
Passive Advection
and the

Degenerate Elliptic Operators Mn

Ville Hakulinen

Academic dissertation

To be presented, with the permission of the Faculty of Science
of the University of Helsinki, for public criticism in Auditorium XII of the
Main Building of the University, on March 2nd, 2002, at 10 o’clock a.m.

Department of Mathematics
Faculty of Science

University of Helsinki

HELSINKI 2002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14916784?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ISBN 952-91-4392-3 (Print)
ISBN 952-10-0383-9 (PDF)

Hakapaino Oy
Helsinki 2002



Acknowledgements

First of all I would like to thank my thesis advisor, Professor Antti Kupiainen for
patience, support and advice during the preparation of this thesis. His informal
style has kept me believing in living mathematics. Without his and my opponent’s
Professor Krzysztof Gawȩdzki’s seminal work this thesis project wouldn’t have
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Chapter 1

Introduction

1.1 Navier-Stokes Turbulence

This section is adapted from [18]. The Kraichnan model of passive advection
is an exactly solvable model that has a very similar phenomenology to the full
Navier-Stokes turbulence, but is much simpler in many respects.

The Navier-Stokes equations

(1.1.1)

{
∂tv = ν∆v − (v · ∇)v −∇p+ f

∇ · v = 0

describe the motion (v(t, x) ∈ R3 is the velocity field of the fluid) of incompress-
ible fluid acted on by the external force f . In case of finite volume, boundary
conditions should also be specified.

This can be considered as an infinite dimensional dynamical system. If the ex-
ternal force f is zero, then for physical reasons the fluid motion eventually stops
(this has not been proven rigorously for any interesting initial data). So if one
wants to get a statistical steady state one should look at the forced case. It might
be conceivable that this steady state depends strongly on the nature of the forc-
ing, but in fact it is not so and there appears to be a steady state, called isotropic
and homogeneous turbulence, which is universal, i.e. has properties relatively
independent of the nature of the forcing.

In physical situations one has some (large) scale L where the forcing takes place.
For example for underwater golf L would be the diameter of the golf ball or for
stirring lentil soup the size of the scoop and the typical variations of the trajectory
of the scoop would be of order L. Also one might consider flow on R3 (or 3-torus)
and require that the Fourier transform (or series) of f in spatial coordinates is
supported on wavenumbers k with |k| < L−1.

1



2 CHAPTER 1. INTRODUCTION

For concreteness, let us consider a special situation. Let’s take f a Gaussian
process with mean zero and covariance

(1.1.2) 〈fα(t, x)fβ(t′, x′)〉 = Cαβ

(
x− x′
L

)
R(t− t′),

where Cαβ is some fixed nice smooth function satisfying
∑

α ∂αCαβ(x) = 0 and
R is say smooth with compact support. Here L corresponds to the spatial scale
discussed above.

The Navier-Stokes equations are invariant under certain rescalings. Let

(1.1.3)

ṽ(t, x) = σv(τt, sx),

f̃(t, x) = σf(τt, sx) and

p̃(t, x) = στs−1p(τt, sx)

with σs/τ = 1. Then ṽ, f̃ and ṽ satisfy (1.1.1) with ν is replaced by ν̃ = τs−2ν.
One can then introduce a dimensionless quantity

(1.1.4) R :=
V L

ν

which is called the Reynolds number. Here V stands for the typical value of
velocity differences on scales comparable to L. The point of the Reynolds number
is that it is invariant under the rescalings (1.1.3).

Experiments show that for small values of R the flows are smooth (laminar) and
as R grows the flow goes through a multitude of bifurcations and in the end for
large R the flow is very disordered.

Supposing that (1.1.1) has nice enough solutions, one may ask whether the corre-
sponding dynamical system has a unique ergodic invariant measure µ. Supposing
this to be the case one may ask about properties of µ. From probabilistic point
of view, the standard ones would be the moments of v with respect to µ, but
in the hydrodynamics community one usually considers the so called structure
functions :

(1.1.5) SN(x) :=

∫
(x̂ · (v(x)− v(0)))N dµ(v),

where x̂ := x
|x| .

Observationally, for large R the SN behave in a range of scales in a power-law
fashion:

(1.1.6) SN(x) ∼ CN |x|ζN .

A. N. Kolmogorov presented in 1941 a theory (the so called K41-theory) according
to which ζN = N

3
and the CN are universal. In our concrete model this would
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mean that CN depends on CαβR only through the mean energy per unit time
and volume and nothing else.

Experiments seem to indicate that low order structure functions agree rather
well with K41-theory, but for higher (N ≥ 10) one observes deviations of 10% or
more. In particular ξN seems not to depend linearly on N , a phenomenon called
multiscaling.

For a more detailed discussion of the problematics of turbulece, I can wholeheart-
edly recommend Uriel Frisch’s great book [10].

Unfortunately, there does not seem to be even physicist’s arguments to explain
the deviations from the K41 theory. It would be nice to have a toy model sharing
many characteristics with the full Navier-Stokes turbulence, but which would
allow theoretical or even rigorous analysis. This is provided by the Kraichnan
model of passive advection.

1.2 Basics of the Kraichnan model

The scalar advection equation

(1.2.1) ∂tT = −v · ∇T + κ∆T + f.

models a scalar quantity T : R×Rd → R (e.g. temperature distribution, concen-
tration of a coloured substance) transported by a velocity field v and pumped in
by the forcing f . We want v to mimic turbulent velocities and f to be similar to
the f of previous section.

In the Kraichnan model of passive advection [17] one takes v and f random mean
zero Gaussians with covariances

(1.2.2) 〈vα(t, x)vβ(t′, x′)〉 = δ(t− t′)Dαβ(x− x′)
and

(1.2.3) 〈f(t, x)f(t′, x′)〉 = δ(t− t′)C(x− x
′

L
).

The passivity refers to the fact that there is no feedback from T to v. The−v·∇T -
term is taken in the Stratonovich sense. The reason for this is as follows. If we
let δε be a sequence of even functions R→ R+ ∪ {0} so that δε weak*-converges
to δ, then one can show that if we replace δ by δε in the covariance above, then
in the limit ε→ 0 we get the model above provided that −v · ∇T is taken in the
Stratonovich sense. We shall not discuss this point further and assume from the
beginning that the Stratonovich interpretation has been built in.

The forcing covariance C will be taken to be a fixed smooth function of compact
support and nonnegative Fourier transform. We will discuss the exact form of D
later.



4 CHAPTER 1. INTRODUCTION

1.3 The Kraichnan model without forcing

The discussion here is adapted from [20]. We investigate

(1.3.1) ∂tT = −v · ∇T + κ∆T

with the initial condition T (0, ·) = f(·) and v Gaussian with mean zero covariance
(1.2.2).

Although rigorous, (1.2.2) is obvious physicist notation, so we do the same as [19]
and [20] and represent the randomness in (1.3.1) as a countably infinite bunch of
independent Brownian motions. Also since the Stratonovich convention is a pain
in the neck, we transform our equation into Itô form.

We want to choose our spatial covariance Dαβ so that it forces our advecting fluid
to be incompressible. This is achieved by taking

(1.3.2) Dαβ(x) =

∫
e−ik·xD(|k|)

(
δαβ − kαkβ

k2

)
dk

(2π)d

where D is initially smooth and nonnegative with compact support in [0,∞),
but later we shall discuss more general D which are more realistic for turbulence
questions.

Let us denote D0 := Dαα(0) (it does not depend on α). We shall assume that
D0 <∞. Notice also that Dαβ = 0 for α 6= β, so D(0) = D01.

Let D be the operator associated with the kernel Dαβ, i.e. for v ∈ L2(Rd,Rd) let
Dv be defined by

(1.3.3) (Dv)α(x) :=
∑

1≤β≤d

∫

Rd
Dαβ(x− x′)vβ(x′) dx′.

Let P be the the Gaussian measure with covariance D. We want to find vector
fields {vk}∞k=1 and an inner product 〈·, ·〉D so that with probability one the formula

(1.3.4) Xk := 〈v(ω), vk〉D
makes sense, the Xk’s are independent Gaussian random variables with unit vari-
ance and we have

(1.3.5) v(ω, x) =
∑

k

Xkvk

holding almost everywhere.

This is done as follows. Let P be the following orthogonal projection with kernel

(1.3.6) Pαβ(x) =

∫
e−ik·xχsuppD(|k|)

(
δαβ − kαkβ

k2

)
dk

(2π)d
.



1.3. THE KRAICHNAN MODEL WITHOUT FORCING 5

Now PD = DP and P(P [L2]) = 1. Moreover D has an (unbounded) inverse on
P [L2]. Let’s define an inner product on Dom(D−1) by letting

(1.3.7) 〈v, w〉D =

∫

Rd
v(x) · (D−1w)(x) dx

Let {vk}ki=0 be a maximal orthonormal set on Dom(D−1) with respect to the inner
product above.

The Xk’s are obviously Gaussian since P is Gaussian. Let’s compute the covari-
ance of Xk’s:

E[XkXk′ ] = E
[∫

Rd

∑

α

vα(ω, x)(D−1vk)
α(x) dx ·

·
∫

Rd

∑

β

vβ(ω, x)(D−1vk′)
β(x) dy

]

=

∫

Rd

∫

Rd

∑

αβ

E[vα(x)vβ(y)](D−1vk)
α(x)(D−1vk′)

β(y) dx dy

= 〈DD−1vk, vk′〉D
= δkk

′
.

(1.3.8)

So the Xk’s are now independent Gaussian random variables with unit variance.
So we’ve gotten what we wanted.

Note that

(1.3.9)
∞∑

k=0

vαk (x)vβk (y) = Dαβ(x− y).

This is easily seen as follows. Let f ∈ S(Rd) and let gβ ∈ S(Rd,Rd) be defined
by gγβ = δγβf(y). Now an easy computation verifies that

∫ ∑

k

vαk (x)vβk (y)f(y) dy =
∑

k

vαk (x)〈Dgβ, vk〉D

= (Dgβ)α(x)

=

∫
Dαβ(x− y)f(y) dy.

(1.3.10)

The claim follows.

Let {W k} be independent Brownian motions with unit variance. Now (1.3.1) can
be written as
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(1.3.11) Stf = f +
∑

k

∫ t

0

Ss(vk · ∇f) ◦ dW k
s + κ

∫ t

0

Ss(∆f) ds.

We took the liberty of switching from v to −v, since this is the convention [20]
uses and if we changed that, we would eventually get confused. Of course, this
doesn’t matter since mean zero Gaussians are invariant under the change of sign
(all odd moments are zero).

To convert (1.3.11) to Itô form, we just use the formula

(1.3.12)

∫ t

0

Xs ◦ dYs =

∫ t

0

Xs dYs +
1

2
〈X,Y 〉t.

and get

(1.3.13)
∑

k

∫ t

0

Ss(vk · ∇f) ◦ dW k
s

=
∑

k

∫ t

0

Ss(vk · ∇f) dW k
s +

1

2

∑

k

〈Ss(vk · ∇f),Wk〉t = (∗)

Substituting now (1.3.11) into the last term above and using (1.3.12) again and
dropping all terms where we have brackets of processes of bounded variation with
Wk, we get

(∗) =
∑

k

∫ t

0

Ss(vk · ∇f) dW k
s +

+
1

2

∑

k,k′

∫ t

0

Ss((vk · ∇)(v′k · ∇f)) d〈Wk,Wk′〉s

=
∑

k

∫ t

0

Ss(vk · ∇f) dW k
s +

1

2

∑

k

∫ t

0

Ss((vk · ∇)(vk · ∇f)) ds

=
∑

k

∫ t

0

Ss(vk · ∇f) dW k
s +

1

2

∑

k

∫ t

0

Ss(∇ · (vk(vk · ∇f)) ds

=
∑

k

∫ t

0

Ss(vk · ∇f) dW k
s +

1

2
D0

∫ t

0

Ss(∆f) ds.

(1.3.14)

Thus we arrive at

(1.3.15) Stf = f +
∑

k

∫ t

0

Ss(vk · ∇f)dW k
s + (κ+

1

2
D0)

∫ t

0

Ss(∆f) ds.
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Let κ̃ := κ + 1
2
D0. The equation (1.3.11) can be solved in a standard way by

iterating Duhamel’s principle. That is, we try to define St using the formula

(1.3.16) Stf :=
∞∑

n=0

∑

k1,...,kn

∫

0≤s1≤...≤sn≤t
eκ̃s1∆(vk1 · ∇)eκ̃(s2−s1)∆...

...(vkn · ∇)eκ̃(t−sn)∆f dW k1
s1
... dW kn

sn .

To investigate the convergence of (1.3.16) we need the following Lemma, proven
by Le Jan and Raimond (see [19], [20]).

Lemma 1.3.1. Let S0
t = eκ̃t∆ and let Sn+1

t be defined using following formula

(1.3.17) Sn+1
t f = eκ̃t∆f +

∑

k

∫ t

0

Sns (vk · ∇eκ̃t∆f) dW k
s .

These satisfy

(1.3.18) E[(Snt f)2] ≤ eκ̃t∆f 2

for every f ∈ L2(Rd) and in particular it converges in L2(P) to a solution of
(1.3.15).

Proof. (Le Jan and Raimond [19]) Let us prove (1.3.18) by induction on n. The
case n = 0 reads (eκ̃t∆f)2 ≤ eκ̃t∆f 2, which follows easily from formulae (1.3.22)
and (1.3.23) below. So let’s assume it’s true for n and we prove it for n+ 1.

If we square (1.3.17), on the RHS we get a sum of Itô integrals plus

(1.3.19) (eκ̃t∆f)2 + (
∑

k

∫ t

0

Sns (vk · ∇eκ̃(t−s)∆f) dW k
s )2.

The last term on the RHS is by Itô formula a sum of Itô integrals plus

(1.3.20)
∑

k,k′

∫ t

0

(Sns (vk · ∇eκ̃(t−s)∆f))(Sns (vk′ · ∇eκ̃(t−s)∆f)) d〈W k,W k′〉s

=
∑

k

∫ t

0

(Sns (vk · ∇eκ̃(t−s)∆f))2 ds.

Taking an expectation, we arrive at

E[(Sn+1
t f)2] = (eκ̃t∆f)2 +

∑

k

∫ t

0

E[(Sns (vk · ∇eκ̃(t−s)∆f))2] ds

≤ (eκ̃t∆f)2 +
∑

k

∫ t

0

eκ̃s∆(vk · ∇eκ̃(t−s)∆f)2 ds

= (eκ̃t∆f)2 +D0

∫ t

0

eκ̃s∆|∇eκ̃(t−s)∆f |2 ds = (∗).

(1.3.21)
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Next, we’ll compute:

∂se
κ̃s∆((eκ̃(t−s)∆f)2) = κ̃∆eκ̃s∆((eκ̃(t−s)∆f)2)

+ 2κ̃eκ̃s∆((eκ̃(t−s)∆f)∆eκ̃(t−s)∆f)

= 2κ̃eκ̃s∆|∇eκ̃(t−s)∆f |2.
(1.3.22)

Therefore, since D0 ≤ 2κ̃, we have

(∗) ≤ (eκ̃t∆f)2 +
D0

2κ̃

∫ t

0

∂se
κ̃s∆((eκ̃(t−s)∆f)2) ds

≤ (eκ̃t∆f)2 + eκ̃t∆(f 2)− (eκ̃t∆f)2

≤ eκ̃t∆(f 2).

(1.3.23)

Letting Jnt f := Snt f − Sn−1
t f we see that by Itô formula Jnt f and Jn

′
t f are inde-

pendent for n 6= n′, i.e. they are orthogonal in L2(P). Since by (1.3.18) the set
{Snt f : n ∈ N} is uniformly bounded in L2(P) we conclude that the limit

(1.3.24) Stf := lim
n→∞

Snt f

exists and this limit solves (1.3.15).

Next, we’ll give a proof by Le Jan and Raimond [19] of the positivity of St. Since
St is linear and St1 = 1, we can conclude that St is almost surely a contraction
on L∞. For this, we need the following

Lemma 1.3.2. Let H be a separable Hilbert space and let W be the Gaussian
process with covariance 〈·, ·〉H . Let V ⊆ H be a dense subspace. Then

(1.3.25) A = {
n∑

j=1

αje
iW (hj) : n ∈ N \ {0}, α ∈ Cn and h ∈ V n}

is dense in Lp(Ω,Σ(W ),P) for all p with 1 ≤ p <∞.

Remark 1.3.3. Actually we are interested only in the case p = 4. The Theorem
is false for L∞ as it is not separable.

Proof. (Adapted from [16], p.134) It suffices to prove this for p > 1, since then it
follows for p = 1. This is because if A is dense in some Lp and xn ∈ A converges
to x in Lp, then it does so also in L1 by Hölder’s inequality and the finiteness
of our measure space. Thus Lp is contained in the L1-closure of A. Since Lp is
dense in L1, we conclude that the L1-closure of A is the whole of L1.
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Next, let’s suppose p > 1 and let q := p
p−1

, i.e. Lq is the dual of Lp. It suffices to
show that if φ ∈ Lq is such that

(1.3.26)

∫

Ω

(
n∑

j=1

αje
iW (hj))φ dP = 0

for every n > 0, α ∈ Cn and h ∈ V n, then φ = 0.

For if A was not dense in Lp, by Hahn-Banach Theorem there would be φ ∈
(Lp)∗ = Lq so that f [A] = {0}, but φ 6= 0.

As H is separable we may assume that V is the linear span of a countable set
{hj}∞j=1 ⊆ H. Let n be given, let β ∈ Cn and let σn = σ{W (h1), ...,W (hn)}. We
have

(1.3.27)

∫

Ω

(
n∑

j=1

eiβjW (hj))E[φ|σn] dP = 0.

Thus by the properties of Fourier Transform we have E[φ|σn] = 0. Therefore by
letting n→∞ we conclude that E[φ|σ(W )] = φ = 0.

Theorem 1.3.4. St is positive.

Proof. (Le Jan and Raimond [19]) We prove that for f ∈ L2(Rd) and φ in a
suitable dense subspace of L4(P) we have E[Stf |φ|2] ≥ 0. Let G be the Hilbert
space containing all the vk’s as an orthonormal basis and let H be the Hilbert
space corresponding to the countably infinite bunch of independent Brownian
motions on [0, t] indexed by the vk’s. It can be constructed for example as follows.
Let {hj}∞j=1 be the Haar basis of [0, t], let fj be defined by fj(s) =

∫ s
0
hj(s) ds

and take ({fj}∞j=1 × {vk}∞k=1) as a basis of H with the inner product

(1.3.28) 〈(fj, vk), (fj′ , vk′)〉H = δj,j
′
δk,k

′
.

Let V be the space of simple processes defined in [0, t] with values in G. If
h :=

∑
i=1p 1[ti,ti+1)g

i is in V , then

(1.3.29) Xh =
∑

k

∫ t

0

〈hs, vk〉D dW k
s

is a random variable with a preimage (denoted by W−1h) in H. Now W−1X[N ]

is dense in H.

Therefore it suffices to show, by Lemma 1.3.2, that for all f ≥ 0 in L2, α ∈ Cp
and h ∈ V p we have

(1.3.30) E[Stf
∑

j,j′

αjαj′e
i
∑
k

∫ t
0 〈h

j
s−hj

′
s ,vk〉D dW k

s ] ≥ 0.
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This is readily computed using Itô’s formula and a dirty trick. Denote Xt :=

ei
∑
k

∫ t
0 〈h

j
s−hj

′
s ,vk〉D dW k

s , By Itô’s formula one sees that

(1.3.31) Xt = 1 + i
∑

k

∫ t

0

Xs〈hjs − hj
′
s , vk〉D dW k

s −
1

2

∫ t

0

Xs||hjs − hj
′
s ||2D ds.

This is now a finite-dimensional SDE with the unique solution

(1.3.32) Xt = e−
1
2

∫ t
0 ||h

j
s−hj

′
s ||2D ds·

·
∑

n≥0

in
∑

k1,...,kn

∫

0≤s1≤...≤sn≤t

n∏

m=1

〈hjsm − hj
′
sm , vk〉D dW km

sm .

as is easily computed by taking a differential of the RHS.

So, we see that the LHS of (1.3.30) equals

(1.3.33)
∑

j,j′

αjαj′e
− 1

2

∫ t
0 ||h

j
s−hj

′
s ||2D ds·

· E
[
Stf

∑

n≥0

in
∑

k1,...,kn

∫

0≤s1≤...≤sn≤t

n∏

m=1

〈hjsm − hj
′
sm〉D dW km

sm

]
.

Let us denote the expectation above with (∗). Define Rn
t as R0

t := 1 and

(1.3.34) Rn+1
t :=

∑

k

∫ t

0

Rn
s i〈hjs − hj

′
s , vk〉D dW k

s .

So Rt :=
∑

n→∞R
n
t is just the infinite sum inside (∗). Write also Stf =

∑∞
n=0 J

n
t f

with J0
t f := eκ̃t∆f and

(1.3.35) Jn+1
t f :=

∑

k

∫ t

0

Jn+1
s (vk · eκ̃(t−s)∆f) dW k

s

Now a direct computation using (1.3.34) and (1.3.35) shows (observing that
E[Jmt fR

m′
t ] = 0 for m 6= m′) that E[StfRt] is the sum as n→∞ of E[J0

t fR
0
t ] =

eκ̃t∆f and

E[Jn+1tRn+1f ] = E
[∑

k,k′

∫ t

0

Jns (vk · ∇eκ̃(t−s)f) dW k
s ·

∫ t

0

Rn
s i〈hjs − hj

′
s , vk〉DdW k′

s

]

= E
[∑

k

∫ t

0

Jns (vk · ∇eκ̃(t−s)∆f)Rn
s 〈vk, i(hjs − hj

′
s )〉D ds

]

=

∫ t

0

Jns (i(hjs − hj
′
s ) · ∇eκ̃(t−s)∆f)Rn

s ds.

(1.3.36)
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Write (∗) := Qtf :=
∑

n≥0 Q
n
t f with Q0

tf := eκ̃t∆f and

(1.3.37) Qn+1
t f := κ̃−1

∫ t

0

Qn
s (i(hjs − hj

′
s ) · ∇eκ̃(t−s)∆f) ds.

Let Xt be a Brownian motion of variance 2κ̃ on Rd, independent of W .

We now claim that

(1.3.38) Qn
t f =

1

(2κ̃)n
Ex
[
f(xt)

∫

0≤s1≤...≤sn≤t

n∏

m=1

i(hjsm − hj
′
sm)(xsm) · dXsm

]

This is easy to prove using induction. First of all clearly

(1.3.39) Q0
tf(x) = Ex[f(Xt)].

Next, suppose (1.3.38) holds and we compute Qn+1
t . Below, let h := hj − hj′ .

Qn+1
t f(x) =

1

(2κ̃)n

∫ t

0

Ex
[
∇eκ̃(t−sn+1)∆f · ihsn+1(Xsn+1)

∫

0≤s1≤...≤sn+1

n∏

m=1

ihsm(Xsm) · dXsm

]
dsm+1

=
1

(2κ̃n)

∫ t

0

Ex
[
EXsn+1 [∇f(Xt)] · ihsn+1(Xsn+1)

∫

0≤s1≤...≤sn+1

n∏

m=1

ihsm(Xsm) · dXsm

]
dsm+1

=
1

(2κ̃n)
Ex
[∫ t

0

∇f(Xsn+1) · ihsn+1(Xsn+1)

∫

0≤s1≤...≤sn+1

n∏

m=1

ihsm(Xsm) · dXsm dsm+1

]

=
1

(2κ̃n)
Ex
[∫ t

0

∇f(Xsn+1) · dXsn+1

∫

0≤s1≤...≤sn+1≤t

n∏

m=1

ihsm(Xsm) · dXsm

]

=
1

(2κ̃n+1)
Ex
[
f(Xt)

∫

0≤s1≤...≤sn+1≤t

n∏

m=1

ihsm(Xsm) · dXsm

]
,

(1.3.40)

which was to be proven.
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Let

(1.3.41) Zt :=
∑

n≥0

1

2κ̃

∫

0≤s1≤...≤sn≤t

n∏

m=1

i(hjsm(Xsm)− hj′sm(Xsm)) · dXsm

Now it is easy to verify that Zt satisfies the following SDE

(1.3.42) Zt = 1 +
1

2κ̃

∫ t

0

Zti(h
j
s − hj

′
s ) · dXs.

It is immediately verified using Itô formula that this has the unique solution

(1.3.43) Zt = ei
1

2κ̃

∫ t
0 (hjs(Xs)−hj

′
s (Xs))·dXs+ 1

4κ̃

∫ t
0 |h

j
s(Xs)−hj

′
s (Xs)|2 ds.

Thus

(1.3.44) Qtf(x) = Ex
[
f(Xt)e

i 1
2κ̃

∫ t
0 (hjs(Xs)−hj

′
s (Xs))·dXs+ 1

4κ̃

∫ t
0 |h

j
s(Xs)−hj

′
s (Xs)|2 ds

]
.

Denote now

(1.3.45) γjj
′

:= e
1
2

∫ t
0 ||h

j
s−hj

′
s ||D− 1

4κ̃
|hjs(Xs)−hj

′
s (Xs)|2 ds.

Now (1.3.33) can be written as

(1.3.46) Ex
[
f(Xt)

∑

j,j′

αje
i 1
2κ̃

∫ t
0 h

j
s(Xs)·dXsγjj

′
αj′e

−i 1
2κ̃

∫ t
0 h

j′
s (Xs)·dXs

]
.

Being obviously real and symmetric, it suffices to show that the random variable
γ is a positive matrix almost surely.

Now we claim that

(1.3.47) (πxh)β(y) := D−1
0

∑

α

Dαβ(x− y)hα(x)

is an orthogonal projection with kernel Gx, the vector fields in G vanishing at
x. This is seen as follows. First of all (πxh)β(x) := hβ(x), so h − πxh ∈ Gx.
Secondly we have 〈πxh, g〉D = D−1

0

∑
k vk(x) · h(x)D−1

0 〈vk, g〉D = D−1
0 g(x) · h(x),

so for g ∈ Gx this equals 0 and also for all h we have |h(x)|2 = 〈πxh, h〉D.
Therefore we conclude that

(1.3.48) γjj
′

= e−
1
2

∫ t
0 〈(1−

D0
2κ̃
πXs )(hjs(Xs)−hj

′
s (Xs),h

j
s(Xs)−hj

′
s (Xs)〉D ds.

This is obviously a positive matrix as the Gaussian is a positive definite function
on Rp.
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Next, we jump to analyzing the n-point functions of the passive scalar. Let

(1.3.49) Mn := −1

2

n∑

i,j=1

∑

α,β

Dαβ(xi − xj)
∂

∂xαi

∂

∂xβj
− κ

n∑

i=1

∆i.

Theorem 1.3.5. For all fi ∈ L∞(Rd) ∩Dom(∆), 1 ≤ i ≤ n we have

(1.3.50) E[
n⊗

i=1

(Stfi)] = e−tMn

n⊗

i=1

fi.

Proof. (Le Jan and Raimond [20]) By Itô formula, we have

n⊗

i=1

(Stfi) =
n⊗

i=1

fi +
n∑

i=1

∑

k

∫ t

0

Ssf1 ⊗ ...⊗ Ss(vk · ∇fi)⊗ ...

⊗ Ssfn dW k
s

+ κ̃

n∑

i=1

∫ t

0

Ssf1 ⊗ ...⊗ Ss∆fi ⊗ ...⊗ Ssfn) ds

+
∑

i≤i<j≤n

∑

k

∫ t

0

Ssf1 ⊗ ...⊗ Ss(vk · ∇)fi ⊗ ...

⊗ Ss(vk · ∇)fj ⊗ ...⊗ Ssfn ds.

(1.3.51)

Let’s show that in the above equation the stochastic integrals make sense. First
of all a single integral makes sense, since St is almost surely a contraction on L∞

and thus it suffices to show

(1.3.52) E
[∫ t

0

(Ss(vk · ∇f))2 ds

]
∈ L1(Rd).

By Fubini’s Theorem one can take the expectation inside and an application of
(1.3.18) we get that the LHS above is less than

(1.3.53)

∫ t

0

eκ̃s∆(vk · ∇f)2 ds.

As fi ∈ Dom(∆), vk · ∇f ∈ L2(Rd) and as eκ̃t∆ is contraction on L1 for all t ≥ 0
we can conclude (1.3.52). So it suffices to show that the infinite k-sum converges
in L1(P) in order to conclude that

(1.3.54) E[
∑

k

∫ t

0

... dW k
s ] =

∑

k

E[

∫ t

0

... dW k
s ] = 0.
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It is easy to see that the k-sum converges in L2(P) and therefore in L1(P) by the
finiteness of P. Indeed, as the stochastic integrals for different k are orthogonal,
by ignoring the Stfi’s we get

E
[(∑

k

∫ t

0

Ss(vk · ∇fi) dW k
s

)2
]

=
∑

k

E
[∫ t

0

(Ss(vk · ∇fi))2 ds

]

=
∑

k

∫ t

0

E[(Ss(vk · ∇fi))2] ds

≤
∑

k

∫ t

0

eκ̃s∆(vk · ∇fi)2 ds

= D0

∫ t

0

eκ̃s∆|∇fi|2 ds ∈ L1(Rd).

(1.3.55)

Using now (1.3.9) we see that (1.3.49) holds.

1.4 The Kraichnan model with forcing

Now if we put the forcing on, we get the so called Hopf equations. Suppose for
simplicity that the initial condition is zero. Now an application of Duhamel’s
priciple to (1.2.1) for single force yields

(1.4.1) Tt =

∫ t

t0

∫
St−sfs−t0 ds.

Now if we look at the correlators, we see that

(1.4.2) E[
n⊗

i=1

Tt] = E
[∫ t

t0

n⊗

i=1

St−sifsi−t0

n∏

i=1

dsi

]

=

∫ t

t0

E
[ n⊗

i=1

St−sifsi−t0
] n∏

i=1

dsi =: (∗).

Let us process the integrand. Assume for simplicity that s1 ≤ ... ≤ sn. Then by
the semigroup property of S we have

(1.4.3) E
[
(
n⊗

i=1

St−si)fsi−t0 ]

= E
[
e−(t−sn)Mn(e−(sn−sn−1)Mn−1(...(e−(s2−s1)M1fs1−t0)⊗ ...)⊗ fsn−t0)

]

=: (∗∗)n.
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As f is mean zero Gaussian and delta-correlated in time, we get 0 for odd corre-
lators and for even correlators we get inductively

(1.4.4) (∗∗)2(x1, x2) :=

∫ t

t0

ds

∫
dy e−(t−s)M2(x,y)C(y1 − y2)

and

(∗∗)2n =

∫ t

t0

ds

∫
dy e−(t−s)M2n(x,y)·

· (∗∗)2n−2(y1, ..., y2n−2)C(y2n−1 − y2n).

(1.4.5)

Thus by sending t0 → −∞ we end up with the formulae

(1.4.6) F2 =

∫
dy (M2)−1(x,y)C(y1 − y2)

(1.4.7) F2n =
∑

1≤i<j≤2n

∫
(M2n)−1(x,y)F2n−2(y1, . . .

îĵ
, y2n)C(yi − yj) dy.

For κ > 0, using standard machinery for elliptic operators one can show that

(1.4.8) F2n(x) ≤ Cn,κ
∑

π

∏

{i,j}∈π
(1 + |xi − xj|)2−d.

We just give the crux of the argument. For κ > 0 we have εκ∆ ≤Mn. So morally
(Mn)−1(x, y) ≤ C ′n,κ(−∆)−1(x− y) with C ′n,κ →∞ as κ→ 0.

Denote C(y1, y2) = C(y1 − y2). Specializing in a fixed pairing and denoting the
kd-dimensional Laplacian by ∆k we can therefore conclude that

(1.4.9) M−1
2n (M−1

2n−1(...(M−1
2 C ⊗ C)...)⊗ C)

≤ C ′′2n,κ(−∆2n)−1((−∆2n−2)−1(...(∆−1
2 C ⊗ C)...)⊗ C).

Let’s now define G2n inductively as follows:

(1.4.10) G2(y1, y2) := (−∆2)−1(y1, y2)

and

(1.4.11) G2n(y1, ..., y2n) := (−∆2n)−1

( n∑

i=1

G2n−2(y1, ..., 2i− 2, 2i+ 1, ..., y2n)

)
.
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Thus G2n gives an estimate for the unordered pairing

(1.4.12)

{
{1, 2}, ..., {2n− 1, 2n}

}
,

so summing over all unordered pairings gives an estimate for F2n.

An easy formal computation on the Fourier side gives (ki’s are 2d-dimensional
Fourier coordinates).

( n∑

i=1

|ki|2
)−1
( n∑

i=1

|k1|−2...|ki−1|−2|ki+1|−2...|kn|−2

)

= |k1|−2...|kn|−2.

(1.4.13)

Therefore we “can” conclude that

(1.4.14) F2n(x) ≤ Cn
∑

π

∏

{i,j}∈π
(1 + |xi − xj|)2−d.

1.5 Analysis results

The trouble with the κ → 0 limit is as follows: As κ → 0 the operators Mn

become degenerate elliptic and thus the argument given above does not work.

For turbulence questions the exact form of Dαβ is important. We would like Dαβ
to mimic turbulent velocities as much as possible. To achieve this, we let

(1.5.1) D(x) :=

∫

Rd

e−ik·x

(|k|2 +m2)
d+ξ

2

(1− k̂ ⊗ k̂) dk.

Here m > 0 is a parameter called ultraviolet cutoff and ξ ∈ (0, 2) is a parameter
corresponding to the Kolmogorov scaling exponent of the two-point function with
ξ = 4

3
corresponding to the value given by Kolmogorov theory.

First we discuss the m → 0 limit. If a ∈ Rd, we denote the vector (xi + a)ni=1

by x + a. We call a function f : Rnd → R translationally invariant, if for every
a ∈ Rd and x ∈ Rnd we have f(x) = f(x + a).

In the limit m → 0 the integral in (1.5.1) diverges, but in the formulas (1.4.6)
and (1.4.7) M−1

n acts on translationally invariant functions. If we set

(1.5.2) dαβ := D0 −Dαβ
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we can write (1.3.49) as

(1.5.3) Mn =
∑

1≤i<j≤n
dαβ(xi − xj)

∂

∂xαi

∂

∂xβj
− κ

n∑

i=1

∆i −
1

2
D0

( n∑

i=1

∂

∂xβi

)2

.

The last term here vanishes when acting on translationally invariant functions
and for m > 0 we have

(1.5.4) dαβ(xi − xj) =

∫

Rd

1− cos(k · x)

(|k|2 +m2)
d+ξ

2

(
δαβ − kαkβ

|k|2
)
dk.

At m = 0 this integral makes perfect sense and equals

(1.5.5) dαβ(x) =
Γ((2− ξ)/2)

(4π)d/22ξξΓ((d+ ξ + 2)/2)
|x|ξ
(

(d− 1 + ξ)δαβ − ξ x
αxβ

|x|2
)
.

A translationally invariant function on Rnd is really a function of (n − 1)d vari-
ables. So, let’s throw away the last term from Mn and reduce the number of
dimensions from nd to (n− 1)d.

In other words, we set xi := yi − yi+1 for 1 ≤ i ≤ n− 1, so

(1.5.6)
∂

∂yαi
=





∂
∂xα1

if i = 1,
∂
∂xαi
− ∂

∂xαi−1
if 2 ≤ i ≤ n− 1 and

∂
∂xαn−1

if i = n.

For an operator of the form H := −∇ · A∇ with A a matrix-valued function,
denote σ(H) := A and call A the symbol of H. Denote the symbol obtained in
this way by σ(Mn). At κ = 0 a simple calculation shows that σ(Mn) equals

(1.5.7)
n−1∑

i=1

n−1∑

j=i

〈vi, (d(

j∑

k=i

xk)− d(

j−1∑

k=i

xk)− d(

j∑

k=i+1

xk) + d(

j−1∑

k=i+1

xk))vj〉

In particular,

(1.5.8) σ(M2) = 〈v1, d(x1)v1〉,
σ(M3) =〈v1, d(x1)v1〉+ 〈v2, d(x2)v2〉+

〈v1, (d(x1 + x2)− d(x1)− d(x2))v2〉
(1.5.9)

and

σ(M4) =〈v1, d(x1)v1〉+ 〈v2, d(x2)v2〉+ 〈v3, d(x3)v3〉
〈v1, (d(x1 + x2)− d(x1)− d(x2))v2〉
〈v2, (d(x2 + x3)− d(x2)− d(x3))v3〉
〈v1, (d(x1 + x2 + x3)− d(x1 + x2)− d(x2 + x3) + d(x2))v3〉.

(1.5.10)
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The point of my paper ([14], Chapter 2) is that the following formula analogous
to (1.4.14) holds directly at κ = 0:

(1.5.11) F2n(x) ≤ Cn
∑

π

∏

{i,j}∈π
(1 + |xi − xj|)2−d−ξ.

To give an idea of the proof we investigate the easier question of the uniform
local integrability of the Green’s functions of the operators Mn in the following
sense. We want to show that

(1.5.12) sup
x∈R(2n−1)d

∫

B(x,1)

d(2n−1)dy GM2n(x, y) <∞.

We prove (1.5.12) by analyzing the heat kernel KM2n of the operator in detail
and then using the fundamental relation

(1.5.13) GM2n(x, y) =

∫ ∞

0

dtK(t, x, y)

to obtain estimates for the Green’s functions.

The proof ([14], Chapter 2) has two phases. First of all, results of Davies and
Varopoulos ([6], [5], [22]) are used to obtain K(t, x, ·) ∈ L∞ for t > 0, some coarse
estimates for the tail of the heat kernel and to verify assumptions in the second
phase. In the second phase the estimates are refined using the Harnack inequality
([13]) for a class of degenerate parabolic equations.

1.5.1 Results by Varopoulos and Davies

One may prove that the symbols of Mn satisfy the following estimates. The
degeneration set F of σ(Mn) is the set of x ∈ R(n−1)d so that σ(Mn) is not
invertible. It is easily seen that F is a finite union of subspaces of codimension
d ≥ 2.

Let w1(x) := d(x, F )ξ and let w2(x) := |x|ξ. One has a C <∞ so that

(1.5.14) C−1d(x, F )ξ|v||w| ≤ 〈v, σ(Mn)w〉 ≤ C|x|ξ|v||w|.

It follows by [4] (or by “direct” computation) that the following Sobolev estimate
holds.

Proposition 1.5.1. There is C <∞ such that for all f ∈ C∞0 (R(n−1)d) we have

(1.5.15) ||f ||22µ/(µ−2) ≤ C〈f,Mnf〉,

where µ := (n−1)d
2−ξ/2 is called the dimension of the semigroup e−Mnt.
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Now the following result by Varopoulos [22] (the proof can also be found from
[6], Theorem 2.4.2) yields that the heat kernel is pointwise bounded for t > 0.

Theorem 1.5.2. Suppose C∞0 (Rn) ⊆ Dom(H). Let e−Ht be a symmetric Markov
semigroup on L2(Rn) and let µ > 2 be given. Then there is C1 < ∞ such that
for all f ∈ C∞0 (Rn) we have

(1.5.16) ||f ||22µ/(µ−2) ≤ C1〈f,Hf〉.

if and only if there is C2 <∞ such that for all t > 0 and f ∈ L2(Rn) we have

(1.5.17) ||e−Htf ||∞ ≤ C2t
−µ/4||f ||2.

Here the constants C1 and C2 depend only on each other and the dimension µ of
the semigroup.

Since e−Ht is self-adjoint (1.5.17) also implies that

(1.5.18) ||e−Htf ||2 ≤ C2t
−µ/4||f ||1,

which in turn shows that

(1.5.19) ||e−Htf ||∞ ≤ C2

(
t

2

)−µ/4
||e−Ht/2f ||2 ≤ C3t

−µ/2||f ||1.

In particular K(t, x, ·) ≤ C3t
−µ/2.

The next part of phase one is to get Gaussian spatial estimate for the heat kernel.
This is provided by the following Definition and Theorem.

Definition 1.5.3. Let A be a symbol on Rn. The function

dA(x, y) := sup
{
|φ(x)− φ(y)| : φ is C∞ and bounded with

〈∇φ,A∇φ〉 ≤ 1 on Rn
}(1.5.20)

is called the metric associated with A (or H, if H := −∇ · A∇ or e−tH or the
heat kernel of H).

Theorem 1.5.4. Let µ be a positive real number. Suppose H := −∇ · A∇ ≥ 0
is a positive self-adjoint divergence form operator with e−Ht a symmetric Markov
semigroup of dimension µ. Then for each δ > 0 there is Cδ < ∞ such that the
heat kernel K of e−Ht satisfies

(1.5.21) 0 ≤ K(t, x, y) ≤ Cδt
−µ/2 exp{−dA(x, y)2

4(1 + δ)t
}

for all 0 < t < ∞ and x, y ∈ Rn. Besides δ, Cδ depends only on µ and the
constant C of (1.5.15).
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Proof. See [5].

This estimate is useful for analysis of GMn , but using it alone fails to establish
(1.5.12) as we shall shortly see. First of all we see that σ(M2) ∼ | · |ξ. Using
Theorem 1.5.4 we get a C <∞ such that

(1.5.22) KM2(t, x, y) ≤ Ct−
d

2−ξ exp{−|x− y|
2

Ct
}

for |x| = 1 and |x− y| ≤ 1
2
. Integrating with respect to t from 0 to ∞ yields

(1.5.23) GM2(x, y) ≤ C ′|x− y|2− 2d
2−ξ .

Integration w.r.t. y over |x− y| ≤ 1
2

yields a finite answer only if 2− 2d
2−ξ > −d,

that is ξ < 4
d+2

. This alone is not too bad, since we might be satisfied with
(1.5.12) for small ξ, but we quickly run into problems. For each n > 2 there
are points x ∈ S(n−1)d−1 so that σ(Mn) ∼ 1 in a neighbourhood U of x. Similar
arguments as above yield

(1.5.24) GMn(x, y) ≤ C ′n|x− y|2−
2(n−1)d

2−ξ .

Now an integration w.r.t. y near x gives a finite answer only when ξ < 4
(n−1)d+2

.
This means trouble: Given ξ with 0 < ξ < 2, there will always be some N so
that the above argument fails to give local integrability for M−1

n with n ≥ N .

The reason why this argument fails is that the estimate (1.5.22) is sub-optimal.
Since M2 is uniformly elliptic in a neighbourhood U of x ∈ Sd−1, the heat kernel of
M2 should behave (by e.g. physical intuition) like the heat kernel of the Laplacian
for small times and small distances from x.

So suppose we manage to verify that for |x| = 1, |x− y| ≤ ε ≤ 1
2

and 0 < t ≤ t0
we have

(1.5.25) KM2(t, x, y) ≤ C2t
− d

2 exp{−|x− y|
2

C2t
}.

Since there is some C3 < ∞ so that t−
d

2−ξ ≤ C3t
− d

2 for t ≥ t0 we can combine
(1.5.22) and (1.5.25) to get

(1.5.26) KM2(t, x, y) ≤ C4t
− d

2 exp{−|x− y|
2

C2t
}

for |x| = 1, |x− y| ≤ ε and 0 < t ≤ ∞. Now an integration w.r.t. t from 0 to ∞
gives

(1.5.27) GM2(x, y) ≤ C5|x− y|2−d
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for |x| = 1 and |x − y| ≤ ε. We get something similar for n > 2 for points
x ∈ S(n−1)d−1 with σ(Mn) ∼ 1 for some neighbourhood U of x.

Let us now briefly comment on how (1.5.25) can be proved. Let A be a symbol
defined on some domain U ⊆ Rn with B(0, 2) ⊆ U and assume that A is uniformly
elliptic on B(0, 2) and let λ and Λ be the corresponding lower and upper bounds
for the symbol. Now Moser’s (see [21]) parabolic Harnack inequality says that
there is a C < ∞ depending on A only trough λ and Λ (and n) so that for any
solution u of ut = ∇ · A∇u on (0, 3)×B(0, 2) we have

(1.5.28) ess supx∈B(0,1) u(1, x) ≤ C ess infx∈B(0,1) u(2, x).

Now we make a scaling argument. Let ε ∈ (0, 1] be given. Define uε(t, x) :=
u(εt,

√
εx) and Aε(x) := A(

√
εx). It is readily verified that uε satisfies uεt =

∇ · Aε∇uε and since the C above depended only on λ and Λ (and n), we have

(1.5.29) ess supx∈B(0,1) u
ε(1, x) ≤ C ess infx∈B(0,1) u

ε(2, x).

Scaling back to u this means that

(1.5.30) ess supx∈B(0,
√
ε) u(ε, x) ≤ C ess infx∈B(0,

√
ε) u(2ε, x).

Now since for say fixed x ∈ Rd and t > 0 the heat kernel K(·, x, ·) is a solution,
we can compute using the fact that the integral of a heat kernel is ≤ 1:

t
n
2K(t, x, 0) ≤ C|B(0,

√
t)| sup

x′∈B(0,
√
t)

K(t, x, x′)

≤ C ′|B(0,
√
t)| inf

x′∈B(0,
√
t)
K(2t, x, x′)

≤ C ′
∫

B(0,
√
t)

K(2t, x, x′) dx′

≤ C ′.

(1.5.31)

So this method gives the correct prefactor t−
d
2 of (1.5.25). Next we use a proba-

bilistic method, i.e. killing probabilities to get the exponential tail of (1.5.25).

The following is Proposition 6.5 on page 179 of [1].

Proposition 1.5.5. Suppose A ∼λ 1 on Rn. There is C < ∞ depending on A
only through λ (and n) such that

(1.5.32) PyA(sup
s≤t
|Xs − y| ≥ µ) ≤ C exp{− µ

2

Ct
}.
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Suppose then that A ∼λ 1 on B(0, 2). Then obviously (1.5.32) holds for y = 0
and µ < 2 with the same C, since obviously the killing probability of the diffusion
can only depend on the symbol on the set on whose boundary the diffusion is
killed at least if the sample paths of the diffusion are continuous almost surely.

To put it in another way, (1.5.32) says that the integral of the heat kernel K(t, 0, ·)
over |x| ≥ µ is less than C exp{− µ2

Ct
}. Therefore the argument of (1.5.31) yields

for any ε > 0 some C(ε) <∞ so that for any x ∈ B(0, 2− ε) we have

(1.5.33) K(t, 0, x) ≤ C(ε)t−
n
2 exp{− |x|

2

C(ε)t
}.

1.5.2 Gutiérrez-Wheeden results

For n > 2 we have degeneration points also outside of the origin. Large part of
my article ([14], Chapter 2) is devoted to proving similar estimates as (1.5.33)
also in this case. For this purpose one needs Harnack inequalities for degenerate
parabolic equations. These are provided by the results of [13].

Definition 1.5.6. Let w be a nonnegative locally integrable function (a weight)
defined on Rn. We denote w(A) :=

∫
A
w(x)dx. The function w is called a

doubling weight (resp. an A2-weight), if there is a constant C such that for every
ball B ⊂ Rn we have w(2B) ≤ Cw(B) (resp. 1

|B|2w(B)w−1(B) ≤ C).

Since by Schwartz inequality |B|2 ≤ w(B)w−1(B), we have |2B|2 = 22n|B|2 ≤
22nw(B)w−1(B) ≤ 22nw(B)w−1(2B), so we can conclude that an A2-weight is
also a doubling weight.

Definition 1.5.7. Denote uB := |B|−1
∫
B
u(x) dx and let w1, w2 be weights on

Rn and let q > 2. We say that the Poincaré inequality holds for w1, w2 with q,
if there is C <∞ so that for every ball B ⊆ Rn and u ∈W 1,2(B) we have

(
w2(B)−1

∫

B

|u− uB|qw2 dx

)1/q

≤ C|B|1/n
(
w1(B)−1

∫

B

|∇u|2w1 dx

)1/2

.

(1.5.34)

Theorem 1.5.8. (Harnack inequality) Suppose H := −∇ · A∇ is a divergence
form operator with w1 ≤ A ≤ w2 and suppose that the weights w1 and w2 satisfy
the following:

1. w1 and w2 are A2,

2. The Poincaré inequality holds for w1, w2 with some q > 2 and
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3. The Poincaré inequality holds for w1, 1 with some q′ > 2.

Let t0, ..., t4 ∈ R with t0 < ... < t4, Ω ⊆ Rn open and K ⊆ Ω compact and
connected. Let u be a strictly positive solution to ut + Hu = 0 in Ω × (t0, t4).
Then there is a constant C <∞ depending on Ω, K and t0, ..., t4, but on A only
through the bounds w1 and w2 so that

(1.5.35) ess supK×(t1,t2) u ≤ C ess infK×(t3,t4) u

Proof. This is just Theorem A of [13] supplemented with a covering argument
from [21], pages 734-736.

Remark 1.5.9. For the purposes of Theorem 1.5.8 the concept of u being a solution
of ut +Hu = 0 on Q := Ω× (t0, t4) means exactly the following:

1. u ∈ L2(Q),

2. ut ∈ L2(Q),

3. |∇u|2w2 ∈ L1(Q) and

4. For all φ ∈ C1
0(Q) we have

(1.5.36)

∫

Q

utφ+ 〈A∇u,∇φ〉 dx dt = 0.

The assumptions above have been verified in my article ([14], Chapter 2).
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Chapter 2

The Article

We prove estimates for the stationary state n-point functions at zero molecular
diffusivity in the Kraichnan model [17]. This is done by proving upper bounds
for the heat kernels and Green’s functions of the degenerate elliptic operators Mn

that occur in the Hopf equations for the n-point functions.

2.1 Introduction

The Kraichnan model of passive advection is an exactly solvable model that has
a very similar phenomenology to the full Navier-Stokes turbulence, but is much
simpler in many respects. I’ll only give a very short reminder for the reader.
More detailed introductions to the problem we are addressing can be found e.g.
in [11] and [18]. See also [7], [19] and [20].

Let T (t, x) ∈ R, x ∈ Rd be a scalar quantity satisfying

(2.1.1) ∂tT = κ∆T − v · ∇T + f.

In the Kraichnan model we take v and f random, decorrelated in time, indepen-
dent and Gaussian with mean zero and covariances

(2.1.2) 〈vα(t1, x1)vβ(t2, x2)〉 = Dαβ(x1 − x2)δ(t1 − t2) and

(2.1.3) 〈f(t1, x1)f(t2, x2)〉 = C(x1 − x2)δ(t1 − t2).

Here the v ·∇T should be interpreted in the Stratonovich sense. The incompress-
ibility of the velocity field v is guaranteed by taking

(2.1.4) Dαβ(x) =

∫
e−ik·xD(|k|)

(
δαβ − kαkβ

k2

)
dk

25
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where D is smooth, nonnegative and of compact support in (0,∞). A D that
mimics turbulent velocities is

(2.1.5) D(|k|) = |k|−(d+ξ)χ

(
|k|η +

1

|k|`

)

with χ smooth, χ = 1 in a neighbourhood of the origin and χ(x) = 0 for x > 1.
The idea is that D behaves like |x|ξ in the so-called inertial range η << |x| << `.
The number η is called the Kolmogorov scale and ` is called the inertial scale.
We let C̃ ∈ C∞0 (Rd) with a nonnegative Fourier transform and C := C̃(·/L), with
L > 0.

One is interested in the statistics of T (t, x) as t→∞. Let

(2.1.6) Fn(t, x1, ..., xn) := 〈T (t, x1)...T (t, xn)〉.

Given (2.1.2) and (2.1.3) the n-point functions Fn of the scalar T obey the so-
called Hopf equations (see [20]):

(2.1.7) ∂tFn(t, x1, ..., xn) = −MnFn(t, x1, ..., xn)+
∑

1≤i<j≤n
Fn−2(t, x1, . . .

îĵ
, xn)C(xi − xj),

with

(2.1.8) Mn := −
∑

1≤i<j≤n

∑

1≤α,β≤d
Dαβ(xi − xj)

∂2

∂xαi ∂x
β
j

− κ
∑

1≤i≤n
∆i.

The fact that the Hopf equation for Fn does not contain Fm with m > n makes
it easy to solve these equations inductively. The situation here differs drastically
from full Navier-Stokes turbulence, where the Hopf equation for Fn contains also
Fn+1.

Mn is an elliptic operator and in terms of its heat kernel Fn (with zero initial
condition for simplicity) is given by

(2.1.9) F2(t,x) =

∫ t

t0

ds

∫
dy e−(t−s)M2(x,y)C(y1 − y2)

(2.1.10) F2n(t,x) =
∑

1≤i<j≤2n

∫ t

t0

ds

∫
dy e−(t−s)M2n(x,y)·

· F2n−2(s, y1, . . .
îĵ
, y2n)C(yi − yj) dy

with vanishing odd correlators.
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As t0 → −∞ these have the stationary limit

(2.1.11) F2 =

∫
dy (M2)−1(x,y)C(y1 − y2)

(2.1.12) F2n =
∑

1≤i<j≤2n

∫
(M2n)−1(x,y)F2n−2(y1, . . .

îĵ
, y2n)C(yi − yj) dy.

One is interested in the study of F2n for η small, ` large, κ small and L large.
In this paper we prove bounds for these directly in the limit η = 0, ` = ∞ and
κ = 0 with fixed L, say L = 1. Our methods also allow the study of the limit
η → 0, `→∞ and κ→ 0 [15].

A comment on D is now in place. While sending η → 0 and `→∞ in D, we get
into trouble with `, since D diverges as ` → ∞. Fortunately it doesn’t matter:
Let

(2.1.13) dαβ(x) :=

∫
dk (1− eik·x)D(|k|)

(
δαβ − kαkβ

k2

)
.

Now (2.1.8) can be written in the following form:

(2.1.14) Mn :=
∑

1≤i<j≤n

∑

1≤α,β≤d
dαβ(xi−xj)

∂2

∂xαi ∂x
β
j

−κ∆−D0

( ∑

1≤i≤n

∑

1≤α≤d

∂

∂xαi

)2

In (2.1.7) Mn acts on translationally invariant functions, so the last term drops
out and the rest has a limit as `→∞.

Finally, here’s our main Theorem, proved directly at η = 0, ` =∞ and κ = 0:

Theorem 2.1.1.

(2.1.15) F2n(x) ≤ Cn
∑

π

∏

{i,j}∈π
(1 + |xi − xj|)2−ξ−d,

where the sum is over pairings of {1, ..., 2n}.

2.2 Preliminaries

This section fixes the notation and discusses the results from other papers ([4],
[6], [13], [22]) used in this paper. There is an overview of this paper in §2.3, so
the reader might want to start there.
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2.2.1 Degenerate elliptic operators in divergence form

Let Ω ⊂ Rn be a domain. We shall be interested in second order differential
operators in divergence form, i.e. in operators H of the form H = −∇ · A∇,
where A is a locally square integrable function from Ω to real symmetric positive
n × n matrices with locally square integrable distributional derivative, i.e. A ∈
W 1,2

loc (Ω,Mn). One can make sense of more general operators, but this is not
relevant to the results presented in this paper.

Definition 2.2.1. Let H and A be as above. The matrix A is called the symbol
of H, and we denote σ(H) := A. The function wH

1 (x) := infv∈Sn−1〈v, σ(H)(x)v〉
(resp. wH2 (x) := supv∈Sn−1〈v, σ(H)(x)v〉) is called the greatest lower bound (resp.
least upper bound) of the symbol.

We shall also use σ(H) to denote the quadratic form 〈v, A(x)v〉. The usage
will be clear from the context. We often speak loosely and forget the attributes
“greatest” and “lowest” from the bounds.

If A and B are two symbols and U ⊆ Rm, we shall denote A ∼λ B on U , if
λA ≤ B ≤ λ−1A a.e. on U . If there is λ > 0 so that A ∼λ B on U we also say
A ∼ B on U . If “on U” is dropped, we refer to whole Rm.

We shall use 1 to denote the identity matrix. Thus a symbol A is uniformly
elliptic iff A ∼ 1. Moreover, if A and B are symbols on Rn1 and Rn2 , then A⊕B
is just the natural symbol on Rn1+n2 .

Definition 2.2.2. Let w be a nonnegative locally integrable function (a weight)
defined on Rn. We denote w(A) :=

∫
A
w(x)dx. The function w is called a

doubling weight (resp. an A2-weight), if there is a constant C such that for every
ball B ⊂ Rn we have w(2B) ≤ Cw(B) (resp. 1

|B|2w(B)w−1(B) ≤ C).

Since by Schwartz inequality |B|2 ≤ w(B)w−1(B), we have |2B|2 = 22n|B|2 ≤
22nw(B)w−1(B) ≤ 22nw(B)w−1(2B), so we can conclude that an A2-weight is
also a doubling weight.

Definition 2.2.3. Denote uB := |B|−1
∫
B
u(x) dx and let w1, w2 be weights on

Rn and let q > 2. We say that the Poincaré inequality (resp. Sobolev inequality)
holds for w1, w2 with q, if there is C < ∞ so that for every ball B ⊆ Rn and
u ∈ W 1,2(B) (resp. u ∈ W 1,2

0 (B)) we have

(
w2(B)−1

∫

B

|u− uB|qw2 dx

)1/q

≤ C|B|1/n
(
w1(B)−1

∫

B

|∇u|2w1 dx

)1/2
(2.2.1)
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(resp.

(
w2(B)−1

∫

B

|u|qw2 dx

)1/q

≤ C|B|1/n
(
w1(B)−1

∫

B

|∇u|2w1 dx

)1/2
(2.2.2)

).

Theorem 2.2.4. (Harnack inequality) Suppose H := −∇ · A∇ is a divergence
form operator with w1 ≤ A ≤ w2 and suppose that the weights w1 and w2 satisfy
the following:

1. w1 and w2 are in A2,

2. The Poincaré inequality holds for w1, w2 with some q > 2 and

3. The Poincaré inequality holds for w1, 1 with some q′ > 2.

Let t0, ..., t4 ∈ R with t0 < ... < t4, Ω ⊆ Rn open and K ⊆ Ω compact and
connected. Let u be a strictly positive solution to ut + Hu = 0 in Ω × (t0, t4).
Then there is a constant C <∞ depending on Ω, K and t0, ..., t4, but on A only
through the bounds w1 and w2 so that

(2.2.3) ess supK×(t1,t2) u ≤ C ess infK×(t3,t4) u

Proof. This is just Theorem A of [13] supplemented with a covering argument
from [21], pages 734-736.

Remark 2.2.5. For the purposes of Theorem 2.2.4 the concept of u being a solution
of ut +Hu = 0 on Q := Ω× (t0, t4) means exactly the following:

1. u ∈ L2(Q),

2. ut ∈ L2(Q),

3. |∇u|2w2 ∈ L1(Q) and

4. For all φ ∈ C1
0(Q) we have

(2.2.4)

∫

Q

utφ+ 〈A∇u,∇φ〉 dx dt = 0



30 CHAPTER 2. THE ARTICLE

We are going to apply to apply the Harnack inequality only to heat kernels of
some degenerate elliptic operators. In particular as long as t0 > 0 all the above
items will hold.

Since the heat kernel is a positive distribution, it is a measure and (4) follows
from the fact that the heat kernel is a distributional solution of the corresponding
degenerate heat equation.

First of all (1) holds because for t0 > 0 the heat kernel is a bounded function on
Ω× (t0, t4) (by Corollary 2.4.22).

Secondly (2) holds because of the following computation which is justified by
Remark 2.2.8:

(∂tK)(s, ·, y) = −HK(s, ·, y)

= −e−(s−t0)HHe−t0H/2K(
t0
2
, ·, y).

(2.2.5)

Now since by Remark 2.2.7 e−tH is a contraction on L2,

(2.2.6) sup
s∈(t0,t4)

||∂tK(s, ·, y)||2 <∞.

Let A be the symbol of H. To prove (3) it suffices to show that |∇K| is locally
in L2, since w2 is locally bounded. Since

(2.2.7)

∫

Q

|∇K|2 dx dt ≤
∫

Q

w−1
1 〈A∇K,∇K〉 dx dt.

Since w1 is in A2 (by Lemma A.1.2), w−1
1 is locally integrable, so it suffices to

prove that 〈A∇K,∇K〉 is essentially bounded on Q. We show that for any
0 ≤ φ ∈ C∞0 (Q) we have

(2.2.8)

∫

Q

φ〈A∇K,∇K〉 ≤ C

∫

Q

φ,

with C not depending on φ.

So we compute using the facts that K and ∇ · A∇K are locally bounded:
∫

Q

φ〈A∇K,∇K〉 =

∣∣∣∣
∫

Q

K∇ · φA∇K
∣∣∣∣

≤ C

∣∣∣∣
∫

Q

〈A∇φ,∇K〉
∣∣∣∣+ C

∣∣∣∣
∫

Q

φ∇ · A∇K
∣∣∣∣

≤ 2C

∣∣∣∣
∫

Q

φ∇ · A∇K
∣∣∣∣ ≤ C ′

∫

Q

φ.

(2.2.9)

It follows from the results in §2.4.2 and Appendix A.1 that this Harnack inequality
holds for the operators Mn, which will be our main interest and will be defined
in §2.2.3.
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2.2.2 Gaussian upper bounds for heat kernels

The material in this section is mostly taken from [6]. For more information, see
sections 1.3, 2.4 and 3.2 there. See also [5] and [22].

Definition 2.2.6. Let H ≥ 0 be a real self-adjoint operator on L2(Rn). We call
the semigroup e−Ht a symmetric Markov semigroup, if it is positivity-preserving
and a contraction on L∞(Rn).

Remark 2.2.7. By saying that e−Ht is a contraction on Lp with p 6= 2 we mean that
e−Ht is a contraction on Lp ∩L2 and can be extended to a unique contraction on
Lp. In the case of L∞ we have to impose the extra condition of weak* continuity
to achieve uniqueness since L∞ ∩ L2 is not norm dense in L∞.

Remark 2.2.8. A symmetric Markov semigroup is strongly continuous on Lp with
1 ≤ p <∞, see Theorem 1.4.1 of [6]. This in particular implies that the generator
H commutes with the semigroup e−Ht (see [5]).

By Theorem 1.3.5 of [6], any self-adjoint divergence form operator with non-
negative symbol and core C∞0 (Rn) gives rise to a symmetric Markov semigroup.
The Theorem there is stated for “elliptic” operators, but the proof works for any
non-negative symbol. The keywords here are self-adjointness and core C∞0 . Both
follow for Mn from the fact that σ(Mn) ∈W 1,2

loc (R(n−1)d) (Proposition 2.4.3). See
Theorem 1.2.5 of [6].

Definition 2.2.9. Let e−Ht be a symmetric Markov semigroup on L2(Rn). We
say that e−Ht is ultracontractive if the map e−Ht is bounded from L2 to L∞ for
every t > 0.

Definition 2.2.10. Suppose that C∞0 (Rn) ⊆ Dom(H). Let e−Ht be a symmetric
Markov semigroup on L2(Rn). We say that e−Ht (or H or σ(H)) is of dimension
µ if there is C2 <∞ such that for all t > 0 and f ∈ L2(Rn) we have

(2.2.10) ||e−Htf ||∞ ≤ C2t
−µ/4||f ||2.

Note that the dimension of a semigroup need not be unique.

There is a standard method for obtaining global Gaussian upper bounds for
heat kernels of divergence form operators with nonnegative symbols using global
space-independent bounds. A good reference for this is [5].

Definition 2.2.11. Let A be a symbol on Rn. The function

dA(x, y) := sup
{
|φ(x)− φ(y)| : φ is C∞ and bounded with

〈∇φ,A∇φ〉 ≤ 1 on Rn
}(2.2.11)

is called the metric associated with A (or H, if H := −∇ · A∇ or e−tH or the
heat kernel of H).
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The following Theorem was proved by Varopoulos [22].

Theorem 2.2.12. Let µ be a positive real number. Suppose H := −∇ · A∇ ≥ 0
is a positive self-adjoint divergence form operator with e−Ht a symmetric Markov
semigroup of dimension µ. Then for each δ > 0 there is Cδ < ∞ such that the
heat kernel K of e−Ht satisfies

(2.2.12) 0 ≤ K(t, x, y) ≤ Cδt
−µ/2 exp{−dA(x, y)2

4(1 + δ)t
}

for all 0 < t < ∞ and x, y ∈ Rn. Besides δ, Cδ depends only on µ and the
constant C2 of Definition 2.2.10.

Proof. See [22] or [5].

We shall use the following Theorem later to get the dimension of Mn in Corol-
lary 2.4.22.

Theorem 2.2.13. Suppose C∞0 (Rn) ⊆ Dom(H). Let e−Ht be a symmetric
Markov semigroup on L2(Rn) and let µ > 2 be given. Then there is C1 < ∞
such that for all f ∈ C∞0 (Rn) we have

(2.2.13) ||f ||22µ/(µ−2) ≤ C1〈f,Hf〉.

if and only if there is C2 <∞ such that for for all t > 0 and f ∈ L2(Rn) we have

(2.2.14) ||e−Htf ||∞ ≤ C2t
−µ/4||f ||2.

Here the constants C1 and C2 depend only on each other and the number µ.

Proof. This is just Theorem 2.4.2 of [6].

Remark 2.2.14. One can show using the Schwartz Kernel and Radon-Nikodym
Theorems that a bounded linear map L : L1 → L∞ has a integral kernel that
is a function in L∞ whose L∞-norm equals the operator norm of L. Since our
e−Ht is self-adjoint, boundedness of e−Ht : L2 → L∞ implies boundedness of
e−Ht : L1 → L2, so in this case we have a heat kernel that is a genuine function.

Finally, we give a nice way to estimate heat kernels of operators H that have
symbols satisfying σ(H) ∼ A1 ⊕ A2.

Theorem 2.2.15. Suppose that for i = 1, 2, Ai is a symbol on Rni such that
et∇·Ai∇ is a symmetric Markov semigroup on L2(Rni) and B ∼λ A1⊕A2. Suppose
also that the heat kernels of Ai’s satisfy

(2.2.15) KAi(t, x, y) ≤ Cit
−µi

2 exp{−dAi(x, y)2

Cit
}.
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Then there is C < ∞ depending only on C1, C2, µ1, µ2 and λ so that the heat
kernel of B satisfies

(2.2.16) KB(t, x, y) ≤ Ct−
µ1+µ2

2 exp{−dA1(x, y)2 + dA2(x, y)2

Ct
}.

Proof. SinceKA1⊕A2(t, (x1, x2), (y1, y2)) = KA1(t, x1, y1)KA2(t, x2, y2), we can con-
clude that

(2.2.17) KA1⊕A2 ≤ C1C2t
−µ1+µ2

2 ,

which by Riesz-Thorin interpolation theorem and the fact that et∇·A1⊕A2∇ is a
contraction L∞ imply (2.2.14) for H = −∇ · A1 ⊕ A2∇. Therefore by Theo-
rem 2.2.13

(2.2.18) ||f ||22µ/(µ−2) ≤ C3〈∇f, (A1 ⊕ A2)∇f〉

for any f ∈ C∞0 (Rn1+n2) with C3 depending only on C1C2 and µ1 + µ2. Since
A1 ⊕ A2 ≤ λ−1B, we have

(2.2.19) KB ≤ C4t
−µ1+µ2

2 ,

with C4 depending only on C1C2, µ1 + µ2 and λ. We now apply Theorem 2.2.12
to conclude the claim.

2.2.3 The definition of the operators Mn

For the rest of the paper, we fix a constant ξ, 0 < ξ < 2 and an integer d ≥ 2.
Here d is the dimension of the “physical” space.

Next, we overload the symbol d immediately and let d be the map from Rd to
d× d matrices defined by

(2.2.20) d(x) := C

∫

Rd

1− cos(k · x)

|k|d+ξ
(1− k̂ ⊗ k̂) dk,

with

(2.2.21) C :=
(4π)d/22ξξΓ((d+ ξ + 2)/2)

(d− 1)Γ((2− ξ)/2)
.

A computation (see e.g. [9]) shows that

(2.2.22) d(x) = |x|ξ
(

(1 +
ξ

d− 1
)1− ξ

d− 1
x̂⊗ x̂

)
.

In the following definition, we denote vectors in Rnd by {vi}ni=1, where each vi is
a vector in Rd.
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Definition 2.2.16. Let n ≥ 2. The operator Msc
n := −∇ · σ(Msc

n )∇ is the one
with the symbol

(2.2.23) σ(Msc
n ) := −

∑

1≤i<j≤n
〈vi, d(xi − xj)vj〉

If a ∈ Rd, we denote the vector (xi+a)ni=1 by x+a. We call a function f : Rnd → R
translationally invariant, if for every a ∈ Rd and x ∈ Rnd we have f(x) = f(x+a).

We shall be interested inMsc
n acting on translationally invariant functions, so we

need to reduce the number of total space dimensions to (n− 1)d.

In other words, we set xi := yi − yi+1 for 1 ≤ i ≤ n− 1, so

(2.2.24)
∂

∂yαi
=





∂
∂xα1

if i = 1,
∂
∂xαi
− ∂

∂xαi−1
if 2 ≤ i ≤ n− 1 and

∂
∂xαn−1

if i = n.

Denote the symbol obtained in this way by σ(Mn). A simple calculation shows
that σ(Mn) equals

(2.2.25)
n−1∑

i=1

n−1∑

j=i

〈vi, (d(

j∑

k=i

xk)− d(

j−1∑

k=i

xk)− d(

j∑

k=i+1

xk) + d(

j−1∑

k=i+1

xk))vj〉

In particular,

(2.2.26) σ(M2) = 〈v1, d(x1)v1〉,

σ(M3) =〈v1, d(x1)v1〉+ 〈v2, d(x2)v2〉+
〈v1, (d(x1 + x2)− d(x1)− d(x2))v2〉

(2.2.27)

and

σ(M4) =〈v1, d(x1)v1〉+ 〈v2, d(x2)v2〉+ 〈v3, d(x3)v3〉
〈v1, (d(x1 + x2)− d(x1)− d(x2))v2〉
〈v2, (d(x2 + x3)− d(x2)− d(x3))v3〉
〈v1, (d(x1 + x2 + x3)− d(x1 + x2)− d(x2 + x3) + d(x2))v3〉

(2.2.28)

2.3 Overview

Our intent here is to give some intuition on the arguments of this paper and how
they lead to the proof of Theorem 2.1.1. What is obvious at first sight, is that if
Theorem 2.1.1 is to hold, the Green’s functions of the operators M2n should be
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locally integrable in the sense that for every n ≥ 2 there is C < ∞ so that for
every x ∈ R(2n−1)d we have

(2.3.1)

∫

B(x,1)

d(2n−1)dy GM2n(x, y) < C.

One might hope to get (2.3.1) to hold using the heat kernel estimate of Theo-
rem 2.2.12, but unfortunately this direct approach fails. First of all we see that
σ(M2) ∼ | · |ξ. Applying Definition 2.2.11, Corollary 2.4.22 and Theorem 2.2.12
to this, we find a C <∞ such that

(2.3.2) KM2(t, x, y) ≤ Ct−
d

2−ξ exp{−|x− y|
2

Ct
}

for |x| = 1 and |x− y| ≤ 1
2
. Integrating with respect to t from 0 to ∞ we get

(2.3.3) GM2(x, y) ≤ C ′|x− y|2− 2d
2−ξ .

This estimate yields (2.3.1) only when 2− 2d
2−ξ > −d, that is ξ < 4

d+2
. We might

be satisfied with the fact that (2.3.1) holds only for small ξ, but there is worse
to come: For each σ(Mn) will have points x ∈ S(n−1)d−1 so that σ(Mn) ∼ 1 in a
neighbourhood U of x. A similar argument as above now yields

(2.3.4) GM2n(x, y) ≤ C ′|x− y|2−
2(n−1)d

2−ξ

for y ∈ U . This yields (2.3.1) for Mn only when ξ < 4
(n−1)d+2

, which means
trouble: Given ξ with 0 < ξ < 2, there will always some be N so that our
argument above fails to give local integrability for Mn with n ≥ N .

On the other hand, since M2 is uniformly elliptic in a neighbourhood U of x, the
heat kernel of M2 should behave like the heat kernel of the Laplacian for small
times and small distances from x.

Turning this analysis into formulas let’s suppose

(2.3.5) KM2(t, x, y) ≤ C2t
− d

2 exp{−|x− y|
2

C2t
}

for |x| = 1, |x − y| ≤ ε ≤ 1
2

and 0 < t ≤ t0. Since there is C3 < ∞ so that

t−
d

2−ξ ≤ C3t
− d

2 for t ≥ t0, we can combine (2.3.2) with (2.3.5) and conclude that

(2.3.6) KM2(t, x, y) ≤ C4t
− d

2 exp{−|x− y|
2

C4t
}

for |x| = 1, |x− y| ≤ ε and 0 < t <∞. Now an integration w.r.t. t from 0 to ∞
yields

(2.3.7) GM2(x, y) ≤ C5|x− y|2−d
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for |x| = 1 and |x− y| ≤ ε. The same holds for Mn with n > 2. This leads us to
a further twist: for n > 2, σ(Mn) has degeneracies also outside of the origin, but
fortunately in the end these turn out not to be problematic.

A few words on the structure of the rest of the paper. In §2.4 the symbols of
Mn are analyzed in detail. The local analysis of the heat kernels is done in §2.5.
Theorem 2.1.1 is proved in §2.6 and §2.7 is devoted to proving a technicality
needed in §2.6. Finally, there are three appendices containing technicalities.

2.4 The operators Mn

From now on, we live in R(n−1)d and denote vectors of R(n−1)d with v = (vi)
n−1
i=1

and x = (xi)
n−1
i=1 , where vi, xi ∈ Rd.

The symbol of Mn has a bunch of useful symmetries, inherited from Msc
n . For

L : Rk → Rl a surjective linear mapping and A a symbol on Rk which for all
x ∈ Rk is constant on {x} + kerL denote AL(x) := LA(L−1x)LT , where L−1

is some right-inverse of L. Let Ln : Rnd → R(n−1)d be given by the matrix
(Ln)ij := δij − δi+d,j , so that σ(Mn) = σ(Msc)Ln

We let

(2.4.1) Ln = {LnLL−1
n : L is a permutation of the coordinate axes of Rnd}.

Now σ(Mn)L = σ(Mn) for every L ∈ Ln
Remark 2.4.1. Let A1 and A2 be two symbols on Rk and let G1, G2 ⊆ GL(Rk)
be their respective symmmetry groups, i.e

(2.4.2) Gi := {L ∈ GL(Rk) : ALi = Ai},

for i ∈ {1, 2}. Now if A1 ∼ A2 on U , then A1 ∼ A2 on LU for any L ∈ G1 ∩G2.

Remark 2.4.2. A simple calculation shows that Mn is degenerate, whenever∑b
i=a xi = 0, where 1 ≤ a ≤ b ≤ n − 1. In fact these are the only points

where Mn degenerates, as we see in Theorem 2.4.7. To avoid lengthy statements
in the rest of the paper, we denote {x ∈ R(n−1)d : xi = 0} by {xi = 0} and
similarly for the other sets.

Proposition 2.4.3.

(2.4.3) σ(Mn) ∈W 1,2
loc (R(n−1)d)

Proof. The case 1 < ξ < 2 is an easy computation, since then σ(Mn) is continu-
ously differentiable.
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In case 0 < ξ ≤ 1, we let

(2.4.4) F :=
⋃

1≤a≤b<n
{

b∑

i=a

xi = 0}.

A relatively simple calculation shows that there is C <∞ such that

(2.4.5) |∇(σ(Mn))(x)| ≤ Cd(x, F )ξ−1.

Since F is a finite union of vector subspaces of codimension d ≥ 2, we can
conclude that d(x, F )ξ−1 is a locally square integrable function.

Remark 2.4.4. It is trivial to get an upper bound for Mn:

(2.4.6) σ(Mn) ≤ ( sup
|y|=|w|=1

〈w, σ(Mn)(y)w〉)|x|ξ|v|2.

We obtain a better upper bound in section §2.4.2.

Proposition 2.4.5. For any ε ∈ (0, 1) there is C <∞ such that

(2.4.7) dσ(Mn)(x, y) ≤ C|x− y|1−ξ/2,

when |x− y| ≥ ε|x|.

Proof. By Definition 2.2.11 and Remark 2.4.4 it suffices to show that there is C <
∞ such that d|·|ξ(x, y)2 ≤ C|x − y|2−ξ, when |x − y| ≥ ε|x|. Trivial dimensional

analysis gives d|·|ξ(x, y) = |x|1−ξ/2d|·|ξ(x̂, y
|x|). Therefore we may assume |x| = 1.

By rotational symmetry, we may fix x. By scaling, there is C ′ < ∞ so that
C ′|y|1−ξ/2 = d|·|ξ(0, y). Since now

d|·|ξ(x, y)2

|x− y|2−ξ = C ′
d|·|ξ(x, y)2

d|·|ξ(0, x− y)2
,(2.4.8)

it suffices to show that f(R) := sup|x−y|=R d|·|ξ(x, y)/d|·|ξ(0, x − y) is a bounded
function of R for R ∈ [ε,∞). Obviously f is continuous. By continuity of d|·|ξ we
have

(2.4.9)
d|·|ξ(x, y)2

d|·|ξ(0, x− y)2
=
d|·|ξ(

x
|x−y| ,

y
|x−y|)

2

d|·|ξ(0, x̂− y)2
→ d|·|ξ(0, ŷ)2

d|·|ξ(0, ŷ)2
= 1

as |x− y| → ∞.
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2.4.1 Fourier integral representation and the degenera-
tion set

Definition 2.4.6. Let A be a symbol. We call the set

(2.4.10) Dgn(A) := {x ∈ Rn : A(x) is not invertible}

the degeneration set of A.

The following Fourier integral representation of the symbol is crucial for the
computation of the degeneration sets of Mn (which then implies corresponding
properties for the operators Mn to be introduced later).

Theorem 2.4.7. The degeneration set of Mn is

(2.4.11) Dgn(Mn) =
⋃

1≤i≤j<n
{x ∈ R(n−1)d : |xi + ...+ xj| = 0}.

Proof. By Remark 2.4.2, it suffices to show that for every v ∈ Rnd with
∑n

i=1 vi =
0 we have −∑1≤i<j≤n〈vi, d(xi−xj)vj〉 > 0 whenever xi 6= xj for all 1 ≤ i < j ≤ n.

We have

−
∑

1≤i<j≤n
〈vi, d(xi − xj)vj〉 = −1

2

∑

1≤i,j≤n
〈vi, d(xi − xj)vj〉

= −C
2

∫

Rd
Re(

∑

1≤i,j≤n

1− eik·(xi−xj)
|k|d+ξ

〈vi, (1− k ⊗ k)vj〉) dk

=
C

2

∫

Rd
Re〈

n∑

i=1

vie
ik·xi ,

1− k ⊗ k
|k|d+ξ

n∑

i=1

vie
ik·xi〉 dk

(2.4.12)

The rest goes as in Proposition 1 of [9]: For the integral to be zero, we have to
have

(2.4.13)
n∑

i=1

vie
ik·xi = α(k)k

almost everywhere for some scalar function α. Taking the exterior product (i.e.
the antisymmetric part of the tensor product) with respect to k and Fourier
transforming in the sense of distributions we arrive at

(2.4.14)
n∑

i=1

vi ∧∇δ(x− xn) = 0.
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Thus for any smooth test function φ

(2.4.15)
n∑

i=1

vi ∧∇φ(xn) = 0.

This is a contradiction since the values of ∇φ can be arbitrarily specified on a
discrete set and the xn’s are all distinct.

2.4.2 Estimates for the symbol of Mn

We shall now show that the symbol of Mn can be estimated using the symbols
of Mm, m ∈ {2, ..., n− 1}.

Definition 2.4.8. Let x ∈ R(n−1)d. The dimension of the zero eigenspace of
σ(Mn) at x divided by d is called the rank of the point x and denoted rk(x). In
particular x is a degeneration point of σ(Mn) iff rk(x) > 0.

Below, for a symbol A and invertible linear transformation L we define the symbol
AL by the formula AL(x) := LA(L−1x)LT .

Theorem 2.4.9. Let n ≥ 2 and x ∈ S(n−1)d−1. Then either Mn is uniformly
elliptic in some neighbourhood of x or there is a invertible linear transformation
L of R(n−1)d, a neighbourhood U of Lx so that σ(Mn)L ∼ ⊕k

i=1 σ(Mni) ⊕ 1 on

U with k ≥ 1, each nk ≥ 2, rk(x) =
∑k

i=1(nk − 1) < n − 1 and (Lx)i = 0 for

1 ≤ i ≤∑k
j=1(nk − 1).

Let’s introduce some convenient notation at this point. First of all [i, j] :=
{i, ..., j}. Let A ⊆ [1, n]. Then we write

xA :=
∑

i∈A
xi

γA := 〈vminA, (d(xA)− d(xA\{minA})

− d(xA\{maxA}) + d(xA\{minA,maxA}))vmaxA〉
σA :=

∑

i,j∈A;i≤j
γA∩[i,j].

(2.4.16)

Moreover xi,j := x[i,j], σi,j := σ[i,j], γi,j := γ[i,j] and σi := γi := γ{i}.

2.4.3 Two propositions for the proof of Theorem 2.4.9

Our purpose here is to prove Proposition 2.4.10 and Proposition 2.4.17. Let us
illustrate what we’re going to do by studying σ(M3) in some detail.
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Let x ∈ S2d−1 be such that x1 = 0, i.e. x = (x1, x2) with x2 ∈ Sd−1. We’ll show
that there is a neighbourhood U of x and C < ∞ so that for every y ∈ U we
have

(2.4.17)
1

C

(
|y1|ξ|v1|2 + |y2|ξ|v2|2

)
≤ σ(M3)(y) ≤ C

(
|y1|ξ|v1|2 + |y2|ξ|v2|2

)
.

Let E be given by Lemma 2.4.11 and let ε ∈ (0, 1
4
) be such that

(2.4.18) E
(
(2ε)1−ξ/2 + (2ε)ξ/2

)
≤ 1

2

and let

(2.4.19) U := B(0, ε)× {1

2
< |y2| <

3

2
}.

By our choice of ε we have

(2.4.20) |γ1,2| ≤
1

2
(|y1|ξ|v1|2 + |y2|ξ|v2|2)

in U . In other words (2.4.17) holds and thus σ(M3) ∼ σ(M2)⊕ 1 on U .

Proposition 2.4.10 will be used when we have several (or all) coordinates away
from the degeneration set. As might be guessed from our calculation with σ(M3),
the point of Lemmata 2.4.11-2.4.14 is that in the proof of Theorem 2.4.9 we need
to have estimates for the crossterms with the flavor

(2.4.21) |γi,j| ≤ something · (|xi|ξ|vi|2 + |xj|ξ|vj|2).

We have neatly blackboxed all this mess into Proposition 2.4.17; the Lemmata of
this section are not directly used in the proof of Theorem 2.4.9. The proofs can
be found in Appendix A.2.

Proposition 2.4.10. Suppose n ≥ 1, ε ∈ (0, 1) and let
(2.4.22)
A := {x ∈ Rnd : εmax{|xi,j| : 1 ≤ i ≤ j ≤ n} ≤ min{|xi,j| : 1 ≤ i ≤ j ≤ n}}.

Then there is C <∞ so that for every x ∈ A we have

(2.4.23)
1

C

n∑

i=1

|xi|ξ|vi|2 ≤ σ(Mn+1) ≤ C
n∑

i=1

|xi|ξ|vi|2

Lemma 2.4.11. There is a constant E < ∞ such that if 1 ≤ i < n and |xi| <
1
2
|xi+1|, then

|〈vi,(d(xi + xi+1)− d(xi)− d(xi+1))vi+1〉|

≤ E

(( |xi|
|xi+1|

)1−ξ/2
+
( |xi|
|xi+1|

)ξ/2
)

(|xi|ξ|vi|2 + |xi+1|ξ|vi+1|2).
(2.4.24)
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Lemma 2.4.12. There is a constant E <∞ such that if 1 ≤ i < i+ 1 < j ≤ n,
|xi| < 1

2
min{|xi+1,j|, |xi+1,j−1|} and |xj| > 0, then

|〈vi,(d(xi,j)− d(xi+1,j)− d(xi,j−1) + d(xi+1,j−1))vj〉|

≤ E

(( |xi|
|xi+1,j|

)1−ξ/2( |xi+1,j|
|xj|

)ξ/2
+
( |xi|
|xi+1,j−1|

)1−ξ/2( |xi+1,j−1|
|xj|

)ξ/2
)

· (|xi|ξ|vi|2 + |xj|ξ|vj|2).

(2.4.25)

Lemma 2.4.13. There is a constant E <∞ such that if 1 ≤ i < i+ 1 < j ≤ n,
1
2
|xi+1,j−1| ≤ |xi| < 1

2
|xi+1,j| and |xj| > 0, then

|〈vi,(d(xi,j)− d(xi+1,j)− d(xi,j−1) + d(xi+1,j−1))vj〉|

≤ E

(( |xi|
|xi+1,j|

)1−ξ/2( |xi+1,j|
|xj|

)ξ/2
+
( |xi|
|xj|
)ξ/2
)

(|xi|ξ|vi|2 + |xj|ξ|vj|2).

(2.4.26)

Lemma 2.4.14. There is E < ∞ so that if 1 ≤ i < i + 1 < j ≤ n and
max{|xi|, |xj|} < 1

3
{|xi+1,j−1|}, we have

|〈vi,(d(xi,j)− d(xi+1,j)− d(xi,j−1) + d(xi+1,j−1))vj〉|

≤ E
( |xi|
|xi+1,j−1|

)1−ξ/2( |xi|
|xi+1,j−1|

)1−ξ/2
(|xi|ξ|vi|2 + |xj|ξ|vj|2).

(2.4.27)

We still have one more Lemma to go before we can start proving Proposi-
tion 2.4.17. We’ll illustrate it with σ(M6). Let x ∈ S5d−1 with |x1| = |x3| =
|x5| = 0 and |x2|, |x4|, |x2,4| > 0. By Proposition 2.4.10 σ{2,4}(y2, y4) behaves like
|y2|ξ|v2|2 + |y4|ξ|v4|2 in a neighbourhood of (x2, x4). Unfortunately the relevant
part of σ(M6) is γ2 + γ4 + γ2,4, but at least we would have some hope, if we could
get an estimate of the form

(2.4.28) |γ2,4 − γ{2,4}| ≤ something · (|y2|ξ|v2|2 + |y4|ξ|v4|2)

for y in a neighbourhood of x.

This is the point of Lemma 2.4.15. More precisely, let

(2.4.29) µ := min{|y2|, |y4|, |y2,4|} ≤ max{|y2|, |y4|, |y2,4|} =: ν

and let C <∞ be such that if µ
2
< |y2|, |y4|, |y2 + y4| < 2ν we have

(2.4.30)
1

C
(|y2|ξ|v2|2 + |y4|ξ|v4|2) ≤ σ{2,4} ≤ C(|y2|ξ|v2|2 + |y4|ξ|v4|2).
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Let ε ∈ (0, µ
6
) be such that

(2.4.31) E

((2ε

µ

)1−ξ/2(4ν

µ

)ξ/2
+
(2ε

µ

)ξ/2
)
≤ 1

2C
.

Let

(2.4.32) U := {|y3| < ε and
µ

2
< |y2|, |y4|, |y2,4|, |y2 + y4| < 2ν}.

By Lemma 2.4.15 for y ∈ U we have

(2.4.33) |γ2,4 − γ{2,4}| ≤
1

2C
(|y2|ξ|v2|2 + |y4|ξ|v4|2).

Combining (2.4.33) with (2.4.30) we conclude that γ2 + γ4 + γ2,4 behaves like
|y2|ξ|v2|2 + |y4|ξ|v4|2 in U .

Again, the proof of the following Lemma can be found in Appendix A.2.

Lemma 2.4.15. There is E < ∞ such that if 1 ≤ i < j ≤ n and {i, j} ⊆ A ⊆
[i, j] and if

∑
k∈[i,j]\A |xk| ≤ 1

2
min{|xk,l| : k, l ∈ A, k ≤ l} Then

|γi,j − γA| ≤ E

((
∑

k∈[i,j]\A |xk|
min{|xk,l| : k, l ∈ A, k ≤ l}

)1−ξ/2(
∑

k∈A |xk|
|xj|

)ξ/2

+
(

∑
k∈[i,j]\A |xk|

min{|xk,l| : k, l ∈ A, k ≤ l}
)ξ/2
)

(|xi|ξ|vi|2 + |xj|ξ|vj|2).

(2.4.34)

If L ∈ GL(R(n−1)d), we shall use the following somewhat weird notation: If x ∈
R(n−1)d, we let Lxi := (Lx)i for 1 ≤ i ≤ n − 1. Similarly, we let Lxi,j := (Lx)i,j
for 1 ≤ i ≤ j ≤ n− 1.

Remark 2.4.16. Let x be a degeneration point of σ(Mn). We claim that there
is a symmetry L ∈ Ln and A ( {1, ..., n − 1} so that |Lxi| = 0 if i ∈ A and
Lxi,j > 0 if {i, ..., j} 6⊆ A. This is easy to see, if we look at the original symbol
σ(Msc

n ). Then the claim above simply says that if we have points y1, ..., yn ∈ Rd,
then there is a permutation π ∈ Sn so that if yπ(i) = yπ(j) with π(i) ≤ π(j), then
yπ(i) = yk with every k with π(i) ≤ k ≤ π(j). Still in other words: if we pick n
possibly coinciding points from Rd, we can label them with numbers 1, ..., n so
that the coinciding points get consecutive numbers as labels.

Given x and A as above, write A as

(2.4.35) {i1, ..., j1} ∪ ... ∪ {im, ..., jm}
with i1 ≤ j1 < j1 + 1 < i2 ≤ ... < im ≤ jm and write σ(Mn) as

(2.4.36) σ(Mn) =
m∑

l=1

σil,jl + σAc +
∑

i,j∈Ac
γi,j − σAc + the rest.

Let µ := min{|xi,j| : {i, ..., j} 6⊆ A} and ν := max{|xi,j| : {i, ..., j} 6⊆ A}.
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Proposition 2.4.17. For any C > 0 there is a neighbourhood U of x so that

(2.4.37) |
∑

i,j∈Ac
γi,j − σAc + the rest | ≤ 1

2C

n∑

i=1

|yi|ξ|vi|2

for any y ∈ U .

Proof. For ε > 0 let
(2.4.38)
U ε := {y ∈ Rnd : |yi,j| < ε if {i, ..., j} ⊆ A and µ/2 < |yi,j| < 2ν otherwise}.

Let N := n(n−1)
2

be the number of terms in σ(Mn). We’ll find ε > 0 so that each
term in (2.4.37) is ≤ 1

2NC

∑n
i=1 |xi|ξ|vi|2 where we count each γi,j − γAc∩[i,j] with

i, j ∈ Ac as one term.

A (long) moment’s look at Lemmata 2.4.11-2.4.15 reveals us that this is possible.
Here’s a list of the requirements for ε.

1. Lemma 2.4.11: ε < µ
4

and E((2ε
µ

)1−ξ/2 + (2ε
µ

)ξ/2) ≤ 1
2NC

2. Lemma 2.4.12: ε < µ
4

and 2E(2ε
µ

)1−ξ/2(4ν
µ

)ξ/2 ≤ 1
2NC

.

3. Lemma 2.4.13: ε < µ
4

and E((2ε
µ

)1−ξ/2(4ν
µ

)ξ/2 + (2ε
µ

)ξ/2) ≤ 1
2NC

4. Lemma 2.4.14: ε < µ
6

and E(2ε
µ

)2−ξ ≤ 1
2NC

5. Lemma 2.4.15: nε < µ
4

and E((2nε
µ

)1−ξ/2(4nν
µ

)ξ/2 + (2nε
µ

)ξ/2) ≤ 1
2NC

.

2.4.4 The proof of Theorem 2.4.9

Proof. (of Theorem 2.4.9) We shall prove this Theorem by induction on n and
we shall accomplish this by proving in parallel that there is a constant C < ∞
so that for any x ∈ R(n−1)d there is K ∈ Ln so that

(2.4.39)
1

C

n−1∑

i=1

|Kxi|ξ|vi|2 ≤ σ(Mn) ≤ C

n−1∑

i=1

|Kxi|ξ|vi|2.

This is trivial for σ(M2). We assume now that the claim above is true for σ(Mm),
2 ≤ m < n and prove it for σ(Mn). This is done as follows. For every x ∈ Snd−1

we find a neighbourhood Ux of x so that the claim above holds on Ux with a
constant C(x) depending on x . Since Snd−1 is compact, there is a finite set
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{x1, ...,xk} so that Snd−1 ⊆ ⋃k
i=1 Uxk , so the claim above will then hold with

C = max1≤i≤k C(xi).

If x is not a degeneration point of Mn+1, then by Proposition 2.4.10 the estimate
above can be satisfied in a neighbourhood of x with K = 1, so we assume x is a
degeneration point.

We now apply the symmetry discussed in Remark 2.4.16, so we can assume there
is nonempty A ( {1, ..., n} so that |xi| = 0 if i ∈ A and |xi,j| > 0 if {i, ..., j} 6⊆ A.
Write A as {i1, ..., j1}∪ ...∪{im, ..., jm} with i1 ≤ j1 < j1 +1 < i2 < ... < im ≤ jm.
Denote Ac := {1, ..., n} \ A. We may even assume that i1 = 1 and if m > 1, we
have jm = n. Note that rk(x) = #(A). Let U ′ be the neighbourhood of x given
by Proposition 2.4.17.

Recall that µ and ν were defined as µ := min{|xi,j| : {i, ..., j} 6⊆ A} and ν :=
max{|xi,j| : {i, ..., j} 6⊆ A}. Let

(2.4.40) U := U ′ ∩ {µ
2
< |yB| < 2ν : B 6⊆ A}.

First of all, let C <∞ be such that our induction hypothesis is satisfied with it
for 2 ≤ m < n and also that C is so large that the conclusion of Proposition 2.4.10
holds with ε := µ

4ν
. Also we require that

(2.4.41)
1

C
max
B 6⊆A
|yB|ξ ≤ 1 ≤ C min

B 6⊆A
|yB|ξ

holds whenever y ∈ U .

We claim that on U we have σ(Mn) ∼ σ(Mj1+1) ⊕ 1 if m = 1 and σ(Mn) ∼
σ(Mj1+1)⊕ 1⊕ σ(Mj2−i2+2)⊕ ...⊕ 1⊕ σ(Mn−im+2) otherwise. Denote the right-
hand sides of these expressions collectively as Σ.

By our induction hypotheses, for any y′ ∈ U and any k ∈ {1, ...,m} there is a
symmetry K ∈ Ln so that for 1 ≤ k ≤ m we have

(2.4.42)
1

C

jk∑

i=ik

|Ky′i|ξ|vi|2 ≤ σ(Mjk−ik+2)(Ky′ik , ..., Ky
′
jk

) ≤ C

jk∑

i=ik

|Ky′i|ξ|vi|2

with C not depending on y′: Just pick such a symmetry Kk ∈ Ljk−ik+2 for k ∈
{1, ...,m} and take any K ∈ Ln such that the restriction to the yik , ..., yjk coordi-
nates is Kk. Here we have been abusing notation with the Kk’s so that Kk above
operates on coordinates yik , ..., yjk and not y1, ..., yjk−ik+1. Extend Kk now natu-
rally to whole of R(n−1)d. We can now take K to be say K = K1K2...Km−1Km.

Now for every y′ ∈ U fix such a transformation Ky′ and denote y := Ky′y
′.
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By (2.4.41) and (2.4.42) we have

(2.4.43)
1

C

n−1∑

i=1

|yi|ξ|vi|2 ≤ Σ(y) ≤ C

n−1∑

i=1

|yi|ξ|vi|2.

As before, we write

(2.4.44) σ(Mn) =
m∑

l=1

σil,jl + σAc +
∑

i,j∈Ac
γi,j − σAc + the rest.

The first two terms satisfy

(2.4.45)
1

C

n−1∑

i=1

|yi|ξ|vi|2 ≤
m∑

l=1

σil,jl + σAc ≤ C
n−1∑

i=1

|yi|ξ|vi|2,

and by Proposition 2.4.17 we have

(2.4.46) |
∑

i,j∈Ac
γi,j − σAc + the rest| ≤ 1

2C

n∑

i=1

|yi|ξ|vi|2.

So we have

(2.4.47)
1

2C

n−1∑

i=1

|yi|ξ|vi|2 ≤ σ(Mn)(y) ≤ (C +
1

2C
)
n−1∑

i=1

|yi|ξ|vi|2.

Let UK := {y′ ∈ U : Ky′ = K}. Clearly U =
⋃{UK : K ∈ Kn}. We just proved

that for any y′ ∈ U we have σ(Mn) ∼ Σ in Ky′U
Ky′ . Since both Σ and σ(Mn)

are invariant under K−1
y′ for any y′ ∈ U , we can conclude by Remark 2.4.1 that

σ(Mn) ∼ Σ on UKy′ . Since Ln is finite we can conclude that σ(Mn) ∼ Σ on
U .

Let

L′n := {L ∈ GL(R(n−1)d) : ∃i1, j1, ..., in−1, jn−1 : ∀x1, ..., xn−1 :

L((x1, ..., xn−1)) = (xi1,j1 , ..., xin−1,jn−1)}.(2.4.48)

Obviously, L′n is a finite set. Note that the L as constructed in Theorem 2.4.9
belongs to L′n.

Remark 2.4.18. The following Proposition simply says the following: Suppose we
have a symbol of the form

(2.4.49)
k⊕

i=1

σ(Mni+1)⊕ 1.
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This corresponds to a splitting Rnd = Rld ⊕ R(n−l)d with l = n1 + ... + nk. Then
we can replace R(n−l)d with any complementary subspace to Rld and the symbol
looks the same in these new coordinates as looks the symbol in an neighbourhood
of 0 which is bounded in the Rld-direction.

Proposition 2.4.19. Let σ ∼⊕k
i=1 σ(Mni+1)⊕ 1 on a set U ⊆ B×R(n−l)d with

B bounded and l := rk(0) =
∑k

i=1 ni. Let L ∈ GL(Rnd) be such that

1. L : {0} × R(n−l)d = {0} × R(n−l)d and

2. Let P : Rnd → Rld be the natural projection onto the first ld coordinates
and let L′ := L ¹ Rld × {0}. Then

(2.4.50)
( k⊕

i=1

σ(Mni+1)
)L′ ∼

k⊕

i=1

σ(Mni+1).

With these assumptions

(2.4.51) σL ∼
k⊕

i=1

σ(Mni+1)⊕ 1

and LU .

Proof. Without loss of generality we may assume that

(2.4.52) L :=

(
1 0
M 1

)
,

with M an R(n−l)d × Rld-matrix.

Also without loss of generality we may assume U = B(0, 1)× R(n−l)d.

Let A :=
⊕k

i=1 σ(Mni+1). Denote v := (v1, v2) and x := (x1, x2) where v1, x1 ∈
Rld and v2, x2 ∈ R(n−l)d. Then

〈v, (A⊕ 1)L(x)v〉 = 〈v1, A((L−1x)1)v1〉+ 〈v1, A((L−1x)1)MTv2〉+
+ 〈MTv2, A((L−1x)1)v1〉+ |v2|2 =: (∗).

(2.4.53)

Since A(x) is a symmetric matrix for every x the two middle terms are equal.
Moreover, (L−1x)1 = x1 and thus

(2.4.54) (∗) = 〈v1, A(x1)v1〉+ 2〈v1, A(x1)MTv2〉+ |v2|2 =: (∗∗)

Next, we use induction on rk 0 = n1 + ... + nk. If rk 0 = 1, i.e. A = σ(M2) we
have

(2.4.55)
1

C
(|v1|2 + |v2|2) ≤ (∗∗) ≤ C(|v1|2 + |v2|2)
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for some C < ∞ when (x1, x2) ∈ Sd−1 × R(n−1)d. Adding (|x1|−ξ − 1)|v2|2 and
multiplying by |x1|ξ yields

(2.4.56)
1

C
(|x1|ξ|v1|2 + |v2|2) ≤ (∗∗) ≤ C(|x1|ξ|v1|2 + |v2|2)

when (x1, x2) ∈ B(0, 1)×R(n−1)d. Since σ(M2) ∼ | · |ξ we can conclude our claim.

Next, suppose our Proposition is true for configurations of rank < l and we prove
our claim when rk 0 = l. Now cover Sld−1 by finitely many open sets B1, ..., Bm

so that

(2.4.57)
( k⊕

i=1

σ(Mni+1)
)Lj ∼

kj⊕

i=1

σ(Mnj,i+1)⊕ 1

on Bj with some linear transformation Lj and with
∑kj

i=1 nj,i < l.

Letting L′j := L(Lj ⊕ 1), and applying this Theorem on Uj := Bj × R(n−l)d we
see that

(2.4.58) σ(Mn+1)L
′
j ∼

kj⊕

i=1

σ(Mnj,i+1)⊕ 1

on Uj.

Now a similar argument as above for rank 0 yields the desired conclusion. The
reader may fill in the details.

The following is an immediate corollary to this proposition.

Corollary 2.4.20. Let L ∈ L be such that for some neighbourhood U of x we
have

(2.4.59) σ(Mn+1)L ∼
k⊕

i=1

σ(Mni+1)⊕ 1

on LU . Then for every L′ ∈ L such that

(2.4.60) L−1 = L′−1 on {|xi| = 0 : 1 ≤ i ≤ rk x}

we have

(2.4.61) σ(Mn+1)L
′ ∼

k⊕

i=1

σ(Mni+1)⊕ 1

on L′U .
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2.4.5 Some Corollaries

Corollary 2.4.21. For every n ≥ 2 there is C > 0 such that

(2.4.62) Cd(x,Dgn(Mn))ξ ≤ σ(Mn).

The proof of this fact is easy and thus omitted. The assumptions of Theorem 2.2.4
are now satisfied (by Corollary 2.4.21, Theorem A.1.1 and Proposition A.1.3) for
Mn. Moreover, we can directly calculate the dimension of Mn:

Corollary 2.4.22. There is C <∞ such that for any f ∈ L2(R(n−1)d) we have

(2.4.63) ||e−Mntf ||∞ ≤ Ct−
(n−1)d
4−2ξ ||f ||2.

Moreover, C depends only on the lower bound for σ(Mn).

Proof. By Proposition A.1.3 there is C <∞ so that

(2.4.64) ||f ||q ≤ C||d(x,Dgn(Mn))ξ/2∇f ||2 =: (∗)

for any f ∈ C∞0 (R(n−1)d) with q := 2n
n+ξ−2

.

By Corollary 2.4.21 we have

(2.4.65) (∗) ≤ C ′〈f,Mnf〉.

Finally, by Theorem 2.2.13 we can conclude that (2.4.63) holds.

Corollary 2.4.23. For any ρ ∈ (0, 1) there is C < ∞ such that for any x ∈
R(n−1)d and any y 6∈ B(x, ρ|x|) we have

(2.4.66) KMn(t,x,y) ≤ Ct−
(n−1)d

2−ξ exp{−|x− y|2−ξ
Ct

}

and

(2.4.67) GMn(x,y) ≤ C|x− y|2−ξ−(n−1)d.

Proof. This is a direct consequence of Proposition 2.4.5, Theorem 2.2.12 and
Corollary 2.4.22.

Corollary 2.4.24. Suppose A ∼λ σ(Mn1+1)⊕ ...⊕σ(Mnk+1)⊕1 on Rld×R(n−l)d

with l := n1 + ...+nk < n and let ε > 0 be given. Then there is C <∞ such that
if z 6∈ B(y1, ε|y1|)×B(y2, ε|y1|1−ξ/2) (here y := (y1, y2) ∈ Rld × R(n−l)d), we have

(2.4.68) KA(t, y, z) ≤ Ct−
ld

2−ξ−
n−l

2 exp{−|y1 − z1|2−ξ + |y2 − z2|2
Ct

}.

Moreover C depends on A only through λ, n1, ..., nk and n.
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Proof. The proof is straightforward using Theorem 2.2.15, Proposition 2.4.5 and
Corollary 2.4.22 and we leave the details for the reader. The only finesse is
the appearance of B(y2, ε|y1|1−ξ/2) above. This is due to the fact that if z1 ∈
B(y1, ε|y1|) and z2 6∈ B(y2, ε|y1|1−ξ/2), we have

|y1 − z1|2−ξ + |y2 − z2|2 ≤ (ε|y1|)2−ξ + |y2 − z2|2

≤ ε−ξ|y2 − z2|2 + |y2 − z2|2.
(2.4.69)

2.5 Local estimates for the heat kernel

The main result in this section is Theorem 2.5.12. Superficially it is very similar
to Corollary 2.4.24, but there is a very important difference: In Corollary 2.4.24
one assumes that

(2.5.1) A ∼ σ(Mn1+1)⊕ ...⊕ σ(Mnk+1)⊕ 1

in Rnd but in Theorem 2.5.12 A = σ(Mn+1) and (2.5.1) holds only in a relatively
compact neighbourhood of a point x. The point of this section is to close the gap
between these two results. We start with some technicalities and prove a uniform
version of the Harnack inequality adapted to our case.

Remark 2.5.1. In a few places we use the somewhat terse assumption “A has a
heat kernel”. In these places we assume that A has a heat kernel K such that both
K(·, x, ·) and K(·, ·, x) are solutions to ut +Au = 0 in the sense of Remark 2.2.5
and that for every t and x we have both

(2.5.2)

∫
dy K(t, x, y) ≤ 1 and

∫
dy K(t, y, x) ≤ 1.

In the cases that are of interest to us (see Remark 2.2.14) this is the case and
moreover our heat kernels are symmetric in the spatial coordinates.

A well-known argument (see for example [23], section I.3, page 5) yields the
following: Suppose A is a divergence-form operator on Rn with a nonnegative
symbol. Suppose also that A is uniformly elliptic on some ball B and that A has
a heat kernel. Then for any ball B ′ ⊂⊂ B there is C <∞ such that we have

(2.5.3) K(t, x, y) ≤ Ct−n/2

whenever t ∈ (0, 1], x ∈ B ′ and y ∈ Rd. We shall now make a generalization
(Corollary 2.5.5) of this result.
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So for the rest of the section we fix a symbol A on Rnd and suppose that

(2.5.4) A ∼λ σ(Mn1+1)⊕ ...⊕ σ(Mnk+1)⊕ 1

on B(0, 2)×B(0, 2) ⊆ Rld × R(n−l)d, where l := n1 + ...+ nk. Let’s denote

(2.5.5) Q := B(0, 1)×B(0, 1) and D := Snd−1 ×B(0, 1).

Proposition 2.5.2. For each t ∈ (0, 1] there is an open covering {U t
y}y∈Q of Q

with the following properties:

1. y ∈ U t
y for every y ∈ Q and t ∈ (0, 1].

2. There is ε > 0 not depending on t such that B(y1, εt
1/2−ξ)×B(y2, ε

√
t) ⊆ U t

y

3. For every t ∈ (0, 1], every y ∈ Q and every positive solution u of
ut = ∇ · A∇u on (0, 3)× U t

y we have

(2.5.6) sup
y′∈Uty

u(t, y′) ≤ C inf
y′∈Uty

u(2t, y′).

Moreover, C depends on A only through λ, n1, ..., nk and n.

Remark 2.5.3. Strictly speaking in (3) we only assume u is a solution of
ut = ∇ · A∇u in the sense of Remark 2.2.5 on (ε, 3)× U t

y for every ε ∈ (0, 3).

Corollary 2.5.4. Proposition 2.5.2 holds with obvious modifications for any
affine transform AK of A with possibly different ε and C.

To give some intuition to the reader we first give a Corollary to this Proposition.

Corollary 2.5.5. There is C <∞ such that

(2.5.7) KA(t, y, y′) ≤ Ct−
ld

2−ξ−
(n−l)d

2

for any y ∈ Q, y′ ∈ Rnd and t ∈ (0, 1].

Proof. By Proposition 2.5.2 for any y ∈ Q and y′ ∈ Rnd we have

t
ld

2−ξ+
(n−l)d

2 KA(t, y, y′) ≤ C ′|U t
y| sup
y′′∈Uty

KA(t, y′′, y′)

≤ CC ′|U t
y| inf
y′′∈Uty

KA(2t, y′′, y′)

≤ CC ′
∫

Uty

KA(2t, y′′, y′) dy′′

≤ CC ′.

(2.5.8)
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Next we prove a small Lemma used in the proof of Proposition 2.5.2. The setup
here is the following. Let y ∈ D. In our proof of Proposition 2.5.2 we use
induction on rank. By Theorem 2.4.9 there is an invertible affine transformation
Ky of Rnd sending y to 0 so that

(2.5.9) AKy ∼ σ(Mn′1+1)⊕ ...⊕ σ(Mn′k+1)⊕ 1

on B(0, 2) × B(0, 2) with l′ := n′1 + ... + n′k < l. Now Lemma 2.5.6 allows us to
conclude that if (2) of Proposition 2.5.2 holds for the covering associated with
y in Ky-coordinates with some ε (for convenience, we have put this ε equal to 1
in the statement of Lemma 2.5.6), then it holds in the usual coordinates of Rnd
with some other ε.

Here is our choice of the subspaces for Lemma 2.5.6:

1. S1 := K−1
y [Rl′d × {0}]− {y} and

2. S2 := K−1
y [{0} × R(n−l′))d]− {y}.

In other words S2 is the degeneration subspace associated with y. The fact that
y ∈ Q guarantees that {0} × R(n−l)d ⊆ S2. Note that the −{y} in the definition
of S2 is redundant, since y ∈ S2, but we didn’t want to confuse the reader a few
lines ago, did we?

Lemma 2.5.6. Let S1, S2 be a splitting of Rnd into complementary subspaces so
that {0} × R(n−l)d ⊆ S2. Assume also that each of them is equipped with a norm
and denote the balls with respect to these norms with Bi(x, r) with i = 1, 2. Then
there is ε > 0 so that

(2.5.10) B(0, εt1/(2−ξ))×B(0, ε
√
t) ⊆ B1(0, t1/(2−ξ))×B2(0,

√
t)

for any t ∈ (0, 1].

Proof. Obviously there is ε > 0 so that

(2.5.11) B(0, ε)×B(0, ε) ⊆ B1(0, 1)×B2(0, 1)

Let us write B(0, εt1/(2−ξ))×B(0, ε
√
t) as

(2.5.12) B(0, εt
1

2−ξ )× R(n−l)d ∩B(0, ε
√
t)×B(0, ε

√
t)

and similarly for B1(0, t1/(2−ξ)) × B2(0,
√
t) (we used the fact that t1/(2−ξ) ≤

√
t

for t ∈ (0, 1]).

Now since {0} × R(n−l)d ⊆ S2, we conclude by scaling that

(2.5.13) B(0, εt
1

2−ξ )× R(n−l)d ⊆ B1(0, t
1

2−ξ )× S2.
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for any t > 0.

Also by scaling we get

(2.5.14) B(0, ε
√
t)×B(0, ε

√
t) ⊆ B1(0,

√
t)×B2(0,

√
t).

for any t > 0.

Proof. (of Proposition 2.5.2)

If l = 0, then we just choose U t
y := B(y,

√
t). Obviously, these sets satisfy (2)

above and by classical results (see again [23], section I.3, page 5) they satisfy (3)
too.

Next we assume that the cases < l have been handled and prove the Proposition
for l. This is done in three phases:

1. Phase 1: Use our induction hypothesis (i.e. that the cases < l have been
handled) to handle points in D.

2. Phase 2: Use scaling to handle points z ∈ Q with 0 < |z1| < 1 and times
t ∈ (0, |z1|2−ξ]. And finally

3. Phase 3: Do something creative for points z ∈ Q and times t ∈ (|z1|2−ξ, 1].
Note that this includes defining the sets U t

z when |z1| = 0.

First, phase 1: By compactness, there is {y1, ..., yk} ⊆ D so that {K−1
yi

[B(0, 1)×
B(0, 1)]}ki=1 cover D. Obviously each yi is of rank < l. For each t ∈ (0, 1] and
z ∈ D pick U t

z to be one of the U t
z’s associated with some of the y1, ..., yk (this

is possible by induction hypothesis and Corollary 2.5.4). Now these U t
z’s satisfy

(2) and (3), where (3) satisfied by induction and (2) is satisfied by Lemma 2.5.6
(and the discussion before it) and finiteness of the set {y1, ..., yk}.
Next, phase 2: We define the sets U t

z for z’s with 0 < |z1| < 1 and t ∈ (0, |z1|2−ξ].
This is achieved by scaling A outwards so that in this scaling z travels to D.
Then the symbol Az obtained this way has the same upper and lower bounds as
A on B(0, 2)×B(0, 2), so we can use our sets U t

y defined above for y ∈ D. After
this we just scale things back.

So, let z ∈ Q with 0 < |z1| < 1 and let

(2.5.15) yz := (y1/|z1|, z2 + (y2 − z2)/|z1|1−ξ/2).

Let Az be defined by

(2.5.16) Az
ij(y) :=





|z1|ξAij(yz) if 1 ≤ i, j ≤ ld

|z1|ξ/2Aij(yz) if 1 ≤ i ≤ ld < j ≤ nd or

1 ≤ j ≤ ld < i ≤ nd

σ(Aij(y
z) if ld < i, j ≤ nd
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Similarly define uz by uz(t, y) := u(|z1|ξ−2t, yz). Now if u satisfies ut = ∇A · ∇u
on (0, 3) × B(0, 2) × B(0, 2), then uz satisfies uzt = ∇ · Az∇uz on this same set.
Since now if A ∼λ σ(Mn1+1)⊕ ...⊕ σ(Mnk+1)⊕ 1 on B(0, 2)× B(0, 2), then the
same is true of Az we can conclude that (2) and (3) hold for Az with the same
constants as for A. So if we scale back and let

(2.5.17) U t
z = {(|z1|y1, z2 + |z1|1−ξ/2(y2 − z2)) : (y1, y2) ∈ U |z1|ξ−2t

ẑ }
then (2) and (3) hold for these whenever defined.

Finally, phase 3: To finish the argument, we set for t ≥ |z1|2−ξ

(2.5.18) U t
z = B(0,

3

2
t1/(2−ξ))×B(z2,

1

2

√
t).

Now (2) holds for these sets. To prove (3) we may assume without loss of gener-
ality that z2 = 0 and let At be defined as follows:

(2.5.19) At
ij(y1, y2) :=





t−
ξ

2−ξAij(y1t
1/(2−ξ), y2

√
t) if 1 ≤ i, j ≤ ld

t−
ξ

4−2ξAij(y1t
1/(2−ξ), y2

√
t) if 1 ≤ i ≤ ld < j ≤ nd or

1 ≤ j ≤ ld < i ≤ nd

Aij(y1t
1/(2−ξ), y2

√
t) if ld < i, j ≤ nd

As before, for t ∈ (0, 1] the substitution A 7→ At preserves the constant in the
Harnack inequality (Theorem 2.2.4) and thus we can conclude that (3) holds.

Remark 2.5.7. It is not hard to modify the previous proof so that for given ε′ > 0
there is ε > 0 so that

1. B(y1, εt
1/(2−ξ))×B(y2, ε

√
t) ⊆ U t

y for every t ∈ (0, 1] and

2. U t
y ⊆ B(y1, ε

′t1/(2−ξ))×B(y2, ε
′√t), when |y1|2−ξ ≤ t ≤ 1.

3. U t
y ⊆ B(y1, ε

′|y1|)×B(y2, ε
′|y1|(2−ξ)/2), when 0 < t ≤ |y1|2−ξ.

We need (2) and (3) in the proof of Theorem 2.5.12. There we need to find
ε′ > 0 so that U t

z and B(y1, ε
′t1/(2−ξ)) × B(y2, ε

′√t) are disjoint whenever z 6∈
B(y1, t

1/(2−ξ)) × B(y2,
√
t) and this is hard to arrange if we don’t have any kind

of control over the U t
z’s from outside. This required control is provided by (2)

and (3) above. The actual choice of ε′ > 0 is done in Lemma 2.5.10.

Anyway, it is quite easy to make (2) and (3) hold. First of all, it is easy to see
that (2) and (3) hold with some ε′0 > 0 when U t

y’s are defined as in the proof of

Proposition 2.5.2. By letting V t
y := U

t/T
y with T := (ε′0/ε

′)2 we see that V t
y ’s for

t ∈ (0, 1] satisfy (1)-(3) above together with the claims of Proposition 2.5.2. The
details are left to the reader. We will use Proposition 2.5.2 in this form in the
proofs below.
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We now have to estimate the tails of the heat kernel. We use a common proba-
bilistic argument for this (killing probabilities). Denote

(2.5.20) d(x, y)2 := max{|x1 − y1|2−ξ, |x2 − y2|2}.

Obviously there is C <∞ so that

(2.5.21) C−1d(x, y) ≤
√
|x1 − y1|2−ξ + |x2 − y2|2 ≤ Cd(x, y)

Below, P y
A(sups≤t d(Xs, y) ≥ µ) denotes the probability of the diffusion X asso-

ciated with A starting from y at time 0 hitting the set {z : d(y, z) = µ} before
time t.

The following is Proposition 6.5 on page 179 of [1].

Proposition 2.5.8. Suppose A ∼λ 1 on Rl. There is C < ∞ depending on A
only through λ such that

(2.5.22) PyA(sup
s≤t
|Xs − y| ≥ µ) ≤ C exp{− µ

2

Ct
}.

Corollary 2.5.9. Suppose A ∼λ 1 on B(0, 2) ⊆ Rnd. Then there is C < ∞
depending on A only through λ such that for every y ∈ B(0, 1), z ∈ B(y, 1

2
) and

0 < t ≤ 1 we have

(2.5.23) KA(t, y, z) ≤ Ct−
nd
2 exp{−|y − z|

2

Ct
}

The proof of this Corollary is quite simple and well-known (folklore) and we shall
not prove it here, but the interested reader can reconstruct the argument from
the proof of Theorem 2.5.12 which is a generalization of Corollary 2.5.9.

Unfortunately we need the following technicality in the proofs of Proposition 2.5.11
and Theorem 2.5.12.

Lemma 2.5.10. Suppose ε′′ > 0 is given. Then there is ε′ > 0 so that if d(y, z) ≥
ε′′|y1|1−ξ/2, we have

(2.5.24) {z′ : d(z, z′) ≤ ε′|z1|1−ξ/2} ⊆ {z′ : d(z, z′) ≤ d(y, z)

2
}

and

(2.5.25) B(y1, ε
′|y1|)×B(y2, ε

′|y1|1−ξ/2) ∩B(z1, ε
′|z1|)×B(z2, ε

′|z1|1−ξ/2) = ∅.
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Proof. Let

(2.5.26) α :=
d(y, z)2/(2−ξ)

|y1|
,

Then we have

(2.5.27) |z1| ≤ |y1|+ |y1 − z1| ≤ |y1|+ d(y, z)2/(2−ξ) ≤ (1 + α)|y1|.

So to prove (2.5.24), we just have to find ε′ > 0 so that

(2.5.28) ε′((1 + α)|y1|)1−ξ/2 ≤ 1

2
(α|y1|)1−ξ/2,

whenever α ≥ (ε′′)2/(2−ξ). By elementary calculus, we see that this is possible.

Using similar reasoning, we see that to prove (2.5.25) we have to find ε′ > 0 so
that

1. ε′|y1|+ ε′(1 + α)|y1| ≤ α|y1| and

2. ε′|y1|1−ξ/2 + ε′((1 + α)|y1|)1−ξ/2 ≤ (α|y1|)1−ξ/2,

when α ≥ (ε′′)2/(2−ξ). Again, this is possible.

Proposition 2.5.11. Suppose A ∼λ σ(Mn1)⊕ ...⊕σ(Mnk)⊕1 on Rld+(n−l)d with∑k
i=1(ni − 1) = l and let ε′′ > 0 be given. Then there is C < ∞ such that for

µ ≥ ε′′|y1|1−ξ/2 we have

(2.5.29) PyA(sup
s≤t

d(Xs, y) ≥ µ) ≤ C exp{− µ
2

Ct
}.

Proof. Let ε′ > 0 be given by Lemma 2.5.10. By Corollary 2.4.24, there is C1 <∞
so that if d(y, z) ≥ ε′|y1|1−ξ/2 we have

(2.5.30) KA(t, y, z) ≤ C1t
− ld

2−ξ−
(n−l)d

2 exp{−|y1 − z1|2−ξ + |y2 − z2|2
C1t

}.

Now a direct computation gives

PyA(sup
s≤t

d(Xs, y) ≥ µ) ≤ PyA(d(Xt, y) ≥ µ/2)

+ PyA(d(Xt, y) ≤ µ/2 and ∃s < t : d(Xs, y) = µ)

≤ PyA(d(Xt, y) ≥ µ/2)

+ PyA(∃s < t : d(Xs, s) = µ and d(Xs, Xt) ≥ µ/2)

≤ PyA(d(Xt, y) ≥ µ/2) + sup
d(y,z)=µ,s≤t

PzA(d(Xs, z) ≥ µ/2)

= (∗).

(2.5.31)
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By (2.5.24) of Lemma 2.5.10, for every z ∈ Rnd with d(y, z) = µ we have

(2.5.32) {z′ : d(z, z′) ≤ ε′|z1|1−ξ/2} ⊆ {z′ : d(z, z′) ≤ µ

2
}.

A fortiori we also have

(2.5.33) {z′ : d(y, z′) ≤ ε′|y1|1−ξ/2} ⊆ {z′ : d(y, z′) ≤ µ

2
},

since there are points z ∈ Rd with d(y, z) = µ and |z1| ≥ |y1|.
Thus by (2.5.30) we can conclude that

(∗) ≤ C2

∫

d(y,z)≥µ/2
t−

ld
2−ξ−

(n−l)d
2 exp{−|y1 − z1|2−ξ + |y2 − z2|2

C1t
} dy

≤ C3

∫

|y1−z1|2−ξ≥µ2

t−
ld

2−ξ exp{−|y1 − z1|2−ξ
C1t

} dy1

+ C3

∫

|y2−z2|≥µ
t−

(n−l)d
2 exp{−|y2 − z2|2

C1t
} dy2

≤ C exp{−µ
2

Ct
}.

(2.5.34)

Now we can finish with the local estimates.

Theorem 2.5.12. Suppose that A ∼λ σ(Mn1+1)⊕ ...⊕σ(Mnk+1)⊕1 on B(0, 2)×
B(0, 2) with l := n1 + ...+nk < n and that A has a heat kernel. For any ε′′ ∈ (0, 1]
there is C <∞ so that if y ∈ Q, 0 < t ≤ 1 and ε′′|y1|1−ξ/2 ≤ d(z, y) ≤ 1

2
we have

(2.5.35) KMn+1(t, y, z) ≤ Ct−ld/(2−ξ)−(n−l)d/2 exp{|y1 − z1|2−ξ + |y2 − z2|2
Ct

}.

Moreover, this estimate depends on A only through λ, n1, ..., nk and n.

Proof. If 0 < d(z, y)2 ≤ t, then there is C <∞ so that

(2.5.36) 1 ≤ C exp{−|y1 − z1|2−ξ + |y2 − z2|2
Ct

}.

Thus in view of Corollary 2.5.5 we only need to prove the claim for t ≤ d(z, y)2 ≤
1.

Let ε′ > 0 be given by Lemma 2.5.10 and let {U y
t } be a collection of open

coverings given by Proposition 2.5.2 and Remark 2.5.7 associated with this ε′.
We may assume ε′ ≤ min{1

2
, 1

2ξ
}.
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We want to show that U t
z and B(y1, ε

′t1/(2−ξ))×B(y2, ε
′√t) are disjoint whenever

z 6∈ B(y1, t
1/(2−ξ)) × B(y2,

√
t). The case |y1|2−ξ ≤ t ≤ 1 follows easily, since we

assumed ε′ ≤ min{1
2
, 1

2ξ
}. In case 0 < t ≤ |y1|2−ξ we just use Lemma 2.5.10 to

conclude that

(2.5.37) B(y1, ε
′t1/(2−ξ))×B(y2, ε

′√t) ∩B(z1, ε
′|z1|)×B(z2, ε

′|z1|(2−ξ)/2) = ∅,

whenever d(y, z) ≥ ε′′|y1|1−ξ/2.

By the proof of Corollary 2.5.5 we have

t
ld

2−ξ+
(n−l)d

2 sup
z′∈Utz

KMn+1(t, y, z′)

≤ C2

∫

Utz

dy′KMn+1(2t, x, y′).
(2.5.38)

By Proposition 2.5.11 we have

(2.5.39)

∫

Utz

KMn+1(2t, y, z) ≤ C3 exp{−|y1 − z1|2−ξ + |y2 − z2|2
C3t

},

so we are done.

2.6 Construction of the stationary state

In this section, we shall prove Theorem 2.1.1 modulo some technicalities whose
proofs are postponed until Appendix A.3 and §2.7. To this end, we shall induc-
tively show the following

Theorem 2.6.1. Let χ : Rd → R be compactly supported and nonnegative. Then
for some Cn <∞ we have

(2.6.1) M−1
2n (M−1

2n−2(...(M−1
2 χ⊗ χ)...)⊗ χ) ≤ Cn

n∏

i=1

(1 + |x2i−1|)2−ξ−d.

Obviously Theorem 2.1.1 follows directly from this.

The following formula is a central tool in this section.

Proposition 2.6.2. Let 1 ≤ l ∈ N. Then

(2.6.2)

∫

Rld
dldy |x− y|2−ξ−ld

l−1∏

i=1

(1 + |yi|)2−ξ−dχ(yl) ≤ C
l∏

i=1

(1 + |xi|)2−ξ−d.
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The proof of this Proposition can be found in Appendix A.3.

Let S be the smallest collection of subspaces of Rnd that contains

(2.6.3) {{yi,j = 0} ⊆ Rnd : 1 ≤ i ≤ j ≤ l}

and is closed under nonempty pairwise intersections.

The following Proposition whose proof is postponed until §2.7 is the key to prov-
ing Theorem 2.6.1. Unfortunately the statement of Proposition 2.6.3 is somewhat
messy, but hopefully the following comments will help the reader to comprehend
the point.

The sets Axj below in the statement of Proposition 2.6.3 correspond to a splitting
of the domain of integration into parts, i.e. since we want to show that

(2.6.4)

∫

R(2n−1)d

GM2n(x, y)
n−1∏

i=1

(1+|y2i−1|)2−ξ−dχ(y2n−1) dy ≤ C

n∏

i=1

(1+|xi|)2−ξ−d,

we shall write the above integral as

(2.6.5)

∫

R(2n−1)d

=

∫

|x−y|≥ρ|x|
+

k(x)∑

j=0

∫

Axj \Axj−1

and then prove the desired estimate of (2.6.4) separately for each term of the
right-hand side. During our construction of the sets Ax

j we will take care that
k(x) ≤ n so that the number of terms in the RHS of the equation above will not
blow up.

The first integral can be handled in a straightworward manner using Corol-
lary 2.4.23. We would like to take Ax

j := B(x, rxj ) with suitably chosen rxj ’s.
This is not possible, but if it were, then we could handle Ax

j ’s with rxj ≤ 1 easily:
By (3) of Proposition 2.6.3 below we would have

∫

Axj \Axj−1

GM2n(x, y)
n−1∏

i=1

(1 + |y2i−1|)2−ξ−dχ(y2n−1) dy

≤ C sup
y∈B(x,1)

n∏

i=1

(1 + |y2i−1|)2−ξ−d
∫

Axj \Axj−1

GM2n(x, y) dy

≤ C ′
n∏

i=1

(1 + |x2i−1|)2−ξ−d.

(2.6.6)

This would leave us with the problem of handling Ax
j with rxj ∈ (1, ρ|x|). The

estimate of (2) in Proposition 2.6.3 is sufficient for this purpose as will be seen in
the proof of Theorem 2.6.1. By the way, our argument for rxj ∈ (1, ρ|x|) does not
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work down to 0 (see (2.6.21)), so we have to do something different for rxj ∈ (0, 1)
anyway.

Unfortunately life is not so simple and our sets Ax
j will not be balls, but instead

they can look like very flat ellipsoids, so our simple-minded argument in (2.6.6)
does not work directly. The reason for this will become obvious when we define
Axj ’s in §2.7, but one manifestation of this problem can be seen from the statement

of Theorem 2.5.12: The estimate there holds in the set {z : ε′′|y1|1−ξ/2 ≤ d(z, y) ≤
1
2
} (d was defined in (2.5.20)), which might be our Ay

k \Ayk−1. Morally then Ay
k−1

would be {z : d(z, y) ≤ ε′′|y1|1−ξ/2} = B(z1, (ε
′′)2/(2−ξ)|y1|) × B(z2, ε

′′|y1|1−ξ/2).
If we divide the latter radius by former, then this ratio diverges as |y1| → 0.
Although spiced with lots of handwaving, this could be seen as the heart of the
matter.

Fortunately the orientation of these sets is such that a somewhat similar argument
can be carried through; this is the point of (4) and (5) below.

Proposition 2.6.3. There is ρ ∈ (0, 1) and C < ∞ such that for every x ∈
Rnd \ {0} there is a finite sequence x ∈ Ax

1 ⊂ . . . ⊂ Ax
k(x) = B(x, ρ|x|) of sets with

k(x) ≤ n satisfying the following

1. Each of these sets Ax
j has an associated size rxj , non-trivial (possibly im-

proper) subspace Sxj ∈ S and a linear transformation Lxj ∈ L′n+1 (L′n+1 was
defined in (2.4.48)). The relation between Sxj and Lxj is the following:

(2.6.7) Sxj = (Lxj )
−1{yi = 0 : 1 ≤ i ≤ codim(Sxj )

d
}

2. For every x ∈ Rnd and j ∈ {1, ..., k(x)}, we have

GMn+1(x, y) ≤C
( n∏

i=l+1

a
− ξd

2
i

)( l∑

i=1

|(Lxjx)i − (Lxj y)i|2−ξ+

+
n∑

i=l+1

a−ξi |(Lxjx)i − (Lxj y)i|2
)1− ld

2−ξ−
(n−l)d

2

(2.6.8)

whenever y ∈ Ax
j \Axj−1 with some positive numbers ai depending on x and

j and

(2.6.9) l :=
codim(Sxj )

d
.

3. We have

(2.6.10)

∫

Axj \Axj−1

dndy GMn+1(x, y) ≤ C(rxj )2−ξ
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4. If Sxj ⊆ {yi = 0}, then |xi| ≤ rxj .

5. If Sxj 6⊆ {yi = 0}, then Ax
j ⊆ {|yi| ≥ C−1|xi|}.

Proof. (of Theorem 2.6.1 using Proposition 2.6.3). The proof is by induction, i.e.
we show that

(2.6.11) M−1
2n (

n−1∏

i=1

(1 + |x2i−1|)2−ξ−dχ(x2n−1)) ≤ C

n∏

i=1

(1 + |x2i−1|)2−ξ−d

Without loss of generality, we may assume that the support of χ is contained in
the ball B(0, C−1), where C is from Proposition 2.6.3.

As discussed briefly before the statement of Proposition 2.6.3, our proof goes as
follows: First we split the domain of integration into parts as in (2.6.5) and then
we proceed in three phases:

1. Phase 1: Handle the integral
∫
|x−y|≥ρ|x|.

2. Phase 2: Handle the integrals
∫
Axj \Axj−1

with rxj ≤ 1 and

3. Phase 3: Handle the integrals
∫
Axj \Axj−1

with rxj ≥ 1.

First, phase 1: Let ρ ∈ (0, 1) be given by Proposition 2.6.3. We know by Corol-
lary 2.4.23 that for |x− y| ≥ ρ|x| we have

(2.6.12) GM2n(x, y) ≤ C1(
2n−1∑

i=1

|xi − yi|)2−ξ−2(n−1)d,

so we can conclude that

∫

|x−y|≥ρ|x|
d(2n−1)dy GM2n(x, y)

n−1∏

i=1

(1 + |y2i−1|)2−ξ−dχ(|y2n−1|)

≤ C1

∫

R(2n−1)d

d(2n−1)dy (
2n−1∑

i=1

|xi − yi|)2−ξ−(2n−1)d·

·
n−1∏

i=1

(1 + |y2i−1|)2−ξ−dχ(|y2n−1|) =: (∗)

(2.6.13)
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By a change of variables we see that

∫

R(n−1)d

n−1∏

i=1

ddy2i (
2n−1∑

i=1

|xi − yi|)2−ξ−(2n−1)d

= (
n∑

i=1

|x2i−1 − y2i−1|)2−ξ−nd
∫

R(n−1)d

n−1∏

i=1

ddz2i ·

· (1 +
n−1∑

i=1

|z2i |)2−ξ−(2n−1)d,

(2.6.14)

so we can conclude that

(∗) ≤ C1

∫

Rnd

n∏

i=1

ddy2i−1 (
n∑

i=1

|x2i−1 − y2i−1|)2−ξ−nd·

·
n−1∏

i=1

(1 + |y2i−1|)2−ξ−dχ(|y2n−1|) =: (∗2).

(2.6.15)

By Proposition 2.6.2, we have

(2.6.16) (∗2) ≤ C2

n∏

i=1

(1 + |x2i−1|)2−ξ−d.

Next, some initial preparation for phases 2 and 3: Let x and j ≤ k(x) be given
and let U := {1, 3, ..., 2n− 1}, U1 := {i ∈ U : Sxj ⊆ {yi = 0}} and U2 = U \ U1.

Then, phase 2: so suppose rxj ≤ 1. Then by (3) of Proposition 2.6.3 we have

∫

y∈Axj \Axj−1

d(n−1)dy GM2n(x, y)
n−1∏

i=1

(1 + |y2i−1|)2−ξ−dχ(|y2n−1|)

≤ C3 sup
y∈Axj \Axj−1

n∏

i=1

(1 + |y2n−i|)2−ξ−d =: (∗3)

(2.6.17)

Since (1 + |yi|)2−ξ−d ≤ 1 for any i ∈ U , we can conclude that

(2.6.18) (∗3) ≤ C3 sup
y∈Axj \Axj−1

∏

i∈U2

(1 + |yi|)2−ξ−d := (∗4)

By (5) of Proposition 2.6.3 we have

(2.6.19) (∗4) ≤ C4

∏

i∈U2

(1 + |xi|)2−ξ−d =: (∗5)
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Since by (4) of Proposition 2.6.3 we have |xi| ≤ 1 for i ∈ U1 we can finally
conclude that

(2.6.20) (∗5) ≤ C5

n∏

i=1

(1 + |x2i−1|)2−ξ−d.

Finally, phase 3: If rxj ≥ 1 and 2n− 1 ∈ U2, then

(2.6.21) (R(2n−2)d × supp χ) ∩ Ax
j = ∅

whenever |xi| ≥ 1 by (5) of Proposition 2.6.3 and the fact that supp χ ⊆
B(0, C−1) and thus in this case we have

(2.6.22)

∫

y∈Axj
d(n−1)dy GM2n(x, y)

n−1∏

i=1

(1 + |y2i−1|)2−ξ−dχ(|y2n−1|) = 0.

So we may assume 2n− 1 ∈ U1. By (5) of Proposition 2.6.3 we have

(2.6.23) (1 + |yi|)2−ξ−d ≤ C6(1 + |xi|)2−ξ−d

for i ∈ U2. Therefore

∫

y∈Axj \Axj−1

d(2n−1)dy GM2n(x, y)
n∏

i=1

(1 + |y2i−1|)2−ξ−d

≤ C7

∏

i∈U2

(1 + |xi|)2−ξ−d
∫

y∈Axj \Axj−1

d(2n−1)dy GM2n(x− y)·

·
∏

i∈U1\{2n−1}
(1 + |yi|)2−ξ−dχ(y2n−1) = (∗6).

(2.6.24)

Writing x′ := Lxjx, y′ := Lxj y and l′ := 2n− 1− l we get

∫

y∈Axj \Axj−1

d(2n−1)dy GM2n(x− y)
∏

i∈U1\{2n−1}
(1 + |yi|)2−ξ−dχ(y2n−1)

≤ C8

∫

R(2n−1)d

d(2n−1)dy′
( n∏

i=l+1

a
− ξd

2
i

)( l∑

i=1

|x′i − y′i|2−ξ+

+
n∑

i=l+1

a−ξi |x′i − y′i|2
)1− ld

2−ξ−
l′d
2 ·

·
∏

i∈U1\{2n−1}
(1 + |yi|)2−ξ−dχ(y2n−1) = (∗7),

(2.6.25)
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Note that since for U1 is the set of those i such that Sxj ⊆ {yi = 0}, we have that
in the y′i-coordinates the expression

(2.6.26)
∏

i∈U1\{2n−1}
(1 + |yi|)2−ξ−dχ(y2n−1)

depends only on the variables y′1, ..., y
′
l.

Using a similar change of variables as in (2.6.14), we get

(∗7) ≤ C8

∫

Rld

l∏

i=1

ddy′i (
l∑

i=1

|x′i − y′i|2−ξ)1− ld
2−ξ ·

·
∏

i∈U1\{2n−1}
(1 + |yi|)2−ξ−dχ(y2n−1)

∫

Rl′d

2n−1∏

i=l+1

ddy′i·

·
( 2n−1∏

i=l+1

a
− ξd

2
i

)
(1 +

2n−1∑

i=l+1

a−ξi |x′i − y′i|2)1− ld
2−ξ−

l′d
2 = (∗8).

(2.6.27)

By substituting y′′i = a
−ξ/2
i y′i we see that the last integral is ≤ C9.

Therefore

(∗8) ≤ C10

∫

Rld

l∏

i=1

ddy′i (
l∑

i=1

|x′i − y′i|2−ξ)1− ld
2−ξ ·

·
∏

i∈U1\{2n−1}
(1 + |yi|)2−ξ−dχ(y2n−1) =: (∗9).

(2.6.28)

Noticing that
∑l

i=1 |x′i − y′i|2−ξ is essentially just |(x′1 − y′1, ..., x
′
l − y′l)|2−ξ for

estimation purposes, using a similar change-of-variables argument as before, we
can conclude that

(2.6.29) (∗9) ≤ C11

∏

i∈U1

(1 + |xi|)2−ξ−d,

so

(2.6.30) (∗6) ≤ C12

n∏

i=1

(1 + |x2i−1|)2−ξ−d.
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2.7 Uniform local integrability

To give the reader an idea what the sets Ax
j in the statement of Proposition 2.6.3

are all about, we’ll analyze the operator associated with σ(M2)⊕n in some detail.
The analysis has less moving parts than the corresponding analysis for σ(Mn+1),
so we hope this serves as a soft landing for the reader. (Actually σ(M2)⊕n is easy
to handle, since it is a product of σ(M2)’s and the heat kernel factorizes nicely,
but this isn’t true for σ(Mn+1) so we’ll need to do something different here).

So let x ∈ Rnd be such that max1≤i≤n |xi| = 1 and by symmetry we may assume
|x1| ≤ ... ≤ |xn| = 1. Let k(x) := #({|x1|, ..., |xn|} \ {0}) (i.e. the number of
distinct strictly positive numbers) and let ` be defined by

0 < |x`(1)| = ... = |x`(2)−1| < |x`(2)| = ... = |x`(3)−1| < ...

< |x`(k(x))| = ... = |xn| = 1
(2.7.1)

with `(1) being the smallest integer so that |x`(1)| > 0.

We’ll first give the sets Ax
j explicitly and then an inductive construction which is

relevant for the proof of Proposition 2.6.3. So for each x the number of sets Ax
j

is k(x) and

Ax
j := {y ∈ Rnd : ∀i < `(j + 1) : |xi − yi| ≤

1

2
|x`(j)| and

∀l ∈ {j + 1, ..., k(x)− 1}∀i ∈ {`(l), ..., `(l + 1)− 1} :

|xi − yi| ≤
1

2
|x`(j)||x`(l+1)|−ξ/2}

(2.7.2)

Inductively, this is done as follows. If x is such that k(x) > 1, let x̃ be defined
as follows:

1. x̃i = xi/|x`(k(x))−1| for 1 ≤ i ≤ `(k(x))− 1 and

2. x̃i = xi for `(k(x)) ≤ i ≤ n.

Obviously k(x̃) = k(x)− 1.

If k(x) = 1, i.e. |x`(1)| = ... = |xn| = 1, we have

(2.7.3) Ax
1 = {y ∈ Rnd : |yi − xi| ≤

1

2
for every i ∈ {1, ..., n}}.

Next suppose k(x) > 1 and let r := |x`(k(x))−1|. For j ∈ {1, ..., k(x)− 1} we have

Ax
j := {(ry1,..., ry`(k(x))−1, x`(k(x)) + r1−ξ/2(y`(k(x)) − x`(k(x))),

..., xn + r1−ξ/2(yn − xn)) : y ∈ Ax̃
j }

(2.7.4)
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and

(2.7.5) Ax
k(x) = {y : |yi − xi| ≤

1

2
for every i ∈ {1, ..., n}}.

Below, denote M⊕n
2 := −∇·σ(M2)⊕n∇. The philosophy for showing for example

(2) of Proposition 2.6.3 is as follows: First find a C <∞ so that for every x with
max1≤i≤n |xi| = 1 and y ∈ Ax

k(x) \ Ax
k(x)−1 we have

GM⊕n2
(x,y) ≤ C(

`(k(x))−1∑

i=1

|xi − yi|2−ξ+

+
n∑

i=`(k(x))

|xi − yi|2)1− (`(k(x))−1)d
2−ξ − (n−`(k(x))+1)d

2 .

(2.7.6)

This holds because of Theorem 2.5.12, Theorem 2.2.12 and Corollary 2.4.22 and
an integration from 0 to ∞ with respect to t.

The rest is an inductive argument. One needs to use (2.7.4), some dimensional
analysis and witchcraft to show that if for j ∈ {1, ..., k(x̃)} and y ∈ Ax̃

j \Ax̃
j−1 we

have

GM⊕n2
(x̃,y) ≤ C

( n∏

i=`(j)

a
− ξd

2
i

)
(

`(j)−1∑

i=1

|x̃i − yi|2−ξ+

+
n∑

i=`(j)

a−ξi |x̃i − yi|2)1− (`(j)−1)d
2−ξ − (n−`(j)+1)d

2 ,

(2.7.7)

with some positive constants ai, then for y ∈ Ax
j \Ax

j−1 and with r := |x`(k(x))−1|
we get

GM⊕n2
(x,y) ≤ C

(`(k(x)−1∏

i=`(j)

(rai)
− ξd

2

n∏

i=`(k(x))

a
− ξd

2
i

)
(

`(j)−1∑

i=1

|xi − yi|2−ξ+

+

`(k(x))−1∑

i=`(j)

(rai)
−ξ|xi − yi|2+

+
n∑

i=`(k(x))

(ai)
−ξ|xi − yi|2)1− (`(j)−1)d

2−ξ − (n−`(j)+1)d
2 .

(2.7.8)

This is immediately seen to be of the required form. The constants ai above can
also be given explicitly.
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For y ∈ Ax
j \ Ax

j−1 we have

GM⊕n2
(x,y) ≤ C

( n∏

i=`(j)

|xi|−
ξd
2

)
(

`(j)−1∑

i=1

|xi − yi|2−ξ+

+
n∑

i=`(j)

|xi|−ξ|xi − yi|2)1− (`(j)−1)d
2−ξ − (n−`(j)+1)d

2 .

(2.7.9)

We want to modify this construction to apply to σ(Mn).

Remark 2.7.1. Note that if x, y ∈ Rnd, rk x = rk y and Sx 6= Sy, then for every
z ∈ Sx∩Sy we have rk z > rk x. In particular, if rkx = n−1, then Sx∩Sy = {0}.

Lemma 2.7.2. There is a finite set P ⊆ Rnd \ {0}, a partial ordering ≺ on P
and for each x ∈ P an associated linear transformation Lx ∈ L′n+1 (L′n+1 was
defined in (2.4.48)) having the following properties:

1. There is C ∈ (0,∞) such that if Kx is the affine transformation sending x
to 0 whose linear part is CLx, there are n1, ..., nk so that

(2.7.10) σ(Mn+1)Kx ∼ σ(Mn1+1)⊕ ...⊕ σ(Mnk+1)⊕ 1

on B(0, 2)×B(0, 2) ⊆ R(rkx)d × R(n−rkx)d.

2. Let Qx := K−1
x [B(0, 1)×B(0, 1)], where the first B(0, 1) lies in R(rkx)d and

the second one in R(n−rkx)d. Then {Qx : x ∈ P ∩ Snd−1} covers Snd−1.

3. Let Dx := K−1
x [S(rkx)d−1 × B(0, 1)]. Then for every x ∈ P of rank > 0,

{Cx′(1) : x′ ∈ P ∩Dx and x′ ≺ x} covers Dx.

4. Suppose x′ ≺ x. Then

(2.7.11) LxL
−1
x′ =

(
A 0
0 B

)
,

with A (resp. B) a (rkx)d × (rk x)d (resp. an (n − rk x)d × (n − rk x)d)
matrix. More precisely, we prove the following; If for every y ∈ Rnd we
have Lxy = (yi1,j1 , ..., yin,jn) and Lx′y = (yi′1,j′1 , ..., yi′n,j′n), then

(2.7.12) im = i′m and jm = j′m for rk x+ 1 ≤ m ≤ n

and

{y ∈ Rnd : yi1,j1 = ... = yirk x,jrk x = 0}
= {y ∈ Rnd : yi′1,j′1 = ... = yi′rk x,j′rk x = 0}.(2.7.13)
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Proof. The proof is by downward induction on rank. Let F0 := Snd−1 and for
every x ∈ F0 of rank n − 1, fix a linear transformation L0

x ∈ L′n+1 and a neigh-
bourhood U 0

x of x such that

(2.7.14) σ(Mn+1)L
0
x ∼

k⊕

i=1

σ(Mni+1)⊕ 1

on L0
xU

0
x . (Actually here 1 ≤ k ≤ 2.)

Next, choose C0
x ∈ (0,∞) so that if K0

x is the affine transformation sending x to
0 with C0

xL
0
x as the linear part, we have

(2.7.15) σ(Mn+1)Kx ∼ σ(Mn1+1)⊕ ...⊕ σ(Mnk+1)⊕ 1

on B(0, 2)×B(0, 2).

Denote Q0
x := K−1

x [B(0, 1)×B(0, 1)] and D0
x := K−1

x [S(rkx)d−1 ×B(0, 1)].

Let P0 be a finite set such that

(2.7.16) F0 ∩ {x : rk x = n− 1} ⊆
⋃

x∈P0

Q0
x.

Next, suppose k ≤ n−1 is given and we have defined Fm and Pm for every m < k
and for given m < k we have defined Um

x , Lmx , Cm
x , Km

x , Qm
x and Dm

x . for every
x ∈ Pm.

Let

(2.7.17) Fk := (Fk−1 ∪
⋃

x∈Pk−1

Dk−1
x ) \

⋃

x∈Pk−1
rk x=n−k

Qk−1
x .

We generate the set Pk and for every x ∈ Pk of rank n−k−1 the linear transfor-
mation Lkx as follows. List the points of Pk−1 as x1, ..., xα. Then we inductively
define Pk,β for 0 ≤ β ≤ α and finally set Pk = Pk,α. The partial order ≺ is
generated so that for every β with 1 ≤ β ≤ α and for every x′ ∈ Pk,α \ Pk,α−1

we put x′ ≺ xα and in the end of the induction we take a transitive closure (i.e.
force ≺ to be a partial order).

First, let Pk,0 := Pk−1 and let Lkx := Lk−1
x for x ∈ Pk,0. Next, suppose β > 0 is

given with β ≤ α and that we have defined Pk,β−1 and Lkx for x ∈ Pk,β−1. Suppose

(2.7.18) z ∈ Dk−1
xβ
∩ Fk ∩ {x : rk x = n− k − 1}

and that for every y ∈ Rnd we have

(2.7.19) Lk−1
x1

(y1, ..., yn) = (yi1,j1 , ..., yin,jn).



68 CHAPTER 2. THE ARTICLE

Let L ∈ L′n+1 be a linear transformation (given by Theorem 2.4.9) such that

(2.7.20) σ(Mn+1)L ∼
γ⊕

i=1

σ(Mni+1)⊕ 1

on LU , with U being a neighbourhood of z. Suppose for every y ∈ Rnd we have

(2.7.21) L(y1, ..., yn) = (yi′1,j′1 , ..., yi′n,j′n).

Since z ∈ Dk−1
x1

, we have

(2.7.22) {yi1,j1 = ... = yi′rk xβ ,j
′
rk xβ

= 0} ⊆ {yi′1,j′1 = ... = yi′rk z ,j′rk z = 0}.

Let

(2.7.23) i′′i =

{
i′i if 1 ≤ i ≤ rk z and

ii if rk xβ + 1 ≤ i ≤ n,

and similarly for j ′′i .

By (2.7.22) we may choose i′′rk z+1, ..., i
′′
rk zβ

and j′′rk z+1, ..., j
′′
rk z+1 so that if we let

(2.7.24) L′z(y1, ..., yn) := (yi′′1 ,j′′1 , ..., yi′′n,j′′n)

for all y ∈ Rnd we have L′z ∈ L′n+1 and by Proposition 2.4.19 we have

(2.7.25) σ(Mn+1)L
′
z ∼

β⊕

i=1

σ(Mni+1)⊕ 1

on L′zU
′ with U ′ a neighbourhood of z.

Next we choose C ′x ∈ (0,∞) for x ∈ D := Dk−1
xβ
∩ Fk ∩ {x : rkx = n− k − 1} so

that if K ′x is the linear transformation sending x to 0 having C ′xL
′
x as its linear

part we have

(2.7.26) σ(Mn+1)K
′
x ∼

β⊕

i=1

σ(Mni+1)⊕ 1

on K ′−1
x [B(0, 2)×B(0, 2)].

We have a small twist here. We want to cover D with finitely many sets Q′x :=
K ′−1
x [B(0, 1) × B(0, 1)]. However, we do not want to use Q′x’s associated with

x ∈ P k
β−1. This can be avoided by taking C ′x’s to be such that there is ε > 0 so

that B(x, ε) ⊆ Q′x. This is easy to arrange. The point is that D is a compact
set consisting of points of equal rank. D splits into finitely many connected
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components D1, ..., Dδ. Thus, actually (2.7.25) holds in a neighbourhood of each
Di.

So now that the Q′x’s are such that B(x, ε) ⊆ Q′x and {Q′x : x ∈ D \ P k
β−1 covers

D, pick a finite subcover {Q′x : x ∈ D′} and let P k
β := P k

β−1 ∪D′. For x ∈ D′, let

Lkx := L′x and Ck
x := C ′x and set Kk

x , Qk
x and Dk

x accordingly.

Finally, let P := Pn−1 and for every x ∈ P let Lx := Ln−1
x and Cx = Cn−1

x .

For every x ∈ P , let Lx = {Lx′ : x ¹ x′}.
From now on, we’ll use a rather schizophrenic convention of coordinates. Pairs
like (y1, y2) are in Kx-coordinates, where x is clear from the context (See before
Proposition 2.5.2). Sequences like (y1, ..., yn) are in the original Rnd-coordinates.

For x ∈ P , let Cx(r) := K−1
x [B(0, r)×B(0, r)]. (if rkx = 0, we just set Cx(r) :=

K−1
x [B(0, r)]).

For each x ∈ P we find a set Rx as follows. If rk(x) = 0 we set Rx := Cx(
1
2
).

Obviously now Cx(1) + Rx ⊆ Cx(
3
2
) and moreover there is C < ∞ so that for

every x′ ∈ Cx(1) and every y ∈ x′ +Rx we have

1. For 0 < t ≤ 1 we have KMn+1(t, x, y) ≤ Ct−
(n+1)d

2 exp{− |x−y|2
Ct
} (by Corol-

lary 2.5.9) and

2. For 0 < t < ∞ we have KMn+1(t, x, y) ≤ Ct−
(n+1)d

2−ξ exp{− |x−y|2
Ct
} (by Theo-

rem 2.2.12 and Corollary 2.4.22)

Since for 1 ≤ t <∞ we have t−(n+1)d/2 ≤ t−(n+1)d/(2−ξ) we can replace 0 < t ≤ 1
above with 0 < t < ∞ so by integrating w.r.t. time we conclude that for every
x ∈ P with rk(x) = 0 there is C(x) < ∞ so that for every x′ ∈ Cx(1), every
y ∈ x′ +Rx and every L ∈ L′n+1 we have

(2.7.27) GMn+1(x′, y) ≤ C(x)|Lx′ − Ly|2−ξ−nd.

Moreover we want that C(x) depends on σ(Mn+1) only through upper and lower
bounds on Cx(2).

Remark 2.7.3. When we say that C depends on σ(Mn+1) only through the upper
and lower bounds for σ(Mn+1) on Cx(2) we really mean that if in Cx(2) we have

(2.7.28) σ(Mn+1) ∼λ σ(Mn1+1)⊕ ...⊕ σ(Mnk+1)⊕ 1,

with λ > 0 minimal, then C can be chosen so that the given claim holds for
any symbol A that has a heat kernel and for which (2.7.28) holds with σ(Mn+1)
replaced by A.
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For x 6= 0 let

(2.7.29) Sx :=
⋂

16i6j6n
|xi,j |=0

{y ∈ Rnd : |yi,j| = 0}.

Note that dim(Sx) + rk(x)d = nd.

If l := rk(x) > 0, we set Rx := K−1
x {y : d(x, y) < 1

2
} (d was defined between

Remark 2.5.7 and Proposition 2.5.8). Now a similar argument as above (but
this time using Theorem 2.5.12 instead of Corollary 2.5.9) yields a C(x, ε′′) <∞
(ε′′ ∈ (0, 1

2
)) so that

1. Cx(1) +Rx ⊆ Cx(
3
2
) and

2. There is C < ∞ so that for every x′ ∈ Cx(1), for every y that satisfies
ε′′|x′1|1−ξ/2 ≤ d(x, y) ≤ 1

2
and for every L ∈ Lx we have

GMn+1(x′, y) ≤ C(x, ε′′)
( l∑

i=0

|(Lx)i − (Ly)i|2−ξ+

+
n∑

i=l+1

|(Lx)i − (Ly)i|2
)1− ld

2−ξ−
(n−l)d

2 .

(2.7.30)

Again we want that C(x) depends on σ(Mn+1) only through the upper and lower
bounds on Cx(2). Let

(2.7.31) C(ε′′) := max
x∈P

C(x, ε′′).

We will fix our ε′′ ∈ (0, 1
2
) after we’ve defined our sets Ax

j .

Now it’s time for the

2.7.1 Proof of Proposition 2.6.3.

Proof. (of Proposition 2.6.3). We start by defining the sets Ax
j and then prove

that these sets have the desired properties.

First of all we handle the points x ∈ Snd−1 and then use scaling: If Ax̂
1 , ..., A

x̂
k is

the sequence associated with x̂, we let Ax
j = |x|Ax̂j . Moreover we let rxj := |x|rx̂j .

This sequence is generated as follows: First, to each point x ∈ P and y ∈ Cx(1)
we associate inductively a finite sequence Ax,y

1 , ..., Ax,y
k(x,y) (with k(x, y) depending

on x and y but not exceeding rk(x) + 1). We shall denote k(x, y) by k below
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when confusion is not possible. We also define associated sizes rx,y1 , ..., rx,yk and
linear transformations Lx,y1 , ..., Lx,yk .

Having done this we choose for every y ∈ Snd−1 a x ∈ P0 so that y ∈ Cx(1) and
set Ayj := Ax,yj , ryj := rx,yj and Lyj := Lx,yj for 1 ≤ j ≤ k(y), where k(y) := k(x, y).
To confuse the reader even more (just kidding), for every x ∈ P of rank > 0 we’ll
also define ε′′(x) ∈ (0, 1

2
) so that in Kx-coordinates we have

(2.7.32) Ax,y
k \ Ax,yk−1 ⊆ {y′ : ε′′|y1|1−ξ/2 ≤ d(y, y′) ≤ 1

2
}

for every y ∈ C1(x). Then we let

(2.7.33) ε′′ = min
x∈P

rk(x)>0

ε′′(x)

Suppose x ∈ P is of rank 0. Then for every y ∈ Cx(1), we let k(x, y) := 1,
Ax,y1 := (y − x) +Rx, r

x,y
j := 1 and let Lx,y1 := Lx.

Next, suppose all the points in P of rank < l have been handled and let x ∈ P
be of rank l. Set k(x, x) := 1, Ax,x

1 := Rx, r
x,x
1 := 1 and let Lx,x1 := Lx.

For y ∈ Dx we choose x′ ∈ P ∩ Dx so that y ∈ Cx′(1). Then we let k(x, y) :=

k(x′, y) + 1, Ax,y
i := Ax

′,y
i ∩ [(y − x) + Rx] for 1 ≤ i ≤ k(x′, y) and set Ax,y

k(x,y) :=

[(y− x) +Rx]. We let rx,yi := rx
′,y
i and set rx,yk(x,y) := 1. Finally, we let Lx,yi = Lx

′,y
i

and set Lx,yk(x,y) := Lx.

Since now the sets Ax′,y
k(x′,y) = Ax,yk(x,y)−1 are just translates of Rx′ , we see that

ε′′(x) > 0 can be chosen so that our condition is satisfied for these sets.

Finally, if y ∈ rSrk(x)d−1 × B(0, 1) with r ∈ (0, 1), let y′ := (ŷ1, y2). Then we set
k(x, y) := k(x, y′), and for 1 ≤ i < k we let

(2.7.34) Ax,y
i := {(rz1, y2 + r1−ξ/2(z2 − y2)) : (z1, z2) ∈ Ax,y′i },

rx,yi := rrx,y
′

i and Lx,yi := Lx,y
′

i . Finally, as above, we set Ax,y
k(x,y) := [(y− x) +Rx],

rx,yk := 1 and Lx,yi := Lx. Note that our scaling was such that our condition for
ε′′(x) is still satisfied.

Now we have to prove that this choice of the sets Ax,y
i satisfies all the claims of

Proposition 2.6.3. Obviously, (1) is trivial.

By scaling, it suffices to prove (2)-(5) for x ∈ Snd−1.

We prove all these claims by chasing through the definition of the Ax,y
j ’s. That

is, we do a double induction by going through every x ∈ P by induction on rk(x)
and then for each x ∈ P we go through Ax,y

j ’s by downward induction on j.
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So we start with (2). We prove that (2.6.8) holds with C given in (2.7.31).

By (2.7.27) and (2.7.30) our claim is trivial for Ax,y
k(x,y)’s, so we have to handle the

case where l := rk(x) > 0 and j < k(x, y).

Our induction hypothesis now is that we have proven (2) for all sets Ax′,y′

j′ and

all linear transformations Lx
′,y′

j′ with rk(x′) < l, y′ ∈ Cx′(1) and 1 ≤ j ′ ≤ k(x′, y′)
and also for all symbols A having the same upper and lower bounds as σ(Mn+1)

on Ax
′,y′

j′ .

So, in Kx-coordinates, let

(2.7.35) y := (y1, y2) ∈ rSld−1 × R(n−l)d

with r ∈ (0, 1) (r = 0, 1 have been handled by our induction hypotheses). With-
out loss of generality, we may assume that y2 = 0 (this eases our notation a
bit).

Let A be some symbol having the same upper and lower bounds as σ(Mn+1) on
B(0, 2)×B(0, 2).

Denote zy := (z1/|y1|, z2/|y1|1−ξ/2) and let the symbol By be defined by

(2.7.36) By
ij(z) :=





|y1|ξσ(Mn+1)ij(z
y) if 1 ≤ i, j ≤ ld

|y1|ξ/2σ(Mn+1)ij(z
y) if 1 ≤ i ≤ ld < j ≤ nd or

1 ≤ j ≤ ld < i ≤ nd

σ(Mn+1)ij(z
y) if ld < i, j ≤ nd.

Now By and A have the same upper and lower bounds on B(0, 2)×B(0, 2). Let
l′ = codim(Sx,y

y

j )/d < l. Then we can conclude by our induction hypothesis

(since Ax,y
y

j = Ax
′,yy
j for some x′ ∈ P with rk(x′) < rk(x)) that we have

GBy(y
y, zy) ≤ C

( n∏

i=l′+1

a
− ξd

2
i

)( l′∑

i=1

|(Lyy)i − (Lzy)i|2−ξ+

+
n∑

i=l′+1

a−ξi |(Lyy)i − (Lzy)i|2
)1− ld

2−ξ−
(n−l)d

2

(2.7.37)

whenever z ∈ Ax,yy

j \ Ax,yyj−1 and L = Lx,y
y

j .

A little pondering in dimensional analysis implies

(2.7.38) GA(y, z) = |y1|2−ξ−ld−(1−ξ/2)(n−l)dGBy(y
y, zy).

whenever z ∈ Ax,y
j .
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Note that L = Lx′ for some x′ ≺ x. Therefore by (4) of Lemma 2.7.2 we have
both

(2.7.39) L′−1
x {wi = 0 : 1 ≤ i ≤ l} = K−1

x {wi = 0 : 1 ≤ i ≤ l}

and

(2.7.40) L′−1
x {wi = 0 : l + 1 ≤ i ≤ n} = K−1

x {wi = 0 : l + 1 ≤ i ≤ d}.

Thus

(2.7.41) (Lyy)i − (Lzy)i =

{
|y1|−1((Ly)i − (Lz)i) if 1 ≤ i ≤ l and

|y1|ξ/2−1((Ly)i − (Lz)i) if l + 1 ≤ i ≤ n.

Combining this with (2.7.37) and (2.7.38) we get

GA(y, z) ≤ C
( l∏

i=l′+1

(|y1|ai)−
ξd
2

n∏

i=l+1

a
− ξd

2
i

)( l∑

i=1

|(Ly)i − (Lz)i|2−ξ+

+
l∑

i=l′+1

(|y1|ai)−ξ|(Ly)i − (Lz)i|2

+
n∑

i=l+1

a−ξi |(Ly)i − (Lz)i|2
)1− ld

2−ξ−
(n−l)d

2

(2.7.42)

for any z ∈ Ax,y
j \ Ax,yj−1. This is seen to be of the form required, so we’re done

with (2).

Next we handle (3). First of all it is easy to see that it suffices to find C(x, j) <∞
such that

(2.7.43)

∫

Axj \Axj−1

GMn+1(x, y) dy ≤ C(x, j)(rxj )2−ξ.

For every x ∈ P with rk(x) = 0, there is C(x, 1) < ∞ so that for y ∈ Cx(1) we
have

(2.7.44)

∫

Ax,y1

GMn+1(y, z) dy ≤ C(x, 1)(rx,y1 )2 ≤ C(rx,y1 )2−ξ.

So suppose all points x ∈ P of rank < l have been handled and x is of rank l.



74 CHAPTER 2. THE ARTICLE

For Ax,yk the claim follows from (2.7.30) and the fact that rx,yk = 1:

∫

Ax,yk \A
x,y
k−1

GMn+1(y, y′) dy′

≤ C

∫

Ax,yk \A
x,y
k−1

dy′
( l∑

i=1

|(Ly)i − (Ly′)i|2−ξ+

+
n∑

i=l+1

|(Ly)i − (Ly′)i|2
)1− ld

2−ξ−
n−l
d

≤ C

∫

{d(y,y′)≤ 1
2
}
≤ C ′ = C ′(rx,yk )2−ξ.

(2.7.45)

For j < k, by (2.7.34), (2.7.37) and (2.7.38) we have

∫

Ax,yj \A
x,y
j−1

GMn+1(y, y′) dy′ = |y1|2−ξ
∫

Ax,y
y

j \Ax,yyj−1

GBy(y
y, y′) dy′

≤ C(x, j)|y1|2−ξ(rx,y
y

j )2−ξ
(2.7.46)

Next in line is (4). Again we chase through the definition of the Ax,y
j ’s. If

rk(x) = 0, then rx,y0 = 1 and the claim is trivial, as |yi| ≤ |y| = 1. Suppose the
points in P of rank < l have been handled and x ∈ P is of rank l. Next, for Ax,y

k

it holds, since again rx,yk = 1 and |yi| ≤ |y| = 1.

So suppose again that j < k(x, y) is given and the claim has been proven for
every Ax,yj′ with j < j ′ ≤ k(x, y). Let again y := (y1, y2) ∈ rSrk(x)d−1 × B(0, 1)
with r ∈ (0, 1] and let zy be defined as before. Since Sx,yj ⊆ {zi = 0} we have

|yj| = r|yyj | and since Ax,y
y

j = Ax
′,yy
j for some x′ ∈ P with rk(x′) < rk(x) we

conclude that

(2.7.47) |yi| = r|yyj | ≤ rrx,y
y

j = rx,yj .

Finally, we handle (5). Again, the basic steps in the induction are quite trivial,
so we just show the nontrivial step. So the setup is that we have shown (5) for
all points of rank < l, x is of rank l and the claim has also been shown for every
Ax,yj′ with j < j ′ ≤ k(x, y). Now if Sxj ⊆ {yi = 0}, then if

(2.7.48) Ax,yy

j ⊆ {|zi| ≥ C},

we can conclude that

(2.7.49) Ax,y
j ⊆ {|zi| ≥ C|yi|}.
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On the other hand, if Sxj 6⊆ {yi = 0}, then

(2.7.50) Ax,yy

j ⊆ {|zi| ≥ C|yyj |},

implies that

(2.7.51) Ax,y
j ⊆ {|zi| ≥ C|yyj |} ⊆ {|zi| ≥ C|yj|}.



76 CHAPTER 2. THE ARTICLE



Appendix A

Some Technicalities

A.1 Poincaré and Sobolev inequalities

The following Theorem was proved in [4].

Theorem A.1.1. Let q > 2 and let w1 and w2 be two weights on Rn and suppose
that w1 is A2 and that w2 is doubling. Suppose also that for all balls B ′ and B
with B′ ⊆ 2B

(A.1.1)

( |B′|
|B|

)1/n(
w2(B′)

w2(B)

)1/q

≤ c

(
w1(B′)

w1(B)

)1/2

with c independent of the balls.

Then the Poincaré and Sobolev inequalities hold for w1, w2 with q.

So in order to conclude that the Harnack inequality holds for Mn, it suffices to
check the assumptions of above Theorem with w1 = d(x, F )ξ with F be a finite
union of vector subspaces of Rn or just {0} and w2 either |x|ξ or 1.

Lemma A.1.2. Let F be a finite union of vector subspaces of Rn or just {0}.
Suppose ξ > −n. Then wξ(x) := d(x, F )ξ satisfies the following: There is a
constant C <∞ such that for every x ∈ Rn we have

1. If 0 < r < d(x,F )
2

, then 1
C
d(x, F )ξrn ≤ wξ(B(x, r)) ≤ Cd(x, F )ξrn and

2. If r ≥ d(x,F )
2

, then 1
C
rn+ξ ≤ wξ(B(x, r)) ≤ Crn+ξ.

Proof. Since for y ∈ B(x, r) ⊆ B(x, d(x,F )
2

) we have
(
d(x,F )

2

)ξ ≤ wξ(y) ≤
(

3d(x,F )
2

)ξ
,

the first estimate follows.

77



78 APPENDIX A. SOME TECHNICALITIES

For the second estimate, since wξ(x, r) = |x|n+ξwξ(x̂,
r
|x|) we see that by scaling

it suffices to prove the inequality for x ∈ Sn−1. To conclude the proof, it suffices
to prove that

(A.1.2) 0 < lim
r→∞

sup
x∈Sn−1

1

rn+ξ
wξ(B(x, r)) = lim

r→∞
inf

x∈Sn−1

1

rn+ξ
wξ(B(x, r)) <∞.

The computation is omitted.

Naturally, the choice of the borderline at d(x,F )
2

was arbitrary. We can and will
put the borderline at εd(x, F ) with ε ∈ (0, 1) depending on the situation.

Proposition A.1.3. Let 0 < ξ < 2 and let F be a finite union of vector subspaces
of Rn or just {0}. Let w1 = C1d(x, F )ξ and w2 = C2|x|ξ with 0 < C1, C2 < ∞.
Then the Poincaré and Sobolev inequalities hold for w1, w2 with q := 2n

n+ξ−2
and

for w1, 1 with q.

Proof. By Lemma A.1.2 both w1 and w2 are A2, so it suffices to prove the scaling
assumption in Theorem A.1.1 with q. Now Lemma A.1.2 implies that there
is a constant C < ∞ such that for every x ∈ Rd and r > 0 and every ball
B′ := B(x′, r′) ⊆ B(x, 2r) we have

1. If 0 < r < d(x,F )
4

, then C−1|x|ξr′n ≤ w(B′) ≤ C|x|ξr′n.

2. If d(x,F )
4

< r, then C−1r′n+ξ ≤ w(B′) ≤ Crξr′n.

Here w stood for either w1 or w2. Thus we have for some C <∞ the following:

1. If 0 < r < d(x,F )
4

, then

(A.1.3) C−1

(
r′n

rn

)
≤
(
w(B′)

w(B)

)
≤ C

(
r′n

rn

)
.

2. If d(x,F )
4

< r, then

(A.1.4) C−1

(
r′n+ξ

rn+ξ

)
≤
(
w(B′)

w(B)

)
≤ C

(
r′n

rn

)

Therefore, the claim reduces to finding C <∞ such that for every r and r′ with
r′ ≤ 2r we have:
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1. If 0 < r < d(x,F )
4

, then

(A.1.5)

(
r′

r

)(
r′n

rn

)n−2+ξ
2n

≤ C

(
r′n

rn

)1/2

and

(A.1.6)

(
r′

r

)n+ξ
2

≤ C

(
r′

r

)n
2

2. If d(x,F )
4

< r, then

(A.1.7)

(
r′

r

)(
r′n

rn

)n−2+ξ
2n

≤ C

(
r′n+ξ

rn+ξ

)1/2

and

(A.1.8)

(
r′

r

)n+ξ
2

≤ C

(
r′

r

)n+ξ
2

Obviously, such a C exists, so our claim has been proved.

A.2 Proofs for §2.4.3

Proof. (of Proposition 2.4.10) Let C1 := inf{〈v, σ(Mn+1)(x)v〉 : |x| = |v| =
1 and x ∈ A} and C2 := sup{〈v, σ(Mn+1)(x)v〉 : |x| = |v| = 1 and x ∈ A}.
Since A is conical with A ∩ Snd−1 compact and disjoint from the degeneration
set, we have C1 > 0.

For x ∈ A we have

C1

n∑

i=1

|xi|ξ|vi|2 ≤ C1

n∑

i=1

|x|ξ|vi|2

= C1|x|ξ|v|2
≤ σ(Mn)

≤ C2|x|ξ|v|2

= C2

n∑

i=1

|x|ξ|vi|2

≤ C2

(√n
ε

)ξ n∑

i=1

|xi|ξ|vi|2,

(A.2.1)
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where the last inequality follows from the fact that

|x|ξ = (
n∑

i=1

|xi|2)ξ/2

≤ nξ/2 max{|xi|ξ : 1 ≤ i ≤ n})

≤
(√n
ε

)ξ
min{|xi|ξ : 1 ≤ i ≤ n}

≤
(√n
ε

)ξ|xi|ξ.

(A.2.2)

Proof. (of Lemma 2.4.11) We write |〈vi, (d(xi + xi+1) − d(xi) − d(xi+1))vi+1〉| ≤
|〈vi, (d(xi + xi+1) − d(xi+1))vi+1〉| + |〈vi, d(xi)vi+1〉| and estimate the two terms
separately.

Since d is differentiable in the ball B(xi+1,
1
2
|xi+1|) a simple application of the

mean value theorem of elementary calculus gives

|〈vi, (d(xi + xi+1)−d(xi+1))vi+1〉|
≤ sup

0≤r≤1
〈vi, (xi · ∇)d(xi+1 + rxi)vi+1〉

≤ sup
1
2
≤|y|≤ 3

2

|〈v̂i, (x̂i · ∇)d(y)v̂i+1〉||xi||xi+1|ξ−1|vi||vi+1|

:= C|xi||xi+1|ξ−1|vi||vi+1|

= C
( |xi|
|xi+1|

)1−ξ/2|xi|ξ/2|xi+1|ξ/2|vi||vi+1|

≤ C

2

( |xi|
|xi+1|

)1−ξ/2
(|xi|ξ|vi|2 + |xi+1|ξ|vi+1|2).

(A.2.3)

Similarly,

|〈vi, d(xi)vi+1〉| ≤ (1 +
ξ

d− 1
)|xi|ξ|vi||vi+1|

≤ (1 +
ξ

d− 1
)
( |xi|
|xi+1|

)ξ/2|xi|ξ/2|xi+1|ξ/2|vi||vi+1|

≤ (
1

2
+

ξ

2d− 2
)
( |xi|
|xi+1|

)ξ/2
(|xi|ξ|vi|2 + |xi+1|ξ|vi+1|2).

(A.2.4)

Therefore, by setting E := max{C
2
, 1

2
+ ξ

2d−2
}, we can conclude our claim.

Proof. (of Lemma 2.4.12) We just estimate |〈vi, (d(vi,j) − d(vi+1,j))vj〉| and the
other part is estimated similarly.
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Again an application of mean value theorem gives us

|〈vi, (d(xi,j)−d(xi+1,j))vj〉|
≤ sup

0≤r≤1
〈vi, (xi · ∇)d(xi+1,j + rxi)vj〉

≤ sup
1
2
≤|y|≤ 3

2

|〈v̂i, (x̂i · ∇)d(y))v̂j〉||xi||xi+1,j|ξ−1|vi||vj|

:= C|xi||xi+1,j|ξ−1|vi||vj|

= C
( |xi|
|xi+1|

)1−ξ/2( |xi+1,j|
|xj|

)ξ/2|xi|ξ/2|xj|ξ/2|vi||vj|

≤ C

2

( |xi|
|xi+1|

)1−ξ/2( |xi+1,j|
|xj|

)ξ/2
(|xi|ξ|vi|2 + |xi+1|ξ|vi+1|2).

(A.2.5)

Proof. (of Lemma 2.4.13) First we make a split:

(A.2.6) |〈vi, (d(xi,j)− d(xi+1,j)− d(xi,j−1) + d(xi+1,j−1))vj〉|
≤ |〈vi, (d(xi,j)− d(xi+1,j)vj〉|+ |〈vi, d(xi,j−1)vj〉|+ |〈vi, d(xi+1,j−1)vj〉|.

Now the first term is estimated exactly as in the previous Lemma and the latter
as follows. (Actually we only estimate the second one, the third one is handled
identically).

|〈vi,d(xi,j−1)vj〉|

≤ (1 +
ξ

d− 1
)|xi,j−1|ξ|vi||vj|

≤ (1 +
ξ

d− 1
)
( |xi,j−1|
|xi|

)ξ( |xi|
|xj|
)ξ/2|xi|ξ/2|xj|ξ/2|vi||vj|

≤ (
1

2
+

ξ

2d− 2
)
( |xi|+ |xi+1,j−1|

|xi|
)ξ( |xi|
|xj|
)ξ/2

(|xi|ξ|vi|2 + |xj|ξ|vj|2)

≤ (
1

2
+

ξ

2d− 2
)3ξ
( |xi|
|xj|
)ξ/2

(|xi|ξ|vi|2 + |xj|ξ|vj|2).

(A.2.7)
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Proof. (of Lemma 2.4.14) Two applications of the mean value theorem give us

|〈vi,(d(xi,j)− d(xi+1,j)− d(xi,j−1) + d(xi+1,j−1))vj〉|
≤ sup

0≤r≤1
〈vi, ((xi · ∇)d(xi+1,j + rxi)− (xi · ∇)d(xi+1,j−1 + rxi)vj〉

≤ sup
0≤r,r′≤1

〈vi, (xi · ∇)(xj · ∇)d(xi+1,j−1 + rxi + r′xj)vj〉

≤ sup
1
3
≤|y|≤ 4

3

|〈v̂i, (x̂i · ∇)(x̂j · ∇)d(y)v̂j〉|xi||xj||xi+1,j−1|ξ−2|vi||vj|

:= 2E|xi||xj||xi+1,j−1|ξ−2|vi||vj|

≤ E
( |xi|
|xi+1,j−1|

)1−ξ/2( |xi|
|xi+1,j−1|

)1−ξ/2
(|xi|ξ|vi|2 + |xj|ξ|vj|2)

(A.2.8)

Proof. (of Lemma 2.4.15) We estimate the terms individually. The mean value
theorem gives us

|〈vi,(d(xi,j)− d(xA))vj〉|
≤ 2ξ/2C(

∑

k∈[i,j]\A
|xk|)|xA|ξ−1|vi||vj|

≤ 2ξ/2C
(
∑

k∈[i,j]\A |xk|
|xA|

)1−ξ/2( |xA|
|xj|

)ξ/2
.

(A.2.9)

Since we assumed that
∑

k∈[i,j]\A |xk| ≤ 1
2

min{|xk,l| : k, l ∈ A, k ≤ l}, we have

2ξ/2C
(
∑

k∈[i,j]\A |xk|
|xA|

)1−ξ/2( |xA|
|xj|

)ξ/2

≤ 2ξ/2−1C
(

∑
k∈[i,j]\A |xk|

min{|xk,l| : k, l ∈ A, k ≤ l} −∑k∈[i,j]\A |xk|
)1−ξ/2( |xA|

|xj|
)ξ/2

· (|xi|ξ|vi|2 + |xj|ξ|vj|2)

≤ C
(

∑
k∈[i,j]\A |xk|

min{xk,l : k, l ∈ A, k ≤ l}
)1−ξ/2(

∑
k∈A |xk|
|xj|

)ξ/2

· (|xi|ξ|vi|2 + |xj|ξ|vj|2)

(A.2.10)

Similar estimates hold for the other terms, except when A = {i, j}, which causes
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modifications to the last pair of terms. Then

|〈vi,d(xi+1,j−1)vj〉|

≤ (1 +
ξ

d− 1
)|xi+1,j−1|ξ|vi||vj|

≤ (
1

2
+

ξ

2d− 2
)
(
∑

k∈[i,j]\A |xk|
|xj|

)ξ/2
(|xi|ξ|vi|2 + |xj|ξ|vj|2).

(A.2.11)

A.3 Proof of Proposition 2.6.2

In order to prove Proposition 2.6.2 we first need a Lemma.

Lemma A.3.1. Let 2 ≤ l ∈ N. Then there is C <∞ such that

(A.3.1)

∫

Rd
ddy (k + |x− y|)2−ξ−ld(1 + |y|)2−ξ−d ≤ Ck2−ξ−(l−1)d(1 + |x|)2−ξ−d.

Proof. We split the domain of integration into three parts and estimate these
separately:

(A.3.2)

∫

Rd
ddy (k + |x− y|)2−ξ−ld(1 + |y|)2−ξ−d

=

∫

|x−y|≤|x|/2
+

∫

|y|≤|x|/2
+

∫

|y|,|x−y|≥|x|/2
=: (∗1) + (∗2) + (∗3)

To estimate (∗1) we note that in |x−y| ≤ |x|/2 we have |x|/2 ≤ |y| which implies
that in |x− y| ≤ |x|/2 we have

(A.3.3) (1 + |y|)2−ξ−d ≤ (1 + |x|/2)2−ξ−d ≤ C1(1 + |x|)2−ξ−d.

Therefore

(∗1) ≤ C1

∫

|x−y|≤|x|/2
ddy (k + |x− y|)2−ξ−ld(1 + |x|)2−ξ−d

= C1k
2−ξ−(l−1)d(1 + |x|)2−ξ−d

∫

|x−y|≤|x|/(2k)

ddy (1 + |x− y|)2−ξ−ld

≤ C1k
2−ξ−(l−1)d(1 + |x|)2−ξ−d

∫

Rd
ddy (1 + |x− y|)2−ξ−ld

≤ C2k
2−ξ−(l−1)d(1 + |x|)2−ξ−d.

(A.3.4)
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We make in a similar estimate in (∗2): in |y| ≤ |x|/2 we have |x|/2 ≤ |x − y|
which implies that in |y| ≤ |x|/2 we have

(A.3.5) (k + |x− y|)2−ξ−ld ≤ (k + |x|/2)2−ξ−ld ≤ C3(k + |x|)2−ξ−ld.

Now we can compute:

(∗2) ≤ C3

∫

|y|≤|x|/2
ddy (k + |x|)2−ξ−ld(1 + |y|)2−ξ−d

= C4(k + |x|)2−ξ−ld ·
{
|x|d if |x| ≤ 1 and

|x|2−ξ if |x| ≥ 1.

(A.3.6)

To treat the case |x| ≤ 1, we compute:

C4(k + |x|)2−ξ−ld|x|d ≤ C4k
2−ξ−(l−1)d|x|−d|x|d

≤ C5k
2−ξ−(l−1)d(1 + |x|)2−ξ−d.

(A.3.7)

If |x| ≥ 1 we have

C4(k + |x|)2−ξ−ld|x|2−ξ ≤ C4k
2−ξ−(l−1)d|x|−d|x|2−ξ

= C4k
2−ξ−(l−1)d|x|2−ξ−d.

(A.3.8)

Finally, we handle (∗3). When |y|, |x− y| ≥ |x|/2, we have |y|/3 ≤ |x− y|. Since
this might not be obvious, we compute: Since B(x, |x|/2) ⊆ B(0, 3|x|/2), we have

|y|/3 = |x|/2 +
1

3
d(y,B(0, 3|x|/2))

≤ |x|/2 + d(y,B(0, 3|x|/2)

≤ |x|/2 + d(y,B(x, |x|/2)

= |x− y|.

(A.3.9)

Therefore, when |y|, |x− y| ≥ |x|/2, we have

(A.3.10) (k + |x− y|)2−ξ−ld(1 + |y|)2−ξ−d ≤ C6(k + |y|)2−ξ−ld(1 + |y|)2−ξ−d

and thus

(A.3.11) (∗3) ≤ C6

∫

|y|≥|x|/2
ddy (k + |y|)2−ξ−ld(1 + |y|)2−ξ−d =: (∗4)

We split the analysis of (∗4) into two subcases: |x| ≥ 2 and |x| ≤ 2.
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If |x| ≥ 2, then we have

(∗4) ≤ C6

∫

|y|≥|x|/2
(k + |y|)2−ξ−ld|y|2−ξ−d

= C7k
2(2−ξ)−ld

∫

|y|≥|x|/(2k)

ddy (1 + |y|)2−ξ−ld|y|2−ξ−d

= C8k
2(2−ξ)−ld(1 + |x|/k)2(2−ξ)−ld =: (∗5)

(A.3.12)

If |x| ≤ k, then

(A.3.13) (∗5) = C8k
2(2−ξ)−ld ≤ C9k

2−ξ−(l−1)d(1 + |x|)2−ξ−d.

On the other hand, if k ≤ |x|, then

(A.3.14) (∗5) = C8|x|2(2−ξ)−ld ≤ C10k
2−ξ−(l−1)d(1 + |x|)2−ξ−d.

If instead of |x| ≥ 2 we have |x| ≤ 2 in (∗4), we compute

(∗4) ≤ C6

∫

Rd
ddy (k + |y|)2−ξ−ld(1 + |y|)2−ξ−d

≤ C11

∫

|y|≤1

ddy (k + |y|)2−ξ−ld + C11

∫

|y|≥1

(k + |y|)2−ξ−ld|y|2−ξ−d

≤ C12k
2−ξ−(l−1)d

∫

Rd
ddy (1 + |y|)2−ξ−ld + C12k

2−ξ−(l−1)d

≤ C13k
2−ξ−(l−1)d(1 + |x|)2−ξ−d.

(A.3.15)

Proof. (of Proposition 2.6.2.) Without loss of generality, we may assume that χ
is the characteristic function of the unit ball. First we integrate yl out:

Write k :=
∑l−1

i=1 |xi − yi|. Now we have

∫

yl∈B(0,1)

ddyl (k + |xl − yl|)2−ξ−ld

≤ C1





(k + |xl|)2−ξ−ld if |xl| ≥ 2,

k2−ξ−(l−1)d if |xl| ≤ 2 and k ≤ 1 and

k2−ξ−ld if |xl| ≤ 2 and k ≥ 1.

(A.3.16)

The first case, i.e. |xl| ≥ 2, is computed by a repeated application of Lemma
A.3.1:
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∫

R(l−1)d

l−1∏

i=1

ddyi (|xl|+
l−1∑

i=1

|xi − yi|)2−ξ−ld
l−1∏

i=1

(1 + |yi|)2−ξ−d

≤ C2(1 + |xl−1|)2−ξ−d
∫

R(l−1)d

l−1∏

i=1

ddyi·

· (|xl|+
l−2∑

i=1

|xi − yi|)2−ξ−(l−1)d

l−2∏

i=1

(1 + |yi|)2−ξ−d

≤ ...

≤ Cl

l−1∏

i=2

(1 + |xi|)2−ξ−d
∫

Rd
ddy1·

· (|xl|+ |x1 − y1|)2−ξ−2d(1 + |y1|)2−ξ−d

≤ Cl+1

l∏

i=1

(1 + |xi|)2−ξ−d.

(A.3.17)

In the second case, i.e. |xl| ≤ 2 and k ≤ 1, we get

∫

k≤1

l−1∏

i=1

ddyi k
2−ξ−(l−1)d

l−1∏

i=1

(1 + |yi|)2−ξ−d

≤ sup
k≤1

l−1∏

i=1

(1 + |yi|)2−ξ−d
∫

k≤1

l−1∏

i=1

ddyi k
2−ξ−(l−1)d

≤ C ′
l−1∏

i=1

(1 + |xi|)2−ξ−d.

(A.3.18)

The third case, i.e. |xl| ≤ 2 and k ≥ 1, uses the following trick:

∫

k≥1

l−1∏

i=1

ddy1 k
2−ξ−ld

l−1∏

i=1

(1 + |yi|)2−ξ−d

≤ C ′2

∫

R(l−1)d

l−1∏

i=1

ddyi (1 + k)2−ξ−ld
l−1∏

i=1

(1 + |yi|)2−ξ−d = (∗)
(A.3.19)

Now repeating the computation of the first case, we get:

(A.3.20) (∗) ≤ C ′3

l−1∏

i=1

(1 + |xi|)2−ξ−d ≤ C ′4

l∏

i=1

(1 + |xi|)2−ξ−d.
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