - ¢, SO that we can leave thedependence in understood.

Let us first see how one succeds in extracting the right bound fafsing

(10.11) we write
t

013 ) = 713 (3 5 0, )l + / 0 (53 Q)1 [ (@) (5 Q) + Rl )

(10.30)
where we denoted the reRt (x; q) as
t
Ri(kiq) = / > DI (55 ¢;¢;¢) 7+ (¢ )u- (05 ¢)
TO q/
+ ) pe(5 0, ) 1(d)pr (5, )T (10.31)
q/

As we shall see, estimatirg,(x; ¢) will not be difficult. What will re-
quire a special treatment instead, are the first two ternjs in|(7.23): intuitively,
in fact, the solution of an equation of the type

5(t) = o(t)? (10.32)
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would blow up in finite time. Furthermore, to extract the right bound for

t

T, (%50 ¢, ) + /T do-(k; )1:[K](q)o- (k; @) dr (10.33)
)
we cannot even use the trick of shrinking the analyticity strip by shifting
since as; = ¢/, a factore=“"la=¢| = 1 will not provide any benefit. Albeit the
situation might look hopeless, we can point out a crucial observation: with
fixed x andq in a suitablet-dependent way, the integrand functipn (10.33) is
non-zero only in a small interval around Let us explain why: the function
v-[k](¢) can be written as. [£](0), wherek = k +w - g, andy, k] = 7, [F](0)

is supported in the interval’ < |i| < n™ L. If we fix || < n' and|w-q| < 7,
then|z| < 27, so, forallr < t—1,we haven’ <™ = |k| <™ = . [k] =

0. We hence proved that the integralfin (10.33) can be taken over the interval
(t — 1,t). However, the latter remark is not enough, as we still get large
numbers for smalk’s, due to the large size af[%]; here the consequences of
the Ward identities come into play: sinee(x) = O(x?), the compensation

we need follows from Lemmia 14, where we showed #7dt 9., k] stays
uniformly bounded! (see also Figl 3 afp] 70)

Let us now fill in the details: in order to estimafe (10.33), we recall that
sinceu € H we haver, (%) = O(#?), with the trivial bounds

0y (R)] = /O ' < /0 " 330,5(/{)6%) dr’

1004(7)| = / o, (7)dF
0

<|&* sup [0fo(R)| < eli|”
0<|R|<|R|

<Ifl swp |2o(R) <celfl,  (10.34)

0<|R|<[R|

In view of (I0.3%4) (that holds for’ as well thanks to Lemmia P3), we
shall need to get an estimate o’ only, as the bounds fdt.o’ ando’ will
easily follow. Following the discussion at pgge 97 and uding [9.13) we have,
for & < nt,
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0201 (R) — O R()|

t
< 6,371*[0(/%; y; 0, 0)|y:0 + |650T(’%)|2'77['%] + 2|UT<’%)||6507(’%)|7T[’%]
To

(#)]10x0-(R)|0a= (| + |o-(7)[*| 05 = [F]ldr

_l’_
)

R)
3

< 95—6 + &2 /t tl Ry [RldT + /t tl 720K dT + /t tl /%48377[;%]617)
< 96—6 + 2520
< 46—8 (10.35)
where we used the important bound of Lenjmp 14:
|2 Ouk]| < C, (10.36)

for all x andt. The estimate of the rest i (7]23) is conceptually easier but
more tedious:

Lemma 24. The operatorR,(«) defined in(10.31)obeys the bound

9
sup [|0?R(k)|ns < —. (10.37)
|H|§77t 48
Proof. Writing as usuak = k + w - ¢, we shall estimate the norm of the
second derivative w.r.t of the linear operator with kernel

Relri0) = Ri(i) = |3 Do (o e 03

ql

+ Y pe(#0,¢)7:[R)(¢)p-(R; , 0)dr.  (10.38)

q'>0
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Taking the second derivative w.r4.of the first term we get

sup
|R|<2nt

t
< e? sup / 7’5/4T7]_27d7'
|&|<2nt JTo

/t > 92D (#0,q)7: (¢ )u-(0; )

To q/

1
< — .
< 56 (10.39)

for r < n* ande < 1.
We can take the second derivative w.x.f the second term i (10.38):

oz /Tt > pe(#:0,¢)v:[E)(¢)p- (7 ¢, 0)dr

sup
|’~$|§27]t q
t
< sup / > 120007 (i 0, ¢)0u2 (7] () p- (73 ¢, 0)
|&|<2nt JTo q

20,p-(R; 0,4 )v-[R](¢")0up- (R ¢, 0)+2p-(; 0, ¢')0u- [R](¢') Onp-(R; 4, 0)
p+ (730,47 [7](¢)D2p-(R; ¢, 0) + p- (750, ¢) 027+ [R] (¢ ) pr (: ¢, 0)

+ 02p- (0,4 )7-[R](q") pr (R; ¢, 0) |dT

t
S C€2 <T,%T,r]737_i_,r%TanT+7,%7'7]737_'_7,%77]727_._7,77]7474_7,%77]727) dT
To

§4Ce€2/ n"dr
T

0

< — 10.40
< 56° ( )

for r < n° ande < 1. Putting toghethef (10.89) ar[d (10.40) gives[us (70.37)

and finishes the proof of the lemma. OJ
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Ford,o’ ando’ we simply use Lemmia 23, more exactty= O(x?), and
wegetfork =k +w-q

sup [|0koy (k5 q)||—

[r]<nt
= sup [0,01(R)| < sup [Rl|020"(R)| < ' (10.41)
|&|<2nt r<2nt

and

sup 0207 (k; q)]|—¢

|| <nt
= sup o)) < sup |&#]? |02 (7)| < %nw*l). (10.42)
|&|<2nt r<2nt

The estimates (10.85), (10]37), (10.41) dnd (70.42) establigk|fet n*

. (10.43)

| M

sup 20290 (k) s <
i=0,1,2

We can now prove a bound fof. The kernel of the operator,(x) for
q # ¢ reads

t
pis(R: ¢, 0) = 70, (K39, ¢, 4 ) y=o +/ > Dllg(kiq,q',q")-(q")urp(0; ¢")

qu

+ ) Mep(r; 0.0, q")veslK) (¢ ep (53 0: ¢", ¢ )dr. (10.44)

q//

11

We shall estimate’ of (10.44) term by term, foi = 0,1,2 . In order to
obtain a bound for the first term we simply u§e (9.13) and shrink again the
strip of analyticity by shiftings: we fix 3 € C" such thaflmg| < «; and

then we sety’ = 3 — i(T‘;_‘;“‘t) (¢ —¢'), so thatlm3'| < ayg, and fori = 0,1, 2
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we get

O mz5 (k3 0; 4, ¢') e~ = [, 7 (k3 0; g, ) | e~ (MmO am )

= ’afcﬂ-Toﬂ’(H; O; q, q/)‘

IN

10577, (K3 0) || 2ehin)
19

<_7
— 18

(10.45)

where we used (21). Now we can use the diophantine condition gs in(10.23)
to get|q — ¢/| > b+, thus it follows that

1PO.r,5(; 0) Pl = sup > 0L (53050, ¢)]
|W'Q‘S77 Iw-q’lént
a#q’

E _ _ )
J— Sup e (Olo at)lq Q‘

18 |w-gl,|w-q'|<nt
q#q
19

18

e
< — t/2_ .

_t
< = (@o—a)bn™v

For the second term operator jn (10.44) wefix CV such thafimg| <

oy and then we set, = 8 — 9= (¢ — ¢), so thatlmg,| < a, and for

1 =0,1,2andq # ¢ we get

> 0D p(k; 0, ¢, q") 72 (q"urp(0; ¢") | om0l

q//

< |0iDI g (r19,4 . q") v (q")ttrp, (03 ¢")]

q//

< [[u(0) |+ lIn=Il sup [0, DTL5, (k5 0.4, ¢")]
q
<en ¥ sup |0, D1ls, (k3 4,4, q")]
q//

< er/? sup ‘8,1DHT[37(/-@; q,q, q”)‘ . (10.47)
q//
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This implies

S 0LDT (4, 4" )3 (" Yurs (0:4")

q

< er®*Tsup |9, DILs, (r:q,4, ") "ol (10.48)
q//

so, in the same fashion as [n (10.27), we concludel|lfof| < «,

t

sup < 1587“? (10.49)

. t
I“-’ Q|§77 \w~q’\§'r7t

t
/ ZB;DHT['}(K:;(Lq/aq/,)’yv'(q”)uv'ﬁ(o;q//)
To q

In fact the constraintgo - ¢ , |w - ¢'| < ' imply |w - (¢ — ¢)| < 2", so the
diophantine conditior{ (1}4) forces the bougd- ¢'| > Cn~*/*, and we use
(10.48) to conclude

sup
¢ lw-g'|<nt

t
/ > DM 4(kiq.q q") v (q")ur5(0; q")

TO (1”

lw-g|<n

t
S/ € Z sup sup }a’iDHTﬁ(/ﬁq,q/,q”)‘T3/2767%C"_t/yd7-

To  |yug|<nt |92 |1S0" g |<n*

t
To

< igr(3/2+ iJil )t
18

1 ¢

< —gritt .
< g (10.50)

where the estimate of the integral is obtained in the same way [as in|(10.25).

Finally we estimate the third term ip (10]44): for< ¢ we shift3 to ;3.
in the usual way, and in view of the boungs (10.36) we obtain|4pK 7',
q # ¢ andi = 0,

D (k30,47 [K)(a") Ly p(w3 05 ¢”, ') | el e0la=e
q//

<Y Mg (3050, ¢") s, (550", ¢), (10.51)

|w-q" |[<nT
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which implies

sup
<
-l <0 1. g7 <ot

/ D Top(s:054,4") 72 (¢ e p (k5 054", ¢ )
To

q"’

S/ N osup Y [T, (53050, ¢") g, (50597, ¢) | e (Ol lar
To |w~‘Z|§77t Iw_q/|§n1,

lw-q" |<n™
t ’
<5/ 2T sup  e—(er—anla=d
To lg—q'|>Cn=7/v
t
t—T —f/u
<c [ e
To
€t
< —rt. (10.52)

18

Furthermore we get

0 (St b))
qll

(ar—at)lg—4'|

<> (n‘ZTé’RHT[ﬁ(/ﬂ; 0, ¢"Mes(r;q", ) + 0" gk ¢, ¢ )Mk 4", )

|w-q" |[<n7
+ 1 (k5 q,¢")0uIlg(k: ¢, q’)) (10.53)
which, as in[(10.52), implies

/T (Z -s(k: 4. q (C]”)Hfﬂ(/ﬁq//>q/)>‘

(10.54)

sup
. t
o al <" 1. gr| <t
€
—r
8

i

<

—_

In the same way one derives the estimate for the second derivative<w.r.t.

/ 02 (Z I, 5(k; 0, (q”)HTg(/-e;q”,q')>‘
To

(10.55)

sup
. t
o al<n” 1o, qr <

wm

<

&Im
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Combining [10.46)[(10.49), (10.62)), (10/54) and (1D.55) we get the bound

Ol - (10.56)

1
sup r 2+
i=0,1,2

2.4. Conclusion. Summarizing the results obtained so far, we have that if
u € B then®(u) € H; furthermore, combining[ (10.2§),(10]48),(10.56)
and[10.1P), we get

[ @ ()| <e. (10.57)

Hence under the action df the ball of radius: in H is preserved, which is
what we had to prove.

O

3. @ is a contraction in B

We are left with showing tha® is a contraction or3. We shall prove the
following

Proposition 7. There exist® < p < 1 such that, for alk, v € B, we have

[@(u) = P(0) |3 < pllu = vl (10.58)

Proof. Let us first show that for alk, v € B we have

s ) (0) )0 < vl (1059)
ma|<a
t>To
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We get (see estimate (10]24) for the definitiorspf

19 (w)(0) = @ (w)p(0)[| -

—| / Dt 5(0),1175(0) = Dy (0), 0 5(0)dr |

< X / Z|Durﬁ0q, ) e (@) (urp, —vrp,)(0:¢) e (@ ldlar

Iw q|<n?

+ Z / Z|UTBO )= (@)] [(Durg, — Dvrg, )(0; ¢, q)| e~ (@ —elldl gr

|w-q|<nt

t
< / (I(rp, = v78.)O)|—r + 0717 [[(Durs, — Dv,p)(0)[|,) sup e~ (or=0ldldr
To |w-gq|<n?

<e sup (r *"us(0) — vig, (0)]| = + 12" [|(Dugs — Dvyg, )(0)]|—¢) -
[ImB|<ay
t>To

t
e —t/v
/ ,,,,27’6 (ar—ay)Cn dr
To

*)
< 5T2tHU_UH'Hv (1060)

where the steps leading to the estimate (*) have been carried gut in](10.25).
Trivially (fL0.60Q) implies

s [@u)a(0) ~ (O) S clu— vl (106D
mpo| <ot
t>To

Next we estimate the other term of the norm by setting

D'I"(w - p) = t,D"" () (y)ly=0 and D'II"(w - p) :=t,D"" ®(v)(y)]y~o
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and we interpolate in the usual fashion to defliigx) andI1"(x) on the
whole real line. We have

(Htuﬁ)/(’%) - (Hgﬁ),(’i)

t
= [ DI (07503(0) = DIy )50 5(0)d

To

[ (0 R ) = I35 03 I )

t
— / > DI (k1 ¢, ¢ q") 7+ (q") (urp(05 ") = v75(05¢")) dr
T

q//

0
t

i / > (DIs(kia,d',d") = DILg(kia,d', ")) 72 (a")vrs (05 ¢")dr
To

q//

+ / S (0 + 112, (53 0,6") 1= [s)(¢”) (02 — T2) (53 ", ) .

q//
(10.62)
From the latter we can easily write the expression for the norm of its diag-
onal part||(af3)'(k) — (o75)' (x)||-+, and of its off-diagonal part(pi;) (x) —
(pis) ()|l Let us consider the diagonal (and the only “significant”) part. If
we can prove that for > Tj

9
sup [10;(05)' (5 ) — Ox(015) (3 q) |- < lle = vlx (10.63)

|| <n?
then using(o};)'(k;0) = O(k?) = (073)'(k;0), we get, for|x| < 7', t > Tp
and: = 0, 1, 2 (see the analogous discussion at Pag. 98)
105.(045)' (155 0) = Oy (0t5) (53 @) s = |(0r(0t) = On(o5) ) (K + w - 4: 0)]
w-q _T]t

= 0w |5 4w |02 (o) (K 9) — 2(075) (5 )| < en® [l — o]l
w-ql,|k[<n

(10.64)

In order to show thaf (10.63) holds, we shall only sketch a part of the proof and
leave the rest to the interested (or skeptical) reader, since it involves methods
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we already used extensively. Namely we shall only consider the diagonal part
of the third term in[(10.62), by writing it as:

/T (k3 q,q") + 5 (k5 4, 4| V= [K1(¢") (T5(k3 ¢ q) — T2 s(k5¢", q)) dr
0 N;éq

+ /T (0¥5(k;q) + 025(r39)) v [K](0) (075(K; @) — 075(r5 q)) dr. (10.65)

As an example on how to proceed (and to please the skeptical reader men-
tioned above), we shall estimate the norm of the second derivative svaft.

the last term in[(10.65), which is (as we have already pointed out earlier) the
only “interesting” part:

s 102 [ (02(0:0) + 0240050) 2 K1) (033(x:0) — o2p(s50)) dr
- s |2t || @)+ 725(60) 2[R (725(8) = o2()) dr| - (10.66)

wherei = r +w - q, 024(k) = 074(%; 0) and,[k] = . [](0). Now we use
the same observations as made on page 98, and estimate

t
sup | [ 3T (0lokR) + 0iots () e[ (9l () — 0lrts() dr
|w-ql,|r|<n* To i+0+j=2
< Z sup sup 77<j72)t |8£J$5(/%) - 8%0:5(/%” )

i o ImB|<oy |w-gl,[k]<n?
i+l+75=2 t>Th

t
sup / 2D (804 () + 8.0% 4 (7)) Oy [Rldr
t—1

lw-ql,|r|<n?

t
<fu-vlle 3 sup / WO 3R (R) + 0Foy (R) K0 Rlar
t

i l4j=2 |w-ql,|k]<nt

<||uvaH > Cs/ dr

i+l45=2
< Cel|lu —v|n (10.67)
where to get (*) we used Lemma]|14.

By using the same methods we used several times throughout the paper
(shifting of 3, diophantine condition etc.), in the same fashion as in section 2
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we can show that fot., v € B we have

—5 ) u v
o pp () = P} ()|t < ellu = vlln (10.68)
0L DPII*(0; k) — 0L DPII?(0; .
supr(p_lii)tH K ( 7’%) K ( 7H)Ht, t < EHU_UHH- (1069)
|
p=1 (p—1)!

Putting together[ (10.61)[ (10)67], (10.68) and (1D.69), and takisgall

enough we get

[@(u) = P(0)ll3 < pllu — vl (10.70)

foru, v € Band0 < |u(e)| < 1. This concludes the proof of the theorem.
0

We can now put together all the results and obtain the corollary:
Corollary 25. The operator® defined in(10.1)has a fixed point itB.

Proof. Trivial: use Propositions|6 arid 7, and the Banach Fixed Point Theo-
rem. O






Chapter 11

Proof of the KAM theorem

Let us return to[(7.35), where we defined the sequence

we will show that it converges to a real analytic function with zero average
for t — oo, such that the limit will solve Eq[ (7.18):

X =GW(X,0). (11.2)
In the Fourier space we get

2:(q) = Tee(q)we (0; q); (11.3)
to show that this converges infor t — oo we take its time derivative and
show that it decays to zero:

Orvip = Ywip(0) + T <1 0pwyp(0)

= Yws(0) 4+ L' <y Dwyz(0)ywq5(0), (11.4)
and writing this in terms of’s we have

0p(q) = 1(@)wip(059) + T<i(q) D> Dwys(0; ¢, ¢')1e(q )wis (05 ¢'),

q

(11.5)

111
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so that
|Oszislln <n2 > lwig(039)[+n7* sup Y [Dwys(0;4,4')|x
|w-g|<n?’ lwo-a’I<n" 1y g <t
/ —2t, .2t 2 —2t 2t t—00
x> fwip(q)] < epTe? 4 g2y X 0 (11.6)
lw-g’|<2n*

which proves thalix € h such that
T = x4 (11.7)
and such thaffz ||, < Ce uniformly in the strip
IImg3| < %ao. (11.8)
The latter estimate implies that, pointwise one has

|2(q)| < Cee™1/2e0ldl, (11.9)

henceX, the Fourier transform of is real analytic. Furthermorg (11.3) im-

plies
24(q)]g=0 = 0 (11.10)
and, as we have
2 = L oywi(0) = T yw(xy), (11.11)
the Ward identity[(9]8) gives
W(x4;q)|g=0 = 0; (11.12)

taking the limit fort — oo in (11.3) and[(11.71) we get

z(0) =0, x(q) = Gw(x;q)forq#0, w(x;0)=0; (11.13)

the second of these equations is the Fourier transform of|(7.18). This solution

X (0; \) is analytic for|A\| < Ao and vanishes foA = 0. Its uniqueness,
up to translations of the kindj; (see[(9.R)), follows from the fact that (7]18)
completely determines the Taylor coefficients in powers of its solutions.
This concludes the proof of Theor¢m| 13.



11. Proof of the KAM theorem 113







Bibliography

10.
11.

. V.I. Arnol'd, Proof of atheorem by A. N. Kolmogorov on the invariance of quasi-periodic

motions under small perturbations of the Hamiltoniduss. Math. Survi8 (1963),
no. 5, 9-36.

, Small denominators and problems of stability of motion in classical and ce-
lestial mechanicsRuss. Math. Suni8 (1963), no. 6, 9-36, [Corrigenda (in Russian):
Uspekhi Math. Nauk23 (1968) 216.].

_, Mathematical Methods of Classical Mechanited., Springer, 1978.

, Geometrical Methods in the Theory of Ordinary Differential Equatjons

Springer-Verlag, New York, 1987.

. J. Bricmont, K. Gawedzki, and A. KupiainekAM Theorem and Quantum Field Thepry

Mathematical Physics Preprint Archive (1999).

. L. Chierchia,Lezioni di Analisi matematica,2 ed., Arache, September 1996.

. L. Chierchia and C.Falcolini& Direct Proof of a Theorem by Kolmogorov in Hamilton-

ian SystemdVlathematical Physics Preprint Archive (1993).

. W. Ditrich and M.ReuterClassical and Quantum Dynamics

. L. H. Eliasson Absolutely convergent series expansions for quasi periodic motats

ports Department of Math., Univ. of Stockholm, Sweden (1988), 1-31.
P. Holmes F. DiacuCelestial Encounterdl ed., Princeton University Press, 1999.
J. Feldman and E. TrubowitRenormalization in classical mechanics and many body

guantum field theory1992.

115



116 Bibliography

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

G.Gallavotti, Twistless KAM tori.Comm. Math. Physl64(1994), no. 1, 145-156.

, Twistless KAM tori, quasi flat homoclinic intersections, and other cancella-

tions in the perturbation series of certain completely integrable Hamiltonian systems. A
review, Rev. Math. Phys6 (1994), no. 3, 343-411.

, Lindstedt series and Kolmogorov theorefamiltonian systems with three or

more degrees of freedom (C. Simo, ed.), NATO Science Series C: Math.Phys.Sci., vol.
533, Springer, first ed., June 1999, pp. 62-71.

G.Gentile and V.Mastropietrdflethods for the analysis of the lindstedt series for KAM
tori and renormalizability in classical mechanics. A review with some applicatiRas.
Math. Phys8 (1996), 393—-444.

H. Hofer and Eduard ZehndeSymplectic Invariants and Hamiltonian Dynamics
Birkh&auser Verlag, 1994.

A. Katok and B. Hasselblattntroduction to the modern theory of dynamical systems
Cambridge University Press, 1995.

A. N. Kolmogorov,On the conservation of conditionally periodic motions for a small
change in Hamilton’s functigrDokl. Akad. Nauk. SSSR8 (1954), 525-530, in Rus-
sian; English translation ibNP 93 (1979) 51-56.

J. Laskar,Large schale chaos and marginal stability in the solar systBnoceedings
Xllth Int. Congress of Math. Phys. (Paris 1994), Int. Press Cambridge, 1995.

J. MoserOn invariant curves of area-preserving mappings of an annWiaehr. Akad.
Wiss. Gottingen, Math-phy«l. [l (1962), no. 1, 1-20.

, Convergent series expansions for quasi-periodic motidviath. Ann. 169
(1967), 136-176.

H. Poincarél.es méthodes nouvelles de la mécanique célestel-3, Paris: Gauthier-
Villars, 1892/1893/1899.

J. PoschelUber invariante tori in differenzierbaren Hamiltonschen Systeni&onn.
Math. Schr120(1980), 1-103.

, Integrability of Hamiltonian systems on Cantor seRure Appl. Math.35
(1982), 653-695.

, A Lecture on the Classical KAM TheorgRroc. Symp. Pure Matl69 (2001),
707-732.




Bibliography 117

26. Dietmar A. SalamonThe Kolmogorov-Arnold-Moser theorerilathematical Physics
Electronic Journal (2004).

27. W Thirring, Classical Dynamical SystenSpringer-Verlag, 1978.



	Acknowledgements
	Chapter 1. Introduction
	1. The KAM problem
	2. The "Lindstedt series" and the first KAM proofs
	3. Inside the Lindstedt series

	Part 1. Differentiable perturbation
	Chapter 2. The KAM theorem and RG scheme
	1. Scheme

	Chapter 3. Setup and preliminary results
	1. Spaces
	2. A priori bounds for the approximated problems
	3. Cauchy Estimates
	4. The Cutoff and n-dependent spaces
	5. n-dependent bounds

	Chapter 4. The Ward identities (revised)
	1. Resonances and compensations

	Chapter 5. The Main Proposition
	1. Proof of (a)
	2. Proof of (b)
	3. Proof of (c)

	Chapter 6. Proof of Theorem 1

	Part 2. Continuous Renormalization
	Chapter 7. Introduction and continuous RG scheme 
	1. The continuous scales
	2. Renormalization Group scheme

	Chapter 8. Preliminaries
	1. Fourier Spaces
	2. A temporary solution
	3. t-dependent Banach Spaces
	4. The Banach Space H

	Chapter 9. Properties of w (Ward Identities)
	1. Ward Identities

	Chapter 10. The integral operator 
	1.  preserves the properties of the the functions in H
	2.  preserves the balls in H
	3.  is a contraction in B

	Chapter 11. Proof of the KAM theorem
	Bibliography




