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1. On mappings, spaces, and questions

In this thesis, we study two classes of mappings between Riemann-
ian manifolds distorting the local geometry in a controlled way. Under
additional geometric and topological conditions on underlying mani-
folds, we obtain results on the global behavior of the mappings. To be
more precise, we study quasiregular mappings and mappings of finite
distortion between Riemannian manifolds, where the domain of the
mappings is assumed to be a weighted parabolic manifold or having a
conformally parabolic end and the range possesses a restricted topol-
ogy. To describe the setting, let us first define the mapping classes and
then consider the assumptions on manifolds.

A continuous mapping f : M → N between oriented Riemannian n-
manifolds M and N is called K-quasiregular, 1 ≤ K < ∞, if f is in
the Sobolev class W 1,n

loc (M,N) and satisfies an inequality

‖Txf‖n ≤ KJ(x, f)

for a.e x ∈ M , where ‖Txf‖ is the operator norm of the tangent map
Txf : TxM → Tf(x)N and J(x, f) is the Jacobian determinant of f at
x.

The theory of quasiregular mappings in dimension two differs dras-
tically from the theory in higher dimensions. In dimension two the
connection between quasiregular mappings and the Beltrami equation
reduces the study of quasiregular mappings between planar Euclidean
domains to the study of quasiregular homeomorphisms, i.e. quasicon-
formal mappings. Indeed, such a quasiregular mapping can be ex-
pressed as a composition of an analytic mapping and a quasiconfor-
mal mapping. Similarly, the global theory of quasiregular mappings
between Riemannian surfaces reduces to the corresponding theory of
analytic mappings. In higher dimensions the connection to methods
arising from complex analysis is much weaker. We refer to [1] and [2]
for details on the planar theory.

The theory of quasiregular mappings in dimensions n ≥ 3 was ini-
tiated by Reshetnyak in the 1960’s with a series of papers. By fun-
damental results of Reshetnyak, non-constant quasiregular mappings
are sense-preserving, discrete, and open. Furthermore, these results
include local Hölder continuity and almost everywhere differentiability
of quasiregular mappings, see e.g. [31] or [35].

In 1969-1971, after Reshetnyak’s foundational articles, Martio, Rick-
man, and Väisälä developed in a series of papers ([23], [24], and [25])
foundations of the metric and topological theory of quasiregular map-
pings. Geometric methods such as the capacity of a condenser and
the modulus of a path family together with topological tools such as
the local topological index of an open mapping led to metric and geo-
metric definitions of quasiregular mappings, distortion theorems, and
results on the properties of the branch set of non-constant quasiregular
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mappings. In Section 2 we discuss one of these results, an estimate for
the injectivity radius of quasiregular local homeomorphisms, in more
detail.

In the 1980’s in a series of papers Rickman gave a description of
the global behavior of entire quasiregular (or quasimeromorphic) map-
pings, i.e. quasiregular mappings from Rn into Sn, by developing a
value distribution theory for quasiregular mappings. These results in-
clude the Picard theorem and a version of Ahlfors’s defect relation.
Rickman’s Picard theorem is discussed in more detail in Section 3. For
a discussion on the defect relation and a comprehensive presentation
on the geometric theory of quasiregular mappings in Euclidean spaces,
we refer to Rickman’s monograph [35].

Let Ω be an open set in Rn, n ≥ 2. A mapping f : Ω→ Rn is called
a mapping of finite distortion, with a measurable distortion function
K : Ω→ [1,∞], if f is in the class W 1,1

loc (Ω,Rn), the Jacobian determi-
nant of f is locally integrable, and

‖Df(x)‖n ≤ K(x)J(x, f)

for a.e. x ∈ Ω.
We obtain from the inequality that mappings of finite distortion, with

K ∈ L∞, belong to the Sobolev space W 1,n
loc (Ω,Rn). Hence mappings

of finite distortion extend the class of quasiregular mappings. With-
out any additional restrictions on the distortion, mappings of finite
distortion do not possess analytical and topological properties similar
to quasiregular mappings. Let us briefly discuss sharp additional as-
sumptions on distortion, which guarantee these properties. Mappings
of finite distortion are under rapid development and for an exposition
on aspects of the theory we refer to the book of Iwaniec and Martin
[16], see also e.g. [3], [15], [18], [A, Section 2], and references therein.

Following a recent work of Kauhanen, Koskela, Onninen, Malý, and
Zhong [18] we say that a mapping f of finite distortion K satisfies
condition (A) if there exists an Orlicz-function A : [0,∞)→ [0,∞), see
e.g. [A, Section 2] for the definition, satisfying

(A-0) exp(A(K(·))) ∈ L1
loc(M),

(A-1)

∫ ∞

1

A′(t)
t

dt =∞, and

(A-2) t 7→ tA(t) increases to ∞ as t→∞.
In [18], condition (A) is shown to be the sharp Orlicz-condition which

leads to a mapping class with properties similar to quasiregular map-
pings. That is, non-constant mappings of finite distortion satisfying
condition (A) are continuous, discrete, and open with almost every-
where positive Jacobian determinant. Furthermore, these mappings
preserve sets of Lebesgue measure zero.
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In [A] and [B], local homeomorphisms of finite distortion between
Riemannian manifolds are studied. Since our considerations are re-
stricted to local homeomorphisms, we assume a priori continuity in our
definition of mappings of finite distortion between Riemannian mani-
folds; see [A, Section 2]. For a more general study of weakly differ-
entiable mappings between manifolds, we refer to the recent article of
Haj lasz, Iwaniec, Onninen, and Malý [10].

The geometric theory of mappings of finite distortion is under an ex-
tensive study. In [19], Koskela and Onninen showed that mappings of
finite distortion satisfying condition (A) enjoy capacity and modulus
inequalities similar to those available for quasiregular mappings; see
Section 2 for more details. By using these inequalities, Koskela, Onni-
nen, and Rajala proved that local homeomorphisms of finite distortion
have a uniform injectivity radius depending only on the dimension of
the space and the distortion function of the mapping [20]. Further-
more, Rajala generalized a theorem of Dairbekov on removable sets for
quasiregular local homeomorphisms to local homeomorphisms of finite
distortion [30]. Especially we would like to note that also generaliza-
tions of the Picard theorem are under investigation, see [21] and [29].

In order to describe the geometric assumptions on the manifolds in
more detail, let us introduce the notion of a capacity. A set F ⊂M is
said to have zero p-capacity for p ∈ [1,∞), if for every compact subset
C ⊂ F and every open set Ω ⊂M containing C we have

capp(Ω, C) := inf
u

∫

M

|∇u|p dm = 0,

where the infimum is taken over all functions u ∈ C∞0 (M) such that
u|C ≥ 1. Furthermore, M is said to be p-parabolic, if every compact
subset of M has zero p-capacity with respect to M , i.e. capp(M,C) = 0
for every compact set C ⊂ M . Otherwise, we say that M is p-
hyperbolic. Due to the conformal invariance of n-parabolicity and n-
hyperbolicity on Riemannian n-manifolds, we also refer to these proper-
ties as conformal parabolicity and conformal hyperbolicity, respectively.
For other characterizations of parabolicity, see e.g. [11, Section 5] and
[13].

Let us consider the presence of this classification of Riemannian man-
ifolds in the Euclidean theory of quasiregular mappings. Given a closed
set E ⊂ Rn, simple arguments show that Rn \ E is conformally par-
abolic if and only if E has zero n-capacity in Rn. Especially Rn is
conformally parabolic. A fundamental result in the Euclidean theory
is that a non-constant entire quasiregular mapping cannot omit a set
of positive n-capacity, see e.g. [35, III.2.12]. In the setting of Riemann-
ian manifolds this result takes a form that non-constant quasiregular
mappings preserve conformal parabolicity in the sense that the image
of a conformally parabolic manifold under a non-constant quasiregular
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mapping is a conformally parabolic submanifold of the target manifold.
Since a conformally hyperbolic manifold does not contain any confor-
mally parabolic open submanifolds, we may state this result in another
form that every quasiregular mapping from a conformally parabolic
manifold into a conformally hyperbolic manifold is constant. See e.g.
[5, 5.1] for a detailed discussion.

We also study quasiregular mappings defined on Bn \ {0}, where
Bn is the unit ball of Rn. In this case our domain is not conformally
parabolic, but it has a parabolic end at the origin in the sense that the
boundary component {0} of Bn \ {0} in Rn is a set of zero n-capacity.
For our purposes it is not necessary to give a more general definition
of a parabolic end of a Riemannian manifold, but such a definition can
be acquired from the alternative definition of n-parabolicity given in
Section 2 and the definition of an end of a manifold in Section 3. In
general, the parabolic end at the origin does not impose any additional
restrictions to quasiregular mappings defined in Bn \ {0}. However, if
the origin is an essential singularity of a quasiregular mapping defined
in a neighborhood of the origin, then the image of the mapping is always
conformally parabolic, see e.g. [C, Lemma 3.1].

For mappings of finite distortion, capacity inequalities indicate that
a natural counterpart for conformally parabolic manifolds are weighted
conformally parabolic manifolds. We discuss this subject further in
Section 2.

We are now ready to formulate two questions which are discussed in
the forthcoming sections.

First question: Given a local homeomorphism of finite distortion
f : M → N and a weighted conformally parabolic manifold M with a
weight comparable to the distortion of f , what is the relation between
multiplicity of the mapping and the fundamental group of the manifold
N?

Second question: Given a quasiregular mapping f : Bn \ {0} → N ,
which additional topological conditions on N guarantee that f has a
limit at the origin?

In the following section we show that generalizations of Zorich’s the-
orem for mappings of finite distortion give an answer to the first ques-
tion. With respect to the second question, we consider separately the
cases when N is compact or non-compact. For non-compact target
manifolds, we give an answer to this question in terms of the number
of ends of N in Section 3. In Section 4 we show that for compact target
manifolds, the limit exists when the dimension of the de Rham coho-
mology ring of N exceeds a bound given in terms of the dimension of
N and the dilatation K of the mapping f .



9

2. Zorich’s theorem for mappings of finite distortion
between Riemannian manifolds

Zorich’s theorem for entire quasiregular mappings exhibits the strik-
ing difference between planar and spatial theory of quasiregular map-
ping. Zorich’s theorem reads as follows.

Theorem 1 ([37]). For n ≥ 3 every quasiregular local homeomorphism
from Rn into itself is a homeomorphism.

For quasiregular mappings from R2 into itself this theorem fails as
the exponential mapping z 7→ exp(z) reveals. For n ≥ 3, a result of
Martio, Rickman, and Väisälä on the injectivity radius of quasiregular
local homeomorphisms yields Zorich’s theorem as a corollary.

Theorem 2 ([25, 2.3]). If n ≥ 3 and if f : Bn → Rn is a K-quasi-
regular local homeomorphism, then f is injective in Bn(ψ(n,K)), where
ψ(n,K) is a positive constant depending only on n and K.

Indeed, given a quasiregular local homeomorphism from Rn into itself
we have, by scaling and Theorem 2, that f is injective in Bn(R) for
every R > 0. Thus Zorich’s theorem follows.

In [20], Koskela, Onninen, and Rajala showed that local homeomor-
phisms of finite distortion satisfying condition (A) possess a similar
local injectivity property. Hence local homeomorphisms of finite dis-
tortion from Rn into itself are homeomorphisms. We refer to [20] for
the precise statement.

When studying quasiregular mappings or mappings of finite distor-
tion between Riemannian manifolds we readily note that this kind of
scaling argument is not available. However, for quasiregular mappings,
methods of the proof of Theorem 1 can be extended to the setting of
Riemannian manifolds.

Theorem 3 ([38]). Let n ≥ 3, M a conformally parabolic Riemannian
n-manifold, and N a simply connected Riemannian n-manifold. Then
every quasiregular local homeomorphism from M into N is an embed-
ding. Moreover, the set N \ fM has zero n-capacity.

In the literature, this version of Zorich’s theorem is attributed to Gro-
mov and known as the geometric version of the global homeomorphism
theorem. Indeed, in [8], Gromov states that the proof of Theorem 1 has
a wider range containing Theorem 3, see also [9, pp. 336]. To author’s
knowledge, the proof of Theorem 3 was discussed first time in detail
in [38]. For quasiregular local homeomorphisms from conformally par-
abolic submanifolds of Sn into Sn, this result follows from theorems of
Dairbekov [6] and Martio and Srebro [26].

In [A], Holopainen and the author showed that Theorem 3 generalizes
to mappings of finite distortion, when parabolicity of the domain is
interpreted properly.
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Theorem 4 ([A, Theorem 1]). Let n ≥ 3. Given a Kn−1-parabolic n-
manifold M , where K : M → [1,∞] is a measurable function satisfying
condition (A), and a simply connected manifold N , then every local
homeomorphism f : M → N of finite distortion K is an embedding.
Furthermore, N \ fM has zero n-capacity.

In order to define the weighted parabolicity, let us first define the
w-weighted p-modulus of a path family. Let w : M → [0,∞] be a Borel
function and p ∈ [1,∞). We define the w-weighted p-modulus Mp,w(Γ)
of a path family Γ by

Mp,w(Γ) = inf
ρ

∫

M

ρpw dx,

where the infimum is taken over all Borel functions ρ : M → [0,∞]
satisfying ∫

γ

ρ ds ≥ 1

for every locally rectifiable path γ ∈ Γ.
We say that an n-manifold M is w-parabolic for given measurable

function w : M → [0,∞] if Mn,w(Γ∞M) = 0, where Γ∞M is the family of
all paths γ in M for which the locus of γ is not relatively compact in
M , see [A, Section 3].

To show that the definition of w-parabolicity extends the definition
of n-parabolicity given in Section 1 it is sufficient to note the follow-
ing. For w ≡ 1 we recover the p-modulus Mp(Γ) of a path family Γ.
Furthermore, given a domain Ω ⊂M and a compact set C ⊂ Ω then

capp(Ω, C) = Mp(Γ
∞
Ω ∩ ΓC),

where ΓC is the family of paths intersecting C. See [35, II.10.2] for
details. Hence the class of w-parabolic manifolds with w ≡ 1 is exactly
the class of n-parabolic manifolds.

The most fundamental tool in the proof of Theorem 4 is the weighted
version of Väisälä’s inequality for mappings of finite distortion. For
mappings of finite distortion between Euclidean domains this inequality
is due to Koskela and Onninen [19]. In [A], we gave a modification of
this proof in the case of Riemannian manifolds. For notations, see [A,
Section 3].

Theorem 5 ([A, Theorem 7]). Let f : M → N be a continuous non-
constant mapping of finite distortion K satisfying condition (A). Let Γ
be a path family in M , Γ′ a path family in N , and m a positive integer
such that the following is true: For every path β : I → N in Γ′ there
are paths α1, . . . , αm in Γ such that f ◦ αj ⊂ β for all j and such that
for every x ∈ M and t ∈ I the equality αj(t) = x holds for at most
i(x, f) indices j. Then

Mn(Γ′) ≤ Mn,KI(·,f)(Γ)

m
.
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Simple examples, like the mapping Sn−1 × S1 → Sn−1 × S1, (x, z) 7→
(x, z2), show that simply connectedness of the target manifold is es-
sential in obtaining injectivity of the mapping f in Theorem 4. This
raises a question, what can be said about the covering properties of
local homeomorphisms of finite distortion from a weighted parabolic
manifold into another manifold, if the assumption on the simply con-
nectedness of the range is relaxed. In [B], we show that, apart from
a small exceptional set, these mappings behave like covering mappings
in the following sense. We refer to [B] for terminology.

Theorem 6 ([B, Theorem 3]). Let n ≥ 3, M a Kn−1-parabolic n-
manifold, where K : M → [1,∞] is a measurable function satisfying
condition (A), N a Riemannian n-manifold, and f : M → N a local
homeomorphism of finite distortion K. Then there exists a set E ⊂ N
of zero n-capacity such that f is an m-to-1 mapping on M \ f−1E,
where

m = card (π1(N)/f∗π1(M)) ∈ Z+ ∪ {∞},
and card f−1(y) ≤ m for every y ∈ E. If m <∞, then card f−1(y) <
m for every y ∈ E. Moreover, N \ fM ⊂ E and E is the set of
asymptotic limits of f .

As theorems 4 and 6 show, parabolicity of the domain, when suit-
ably interpreted, transforms the local rigidity of a mapping of finite
distortion into a global rigidity.

In [B], we also consider characterizations of parabolic and weighted
parabolic manifolds. The main result, which is a modest extension of
a result of Keselman and Zorich [39], reads as follows.

Theorem 7 ([B, Theorem 4]). Let (M, g) be a Riemannian n-manifold
and w : M → [0,∞] be in L1

loc(M). Then (M, g) is w-parabolic if and
only if there exists a C∞-function λ : M → (0,∞) such that the mani-
fold (M,λg) is complete and

‖w‖L1(M,λg) =

∫

M

wλn/2 dmg <∞.

Here mg is the measure given by the Riemannian metric g.

3. Picard type theorems for quasiregular mappings

At a very early stage of the theory of quasiregular mappings it was
discovered that an entire non-constant quasiregular mapping cannot
omit a set of positive capacity. The proofs of this result did not impose
any finite bound on the cardinality of the omitted set and it was conjec-
tured for a long time that an entire quasiregular mapping into Sn could
not omit more than two points also in dimensions n ≥ 3. In [32], Rick-
man proved the Picard theorem for quasiregular mappings, that is, for
non-constant entire quasiregular mappings there exists a finite bound
on the cardinality of the omitted set. This bound is given in terms of
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the dimension of the space and the distortion of the mapping. In di-
mension three, this result is known to be qualitatively best possible by
Rickman’s construction in [33]. Although it is possible to construct, by
elementary methods, an entire quasiregular mapping into Rn omitting
one point, no other method apart from Rickman’s construction in [33]
is known how to construct entire quasiregular mappings omitting more
than one point. It is also an open question whether Rickman’s Picard
theorem is sharp in dimensions above three.

Rickman’s proof for the Picard theorem for quasiregular mappings
is based on a careful analysis of the behavior of the averaged counting
function of the mapping and sharp estimates on the moduli of path
families. In these estimates, the geometry of the Euclidean space, or
actually Sn, is involved, making this approach difficult to generalize.
In [7], Eremenko and Lewis gave a potential theoretic method to prove
Rickman’s theorem. This method was further simplified by Lewis in
[22]. Lewis’s approach, with Harnack functions, to the Picard-Rickman
theorem is not restricted to Euclidean spaces but allow generalizations
into Riemannian manifolds. In [12] and [14], Holopainen and Rick-
man used Lewis’s method to generalize the Picard theorem first for
quasiregular mappings from Rn into manifolds with many ends and
then for quasiregular mappings from manifolds with controlled geome-
try to manifolds with many ends.

The original method of Rickman in [32] gives also a proof for the
corresponding big Picard type theorem. That is, there exists a number
q depending only on the dimension and the dilatation K such that if a
K-quasiregular mapping from Bn\{0} to Rn omits more than q points,
then there exists a limit at the origin. This limit can also be infinity.
In [C], Holopainen and the author showed that Lewis’s method, as
further developed by Holopainen and Rickman, can be used to obtain
a big Picard type theorem for quasiregular mappings from Bn \ {0}
into manifolds with many ends.

Theorem 8 ([C, Theorem 1.3]). Let N be a Riemannian n-manifold.
For every K ≥ 1 there exists q = q(K, n) such that every K-quasi-
regular mapping f : Bn \ {0} → N has a removable singularity at the
origin if N has at least q ends.

We say that a manifoldN has at least q ends, if there exists a compact
set E ⊂ N such that N \ E has at least q components that are not
relatively compact. For the definition of a removable singularity in this
setting, see [C, Section 1].

4. de Rham cohomology and quasiregular mappings

A highly interesting open problem in the theory of quasiregular
mappings is the classification of quasiregularly elliptic manifolds, that
is, manifolds admitting non-constant quasiregular mappings from Rn.
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To be more precise, we say that a connected oriented Riemannian n-
manifold N is K-quasiregularly elliptic if there exists a non-constant
K-quasiregular mapping from Rn into N . A manifold is quasiregularly
elliptic if it is K-quasiregularly elliptic for some K ≥ 1.

In dimension two, this question can be fully answered. By quasireg-
ular Liouville theorem, the only connected and oriented Riemannian
2-manifolds receiving non-constant quasiregular mappings from R2 are
R2 itself, the 2-sphere S2, and the 2-torus T 2. See e.g. [4] for details.

In higher dimensions, no such characterization is known. As de-
scribed in the introduction, standard capacity estimates show that
quasiregularly elliptic manifolds are conformally parabolic. Further-
more, the Picard type theorem of Holopainen and Rickman shows that
K-quasiregularly elliptic manifolds have a bounded number of ends in
terms of the dimension and K. Since closed manifolds, that is, compact
manifolds without boundary, meet these two requirements trivially, we
may ask which closed manifolds are quasiregularly elliptic. This ques-
tion was originally posed by Gromov and Rickman, see e.g [8], [9], and
[34]

In [17, 1.3] Jormakka showed, by assuming the Geometrization Con-
jecture, that all quasiregularly elliptic 3-manifolds are quotients of S3,
R3, or S2×R. In general, it is easy to see that Sn and T n are quasireg-
ularly elliptic for every n ≥ 2. Furthermore, one can show that also
manifolds Sk × Sn−k and Sk × T n−k are quasiregularly elliptic. On the
other hand, Peltonen showed in [28] that given a closed n-manifold N
the manifold T n#N is not quasiregularly elliptic, if Hm(N) 6= 0 for
some m ∈ {1, . . . , n− 1}. Here Hm(N) is the m-th de Rham cohomol-
ogy group of N . It was an open question until very recently whether the
connected sum of S2 × S2 with itself, i.e. S2 × S2#S2 × S2, is quasireg-
ularly elliptic. Rickman gave an affirmative answer to this question in
[36].

In [4], Bonk and Heinonen showed that quasiregularly elliptic mani-
folds have bounded cohomology in the following sense.

Theorem 9 ([4, Theorem 1.1]). If N is a closed K-quasiregularly el-
liptic n-manifold, n ≥ 2, then

dimH∗(N) ≤ C(n,K),

where dimH∗(N) is the dimension of the de Rham cohomology ring
H∗(N) of N and C(n,K) is a constant depending only on n and K.

In [D], we consider quasiregular mappings from a punctured n-ball
into closed manifolds. Picard type theorems for quasiregular mappings
suggest that the theorem of Bonk and Heinonen has a local counterpart
for this class of mappings. This is indeed the case.

Theorem 10 ([D, Theorem 2]). Let n ≥ 2 and K ≥ 1. There exists
a constant C ′(n,K) depending only on n and K such that whenever
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f : Bn\{0} → N is a K-quasiregular mapping into a closed, connected,
and oriented Riemannian n-manifold N with dimH∗(N) > C ′(n,K),
the limit of f at the origin exists.

The n-torus T n shows that both constants C(n,K) and C ′(n,K) are
at least dimH∗(T n) = 2n for every K ≥ 1. The exact values of these
constants are not known.

Theorem 10 together with a short argument give the theorem of
Bonk and Heinonen. Indeed, let K ≥ 1 and N be a closed, connected,
and oriented Riemannian n-manifold such dimH∗(N) ≥ C ′(n,K). By
Theorem 10, every K-quasiregular mapping f : Rn → N has a limit
at the infinity. Hence the averaged counting function of f is bounded.
By [4, Theorem 1.11], for every non-constant quasiregular mapping
from Rn into N the averaged counting function is unbounded, since
H`(N) 6= 0 for some ` ∈ {1, . . . , n− 1}. Hence f is constant.

The proof of Theorem 10 employs the method of pull-backing p-
harmonic forms under quasiregular mappings as in the proof of The-
orem 9, but instead of a scaling argument that was used in [4], we
organize the proof around a ball decomposition method due to Rick-
man. Both proofs use the value distribution result [27, 5.11] of Mattila
and Rickman to relate the information on the cohomology of the target
manifold, via p-harmonic forms, to the averaged counting function of
f . For the ball decomposition method we require an estimate for the
lower growth of the averaged counting function A(·; f) of f . For the
definition of A(·; f), see e.g. [D, Section 3].

Theorem 11 ([D, Theorem 14]). Let N be a closed, connected, and
oriented Riemannian n-manifold such that H `(N) 6= 0 for some ` ∈
{2, . . . , n − 2}, and let f : Rn \ B̄n → N be a K-quasiregular map-
ping having an essential singularity at the infinity. Then there exists
constants C0 > 1 and λ > 1 depending only on n and K such that

lim inf
t→∞

A(λt; f)

A(t; f)
≥ C0.

Furthermore, there exists α > 0 depending only on n and K such that

lim inf
t→∞

A(t; f)

tα
> 0.

This theorem corresponds to [4, Theorem 1.11] which states that
the averaged counting function of a non-constant quasiregular mapping
from Euclidean n-space into a closed manifold N grows like a power, if
dimH`(N) 6= 0 for some ` ∈ {1, . . . , n − 1}. We show by an example
in [D, Section 5] that the stricter assumption on the cohomology of N
is necessary in Theorem 11.

5. Errata

Article [B] contains following errors known to the author.
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1. Page 192: line 3 should be

m = card (π1(N)/f∗π1(M)) ∈ Z+ ∪ {∞},
2. Page 194: formula (3) should be

(3) ‖w‖L1(M,λg) =

∫

M

wλn/2 dmg <∞.

3. Page 195: line 5 should be

λ =

(
ϕ+

∞∑

i=1

‖∇ui‖n
)2/n

4. Page 197: The sentence “For class c ∈ π1(N)/f∗π1(M) choose a
loop αc starting from y” in line 3 should be “For a class
c ∈ π1(N)/f∗π1(M) choose a loop αc starting from y such that the
homotopy class of αc belongs to c”.
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[18] J. Kauhanen, P. Koskela, J. Malý, J. Onninen, and X. Zhong. Mappings of
finite distortion: sharp Orlicz-conditions. Rev. Mat. Iberoamericana,
19(3):857–872, 2003.

[19] P. Koskela and J. Onninen. Mappings of finite distortion: Capacity and
modulus inequalities. Preprint 257, Department of Mathematics and
Statistics, University of Jyväskylä, 2002.
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quasiregular mappings. Ann. Acad. Sci. Fenn. Ser. A I No., 465:13, 1970.
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