
Dependence Logic: Investigations into
Higher-Order Semantics Defined on Teams

Ville Nurmi

Department of Mathematics and Statistics

Faculty of Science

University of Helsinki

Academic dissertation

To be presented, with the permission of the Faculty of Science of the
University of Helsinki, for public criticism in Hall 4, Metsätalo

(Unioninkatu 40), on August 22nd, 2009, at 10 a.m.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14916778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

http://ethesis.helsinki.fi

ISBN 978-952-92-5944-1 (paperback)
ISBN 978-952-10-5679-6 (PDF)

Helsinki University Print
Helsinki 2009

http://ethesis.helsinki.fi

Contents

Acknowledgements v

1 Introduction 1
1.1 History . 1
1.2 Goals of the Thesis . 3
1.3 Outline of the Thesis . 4

2 Preliminaries 7
2.1 General Definitions . 7
2.2 First Order Logic (FO) . 9
2.3 Second Order Logic (SO) . 11
2.4 Dependence Logic (FOD) . 15
2.5 Team Logic (TL) . 26

3 Swapping Quantifiers 33
3.1 Definitions . 33
3.2 Swapping Quantifiers in Team Logic 34

4 FO vs. FOD in Logical Equivalence 39
4.1 Definitions . 39
4.2 Comparing Semiequivalences 42
4.3 EF-game for FO in FOD-rank 43
4.4 Converting Winning Strategies 47
4.5 Further Points of Interest . 49

5 Translating between Logics 51
5.1 The General Setting . 51
5.2 Translating ESO to FOD . 54
5.3 Translating SO-Sentences to TL 57
5.4 Translating SO-Formulas to TL 68
5.5 Applications of Translations 71

iii

iv

6 Axiomatising Fragments of FOD 73
6.1 Calculus of Structures . 73
6.2 A Proof System for a Fragment of FOD 78
6.3 Soundness of the Proof System 81
6.4 Discussion on the Problem of Completeness 85

7 1-Semantics 93
7.1 Definitions . 93

7.1.1 1-Semantics in ω-Teams 93
7.1.2 Type Shifting . 96
7.1.3 1-Semantics in Teams 98

7.2 Basic Properties . 103
7.2.1 Similarity of P-Semantics and 1-Semantics 103
7.2.2 The Law of Excluded Middle 106
7.2.3 Expressive Power . 108

7.3 Game Theoretic Semantics . 110
7.4 Further Ideas . 114

8 Conclusions 117

Bibliography 121

Index 124

Acknowledgements

I would like to thank Wilfrid Hodges, Alessio Guglielmi, Kai Brünnler and
Tero Tulenheimo for helpful correspondence.

Wilfrid Hodges gave me inspiration and told me about type shifting.
This led me to 1-semantics. Alessio Guglielmi and his students found the
beautiful proof formalism called calculus of structures and have done a good
job in making it accessible also to non-proof theorists.

I wish to express my thanks to the organisers and participants of ESSLLI,
the annual European Summer School in Logic, Language and Information,
and especially its Student Session. ESSLLI is a good place to meet both
students and senior people in these disciplines.

I thank my advisor, Jouko Väänänen, for introducing me to dependence
logic and independence friendly logic, for sharing ideas about them and for
giving helpful comments on a preliminary version of this thesis. I also thank
Ryan Siders, Juha Kontinen and other colleagues at the math department
for interesting discussions. Thanks to Marcus Frösén for showing what math-
ematics is really about. Finally, I thank my friends, family and especially
Cvete for support and encouragement. Each of you has influenced me, and
this thesis is one of the outcomes.

The work behind this thesis was made possible by funding from the
University of Helsinki Department of Mathematics and Statistics and the
MALJA Graduate School in Mathematical Logic.

v

Chapter 1

Introduction

This thesis is a study of a rather new logic called dependence logic. In this
chapter I will briefly review dependence logic in a historical context and then
proceed to the goals and outline of the thesis.

1.1 History

Dependence logic is best introduced in context of its history; it is the latest
entry in the following historical timeline of logics that relate to partially
ordered quantification.

1959, Henkin quantifiers [10] Also known as partially ordered quan-
tifers, Henkin quantifiers allow partial ordering of first order quantifiers. The
classical example is (

∀x ∃y
∀z ∃w

)
φ(x, y, z, w). (1.1)

Its semantics is defined by resorting to second order quantifiers:

∃fy∃fw∀x∀zφ(x, fyx, z, fwz).

In a sense, each row of quantifiers in (1.1) is read like in first order logic, and
different rows of quantifiers work independently of each other.

1987, Independence friendly logic with game theoretic semantics
[13, 12] The syntax of independence friendly logic differs from Henkin
quantifiers so that first order quantifiers are always written linearly on one
line. The partial order of quantifiers is specified with optional slashes after

1

2 CHAPTER 1. INTRODUCTION

quantifiers. After the slash one lists the quantifiers that in Henkin’s syntax
would appear on different rows. An equivalent formula to (1.1) is

∀x∃y∀z∃w/∀xφ(x, y, z, w). (1.2)

Its semantics is defined by resorting to game theoretic semantics such that
when choosing a value for w, a player does not know the value of x. The
semantics is defined only for sentences.

1997, Independence friendly logic with trump semantics [14, 15]
Trump semantics expresses game theoretic semantics in an algebraic way.
It is the return back to the Tarskian definition of satisfaction from which
game theoretic semantics originally stepped away. Satisfaction of a formula
is defined with respect to a model and a set of assignments, as opposed to a
model and a single assignment as is the case in all conventional logics. It was
later shown by a counting argument that it is not possible to define Tarskian
semantics for independence friendly logic using only single assignments [5].
Trump semantics applied to the first quantifier in (1.2) simulates the semantic
game by extending each assignment in the set by all possible values for x.
This imitates the way truth is defined in game theoretic semantics—the other
player who chooses values for the existential quantifiers must have a winning
strategy and thus we must check that strategy against all possible moves of
the opponent. Trump semantics applied to the fourth, slashed quantifier in
(1.2) extends each assignment in the set by one value for w. This value is
thought to be given by the winning strategy we are testing. Furthermore, to
simulate the requirement of not knowing the value of x, the way the values
are chosen must be uniform, i.e. the choices must be describable as a function
on the set of assignments that does not use the values of x. Trump semantics
is defined for all formulas.

2007, Dependence logic and team logic [19] Dependence logic derives
from trump semantics by changing two things. Firstly, it replaces “inde-
pendence” by “dependence”, that is, it moves from a negative expression to
a positive expression. Secondly, it introduces a new form of atomic formu-
las that is dedicated to expressing dependence. Consequently, the need of
adding slashes to quantifiers disappears. Henkin’s example formula (1.1) can
be equivalently expressed in dependence logic as

∀x∃y∀z∃w
(
=(z, w) ∧ φ(x, y, z, w)

)
. (1.3)

The semantics are based on sets of assignments, as in trump semantics. Such
sets are now called teams. As with trump semantics, the first quantifier in

1.2. GOALS OF THE THESIS 3

(1.3) is interpreted by extending all assignments in the team by all possible
values for x. The fourth quantifier is interpreted by extending each assign-
ment by some value for w, without demands for uniformity. The check for
uniformity happens not until the new atomic formula, =(z, w), which holds
for a team only if the team “contains” a function from the values of z to the
values of w.

Team logic is obtained from dependence logic as its closure under classical
negation.

All the logics in this timeline are in a way very similar. Each of them is
able to express the existence of a function, be it either as a winning strategy
of a player of the semantic game, or as dressed in a uniformity condition, or
as isolated to a new kind of atomic formula. Furthermore, all the logics are
able to express that the function has a restricted arity in a sense; the function
is allowed to use the values of only certain previously quantified variables.
This is what one can do in existential second order logic. Indeed, given a
sentence in any of the logics, one can translate it into an equivalent sentence
in any other of the logics.

Despite circling around the same key notion, the logics are also very
different. Each logic in the above timeline can be seen as an improvement
to the previous logic in ease of notation, in ease of technical definition, or in
addition of desirable logical properties. For these reasons, the focus of study
in this thesis is dependence logic. Furthermore, most things I state about
dependence logic can be formulated in the other logics as well.

1.2 Goals of the Thesis

This thesis revolves around two goals. The first is to find out basic properties
of dependence logic. One has to learn the basics in order to gain intuition,
routine and general understanding which in turn are needed for finding and
proving deeper statements about the logic. I hope to shed some light for
others who might then be able to reach further in this process.

Dependence logic is still new and thus it is missing much of this necessary
groundwork. Much of the research of logics related to dependence logic seems
to concentrate on independence friendly logic and its game theoretic seman-
tics. There are indeed interesting philosophical concerns related to what is
independence, how semantics games can and should be interpreted, and how
should one classify these logics. It is the more concrete and technical side of
logic that seems to have been left with less attention.

The second goal of this thesis is to understand where dependence logic
comes from in mathematical terms. The answer is not the historical roots

4 CHAPTER 1. INTRODUCTION

that lead to trump semantics. However, the question itself leads there.
On the one hand, trump semantics contains the novel idea of expressing

semantics in terms of sets of assignments. This I take as a solid concept. On
the other hand, trump semantics contains operations on sets of assignments,
one operation for each logical connective and quantifier. My question is,
why exactly these operations? The answer seems to be that, at the time of
conception of trump semantics, there was no clear view as to what alternative
operations there are or how to compare these alternatives. After all, trump
semantics does achieve the most important goal it was created for; it is
a compositional semantics for independence friendly logic. But now that
research in independence friendly logic has reached that goal, it is possible
to look around for alternatives and compare them.

When starting from a simple concept, there may be many equivalent ways
to define things. When generalising the simple concept to a more complex
one, these definitions that were equivalent in the simple case may prove to
generalise into definitions that are not equivalent anymore. In fact, some of
these generalised definitions may prove to be impractical or lack properties
that some of the other generalised definitions may hold. The step from first
order logic to independence friendly logic may contain many such cases, and
my humble advice to researchers in this area is to keep their eyes open for
alternative definitions for the sake of finding better tools to work with.

1.3 Outline of the Thesis

Chapter 2 contains definitions of the logics and notational conventions used
in this thesis and reviews some relevant facts.

Chapters 3 to 6 are in the field of the first goal of the thesis, to un-
derstand the basics of dependence logic and to gain intuition and general
understanding.

Chapter 3 investigates the question under which conditions can the places
of two consequtive quantifiers be swapped while preserving the meaning of
the formula.

Chapter 4 studies the concept of logical equivalence of two models in
both first order logic and dependence logic. I present an Ehrenfeucht-Fräıssé
game for logical equivalence in first order logic where the depth or strength
of equivalence is described in terms of dependence logic.

Chapter 5 is about translating formulas from one logic to another. I
formulate in a general setting what is a translation between two logics that
have incompatible definitions for the meaning of a formula. I present several
new translations as well as a detailed transcription of the well-known but

1.3. OUTLINE OF THE THESIS 5

never precisely stated Enderton-Walkoe translation in dependence logic.
Chapter 6 enters proof theory in dependence logic. The goal is to find

a nontrivial fragment of dependence logic such that there is an effectively
axiomatisable deductive system for the fragment. A sound proof system is
presented for a modest fragment and I conjecture the system to be complete
for the fragment.

Chapter 7 presents a new semantics for the syntax of dependence logic.
Several key properties of the new semantics are shown as well as a translation
to the logic from existential second order formulas. This chapter is the result
of research into the second goal of the thesis.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

In this chapter the reader can familiarise himself with the conventions this
thesis has adopted. I also revise the well-known definitions of first order
logic and second order logic for the sake of being precise and complete. I also
reproduce the basics of dependence logic and team logic with some changes
to how they were originally presented by Väänänen [19].

I present each of the four logics separately, with references to the other
logics only for concepts that are exactly the same. This is meant to make
each logic stand on its own, to minimise induced preference to any particular
logic, and also to make it easier to compare the logics in precise terms.

2.1 General Definitions

I use common abbreviations of mathematical expressions. For example, s.t.
is short for such that, and iff is short for if and only if. When defining a
mathematical symbol by an equality, I use := in place of =. The set of
natural numbers I denote by ω := {0, 1, 2, . . . }. By n < ω I mean that n is a
natural number. When I state something “for all i ≤ n”, it either means for
all i ∈ {0, 1, . . . , n} or for all i ∈ {1, . . . , n}, depending on the context. This
should not cause confusion. Powerset, the set of all subsets of some set A, is
denoted PA.

A language L is a set of relation symbols and function symbols of various
arities. A nullary function symbol is called a constant. Language is usually
left implicit in this thesis but it is assumed to always contain at least the
binary relation symbol of identity, =.

A model is a tuple M = (M,RM, fM)R,f∈L that satisfies the following
conditions. M is any nonempty set, called the universe of the model. For
each relation symbol R ∈ L with arity n, RM is a relation RM ⊆Mn, called

7

8 CHAPTER 2. PRELIMINARIES

the interpretation of R in M. The interpretation of the binary relation
symbol = is always taken to be the usual identity relation on M , =M is
{(a, a) : a ∈M}. Similarly, for each function symbol f ∈ L with arity n, fM

is a function fM : Mn →M , called the interpretation of f in M.
A logic consists of a set of formulas and a semantics that assigns an

interpretation to each pair of formula and model. A formula is a string of
symbols, more precisely defined separately for each logic. An interpretation
of a formula is a set of semantic objects. The definition of a semantic object is
done separately for each logic. I often identify a logic with its set of formulas.
However, in cases where more than one semantics is defined for the same set
of formulas, we must pay attention to which semantics to use.

If L is a logic and φ ∈ L, then a subformula of φ is an occurrence of a
substring ψ in φ such that ψ ∈ L. In other words, a subformula is a triple
consisting of the formula ψ, the greater formula φ, and the location of ψ in
φ. For example, there are two different instances of φ in the formula φ ∧ φ
even though both instances are the same when considered as mere formulas.
Most often there is no need to refer explicitly to the location of a subformula
in a greater formula. When I say that ψ is a subformula of φ, I think of
ψ both as a formula and as a triple defining the substring occurrence. Let
ψ ≤ φ denote that ψ is a subformula of φ. Being a subformula is a partial
order, given my notational abuse. When φ and ψ are the same as formulas,
I write φ = ψ. Please note that φ = ψ and ψ ≤ θ do not imply φ ≤ θ.

In logical formulas, I will use these symbols as connectives: ¬ (negation),
∨ (disjunction), ∧ (conjunction), ∼ (strong negation), ⊗ (tensor), and ⊕
(sum), and I will use these symbols as quantifiers: ∃ (existential quantifier),
∀ (universal quantifier), and ! (shriek quantifier).

All instances of a variable x in a formula φ are said to be free except
if the instance lies in a subformula that is of the form Qxψ, where Q is a
quantifier. These instances of x are bound by the outermost quantifier in the
deepest such subformula. The free variables of formula φ, denoted FV(φ),
is the set of variables that have free instances in φ. If FV(φ) = ∅, then φ is
called a sentence.

As general convention over all logics considered in this thesis, by φ(α 7→ β)
I denote the formula obtained from formula φ by replacing α by β. I use
this notation rather freely; α and β may be terms or subformulas. If α is
an instance of one of these, the replacement is done only on that instance.
Otherwise the replacement is performed on all instances of α in φ. This
should be clear from context in each case. The point of such a convention
is to provide lightweight notation for things that easily become cumbersome
both in written English and in exact formulation.

We say that ψ is an immediate subformula of φ if ψ is not φ and the only

2.2. FIRST ORDER LOGIC (FO) 9

subformulas of φ of which ψ is a subformula are φ and ψ.

We will be dealing with assignments and teams which I call by the com-
mon name semantic objects . A semantic object is an object (function or set)
is in a sense a generalisation of truth value. The satisfaction of a formula of
some logic is defined relative to a model and a semantic object. In proposi-
tional logic, a semantic object is a truth value. Thus, given a model and a
truth value, we say that a formula either has or has not the truth value in
the model. Generalising this, given a model and an assignment of values to
free variables, we say that a formula of predicate logic either is or is not sat-
isfied by the assignment in the model. The interpretation of a formula φ in
a modelM and semantics S is the collection of semantic objects that satisfy
the formula in the model, denoted [[φ]]SM. I may leave out the superscript and
the subscript if they are clear from the context.

For formulas φ and ψ, we say that ψ is a logical consequence of φ, or
that φ entails ψ, denoted φ ⇒ ψ, if [[φ]]M ⊆ [[ψ]]M for all models M. We
say that formulas φ and ψ are logically equivalent , denoted φ ≡ ψ, if the
formulas have the same interpretation for all models, or equivalently, if they
are logical consequences of each other.

A fragment of a logic L consists of a subset of the formulas of L with the
semantics of L.

2.2 First Order Logic (FO)

We define first order logic as follows. There is a countably infinite set of
variable symbols, or variables, {v0, v1, v2, . . . }. Instead of speaking directly
of variables vn, I use expessions like x and yk as meta-variables that stand
for some actual variables vn. A term (in an implicit language L) is a string
of symbols built according to the following rules.

1. A variable x is a term.

2. For an n-ary function symbol f ∈ L and terms t1, . . . , tn, also ft1 . . . tn
is a term.

The set of first order formulas in language L, denoted FO (with the
choice of L left implicit), is the set of strings of symbols built according to
the following rules.

1. The symbols > and ⊥ are first order formulas.

10 CHAPTER 2. PRELIMINARIES

M, s |= ⊥ never

M, s |= > always

M, s |= Rt1 . . . tn ⇐⇒
(
s(t1), . . . , s(tn)

)
∈ RM

M, s |= ¬φ ⇐⇒ M, s 6|= φ

M, s |= φ ∨ ψ ⇐⇒ M, s |= φ or M, s |= ψ

M, s |= φ ∧ ψ ⇐⇒ M, s |= φ and M, s |= ψ

M, s |= ∃xφ ⇐⇒ there is a ∈M s.t. M, s(x 7→ a) |= φ

M, s |= ∀xφ ⇐⇒ for all a ∈M , M, s(x 7→ a) |= φ

Figure 2.1: Semantics of first order logic

2. For a relation symbol R ∈ L with arity n and terms t1, . . . , tn, the
string Rt1 . . . tn is a first order formula. For binary relation symbols we
may use the shorthand xRy for the formula Rxy.

3. If φ and ψ are first order formulas and x is a variable, then the following
strings are first order formulas: ¬φ, φ ∨ ψ, φ ∧ ψ, ∃xφ, ∀xφ.

We call formulas built according to rules 1 and 2 atomic formulas. A
formula built according to rule 3 is a compound formula. We use φ → ψ as
shorthand notation for ¬φ ∨ ψ for φ, ψ ∈ FO.

An assignment for a modelM is a function that maps some variables to
the model, s : V →M for some V ⊆ {v0, v1, v2, . . . }. We denote the domain
of s by Dom(s) := V . In this thesis it is often left to the reader to determine
from the context which model an assignment maps to. By s(x 7→ a) for some
a ∈M we mean the assignment that maps the variable x to the element a and
all other variables like s does. By writing (x 7→ a) we mean the assignment
∅(x 7→ a).

The interpretation of a term t by an assignment s mapping to a model
M I denote with slight abuse of notation by s(t). If t is a variable, the
expression s(t) is defined above. In other cases, s(t) is to be read as

s(ft1 . . . tn) := fM
(
s(t1), . . . , s(tn)

)
.

Definition 2.2.1. Let φ ∈ FO, let M be a model in the same language as
φ, and let s : V → M be an assignment for some V ⊇ FV(φ). We define
satisfaction of φ in M by s, denoted M, s |= φ, or simply s |= φ, as in
Figure 2.1.

2.3. SECOND ORDER LOGIC (SO) 11

A first order sentence φ is true in a model M, denoted M |= φ, if φ is
satisfied in M by the empty assignment. Otherwise φ is false in M.

A first order formula is propositional if it is quantifier-free and all its
relation symbols are nullary. Thus, all propositional formulas are sentences.

Two important normal forms for first order formulas are the negation
normal form and the conjunctive normal form (or equivalently the disjunctive
normal form).

Theorem 2.2.2 (Negation normal form). For a formula φ ∈ FO there is a
logically equivalent formula ψ ∈ FO such that negation appears only in front
of atomic formulas. This formula is said to be in negation normal form.

Sketch of proof. We obtain ψ from φ by pressing negation down to atomic
formulas using the following logical equivalences: ¬¬φ ≡ φ, ¬(φ ∨ ψ) ≡
¬φ ∧ ¬ψ, ¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ, ¬∃xφ ≡ ∀x¬φ, ¬∀xφ ≡ ∃x¬φ.

Theorem 2.2.3 (Conjunctive normal form). For a quantifier-free formula
φ ∈ FO there is a logically equivalent quantifier-free first order formula of
the form

∧
i

∨
j ψ

i
j where each ψij is either an atomic formula or the negation

of one. This formula is said to be in conjunctive normal form.

Sketch of proof. Assuming φ is in negation normal form, we obtain a formula
in conjunctive normal form from φ by pressing disjunction below conjunction
using the following logical equivalence: φ ∨ (ψ ∧ θ) ≡ (φ ∨ ψ) ∧ (φ ∨ θ).

2.3 Second Order Logic (SO)

Second order logic extends first order logic by allowing quantification over
relations and functions. Formally we define it as follows. The set of variable
symbols, or variables, is {vn : n < ω} ∪ {V rel

k,n : k, n < ω} ∪ {V fun
k,n : k, n < ω}.

We may distinguish between the variables by calling vn element variables ,
V rel
k,n relation variables of arity k, and V fun

k,n function variables of arity k.
Instead of speaking directly of variables vn, we use expressions like x and yk
as meta-variables that stand for some actual variables vn. Similarly, we use
expressions likeRi and Sij as meta-variables for variables V rel

k,n, and expressions

like fi and gij as meta-variables for variables V fun
k,n . The arity of such meta-

variables is left implicit and can usually be inferred from the formula in which
they are used.

A term (in an implicit language L) is a string of symbols built according
to the following rules.

1. An element variable x is a term.

12 CHAPTER 2. PRELIMINARIES

2. For an n-ary function symbol f ∈ L and terms t1, . . . , tn, also ft1 . . . tn
is a term.

3. For an n-ary function variable f and terms t1, . . . , tn, also ft1 . . . tn is
a term.

In particular, all terms of first order logic are terms of second order logic.
The set of second order formulas in language L, denoted SO (with the

choice of L left implicit), is the set of strings of symbols built according to
the following rules.

1. The symbols > and ⊥ are second order formulas.

2. For a relation symbol R ∈ L with arity n and terms t1, . . . , tn, the
string Rt1 . . . tn is a second order formula. For binary relation symbols
we may use the shorthand xRy for the formula Rxy.

3. For a relation variable R with arity n and terms t1, . . . , tn, the string
Rt1 . . . tn is a second order formula.

4. If φ and ψ are second order formulas, x is an element variable, R is a
relation variable, and f is a function variable, then the following strings
are second order formulas: ¬φ, φ∨ψ, φ∧ψ, ∃xφ, ∀xφ, ∃Rφ, ∀Rφ, ∃fφ,
∀fφ.

In particular, all first order formulas are also second order formulas. We
call formulas built according to rules 1, 2 and 3 atomic formulas. A formula
built according to rule 4 is a compound formula. We use φ→ ψ as shorthand
notation for ¬φ ∨ ψ for φ, ψ ∈ FO.

An assignment for a model M is a function s : V → M ∪ {R : R ⊆ Mn

for some n < ω} ∪ {f : f : Mn → M} for some V ⊆ {vn : n < ω} ∪
{V rel

k,n : k, n < ω} ∪ {V fun
k,n : k, n < ω} such that if x ∈ V then s(x) ∈ M ,

if R ∈ V then s(R) ⊆ Mn, where n is the arity of R, and if f ∈ V then
s(f) : Mn → M , where n is the arity of f . In this thesis it is often left to
the reader to determine from the context which model an assignment maps
to. For variables x,R, f , where R and f are n-ary, and a ∈ M , S ⊆ Mn

and g : Mn → M , we denote by s(x 7→ a), s(R 7→ S) and s(f 7→ g) the
assignments that map the variable x to a, R to S, and f to g, respectively,
and all other variables as s does. This is a simple generalisation of assignment
in first order logic. Unsurprisingly, a first order assignment is also a second
order assignment.

The interpretation of a term t by an assignment s mapping to a modelM
we denote with slight abuse of notation by s(t). If t is an element variable,

2.3. SECOND ORDER LOGIC (SO) 13

M, s |= ⊥ never

M, s |= > always

M, s |= Rt ⇐⇒
(
s(t1), . . . , s(tn)

)
∈ RM, for relation symbols R

M, s |= Rt ⇐⇒
(
s(t1), . . . , s(tn)

)
∈ s(R), for relation variables R

M, s |= ¬φ ⇐⇒ M, s 6|= φ

M, s |= φ ∨ ψ ⇐⇒ M, s |= φ or M, s |= ψ

M, s |= φ ∧ ψ ⇐⇒ M, s |= φ and M, s |= ψ

M, s |= ∃xφ ⇐⇒ there is a ∈M s.t. M, s(x 7→ a) |= φ

M, s |= ∀xφ ⇐⇒ for all a ∈M , M, s(x 7→ a) |= φ

M, s |= ∃Rφ ⇐⇒ there is S ⊆Mn s.t. M, s(R 7→ S) |= φ, for n-ary R

M, s |= ∀Rφ ⇐⇒ for all S ⊆Mn, M, s(R 7→ S) |= φ, for n-ary R

M, s |= ∃fφ ⇐⇒ there is g : Mn →M s.t. M, s(f 7→ g) |= φ, for n-ary f

M, s |= ∀fφ ⇐⇒ for all g : Mn →M , M, s(f 7→ g) |= φ, for n-ary f

Figure 2.2: Semantics of second order logic

the expression s(t) is defined above. In other cases, s(t) is to be read either
as s(ft1 . . . tn) := fM

(
s(t1), . . . , s(tn)

)
, where f ∈ L is a function symbol, or

as s(ft1 . . . tn) := s(f)
(
s(t1), . . . , s(tn)

)
, where f is a function variable.

Definition 2.3.1. Let φ ∈ SO, let M be a model in the same language
as φ, and let s be an assignment for M, defined on some set V such that
V ⊇ FV(φ). We define satisfaction of φ in M by s, denoted M, s |= φ or
simply s |= φ, as in Figure 2.2, where t stands for t1 . . . tn.

In particular, first order formulas are satisfied in the first order sense if
and only if they are satisfied in the second order sense.

A second order sentence φ is true in a modelM, denotedM |= φ, if φ is
satisfied in M by the empty assignment. Otherwise φ is false in M.

The abilities to quantify both over relations and over functions is luxury.
We can manage with only one.

Theorem 2.3.2. For a formula φ ∈ SO there is a logically equivalent formula
ψ ∈ SO such that and ψ does not contain subformulas of the forms ∃Rθ and
∀Rθ.

Sketch of proof. We obtain ψ by repeatedly replacing subformulas in φ. As-
sume that ∃Rθ appears as a subformula in φ and R is n-ary. Then we replace

14 CHAPTER 2. PRELIMINARIES

∃Rθ by ∃f∃cθ′, where the n-ary f and nullary c are function variables that
do not appear in φ, and θ′ is obtained from θ by replacing the subformulas
Rt1 . . . tn, where R is bound by the quantifier in question, by ft1 . . . tn = c.
In effect, f and c encode the characteristic function of R. Similarly, we can
replace ∀Rθ with ∀f∀cθ′, where θ′ is obtained from θ as above. This needs
at least two elements in the universe of the model. For the cases of singleton
models, we can add an additional subformula.

Theorem 2.3.3. For a formula φ ∈ SO there is a logically equivalent formula
ψ ∈ SO such that ψ does not contain subformulas of the forms ∃fθ and ∀fθ.

Sketch of proof. We obtain ψ by repeatedly replacing subformulas in φ. As-
sume that ∃fθ appears as a subformula in φ and f is n-ary. Then we replace
quantification over functions by quantification over relations with the addi-
tional assertion that the relation acts like a function, namely we replace ∃fθ
by

∃R
(
∀x1 . . . ∀xn∃y1∀y2(Rx1 . . . xny1 ∧ (Rx1 . . . xny2 → y1 = y2)) ∧ θ′

)
,

where θ′ is obtained from θ by the following replacements. If ft1 . . . tn a term
occurrence in φ, where f is bound by the quantifier in question, and χ is the
least subformula of φ that contains this term occurrence, then replace χ by

∃z(Rt1 . . . tnz ∧ χ(ft1 . . . tn 7→ z)).

An important normal form for second order formulas is the (generalised)
Skolem normal form.

Theorem 2.3.4 (Skolem normal form). For a formula φ ∈ SO there is a
logically equivalent formula ψ ∈ SO such that

ψ :=
A

i≤n1

f 1
i

B

i≤n2

f 2
i . . .

A

i≤np
fpi
B

i≤m
xiθ,

where θ is a quantifier-free second order formula. We say that ψ is in Skolem
normal form.

Sketch of proof. We can obtain ψ from φ by repeatedly replacing subformulas
by logically equivalent ones.

We define existential second order logic as the fragment of second or-
der logic where universal quantification over relations and sets is disallowed.
Formally, the set of formulas of existential second order logic, ESO, contains
formulas built according to the following rules.

2.4. DEPENDENCE LOGIC (FOD) 15

1. The symbols > and ⊥ are existential second order formulas.

2. For a relation symbol R ∈ L with arity n and terms t1, . . . , tn, the string
Rt1 . . . tn is an existential second order formula. For binary relation
symbols we may use the shorthand xRy for the formula Rxy.

3. For a relation variable R with arity n and terms t1, . . . , tn, the string
Rt1 . . . tn is an existential second order formula.

4. If φ and ψ are existential second order formulas, x is an element vari-
able, R is a relation variable, and f is a function variable, then the
following strings are existential second order formulas built from con-
nectives: ¬φ, φ ∨ ψ, φ ∧ ψ, and the following strings are existential
second order formulas built from quantifiers: ∃xφ, ∀xφ, ∃Rφ, ∃fφ.

Theorems 2.3.2, 2.3.3 and 2.3.4 are also true about existential second
order formulas in the sense that we can replace SO by ESO everywhere in
the claims and the theorems will still hold. In particular, the Skolem normal
form for existential second order logic is

∃f1 . . . ∃fn∀x1 . . . ∀xmθ,
where θ is a quantifier-free second order formula.

There is a semantic game for second order logic, denoted aSO(M, φ),
where M is a model and φ ∈ SO is a sentence. The game is played by
two players called player I (male) and player II (female). The game is a
straightforward generalisation of the semantic game for first order logic; at
an existential second order quantifier player II chooses how the quantified
variable should be interpreted; at a universal second order quantifier the
same choice is made by player I. A position of the game is a tuple (ψ, s, α),
where ψ is a subformula of φ, s is a second order assignment, and α ∈ {I, II}
denotes a player. Each play of the game ends up in one of the players winning.
A strategy for a player in some game aSO(M, φ) is a function that tells the
player exactly how to move, based on the current position of play. If the
player wins every play where he or she plays by a certain strategy, then that
strategy is called a winning strategy. The semantic game characterises truth:
for all models M and sentences φ ∈ SO, M |= φ if and only if player II has
a winning strategy in aSO(M, φ).

2.4 Dependence Logic (FOD)

I define dependence logic as follows. The concept of a term is as in first order
logic. The set of dependence formulas in language L, denoted FOD (with

16 CHAPTER 2. PRELIMINARIES

the choice of L left implicit), is the set of strings of symbols built according
to the following rules.

1. The symbols > and ⊥ are dependence formulas.

2. For a relation symbol R ∈ L with arity n and terms t1, . . . , tn, the
string Rt1 . . . tn is a dependence formula. For binary relation symbols
we may use the shorthand xRy for the formula Rxy.

3. For terms t1, . . . , tn, u, the string (t1 . . . tn);u is a dependence formula.

4. If φ and ψ are dependence formulas and x is a variable, then the fol-
lowing strings are dependence formulas: ¬φ, φ ∨ ψ, φ ∧ ψ, ∃xφ, ∀xφ.

In particular, a first order formula is a dependence formula. We call
formulas built according to rules 1, 2 and 3 atomic formulas. A formula
built according to rule 4 is a compound formula. A formula of the form 3
is called a D-formula. D stands for either dependence, as in “u depends on
each ti”, or determination, as in “ti together determine u”.

A formula φ ∈ FOD is said to be in strict negation normal form if negation
appears only in front of atomic formulas of the form Rt1 . . . tn. For example,
the formulas ¬(Rxy ∨ Pz) and ¬(x, y);z are not in strict negation normal
form but the formula ¬Pz ∧ (x, y);z is.

Väänänen denotes D-formulas by =(t1, . . . , tn, u). I chose the notation
(t1 . . . tn);u instead to make D-formulas stick out in formulas more promi-
nently and to help the reader not to confuse them with the identity relation.
The wiggly arrow symbol in D-formulas is an arrow because it represents
the direction of functional dependence—given the values on the left we can
compute the value on the right. The arrow is wiggly so that the reader would
not mistake it for implication (even though we do not use the implication
arrow in FOD). This idea is borrowed from early logic books where the sym-
bol of equivalence relation in logical formulas was chosen to be ≈ instead
of = in an attempt to emphasise that it is a symbol, not the relation itself.
My choice of notation for D-formulas also rules out the degenerate case =()
which Väänänen puts to the role where I have the symbol >.

The most important concept is that of a team. We define it as a set of
assignments that have the same domain and map to the same model. For
a nonempty team X, we define its domain, Dom(X), as the domain of any
of the assignments in the team. We leave the domain of the empty team
undefined; by Dom(∅) we mean any set of variables, interpreted in a suitable

2.4. DEPENDENCE LOGIC (FOD) 17

way in each context separately.1 For a model M and a set of variables V ,
let XMV denote the full team on V , i.e. the set of all assignments that have
domain V and map to the model M. Given φ ∈ FOD and a model M, the
full team for these two is XMFV(φ).

Teams and relations have a close relationship. If X is a team such that
Dom(X) = {vi1 , . . . , vik}, where i1 < · · · < ik, we define the corresponding
relation as

Rel(X) =
{(
s(vi1), . . . , s(vik)

)
: s ∈ X

}
.

Note that the order of the values of variables in the tuples in the resulting
relation is always the one induced by the natural order of the indices of the
variables. Conversely, for a n-ary relation R, we define the corresponding
team with variable order (x1, . . . , xn) as

R(x1,...,xn) =
{

(x1 7→ a1, . . . , xn 7→ an) : (a1, . . . , an) ∈ R
}

.

For a team X and a set of variables V , we define the restriction of X to
V as

X�V := {s�V : s ∈ X},
where s�V is the restriction of s to the domain V , i.e. the assignment that
has domain Dom(s) ∩ V and that maps like s does. Similarly, we define the
co-restriction of X from V as

X�V := X�(Dom(X) \ V).

If V = {x}, we denote X�V = X�x and X�V = X�x.
Let X be a team for some model M, let a ∈ M , let F : X�V → M

for some V ⊆ Dom(X), and let x be a variable. We define the following
operations for extending a team.

X(x 7→ a) := {s(x 7→ a) : s ∈ X}
X(x 7→ F) := {s(x 7→ F (s�V)) : s ∈ X}
X(x 7→M) := {s(x 7→ b) : s ∈ X and b ∈M}

It might help one’s intuition to note that the two first operations will not
increase the cardinality of the team, whereas the third operation can poten-
tially blow the team’s cardinality skyhigh. By writing (x 7→ M) we mean
{∅}(x 7→M), etc.

1For example, Dom(X) = Dom(Y) is true also if one or both of the teams X and Y
are empty.

18 CHAPTER 2. PRELIMINARIES

I shall now define the semantics for dependence logic. There is a key
difference to the way Väänänen defines the semantics [19, Definition 3.5],
namely the treatment of negation. As is known and thoroughly demonstrated
by Burgess [3], negation in dependence logic is not a semantic operation
on formula interpretations.2 Because of this, I define semantics only for
dependence formulas in strict negation normal form. This way we avoid
mixing the syntactic formula manipulation that negation represents into the
semantics which is otherwise not about syntactic manipulation of formulas.
I will then allow the free use of negation as shorthand notation only. This
will in effect have the same result as Väänänen’s semantics.3

Definition 2.4.1. Let φ ∈ FOD be in strict negation normal form, let M
be a model in the same language as φ, and let X be a team with Dom(X) ⊇
FV(φ). We define satisfaction of φ in M by X, denoted M, X |=FOD φ, or
M, X |= φ, or simply X |= φ, as in Figure 2.3. A dependence sentence φ is
true in a modelM, denotedM |= φ, if φ is satisfied inM by the full team.
Otherwise φ is false in M.4 There are no other truth values.

Definition 2.4.2. We allow the use of dependence formulas φ that are not
in strict negation normal form in satisfaction statements M, X |=FOD φ by
reading negation as shorthand that is unravelled by the rules in Figure 2.4.
The rule ¬(t1 . . . tn);u 7→ ⊥ is to be applied only when no other rule can be
applied.

The requirement of applying the shorthand rule of negated D-formula last
resolves an ambiguity caused by nested negations in front of D-formulas. For
example, ¬¬(x);y is shorthand for (x);y and not for >. The other rules
can be applied in any order without ambiguity.

Another kind of ambiguity emerges from the use of negation in a formula
denoted by a symbol. For example, consider the formula ¬φ, where φ :=
¬(x);y. If we think of φ as a formula with the replacement rules applied,
then ¬φ reads >. If we think of φ as meta-notation and not as a concrete
formula, we may read ¬φ as (x);y. I do not provide a means to resolve this
kind of ambiguities. As with all mathematical shorthand notation, the use
of ¬ in dependence formulas must be done with consideration. The one who
writes down the formula carries the responsibility of avoiding and resolving
possible ambiguities caused by free use of negation.

2Burgess’ paper concerns Henkin quantifiers, but the same treatment applies to inde-
pendence friendly logic and dependence logic as well. See Theorem 2.4.6.

3In Chapter 7 I take another approach and define a semantics for dependence formulas
where negation is a semantic operation.

4It is equivalent to define that φ is true in M if M, {∅} |= φ.

2.4. DEPENDENCE LOGIC (FOD) 19

M, X |= ⊥ ⇐⇒ X = ∅
M, X |= > always

M, X |= Rt1 . . . tn ⇐⇒ X ⊆
{
s ∈ XMDom(X) :M, s |= Rt1 . . . tn

}
M, X |= ¬Rt1 . . . tn ⇐⇒ X ⊆

{
s ∈ XMDom(X) :M, s |= ¬Rt1 . . . tn

}
M, X |= (t1 . . . tn);u ⇐⇒ there is f : Mn →M s.t.

for all s ∈ X: s(u) = f
(
s(t1), . . . , s(tn)

)
M, X |= φ ∨ ψ ⇐⇒ there is Y, Z ⊆ X s.t. Y ∪ Z = X and

M, Y |= φ and M, Z |= ψ

M, X |= φ ∧ ψ ⇐⇒ M, X |= φ and M, X |= ψ

M, X |= ∃xφ ⇐⇒ there is F : X →M s.t.

M, X(x 7→ F) |= φ

M, X |= ∀xφ ⇐⇒ M, X(x 7→M) |= φ

Figure 2.3: Semantics of dependence logic

¬(φ ∨ ψ) 7→ ¬φ ∧ ¬ψ ¬⊥ 7→ >
¬(φ ∧ ψ) 7→ ¬φ ∨ ¬ψ ¬> 7→ ⊥
¬∃xφ 7→ ∀x¬φ ¬¬φ 7→ φ

¬∀xφ 7→ ∃x¬φ ¬(t1 . . . tn);u 7→ ⊥

Figure 2.4: Syntactic unravelling of negation

20 CHAPTER 2. PRELIMINARIES

Note that ¬φ for formulas φ not of the form Rt1 . . . tn is mere shorthand
notation. Such formulas ¬φ have no part in the actual semantics of depen-
dence logic, as I define it, and thus there is no ambiguity in Definition 2.4.1,
the semantics. The ambiguity comes only from the additional syntactic tool
that I give in Definition 2.4.2, the unrestricted use of negation which is pro-
vided as a convenience that should be used responsibly. Väänänen’s seman-
tics resolves this ambiguity. His solution is to define satisfaction,M, X |= φ,
by referring to the fundamental predicate ofM, TM, which consists of triples
(φ,X, d), where φ ∈ FOD, X is a team that satisfies φ, and d ∈ {0, 1} we
could call the mode of satisfaction. Intuitively speaking, the mode of satis-
faction keeps count of multiple negations. Because negation flips the mode
of satisfaction instead of modifying the subformula, Väänänen’s semantics
never loses information stored in the syntax of the subformula. I have chosen
to present the semantics without the fundamental predicate firstly to make
the definition of semantics more direct and clear and secondly to explicitly
state that negation is a purely syntactic operation except in front of relation
symbols.

The semantics for FOD, as presented above, is equivalent to Väänänen’s
semantics in the sense that both semantics give the same interpretation to
all dependence formulas.

Theorem 2.4.3. For all φ ∈ FOD, [[φ]]FOD
M = [[φ]]VM, where V stands for

Väänänen’s semantics for dependence logic for which we do not read negation
as shorthand.5

Proof. We prove the theorem by proving the stronger claim that

[[φ]]FOD
M = [[φ]]VM and [[¬φ]]FOD

M = [[¬φ]]VM. (2.1)

The proof is by induction on formulas φ ∈ FOD in strict negation normal
form. We can easily see that (2.1) holds for the cases where φ is of the form
>, ⊥ or Rt1 . . . tn.

Case (t1 . . . tn);u. We haveM, X |=FOD (t1 . . . tn);u iff there is f : Mn →
M such that for all s ∈ X: s(u) = f

(
s(t1), . . . , s(tn)

)
. This is equiv-

alent with the condition that for all s, s′ ∈ X: if s(ti) = s′(ti) for
all i ≤ n, then s(u) = s′(u), which is the definition for M, X |=V

=(t1, . . . , tn, u).

Reading negation as shorthand, we get ¬(t1 . . . tn);u = ⊥. We have
M, X |=FOD ⊥ iff X = ∅ iff M, X |=V ¬=(t1, . . . , tn, u).

5Furthermore, we implicitly translate between the two syntaxes of D-formulas,
(t1 . . . tn);u and =(t1, . . . , tn, u), as necessary.

2.4. DEPENDENCE LOGIC (FOD) 21

Case ¬φ. We have [[¬φ]]FOD
M = [[¬φ]]VM because (2.1) holds for φ by the in-

ductive hypothesis.

Reading negation as shorthand, we get ¬¬φ = φ. We haveM, X |=FOD

φ iff M, X |=V φ iff M, X |=V ¬¬φ. Thus [[¬¬φ]]FOD
M = [[¬¬φ]]VM.

Case φ ∨ ψ. We have M, X |=FOD φ ∨ ψ iff there is Y, Z ⊆ X such that
Y ∪Z = X andM, Y |=FOD φ andM, Z |=FOD ψ iff there is Y, Z ⊆ X
such that Y ∪ Z = X and M, Y |=V φ and M, Z |=V ψ iff M, X |=V

φ ∨ ψ.

Reading negation as shorthand, we get ¬(φ ∨ ψ) = ¬φ ∧ ¬ψ. We have
M, X |=FOD ¬φ ∧ ¬ψ iff M, X |=FOD ¬φ and M, X |=FOD ¬ψ iff
M, X |=V ¬φ and M, X |=V ¬ψ iff M, X |=V ¬φ ∧ ¬ψ iff M, X |=V

¬(φ ∨ ψ).

Case φ ∧ ψ. We haveM, X |=FOD φ∧ψ iffM, X |=FOD φ andM, X |=FOD

ψ iff M, X |=V φ and M, X |=V ψ iff M, X |=V φ ∧ ψ.

Reading negation as shorthand, we get ¬(φ ∧ ψ) = ¬φ ∨ ¬ψ. We have
M, X |=FOD ¬φ ∨ ¬ψ iff there is Y, Z ⊆ X such that Y ∪ Z = X and
M, Y |=FOD ¬φ and M, Z |=FOD ¬ψ iff there is Y, Z ⊆ X such that
Y ∪Z = X andM, Y |=V ¬φ andM, Z |=V ¬ψ iffM, X |=V ¬φ∨¬ψ
iff M, X |=V ¬(φ ∧ ψ).

Case ∃xφ. We have M, X |=FOD ∃xφ iff there is F : X → M such that
M, X(x 7→ F) |=FOD φ iff there is F : X → M such that M, X(x 7→
F) |=V φ iff M, X |=V ∃xφ.

Reading negation as shorthand, we get ¬∃xφ = ∀x¬φ. We have
M, X |=FOD ∀x¬φ iff M, X(x 7→ M) |=FOD ¬φ iff M, X(x 7→ M) |=V

¬φ iff M, X |=V ∀x¬φ iff M, X |=V ¬∃xφ.

Case ∀xφ. M, X |=FOD ∀xφ iff M, X(x 7→ M) |=FOD φ iff M, X(x 7→
M) |=V φ iff M, X |=V ∀xφ.

Reading negation as shorthand, we get ¬∀xφ = ∃x¬φ. We have
M, X |=FOD ∃x¬φ iff there is F : X → M such that M, X(x 7→
F) |=FOD ¬φ iff there is F : X → M such that M, X(x 7→ F) |=V ¬φ
iff M, X |=V ∃x¬φ iff M, X |=V ¬∀xφ.

Here are a few important properties of dependence logic.

Theorem 2.4.4. Interpretations of dependence formulas are closed down-
ward; for all formulas φ ∈ FOD, models M and teams X, Y it holds that if
M, X |= φ and Y ⊆ X then M, Y |= φ.

22 CHAPTER 2. PRELIMINARIES

Interpretations of dependence formulas are nonempty; for all formulas
φ ∈ FOD and models M it holds that M, ∅ |= φ.

Proof. Elementary, see Väänänen [19, Lemma 3.9 and Proposition 3.10].

Theorem 2.4.5 (Separation Theorem). Let φ, ψ ∈ FOD be sentences such
that for all models M either M 6|= φ or M 6|= ψ. Then there is a first order
sentence χ such that if M |= φ then M |= χ, and if M |= χ then M 6|= ψ.

Proof. See Väänänen [19, Theorem 6.7].

For the purposes of the next theorem, let ModV(φ), for dependence sen-
tences φ, denote the class of modelsM such that the universe M has at least
two elements and φ is true in M in Väänänen’s semantics.

Theorem 2.4.6 (Burgess [3]). Assume that φ, ψ ∈ FOD are sentences such
that ModV(φ) ∩ModV(ψ) = ∅. Then there is a sentence θ ∈ FOD such that
ModV(θ) = ModV(φ) and ModV(¬θ) = ModV(ψ).

Proof. The proof is divided into three cases.
Firstly, if ModV(φ) = ∅ and ModV(ψ) = ∅, then let θ := θ0, where

θ0 := ∀x=(x).

Then only singleton models satisfy θ, whence ModV(θ) = ∅, and no models
satisfy ¬θ, whence ModV(¬θ) = ∅.

If ModV(φ) 6= ∅ and ModV(ψ) = ∅, then let

θ := φ ∨ θ0.

Then

ModV(θ) = ModV(φ) ∪ModV(θ0) = ModV(φ),

and

ModV(¬θ) = ModV(¬φ ∧ ¬θ0) = ModV(¬φ) ∩ModV(¬θ0) = ∅.

If ModV(φ) 6= ∅ and ModV(ψ) 6= ∅, by the above case we can assume
that ModV(¬φ) = ∅ and ModV(¬ψ) = ∅. Then by Theorem 2.4.5 there
is a sentence χ ∈ FO such that ModV(φ) ⊆ ModV(χ) and ModV(ψ) ⊆
ModV(¬χ). Let

θ := φ ∧ (¬ψ ∨ χ).

2.4. DEPENDENCE LOGIC (FOD) 23

Then

ModV(θ) = ModV(φ) ∩
(
ModV(¬ψ) ∪ModV(χ)

)
= ModV(φ) ∩ModV(χ)

= ModV(φ),

and

ModV(¬θ) = ModV
(
¬φ ∨ (ψ ∧ ¬χ)

)
= ModV(¬φ) ∪

(
ModV(ψ) ∩ModV(¬χ)

)
= ∅ ∪ModV(ψ)

= ModV(ψ).

Burgess’ theorem shows how utterly impossible it is to define negation
in dependence logic as a semantic operation on formula interpretations. To
see this, assume f is such an operation, i.e. that f

(
[[φ]]VM

)
= [[¬φ]]VM for all

φ ∈ FOD and all modelsM. Let φ be any dependence sentence that is false in
some nonempty model class C. Let ψ1 and ψ2 be dependence sentences that
define two different subclasses of C. Then, without loss of generality, there is
a modelM∈ C such thatM |= ψ1 andM 6|= ψ2. Theorem 2.4.6 gives us φ1

and φ2 such that ModV(φ1) = ModV(φ) = ModV(φ2) and ModV(¬φ1) = ψ1

and ModV(¬φ2) = ψ2. Now, {∅} ∈ [[¬φ1]]VM = f
(
[[φ]]VM

)
and {∅} 6∈ [[¬φ2]]VM =

f
(
[[φ]]VM

)
, which is a contradiction. The notable thing is that this is not

only a single counterexample to the definability of negation in dependence
logic as a semantic operation—this is a procedure that, by letting us choose
the formulas ψi, lets us choose the interpretation of ¬φi in models in class
C. This is in strong contrast to the supposed operation f determining the
interpretation of ¬φi from the interpretation of φi which is the interpretation
of φ.

Note that Theorem 2.4.6 relies on dependence formulas that are not in
strict negation normal form. In its proof, negation is used as a switch that
leaves one part of the formulas θ active in the positive case θ while activating
the other part in the negative case ¬θ. It is an open question if a similar
construction is possible when formulas are required to be in strict negation
normal form, as in Definition 2.4.1.

Sometimes it is said that dependence logic, like independence friendly
logic, has three truth values and thus fails the law of excluded middle; a
sentence can be true, it can be false, or it can be neither. In this thesis
I have only defined two truth values for dependence sentences; truth and
falsehood. One can recover the “third truth value” by considering pairs of

24 CHAPTER 2. PRELIMINARIES

sentences (φ,¬φ) instead of single sentences φ ∈ FOD. Then we can define
truth as the case where φ is true and ¬φ is false, falsehood as the case where
φ is false and ¬φ is true, and the third truth value as the case where φ
is false and ¬φ is false. As Theorem 2.4.6 shows, there is no way to tell
apart falsehood and the third truth value knowing only if φ is true. In other
words, given the interpretation of a dependence sentence in some model, we
can easily determine if the sentence is false but we have no way of telling if
its negation is true or false, unless we know the exact syntax of the sentence.
Because of this, the third truth value is artificial and is no more justified
than taking any other kinds of tuples of formulas such as (φ, ∀v0φ, x = y∧φ)
and define more truth values in a similar way.

The reader may study Väänänen’s book for other properties of depen-
dence logic. One more property we present here with a proof, however, to
point out the need of the axiom of choice. The following theorem states that
satisfaction of a formula by a team does not depend on the values the team
gives to variables that are not free in the formula [19, Lemma 3.27].

Theorem 2.4.7. Satisfaction of a formula depends on the values of only
those variables that occur free in the formula; for all φ ∈ FOD and V ⊇
FV(φ) it holds that M, X |= φ if and only if M, X�V |= φ.

Proof. Proof by induction on φ.

Case atomic. The claim is clear for formulas > and ⊥. The claim for
Rt1 . . . tn follows easily from the fact that s |= Rt1 . . . tn if and only if
s�V |= Rt1 . . . tn. Similarly for ¬Rt1 . . . tn. The case for (t1 . . . tn);u is
just as straightforward because s(t) = (s�V)(t) for all the terms t that
appear in the formula.

Case ψ1 ∨ ψ2. First note that (Y ∪ Z)�V = Y �V ∪ Z�V for any teams Y, Z
with the same domain. Now, X |= φ iff there are Y1, Y2 ⊆ X such that
Y1 ∪ Y2 = X and Yi |= ψi for both i = 1, 2. Then by the induction
hypothesis Yi�V |= ψi for both i = 1, 2. Because X�V = (Y1 ∪Y2)�V =
Y1�V ∪ Y2�V , we get X�V |= φ.

For the other direction, if X�V |= φ, then there are Z1, Z2 ⊆ X�V such
that Z1 ∪ Z2 = X and Zi |= ψi for both i = 1, 2. Let Yi := {s ∈ X :
s�V ∈ Zi} for both i = 1, 2. Then Y1 ∪ Y2 = X. By the induction
hypothesis and the fact that Zi = Yi�V we get Yi |= φ for both i = 1, 2.

Case ψ1 ∧ ψ2. X |= φ iff X |= ψi for both i = 1, 2 iff (by the induction
hypothesis) X�V |= ψi for both i = 1, 2 iff X�V |= φ.

2.4. DEPENDENCE LOGIC (FOD) 25

Case ∃xψ. X |= φ iff there is F : X → M such that X(x 7→ F) |= ψ. Then
by the induction hypothesis X(x 7→ F)�(V ∪ {x}) |= ψ. Assuming the
axiom of choice, we can pick a function G : X�V →M such that

G(s′) ∈ {F (s) : s ∈ X and s extends s′}

for all s′ ∈ X�V . Now (X�V)(x 7→ G) ⊆ X(x 7→ F)�(V ∪{x}), whence
(X�V)(x 7→ G) |= ψ and further X�V |= φ.

For the other direction, if X�V |= φ, then there is G : X�V →M such
that (X�V)(x 7→ G) |= ψ. Define F : X →M by mapping

F (s) = G(s�V)

for all s ∈ X. Now X(x 7→ F)�(V ∪ {x}) = (X�V)(x 7→ G), whence
by the induction hypothesis X(x 7→ F) |= ψ and further X |= φ.

Case ∀xψ. First note that X(x 7→ M)�(V ∪ {x}) = (X�V)(x 7→ M). Now,
X |= φ iff X(x 7→ M) |= ψ iff (by the induction hypothesis) X(x 7→
M)�(V ∪ {x}) |= ψ iff (X�V)(x 7→M) |= ψ iff X�V |= φ.

The axiom of choice really is necessary for the previous theorem, as the
following theorem shows.

Theorem 2.4.8. Assuming the negation of the axiom of choice, there is
some formula φ ∈ FOD, model M and team X such that M, X |= φ but
M, X�FV(φ) 6|= φ.

Proof. Assuming the negation of the axiom of choice, there are some non-
empty sets Ai for i ∈ I for some index set I such that there is no function
f : {Ai : i ∈ I} → ⋃

i∈I Ai such that f(Ai) ∈ Ai for all i ∈ I.

Let φ := ∃yRxy, let M := (M,RM), where M := I ∪⋃i∈I Ai and

RM := {(i, a) : i ∈ I and a ∈ Ai},

and let X := RM(x,y). Then we haveM, X |= φ because the function F : X →
M , F (s) = s(y) for all s ∈ X, trivially satisfies M, X(y 7→ F) |= Rxy.
However, ifM, X�x |= φ then there would be a function G : X�x→M such
that G(s′) ∈ As′(x) for all s′ ∈ X�x. Then we could define f : {Ai : i ∈ I} →⋃
i∈I Ai, f(Ai) = G(s′i) for all i ∈ I, where s′i = (x 7→ i), contradicting our

assumption.

26 CHAPTER 2. PRELIMINARIES

2.5 Team Logic (TL)

We define team logic as follows. The concept of a term is as in first order
logic. The set of team formulas in language L, denoted TL (with the choice
of L left implicit), is the set of strings of symbols built according to the
following rules.

1. The symbols >, ⊥, 0 and 1 are team formulas.

2. For a relation symbol R ∈ L with arity n and terms t1 . . . tn, the string
Rt1 . . . tn is a team formula. For binary relation symbols we may use
the shorthand xRy for the formula Rxy.

3. For terms t1, . . . , tn, u, the string (t1 . . . tn);u is a team formula.

4. If φ and ψ are dependence formulas and x is a variable, then the fol-
lowing strings are team formulas: ¬φ, ∼φ, φ ∨ ψ, φ ∧ ψ, φ⊗ ψ, φ⊕ ψ,
∃xφ, ∀xφ, !xφ.

In particular, a dependence formula is a team formula. Note, however,
that the semantics of team logic give different meaning to dependence for-
mulas than the semantics of dependence logic. In order to preserve their
meaning in the semantics of team logic, dependence formulas must undergo
a simple translation. We will return to this in Chapter 5.

We call formulas built according to rules 1, 2 and 3 atomic formulas.
A formula built according to rule 4 is a compound formula. A formula of
the form 3 is called a D-formula. D stands for either dependence, as in “u
depends on each ti”, or determination, as in “ti together determine u”.

A formula φ ∈ TL is said to be in strict negation normal form if negation
(¬) appears only in front of atomic formulas of the form Rt1 . . . tn. Strict
negation normal form poses no restrictions for strong negation (∼).

The concept of team is as in dependence logic.

Definition 2.5.1. Let φ ∈ TL be in strict negation normal form, let M be
a model in the same language as φ, and let X be a team with Dom(X) ⊇
FV(φ). We define satisfaction of φ in M by X, denoted M, X |=TL φ, or
simply M, X |= φ or X |= φ, as in Figure 2.5.

We do not define satisfaction for formulas that are not in strict negation
normal form. It is not clear how this should be done for all the cases, in
particular for formulas of the form ¬∼φ.

2.5. TEAM LOGIC (TL) 27

M, X |= ⊥ never

M, X |= > always

M, X |= 0 ⇐⇒ X = ∅
M, X |= 1 ⇐⇒ X 6= ∅
M, X |= Rt1 . . . tn ⇐⇒ X ⊆

{
s ∈ XMDom(X) :M, s |= Rt1 . . . tn

}
M, X |= ¬Rt1 . . . tn ⇐⇒ X ⊆

{
s ∈ XMDom(X) :M, s |= ¬Rt1 . . . tn

}
M, X |= (t1 . . . tn);u ⇐⇒ there is f : Mn →M s.t.

for all s ∈ X: s(u) = f
(
s(t1), . . . , s(tn)

)
M, X |= ∼φ ⇐⇒ M, X 6|= φ

M, X |= φ ∨ ψ ⇐⇒ M, X |= φ or M, X |= ψ

M, X |= φ ∧ ψ ⇐⇒ M, X |= φ and M, X |= ψ

M, X |= φ⊗ ψ ⇐⇒ there is Y, Z ⊆ X s.t. Y ∪ Z = X and

M, Y |= φ and M, Z |= ψ

M, X |= φ⊕ ψ ⇐⇒ for all Y, Z ⊆ X, if Y ∪ Z = X then

M, Y |= φ or M, Z |= ψ

M, X |= ∃xφ ⇐⇒ there is F : X�FV(φ)→M s.t.

M, X(x 7→ F) |= φ

M, X |= ∀xφ ⇐⇒ for all F : X�FV(φ)→M ,

M, X(x 7→ F) |= φ

M, X |= !xφ ⇐⇒ M, X(x 7→M) |= φ

Figure 2.5: Semantics of team logic

28 CHAPTER 2. PRELIMINARIES

A team sentence φ is true in a modelM, denotedM |= φ, if φ is satisfied
inM by the full team. Otherwise φ is false inM.6 There are no other truth
values.

Readers who are more familiar with independence friendly logic and Hin-
tikka’s game theoretic semantics than team logic should note that the symbol
that is commonly used as game negation in independence friendly logic, ∼,
is used as classical, contradictory negation in team logic, and I call it by the
name strong negation. Similarly, the symbol that is commonly used as clas-
sical negation in independence friendly logic, ¬, is used to denote the weaker
kind of negation in team logic, and I simply call it negation.

The semantic game for team logic, aTL(M, φ), for a model M and sen-
tence φ ∈ TL is a game played by two players, I and II. Every play ends in
one of the players winning and the other losing. A position in aTL(M, φ) is
a triple (ψ,X, α), where ψ is a subformula of φ, X is a team, and α ∈ {I, II}
denotes a player. We write I∗ := II and II∗ := I for the opponent of a player.
The initial position in aTL(M, φ) is (φ, {∅}, II). The rules of the game we
define based on what ψ is in the current position (ψ,X, α), as follows.

Case >. Player α wins.

Case ⊥. Player α∗ wins.

Case 0. Player α wins if X = ∅.

Case 1. Player α wins if X 6= ∅.

Case Rt1 . . . tn. Player α wins if M, s |= ψ for all s ∈ X.

Case ¬Rt1 . . . tn. Player α wins if M, s |= ψ for all s ∈ X.

Case (t1 . . . tn);u. Player α wins if there is a function f : Mn → M such
that s(u) = f

(
s(t1), . . . , s(tn)

)
for all s ∈ X.

Case ∼θ. Nobody chooses anything. The game continues from position
(θ,X, α∗).

Case θ1 ∨ θ2. Player α chooses i ∈ {1, 2}. The game continues from position
(θi, X, α).

Case θ1 ∧ θ2. Player α∗ chooses i ∈ {1, 2}. The game continues from posi-
tion (θi, X, α).

6It is equivalent to define that φ is true in M if M, {∅} |= φ.

2.5. TEAM LOGIC (TL) 29

Case θ1 ⊗ θ2. Player α chooses a pair of teams (Y1, Y2) such thatX = Y1∪Y2.
The game proceeds to position (ψ, (Y1, Y2), α). Then player α∗ chooses
i ∈ {1, 2}, and the game continues from position (θi, Yi, α).

Case θ1 ⊕ θ2. Player α∗ chooses a pair of teams (Y1, Y2) such that X =
Y1 ∪ Y2. The game proceeds to position (ψ, (Y1, Y2), α). Then player α
chooses i ∈ {1, 2}, and the game continues from position (θi, Yi, α).

Case ∃xθ. Player α chooses a function F : X → M . The game continues
from position (θ,X(x 7→ F), α).

Case ∀xθ. Player α∗ chooses a function F : X → M . The game continues
from position (θ,X(x 7→ F), α).

Case !xθ. Nobody chooses anything. The game continues from position
(θ,X(x 7→M), α).

Note that both players make a move in case of formulas of the forms
θ1 ⊗ θ2 and θ1 ⊕ θ2.

A strategy of player α in aTL(M, φ) is a function τ defined on game
positions such that the following conditions hold:

1. τ(θ1 ∨ θ2, X, α) ∈ {1, 2};

2. τ(θ1 ∧ θ2, X, α
∗) ∈ {1, 2};

3. τ(θ1 ⊗ θ2, X, α) = (Y1, Y2) such that X = Y1 ∪ Y2;

4. τ(θ1 ⊗ θ2, (Y1, Y2), α∗) ∈ {1, 2};

5. τ(θ1 ⊕ θ2, X, α
∗) = (Y1, Y2) such that X = Y1 ∪ Y2;

6. τ(θ1 ⊕ θ2, (Y1, Y2), α) ∈ {1, 2};

7. τ(∃xnθ,X, α) is a function F : X →M ;

8. τ(∀xnθ,X, α∗) is a function F : X →M .

Player α plays by the strategy τ in a play of the semantic game if his or
her choices are exactly the ones that τ gives in each position that is reached
during the play. Player α’s strategy τ is a winning strategy if α wins all the
plays in which he or she plays by τ . If α has a winning strategy in aTL(M, φ),
we denote it by α ↑ aTL(M, φ).

Theorem 2.5.2. Let M be a model and let φ ∈ TL be a sentence. Then
M |= φ if and only if II ↑ aTL(M, φ).

30 CHAPTER 2. PRELIMINARIES

Proof. AssumeM |= φ. We will define a strategy τ for II in aTL(M, φ) and
show that it is a winning strategy. The strategy τ is defined by maintaining
the condition

if α = II then M, X |= ψ, and if α = I then M, X 6|= ψ (2.2)

for positions P = (ψ,X, α). In other words, if (2.2) holds and player II is
to choose, then τ(P) is a choice for player II such that in the next resulting
position (2.2) holds again. Notice that this condition deliberately skips the
special half-move position of the tensor and sum moves. We now perform
an induction on subformulas ψ of φ which will show that a τ with the above
definition really exists. For each ψ we inspect an arbitrary position (ψ,X, α).
As the base case we see that the initial position of aTL(M, φ) satisfies (2.2).
Our induction hypothesis is that (2.2) holds at position (ψ,X, α).

Case ∼θ. The next position is (θ,X, α∗) and (2.2) still holds.

Case θ1 ∨ θ2. If α = II, then M, X |= θ1 ∨ θ2 by the induction hypothesis,
whence M, X |= θi for some i ∈ {1, 2}. When player II chooses this i,
(2.2) holds at the resulting position.

If α = I, then M, X 6|= θ1 ∨ θ2 by the induction hypothesis, whence
M, X 6|= θi for both i ∈ {1, 2}. Thus, whatever player I chooses, (2.2)
still holds at the resulting position.

Case θ1 ∧ θ2. If α = II, then M, X |= θ1 ∧ θ2 by the induction hypothe-
sis, whence M, X |= θi for both i ∈ {1, 2}. Thus, whatever player I
chooses, (2.2) still holds at the resulting position.

If α = I, then M, X 6|= θ1 ∧ θ2 by the induction hypothesis, whence
M, X 6|= θi for some i ∈ {1, 2}. When player II chooses this i, (2.2)
holds at the resulting position.

Case θ1 ⊗ θ2. If α = II, then M, X |= θ1 ⊗ θ2 by the induction hypothesis,
whence there are Y1, Y2 such that X = Y1∪Y2 andM, Yi |= θi for both
i ∈ {1, 2}. When player II chooses (Y1, Y2), whatever player I chooses,
(2.2) still holds at the resulting position.

If α = I, then M, X 6|= θ1 ⊗ θ2 by the induction hypothesis, whence
for all Y1, Y2, if X = Y1 ∪ Y2, then M, Yi 6|= θi for some i ∈ {1, 2}.
Whichever (Y1, Y2) player I chooses, player II can choose the corre-
sponding i, and then (2.2) still holds at the resulting position.

Case θ1 ⊕ θ2. If α = II, then M, X |= θ1 ⊕ θ2 by the induction hypothesis,
whence for all Y1, Y2, if X = Y1 ∪ Y2, then M, Yi |= θi for some i ∈

2.5. TEAM LOGIC (TL) 31

{1, 2}. Whichever (Y1, Y2) player I chooses, player II can choose the
corresponding i, and then (2.2) still holds at the resulting position.

If α = I, then M, X 6|= θ1 ⊕ θ2 by the induction hypothesis, whence
there are Y1, Y2 such that X = Y1 ∪ Y2 and M, Yi 6|= θi for both i ∈
{1, 2}. When player II chooses (Y1, Y2), whatever player I chooses, (2.2)
still holds at the resulting position.

Case ∃xθ. If α = II, thenM, X |= ∃xθ by the induction hypothesis, whence
there is some function F : X →M such thatM, X(x 7→ F) |= θ. When
player II chooses this F , (2.2) still holds at the resulting position.

If α = I, then M, X 6|= ∃xθ by the induction hypothesis, whence for
all functions F : X →M we have M, X(x 7→ F) 6|= θ. Thus, whatever
player I chooses, (2.2) still holds at the resulting position.

Case ∀xθ. If α = II, thenM, X |= ∀xθ by the induction hypothesis, whence
M, X(x 7→ F) |= θ for all functions F : X →M . Thus, whatever player
I chooses, (2.2) still holds at the resulting position.

If α = I, thenM, X 6|= ∀xθ by the induction hypothesis, whence there
is some function F : X → M such that M, X(x 7→ F) 6|= θ. When
player II chooses this F , (2.2) still holds at the resulting position.

Case !xθ. The next position is (θ,X(x 7→M), α) and (2.2) still holds.

We have now shown that τ exists. When player II plays by τ and the
game ends at an atomic formula, player II wins the play by (2.2). Thus τ is
a winning strategy.

For the other direction, assume that τ is a winning strategy for player II
in aTL(M, φ). We want to show that M |= φ. We prove this by proving by
induction on subformulas ψ of φ the claim that when player II plays by τ and
the game reaches position P = (ψ,X, α), then (2.2) holds for the position.
The induction hypothesis is that the claim holds for positions P ′ := (θ, Y, α′),
where θ is an immediate subformula of ψ and P ′ can be reached when player
II plays by τ .

Case atomic. The claim holds by definition.

Case ∼θ. The induction hypothesis applied to (θ,X, α∗) gives us (2.2) for
positions (∼θ,X, α).

Case θ1 ∨ θ2. If α = II, the induction hypothesis applied to (θτ(P), X, II)
yields M, X |= θτ(P), whence M, X |= ψ. If α = I instead, we apply
the induction hypothesis to (θi, X, I) and get M, X 6|= θi for both
i ∈ {1, 2}, whence M, X 6|= ψ.

32 CHAPTER 2. PRELIMINARIES

Case θ1 ∧ θ2. If α = II, the induction hypothesis applied to (θi, X, II) yields
M, X |= θi for both i ∈ {1, 2}, whenceM, X |= ψ. If α = I instead, we
apply the induction hypothesis to (θτ(P), X, I) and get M, X 6|= θτ(P),
whence M, X 6|= ψ.

Case θ1 ⊗ θ2. If α = II, the induction hypothesis applied to (θi, τ(P), II)
yields M, Yi |= θi for both i ∈ {1, 2}, where τ(P) = (Y1, Y2). Because
Y1∪Y2 = X, we getM, X |= ψ. If α = I instead, we apply the induction
hypothesis to (θτ(P ′), Yτ(P ′), I) for all (Y1, Y2) with Y1 ∪ Y2 = X, where
P ′ := (ψ, (Y1, Y2), α). We get M, Yτ(P ′) 6|= θτ(P ′) for all (Y1, Y2) with
Y1 ∪ Y2 = X. Thus M, X 6|= ψ.

Case θ1 ⊕ θ2. If α = II, then we apply the induction hypothesis to posi-
tion (θτ(P ′), Yτ(P ′), II) for all (Y1, Y2) with Y1 ∪ Y2 = X, where P ′ :=
(ψ, (Y1, Y2), α). We getM, Yτ(P ′) |= θτ(P ′) for all (Y1, Y2) with Y1∪Y2 =
X. Thus M, X |= ψ. If α = I instead, the induction hypothesis
applied to (θi, τ(P), I) yields M, Yi 6|= θi for both i ∈ {1, 2}, where
τ(P) = (Y1, Y2). Because Y1 ∪ Y2 = X, we get M, X 6|= ψ.

Case ∃xθ. If α = II, then the induction hypothesis applied to position
(θ,X(x 7→ τ(P)), II) yieldsM, X(x 7→ τ(P)) |= θ, whenceM, X |= ψ.
If α = I instead, we apply the induction hypothesis to (θ,X(x 7→ F), I)
for all functions F : X → M . We get M, X(x 7→ F) 6|= θ for all
F : X →M , whence M, X 6|= ψ.

Case ∀xθ. If α = II, we apply the induction hypothesis to (θ,X(x 7→ F), II)
for all functions F : X → M . We get M, X(x 7→ F) |= θ for all
F : X → M , whence M, X |= ψ. If α = I instead, the induction
hypothesis applied to (θ,X(x 7→ τ(P)), I) yieldsM, X(x 7→ τ(P)) 6|= θ,
whence M, X 6|= ψ.

Case !xθ. If α = I, the induction hypothesis applied to (θ,X(x 7→ M), I)
gives us M, X(x 7→ M) |= θ, whence M, X |= ψ. If α = II, the
induction hypothesis applied to (θ,X(x 7→M), II) gives usM, X(x 7→
M) 6|= θ, whence M, X 6|= ψ.

Now the induction is complete. Applying the shown claim for the initial
position (φ, {∅}, II) we get M |= φ.

We can obtain the semantic game for dependence logic, denoted aFOD,
by limiting the semantic game for team logic to dependence formulas and
changing notation so that formulas of the form θ1 ∨ θ2 are played like θ1⊗ θ2

and formulas of the form ∀xθ are played like !xθ. The semantic game for
dependence logic was first presented by Väänänen [19, Definition 5.5].

Chapter 3

Swapping Quantifiers

In this chapter I study the question under which conditions can the places of
two consequtive quantifiers be swapped while preserving the meaning of the
formula. We will see a natural characterising condition based on D-formulas;
two quantifiers can be swapped when the variables they quantify do not
depend on each other.

Quantifier swapping is well understood in first order logic; swapping
places of two consequtive existential quantifiers or two consequtive universal
quantifiers has no effect on the interpretation of a formula. On the con-
trary, swapping a universal and an existential quantifier changes the formula
essentially. A manifestation of this is that one common measure of formula
complexity in first order logic is to count the number of alternating quantifier
blocks—each step from a sequence of existential quantifiers to a sequence of
universal quantifiers, and vice versa, is a step to the next level of complexity.

In second order logic, quantifier swapping is possible but usually involves
changing the arity of the quantified relation or function in order to preserve
the interpretation of the formula.

Also Caicedo, Dechesne and Janssen investigate interchange of quantifiers
among other quantifier rules [4].

3.1 Definitions

We shall start with a couple of definitions. Let X be a team, let V ⊆
Dom(X), and let F : X →M . The deep restriction of F to V is the function
F ��V : X�V → M that maps (F ��V)(s�V) = F (s) for all s ∈ X. Of course
deep restriction cannot always be well defined because it has to map elements
like the original function but using less information.

Lemma 3.1.1. The following properties are equivalent.

33

34 CHAPTER 3. SWAPPING QUANTIFIERS

1. Deep restriction F ��V is well defined.

2. If s, s′ ∈ X and s 6= s′ and F (s) 6= F (s′) then s�V 6= s′�V .

3. If s, s′ ∈ X and s 6= s′ and s�V = s′�V then F (s) = F (s′).

Proof. Elementary.

We write X(xy 7→ MF) as shorthand for X(x 7→ M)(y 7→ F), and
likewise for other similar cases.

I adopt the convention in this chapter that x and y are not the same vari-
able. By swapping quantifiers I mean modifying a team formula Q1xQ2yφ,
where Q1 and Q2 are quantifiers (one of ∃, ∀ or !), into a logically equivalent
formula Q2yQ1xφ. As we set to investigate under which conditions can two
consequtive quantifiers be swapped in a formula of team logic, we first need
to make clear certain technicalities about the operations the semantics of the
quantifiers perform on teams.

Let X be a team and let V be a set of variables. We say that y is
determined by V in X if X |= (V);y. We say that y is independent of x in
X if y is determined by some set V of variables such that x, y 6∈ V .

Lemma 3.1.2. Assume that x, y 6∈ Dom(X). Then we have X(xy 7→
α0α1) = X(yx 7→ α1α0), where both αi can be the universe, αi = M , or
a function, αi : X�V → M for some V ⊆ Dom(X), including any combina-
tion of these.

3.2 Swapping Quantifiers in Team Logic

Lemma 3.1.2 gives us a few straightforward results.

Lemma 3.2.1. For all φ ∈ TL we have ∃y!xφ⇒ !x∃yφ.

Proof. Assuming X |= ∃y!xφ we get X(yx 7→ FM) |= φ for some F : X →
M . Lemma 3.1.2 gives X(xy 7→ MF) |= φ, from which we get X |= !x∃yφ.

Lemma 3.2.2. For all φ ∈ TL we have !x∀yφ⇒ ∀y!xφ.

Proof. By Lemma 3.2.1 and duality we have

!x∀yφ ≡ ∼!x∃y∼φ⇒ ∼∃y!x∼φ ≡ ∀y!xφ.

3.2. SWAPPING QUANTIFIERS IN TEAM LOGIC 35

Note that even when x 6= y and x, y 6∈ Dom(X), we do not have for
example X(xy 7→ FG) = X(yx 7→ GF) for F : X → M and G : X(x 7→
F) → M . This is so because of technical reasons, namely X(y 7→ G) is
meaningless because G is not defined on any restricted team X�V . However,
in this case we can write X(xy 7→ FG) = X(xy 7→ FG′) = X(yx 7→ G′F),
where G′ := G��Dom(X), and get what we want. The deep restriction is well
defined in this case. To see this from Lemma 3.1.1, assume s1, s2 ∈ X(x 7→
F), s1 6= s2 and G(s1) 6= G(s2). Then we can write si = zi(x 7→ F (zi)) for
some z1, z2 ∈ X. In fact zi = si�Dom(X). From s1 6= s2 we get that either
z1 6= z2, as we want, or F (z1) 6= F (z2). From the latter we get z1 6= z2. In
general we have the following lemma.

Lemma 3.2.3. Let X be a team, F : X → M , V ⊆ Dom(X) and y 6∈
Dom(X) a variable. If F ′ = F ��V is well defined then X(y 7→ F) = X(y 7→
F ′).

Proof. For each s ∈ X, because F ′(s) = F (s), we have X(y 7→ F) 3 s(y 7→
F (s)) = s(y 7→ F ′(s)) ∈ X(y 7→ F ′).

We can now state a few more straightforward results.

Lemma 3.2.4. For all φ ∈ TL,

1. !x!yφ ≡ !y!xφ;

2. ∃x∃yφ ≡ ∃y∃xφ;

3. ∀x∀yφ ≡ ∀y∀xφ.

Proof. To see the first equivalence, we use Lemma 3.1.2 and get

X |= !x!yφ⇒ X(xy 7→MM) |= φ⇒ X(yx 7→MM) |= φ⇒ X |= !y!xφ.

For the second equivalence we use Lemma 3.2.3 that we just proved.
When X |= ∃x∃yφ, then X(xy 7→ FG) |= φ for some F : X → M and
G : X(x 7→ F)→M . For any s, s′ ∈ X(x 7→ F), if s�Dom(X) = s′�Dom(X),
then F (s) = F (s′), so s = s′. By Lemma 3.1.1, G′ := G��Dom(X) is well
defined, so we get X(xy 7→ FG) = X(yx 7→ G′F), from which we get
X(yx 7→ G′F) |= φ and finally X |= ∃y∃xφ.

The third equivalence follows from the previous by duality:

∀x∀yφ ≡ ∼∃x∃y∼φ ≡ ∼∃y∃x∼φ ≡ ∀y∀xφ.

36 CHAPTER 3. SWAPPING QUANTIFIERS

Here is another example to illustrate that the switch from X(xy 7→ α0α1)
to X(yx 7→ α1α0) cannot always be taken for granted. Assume again x 6= y
and x, y 6∈ Dom(X). We do not have X(xy 7→ MF) = X(yx 7→ FM)
for F : X(x 7→ M) → M . As above, the expression X(y 7→ F) is not
defined. But worse than above, we cannot save the situation by choosing
F ′ := F ��Dom(X). The reason is that in general the deep restriction is
not well defined. For a concrete example, consider X =

{
{x 7→ 0}

}
and

M = {0, 1}. Then X(y 7→ M) =
{
{x 7→ 0, y 7→ 0}, {x 7→ 0, y 7→ 1}

}
. If

furthermore F : X(x 7→ M) → M has F (0, 0) = 0 and F (0, 1) = 1, then we
should but cannot have F ′(0) = 0 and F ′(0) = 1.

Lemma 3.2.5. Assume x and y are variables, y 6∈ Dom(X), and let F : X →
M . Then y is independent of x in X(y 7→ F) if and only if F ��V is well
defined for some V ⊆ Dom(X) \ {x}.

Proof. Assume first that y is independent of x in X(y 7→ F). Then X(y 7→
F) |= (z1, . . . , zn);y for some variables z1, . . . , zn that do not include x and
y, whence we get a function f : Mn → M such that, for all s ∈ X(y 7→ F),
f(s(z1), . . . , s(zn)) = s(y) = F (s). Notice that X(y 7→ F)�V = X�V . If
s, s′ ∈ X such that s 6= s′ and s�{z1, . . . , zn} = s′�{z1, . . . , zn}, then F (s) =
f(s(z1), . . . , s(zn)) = f(s′(z1), . . . , s′(zn)) = F (s′). Thus F ��{z1, . . . , zn} is
well defined.

Assume then that V ⊆ Dom(X) \ {x} and F ′ := F ��V is well defined.
Then x, y 6∈ V . To see that V determines y in X(y 7→ F), let s, s′ ∈ X(y 7→
F) with s�V = s′�V . By Lemma 3.2.3 we get X(y 7→ F) = X(y 7→ F ′),
so s(y) = F ′(s�V) = F ′(s′�V) = s′(y). Thus y is independent of x in
X(y 7→ F).

Lemma 3.2.6. Let φ ∈ TL and let V be a set of variables with x, y 6∈ V .
Then !x∃y

(
(V);y ∧ φ

)
⇒ ∃y!x

(
(V);y ∧ φ

)
.

Proof. LetM be a model and X be a team. Assume X |= !x∃y((V);y∧φ).
Then X(xy 7→ MF) |= (V);y and X(xy 7→ MF) |= φ, where F : X(x 7→
M)→M . As y is independent of x in X(xy 7→MF), we get by Lemma 3.2.5
that F ′ := F ��V is well defined for some V ⊆ Dom(X(x 7→M)) \ {x}. Then
V ⊆ Dom(X). Thus X(xy 7→ MF) = X(xy 7→ MF ′) = X(yx 7→ F ′M),
using Lemma 3.1.2. We get X |= ∃y!x((V);y ∧ φ).

Theorem 3.2.7. For all φ ∈ TL,

!x∃yφ⇒ ∃y!xφ iff !x∃yφ⇒ !x∃y
(
(V);y ∧ φ

)
for some V with x, y 6∈ V . (3.1)

3.2. SWAPPING QUANTIFIERS IN TEAM LOGIC 37

Proof. First assume the right side of (3.1). Then we have by Lemma 3.2.6
that

!x∃yφ⇒ !x∃y
(
(V);y ∧ φ

)
⇒ ∃y!x

(
(V);y ∧ φ

)
⇒ ∃y!xφ.

Assume then the left side of (3.1). Let X be a team. We may assume
that x, y 6∈ Dom(X) because x and y are not free in the formulas in (3.1).
From X |= !x∃yφ we get X |= ∃y!xφ, whence X(yx 7→ FM) |= φ for
some F : X → M . Let V = Dom(X). Then x, y 6∈ V . We want to show
X(yx 7→ FM) |= (V);y, so let s, s′ ∈ X(yx 7→ FM) with s�V = s′�V . Then
there are some z, z′ ∈ X such that s = z(yx 7→ FM) and s′ = z′(yx 7→ FM),
and in fact z = s�V = s′�V = z′. Now s(y) = F (z) = F (z′) = s′(y). Thus
X(yx 7→ FM) |= (V);y ∧ φ, so we get ∃y!xφ ⇒ ∃y!x

(
(V);y ∧ φ

)
⇒

!x∃y
(
(V);y ∧ φ

)
.

Note that when we assume !x∃yφ ⇒ ∃y!xφ, we do not in general have
φ ⇒ (V);y ∧ φ for any V with x, y 6∈ V , which would be a stronger claim
than the one in Theorem 3.2.7. We get an easy counterexample by choosing φ
to be y = y. Even if we require the quantifiers !x and ∃y not to be redundant,
we get a counterexample by choosing φ to be x = x ∧ y = y.

There is an immediate consequence by duality.

Theorem 3.2.8. For all φ ∈ TL,

∀y!xφ⇒ !x∀yφ if and only if !x∀y
(
∼(V);y ∨ φ

)
⇒ !x∀yφ

for some V with x, y 6∈ V .

Proof. By Theorem 3.2.7 we get the following.

∀y!xφ⇒ !x∀yφ
iff ∼∃y!x∼φ⇒ ∼!x∃y∼φ
iff !x∃y∼φ⇒ ∃y!x∼φ
iff !x∃y∼φ⇒ !x∃y

(
(V);y ∧ ∼φ

)
for some V with x, y 6∈ V .

iff ∼!x∃y
(
(V);y ∧ ∼φ

)
⇒ ∼!x∃y∼φ for some V with x, y 6∈ V .

iff !x∀y
(
∼(V);y ∨ φ

)
⇒ !x∀yφ for some V with x, y 6∈ V .

By Lemma 3.2.1 and Lemma 3.2.2 we get the following corollaries of
Theorem 3.2.7 and Theorem 3.2.8.

Corollary 3.2.9. For all φ ∈ TL,

1. !x∃yφ ≡ ∃y!xφ iff !x∃yφ⇒ !x∃y
(
(V);y ∧ φ

)
for any x, y 6∈ V

38 CHAPTER 3. SWAPPING QUANTIFIERS

2. !x∀yφ ≡ ∀y!xφ iff !x∀y
(
∼(V);y ∨ φ

)
⇒ !x∀yφ for any x, y 6∈ V

Corollary 3.2.10. For all φ ∈ TL,

1. !x∃y
(
(V);y ∧ φ

)
≡ ∃y!x

(
(V);y ∧ φ

)
if x, y 6∈ V

2. !x∀y
(
∼(V);y ∨ φ

)
≡ ∀y!x

(
∼(V);y ∨ φ

)
if x, y 6∈ V

Example 3.2.11. With Corollary 3.2.9 we can show for example that for
any φ ∈ TL we have the following equivalences:

!x0∃x1!x2∃x3

(
(x0);x1 ∧ (x2);x3 ∧ φ

)
≡ !x0∃x1!x2

(
(x0);x1 ∧ ∃x3

(
(x2);x3 ∧ φ

))
≡ !x0!x2∃x1

(
(x0);x1 ∧ ∃x3

(
(x2);x3 ∧ φ

))
≡ !x0!x2∃x1∃x3

(
(x0);x1 ∧ (x2);x3 ∧ φ

)
≡ !x2!x0∃x3∃x1

(
(x0);x1 ∧ (x2);x3 ∧ φ

)
≡ !x2!x0∃x3

(
(x2);x3 ∧ ∃x1

(
(x0);x1 ∧ φ

))
≡ !x2∃x3!x0

(
(x2);x3 ∧ ∃x1

(
(x0);x1 ∧ φ

))
≡ !x2∃x3!x0∃x1

(
(x0);x1 ∧ (x2);x3 ∧ φ

)
.

We have now investigated all quantifier swaps except the case of ∃x and
∀x. It turns out that there is no general way to swap these quantifiers.

Let us investigate some team sentence ∃x∀yφ. If it is true in some model
M with universe, say, M = {0, 1, 2}, then φ is satisfied inM by the following
teams, where a is some fixed element in M .

x y
a 0

x y
a 1

x y
a 2

On the other hand, if the team sentence ∀y∃xφ is true in the same model
M, then φ is satisfied in M by the following teams.

x y
a0 0

x y
a1 1

x y
a2 2

Here a0, a1, a2 ∈M but they are not necessarily the same element. Further-
more, we cannot remedy the situation and force these two sets of teams to
be the same by using D-formulas. The effect of D-formulas is limited to each
team separately. In fact we have the following equivalences.

∃x∀yφ ≡ ∃x∀y
(
φ ∧ ();x ∧ ();y

)
∀y∃xφ ≡ ∀y∃x

(
φ ∧ ();x ∧ ();y

)
This shows that there is no hope of swapping ∃ and ∀ except in special cases.

Chapter 4

FO vs. FOD in Logical
Equivalence

In this chapter I study the concept of equivalence of two models in first
order logic and dependence logic. In particular, I work with the concept of
semiequivalence of two models, which means that every sentence that is true
in the first model is also true in the other model. I define an Ehrenfeucht-
Fräıssé game that characterises semiequivalence of first order logic up to
a given dependence rank. I also give an effective conversion of a winning
strategy in the EF-game for first order logic into a winning strategy in this
new EF-game.

4.1 Definitions

We call atomic and a negated atomic formulas basic formulas.
The first order rank of φ ∈ FO, denoted rankFO(φ), is the number

of nested quantifiers in φ. The dependence rank of ψ ∈ FOD, denoted
rankFOD(ψ), counts the number of nested quantifiers and disjunctions. The
precise definitions are as in Table 4.1.

Denote by FOn the set of first order formulas up to first order rank n,
denote by FODn the set of dependence formulas up to dependence rank n,
and denote by FOFOD

n the set of first order formulas up to dependence rank
n.

Let M and N be models, and let L and R be logics (either first order
logic or dependence logic). We say that M and N are L-semiequivalent up
to R-rank n, denoted M VL

R,n N , when M |= φ implies N |= φ for all L-

sentences φ with rankR(φ) ≤ n. We say thatM andN are L-equivalent up to
R-rank n, denotedM≡LR,n N , whenMVL

R,n N andMWL
R,n N . If L = R,

39

40 CHAPTER 4. FO VS. FOD IN LOGICAL EQUIVALENCE

formula first order rank dependence rank
atomic 0 0
¬φ rankFO(φ) rankFOD(φ)
φ0 ∨ φ1 max{rankFO(φi) : i < 2} max{rankFOD(φi) : i < 2}+ 1
φ0 ∧ φ1 max{rankFO(φi) : i < 2} max{rankFOD(φi) : i < 2}
∃xφ rankFO(φ) + 1 rankFOD(φ) + 1
∀xφ rankFO(φ) + 1 rankFOD(φ) + 1

Table 4.1: First order and dependence ranks

we can simply write VL
n instead of VL

R,n. Similarly for ≡Ln . This is normally
the case, but with dependence logic and first order logic we also have the
combination L = FOD, R = FO because dependence rank is also defined for
first order sentences. By VL

R we mean VL
R,n for all n < ω. Similarly for ≡LR.

Lemma 4.1.1. For all φ ∈ FO, rankFO(φ) ≤ rankFOD(φ).

Proof. Induction on φ. For basic φ we have rankFO(φ) = 0 = rankFOD(φ).
The induction hypothesis gives the following inequalities.

rankFO(φ0 ∨ φ1) = max{rankFO(φi) : i < 2} ≤ max{rankFOD(φi) : i < 2} <
max{rankFOD(φi) : i < 2}+ 1 = rankFOD(φ0 ∨ φ1)

rankFO(φ0 ∧ φ1) = max{rankFO(φi) : i < 2} ≤ max{rankFOD(φi) : i < 2} =

rankFOD(φ0 ∧ φ1)

rankFO(∃xφ) = rankFO(φ) + 1 ≤ rankFOD(φ) + 1 = rankFOD(∃xφ)

rankFO(∀xφ) = rankFO(φ) + 1 ≤ rankFOD(φ) + 1 = rankFOD(∀xφ)

I give definitions in my flavour for the known EF-games for first order logic
and dependence logic, along with their known characterisations in terms of
first order equivalence and dependence semiequivalence. The EF-game for
dependence logic was originally presented by Väänänen [19].

When EFL(M,N) is some EF-game over the models M and N , and P
is a position in the EF-game, I denote by II ↑ EFL(M,N) @ P the phrase
“player II has a winning strategy in EFL(M,N) at position P”.

Definition 4.1.2. Let M and N be models, and n < ω. The n-move EF-
game for FO over M and N , EFFO

n (M,N), is played by players I and II.
A position in the game is (s, s′)k, where s and s′ are assignments such that

4.1. DEFINITIONS 41

Dom(s) = Dom(s′), k is the number of moves left in the game, assignment s
maps to model M, and assignment s′ maps to model N .

The initial position in the game is (∅, ∅)n. If the game is in position
(s, s′)k+1, then player I chooses an element a ∈M (or an element b ∈ N) and
a variable x, after which player II chooses an element b ∈ N (or an element

a ∈M). Then the game continues from position
(
s(x 7→ a), s′(x 7→ b)

)k
.

If the game is in position (s, s′)0, then player II wins if it holds for all
basic φ ∈ FO with FV(φ) ⊆ Dom(s) that M, s |= φ implies N , s′ |= φ.
Otherwise player I wins.

Definition 4.1.3. Let M and N be models, and n < ω. The n-move EF-
game for FOD over M and N , EFFOD

n (M,N), is played by players I and
II. A position in the game is (X, Y)k, where k is the number of moves left
in the game, and X and Y are teams such that Dom(X) = Dom(Y), team
X maps to model M and team Y maps to model N .

Initial position in the game is ({∅}, {∅})n. If the game is in position
(X, Y)k+1, then player I can choose one of the following moves.

∨-move. Player I splits X = X0 ∪ X1. Then player II splits Y = Y0 ∪
Y1. Finally player I chooses the game to continue either from position
(X0, Y0)k or from position (X1, Y1)k.

∃-move. Player I chooses some function F : X → M and variable x. Then
player II chooses some function G : Y → N . The game then continues

from position
(
X(x 7→ F), Y (x 7→ G)

)k
.

∀-move. Player I chooses some variable x. The game continues from posi-

tion
(
X(x 7→M), Y (x 7→ N)

)k
.

If the game is in position (X, Y)0, then player II wins if for all φ ∈ FOD
such that FV(φ) ⊆ Dom(X) it holds that M, X |= φ implies N , Y |= φ.
Otherwise player I wins.

Theorem 4.1.4. Let M and N be models and n < ω. Then player II has a
winning strategy in EFFO

n (M,N) if and only if M≡FO
n N .

Theorem 4.1.5. Let M and N be models and n < ω. Then player II has a
winning strategy in EFFOD

n (M,N) if and only if MVFOD
n N .

Proof. See [19, Theorem 6.44].

42 CHAPTER 4. FO VS. FOD IN LOGICAL EQUIVALENCE

4.2 Comparing Semiequivalences

I show some easy results to provide a context for further discussion.

Fact 4.2.1. If MVFO
n N then M≡FO

n N .

Proof. For any φ ∈ FO with rankFO(φ) ≤ n we have rankFO(¬φ) ≤ n, and
therefore

N |= φ⇒ N 6|= ¬φ⇒M 6|= ¬φ⇒M |= φ.

Corollary 4.2.2. If MVFO N then M≡FO N .

Fact 4.2.3. MVFOD N does not imply M≡FOD N .

Proof. We get (R,N) VFOD (Q,N) by Löwenheim-Skolem theorem. The
other direction, (R,N) WFOD (Q,N), does not hold because (Q,N) |= φ,
where φ is a dependence sentence expressing that there is a bijection between
the universe and the predicate. Clearly (R,N) 6|= φ.

Fact 4.2.4. If MVFOD
FOD,n N , then MVFO

FOD,n N .

Proof. Clear because first order formulas are dependence formulas.

Corollary 4.2.5. If MVFOD N then MVFO N .

Fact 4.2.6. MVFO N does not imply MVFOD N .

Proof. We have (Q, <) VFO (R, <). On the other hand, (Q, <) |= φ, where
φ is a dependence sentence expressing that the order relation is incomplete,
and (R, <) 6|= φ.

Corollary 4.2.7. MVFO
FO,n N does not imply MVFOD

FOD,n N for all n.

Corollary 4.2.8. MVFO
FOD,n N does not imply MVFOD

FOD,n N for all n.

Fact 4.2.9. If MVFO
FO,n N , then MVFO

FOD,n N .

Proof. Clear by Lemma 4.1.1.

Fact 4.2.10. MVFOD
FOD,n N does not imply MVFO

FO,n N for all n.

Proof. LetM = ({0, 1, 2}, {0, 1}, {2}) and N = ({0, 1, 2}, {0}, {2}) be mod-
els of the unary language {P,Q}. We consider rank 1. Clearly M 6VFO

FO,1 N
becauseM |= ∀x(Px∨Qx) but N 6|= ∀x(Px∨Qx). We can showMVFOD

FOD,1

N by giving player II a winning strategy in the game EFFOD
1 (M,N).

4.3. EF-GAME FOR FO IN FOD-RANK 43

To check the end condition of the game we need to know all basic depen-
dence formulas of the considered language with zero or one free variables.
They are the following.

> ⊥ ();x Px Qx ¬Px ¬Qx
If player I chooses a ∀-move, the game ends in position (X, Y)0, where

X = {∅}(x 7→M) and Y = {∅}(x 7→ N). The only basic dependence formula
that is satisfied by X is > which is trivially satisfied by any model and any
team.

If player I chooses an ∃-move and F : ∅ 7→ a ∈ M , player II can choose
G : ∅ 7→ b ∈ N so that a ∈ PM iff b ∈ PN , and a ∈ QM iff b ∈ QN . Now the
formulas Px, Qx, ¬Px, ¬Qx are satisfied by X iff they are satisfied by Y .
Also ();x holds necessarily for both teams.

It is no good for player I to choose a ∨-move because he can only split
{∅} = ∅ ∪ {∅}, and player II can imitate this, giving practically the same
initial game position where ();x holds for both teams.

In all these cases player II wins the game. Thus she has a winning strategy
in EFFOD

1 (M,N).

Corollary 4.2.11. MVFO
FOD,n N does not imply MVFO

FO,n N for all n.

To sum up the previous facts, these are the implications between equiv-
alence and semiequivalence of first order logic and dependence logic. All
missing implications are false.

M≡FOD N =⇒ MVFOD N =⇒ MVFO N ⇐⇒ M≡FO N
We also have the following implications for each n < ω. All missing

implications are false.

MVFOD
FOD,n N =⇒ MVFO

FOD,n N
⇑

M ≡FO
FO,n N ⇐⇒ MVFO

FO,n N

In the light of EF-game characterisations of ≡FO
n andVFOD

n by EFFO
n and

EFFOD
n , we see that Fact 4.2.10 says that even if player II has a winning

strategy in EFFOD
n (M,N), there is not necessarily any way to translate it

into a winning strategy in EFFO
n (M,N).

4.3 EF-game for FO in FOD-rank

The negative result that M VFOD
FOD,n N does not always imply M VFO

FO,n N
raises the question how to define an EF-game EF∗ such that player II has a

44 CHAPTER 4. FO VS. FOD IN LOGICAL EQUIVALENCE

winning strategy in EF∗n(M,N) iff M VFO
FOD,n N . As an answer to this, I

propose the following game.

Definition 4.3.1. Let M and N be models, and n < ω. The EF-game for
first order logic with dependence rank n, EF∗n(M,N), is played by players I
and II. A position in the game is (X, Y)k, where k is the number of moves
left in the game, and X and Y are teams such that Dom(X) = Dom(Y),
team X maps to model M and team Y maps to model N .

Initial position in the game is ({∅}, {∅})n. If the game is in position
(X, Y)k+1, then player I can choose one of the following moves.

∨-move. Player I splits X = X0 ∪ X1. Then player II splits Y = Y0 ∪
Y1. Finally player I chooses the game to continue either from position
(X0, Y0)k or from position (X1, Y1)k.

∃-move. Player I chooses some function F : X → M and variable x. Then
player II chooses some function G : Y → N . The game then continues

from position
(
X(x 7→ F), Y (x 7→ G)

)k
.

∀-move. Player I chooses some variable x. The game continues from posi-

tion
(
X(x 7→M), Y (x 7→ N)

)k
.

If the game is in position (X, Y)0, then player II wins if for all basic φ ∈ FO
with FV(φ) ⊆ Dom(X) it holds that

for all s ∈ X: M, s |= φ =⇒ for all s ∈ Y : N , s |= φ. (4.1)

Otherwise player I wins.

Note that the game EF∗ is highly similar to the EF-game of dependence
logic, EFFOD. The only difference is at the end of the game. In EF∗ we
inspect only basic first order formulas, whereas in EFFOD we inspect basic
dependence formulas. In other parts the games EF∗ and EFFOD are identical.

We will now prove that EF∗ characterises the semiequivalence VFO
FOD,n.

The proof will be by induction on dependence rank.

Theorem 4.3.2. Let M and N be models, and n < ω. Player II has a
winning strategy in EF∗n(M,N) if and only if MVFO

FOD,n N .

Proof. Let n < ω. It suffices to prove the more general claim that for all po-
sitions (X, Y)k, k ≤ n, in the game EF∗n(M,N) the following two conditions
are equivalent.

(i) Player II has a winning strategy at (X, Y)k.

4.3. EF-GAME FOR FO IN FOD-RANK 45

(ii) Condition (4.1) holds for all φ ∈ FOFOD
k with FV(φ) ⊆ Dom(X).

We prove this general claim by induction on k.

Basic case. Let k = 0. Assume first (i). The game is over, so player II won.
Then (4.1) holds for all basic φ ∈ FO with FV(φ) ⊆ Dom(X). In order
to get condition (ii) to hold for all formulas φ ∈ FOFOD

0 , we need to
show (4.1) also for conjunctions of basic formulas. Let φ1, . . . , φm each
be basic. Because (4.1) holds for each of them, we get the following
chain of equivalences.

for all s ∈ X: M, s |= φ1 ∧ . . . ∧ φm
⇐⇒ for all s ∈ X and all i ≤ m: M, s |= φi

⇐⇒ for all s ∈ Y and all i ≤ m: N , s |= φi

⇐⇒ for all s ∈ Y : N , s |= φ1 ∧ . . . ∧ φm

Thus (ii) holds.

Assume then (ii). Because all basic φ ∈ FO are also in FOFOD
0 , condi-

tion (i) follows.

For the inductive steps, let 0 < k ≤ n. Assume first (i). By the same
chain of equivalences as we saw in the proof of (i)⇒ (ii) in case k = 0, we get
condition (ii) when we prove (4.1) for formulas φ∨ψ, ∃xφ, ∀xφ in FmlFO

FOD,k.

Let φ, ψ ∈ FmlFO
FOD,k−1 and let x be a variable symbol.

Case φ ∨ ψ. Assume FV(φ∨ψ) ⊆ Dom(X) and, for all s ∈ X,M, s |= φ∨ψ.
Then for each s ∈ X we have eitherM, s |= φ orM, s |= ψ. Therefore
we can split X = X0 ∪ X1 such that M, s |= φ for all s ∈ X0 and
M, s |= ψ for all s ∈ X1. Taking this as player I’s split in a ∨-move at
game position (X, Y)k, we get, by (i), a split Y = Y0 ∪ Y1 from player
II’s winning strategy so that player II still has a winning strategy at
both positions (X0, Y0)k−1 and (X1, Y1)k−1, whichever player I chooses.
By the induction hypothesis we get that N , s |= φ for all s ∈ Y0 and
N , s |= ψ for all s ∈ Y1. This gives N , s |= φ ∨ ψ for all s ∈ Y .

Case ∃xφ. Assume FV(∃xφ) ⊆ Dom(X) and M, s |= ∃xφ for all s ∈ X.
Then for each s ∈ X there is an element F (s) ∈M such thatM, s′ |= φ,
where s′ := s(x 7→ F (s)). That is, M, s |= φ for each s ∈ X(x 7→ F).
This function F : X →M and the variable x we can take as player I’s
choices in an ∃-move at game position (X, Y)k. By (i), from player II’s
winning strategy we get a function G : Y → N so that player II still

46 CHAPTER 4. FO VS. FOD IN LOGICAL EQUIVALENCE

has a winning strategy at position
(
X(x 7→ F), Y (x 7→ G)

)k−1
. By the

induction hypothesis we get that N , s |= φ for all s ∈ Y (x 7→ G). This
gives N , s |= ∃xφ for all s ∈ Y .

Case ∀xφ. Assume FV(∀xφ) ⊆ Dom(X) and M, s |= ∀xφ for all s ∈ X.
Then M, s′ |= φ for all s ∈ X and a ∈ M , where s′ := s(x 7→ a). In
other words,M, s |= φ for all s ∈ X(x 7→M). By taking the variable x
as player I’s move in a ∀-move at game position (X, Y)k, we get, by (i),
from player II’s winning strategy that she still has a winning strategy

at position
(
X(x 7→ M), Y (x 7→ N)

)k−1
. By the induction hypothesis

we get that N , s |= φ for all s ∈ Y (x 7→ N). This gives N , s |= ∀xφ for
all s ∈ Y .

Assume then (ii). We prove (i) for every possible move in the game.

Case ∨-move. Let player I split X = X0∪X1 in a ∨-move at game position
(X, Y)k. We know that FOFOD

k−1 is a finite set of formulas. Therefore,
letting, for i = 0, 1,

Ti := {φ ∈ FOFOD
k−1 :M, s |= φ for all s ∈ Xi},

we getM, s |= ∧T0∨
∧
T1 for all s ∈ X. Because

∧
T0∨

∧
T1 ∈ FOFOD

k ,
from (ii) we get N , s |= ∧

T0 ∨
∧
T1 for all s ∈ Y . Therefore, for each

s ∈ Y , either N , s |= ∧T0 or N , s |= ∧T1, so we get a split Y = Y0∪Y1

such that N , s |= ∧
T0 for all s ∈ Y0 and N , s |= ∧

T1 for all s ∈ Y1.
We take the split Y = Y0 ∪ Y1 as player II’s choice in the ∨-move.
Assume player I chooses the game to continue from position (Xi, Yi)

k−1.
To show that player II has a winning strategy from this position, we
prove (ii) for (Xi, Yi)

k−1 and then use the induction hypothesis. So, let
φ ∈ FOFOD

k−1 and assume that M, s |= φ for all s ∈ Xi. Then φ ∈ Ti, so
N , s |= φ for all s ∈ Yi. This is what we wanted.

Case ∃-move. Let player I choose a function F : X → M and a variable x
in an ∃-move at game position (X, Y)k. Let

T := {φ ∈ FOFOD
k−1 :M, s |= φ for all s ∈ X(x 7→ F)}.

We get M, s |= ∃x∧T for all s ∈ X. Because ∃x∧T ∈ FOFOD
k ,

from (ii) we get N , s |= ∃x∧T for all s ∈ Y . Therefore for each
s ∈ Y there is an element G(s) ∈ N such that N , s′ |= ∧

T , where
s′ := s(x 7→ G(s)), so we get the function G : Y → N such that
N , s |= ∧T for all s ∈ Y (x 7→ G). We take this function as player II’s

4.4. CONVERTING WINNING STRATEGIES 47

choice in the ∃-move. To show that player II has a winning strategy

from position
(
X(x 7→ F), Y (x 7→ G)

)k−1
, we prove (ii) for this position

and then use the induction hypothesis. So, let φ ∈ FOFOD
k−1 and assume

M, s |= φ for all s ∈ X(x 7→ F). Then φ ∈ T , so N , s |= φ for all
s ∈ Y (x 7→ G). This is what we wanted.

Case ∀-move. Let player I choose a variable x in a ∀-move at game position
(X, Y)k. Let

T := {φ ∈ FOFOD
k−1 :M, s |= φ for all s ∈ X(x 7→M)}.

We get M, s |= ∀x∧T for all s ∈ X. Because ∀x∧T ∈ FOFOD
k , from

(ii) we get N , s |= ∀x∧T for all s ∈ Y . Therefore N , s′ |= ∧T for all
s ∈ Y and a ∈ N , where s′ := s(x 7→ a), so we get N , s |= ∧

T for all
s ∈ Y (x 7→ N). To show that player II has a winning strategy from

position
(
X(x 7→ M), Y (x 7→ N)

)k−1
, we prove (ii) for this position

and use the induction hypothesis. So, let φ ∈ FOFOD
k−1 and assume

M, s |= φ for all s ∈ X(x 7→ M). Then φ ∈ T , so N , s |= φ for all
s ∈ Y (x 7→ N). This is what we wanted.

4.4 Converting Winning Strategies

The result that MVFOD
FOD,n N implies MVFO

FOD,n N , together with the EF-
characterisations of these semiequivalences, gives the result that if player II
has a winning strategy in EFFOD

n (M,N) then she has a winning strategy
also in EF∗n(M,N). There is even a stronger link between these games.
Namely, we can effectively convert a winning strategy in EFFOD

n (M,N) into
one in EF∗n(M,N). This is, however, trivial because the games have identical
moves.

Because M VFO
FO,n N implies M VFO

FOD,n N , we get also that if player

II has a winning strategy in EFFO
n (M,N) then she has one in EF∗n(M,N).

Also here we have the stronger result that the first strategy can be effectively
converted into the second strategy. This time the conversion is not trivial.

Theorem 4.4.1. Player II’s winning strategy in EFFO
n (M,N) can be effec-

tively converted into her winning strategy in EF∗n(M,N).

Proof. Let M and N be models, and let n < ω. We prove the theorem by
proving by induction on k the following more general claim. For any teams
X and Y , if

for all s′ ∈ Y there is s ∈ X such that II ↑ EFFO
n (M,N) @ (s, s′)k, (4.2)

48 CHAPTER 4. FO VS. FOD IN LOGICAL EQUIVALENCE

then
II ↑ EF∗n(M,N) @ (X, Y)k. (4.3)

The general idea in player II’s winning strategy in EF∗n(M,N) is that she
plays several games of EFFO

n (M,N) at the same time, and reads from those
games her winning strategy in EF∗n(M,N).

Basic case. Let k = 0. Assume (4.2). Let φ ∈ FO be basic with FV(φ) ⊆
Dom(X) and assume M, s |= φ for all s ∈ X. Let s′ ∈ Y . By (4.2),
there is s ∈ X such that II wins EFFO

n (M,N) at position (s, s′)0. This
means M, s |= φ iff N , s′ |= φ, so N , s′ |= φ. Hereby N , s′ |= φ for all
s′ ∈ Y . Therefore (4.3) holds.

For the inductive cases, let 0 < k ≤ n. Assume the induction hypothesis
and (4.2). We construct a winning strategy for player II by cases on the
three different moves that player I can choose.

Case ∨-move. Let player I split X = X0 ∪X1. Define, for i < 2, teams

Yi := {s′ ∈ Y : there is s ∈ Xi such that II ↑ EFFO
n (M,N) @ (s, s′)k}.

By (4.2), Y = Y0∪Y1. By definition of Yi, for all s′ ∈ Yi there is s ∈ Xi

such that II ↑ EFFO
n (M,N) @ (s, s′)k, so also II ↑ EFFO

n (M,N) @
(s, s′)k−1. By the induction hypothesis, II ↑ EF∗(M,N) @ (Xi, Yi)

k−1

for i < 2.

Case ∃-move. Let player I choose function F : X → M and variable x.
Player II chooses her function G : Y → N as follows. Let s′ ∈ Y .
By (4.2), there is s ∈ X such that II ↑ EFFO

n (M,N) @ (s, s′)k. By
making player I choose F (s) ∈ M and x in EFFO

n (M,N), player II’s
winning strategy gives b ∈ N such that II ↑ EFFO

n (M,N) @
(
s(x 7→

F (s)), s′(x 7→ b)
)k−1

. Let G(s′) be this b. Now player II has made her
choice in EF∗n(M,N), and it holds that for each s ∈ X(x 7→ F) there is
s′ ∈ Y (x 7→ G) such that II ↑ EFFO

n (M,N) @ (s, s′)k−1. Thus, by the

induction hypothesis, II ↑ EF∗n(M,N) @
(
X(x 7→ F), Y (x 7→ G)

)k−1
.

Case ∀-move. Let player I choose variable x. To show II ↑ EF∗n(M,N) @(
X(x 7→ M), Y (x 7→ N)

)k−1
by using the induction hypothesis, we

must find for each s′(x 7→ b) ∈ Y (x 7→ N) some s(x 7→ a) ∈ X(x 7→M)
such that II ↑ EFFO

n (M,N) @ (s, s′)k−1. So, let s′ ∈ Y and b ∈ N . By
(4.2), there is s ∈ X such that II ↑ EFFO

n (M,N) @ (s, s′)k. By making
player I choose b ∈ N and x in EFFO

n (M,N), player II’s winning
strategy gives a ∈M such that II ↑ EFFO

n (M,N) @
(
s(x 7→ a), s′(x 7→

b)
)k−1

. This is what we wanted.

4.5. FURTHER POINTS OF INTEREST 49

As we succeeded in all the three cases to give player II a move that
results in she still having a winning strategy after the move, (4.3) holds.
This completes the proof.

4.5 Further Points of Interest

Even thoughMVFOD
n N does not implyM≡FO

n N for all n, it is reasonable
to ask if there is a limit n from which on the implication holds. Perhaps this
limit is 4 as from there on D-formulas give additional expressive power by
limiting the domain of Skolem functions of existentially quantified variables.

More generally put, we can ask for which functions f : ω → ω does it hold
that, for all models M, N and all n < ω, M VFOD

n N implies M ≡FO
f(n) N .

Trivially the constant function f = 0 is one such function but probably not
the only one, and identity f(n) = n is not such a function. For these functions
we have the nontrivial problem of converting any given winning strategy of
player II in EFFOD

n into player II’s winning strategy in EFFO
f(n).

In spite of the negative result M VFO
FOD,n N 6⇒ M VFO

FO,n N , one could
try to show that ifMVL

FOD,n N thenMVL
FO,n N , where L is the fragment

of FO that consists of disjunctions of FO-sentences where ∨ does not occur.

It was Ryan Siders who initially pointed out the problem of two differ-
ent ranks for dependence logic. He also gave helpful ideas concerning the
comparison of semiequivalences.

50 CHAPTER 4. FO VS. FOD IN LOGICAL EQUIVALENCE

Chapter 5

Translating between Logics

In this chapter I investigate the question of translating formulas from one
logic to another. I will first define translations in a general setting and revise
some known results in this light. I will then present two detailed translations
from second order logic to team logic, the first for sentences and the second
for all formulas.

5.1 The General Setting

Recall that semantic objects in first order logic are first order assignments,
in second order logic they are second order assignments, and in dependence
logic and team logic they are teams. For a logic L and a model M, define
ILM to be the powerset of sets of all semantic objects for modelM in logic L,

ILM := {S : S is a set of semantic objects for M in L}.
That is, ILM is the set of all possible interpretations that formulas in L may
have on model M.

Definition 5.1.1. Let L and R be logics. Define a syntactic translation of L
to R to be a function f : L→ R that maps L-formulas to R-formulas. Define
a semantic translation of L to R to be a collection {gM : ILM → IRM | M
is a model} of injective functions that map interpretations of L-formulas to
interpretations of R-formulas. We define a translation of L to R to be a pair
consisting of a syntactic translation f : L → R and a semantic translation
{gM : ILM → IRM | M is a model} such that for all φ ∈ L and models M,

[[f(φ)]]RM = gM
(
[[φ]]LM

)
. (5.1)

A translation of L to R can also be a pair consisting of a syntactic translation
f : L→ R and a backward semantic translation {gM : IRM → ILM :M model}

51

52 CHAPTER 5. TRANSLATING BETWEEN LOGICS

such that for all φ ∈ L and models M,

gM
(
[[f(φ)]]RM

)
= [[φ]]LM. (5.2)

In case both logics L and R have the same kind of semantic objects or
consist only of sentences, the role of semantic translation becomes negligible
and the functions gM can be required to be identity functions. However,
when translating between a logic whose semantic objects are assignments
and a logic whose semantic objects are teams, a mere syntactic translation
is meaningless. In such a case, a semantic translation is essential as it tells
us how the meaning of a formula translates from one logic to another with
the given syntactic translation.

Some semantic translations can be generated by simpler functions that
map semantic objects of logic L to semantic objects of logic R. For example,
let M be a model, let SM denote the set of all second order assignments s
on M such that Dom(s) = {R}, let α1(s) = s(R)(x1,...,xn) for all s ∈ SM,
and let α2(X) = (R 7→ Rel(X)) for all teams X on M. Functions α1 and
α2 represent the natural and close relationship between teams and relations.
They also generate the natural semantic translations

gNat
M (S) = {α1(s) : s ∈ S},

for all sets S of second order assignments s onM such that Dom(s) = {R},
and

gNat
M (X) = {α2(X) : X ∈ X},

for all sets X of teams on M.

Translating FO to FOD

Väänänen proves a translation of first order logic to dependence logic [19,
Proposition 3.31] by the syntactic translation φ 7→ φ, for all φ ∈ FO, and the
semantic translation X 7→ ⋃X , for all sets X of teams on M, or the back-
ward semantic translation X 7→ PX, for all sets X of first order assignments.
These semantic translations are apparently not generated by any functions
on semantic objects. Equivalently, the translation can be stated as

M, X |= φ if and only if M, s |= φ for all s ∈ X

for all teams X and models M.

5.1. THE GENERAL SETTING 53

Translating FOD to TL

There is a translation of FOD to TL. Its syntactic translation f is defined
for all φ ∈ FOD in strict negation normal form as follows.

f(Rt1 . . . tn) := Rt1 . . . tn f(⊥) := 0

f
(
(t1 . . . tn);u

)
:= (t1 . . . tn);u f(>) := >

f(φ ∨ ψ) := f(φ)⊗ f(ψ) f(∃xφ) := ∃xf(φ)

f(φ ∧ ψ) := f(φ) ∧ f(ψ) f(∀xφ) := !xf(φ)

f(¬φ) := ¬f(φ)

The semantic translation is the identity function. Alternatively, the transla-
tion can be formulated as

M, X |=TL f(φ) if and only if M, X |=FOD φ

for all teams X and models M.

Translating FOD to ESO

A straightforward translation of FOD to ESO is known; given φ(x1, . . . , xn) ∈
FOD we can write out the definition of satisfaction of φ as an ESO-formula
ψ(R) where R is an n-ary relation variable standing for the team that is
supposed to satisfy φ. Väänänen has shown the syntactic translation in detail
[19, Theorem 6.2]. The semantic translation is the natural one, consisting of
functions gNat

M . Equivalently, the translation can be stated as

M, X |= φ if and only if M, sX |= f(φ)

for all teams X and models M, where sX := (R 7→ Rel(X)).

Translating TL to SO

The translation of TL to SO can be done with the same idea. It consists
of functions f : TL → SO, whose details Väänänen has given [19, Theo-
rem 8.12], and gM that are exactly as in the previous case of translating
dependence logic to existential second order logic.1

In both the above translations of FOD to ESO and TL to SO, the func-
tions gM are generated by the following simple mappings of semantic objects:
s 7→ s(R)(x1,...,xn) and X 7→ (R 7→ Rel(X)). This is natural and based on the
close relationship of teams and relations.

1Note that IESO
M = ISO

M and IFOD
M = ITL

M for all models M.

54 CHAPTER 5. TRANSLATING BETWEEN LOGICS

Translating ESO-Sentences to FOD

There is a well-known translation of ESO-sentences to FOD-sentences. This
translation, known as the Enderton-Walkoe translation, is more involved and
dates back almost three decades. Although this translation is cited in numer-
ous papers (such as [12, pp. 62–63]), I have not found a detailed description
of it let alone a proof that the translation works as it intuitively would seem
to. The original independently written papers by Enderton [6] and Walkoe
[20] settle for giving an example of the translation, each its own. Moreover,
the translations are formulated in first order logic enhanced with Henkin
quantifiers. Because of these reasons, I find it appropriate to give a detailed
description of the translation, along with a detailed proof that it works, for-
mulated in dependence logic. Section 5.2 is dedicated to this.

Translating Downward Closed ESO to FOD

A previous result by Kontinen and Väänänen shows that existential second
order formulas with a free relation variable can be translated to dependence
formulas if and only if the existential second order formula is closed downward
with respect to the relation variable. [17]

Theorem 5.1.2. Let φ(R) ∈ ESO, where R is an n-ary relation variable.
Then the following conditions are equivalent:

1. There is ψ(x1, . . . , xn) ∈ FOD such that for all models M and teams
X, M, X |= ψ if and only if M,Rel(X) |= φ;

2. If M, s |= φ and s′(R) ⊆ s(R), then M, s′ |= φ, i.e. φ is closed
downward with respect to R.

This translation is based on the natural semantic translation {gNat
M } and

a complex syntactic translation, whose details I shall not reproduce here.
The requirement of φ being closed downward with respect to R is nec-

essary with the natural semantic translation because dependence formula
interpretations are always closed downward. It is an open question if some
other semantic translation would allow translating all existential second order
formulas to dependence formulas.

5.2 Translating ESO to FOD

In this section I give a detailed description of the well-known translation
of existential second order sentences to dependence sentences. The syntac-
tic translation is shown in the proof below. The semantic translation is

5.2. TRANSLATING ESO TO FOD 55

gM : IFOD
M → IESO

M such that

gM(X) =

{
{}, if X = {∅};
{s : s is a second order assignment on M}, otherwise,

for all models M, where X is a set of teams on model M. The translation
works also with the backward semantic translation gM : IESO

M → IFOD
M such

that

gM(S) =

{
{∅}, if S = {};
{X : X is a team on M}, otherwise,

for all modelsM, where S is a set of second order assignments on modelM.

Theorem 5.2.1. For every sentence φ ∈ ESO there is a sentence χ ∈ FOD
such that, for all models M, M |= φ if and only if M |= χ.

Proof. We can assume that φ is in Skolem normal form

∃f1 . . . ∃fn∀x1 . . . ∀xmψ, (5.3)

where ψ is a quantifier-free second order formula. We will perform some
reductions on (5.3) to make it more suitable for finding χ. Remember that
in general ψ can contain function variables as well as function symbols from
the language. We repeat step 1 until it cannot be applied, after which we
repeat step 2 until it cannot be applied. The result of each repetition is a
formula in the form (5.3).

Step 1. First we ensure that function variables f occur in ψ only with
element variables as arguments, and that each element variable occurs at
most once as an argument of each occurrence of f . Assume that in ψ there
is a term occurrence ft1 . . . tk, where t1, . . . , tk are terms of which tj either is
the same element variable as ti for some i < j or is not an element variable
at all. We write (5.3) as φ′ as follows:

φ′ := ∃f1 . . . ∃fn∀x1 . . . ∀xm∀xm+1

(
xm+1 = tj → ψ(tj 7→ xm+1)

)
. (5.4)

When the terms xm+1 and tj have the same interpretation, they are inter-
changeable in ψ. Therefore we see that (5.3) and (5.4) are logically equivalent.

Step 2. Now we ensure that for each function variable there is at most
one sequence of arguments with which it occurs. Assume that in ψ there are
occurrences of terms fu1 . . . uk and fv1 . . . vk, where f is a function variable
and all ui and vi are element variables such that at some index i, ui is a
different variable than vi. To replace fv1 . . . vk, we introduce a new func-
tion variable and an exclusive sequence of element variables for it. More
specifically, we write (5.3) as φ′ as follows:

φ′ := ∃f1 . . . ∃fn∃fn+1∀x1 . . . ∀xm∀xm+1 . . . ∀xm+k(θ1 ∧ θ2), (5.5)

56 CHAPTER 5. TRANSLATING BETWEEN LOGICS

where

θ1 :=
∧
i≤k

xm+i = ui → fu1 . . . uk = fn+1xm+1 . . . xm+k,

θ2 :=
∧
i≤k

xm+i = vi → ψ(fv1 . . . vk 7→ fn+1xm+1 . . . xm+k).

To see that (5.3) is equivalent to (5.5), let M be a model such that M |=
φ. Then there are functions g1, . . . , gn such that for all a1, . . . , am ∈ M ,
M, s |= ψ, where s := (fi 7→ gi)i≤n(xi 7→ ai)i≤m. Choose gn+1 := s(f) and
let s′ := s(fn+1 7→ gn+1)(xm+i 7→ am+i)i≤k, where am+1, . . . , am+k ∈ M are
arbitrary. Then clearly M, s′ |= θ1 ∧ θ2, whence M |= φ′.

To see the other direction, let M be a model such that M |= φ′. Then
there are functions g1, . . . , gn+1 such that for all a1, . . . , am+k ∈ M , M, s |=
θ1 ∧ θ2, where s := (fi 7→ gi)i≤n+1(xi 7→ ai)i≤m+k. Varying over all values for
all ai we get from θ1 that s(f) and s(fn+1) are the same function. Here it is
essential that all variables u1, . . . , uk are distinct, as taken care of in step 1.
Otherwise there might be some specific sequence of arguments a1, . . . , ak on
which s(f) and s(fn+1) would disagree but we would not be able to express
the sequence as s(u1), . . . , s(uk). Now, looking at θ2 we see that M, s |= ψ
by the fact that s(fn+1xm+1 . . . xm+k) = s(fv1 . . . vk).

After these two steps, we have a sentence φ ∈ ESO in form (5.3) such
that each function variable f occurs in ψ only in the term fui1 . . . u

i
ki

, where
each uij is an element variable. Now we are able to express φ as the following
sentence χ ∈ FOD:

χ := ∀x1 · · · ∀xm∃xm+1 · · · ∃xm+n(χ1 ∧ χ2), (5.6)

where

χ1 :=
(
u1

1 . . . u
1
k1

)
;xm+1 ∧ · · · ∧

(
un1 . . . u

n
kn

)
;xm+n,

χ2 := ψ
(
fiu

i
1 . . . u

i
ki
7→ xm+i

)
i≤n.

It is step 2 that enables us to replace each function quantifer in φ with one
element quantifier in χ.2 To see that (5.3) and (5.6) are equivalent, let M
be a model such that M |= φ. Then there are functions g1, . . . , gn such that
for all a1, . . . , am ∈ M , M, s |= ψ, where s := (fi 7→ gi)i≤n(xi 7→ ai)i≤m.
Now, let X := (xi 7→ M)i≤m(xm+i 7→ Fi)i≤n, where each Fi : X → M maps

2Actually, we could skip step 2 and compensate by replacing each function quantifier in
φ with as many element quantifiers in χ as there are occurrences of the function variable
in φ.

5.3. TRANSLATING SO-SENTENCES TO TL 57

Fi(s) = gi
(
s(ui1), . . . , s(uiki)

)
. Then M, X |= χ1 because the values of each

xm+i depend only on variables used by Fi, i.e. ui1, . . . , u
i
ki

. Also, because
χ2 ∈ FO, we have M, X |= χ2 if M, s |= χ2 for all s ∈ X, and this holds by
assumption and the fact that s(xm+i) = s

(
fiu

i
1 . . . u

i
ki

)
for all s ∈ X.

To see the other direction, let M be a model such that M |= χ. Then
there are functions Fj : Xj → M , where Xj := (xi 7→ M)i≤m(xm+i 7→ Fi)i<j
for j ≤ n, such that M, Xn |= χ1 ∧ χ2. By M, Xn |= χ1 there are functions
gi : M

ki → M such that s(xm+i) = gi
(
s(ui1), . . . , s(uiki)

)
for all s ∈ Xi and

all i ≤ n. By M, Xn |= χ2 and the fact that s(xm+i) = s′
(
fiu

i
1 . . . u

i
k1

)
for

all i ≤ n, where s′ := s(fi 7→ gi)i≤n, we get that M, s′ |= ψ for all s ∈ Xn.
Therefore M |= φ.

5.3 Translating SO-Sentences to TL

In this section, I present an explicit translation of sentences in SO to sentences
in TL. There is a similar result by Harel [9]. In place of Team Logic he used
partially ordered quantifiers, or Henkin quantifiers, with his own semantics
that provide a greater expressive power than Henkin’s original semantics.
Harel also provided a correspondence between the second order fragments
Σ1
n, Π1

n and certain fragments of first order logic with Henkin quantifiers.
Although it seems perfectly possible to formulate a similar correspondence
between certain fragments of team logic and the mentioned fragments of the
second order logic, the correspondence is rather complex to formulate and
therefore I will not go as far as Harel and define it.

Definition 5.3.1. Let X be a team for some modelM, let f : Mk →M and
F : X → M be functions, and let y1, . . . , yk ∈ Dom(X) and z 6∈ Dom(X).
We say that f is similar to F via (y1, . . . , yk) in X if M, X(z 7→ F) |=
(y1 . . . yk);z and F (s) = f

(
s(y1), . . . , s(yk)

)
for all s ∈ X.

Loosely speaking, f and F are similar if they are fundamentally the same
function with the main difference that f maps sequences of elements whereas
F maps sequences whose members are named by variables. Another differ-
ence is that F is defined only on sequences that appear as assignments in
X whereas f is defined on all sequences. We will only use the concept of
similarity of functions in the context of some team so that the difference in
the domains of the functions will not become an issue. The corresponding
team will usually be apparent from the context, so we will just say that f
and F are similar via a sequence.

Lemma 5.3.2. If M is a model and X is team on M, then

58 CHAPTER 5. TRANSLATING BETWEEN LOGICS

1. Given a function f : Mk → M and variables y1, . . . , yk ∈ Dom(X),
there is a function F : X →M that is similar to f via (y1, . . . , yk).

2. Given a function F : X → M and variables y1, . . . , yk ∈ Dom(X) and
z 6∈ Dom(X) such that M, X(z 7→ F) |= (y1 . . . yk);z, there is a
function f : Mk →M that is similar to F via (y1, . . . , yk).

Proof. We can see 1 by letting F (s) = f
(
s(y1), . . . , s(yk)

)
for all s ∈ X. To

see 2, let f(a1, . . . , ak) = F (sa), where sa := (yi 7→ ai)i≤k, when sa ∈ X, and
let f be defined arbitrarily elsewhere.

Now for the actual theorem.

Theorem 5.3.3. For every sentence φ ∈ SO there is χ ∈ TL such that, for
all models M, M |= φ if and only if M |= χ.

Proof. Let φ ∈ SO be in Skolem normal form,

φ := ∃f 1
1 . . . ∃f 1

n1
∀f 2

1 . . . ∀f 2
n2
. . . ∃fp1 . . . ∃fpnp∀x1 . . . ∀xqψ,

where ψ is quantifier-free and in negation normal form. We may assume that
no variable is quantified twice in φ.3

Let t1, . . . , tm enumerate all the occurrences of terms in ψ that start with
instances of the quantified functions in φ. Each ti, i ≤ m, we write as

ti := f
p(i)
n(i)t

i
1 . . . t

i
k(i).

Furthermore, we require that the enumeration t1, . . . , tm satisfies the condi-
tion that i < j implies that tj does not occur as a subterm of ti. Given
i ≤ m, we denote by o(i) the least index that satisfies p(i) = p(o(i)) and
n(i) = n(o(i)). In other words, o(i) is the first index for which the term to(i)

begins with the symbol f
p(i)
n(i).

By ∃i≤n xi we mean the quantifier block ∃x1 . . . ∃xn. Furthermore, if
≺ is a linear order on {1, . . . , n}, by ∃≺i≤n xi we mean the quantifier block
∃xi1 . . . ∃xin , where i1 ≺ · · · ≺ in and {i1, . . . , in} = {1, . . . , n}. We will use
the following ordering for i, j ≤ m:

i ≺ j ⇐⇒ p(i) < p(j) or
(
p(i) = p(j) and n(i) < n(j)

)
or
(
p(i) = p(j) and n(i) = n(j) and i < j

)
.

3We can get rid of doubly quantified variables by renaming variables suitably.

5.3. TRANSLATING SO-SENTENCES TO TL 59

Now we are ready to define the sentence χ ∈ TL that is to be equivalent
with φ:

χ :=
C

i≤q
xi

C

i≤m
j≤k(i)

yij
A≺

i≤m
p(i)=1

zi
B≺

i≤m
p(i)=2

zi . . .
A≺

i≤m
p(i)=p

zi

(
∼
(∧
i≤m

p(i) even

χ1
i ∧
∧
i≤m

p(i) even

χ2
i

)
∨

(∧
i≤m

p(i) odd

χ1
i ∧
∧
i≤m

p(i) odd

χ2
i ∧
(⊗
i≤m
j≤k(i)

χ3
i,j ⊗ ψ∗(ti 7→ zi)i≤m

)))
,

where ψ∗ is obtained from ψ with the same syntactic mapping as in the
translation of FOD to TL,4 and, for i ≤ m and j ≤ k(i),

χ1
i := (yi1 . . . y

i
k(i));zi;

χ2
i :=

⊗
j≤k(i)

¬
(
yij = y

o(i)
j

)
⊗ zi = zo(i);

χ3
i,j := ¬

(
yij = tij

)
(tk 7→ zk)k≤m.

All yij and zi are new variable symbols. Note that the variables zi that
correspond to the same function symbol’s different occurrences appear con-
sequtively quantified in χ. The quantifications of the variables zi appear in
the order given by ≺ on the indices i.

Here is an intuitive explanation of how to read χ. The quantifier block
!i≤q xi is the team logic equivalent of the first order universal block ∀i≤q xi in
φ. In addition to these q names for arbitrary elements, we are also provided
with names yij that refer to the elements that are the arguments to the

various functions f
p(i)
n(i) quantified in φ. Each quantifier block ∃ zi and ∀ zi in

χ corresponds to a function quantifier block ∃ fp(i)n(i) in φ. Whereas f
p(i)
n(i) is a

name for a function, zi is a name for the value that the function gives for
a sequence of arguments. This is the fundamental difference in how second
order logic and team logic handle second order objects. Each χ1

i specifies
which arguments yij are needed for the function value zi. Each χ2

i ensures
that the function value zi is the same as zo(i) whenever the arguments for
both are the same. We need this because for each occurrence of function
variable f

p(i)
n(i) we have a new function value zi whose value does not a priori

correlate with the corresponding values for other occurrences of the function

4In fact, ψ∗ is not necessarily a formula of any logic. It may contain terms from second
order logic and connectives and quantifiers from team logic. This is not a problem because
ψ∗ is nothing but an intermediate step in a series of syntactic transformations.

60 CHAPTER 5. TRANSLATING BETWEEN LOGICS

variable. Each χ3
i,j eliminates one case of wrong values for the arguments yij

with respect to what the occurrences of f
p(i)
n(i) in ψ expect.

To see why φ and χ are equivalent, letM be a model such thatM |= φ.
Then player II has a winning strategy in the semantic game aSO(M, φ). Call
this strategy σSO. We will describe a strategy σTL for player II in aTL(M, χ)
which will turn out to be a winning strategy. The idea in defining σTL is
that player II plays aSO(M, φ) using her winning strategy σSO and uses it
as a source of useful information for her choices in aTL(M, χ). We refer to
the play of aTL(M, χ) merely as the play and to the play of aSO(M, φ) as
the shadowplay. Denote X ′ := (xi 7→M)i≤q

(
yij 7→M

)
i≤m,j≤k(i)

.

In the beginning, while the play concerns quantifiers, player II maintains
on her behalf that when the position in the play is of the form (Qziχ

′, X, II),
where Q is either ∃ or ∀, then the following condition holds.

(C1) The shadowplay is at position
(
Qf

p(i)
n(i)φ

′, s, II
)

or (φ′, s, II), and X =

X ′(zj 7→ Fj)j≺i such that for each j ≺ i, s
(
f
p(j)
n(j)

)
is similar to Fj via(

yj1, . . . , y
j
k(j)

)
.

However, condition (C1) can become false by a move of player I. If this
happens, player II will then have an easy victory ahead, as will be seen
below.

The play of aTL(M, χ) starts at the position (χ, {∅}, II). First there are
several shriek moves where neither player makes choices. After these the play
is at position (∃ziχ′, X ′, II), where p(i) = 1, n(i) = 1, and the shadowplay is
still at the starting position (∃f 1

1φ
′, ∅, II). We see that condition (C1) holds.

Assume then that the play is at position P := (∃ziχ′, X, II) and condition

(C1) holds. Then there is a subformula ∃fp(i)n(i)φ
′ of φ such that the shadowplay

is at position P1 or P2, where

P1 :=
(
∃fp(i)n(i)φ

′, s, II
)
; P2 := (φ′, s, II).

If the shadowplay is at P1, then we play one move in it by choosing for player
II the k(i)-ary function g := σSO(P1). Otherwise the shadowplay is at P2,

and we can define g := s
(
f
p(i)
n(i)

)
. In either case, let F : X → M be similar to

g via
(
yi1, . . . , y

i
k(i)

)
and let σTL(P) := F . The play proceeds now to position(

χ′, X(zi 7→ F), II
)
, and the shadowplay is at

(
φ′, s

(
f
p(i)
n(i) 7→ g

)
, II
)
. We can

see that condition (C1) holds.
Assume then that the play is at position P := (∀ziχ′, X, II) and condition

(C1) holds. Then there is a subformula ∀fp(i)n(i)φ
′ of φ such that the shadowplay

is at position P1 or P2, where

P1 :=
(
∀fp(i)n(i)φ

′, s, II
)
; P2 := (φ′, s, II).

5.3. TRANSLATING SO-SENTENCES TO TL 61

Let F : X →M be the function chosen by player I in the play. IfM, X(zi 7→
F) 6|= (yi1 . . . y

i
k(i));zi, then player I has broken condition (C1) and thus

player I can play arbitrarily all the remaining quantifier moves claiming a
victory later at χ1

i , see below. Otherwise, let g : Mk(i) → M be similar to
F via

(
yi1, . . . , y

i
k(i)

)
. If the shadowplay is at P1, then we play one move

in it by choosing g for player I. The play is then at
(
χ′, X(zi 7→ F), II

)
,

the shadowplay is at
(
φ′, s

(
f
p(i)
n(i) 7→ g

)
, II
)
, and we can see that condition

(C1) holds. Otherwise the shadowplay is at P2. Then s
(
f
p(i)
n(i)

)
is defined

and similar to Fo(i) via
(
y
o(i)
1 , . . . , y

o(i)
k(o(i))

)
. If s

(
f
p(i)
n(i)

)
is not similar to F via

(yi1, . . . , y
i
k(i)), then player I has broken condition (C1), and thus player II can

play arbitrarily all the remaining quantifier moves claiming a victory later
at χ2

i , see below. Otherwise the play is now at
(
χ′, X(zi 7→ F), II

)
and the

shadowplay is at
(
φ′, s, II

)
, and we can see that condition (C1) holds.

Finally the play reaches position P := (χ0, X, II) and the shadowplay
reaches position

P0 := (∀x1 . . . ∀xqψ, s0, II),

where X = X ′(zi 7→ Fi)i≤m and, for each i ≤ m, s0

(
f
p(i)
n(i)

)
is similar to Fi via(

yi1, . . . , y
i
k(i)

)
, and

χ0 := ∼
(∧
i≤m

p(i) even

χ1
i ∧
∧
i≤m

p(i) even

χ2
i

)
∨
(∧
i≤m

p(i) odd

χ1
i ∧
∧
i≤m

p(i) odd

χ2
i ∧
(⊗
i≤m
j≤k(i)

χ3
i,j ⊗ ψ∗(ti 7→ zi)i≤m

))
.

If player I broke condition (C1) above, there is i ≤ m such that p(i) is
even, and either (5.7) or (5.8) holds.

M, X 6|= (yi1 . . . y
i
k(i));zi (5.7)

s0

(
f
p(i)
n(i)

)
is similar to Fo(i) via

(
y
o(i)
1 , . . . , y

o(i)
k(o(i))

)
but (5.8)

not similar to Fi via
(
yi1, . . . , y

i
k(i)

)
In such a case, let σTL(P) be the left disjunct of χ0, and let player II
move accordingly. After the following complement move the play is at
P :=

(∧
j χ

1
j ∧

∧
j χ

2
j , X, I

)
. If (5.7) holds, let σTL(P ′) be the conjunct χ1

i ,

whence the play proceeds to position
(
(yi1 . . . y

i
k(i));zi, X, I

)
where player

II wins. If (5.8) holds, let σTL(P ′) be the conjunct χ2
i , whence the play

proceeds to position P ′′ :=
(⊗

j ¬
(
yij = y

o(i)
j

)
⊗ zi = zo(i), X, I

)
. Player I

chooses some sequence (Xj)j≤k(i)+1. If for some j ≤ k(i) there is s ∈ Xj such

that s
(
yij
)

= s
(
y
o(i)
j

)
, then let σTL(P ′′) be j, whence the play proceeds to

62 CHAPTER 5. TRANSLATING BETWEEN LOGICS(
¬
(
yij = y

o(i)
j

)
, Xj, I

)
, and player II wins. Otherwise, letting s be an assign-

ment that fails the similarity of s0

(
f
p(i)
n(i)

)
to Fi, that is, s

(
yij
)

= s
(
y
o(i)
j

)
for all

j ≤ k(i) and s(zi) 6= s(zo(i)), we have s ∈ Xk(i)+1. Let σTL(P ′′) be k(i) + 1,
whence the play proceeds to (zi = zo(i), Xk(i)+1, I), and player II wins.

If player I did not break condition (C1), let σTL(P) be the right disjunct
of χ0. The play is then at

(∧
i χ

1
i ∧
∧
i χ

2
i ∧
(⊗

i,j χ
3
i,j⊗ψ∗(ti 7→ zi)i≤m

)
, X, II

)
and it is for player I to choose a conjunct. If player I chooses χ1

i for some
i ≤ m with p(i) even, the play proceeds to

(
(yi1 . . . y

i
k(i));zi, X, II

)
and player

II wins because of condition (C1). If player I chooses χ2
i for some i ≤ m with

p(i) even, the play proceeds to

P ′ :=
(⊗
j≤k(i)

¬
(
yij = y

o(i)
j

)
⊗ zi = zo(i), X, II

)
.

Let then σTL(P ′) be (Xj)j≤k(i)+1, where each Xj :=
{
s ∈ X : s

(
yij
)
6=

s
(
y
o(i)
j

)}
, for j ≤ k(i), and Xk(i)+1 := X \

(⋃
j≤k(i) Xj

)
. Note that because

of condition (C1), every s ∈ Xk(i)+1 has s(zi) = s(zo(i)). If player I chooses

some j ≤ k(i), the play proceeds to
(
¬
(
yij = y

o(i)
j

)
, Xj, II

)
, and player II

wins. Otherwise the play proceeds to
(
zi = zo(i), Xk(i)+1, II

)
, and player II

wins again.

If player I chooses the last remaining conjunct, the play proceeds to

P :=
(⊗
i≤m
j≤k(i)

χ3
i,j ⊗ ψ∗(ti 7→ zi)i≤m, X, II

)
.

Let then σTL(P) be (X1
1 , . . . , X

1
k(1), X

2
1 , . . . , X

2
k(2), . . . , X

m
1 , . . . , X

m
k(m), X0),

where each X i
j := {s ∈ X : M, s |= (yij 6= tij)(ti 7→ zi)i≤m} and X0 :=

X\
(⋃

i≤m,j≤k(i) X
i
j

)
. If player I chooses any but the last index of the sequence,

the play proceeds to position
(
¬
(
yij = tij

)
(ti 7→ zi)i≤m, X

i
j, II

)
, for some i ≤ m

and j ≤ k(i), and player II wins. Otherwise the play proceeds to

P :=
(
ψ∗(ti 7→ zi)i≤m, X0, II

)
.

For the rest of the play, player II and her strategy σTL will maintain the
following condition that will guide her to victory. If θ is a subformula of ψ
and the play is at position P ′ :=

(
θ∗(ti 7→ zi)i≤m, Y, II

)
, then

(C2) Y is the set of assignments s ∈ X0 such that the shadowplay can reach
position P ′s :=

(
θ, s0(xi 7→ s(xi))i≤q, II

)
from P0 when II plays by σSO.

5.3. TRANSLATING SO-SENTENCES TO TL 63

At first, the play is at P and the shadowplay is at P0, and we can see
that (C2) holds.

Assume then that the play is at P ′ :=
(
(θ1 ∧ θ2)∗(ti 7→ zi)i≤m, Y, II

)
and

(C2) holds. As (θ1 ∧ θ2)∗(ti 7→ zi)i≤m is θ1
∗(ti 7→ zi)i≤m ∧ θ2

∗(ti 7→ zi)i≤m,
the move is for player I, so assume he chooses j ∈ {1, 2}. The play proceeds
to P ′′ :=

(
θ∗j (ti 7→ zi)i≤m, Y, II

)
. For each s ∈ Y , the shadowplay can reach

P ′s from P0 when II plays by σSO, and from P ′s player I may choose the j’th
conjunct, making the shadowplay proceed to P ′′s . On the other hand, if the
shadowplay can reach position P ′′s from P0 when II plays by σSO, for some
s, then the shadowplay must have previously been in position P ′s, whence
s ∈ Y . Therefore condition (C2) holds at P ′′.

Assume then that the play is at P ′ :=
(
(θ1 ∨ θ2)∗(ti 7→ zi)i≤m, Y, II

)
and

(C2) holds. As (θ1 ∨ θ2)∗(ti 7→ zi)i≤m is θ1
∗(ti 7→ zi)i≤m ⊗ θ2

∗(ti 7→ zi)i≤m,
the move is for player II. For each s ∈ Y , the shadowplay can reach P ′s
from P0 when II plays by σSO. P ′s yields a disjunction move for player II.
Then σSO(P ′s) ∈ {1, 2}. Let σTL(P ′) be (Y1, Y2), where each Yj := {s ∈ Y :
σSO(P ′s) = j} for j ∈ {1, 2}, and let player II move accordingly. Player I
will then choose some j ∈ {1, 2} and the play proceeds to P ′′ :=

(
θ∗j (ti 7→

zi)i≤m, Yj, II
)
. We can see that (C2) holds at P ′′.

Assume finally that the play is at P ′ :=
(
θ∗(ti 7→ zi)i≤m, Y, II

)
, θ is an

atomic or negated atomic formula, and (C2) holds. As θ∗ is θ, also θ∗(ti 7→
zi)i≤m is atomic or negated atomic and the play ends. But who is the winner?
For each s ∈ Y , the shadowplay can reach P ′s from P0 when II plays by σSO.
Player II wins these shadowplays, which gives M, s0(xi 7→ s(xi))i≤q |= θ for
all s ∈ Y .

We prove by induction on terms t that occur in φ that for all s ∈ Y ,
s1(t) = s(t∗), where t∗ := t(ti 7→ zi)i≤m and s1 := s0(xi 7→ s(xi))i≤q. If t is a
variable, it is some xi. Then also t∗ = xi, and thus s1(t) = s(t∗). Function
terms can be based either on a function symbol in the language L or on a
function variable. If f ∈ L and t is fu1 . . . uk for some terms u1, . . . , uk, then
t∗ = fu∗1 . . . u

∗
k and we can assume that the claim holds for u1, . . . , uk. Then

we have

s1(t) = fM
(
s1(u1), . . . , s1(uk)

)
= fM

(
s(u∗1), . . . , s(u∗k)

)
= s(t∗).

If t is fu1 . . . uk, where f is a function variable, then (because we only consider
terms that occur in φ) t is one of the terms ti, i ≤ m, so t∗ = zi, k = k(i), each
uj is tij, and s1(f) is similar to Fi via

(
yi1, . . . , y

i
k

)
. By Y ⊆ X0, s(u∗j) = s

(
yij
)

for all j ≤ k. We can assume that the claim holds for u1, . . . , uk. Then we

64 CHAPTER 5. TRANSLATING BETWEEN LOGICS

have

s1(t) = s1(f)
(
s1(u1), . . . , s1(uk)

)
= s1(f)

(
s(u∗1), . . . , s(u∗k)

)
= s1(f)

(
s(yi1), . . . , s(yik)

)
= Fi(s)

= s(zi).

Thus M, s |= θ∗(ti 7→ zi)i≤m for all s ∈ Y , player II wins the play, and σTL

is a winning strategy.

For the other direction, assume M |= χ, that is, player II has a winning
strategy in the semantic game aTL(M, χ). Call this strategy σTL. We will
describe a strategy σSO for player II in aSO(M, φ) which will turn out to
be a winning strategy. The idea behind defining σSO is that player II plays
aTL(M, χ) by her winning strategy σTL and extracts useful information for
her survival in aSO(M, φ). We call the play in aSO(M, φ) the play and the
play in aTL(M, χ) the shadowplay. As before, let X ′ := (xi 7→ M)i≤q

(
yij 7→

M
)
i≤m,j≤k(i)

. Let o(i, j) be the ≺-least index that satisfies p
(
o(i, j)

)
= i

and n
(
o(i, j)

)
= j. In words, zo(i,j) is the outermost quantified variable in χ

that corresponds to the function variable symbol f ij in φ. Denote k(i, j) :=

k
(
o(i, j)

)
, the arity of the function symbol f ij , for i ≤ p and j ≤ ni.

In the beginning of the game, while the play concerns quantifiers, player
II maintains that when the position in the play is of the form

(
Qf ijφ

′, s, II
)
,

where Q is either ∃ or ∀, then the following condition holds.

(D1) There is a subformula Qzi1 . . . Qzilχ
′ of χ, where i1 ≺ · · · ≺ il are

all the indices i′ ≤ m for which p(i′) = i and n(i′) = j hold, and
the shadowplay is at position (Qzi1 . . . Qzilχ

′, X, II) for some team X

such that X = X ′(zi′ 7→ Fi′)i′≺o(i,j), where s
(
f
p(i′)
n(i′)

)
is similar to Fi′ via(

yi
′

1 , . . . , y
i′

k(i′)

)
for all i′ ≺ o(i, j).

The play of aSO(M, φ) starts at position (∃f 1
1φ
′, ∅, II). The shadowplay

starts at (χ, {∅}, II), and after the initial shriek moves the shadowplay is at(
∃zo(1,1)χ

′, X ′, II
)
. We see that condition (D1) holds.

Assume then that the play is at position P :=
(
∃f ijφ′, s, II

)
and the

condition (D1) holds. Then the shadowplay is at P1 := (∃zi1 . . . ∃zilχ′, X, II),
as stated in (D1). Note that i1 = o(i, j). Let player II make l moves in the
shadowplay positions

Pl′ :=
(
∃zil′ . . . ∃zilχ′, X(zi1 7→ Fi1) · · · (zil′−1

7→ Fil′−1
), II

)
,

5.3. TRANSLATING SO-SENTENCES TO TL 65

for l′ ≤ l, by choosing Fil′ := σTL(Pl′) for each l′ ≤ l. Let g be a k(i, j)-ary

function that is similar to Fi1 via
(
yi11 , . . . , y

i1
k(i1)

)
. Define σSO(P) to be g.

The play proceeds accordingly to
(
φ′, s

(
f ij 7→ g

)
, II
)

and the shadowplay is

at
(
χ′, X(zil′ 7→ Fil′)l′≤l, II

)
. Because σTL is a winning strategy, s

(
f ij
)

is

similar to Fil′ via
(
yl
′

1 , . . . , y
l′

k(l′)

)
for all l′ ≤ l, as we will see below when the

shadowplay reaches formulas χ1
il′

and χ2
il′

. Thus we can see that condition
(D1) holds.

Assume then that the play is at position P :=
(
∀f ijφ′, s, II

)
and condition

(D1) holds. Then the shadowplay is at P1 := (∀zi1 . . . ∀zilχ′, X, II), as stated
in (D1). Note that i1 = o(i, j). Denote by g the function chosen by player I in

the play. For each l′ ≤ l, let Fil′ : X →M be similar to g via
(
y
il′
1 , . . . , y

il′
k(i,j)

)
.

In the shadowplay, let player I choose Fil′ at position

Pl′ :=
(
∀zil′ . . . ∀zilχ′, X(zi1 7→ Fi1) · · · (zil′−1

7→ Fil′−1
), II

)
,

for each l′ ≤ l. The play is then at
(
φ′, s(f ij 7→ g), ∅, II

)
, the shadowplay is

at
(
χ′, X(zil′ 7→ Fil′)l′≤l, II

)
, and we can see that condition (D1) holds.

Finally the play reaches position (∀x1 . . . ∀xqψ, s′, II) and the shadowplay
reaches position (χ0, X, II), where X = X ′(zi 7→ Fi)i≤m and for all i ≤ m,

s′
(
f
p(i)
n(i)

)
is similar to Fi via

(
yi1, . . . , y

i
k(i)

)
. After player I has made his q

moves in the play, the position becomes

P := (ψ, s, II)

for some assignment s that extends s′ to variables x1, . . . , xq.
In the shadowplay, player II’s strategy σTL will choose the right side

disjunct. This we see by noting that player I would win at any of the po-
sitions (χ1

i , X, I) or (χ2
i , X, I), when i ≤ m and p(i) is even, due to the fact

that s
(
f
p(i)
n(i)

)
is similar to Fi via

(
yi1, . . . , y

i
k(i)

)
for all i ≤ m where p(i) is

even. The shadowplay is then at P0 :=
(∧

i χ
1
i ∧
∧
i χ

2
i ∧
(⊗

i,j χ
3
i,j ⊗ ψ∗(ti 7→

zi)i≤m
)
, X, II

)
and it is for player I to choose a conjunct. If player I chooses χ1

i

for some i ≤ m with p(i) odd, the play proceeds to
(
(yi1, . . . , y

i
k(i));zi, X, II

)
,

and player II wins by her winning strategy σTL. Therefore we haveM, X |=(
yi1 . . . y

i
k(i)

)
;zi. If player I chooses χ2

i for some i ≤ m with p(i) odd, the
shadowplay proceeds to

P1 :=
(⊗
j≤k(i)

¬
(
yij = y

o(i)
j

)
⊗ zi = zo(i), X, II

)
.

Let Y :=
{
s ∈ X : s

(
yij
)

= s
(
y
o(i)
j

)
for all j ≤ k(i)

)}
and denote by

(Xj)j≤k(i)+1 the move σTL(P1) that player II makes. If player I chooses

66 CHAPTER 5. TRANSLATING BETWEEN LOGICS

some index j ≤ k(i), the shadowplay proceeds to
(
¬
(
yij = y

o(i)
j

)
, Xj, II

)
, and

player II wins by her winning strategy. This gives Y ∩ Xj = ∅ and further
Y ⊆ Xk(i)+1. If player I chooses the index k(i) + 1, the shadowplay proceeds
to (zi = zo(i), Xk(i)+1, II), and player II wins again. Because Y ⊆ Xk(i)+1, we

get M, Y |= zi = zo(i). In other words, for all i ≤ m, s
(
f
p(i)
n(i)

)
is similar to Fi

via
(
yi1, . . . , y

i
k(i)

)
, as we stated above.

If player I chooses the last remaining conjunct at P0, the shadowplay
proceeds to

P1 :=
(⊗
i≤m
j≤k(i)

χ3
i,j ⊗ ψ∗(ti 7→ zi)i≤m, X, II

)
.

Denote by (X1
1 , . . . , X

1
k(1), X

2
1 , . . . , X

2
k(2), . . . , X

m
1 , . . . , X

m
k(m), X0) the choice

of player II at P1, σTL(P1). If player I chooses the last index of the sequence,
the shadowplay proceeds to

P2 :=
(
ψ∗(ti 7→ zi)i≤m, X0, II

)
.

For the rest of the play, player II and her strategy σSO will maintain the
following condition that will guide her to victory. If θ is a subformula of ψ
and the play is at position (θ, s, II), then the following condition holds.

(D2) The shadowplay is at position
(
θ∗(ti 7→ zi)i≤m, Z, II

)
for some Z such

that s�{x1, . . . , xq} ∈ Z�{x1, . . . , xq}.

At first, the play is at P and the shadowplay is at P2, and we can see
that (D2) holds.

Assume then that the play is at (θ1 ∧ θ2, s, II) and (D2) holds. Then the
shadowplay is at

(
(θ1 ∧ θ2)∗(ti 7→ zi)i≤m, Z, II

)
, and as (θ1 ∧ θ2)∗(ti 7→ zi)i≤m

is θ1
∗(ti 7→ zi)i≤m ∧ θ2

∗(ti 7→ zi)i≤m, the move is for player I. In the play,
player I chooses some j ∈ {1, 2} and the play proceeds to

(
θi, s, II

)
. In

the shadowplay, let player I choose similarly θi
∗(ti 7→ zi)i≤m, so that the

shadowplay proceeds to
(
θi
∗(ti 7→ zi)i≤m, Z, II

)
. We can see that (D2) still

holds.
Assume then that the play is at P ′ := (θ1 ∨ θ2, s, II) and (D2) holds.

Then the shadowplay is at position P3 :=
(
(θ1 ∨ θ2)∗(ti 7→ zi)i≤m, Z, II

)
, and

as (θ1 ∨ θ2)∗(ti 7→ zi)i≤m is θ1
∗(ti 7→ zi)i≤m ⊗ θ2

∗(ti 7→ zi)i≤m, the move is
for player II. Denote by (Z1, Z2) the choice of player II in the shadowplay,
that is, σTL(P3), and let player I choose the index j ∈ {1, 2} that satisfies
s ∈ Zj. The shadowplay proceeds to

(
θj
∗(ti 7→ zi)i≤m, Zj, II

)
. Let σSO(P ′)

be θj, and let player II play accordingly. The play proceeds to (θj, s, II). We
can see that (D2) still holds.

5.3. TRANSLATING SO-SENTENCES TO TL 67

Assume finally that the play is at (θ, s, II), θ is an atomic or negated
atomic formula, and (D2) holds. Then the shadowplay is at some position(
θ∗(ti 7→ zi)i≤m, Z, II

)
. As θ∗ is θ, also θ∗(ti 7→ zi)i≤m is atomic or negated

atomic, so both the play and the shadowplay end. Who wins the play?
Because player II has played by her winning strategy in the shadowplay,
M, s′ |= θ(ti 7→ zi)i≤m for all s′ ∈ Z. By (D2) there is some particular s′ ∈ Z
such that s�{x1, . . . , xq} = s′�{x1, . . . , xq}. Note that θ∗(ti 7→ zi)i≤m does not
contain occurrences of variables yij. Thus we have M, s′′ |= θ∗(ti 7→ zi)i≤m,
where

s′′ := s′
(
yij 7→ s′

(
tij(ti 7→ zi)i≤m

))
i≤m
j≤k(i)

.

We prove by induction on terms t that occur in φ that we have s(t) =
s′′(t∗), where t∗ := t(ti 7→ zi)i≤m. If t is a variable, it is some xi. Then also
t∗ = xi, and thus s(t) = s′′(t∗). If f is a function symbol in the language of
φ and t is fu1 . . . uk for some terms u1, . . . , uk, then t∗ = fu∗1 . . . u

∗
k and we

can assume that the claim holds for u1, . . . , uk. Then we have

s(t) = fM
(
s(u1), . . . , s(uk)

)
= fM

(
s′′(u∗1), . . . , s′′(u∗k)

)
= s′′(t∗).

If t is fu1 . . . uk, where f is a function variable, then (because we only consider
terms that occur in φ) t is one of the terms ti, i ≤ m, so t∗ = zi, k = k(i),
each uj is tij, and s(f) is similar to Fi via

(
yi1, . . . , y

i
k

)
. By the choice of

s′′, s′′(u∗j) = s′′
(
yij
)

for all j ≤ k. We can assume that the claim holds for
u1, . . . , uk. Then we have

s(t) = s(f)
(
s(u1), . . . , s(uk)

)
= s(f)

(
s′′(u∗1), . . . , s′′(u∗k)

)
= s(f)

(
s′′(yi1), . . . , s′′(yik)

)
= Fi(s

′′)

= s′′(zi).

Therefore M, s |= θ. Thus player I wins, and σSO is a winning strategy.

We can simplify the previous theorem by assuming that the second order
sentence is given in a nice form. The assumption on the form is based on
known normal forms and is thus not a limitation of expressive power.

Corollary 5.3.4. Let φ ∈ SO be a sentence in Skolem normal form,

φ := ∃f 1
1 . . . ∃f 1

n1
∀f 2

1 . . . ∀f 2
n2
. . . ∃fp1 . . . ∃fpnp∀x1 . . . ∀xqψ,

68 CHAPTER 5. TRANSLATING BETWEEN LOGICS

such that each quantified function variable symbol f ij occurs in φ only as a

unique term tij := f ijx
i,j
1 . . . xi,jk(i,j). Then there is a sentence χ ∈ TL,

χ :=
C

i≤q
xi
A

j≤n1

z1
j

B

j≤n2

z2
j . . .

A

j≤np
zpj

(
∼
(∧
i≤p even
j≤ni

χij

)
∨
(∧
i≤p odd
j≤ni

χij ∧ ψ∗(tij 7→ zij) i≤p
j≤ni

))
,

where each χij :=
(
xi,j1 . . . xi,jk(i,j)

)
;zij, such that M |= φ if and only if M |= χ

for all models M.

Proof. The proof is similar to the proof of Theorem 5.3.3 with the excep-
tions that subformulas χ2

i are not needed because different occurrences of a
function variable always denote the same element in the universe, and sub-
formulas χ3

i,j are not needed because arguments for different occurrences of
a function variable are uniquely determined by the function variable and are
element variables.

5.4 Translating SO-Formulas to TL

In this section, I show that team logic equals second order logic in expressive
power over all formulas, generalising the result of the previous section. The
result is joint work with Juha Kontinen [16].

The result of this section also generalises the previous result by Kontinen
and Väänänen [17].

I present the result in less detail than the previous one in Section 5.3
because the structure of the proof is essentially the same.

The syntactic translation is presented in the proof. The semantic trans-
lation is the natural one.

Theorem 5.4.1. For every φ(R) ∈ SO with only the r-ary predicate symbol
R free, there is ψ(v1, . . . , vr) ∈ TL such that for all models M and teams X,
M, X |= ψ if and only if M, sX |= φ, where sX := (R 7→ Rel(X)).

Proof. We may assume that φ is in Skolem normal form

∃f 1
1 . . . ∃f 1

n ∀f 2
1 . . . ∀f 2

n . . . ∃fp1 . . . ∃fpn ∀x1 . . . ∀xn θ′, (5.9)

where θ′ is quantifier-free and in conjunctive normal form, the relation vari-
able R occurs in θ′ only in occurrences of the term Rx, where x denotes
the sequence x1, . . . , xr, and each function variable f ij occurs in θ′ only in

5.4. TRANSLATING SO-FORMULAS TO TL 69

occurrences of the term tij := f iju
i,j
1 , . . . , u

i,j
k(i,j), where each ui,jk is a variable.

We can rewrite φ in the logically equivalent form

φ :=
A

j≤n
f 1
j

B

j≤n
f 2
j . . .

A

j≤n
fpj
B

j≤n
xj θ, (5.10)

where n is possibly increased for the sake of obtaining two new function
variables fpn−1 and fpn which we shall simply call f1 and f2, and

θ :=
(
Rx ∨ ¬(f1x = f2x)

)
∧ (¬Rx ∨ f1x = f2x) ∧ θ′,

where we replace the occurrences of Rx in θ by f1x = f2x. Note that θ is in
conjunctive normal form just like θ′ and there are only one positive and one
negative occurrence of Rx in θ, either occurrence in its own conjunct.5

Let ψ be the team logic formula

ψ :=
C

i≤n
xi
A

j≤n
y1
j

B

j≤n
y2
j . . .

A

j≤n
ypj

(
∼
(∧
i≤p even
j≤n

χij

)
∨
(∧
i≤p odd
j≤n

χij ∧ θ∗
))

,

where θ∗ is obtained from θ with the same syntactic mapping as in the
translation of FOD to TL and the following replacements of terms and sub-
formulas;

tij 7→ yij

¬Rx 7→
⊗
i≤r

¬(vi = xi)

Rx 7→
B

i≤r
zi

(∨
i≤r

∼();zi ∨ ∼
⊗
i≤r

¬(vi = zi) ∨
⊗
i≤r

¬(xi = zi)
)

,

where vi and zi, for i ≤ r, are new variables, and χij for i ≤ p and j ≤ n we
define as

χij :=
(
ui,j1 . . . ui,jk(i,j)

)
;yij.

We shall call ypn−1 simply y1 and ypn we call y2, according to the notation of
f1 and f2.

Let X be a team. Assume first that M, sX |= φ, where sX := R 7→
Rel(X)). We will showM, X |= ψ. FromM, sX |= φ we get that alternately
for each odd i ≤ p we can pick some particular sequence gi1, . . . , g

i
n of functions

5A positive occurrence is one that has an even number of negations in front of it; a
negative occurrence is one that has an odd number of negations in front of it. In this case,
the positive occurrence has no negations and the negative occurrence has one.

70 CHAPTER 5. TRANSLATING BETWEEN LOGICS

such that whichever sequence we pick for each even i ≤ p, it always results
in M, s′X |= ∀x1 . . . ∀xnθ, where s′X := sX(f ij 7→ gij)i,j. We can translate this
same function picking strategy to the side of team logic; for each i and j, let
F i
j map assignments like F i

j (s) = gij
(
s(ui,j1), . . . , s(ui,jk(i,j))

)
. If we can show

that team Y satisfies the conditional subformula of ψ, where

Y := X(xi 7→M)i≤n(yij 7→ F i
j)i≤p, j≤n, (5.11)

we get thatM, X |= ψ. The team Y satisfies χij for each i and j. Therefore,
in order for X to satisfy ψ, Y should satisfy θ∗, i.e. Y should satisfy each
of the conjuncts in θ∗. Note that, for each s ∈ Y , s

(
yij
)

= s′
(
tij
)
, where

s′ := s
(
f ij 7→ gij

)
.

Note that in essence we are proving the powerful claim that, for arbitrary
interpretations of the function variables f ij for all i and j, it holds that

M, s′X |= ∀x1 . . . ∀xnθ if and only if M, Y |= θ∗. (5.12)

There are three kinds of conjuncts in θ∗. We show that Y satisfies each
kind. This is the implication from left to right in (5.12).

• To see that Y satisfies the formula that replaced Rx ∨ ¬(f1x = f2x),
consider any a ∈ Y and denote s′′X := s′X(xi 7→ ai)i≤n. FromM, s′′X |= θ
we get either M, s′′X |= Rx or M, s′′X |= ¬(f1x = f2x). We can then
split Y = Y1 ∪ Y2, where Y1 = {s ∈ Y : (s(x1), . . . , s(xr)) ∈ Rel(X)}
and Y2 = Y \ Y1 such that s(y1) 6= s(y2) holds for all s ∈ Y2. Thus
M, Y2 |= ¬(y1 = y2). We also have that, for all s ∈ Y1 and all (ai)i≤r ∈
Rel(X) there is some s′ ∈ Y1 such that s′(vi) = ai for all i ≤ r and
s′(xi) = s(xi) for all i ≤ n.

Consider Z := Y1(zi 7→ Fi)i≤r, where Fi are arbitrary. If any Fi is not
a constant function, then M, Z |= ∼();zi. Otherwise Z = Y1(zi 7→
ai)i≤r for some a ∈M . If for all s ∈ Z there is i ≤ r such that s(xi) 6=
ai, then M, Z |= ⊗

i≤r ¬(xi = zi). Otherwise there is s ∈ Z such that
s(xi) = ai for all i ≤ r. Then there is some s′ ∈ Z, where s′(vi) = s(xi)
for all i ≤ r and s′(zi) = s(zi) for all i ≤ r. We have s′(vi) = s(xi) =
ai = s′(zi) for all i ≤ r, whence M, Z |= ∼⊗i≤r ¬(vi = zi). This
shows that Y satisfies the conjunct.

• To see M, Y |= ⊗
i≤r ¬(vi = xi) ⊗ y1 = y2, consider any s ∈ Y . As

above, we get from M, s′′X |= θ either M, s′′X |= ¬Rx or M, s′′X |=
f1x = f2x. We can then split Y = Y1 ∪ Y2, where Y1 := {s ∈ Y :
(s(x1), . . . , s(xr)) 6∈ Rel(X)} and Y2 := {s ∈ Y : s(y1) = s(y2)}. Then
M, Y1 |=

⊗
i≤r ¬(vi = xi) because for each s ∈ Y1, (s(v1), . . . , s(vr)) ∈

Rel(X). Clearly M, Y2 |= y1 = y2.

5.5. APPLICATIONS OF TRANSLATIONS 71

• To see M, Y |= ⊗i≤q α
∗
i , where each αi is an atomic formula where R

does not occur, simply split Y =
⋃
i≤q Yi such that each Yi := {s ∈ Y :

M, s′′X |= αi}. Then M, Yi |= α∗i for each i ≤ q.

For the other direction, assume M, X |= ψ. We will show M,Rel(X) |=
φ. From M, X |= ψ we get M, Y |= θ∗, where Y is as in (5.11) for certain
sequences of functions F i

j . We translate them into functions gij by setting
for each sequence of a1, . . . , ak(i,j) ∈ M , gij(a1, . . . , ak(i,j)) = F i

j (s), where

s
(
ui,jk
)

= ak for each k ≤ k(i, j). Then each gij is well defined because
M, Y |= χij for each i and j. If we can show that M, s′X |= ∀x1 . . . ∀xnθ, we
get M, sX |= φ. To this end, let a ∈ M and denote s′′X := s′X(xi 7→ ai)i≤n.
Let s ∈ Y such that s(xi) = ai for all i ≤ n. Note that s

(
yij
)

= s′′X
(
tij).

We show the implication from right to left in (5.12), i.e. we show it for
the three kinds of conjuncts in θ for the arbitrary s.

• To see M, s′′X |= Rx ∨ ¬(f1x = f2x), assume M, s′′X |= f1x = f2x.
Then note that from M, Y |= θ∗ we get a split Y = Y1 ∪ Y2 such that
M, Y1 |= (Rx)∗ and M, Y2 |= ¬(y1 = y2). Because s(y1) = s(y2), we
have s ∈ Y1. Now, for all a ∈ M , if ai = s(xi) for all i ≤ r, then there
is some s′ ∈ Y1 such that ai = s′(vi) for all i ≤ r. But we know that
(s′(v1), . . . , s′(vr)) ∈ Rel(X), which is what we wanted.

• To see M, s′′X |= ¬Rx ∨ f1x = f2x, assume M, s′′X |= Rx. Then note
that from M, Y |= θ∗ we get a split Y = Y1 ∪ Y2 such that M, Y1 |=⊗

i≤r ¬(vi = xi) andM, Y2 |= y1 = y2. Consider s′ := s
(
vi 7→ s(xi)

)
i≤r.

Then s′ ∈ Y because s ∈ Y and
(
s(x1), . . . , s(xr)

)
∈ Rel(X). Because

s′(vi) = s(xi) for all i ≤ r, we have s′ ∈ Y2, whence s′(y1) = s′(y2), i.e.
M, s′′X |= f1x = f2x, as we wanted.

• It is left to show M, s′′X |=
∨
i≤q αi, where no αi mentions R. From

M, Y |= θ∗ we get a split Y =
⋃
i≤q Yi such that M, Yi |= α∗i for each

i ≤ q. Because s ∈ Yi for some i, we have M, s′′X |= αi.

5.5 Applications of Translations

We can use Theorem 5.4.1 and other translations to show the definability
of many interesting classes of predicates in team logic. There are classes for
which it is an open question whether a uniform, systematic definition exists,
or if the definition varies wildly from predicate to another inside the class.

72 CHAPTER 5. TRANSLATING BETWEEN LOGICS

As an example, let us add a new connective ↪→ to team logic. We define

M, X |= φ ↪→ ψ ⇐⇒ for all Y ⊆ X:

if Y is maximal w.r.t. M, Y |= φ then M, Y |= ψ.

We can express this connective in second order logic. Therefore we can
translate any formula φ ↪→ ψ into a team logic formula θ that does not use ↪→.
The question is, is there a systematic way of doing this translation without
resorting to the translation via second order logic? Is there a translation that
leaves the subformulas φ and ψ intact?

Chapter 6

Axiomatising Fragments of FOD

In this chapter I investigate the question of finding a nontrivial fragment
of dependence logic such that there is an effectively axiomatisable deductive
system for the fragment. The basic requirements for such a deductive system
are to be sound and complete with respect to the entailment relation of the
fragment.

Any fragment that does not contain D-formulas is trivial as it can be
axiomatised by any of the well-known proof systems of first order logic. On
the other hand, we know that there is no effectively axiomatisable proof
system for the whole dependence logic as its expressive power equals that of
existential second order logic.

I denote finite conjunctions as
∧
k∈K φk and similarly for disjunctions.

Conjunction over the empty set denotes > and disjunction over the empty
set denotes ⊥.

For two subformulas in the same greater formula, φ1, φ2 ≤ φ, their join,
Join(φ1, φ2) is the least subformula φ′ ≤ φ for which φ1, φ2 ≤ φ′.

6.1 Calculus of Structures

There are many proof system formalisms of which sequent calculus, natural
deduction, and semantic tableaux are best known. There is also a rather new
formalism called the calculus of structures [7, 2]. It is based on a methodol-
ogy called deep inference in which inference rules can be applied anywhere
in a formula, not only at the root of the syntax tree of the formula. Cal-
culus of structures has several advantages over other proof systems: Proof
systems based on calculus of structures tend to have simple sets of inference
rules. Proofs in calculus of structures are linear and short whereas proofs in
other systems tend to be trees and even exponentially longer. Perhaps most

73

74 CHAPTER 6. AXIOMATISING FRAGMENTS OF FOD

(φ ∨ ψ) ∨ γ
=

φ ∨ (ψ ∨ γ)

(φ ∧ ψ) ∧ γ
=

φ ∧ (ψ ∧ γ)

φ ∨ ψ
=

ψ ∨ φ
⊥ ∨ φ

=

φ

> ∧ φ
=

φ

φ ∨ (ψ ∨ γ)
=

(φ ∨ ψ) ∨ γ
φ ∧ (ψ ∧ γ)

=

(φ ∧ ψ) ∧ γ
φ ∧ ψ

=

ψ ∧ φ
φ

=

⊥ ∨ φ
φ

=

> ∧ φ

Figure 6.1: Identity rules

importantly, calculus of structures exposes symmetry in proofs on several
levels; not only inference rules have symmetric duals but also proofs them-
selves show symmetry. There are also other interesting properties some of
which I shall use.

As an introduction, I shall present two proof systems for classical propo-
sitional logic based on the calculus of structures. The systems were first
presented by Brünnler and Tiu [2].

For purely syntactic purposes in this chapter, we extend the set of first or-
der formulas by the atomic formula { } called the hole. There is no semantics
for the hole. Holes are used to mark places in formulas where subformulas
can be plugged in. In practice, we only deal with formulas that have one or
no holes. If formula χ contains a hole, we write it as χ{ }. By χ{ψ} we
denote the formula obtained from χ{ } by replacing the hole by ψ. We call
χ the context of ψ.

An inference rule is a syntactic scheme of the form

χ{φ}
ρ

χ{ψ},

where ρ is the name, ψ is the redex and φ is the contractum of the rule. In
all proof systems we allow the use of the identity rules in Figure 6.1

An inference of χ2 from χ1 according to inference rule ρ means that there
are χ{ }, φ, ψ ∈ FO such that χ1 = χ{φ} and χ2 = χ{ψ}. A derivation is
a sequence of inferences, each applied to the result of the previous inference.
We call the topmost formula in a derivation the premise and the bottommost
formula the conclusion of the derivation. When writing down derivations,
we may skip inference steps based on the identity rules. We may also group
several inference steps into one by writing, for example, s2 for two applications
of the rule s. Let φ `S ψ denote that there is a derivation in proof system
S with premise φ and conclusion ψ. If the derivation is called ∆, we write
φ `S∆ ψ. If the derivation is based on inferences only by rules ρ1, . . . , ρn, we
write φ `ρ1,...,ρn ψ.

6.1. CALCULUS OF STRUCTURES 75

χ{>}
i↓
χ{φ ∨ ¬φ}
χ{⊥}

w↓
χ{φ}

χ{φ ∨ φ}
c↓

χ{φ}

χ{φ ∧ (ψ ∨ γ)}
s
χ{(φ ∧ ψ) ∨ γ}

χ{φ ∧ ¬φ}
i↑

χ{⊥}
χ{φ}

w↑
χ{>}
χ{φ}

c↑
χ{φ ∧ φ}

Figure 6.2: Global proof system SKSg

χ{>}
ai↓
χ{α ∨ ¬α}

χ{⊥}
aw↓

χ{α}
χ{α ∨ α}

ac↓
χ{α}

χ{φ ∧ (ψ ∨ γ)}
s
χ{(φ ∧ ψ) ∨ γ}

χ{(φ ∧ γ) ∨ (ψ ∧ δ)}
m
χ{(φ ∨ ψ) ∧ (γ ∨ δ)}

χ{α ∧ ¬α}
ai↑

χ{⊥}
χ{α}

aw↑
χ{>}
χ{α}

ac↑
χ{α ∧ α}

Figure 6.3: Local proof system SKS; α is an atomic formula.

The first proof system for classical propositional logic has rules of global
nature; there are no restrictions on the redex and contractum of the rules.
The proof system is called SKSg.1 Its inference rules, shown in Figure 6.2,
are called switch (s), identity (i↓), cut (i↑), weakening (w↓), co-weakening
(w↑), contraction (c↓), and co-contraction (c↑). Of these, i↓, w↓ and c↓ are
down rules, and i↑, w↑ and c↑ are up rules. The corresponding up and down
rules are duals in the sense that one is obtained from the other by flipping
the rule upside down and negating the redex and contractum.2 Switch is a
self-dual rule.

The second proof system for classical propositional logic has rules of lo-
cal nature; the up and down rules can only be applied when the redex and
contractum are atomic formulas. The proof system is called SKS and its
inference rules are in Figure 6.3. Apart from switch and the new rule, me-
dial (m), the inference rules of SKS are merely atomic counterparts of the
corresponding rules in SKSg.

Both SKSg and SKS are sound and complete for classical propositional

1SKSg stands for “symmetric klassisch (or classical) proof system in the calculus of
structures, global variant”.

2The negation can be left out in some cases due to the implicit equivalence on relations
in inferences.

76 CHAPTER 6. AXIOMATISING FRAGMENTS OF FOD

logic [1].

Theorem 6.1.1. If φ, ψ ∈ FO are propositional sentences then φ ⇒ ψ if
and only if φ `SKSg ψ if and only if φ `SKS ψ.

The rules in SKS are clearly restrictions of the rules in SKSg. The re-
strictedness gives an additional property: the local system admits of a de-
composition of derivations [1, Theorem 7.5.1].

Theorem 6.1.2. If φ, ψ ∈ FO are propositional sentences and φ `SKS ψ,
then φ `ac↑ φ1 `aw↑ φ2 `ai↓ φ3 `s,m ψ3 `ai↑ ψ2 `aw↓ ψ1 `ac↓ ψ for some
φ1, φ2, φ3, ψ3, ψ2, ψ1 ∈ FO.

For every derivation there is an atomic flow [8]. On the level of intuition,
an atomic flow tracks the position of each atomic formula through the deriva-
tion. I give here only a geometric definition. A formulation in conventional
terms of sets and functions is also possible but more difficult to read and
write.

Given a derivation, we define its atomic flow as a graph drawn on top of
the derivation, connecting certain occurrences of the same atomic subformu-
las. We use a shorthand notation for compound formulas; if φ, ψ ∈ FO are
propositional sentences, φ = γ ∨ δ and ψ = γ ∧ δ, then

φ

φ
means

γ ∨ δ

γ ∨ δ

and

ψ

ψ
means

γ ∧ δ

γ ∧ δ
.

The atomic flow for proof system SKSg is created rule by rule as shown
in Figure 6.4. The atomic flow for proof system SKS is created as shown
in Figure 6.5. If there is a derivation φ `∆ ψ and subformulas φ′ ≤ φ and
ψ′ ≤ ψ, and the atomic flow of derivation ∆ leads from φ′ to ψ′, we say that
φ′ flows to ψ′ in ∆.

Atomic flows are usually used as a tool in normalisation of derivations
and in the study of identity of derivations. I shall use them in defining a
proof system for a fragment of dependence logic.

6.1. CALCULUS OF STRUCTURES 77

χ{φ ∨ ¬φ}

χ{>}
i↓ ~~~~

||||
BBBB

χ{φ}

χ{⊥}
w↓ """

χ{φ}

χ{φ ∨ φ}
c↓ 999

999 ���

χ{(φ ∧ ψ) ∨ γ}

χ{φ ∧ (ψ ∨ γ)}
s

+++
+++

χ{⊥}

χ{φ ∧ ¬φ}
i↑ @@@@

BBBB ||||

χ{>}

χ{φ}
w↑ ���

χ{φ ∧ φ}

χ{φ}
c↑ ���

���
999

Figure 6.4: Atomic flow for SKSg

χ{α ∨ ¬α}

χ{>}
ai↓ }}}}

{{{{
CCCC

χ{α}

χ{⊥}
aw↓ !!!

χ{α}

χ{α ∨ α}
ac↓ 999

999 ���

χ{(φ ∧ ψ) ∨ γ}

χ{φ ∧ (ψ ∨ γ)}
s

+++
+++

χ{(φ ∨ ψ) ∧ (γ ∨ δ)}

χ{(φ ∧ γ) ∨ (ψ ∧ δ)}
m

mmmmmm
RRRRRR

χ{⊥}

χ{α ∧ ¬α}
ai↑ AAAA

CCCC {{{{

χ{>}

χ{α}
aw↑ ���

χ{α ∧ α}

χ{α}
ac↑ ���

���
999

Figure 6.5: Atomic flow for SKS

78 CHAPTER 6. AXIOMATISING FRAGMENTS OF FOD

6.2 A Proof System for a Fragment of FOD

I will consider a modest fragment of dependence logic that contains only the
simplest forms of D-formulas, along with limited use of atomic formulas and
connectives. For all k < ω, denote

θk := ∃y
(
();y ∧Rkxy

)
.

Let F be the fragment of dependence logic that consists of the set of formulas
that contains {>,⊥} ∪ {θk : k < ω} and that is closed under ∨ and ∧. In
particular, there is no negation in F . We call the formulas θk atoms.

In a way, fragment F resembles classical propositional logic without nega-
tion; it is built by gluing atoms together with disjunction and conjunction.
Therefore it is natural to start from a proof system of classical propositional
logic and see how it works with fragment F . Choosing SKSg as the proof
system, the first thing to note is that because F does not contain negation,
the rules of identity and cut are not applicable. This does not pose a real
problem at the moment. We will just leave these rules out of the proof
system.

All applicable rules of SKSg are sound for F except for contraction. We
can easily show that θ1 ∨ θ1 6⇒ θ1. This time we seem to have a problem
because there are instances of entailment in F that do not seem to be possible
to derive without resorting to contraction. The simplest such example I have
found is(

(φ ∨ ψ) ∧ (γ ∨ δ)
)
⇒
(

(φ ∧ δ) ∨
((
ψ ∨ (φ ∧ γ)

)
∧
(
γ ∨ (ψ ∧ δ)

)))
,

where φ, ψ, γ, δ ∈ F . Figure 6.6 shows a derivation for this entailment.
Because of these reasons, we will keep contraction as an inference rule but
we will compensate by setting a condition on the use of contraction that
derivations in fragment F must satisfy.

Definition 6.2.1. We define SKSgf as the proof system with the inference
rules w↓, c↓, s, w↑, and c↑, and the additional requirement that a derivation
in this SKSgf must satisfy the following flow condition;3

The atomic flows of two distinct atom occurrences in the premise
must not connect anywhere in the derivation.

Similarly, we can define SKSf as the proof system with the inference rules
aw↓, ac↓, s, aw↑, and ac↑, and the additional requirement that a derivation
in SKSf must satisfy the flow condition.

3SKSgf stands for “symmetric klassisch (or classical) proof system in the calculus of
structures, global variant, with f low condition”.

6.2. A PROOF SYSTEM FOR A FRAGMENT OF FOD 79

(φ ∨ ψ) ∧ (γ ∨ δ)
c↑

(φ ∨ ψ) ∧ (γ ∨ δ) ∧ (φ ∨ ψ) ∧ (γ ∨ δ)
s

(φ ∨ (ψ ∧ (γ ∨ δ))) ∧ (φ ∨ ψ) ∧ (γ ∨ δ)
c↑

(φ ∨ (ψ ∧ ψ ∧ (γ ∨ δ))) ∧ (φ ∨ ψ) ∧ (γ ∨ δ)
s2

(φ ∨ (ψ ∧ γ) ∨ (ψ ∧ δ)) ∧ (φ ∨ ψ) ∧ (γ ∨ δ)
s

(φ ∨ (ψ ∧ γ) ∨ (ψ ∧ δ)) ∧ (((φ ∨ ψ) ∧ γ) ∨ δ)
c↑

(φ ∨ (ψ ∧ γ) ∨ (ψ ∧ δ)) ∧ (((φ ∨ ψ) ∧ γ ∧ γ) ∨ δ)
s2

(φ ∨ (ψ ∧ γ) ∨ (ψ ∧ δ)) ∧ ((φ ∧ γ) ∨ (ψ ∧ γ) ∨ δ)
=

((ψ ∧ γ) ∨ φ ∨ (ψ ∧ δ)) ∧ ((ψ ∧ γ) ∨ (φ ∧ γ) ∨ δ)
s2

(ψ ∧ γ) ∨ (ψ ∧ γ) ∨ ((φ ∨ (ψ ∧ δ)) ∧ ((φ ∧ γ) ∨ δ))
c↓

(ψ ∧ γ) ∨ ((φ ∨ (ψ ∧ δ)) ∧ ((φ ∧ γ) ∨ δ))

Figure 6.6: A derivation and its atomic flow for (φ ∨ ψ) ∧ (γ ∨ δ) `SKSgf

(ψ ∧ γ) ∨
((
φ ∨ (ψ ∧ δ)

)
∧
(
(φ ∧ γ) ∨ δ

))
The example derivation in Figure 6.6 uses the contraction rule, and be-

cause the whole derivation satisfies the flow condition, this is valid use of
contraction. Figure 6.7 shows another example of a derivation in SKSgf.
Figure 6.8 shows a simple example of a sequence of inferences that breaks
the flow condition and thus is not a derivation in SKSgf.

A decomposition result similar to the one for SKS can be obtained for
SKSf.

Theorem 6.2.2. If φ, ψ ∈ F and φ `SKSf ψ then for some φ1, φ2, ψ1, ψ2 ∈ F ,

φ `ac↑ φ1 `aw↑ φ2 `s,m ψ2 `aw↓ ψ1 `ac↓ ψ

(φ ∨ γ) ∧ (ψ ∨ γ)

((φ ∧ ψ) ∨ γ) ∧ (ψ ∨ γ)

((φ ∧ ψ) ∨ γ) ∧ ((φ ∧ ψ) ∨ γ)

(φ ∧ ψ) ∨ γ

w↑

w↑

c↑

:::: zzzz
zzzz

zzzz

CCCC
CCCC

CCCC ���
{{{{

iiiiiiii
iiiiiiii

iiiiiiii
UUUUUUUU

UUUUUUUU
UUUUUUUU

Figure 6.7: A derivation for (φ∧ψ)∨ θ `SKSgf (φ∨ θ)∧ (ψ∨ θ) and its atomic
flow

80 CHAPTER 6. AXIOMATISING FRAGMENTS OF FOD

θk

θk ∨ θk
c↓ ==== ����

Figure 6.8: Not a derivation in SKSgf or SKSf; the flow condition breaks.

and, for some φ3, φ4, ψ3, φ4 ∈ F ,

φ `aw↑ φ3 `ac↑ φ4 `s,m ψ4 `ac↓ ψ3 `aw↓ ψ

such that the flow condition is satisfied in both derivations.

Proof. Kai Brünnler showed how to push all instances of aw↑ up and all in-
stances of aw↓ down in an SKS derivation. The same technique applies to
SKSf derivations because the flow condition is not violated in the transfor-
mation of the derivation. We only need to show how ac↑ can be pushed up
and ac↓ can be pushed down, utilising the fact that the identity and cut rules
are missing from SKSf.

Firstly, we know that ac↓ permutes under aw↓, s and m [1, Lemma 7.1.2],
i.e. that for a derivation φ `ac↓ α `aw↓ ψ there is a derivation φ `aw↓ β `ac↓ ψ,
etc. It remains to push an instance of ac↓ below an instance of ac↑ and below
an instance of aw↑, and dually, to push an instance of ac↑ above an instance
of ac↓ and above an instance of aw↓.

Let us consider an SKSf derivation with consequtive instances of ac↓ and
some rule ρ that is either ac↑ or aw↑. In case the two rule instances operate
in different contexts, they can be permuted with no trouble. Interaction
happens only when the redex of the ac↓ instance is the contractum of the ρ
instance. When ρ is ac↑, we can double the instances, push them past each
other and patch the middle with an instance of m:

χ{θk ∨ θk}
ac↓

χ{θk}
ac↑

χ{θk ∧ θk}

;

χ{θk ∨ θk}
ac↑2

χ{(θk ∧ θk) ∨ (θk ∧ θk)}
m

χ{(θk ∨ θk) ∧ (θk ∨ θk)}
ac↓2

χ{θk ∧ θk}

.

The atom flows that connect in the resulting derivation come from the same
atom instance in the premise of the whole derivation, because they did so in
the original derivation.

6.3. SOUNDNESS OF THE PROOF SYSTEM 81

When ρ is aw↑, the ac↓ instance can be transformed into an aw↑ instance:

χ{θk ∨ θk}
ac↓

χ{θk}
aw↑

χ{�}

;

χ{θk ∨ θk}
aw↑2

χ{� ∨ �}
=

χ{�}

.

The resulting derivation has one less case of connecting atom flows, so the
flow condition is still satisfied.

Considering the dual cases, pushing ac↑ above ac↓ is the same as pushing
ac↓ below ac↑, which we already considered. Pushing ac↑ above aw↓ can be
done as follows:

χ{⊥}
aw↓

χ{θk}
ac↑

χ{θk ∧ θk}

;

χ{⊥}
=

χ{⊥ ∧ ⊥}
aw↓2

χ{θk ∧ θk}

.

None of the inflicted atom flows starts from the premise, so the flow condition
is satisfied.

Starting from any SKSf derivation, we can now push all (co-)contractions
to the outside, and then in the (co-)contraction-free part of the resulting
derivation, push all (co-)weakenings to the outside. The latter pushing does
not introduce new instances of (co-)contraction, so the first normal form
is achieved. Similarly, we can start from any SKSf derivation, push all
(co-)weakenings to the outside, and then in the (co-)weakening-free part of
the resulting derivation, push all (co-)contractions to the outside. Again, the
latter pushing does not introduce new instances of (co-)weakening, so the
second normal form is achieved.

6.3 Soundness of the Proof System

In order to prove the soundness of SKSgf for fragment F , we need the fol-
lowing definitions.

Definition 6.3.1. For a model M, a function f is a team collection on M
for φ ∈ F if it maps subformulas φ′ ≤ φ to teams on M, satisfying

f(φ1 ∧ φ2) = f(φ1) ∩ f(φ2),

f(φ1 ∨ φ2) = f(φ1) ∪ f(φ2).

Definition 6.3.2 (Xτ
φ′). Assume player II has winning strategy τ in the

semantic game aFOD(M, φ,X). For each possible position (φ′, X ′, α) in the

82 CHAPTER 6. AXIOMATISING FRAGMENTS OF FOD

game, define the τ -team of φ′, Xτ
φ′ , to be X ′. Note that this definition is un-

ambiguous because the teams in a play of the semantic game are determined
solely by player II’s strategy [19, Lemma 5.12].

Definition 6.3.3 (Xτ,∆
ψ′). Assume φ, ψ ∈ F , II ↑ aFOD(M, φ,X) by τ , and

φ `SKSgf
∆ ψ. For ψ′ ≤ ψ, define the τ -∆-team of ψ′, Xτ,∆

ψ′ , by induction on ψ′.
If ψ′ is an atom, then

Xτ,∆
ψ′ =

{
Xτ
φ′ , where φ′ ≤ φ flows to ψ′ in ∆;
∅, if there is no such φ′.

Note that if there is φ′ ≤ φ that flows to ψ′ in ∆, it is unique by the flow
condition. For compound formulas, define

Xτ,∆
ψ1∧ψ2

= Xτ,∆
ψ1
∩Xτ,∆

ψ2
,

Xτ,∆
ψ1∨ψ2

= Xτ,∆
ψ1
∪Xτ,∆

ψ2
.

As a special case we have that Xτ
φ = Xτ,∆

φ , where ∆ is the empty deriva-
tion.

Definition 6.3.4 (Element game). For a modelM, element x ∈M , formula
φ ∈ F , and team collection f for φ, define a two-player game, a(φ, f, x),
called the element game. The positions in a play of the game are subformulas
φ′ ≤ φ. The starting position is φ itself. If the play is in position φ1 ∧ φ2,
player I chooses the play to continue from φ1 or φ2. If the play is in position
φ1 ∨ φ2, player II chooses the play to continue from φ1 or φ2. The play ends
when the position φ′ is an atom. Player II wins if x ∈ Rel(f(φ′)).4

Lemma 6.3.5. The following conditions are equivalent;

1. II ↑ a(φ, f, x),

2. x ∈ Rel(f(φ)).

Proof. Assume player II has winning strategy τ for a(φ, f, x), and x ∈ M .
We prove by induction on φ′ ≤ φ that if player II has played by τ up to
position φ′, then x ∈ Rel(f(φ′)).

Atomic case. The play ends and II wins, thus x ∈ Rel(f(φ′)).

Case φ1 ∨ φ2. Player II follows τ and chooses the play to continue from
τ(φ′). Thus the induction hypothesis gives x ∈ Rel(f(τ(φ′))), whence
x ∈ Rel(f(φ′)).

4The technically correct expression is (x) ∈ Rel(f(φ′)) but I leave the parentheses away
for simplicity.

6.3. SOUNDNESS OF THE PROOF SYSTEM 83

Case φ1 ∧ φ2. Player I can choose the play to continue from φi for either
i ∈ {1, 2}. In both cases player II has followed τ , so the induction
hypothesis gives x ∈ Rel(f(φi)). Thus x ∈ Rel(f(φ′)).

Assume then that x ∈ Rel(f(φ)). Define strategy τ for II by induction
on game position φ′ ≤ φ while maintaining that x ∈ Rel(f(φ′)).

Case φ1 ∨ φ2. From x ∈ Rel(f(φ′)) we get that x ∈ Rel(f(φi)) for some
i ∈ {1, 2}. Let player II choose τ(φ′) = φi.

Case φ1 ∧ φ2. Player I chooses the play to continue from φi for some i ∈
{1, 2}. We have x ∈ Rel(f(φ′)) ⊆ Rel(f(φi)).

Atomic case. We have maintained x ∈ Rel(f(φ′)), so τ is a winning strat-
egy.

Theorem 6.3.6. SKSgf is sound for FOD and thus φ `SKSgf ψ implies
φ⇒ ψ for all φ, ψ ∈ F .

Proof. Assume II ↑ aFOD(M, φ,X) by τ , and φ `SKSgf
∆ ψ. First we prove by

induction on ψ′ ≤ ψ that M, Xτ,∆
ψ′ |= ψ′.

Case θk. If Xτ,∆
ψ′ = ∅, then the claim holds trivially. Otherwise Xτ,∆

ψ′ = Xτ
φ′ ,

where φ′ = θk. Thus M, Xτ,∆
ψ′ |= θk, and the claim holds again.

Case ψ1 ∨ ψ2. Induction hypothesis givesM, Xτ,∆
ψi
|= ψi for both i ∈ {1, 2}.

The claim holds by splitting Xτ,∆
ψ′ = Xτ,∆

ψ1
∪Xτ,∆

ψ2
.

Case ψ1 ∧ ψ2. Induction hypothesis givesM, Xτ,∆
ψi
|= ψi for both i ∈ {1, 2}.

Because Xτ,∆
ψ′ ⊆ Xτ,∆

ψi
for both i ∈ {1, 2}, the claim holds.

This givesM, Xτ,∆
ψ |= ψ. Next we will prove that X ⊆ Xτ,∆

ψ , which gives
us M, X |= ψ, ending the proof.

Assume that derivation ∆ is of the form

χ0
ρ1
χ1

ρ2 ...
ρn−1

χn−1
ρn

χn

,

where χ0 = φ and χn = ψ. For k ≤ n, let fk be the team collection for χk
such that fk(χ

′) = Xτ,∆k

χ′ for each χ′ ≤ χk, where ∆k is ∆ limited to the first

84 CHAPTER 6. AXIOMATISING FRAGMENTS OF FOD

k inference steps. Note that if some αk ≤ χk flows to some αp ≤ χp, then
Xτ,∆k
αk

= Xτ,∆p
αp . Let x ∈ Rel(X). Then II ↑ a(χ0, f0, x) by some winning

strategy σ0
x. We will form a sequence of strategies σ0

x, σ
1
x, . . . , σ

n
x , step by

step, such that at each step we maintain the invariant

II ↑ a(χk, fk, x) by σkx. (6.1)

This leads to σnx being a winning strategy for II in a(ψ, fn, x), whence x ∈
Rel
(
fn(ψ)

)
= Rel

(
Xτ,∆
ψ

)
.

If we have reached σkx in the sequence, let σk+1
x be as follows, depending

on the inference rule ρk+1.

Case
χ{(α ∧ β) ∨ γ}

χ{α ∧ (β ∨ γ)}
s

+++
+++ . Define σk+1

x on the redex as

σk+1
x

(
(α ∧ β) ∨ γ

)
=

{
α ∧ β, if σkx(β ∨ γ) = β;
γ, if σkx(β ∨ γ) = γ,

and define σk+1
x to map subformulas of χ, α, β and γ like σkx. To get

(6.1) we only need to see that if the choice at position (α ∧ β) ∨ γ is
α ∧ β, II is at a winning position because σkx is winning both at α and
at β; otherwise the choice is γ, in which case σkx is winning at γ.

Case
χ{>}

χ{α}
w↑ ��� . Define σk+1

x to map subformulas of χ like σkx does. We get

(6.1) because a(χk+1, fk+1, x) is easier for II than a(χk, fk, x).

Case
χ{α1 ∧ α2}

χ{α}
c↑ zzzz

����
???? . Here α = α1 = α2. Define σk+1

x to map subformulas

of χ like σkx does and to map subformulas of α1 and α2 like σkx maps
subformulas of α. To get (6.1) we only need to see that both α1 and
α2 are winning positions for II because σkx is winning at α.

Case
χ{α}

χ{⊥}
w↓ !!! . Define σk+1

x to map subformulas of χ like σkx does and to

map subformulas of α arbitrarily. We get (6.1) because the play never
proceeds to α; if it did, then σkx would allow reaching the position ⊥
which is losing for II.

Case
χ{α}

χ{α1 ∨ α2}
c↓ DDDD

???? ���� . Here α = α1 = α2. Define σk+1
x to map subformulas of

χ like σkx does, and to map subformulas of α like σkx maps subformulas

6.4. DISCUSSION ON THE PROBLEM OF COMPLETENESS 85

of α1. To get (6.1), note that σk+1
x is winning at α because Xτ,∆k

α1
=

Xτ,∆k
α2

= X
τ,∆k+1
α and α1 = α2 = α, and thus the corresponding element

games are the same.

Corollary 6.3.7. SKSf is sound for FOD.

Proof. It suffices to show that derivations in SKSf are translatable to deriva-
tions in SKSgf. This is easy; first note that all atomic rules in SKSf are
special cases of the corresponding rules in SKSgf. Finally, we can translate
an inference by the medial rule into the derivation

χ{(φ ∧ γ) ∨ (ψ ∧ δ)}
c↑
χ{((φ ∧ γ) ∨ (ψ ∧ δ)) ∧ ((φ ∧ γ) ∨ (ψ ∧ δ))}

w↑
χ{(φ ∨ (ψ ∧ δ)) ∧ ((φ ∧ γ) ∨ (ψ ∧ δ))}

w↑
χ{(φ ∨ ψ) ∧ ((φ ∧ γ) ∨ (ψ ∧ δ))}

w↑
χ{(φ ∨ ψ) ∧ (γ ∨ (ψ ∧ δ))}

w↑
χ{(φ ∨ ψ) ∧ (γ ∨ δ)}

.

6.4 Discussion on the Problem of Complete-

ness

It is an open question if SKSgf is complete for fragment F . In this section, I
present some ideas and lemmas that might help in showing that the answer
is positive. Some of the claims have incomplete proofs which are marked by
a square in parentheses, (�).

Note that if we can show that SKSf is complete for F , then also SKSgf
is complete for F . Namely, as stated in Corollary 6.3.7, we can translate a
derivation in SKSf into a derivation in SKSgf.

It seems more beneficial to try to prove completeness primarily for SKSf
because it has an advantage over SKSgf, namely the property of decomposi-
tion of derivations, as shown in Theorem 6.2.2.

Conjecture 6.4.1. SKSf is complete for fragment F .

The intended proof of completeness of SKSgf for fragment F , sketched
below, is based on a canonical model construction, similar to what is usually
done in completeness proofs in modal logic. Because F contains dependence
formulas and not sentences, satisfaction of formulas in F is defined with
respect to the team in question. Thus it does not seem possible to build a

86 CHAPTER 6. AXIOMATISING FRAGMENTS OF FOD

canonical model where each element consists of a maximally consistent set
of formulas, unlike in propositional modal logic.

The universe of the canonical model represents a set of resources and the
interpretations of relations in the canonical model represent which resources
are suitable for which atoms. In order to denote this suitability, the universe
will also contain strategies for the element game. The resources themselves
are most conveniently chosen to be the atoms themselves. Each atom is
then a suitable resource for each strategy that reaches the atom or any other
instance of the same formula.

Definition 6.4.2. For φ ∈ F , define the canonical model, Mφ, to have as
its universe Mφ the (disjoint) union of all atoms in φ and strategies over φ,
that is,

Mφ := {φ′ : φ′ ≤ φ is an atom} ∪ {τ : τ is a strategy for II in a(φ)}.

We say that a strategy τ ∈Mφ reaches a subformula φ′ ≤ φ if the game a(φ)
can reach position φ′ when II plays by τ , i.e., if player I has a strategy σ such
that when I plays by σ and II plays by τ , the play of the game eventually
comes to position φ′. Define the relations Rk, k < ω, to be interpreted in
Mφ as

R
Mφ

k := {(τ, φ′) : τ reaches φ′ and φ′ = θk}.
For φ′ ≤ φ, define the canonical team of φ′ in φ to be

Xφ′ := {τ ∈Mφ : τ reaches φ′}(x).

If X ⊆ Xφ, we have Mφ, X |= θk if and only if X = ∅ or there is a
subformula φ′ ≤ φ such that φ′ = θk and all τ ∈ Rel(X) reach φ′.

The following lemmas state basic facts about the behaviour of the canon-
ical model and the canonical teams.

Lemma 6.4.3. Any formula is satisfied by its canonical model and team,
that is, Mφ, Xφ |= φ for all φ ∈ F .

Proof. Let φ ∈ F . We prove by induction on subformulas φ′ ≤ φ that
Mφ, Xφ′ |= φ′. The atomic case is clear by definitions. The case that φ′ is of
the form φ0 ∧ φ1 is also clear because Xφ′ = Xφ0 = Xφ1 . If φ′ is of the form
φ0 ∨ φ1, we can split Xφ′ = Xφ0 ∪ Xφ1 and use the induction hypothesis to
complete the proof.

Lemma 6.4.4. Let φ1, φ2 ≤ φ be two different subformulas. Then

6.4. DISCUSSION ON THE PROBLEM OF COMPLETENESS 87

(i) Xφ1 ∩Xφ2 = ∅ if and only if Join(φ1, φ2) is a disjunction;

(ii) Xφ1 ∩Xφ2 6= ∅ if and only if Join(φ1, φ2) is a conjunction.

Proof. We can see Join(φ1, φ2) as the last position in a(φ) where the play
can still reach both φ1 and φ2. If this position is a disjunction, it is player
II’s decision to not be able to reach one of the two formulas anymore in the
play. Every strategy of II has this property, and therefore Xφ1 ∩Xφ2 = ∅.

Assume then that the crucial decision is for player I, i.e. that the join
is a conjunction; Join(φ1, φ2) = φ′1 ∧ φ′2, where φ1 ≤ φ′1 and φ2 ≤ φ′2. For
i ∈ {1, 2}, let σi and τi be strategies for I and II, respectively, such that the
play with σi and τi reaches φi. Let τ be the strategy that makes choices like
τ1 everywhere except under φ′2 where it makes choices like τ2. Then the game
reaches φ1 when I and II play by σ1 and τ , and the game reaches φ2 when I
and II play by σ2 and τ .

Because we have excluded the case when the two subformulas are the
same subformula, Join(φ1, φ2) cannot be an atom; it is either a conjunction
or a disjunction. This proves the converse directions of (i) and (ii).

If Mφ, Xφ |= ψ for some ψ ∈ F then player II has one or more winning
strategies in the semantic game aFOD(Mφ, ψ,Xφ). We assume that τ is a
winning strategy that chooses maximal teams and minimal covers, that is, if
at position (Mφ, ψ1 ∨ ψ2, X) strategy τ chooses to split X = X1 ∪X2, then
there is no winning strategy that in the same position would choose a split
X = Y1 ∪X2 such that X1 Y1 and there is no winning strategy that in the
same position would choose a split X = X ∪ ∅ unless τ itself does so.

Define for each ψ′ ≤ ψ the game team of ψ′ (for τ), denoted Xτ
ψ′ , as the

unique team that, when II plays by τ , is the team for ψ′ in aFOD(Mφ, ψ,Xφ),
i.e., the semantic game can reach position (ψ′, Xτ

ψ′ , α) for some α ∈ {I, II}.
Define for each ψ′ ≤ ψ the φ-canonical team of ψ′ (for τ), denoted Xφ

ψ′ ,
inductively as follows. Let ψ′ ≤ ψ be an atom such that there is some strategy
σ for I in the semantic game such that when I follows σ and II follows τ , the
final position in the play of aFOD(Mφ, ψ,Xφ) is (ψ′, X ′, II), where X ′ 6= ∅.
Then there is φ′ ≤ φ such that φ′ = ψ′ and all f ∈ Rel(X ′) reach φ′. Define

Xφ
ψ′ := Xφ′ .

For all other atoms ψ′ ≤ ψ, define the φ-canonical team of ψ′ to be the empty
set. For compound subformulas in ψ define

Xφ
ψ1∧ψ2

:= Xφ
ψ1
∩Xφ

ψ2
,

Xφ
ψ1∨ψ2

:= Xφ
ψ1
∪Xφ

ψ2
.

88 CHAPTER 6. AXIOMATISING FRAGMENTS OF FOD

The general idea is that game teams are the resources that II’s winning
strategy τ assigns to subformulas of ψ, and φ-canonical teams describe the
maximum capacity of subformulas of ψ—a φ-canonical team is a maximal
team that can be assigned to the subformula such that II still wins the se-
mantic game. The next lemma reflects this idea by stating that the resources
assigned to a subformula of ψ are always a subset of the capacity of that sub-
formula.

Lemma 6.4.5. Let φ, ψ ∈ F and let τ be a winning strategy for II in the
semantic game aFOD(Mφ, Xφ, ψ). If ψ′ ≤ ψ, then Xτ

ψ′ ⊆ Xφ
ψ′.

Proof. We prove the claim by induction on ψ′ ≤ ψ. If ψ′ = θk, the claim holds
by definitions of Xτ

ψ′ and Xφ
ψ′ . If ψ′ = ψ1∧ψ2, the induction hypothesis gives

Xτ
ψ′ = Xτ

ψ1
⊆ Xφ

ψ1
and Xτ

ψ′ = Xτ
ψ2
⊆ Xφ

ψ2
, whence Xτ

ψ′ ⊆ Xφ
ψ1
∩Xφ

ψ2
= Xφ

ψ′ . If

ψ′ = ψ1∨ψ2, the induction hypothesis gives Xτ
ψ′ = Xτ

ψ1
∪Xτ

ψ2
⊆ Xφ

ψ1
∪Xφ

ψ2
=

Xφ
ψ′ .

Lemma 6.4.6. If φ, ψ ∈ F and Mφ, Xφ |= ψ, then

(i) Mφ, X
φ
ψ′ |= ψ′ for each ψ′ ≤ ψ, i.e. all subformulas in ψ are satisfied

by their φ-canonical teams and the canonical model of φ;

(ii) Xφ
ψ = Xφ, i.e. the φ-canonical team of ψ is the canonical team of φ.

Proof. We prove (i) by induction on ψ′ ≤ ψ. The claim is true for ψ′ if
Xφ
ψ′ = ∅, so we need to consider only ψ′ with nonempty φ-canonical teams.

If ψ′ is an atom, then Xφ
ψ′ = Xφ′ for some φ′ ≤ φ such that φ′ = ψ′, whence

claim follows. If ψ′ is of the form ψ1 ∧ ψ2, then the claim follows by the
induction hypothesis and the fact that both Xφ

ψ1
and Xφ

ψ2
are subsets of

Xφ
ψ′ = Xφ

ψ1
∩ Xφ

ψ2
. If ψ′ is of the form ψ1 ∨ ψ2, then Mφ, X

φ
ψ′ |= ψ′ by

splitting Xφ
ψ′ = Xφ

ψ1
∪Xφ

ψ2
and using the induction hypothesis.

Then we prove (ii). We get Xφ
ψ ⊆ Xφ trivially because the φ-canonical

team of ψ is constructed as unions and intersections of some subteams of Xφ.
To show the converse direction, let τ be the winning strategy of II that the
φ-canonical teams of subformulas of ψ are based on. It suffices to prove the
more general claim that for all ψ′ ≤ ψ, if the semantic game aFOD(Mφ, ψ,Xφ)

can reach some position (ψ′, X ′, II) when II is following τ , then X ′ ⊆ Xφ
ψ′ .

We prove it by induction on ψ′ ≤ ψ. If the game can reach some position
(ψ′, X ′, II), where ψ′ is an atom, II wins by her strategy being winning, so
we know that all f ∈ Rel(X ′) reach some φ′ ≤ φ such that φ′ = ψ′ and Xφ

ψ′ =

Xφ′ . Thus X ′ ⊆ Xφ
ψ′ . If the game can reach some position (ψ1 ∧ ψ2, X

′, II),

6.4. DISCUSSION ON THE PROBLEM OF COMPLETENESS 89

the game can also reach both positions (ψ1, X
′, II) and (ψ2, X

′, II) whence by
the induction hypothesis X ′ is contained in Xφ

ψ1
∩Xφ

ψ2
= Xφ

ψ1∧ψ2
. If the game

can reach some position (ψ1 ∨ ψ2, X
′, II), then τ provides II with some split

X1 ∪X2 = X ′ such that the game can reach both positions (ψ1, X1, II) and
(ψ2, X2, II). By the induction hypothesis X1 ⊆ Xφ

ψ1
and X2 ⊆ Xφ

ψ2
, which

gives us that X ′ = X1 ∪X2 is contained in Xφ
ψ1
∪Xφ

ψ2
= Xφ

ψ1∨ψ2
.

With these definitions, we can sketch how to prove the completeness of
SKSgf for fragment F . The sketch is based on lemmas that are presented
below.

Sketch of proof of Conjecture 6.4.1. The plan is to establish a finite sequence
χ0, χ1, . . . of formulas while maintaining the invariant thatMφ, Xφ |= χn and
χn `SKSf ψ. When we end up with χn = φ, the proof is finished. Forming
the sequence consists of phases. The rules in one phase are repeated until
the ending condition of the phase holds. Then we proceed with the rules of
the next phase.

We start by choosing χ0 = ψ. Then the invariant clearly holds. In
general, assume that we have built the sequence χ0, . . . , χn and the invariant
holds.

Phase 1. If χn = χn{θk} such that Xτ
θk

= ∅, then choose χn+1 = χn{⊥}.
We retain the invariant Mφ |= χn+1 ` ψ by Lemma 6.4.7 and the inference

χn{⊥}
aw↓

χn{θk}
.

Phase 1 ends when for all atomic θ ≤ χn the game team Xτ
θ is nonempty.

Then, in fact, the same condition holds also for all non-atomic subformulas
of χn. Namely, if some ψ′ ≤ χn had Xτ

ψ′ = ∅, all its subformulas—including
at least one atom—would have an empty game team.

Phase 2. If χn = χn{(ψ1 ∧ ψ2) ∨ ψ3} such that Xτ
ψ3
⊆ Xφ

ψ1
, then choose

χn+1 := χn{ψ1 ∧ (ψ2 ∨ ψ3)}. We retain the invariant Mφ |= χn+1 ` ψ by
Lemma 6.4.9 and the inference

χn{ψ1 ∧ (ψ2 ∨ ψ3)}
s
χn{(ψ1 ∧ ψ2) ∨ ψ3}

.

If χn = χn{ψ′}, where ψ′ = (ψ1 ∨ ψ2) ∧ (ψ3 ∨ ψ4), and there is a split
X1 ∪X2 = Xτ

ψ′ such that X1 ⊆ Xφ
ψ1
∩Xφ

ψ3
and X2 ⊆ Xφ

ψ2
∩Xφ

ψ4
, then choose

χn+1 := χn{(ψ1 ∧ ψ3) ∨ (ψ2 ∧ ψ4)}. We retain the invariant Mφ |= χn+1 ` ψ
by Lemma 6.4.10 and the inference

χn{(ψ1 ∧ ψ3) ∨ (ψ2 ∧ ψ4)}
m
χn{(ψ1 ∨ ψ2) ∧ (ψ3 ∨ ψ4)} .

90 CHAPTER 6. AXIOMATISING FRAGMENTS OF FOD

Phase 2 ends when the above rules cannot be applied anymore. Then
we get from Lemma 6.4.11 that, for all ψ′ :=

∧
i∈I ψi ≤ ψ and all i ∈ I,

Xφ
ψi

= Xφ
ψ′ . Further, from Lemma 6.4.12 we get that for all ψ′ ≤ ψ there is

φ′ ≤ φ such that Xφ
ψ′ = Xφ′ . Finally, Lemma 6.4.13 gives φ `c↑,w↑ ψ. (�)

The next lemma states that under a certain condition, if the canonical
model and team of φ satisfy some formula ψ, they also satisfy a formula from
which we can infer ψ by atomic weakening.

Lemma 6.4.7. Let φ, ψ{θk} ∈ F . If Mφ, Xφ |= ψ{θk} and Xτ
θk

= ∅, then
Mφ, Xφ |= ψ{⊥}.
Proof. We need to provide a winning strategy τ ′ for II in the semantic game
aFOD(Mφ, ψ{⊥}, Xφ). We can, in fact, choose τ ′ to be τ .

A similar lemma is formulated below for atomic contraction. Alterna-
tively, the below lemma could be replaced by a nondeterministic approach in
the proof of Conjecture 6.4.1; duplicate each atom instance in ψ some num-
ber of times, where this number is whatever suits us later in the construction
of the derivation in Conjecture 6.4.1.

Lemma 6.4.8. Let φ, ψ{ψ′} ∈ F , where ψ′ := θk ∨ (γ ∧ δ). If Mφ, Xφ |=
ψ{ψ′} and Xφ

ψ′ = Xφ′ for some φ′ ≤ φ, then Mφ, Xφ |= ψ{θk ∨ ψ′}. (�)

The following lemma states that under a certain condition, if the canonical
model and team of φ satisfy some formula ψ, they also satisfy a formula from
which we can infer ψ by switch. The idea is that when the condition holds,
the switch is a step closer to φ from ψ.

Lemma 6.4.9. Let φ, ψ{ψ′} ∈ F , where ψ′ := (ψ1 ∧ ψ2) ∨ ψ3. If Mφ, Xφ |=
ψ{ψ′} and Xτ

ψ3
⊆ Xφ

ψ1
, then Mφ, Xφ |= ψ{ψ′′}, where ψ′′ := ψ1 ∧ (ψ2 ∨ ψ3).

Proof. We must give player II a winning strategy τ ′ in aFOD(Mφ, ψ{ψ′′}, Xφ).
Let τ ′ be otherwise like τ but with slight changes when the play reaches po-
sition (Mφ, ψ

′′, Xτ
ψ′). At the conjunction, player I can choose the subformula

ψ1, so we need to ensure that τ ′ is still winning at position (Mφ, ψ1, X
τ
ψ′).

We know that Xτ
ψ′ = Xτ

ψ1
∪ Xτ

ψ3
⊆ Xφ

ψ1
, so Mφ, X

τ
ψ′ |= ψ1 as we wanted.

If player I chooses ψ2 ∨ ψ3 instead, let τ ′ split Xτ
ψ′ = Xτ

ψ2
∪ Xτ

ψ3
. The play

proceeds to position (Mφ, ψk, X
τ
ψk

) for either k ∈ {2, 3}. Again, τ ′ is winning
at this position because τ is.

The following lemma states that under a certain condition, if the canonical
model and team of φ satisfy some formula ψ, they also satisfy a formula from
which we can infer ψ by medial.

6.4. DISCUSSION ON THE PROBLEM OF COMPLETENESS 91

Lemma 6.4.10. Let φ, ψ{ψ′} ∈ F , where ψ′ := (ψ1∨ψ2)∧(ψ3∨ψ4). If there
is a split X1 ∪ X2 = Xτ

ψ′ such that X1 ⊆ Xφ
ψ1
∩ Xφ

ψ3
and X2 ⊆ Xφ

ψ2
∩ Xφ

ψ4
,

then Mφ, Xφ |= ψ{ψ′′}, where ψ′′ := (ψ1 ∧ ψ3) ∨ (ψ2 ∧ ψ4).

Proof. We need to give player II a winning strategy τ ′ in the semantic game
aFOD(Mφ, ψ{ψ′′}, Xφ). Let τ ′ be like τ except in subformulas of ψ′′. When
the play reaches position (Mφ, ψ

′′, Xτ
ψ′), let τ ′ split Xτ

ψ′ = X1∪X2. The play
proceeds to position (M, ψk ∧ ψk+2, Xk) for some k ∈ {1, 2}. Choose τ ′ to
play the remaining game according to a winning strategy given by the fact
that Mφ, Xk |= ψk ∧ ψk+2.

The following conjectures tell us when all the necessary inferences by
switch and medial have been done, and what then remains of ψ can be
derived from φ by atomic co-weakening and atomic co-contraction.

Lemma 6.4.11. Let φ, ψ ∈ F . If there is no (ψ1 ∧ ψ2) ∨ ψ3 ≤ ψ such that
Xτ
ψ3
⊆ Xφ

ψ1
and there is no ψ′ := (ψ1 ∨ ψ2) ∧ (ψ3 ∨ ψ4) and X1 ∪X2 =: Xτ

ψ′

such that X1 ⊆ Xφ
ψ1
∩Xφ

ψ3
and X2 ⊆ Xφ

ψ2
∩Xφ

ψ4
, then for all

∧
i∈I ψi ≤ ψ and

i, j ∈ I we have Xφ
ψi

= Xφ
ψj

. (�)

Lemma 6.4.12. Let φ, ψ ∈ F . If for all ψ′ :=
∧
i∈I ψi ≤ ψ and i ∈ I,

Xφ
ψi

= Xφ
ψ′, then for all ψ′ ≤ ψ there is φ′ ≤ φ such that Xφ

ψ′ = Xφ′. (�)

Lemma 6.4.13. Let φ, ψ ∈ F . If for all ψ′ :=
∧
i∈I ψi ≤ ψ and all i ∈ I,

Xφ
ψi

= Xφ
ψ′, and for all ψ′ ≤ ψ there is φ′ ≤ φ such that Xφ

ψ′ = Xφ′, then

φ `c↑,w↑ ψ.

Proof. We prove by induction on ψ′ ≤ ψ the claim that if φ′ ≤ φ is maximal

such that Xφ
ψ′ = X ′φ, then

φ′

‖
‖ c↑,w↑

ψ′
.

Atomic case If ψ′ = θk, then φ′ =
∧
i∈I φi and φi = θk for some i ∈ I. We

can infer
φ′

w↑
ψ′

.

Case ∧ If ψ′ = ψ1 ∧ψ2, then by Xφ
ψi

= Xφ
ψ′ , φ

′ is maximal also with respect

to Xφ
ψi

= Xφ′ for both i ∈ {1, 2}. Induction hypothesis gives derivations

92 CHAPTER 6. AXIOMATISING FRAGMENTS OF FOD

∆1 and ∆2 such that we can derive

φ′
c↑
φ′ ∧ φ′

{∆1}∧φ′
‖
‖ c↑,w↑

ψ1 ∧ φ′
ψ1∧{∆2}

‖
‖ c↑,w↑

ψ1 ∧ ψ2

.

Case ∨ Open question. (�)

Chapter 7

1-Semantics

In this chapter I develop a new semantics for the syntax of dependence logic
and compare it with the previous semantics. The new semantics is called
1-semantics. I prove several properties of 1-semantics; it strictly contains
the old semantics, in the sense that the old semantics can be computed
from 1-semantics but the contrary is not possible. I describe a translation
of formulas of existential second order logic into 1-semantics, proving that
1-semantics has expressive power equal to existential second order logic. 1-
semantics contains a semantic definition for negation, and thus 1-semantics is
defined for all φ ∈ FOD without resorting to any negation normal form. The
law of excluded middle, formulated suitably, holds for 1-semantics. Finally,
the definition of 1-semantics comes in a natural way as a type shift from the
Tarskian semantics of first order logic. The type shift can be applied to any
connective and quantifier of first order logic. I also consider 1-semantics in
light of game theoretic semantics and present a novel game that I conjecture
to yield 1-semantics.

7.1 Definitions

In order to be clear and precise, we must start by defining 1-semantics for
teams whose domain is the set of all element variables. We can then refine
the definition into teams with finite domains.

7.1.1 1-Semantics in ω-Teams

Define an ω-team X for a model M to be any relation on M of arity ω,
i.e. X ⊆ Mω. We call the elements of an ω-team tuples and denote them
a = (a1, a2, . . .) or similarly. For a ∈ X, let sa denote the assignment

93

94 CHAPTER 7. 1-SEMANTICS

M, X |=1 ⊥ ⇐⇒ X = ∅
M, X |=1 > ⇐⇒ X = Mω

M, X |=1 Rt1 . . . tn ⇐⇒ X =
{
a :M, sa |= Rt1 . . . tn

}
M, X |=1 (t1 . . . tn);u ⇐⇒ there is f s.t. X =

{
a :

sa(u) = f
(
sa(t1) . . . sa(tn)

)}
M, X |=1 ¬φ ⇐⇒ M, {X |=1 φ

M, X |=1 φ ∨ ψ ⇐⇒ there is Y , Z s.t. Y ∪ Z = X and

M, Y |=1 φ and M, Z |=1 ψ

M, X |=1 φ ∧ ψ ⇐⇒ there is Y , Z s.t. Y ∩ Z = X and

M, Y |=1 φ and M, Z |=1 ψ

M, X |=1 ∃xnφ ⇐⇒ there is Y s.t. X = CnY and M, Y |=1 φ

M, X |=1 ∀xnφ ⇐⇒ there is Y s.t. {X = Cn{Y and M, Y |=1 φ

Figure 7.1: 1-semantics in ω-teams

that maps s(xi) = ai for all i. For a ∈ X, a ∈ M and n < ω, denote
a(n 7→ a) := (a1, . . . , an−1, a, an+1, . . .). Given an ω-team X for a model M,
denote cylindrification of X along the n’th column by CnX := {a(n 7→ a) :
a ∈ X and a ∈M}.1

Definition 7.1.1. Satisfaction of a formula φ ∈ FOD in a model M by an
ω-team X in 1-semantics, denoted M, X |=1 φ, or simply X |=1 φ when the
model is clear from context, is defined as in Figure 7.1.2

Theorem 7.1.2 (Only Free Variables Matter). For an ω-team X for some
model M and formula φ ∈ FOD, if X |=1 φ then for all a ∈ X and c ∈ Mω

we have a(φ, c) ∈ X, where a(φ, c) := a(n 7→ cn)xn 6∈FV(φ) denotes a tuple
where the values of irrelevant (with respect to the syntax of φ) variables have
been replaced.

Proof. Induction on φ ∈ FOD.

Case ⊥. If X |=1 ⊥ then X = ∅, whence the claim is holds vacuously.

1The cylindrification operation was introduced with cylindric algebras, see [11].
2With 1-semantics, we need not consider negation as shorthand notation. Thus, Defi-

nition 2.4.2 is to be applied only to FOD formulas that are interpreted with the semantics
in Definition 2.4.1.

7.1. DEFINITIONS 95

Case >. If X |=1 > then X = Mω, whence a(>, c) = c ∈ X for all a ∈ X
and c ∈Mω.

Case Rt1 . . . tn. If X |=1 φ, a ∈ X and c ∈Mω, thenM, sa(φ,c) |= φ because
sa(φ,c) equals sa in all free variables of φ and in FO semantics only the
interpretation of free variables affects satisfaction. Thus a(φ, c) ∈ X.

Case (t1 . . . tn);u. If X |=1 φ, a ∈ X and c ∈Mω, then sa(φ,c) and sa agree
on the evaluation of the terms ti and u because sa(φ,c) equals sa in all
free variables of φ. Thus a(φ, c) ∈ X.

Case ¬ψ. If X |=1 φ and a ∈ X, then {X |=1 ψ and a 6∈ {X. If a(ψ, c) ∈
{X for any c ∈ Mω, then a ∈ {X by the induction hypothesis, a
contradiction. Thus a(φ, c) = a(ψ, c) ∈ X for all c ∈Mω.

Case ψ1 ∨ ψ2. If X |=1 φ and a ∈ X, then there are ω-teams Y1 and Y2

such that X = Y1 ∪ Y2, Yi |=1 ψi for both i ∈ {1, 2}, and a ∈ Yi0 for
some i0. Let c ∈ Mω. Choose e ∈ Mω such that e agrees with a in
FV(φ) and with c in all other variables. By the induction hypothesis,
a(ψi0 , e) ∈ Yi0 . Then a(φ, c) = a(φ, e) = a(ψi0 , e) ∈ X.

Case ψ1 ∧ ψ2. If X |=1 φ and a ∈ X, then there are ω-teams Y1 and Y2 such
that X = Y1 ∩ Y2, Yi |=1 ψi for both i ∈ {1, 2}, and a ∈ Yi for both
i ∈ {1, 2}. Let c ∈ Mω. Choose e ∈ Mω such that e agrees with a in
FV(φ) and with c in all other variables. By the induction hypothesis,
a(ψi, e) ∈ Yi for both i ∈ {1, 2}. Then a(φ, c) = a(φ, e) = a(ψi, e) ∈ Yi
for both i ∈ {1, 2}, thus a(φ, c) ∈ X.

Case ∃xnψ. If X |=1 φ and a ∈ X, then there is an ω-team Y such that
X = CnY and Y |=1 ψ. Let c ∈Mω. From a ∈ CnY we get a(n 7→ e) ∈
Y for some e ∈ M . By the induction hypothesis, a(n 7→ e)(ψ, c) ∈ Y ,
whence a(φ, c) ∈ CnY = X.

Case ∀xnψ. If X |=1 φ and a ∈ X, then there is an ω-team Y such that
{X = Cn{Y and Y |=1 ψ. Let c ∈ Mω. From a ∈ {Cn{Y we get
a(n 7→ e) ∈ Y for all e ∈ M . Combining this with the induction
hypothesis, we get a(ψ, c)(n 7→ e) ∈ Y for all e ∈ M , whence a(φ, c) ∈
{Cn{Y = X.

Note that we do not need to assume anything about the axiom of choice
in the proof of Theorem 7.1.2. This is in contrast to the similar theorem
of dependence logic, Theorem 2.4.7, where we need to assume the axiom of
choice.

96 CHAPTER 7. 1-SEMANTICS

Theorem 7.1.2 suggests viewing ω-teams as having two parts, divided by
the domain; the trivial part of an ω-team X is the subset V ⊆ ω such that
s(xn 7→ an)n∈V ∈ X for all s ∈ X and a ∈ Mω. The nontrivial part of an
ω-team is the complement of its trivial part. Theorem 7.1.2 shows that the
concept of trivial part is coherent with the set of variables in a formula whose
interpretation may affect the satisfaction of the formula; free variables are
always in the nontrivial part of an ω-team that satisfies the formula.

7.1.2 Type Shifting

In linguistics, there is a concept called type shifting [18]. A type shift is
a mapping of objects of one type to objects of another type. A type can
be an element, a set of elements, a set of sets of elements, etc. One of the
main differences between first order logic and dependence logic (both P- and
1-semantics) is the type of semantic objects. In first order logic, semantic
objects are assignments, whereas in dependence logic, semantic objects are
sets of assignments. This brings forth the question, is there a type shift that
leads from first order logic to dependence logic. It turns out that there indeed
is one for 1-semantics.

To give a Tarskian definition of formula satisfaction is essentially to give
an operation for each atomic formula and each kind of compound formula
that computes the interpretation of the formula. For example, there must
be an operation such that, given the interpretations of two subformulas, the
operation computes the interpretation of the conjunction of the subformu-
las. In the case of an atomic formula, the operation is constant, not taking
arguments. Thus each atomic formula has its own operation.3

In order to shift first order semantics from assignments to ω-teams, it
therefore suffices to shift the operations on formula interpretations. The
operations that correspond to connectives and quantifiers take one or two
formula interpretations as arguments and map them to another formula in-
terpretation. A nullary operation represents a named formula interpretation.

Let us call 1-shift the type shift that maps an operation

(X1, . . . , Xn) 7→ f(X1, . . . , Xn)

3It is conventional that satisfaction of an atomic formula is defined in one step where
parts of the atomic formula are arguments to the operation. For example, the operation
computing the interpretation of atomic formulas of the form Rt1 . . . tn, the relation symbol
R and terms t1, . . . , tn are the arguments. This is practical in truth definitions but not
in the present context, as the arguments are not formulas but finer-grained elements that
do not have an interpretation with respect to a model in the form of a set of semantic
objects. Therefore I skip this further level of detail.

7.1. DEFINITIONS 97

to the operation

(X1, . . . ,Xn) 7→
{
f(X1, . . . , Xn) : X1 ∈ X1, . . . , Xn ∈ Xn

}
.

Here, the sets Xi intend to be interpretations of first order formulas, i.e.
sets of assignments, and the sets Xi stand for interpretations of dependence
formulas, i.e. sets of teams.

Theorem 7.1.3. 1-semantics for FO formulas is the 1-shift of FO semantics.

Proof. We prove by induction on formulas φ ∈ FO that applying 1-shift
to FO semantics on assignments leads to the definition of 1-semantics on
ω-teams, Definition 7.1.1. In this proof, I consider assignments as infinite
tuples.

The atomic formulas ⊥ and > have the constant interpretations f⊥() = ∅
and f>() = Mω, where M is the universe of the model in question. 1-
shifting them gives the 1-interpretations g⊥() = {∅} and g>() = {Mω}.
Thus, X ∈ [[⊥]]1 if and only if X ∈ g⊥() if and only if X = ∅. Similarly,
X ∈ [[>]]1 if and only if X ∈ g>() if and only if X = Mω.

Each atomic formula of the form Rt1 . . . tn has a constant interpretation
f() = {a : (sa(t1), . . . , sa(tn)) ∈ RM}. 1-shifting it gives the constant 1-in-
terpretation g() = {f()}. Thus, X ∈ [[Rt1 . . . tn]]1 if and only if X ∈ g() if
and only if X = {a : (sa(t1), . . . , sa(tn)) ∈ RM}.

Negation ¬φ in FO has the interpretation f(X) = {a : a 6∈ X} = {X,
where X is the interpretation of φ. 1-shifting it gives the 1-interpretation
g(X) = {f(X) : X ∈ X} = {{X : X ∈ X}, where X is the 1-interpretation
of φ. Thus, X ∈ [[¬φ]]1 if and only if X ∈ g([[φ]]1) if and only if X = {Y for
some Y ∈ [[φ]]1.

Disjunction φ ∨ ψ in FO has the interpretation f(X, Y) = {a : a ∈
X or a ∈ Y } = X ∪ Y , where X and Y are the interpretations of φ and
ψ, respectively. 1-shifting it gives the 1-interpretation g(X ,Y) = {X ∪ Y :
X ∈ X and Y ∈ Y}, where X and Y are the 1-interpretations of φ and ψ,
respectively. Thus, X ∈ [[φ ∨ ψ]]1 if and only if X ∈ g([[φ]]1, [[ψ]]1) if and only
if X = Y ∪ Z for some Y ∈ [[φ]]1 and Z ∈ [[ψ]]1.

Conjunction φ ∧ ψ in FO has the interpretation f(X, Y) = {a : a ∈
X and a ∈ Y } = X ∩ Y , where X and Y are the interpretations of φ and
ψ, respectively. 1-shifting it gives the 1-interpretation g(X ,Y) = {X ∩ Y :
X ∈ X and Y ∈ Y}, where X and Y are the 1-interpretations of φ and ψ,
respectively. Thus, X ∈ [[φ ∧ ψ]]1 if and only if X ∈ g([[φ]]1, [[ψ]]1) if and only
if X = Y ∩ Z for some Y ∈ [[φ]]1 and Z ∈ [[ψ]]1.

Existential quantification ∃xnφ in FO has the interpretation f(X) =
CnX, where X is the interpretation of φ. 1-shifting it gives the 1-inter-
pretation g(X) = {CnX : X ∈ X}, where X is the 1-interpretation of φ.

98 CHAPTER 7. 1-SEMANTICS

Thus, X ∈ [[∃xnφ]]1 if and only if X ∈ g([[φ]]1) if and only if X = CnY for
some Y ∈ [[φ]]1.

Lastly, universal quantification ∀xnφ in FO has the interpretation f(X) =
{Cn{X, where X is the interpretation of φ. 1-shifting it gives the 1-inter-
pretation g(X) = {{Cn{X : X ∈ X}, where X is the 1-interpretation of φ.
Thus, X ∈ [[∀xnφ]]1 if and only if X ∈ g([[φ]]1) if and only if X = {Cn{Y for
some Y ∈ [[φ]]1.

Thus 1-shift defines 1-semantics for all formulas except D-formulas. The
semantics of D-formulas is just a suitable adaptation from the corresponding
formulas in dependence logic. A D-formula states that the ω-team is (the
graph of) a function, modulo transformations done by interpretation of terms
in the D-formula.

Thinking of formula interpretations as nullary operations, we see that
there is a translation of FO into 1-semantics with the identity function being
the syntactic translation and the mapping X 7→ {X} being the semantic
translation, where X is an interpretation of a first order formula. That is,
[[φ]]1 =

{
[[φ]]FO} for all φ ∈ FO. The name “1-semantics” refers to this

singleton correspondence between 1-interpretations and FO-interpretations.
Following this idea, I use the nickname P-semantics for the semantics that
Hodges gave for formulas of independence friendly logic and for the semantics
that Väänänen uses for dependence logic, defined in Chapter 2. P refers to
the fact that [[φ]]P = P [[φ]]FO for all φ ∈ FO, i.e. the powerset correspondence
between P-interpretations and FO-interpretations. We may denote satisfac-
tion in P-semantics by M, X |=P φ, to make the necessary distinction.4

7.1.3 1-Semantics in Teams

I will now give an equivalent definition of 1-semantics where in place of ω-
teams we use teams without any restriction on their domains, as is done
in P-semantics. The complement of a team we take in the corresponding
full team, {X = XMDom(X) \ X, where X is a team for model M. Given a
team X for a model M, denote cylindrification of X along variable xn by
CxnX := {s(xn 7→ a) : s ∈ X and a ∈ M}. Define the cylindric restriction
of X to V as

X◦�V := {s�V : s(xn 7→ an)xn∈Dom(X)\V ∈ X for all a ∈Mω}.
4Note that |=P is the same semantics that Chapter 2 denotes by |=FOD. Because in this

chapter we have two different semantics for the same set of formulas, FOD, it no longer
makes sense to denote either semantics by the symbol of the set of formulas, hence the
change in notation.

7.1. DEFINITIONS 99

Finally, define the cylindric co-restriction of X from V as

X◦�V := X◦�(Dom(X) \ V).

If V = {x}, we denote X�V = X�x, X�V = X�x, X◦�V = X◦�x, and
X◦�V = X◦�x.

Teams can have any set of variables as their domain. In order to express
1-semantics, as it is defined on ω-teams, using teams that in general are
missing some of the information that ω-teams carry, we must decide on which
ω-team each team corresponds to. Theorem 7.1.2 suggests a many-to-one
correspondence between teams and ω-teams; a team always contains the
nontrivial part of an ω-team (and optionally some of the trivial part, as well).
More precisely, a nonempty team X corresponds to its ω-closure which is the
ω-team

X := {a : there is s ∈ X such that s(xn) = an for all xn ∈ Dom(X)}.

Turning the definition around, a nonempty ω-team corresponds to each of
its cylindric restrictions to a set of variables that contains the nontrivial part
of the ω-team.5 The empty team corresponds to the empty ω-team and vice
versa.

Theorem 7.1.4. ω-closure commutes with the complement, union, intersec-
tion and cylindrification operations on teams.

Proof. Complement. a ∈ {X iff there is no s ∈ X such that s = a�Dom(X)
iff a�Dom(X) ∈ {X iff there is s ∈ {X such that s = a�Dom(X) iff

a ∈ {X.

Union. Assuming Dom(X1) = Dom(X2) =: V , a ∈ X1 ∪ X2 iff a ∈ X1 or
a ∈ X2 iff there is s ∈ X1 or s ∈ X2 such that s = a�V iff there is
s ∈ X1 ∪X2 such that s = a�V iff a ∈ X1 ∪X2.

Intersection. Assuming Dom(X1) = Dom(X2) =: V , a ∈ X1∩X2 iff a ∈ X1

and a ∈ X2 iff there is s1 ∈ X1 and s2 ∈ X2 such that s1 = a�V and
s2 = a�V iff there is s ∈ X1 ∩X2 such that s = a�V iff a ∈ X1 ∪X2.

Cylindrification. Letting n < ω, a ∈ CxnX iff there is s ∈ CxnX such
that s = a�Dom(CxnX) iff there is s ∈ X and a ∈ M such that
s(xn 7→ a) = a�Dom(CxnX) iff there is c ∈ X and a ∈ M such that
a = c(n 7→ a) iff a ∈ CxnX.

5Here we implicitly convert from tuples to assignments, and from indices to variables,
in the obvious way.

100 CHAPTER 7. 1-SEMANTICS

Lemma 7.1.5. For teams X and Y , if X = Y and Dom(X) = Dom(Y),
then X = Y .

The concept of ω-closure acts as a link between ω-teams and teams of
arbitrary domains. It leads us to the following definition of 1-semantics for
all teams X.

Definition 7.1.6. If FV(φ) ⊆ Dom(X) then define

M, X |=1 φ ⇐⇒ M, X |=1 φ.

Theorem 7.1.2 enables us to give an alternative, equivalent definition for
1-semantics which may suit better those who wish to work with teams with
finite domains. Finite domains are desirable in certain translations. For
example, when expressing 1-semantics or P-semantics in second order logic
by encoding a team as the value relation variable, one has only relation
variables of finite arity.

Theorem 7.1.7. The definition of 1-semantics for all teams X can be formu-
lated equivalently in the form of Figure 7.2, where we assume that Dom(X)
contains all the free variables of the formula whose satisfaction we are defin-
ing.

Proof. We prove by induction on φ ∈ FOD that satisfaction as in Defini-
tion 7.1.6 is equivalent with the conditions listed above. The proof is based
on Theorem 7.1.2, Theorem 7.1.4 and the fact that FV(φ) ⊆ Dom(X).

Case ⊥. X |=1 ⊥ iff X |=1 ⊥ iff X = ∅ iff X = ∅.

Case >. X |=1 > iff X |=1 > iff X = Mω iff X = XMDom(X).

Case Rt1 . . . tn. X |=1 φ iff X |=1 φ iff X = {a : M, sa |= φ} iff X = {s ∈
XMDom(X) :M, s |= φ}.

Case (t1 . . . tn);u. X |=1 φ iff X |=1 φ iff there is f such that X =
{a : sa(u) = f(sa(t1), . . . , sa(tn))} iff X = {s ∈ XMDom(X) : s(u) =

f(s(t1), . . . , s(tn))}.

Case ¬ψ. X |=1 φ iff X |=1 φ iff {X |=1 ψ iff {X |=1 ψ iff {X |=1 ψ.

7.1. DEFINITIONS 101

M, X |=1 ⊥ ⇐⇒ X = ∅
M, X |=1 > ⇐⇒ X = XMDom(X)

M, X |=1 Rt1 . . . tn ⇐⇒ X =
{
s ∈ XMDom(X) :M, s |=1 Rt1 . . . tn

}
M, X |=1 (t1 . . . tn);u ⇐⇒ there is f s.t. X =

{
s ∈ XMDom(X) :

s(u) = f
(
s(t1), . . . , s(tn)

)}
M, X |=1 ¬φ ⇐⇒ M, {X |=1 φ

M, X |=1 φ ∨ ψ ⇐⇒ there is Y, Z ⊆ XMDom(X) s.t. Y ∪ Z = X and

M, Y |=1 φ and M, Z |=1 ψ

M, X |=1 φ ∧ ψ ⇐⇒ there is Y, Z ⊆ XMDom(X) s.t. Y ∩ Z = X and

M, Y |=1 φ and M, Z |=1 ψ

M, X |=1 ∃xnφ ⇐⇒ there is Y ⊆ XMDom(X)∪{xn} s.t.

CxnX = CxnY and M, Y |=1 φ

M, X |=1 ∀xnφ ⇐⇒ there is Y ⊆ XMDom(X)∪{xn} s.t.

Cxn{X = Cxn{Y and M, Y |=1 φ

Figure 7.2: 1-semantics in teams

102 CHAPTER 7. 1-SEMANTICS

Case ψ1 ∨ ψ2. X |=1 φ iff X |=1 φ iff there are ω-teams Y1 and Y2 such that
X = Y1 ∪ Y2 and Yi |=1 ψ1 for both i ∈ {1, 2}. By Theorem 7.1.2
and the fact that FV(ψi) ⊆ FV(φ) for both i ∈ {1, 2}, given such
Yi, there are teams Z1 and Z2 such that Dom(Zi) = Dom(X) and
Zi = Yi for both i ∈ {1, 2}. Now X |=1 φ iff there is Z1, Z2 ⊆ XMDom(X)

such that X = Z1 ∪ Z2 and Zi |=1 ψi for both i ∈ {1, 2}. From
Dom(Zi) = Dom(X) and X = Z1 ∪Z2 = Z1 ∪ Z2, we get X = Z1 ∪Z2.
Thus X |=1 φ iff there is Z1, Z2 ⊆ XMDom(X) such that X = Z1 ∪Z2 and

Zi |=1 ψi for both i ∈ {1, 2}.

Case ψ1 ∧ ψ2. X |=1 φ iff X |=1 φ iff there are ω-teams Y1 and Y2 such that
X = Y1 ∩ Y2 and Yi |=1 ψ1 for both i ∈ {1, 2}. By Theorem 7.1.2
and the fact that FV(ψi) ⊆ FV(φ) for both i ∈ {1, 2}, given such
Yi, there are teams Z1 and Z2 such that Dom(Zi) = Dom(X) and
Zi = Yi for both i ∈ {1, 2}. Now X |=1 φ iff there is Z1, Z2 ⊆ XMDom(X)

such that X = Z1 ∩ Z2 and Zi |=1 ψi for both i ∈ {1, 2}. From
Dom(Zi) = Dom(X) and X = Z1 ∩Z2 = Z1 ∩ Z2, we get X = Z1 ∩Z2.
Thus X |=1 φ iff there is Z1, Z2 ⊆ XMDom(X) such that X = Z1 ∩Z2 and

Zi |=1 ψi for both i ∈ {1, 2}.

Case ∃xnψ. X |=1 φ iff X |=1 φ iff there is ω-team Y such that X = CxnY
and Y |=1 ψ. By Theorem 7.1.2 and the fact that FV(ψ) ⊆ FV(φ) ∪
{xn}, given such Y there is team Z such that Dom(Z) = Dom(X)∪{xn}
and Z = Y . Now X |=1 φ iff there is Z ⊆ XMDom(X)∪{xn} such that

X = CxnZ and Z |=1 ψ. From X = CxnZ, we get CxnX = X =
CxnZ = CxnZ, and together with Dom(CxnZ) = Dom(Z) = Dom(X)∪
{xn} = Dom(CxnX) it gives CxnX = CxnZ. Thus X |=1 φ iff there is
Z ⊆ XMDom(X)∪{xn} such that CxnX = CxnZ and Z |=1 ψ.

Case ∀xnψ. X |=1 φ iff X |=1 φ iff there is ω-team Y such that {X = Cxn{Y
and Y |=1 ψ. By Theorem 7.1.2 and the fact that FV(ψ) ⊆ FV(φ) ∪
{xn}, given such Y there is team Z such that Dom(Z) = Dom(X)∪{xn}
and Z = Y . Now X |=1 φ iff there is Z ⊆ XMDom(X)∪{xn} such that {X =

Cxn{Z and Z |=1 ψ. From xn 6∈ FV(¬φ) and Theorem 7.1.2 we get

Cxn{X = {X, which together with {X = Cxn{Z gives Cxn{X = {X =

{X = Cxn{Z = Cxn{Z, and together with Dom(Cxn{Z) = Dom(Z) ∪
{xn} = Dom(X)∪{xn} = Dom(Cxn{X) we get Cxn{X = Cxn{Z. Thus
X |=1 φ iff there is Z ⊆ XMDom(X)∪{xn} such that Cxn{X = Cxn{Z and

Z |=1 ψ.

7.2. BASIC PROPERTIES 103

Theorem 7.1.8 (Extra variables do not matter). For all teams X and Y
and formulas φ ∈ FOD, if FV(φ) ⊆ Dom(X) and FV(φ) ⊆ Dom(Y) and
X◦�FV(φ) = Y ◦�FV(φ), then X |=1 φ ⇐⇒ Y |=1 φ.

Proof. From X◦�FV(φ) = Y ◦�FV(φ) we get X = Y . Thus X |=1 φ iff X |=1 φ
iff Y |=1 φ iff Y |=1 φ.

As a corollary of the previous theorem, if X |=1 φ, then also X |=1 φ.
Combined with Theorem 7.1.2, this makes finite-domain teams and ω-teams
interchangeable in satisfaction of formulas in 1-semantics. The operations
that link the interchangeable teams and ω-teams are ω-closure and cylindric
restriction (to a set of variables that contains the free variables of the formula
in question).

7.2 Basic Properties

The two important properties of P-semantics are that formula interpreta-
tions are closed downwards and the empty team satisfies all formulas (The-
orem 2.4.4). Both properties fail in 1-semantics as can be seen by inspecting
any satisfiable first order formula in 1-semantics. However, every formula is
still satisfied by some team, although it may not be the empty team.

Theorem 7.2.1. For all φ ∈ FOD and all models M, there is a team X
such that M, X |=1 φ.

Proof. Induction on φ. For first order atomic formulas, choose X = [[φ]]FO.
For atomic D-formulas (t1 . . . tn);u, choose any n-ary function f and X =
{s : s(u) = f(s(t1), . . . , s(tn))}. For the remaining cases, let Y1 and Y2

be teams that satisfy subformulas ψ1 and ψ2, respectively, obtained by the
induction hypothesis. For ¬ψ1, choose X = {Y1. For ψ1 ∨ ψ2, choose X =
Y1 ∪ Y2. For ψ1 ∧ ψ2, choose X = Y1 ∩ Y2. For ∃xnψ1, choose X = CxnY1.
For ∀xnψ1, choose X = {Cxn{Y1.

7.2.1 Similarity of P-Semantics and 1-Semantics

1-semantics and P-semantics relate with respect to formula interpretations.
The following theorem shows that 1-semantics holds enough information to
determine P-semantics. We will later show a simple example where the con-
verse is not true. Hence, 1-semantics gives more information of a FOD for-
mula than P-semantics.

104 CHAPTER 7. 1-SEMANTICS

Theorem 7.2.2. For all φ ∈ FOD in strict negation normal form and all
teams X it holds that X |=P φ if and only if there is Y ⊇ X such that
Y |=1 φ.

Proof. The claim is clear if φ is first order (i.e. it does not contain occurrences
of D-formulas) because then [[φ]]P = P [[φ]]FO and [[φ]]1 =

{
[[φ]]FO}. The

general case we prove by induction on φ for an arbitrary team X.

Cases ⊥, >, Rt1 . . . tn and ¬Rt1 . . . tn. The claim is clear, see above.

Case (t1 . . . tn);u. By definition, X |=P φ is equivalent to there being a
function f such that for all s ∈ X: s(u) = f

(
s(t1), . . . , s(tn)

)
, and

X |=1 φ is equivalent to there being a function f such that X =
{
s ∈

XFV(φ) : s(u) = f
(
s(t1), . . . , s(tn)

)}
. We see that the claim holds.

Case φ1 ∧ φ2. If X |=P φ then X |=P φ1 and X |=P φ2. The induction
hypothesis gives some Y1 ⊇ X and Y2 ⊇ X such that Y1 |=1 φ1 and
Y2 |=1 φ2. Now X ⊆ Y1 ∩ Y2 and Y1 ∩ Y2 |=1 φ.

If Y |=1 φ for some Y ⊇ X, then there are Y1 and Y2 such that Y =
Y1 ∩ Y2, Y1 |=1 φ1 and Y2 |=1 φ2. Note that X ⊆ Y1 and X ⊆ Y2.
Thus the induction hypothesis gives X |=P φ1 and X |=P φ2, whence
X |=P φ.

Case φ1 ∨ φ2. If X |=P φ then there are teams X1 and X2 such that X =
X1 ∪ X2, X1 |=P φ1 and X2 |=P φ2. The induction hypothesis gives
some Y1 ⊇ X1 and Y2 ⊇ X2 such that Y1 |=1 φ1 and Y2 |=1 φ2. Now
X ⊆ Y1 ∪ Y2 and Y1 ∪ Y2 |=1 φ.

If Y |=1 φ for some Y ⊇ X, then there are Y1 and Y2 such that Y =
Y1 ∪ Y2, Y1 |=1 φ1 and Y2 |=1 φ2. By choosing X1 = X ∩ Y1 and
X2 = X ∩ Y2 we get X1 ⊆ Y1, X2 ⊆ Y2 and X = X1 ∪ X2. By the
induction hypothesis, X1 |=P φ1 and X2 |=P φ2, whence X |=P φ.

Case ∃xnψ. If X |=P φ then there is a function F such that X(xn 7→ F) |=P

ψ. The induction hypothesis gives some Y ⊇ X(xn 7→ F) such that
Y |=1 ψ. Now Y ′ |=1 φ, where Y ′ := (CxnY)�Dom(X). Because
Y ′ = Y �Dom(X), also Y ′ ⊇ X holds.

If Y |=1 φ for some Y ⊇ X, then there is Z ⊆ XDom(X)∪{xn} such that
CxnY = CxnZ and Z |=1 ψ. Assuming the axiom of choice, there is a
function F : X → M such that F (s) ∈ {a ∈ M : s(xn 7→ a) ∈ Z} for
all s ∈ X. Because X(xn 7→ F) ⊆ Z, the induction hypothesis gives
X(x 7→ F) |=P ψ. Thus X |=P φ.

7.2. BASIC PROPERTIES 105

Rxy
X

X X X
X

();y

X X X
X X X

X X X

();y ∧Rxy
X

X X X
X

∃y
(
();y ∧Rxy

)
X X X X X

∀x∃y
(
();y ∧Rxy

)
X

Figure 7.3: 1-interpretations of certain formulas

Case ∀xnψ. If X |=P φ, then X(x 7→ M) |=P ψ. By the induction hypoth-
esis, there is some Y ⊇ X(x 7→ M) such that Y |=1 ψ. Now Y ′ ⊇ X
and Y ′ |=1 φ, where Y ′ := ({Cxn{Y)�Dom(X).

If Y |=1 φ for some Y ⊇ X, then there is Z ⊆ XDom(X)∪{xn} such that
Cxn{Z = Cxn{Y and Z |=1 ψ. Because X(xn 7→M) ⊆ Z, the induction
hypothesis gives X(x 7→M) |=P ψ, whence X |=P φ.

The above theorem shows that if we know [[φ]]1 for any φ ∈ FOD, we
can compute also [[φ]]P. The converse does not hold as the following example
shows.

Example 7.2.3. Consider the sentence φ := ∀x∃y
(
();y∧Rxy

)
in the three-

element modelM = ({1, 2, 3}, RM), with the relation symbol interpreted as
RM = {(2, 1), (1, 2), (2, 2), (3, 2), (3, 3)}. Despite the facts that this simple
formula holds little interest in what it defines and that it has an equivalent
first order formula,6 it is useful in illustrating the mechanics of 1-semantics.
Figure 7.3 shows the 1-interpretations of all subformulas in φ, where each
team in the interpretation is represented as a table where a checkmark at the
b’th row and a’th column means that the assignment {x 7→ a, y 7→ b} is in
the team.

6Sentence φ is equivalent to the first order sentence ∃y∀xRxy, regardless of whether
we interpret φ in 1-semantics or P-semantics.

106 CHAPTER 7. 1-SEMANTICS

The P-interpretations of the subformulas of φ are the downward closures
of the corresponding 1-interpretations. Thus, [[Rxy]]PM consists of 25 teams,

[[();y]]PM consists of 3 · 23 − 2 teams, and so on. 1-interpretation and P-
interpretation agree on φ but not on any of its proper subformulas.

Consider the subformula φ′ := ∃y
(
();y ∧ Rxy

)
. Its P-interpretation

is PXM{x,y}. Now, if we change the model M by interpreting R as the full
relation, the 1-interpretation of φ′ changes while its P-interpretation remains
the same. Thus, although P-interpretation is straightforwardly computable
as the downward closure of 1-interpretation, it is not possible to compute
the 1-interpretation of a formula in a model if we are given only the P-
interpretation of the formula in the model.

Another interesting thing to note about the previous example is that it
is also an example of a sentence φ and model M such that M |=1 φ and
M |=1 ¬φ. This kind of phenomenon has been studied by the name of
paraconsistent logic. In paraconsistent logic, one abandons some classical
inference rules in order to be able to deduce formulas from a contradiction of
the form φ ∧ ¬φ while avoiding the principle of explosion, i.e. the ability to
deduce every formula. Indeed, 1-semantics rejects the rule of modus tollendo
ponens, i.e. that from M, X |=1 φ ∨ ψ and M, X |=1 ¬φ one can deduce
M, X |=1 ψ.

An explanation to the paraconsistency of 1-semantics can be seen later
in Theorem 7.2.6. The theorem shows that 1-semantics of FOD reflects exis-
tential second order logic. A formula φ ∈ FOD corresponds to some formula
ψ ∈ ESO with free element and function variables. If X |=1 φ, it corresponds
to saying that there are some values for the free function variables in ψ such
that X contains all the values for the element variables that satisfy ψ to-
gether with the chosen functions. In this case, X also contains the values of
those functions, evaluated on the chosen values for the element variables.

This is to say that negation in 1-semantics works on the “first order
level”. Negation in 1-semantics is not the classical negation of second order
logic; it is the classical negation of first order logic. This fact is tied to the
way we translate formulas between these logics, in particular, the semantic
translation and how it encodes first order and second order objects into teams
and back.

7.2.2 The Law of Excluded Middle

In first order logic, the law of excluded middle holds. The law of excluded
middle is the property of the first order truth definition |= that M |=
∀x(φ(x) ∨ ¬φ(x)) for all first order formulas φ and models M. It is gen-

7.2. BASIC PROPERTIES 107

erally known that the law of excluded middle fails for sentences of indepen-
dence friendly logic. Therefore it also fails for FOD sentences interpreted
in P-semantics. Because the law fails already for sentences it has not been
studied how it could be adapted more generally to all FOD formulas.

There are two ways to adapt the law of excluded middle to FOD formulas.
One is the obvious analogy of the first order statement, obtained by the same
formula construction for a given FOD formula φ.

Definition 7.2.4 (LEM1). A truth definition |= of FOD formulas has the
property LEM1 if for all φ ∈ FOD and models M it holds that M |=
∀x
(
φ(x) ∨ ¬φ(x)

)
.

Another formulation is obtained by rephrasing the first order statement
into the form “for all assignments s it holds that M, s |= φ ∨ ¬φ”.

Definition 7.2.5 (LEM2). A truth definition |= of FOD formulas has the
property LEM2 if for all φ ∈ FOD, all teams X and all models M it holds
that M, X |= φ(x) ∨ ¬φ(x).

Clearly LEM2 implies LEM1. Both of them are natural generalisations
of the law of excluded middle for first order logic.

Not surprisingly, both LEM1 and LEM2 fail for |=P. This follows simply
from the fact that for φ := ∀x∃y(();y ∧ x = y) we have both M 6|=P φ and
M 6|=P ¬φ for all modelsM with at least two elements.7 Also note that with
Theorem 2.4.6 one can construct a plethora of sentences that manifest the
failure of LEM1.

LEM1 holds for |=1. LEM1 applied to a FOD formula φ is equivalent to
M, XFV(φ) |=1 φ∨¬φ. This holds if and only if we can split XFV(φ) = Y ∪Z
such that M, Y |=1 φ and M, {Z |=1 φ. This can be done if and only
if there is some team Y such that M, Y |=1 φ; just choose Z = {Y . By
Theorem 7.2.1, this is always the case.

LEM2 fails also for |=1. Consider any first order formula φ. It is satisfied
in 1-semantics only by one team, [[φ]]FO, and thus φ ∨ ¬φ is satisfied in
1-semantics only by the full team. In a way, this makes sense. The full
team represents “all first order semantic objects” whereas the empty team
represents “no first order semantic objects”. It is unreasonable to demand
that a first order formula would hold for all and no semantic objects at the
same time.

7Note that ¬φ in the context of P-semantics denotes the result of a syntactic manipu-
lation of φ, as stated in Definition 2.4.2.

108 CHAPTER 7. 1-SEMANTICS

7.2.3 Expressive Power

It is easy to see that 1-semantics of FOD can be expressed in existential
second order logic. This gives a translation of 1-semantics to ESO. I also
give a translation in the converse direction. Note that the translation works
for all formulas in ESO as opposed to Theorem 5.1.2 for P-semantics where
we must restrict to downward closed formulas in ESO.

Theorem 7.2.6. Let φ ∈ ESO with free variables x1, . . . , xm and free func-
tion variables f1, . . . , fn such that each fi appears only in occurrences of the
term ti := fiu

i
1, . . . u

i
k(i), where each uij is a variable. Then there is ψ ∈ FOD

with free variables x1, . . . , xm such that for all models M and teams X:
M, X |=1 ψ if and only if there are functions g1, . . . , gn such that

X =
{
s :M, s(fi 7→ gi)i≤n |= φ

}
. (7.1)

Proof. Without loss of generality, we may assume that φ ∈ ESO is in Skolem
normal form,

φ := ∃fn+1 . . . ∃fn′∀xm+1 . . . ∀xm′θ,
where θ is a quantifier-free formula in variables f1, . . . , fn′ and x1, . . . , xm′ for
some n′ ≥ n and m′ ≥ m. Furthermore, we can assume that each fi appears
only in occurrences of the term ti := fiu

i
1 . . . u

i
k(i), where each uij is a variable.

Let ψ ∈ FOD be

ψ := ∀xm+1 . . . ∀xm′∃y1 . . . ∃yn′
∧
i≤n

αi ∧
∧

n<i≤n′
βi ∧ θ(ti 7→ yi)i≤n′

αi := (ui1 . . . u
i
k(i));yi

βi := (ui1 . . . u
i
k(i)x1 . . . xm);yi.

Assume X |=1 ψ and show that there are functions g1, . . . , gn such that
(7.1) holds. We may assume without loss of generality that xi, yj ∈ Dom(X)
for all i ≤ m′ and j ≤ n′. For m < i ≤ m′, there are Xi ⊆ XDom(X) such
that Cxi{Xi = Cxi{Xi−1, where we denote Xm := X, and for i ≤ n′ there are
Yi ⊆ XDom(X) such that CyiYi = CyiYi−1, where we denote Y0 := Xm′ , and
there are functions gi for i ≤ n′ such that

Yn = Z ∩
{
s : s(yi) = gi

(
s(ui1), . . . , s(uik(i))

)
for all i ≤ n

}
∩
{
s : s(yi) = gi

(
s(ui1), . . . , s(uik(i)), s(x1), . . . , s(xm)

)
for all n < i ≤ n′

}
,

(7.2)

where Z |=1 θ(ti 7→ yi)i≤n′ , i.e. Z = [[θ(ti 7→ yi)i≤n′]]
FO. In particular, each gi

for i ≤ n is k(i)-ary, and each gi for n < i ≤ n′ is (k(i) + m)-ary. We also
have X = {Cxm+1 . . .Cxm′{Cy1 . . .Cyn′Yn′ .

7.2. BASIC PROPERTIES 109

Now we have g1, . . . , gn and it is left to show that they satisfy (7.1). Let
s ∈ X. Note that by varying s we can get arbitrary values for variables
xm+1, . . . , xm′ while keeping the values of other variables fixed. We have
s′ ∈ Yn′ , where

s′ := s
(
yi 7→ gi

(
s(ui1), . . . , s(uik(i))

))
i≤n(

yi 7→ gi
(
s(ui1), . . . , s(uik(i)), s(x1), . . . , s(xm)

))
n<i≤n′ .

Denote

s′′ := s(fi 7→ gi)i≤n(fi 7→ hsi)n<i≤n′ ,

where hsi for n < i ≤ n′ are functions that map

hsi (b1, . . . , bk(i)) = gi
(
b1, . . . , bk(i), s(x1), . . . , s(xm)

)
(7.3)

for all b1, . . . , bk(i) ∈M . Then we get s′(yi) = s′′(ti) for all i ≤ n′. Now from
s′ |= θ(ti 7→ yi)i≤n′ we get s′′ |= θ. From this we get that

s(fi 7→ gi)i≤n |= φ (7.4)

for all s ∈ X, concluding the proof of the inclusion to the right in (7.1).
Assume that assignment s with Dom(s) = Dom(X) satisfies (7.4). Then

there are functions hsn+1, . . . , h
s
n′ such that for all am+1, . . . , am′ ∈M we have

s′′ |= θ, where

s′′ := s(xi 7→ ai)m<i≤m′(fi 7→ gi)i≤n(fi 7→ hsi)n<i≤n′ .

Note that at this point we still remember from (7.2) the functions g1, . . . , gn.
Instead, the functions gn+1, . . . , gn′ that (7.2) gave are useless and therefore,
for n < i ≤ n′, we use hsi to redefine gi as the (k(i) + m)-ary function that
maps elements as in (7.3) for all s that satisfy (7.4) and is defined arbitrarily
elsewhere. Define, for all i ≤ n′,

s′ := s1

(
yi 7→ gi

(
s1(ui1), . . . , s1(uik(i))

))
i≤n(

yi 7→ gi
(
s1(ui1), . . . , s1(uik(i)), s1(x1), . . . , s1(xm)

))
n<i≤n′ ,

where s1 := s(xi 7→ ai)m<i≤m′ . Then s′(yi) = s′′(ti) for all i ≤ n′, whence
s′ |= θ(ti 7→ yi)i≤n′ . Now s′ ∈ Yn′ , where Yn′ is as in (7.2), whence s ∈ X.
This concludes the proof that the functions gi satisfy (7.1).

For the other direction, let g1, . . . , gn be given and show that X |=1 ψ,
where X is as in (7.1). We may assume without loss of generality that

110 CHAPTER 7. 1-SEMANTICS

xi, yj ∈ Dom(X) for all i ≤ m′ and j ≤ n′. For each s ∈ X there are
functions hsn+1, . . . , h

s
n′ such that s′′ |= ∀x1 . . . ∀xmθ, where

s′′ := s(fi 7→ gi)i≤n(fi 7→ hsi)n<i≤n′ .

For each n < i ≤ n′, let gi be the (k(i) + m)-ary function that maps as in
(7.3) for all s ∈ X and is defined arbitrarily on other values. Define

s′ := s
(
yi 7→ gi

(
s(ui1), . . . , s(uik(i))

))
i≤n(

yi 7→ gi
(
s(ui1), . . . , s(uik(i)), s(x1), . . . , s(xm)

))
n<i≤n′ .

To show that X |=1 ψ, it suffices to show that Y = Yn′ , where Y := {s′ : s ∈
X} and Yn′ is defined as in (7.2).

Let s′ ∈ Y . Clearly s′(yi) = gi
(
s(ui1), . . . , s(uik(i))

)
for all i ≤ n, and

s′(yi) = gi
(
s(ui1), . . . , s(uik(i)), s(x1), . . . , s(xm)

)
for all n < i ≤ n′. Note that

s′′(xi 7→ s′(xi))m<i≤m′ = s′′ because s′(xi) = s(xi) for all m < i ≤ m′.
Thus from the fact that s′′ |= θ and s′′(ti) = s′(yi) for all i ≤ n′, we have
s′ |= θ(ti 7→ yi)i≤n′ . Therefore s′ ∈ Yn′ .

Let then s0 ∈ Yn′ . Looking at the definition of Yn′ , we see that s0 defines
the values of yi based on the functions gi; therefore we can present s0 =: s′

for some s ∈ X. Furthermore, because s′ ∈ Yn′ , we have s′ |= θ(ti 7→ yi)i≤n′ .
Again, it holds that s′(yi) = s′′(ti) for all i ≤ n′, and therefore s′′ |= θ, from
which we get s(fi 7→ gi)i≤n |= φ, and further, s0 ∈ Y . This completes the
proof.

7.3 Game Theoretic Semantics

In this section I sketch some ideas about what impact 1-semantics has on
semantic games. The goal is to give a semantic game that characterises the
truth definition of 1-semantics as presented in Definition 7.1.6.

A strategy (for a semantic test) for a modelM and formula φ ∈ FOD is a
partial function σ that is defined on some pairs (ψ, s) where ψ is a subformula
of φ and s is an assignment forM defined on FV(ψ). A strategy maps these
pairs to the union of the universe M and the set of subformulas of φ such
that σ(ψ1 ∨ ψ2, s) ∈ {ψ1, ψ2} and σ(∃xψ, s) ∈M .

Definition 7.3.1. I define the semantic test procedure, denoted T, as follows.
There is a test supervisor called ∃loise and her job is to guide the test so that
it passes, denoted >. If a test does not pass, it fails, denoted ⊥. The result of
a semantic test we denote by T(M, φ, s, σ) for a modelM, formula φ ∈ FOD,
assignment s that is defined on the free variables of φ, and strategy σ forM

7.3. GAME THEORETIC SEMANTICS 111

T(M,⊥, s, σ) ==== ⊥
T(M,>, s, σ) ==== >

T(M, Rt1 . . . tn, s, σ) ⇐⇒
(
s(t1), . . . , s(tn)

)
∈ RM

T(M, (t1 . . . tn);u, s, σ) ==== > (see below for passing tests uniformly)

T(M,¬ψ, s, σ) ⇐⇒ not T(M, ψ, s, σ)

T(M, ψ1 ∨ ψ2, s, σ) ⇐⇒ T(M, ψn, s, σ), where ψn = σ(φ, s)

T(M, ψ1 ∧ ψ2, s, σ) ⇐⇒ T(M, ψn, s, σ) for both n ∈ {1, 2}
T(M,∃xψ, s, σ) ⇐⇒ T(M, ψ, s(x 7→ a), σ), where a = σ(φ, s)

T(M,∀xψ, s, σ) ⇐⇒ T(M, ψ, s(x 7→ a), σ) for all a ∈M

Figure 7.4: Result of a semantic test, T(M, φ, s, σ)

and φ. We may think of T(M, φ, s, σ) as a predicate that yields true if and
only if the test passes. The test result is defined as in Figure 7.4, based on
the form of φ.

It is an open question if there is a game such that T(M, φ, s, σ) is equiv-
alent to σ being a winning strategy in the game on M, φ and s.

The semantic test procedure characterises first order semantics.

Theorem 7.3.2. For any modelM, formula φ ∈ FO and assignment s there
is σ such that M, s |= φ if and only if T(M, φ, s, σ) = >.

Proof. Induction on φ ∈ FOD.

Case ⊥. Both M, s |= ⊥ and T(M,⊥, s, σ) = > never hold.

Case >. Both M, s |= > and T(M,>, s, σ) = > always hold.

Case Rt1 . . . tn. The claim is clear as we can choose σ to be the empty
function.

Case ¬ψ. Let σ be the same as for ψ. Then M, s |= φ iff M, s 6|= ψ iff
T(M, ψ, s, σ) = ⊥ iff T(M, φ, s, σ) = >.

Case ψ1 ∨ ψ2. Let σ map φ to ψn such that M, s |= ψn, if such n exists,
or to ψ1 otherwise, and elsewhere let σ map like σ1 and σ2 which we
get for ψ1 and ψ2 from the induction hypothesis. Then M, s |= φ iff
M, s |= ψn for some n iff T(M, ψn, s, σn) = > for some n. We can now
see that M, s |= φ iff T(M, φ, s, σ) = >.

112 CHAPTER 7. 1-SEMANTICS

Case ψ1 ∧ ψ2. Let σ map like σ1 and σ2 which we get for ψ1 and ψ2 from the
induction hypothesis. ThenM, s |= φ iffM, s |= ψn for both n ∈ {1, 2}
iff T(M, ψn, s, σn) = > for both n ∈ {1, 2} iff T(M, φ, s, σ) = >.

Case ∃xψ. Let σ map φ to a ∈ M such that M, s(x 7→ a) |= ψ, if such a
exists, or to an arbitrary element otherwise, and elsewhere let σ map
like σ′ which we get for ψ from the induction hypothesis. ThenM, s |=
φ iff M, s(x 7→ a) |= ψ for some a ∈ M iff T(M, ψ, s(x 7→ a), σ′) = >
for some a ∈M . We can now see thatM, s |= φ iff T(M, φ, s, σ) = >.

Case ∀xψ. Let σ map like σ′ which we get for ψ from the induction hy-
pothesis. Then M, s |= φ iff M, s(x 7→ a) |= ψ for all a ∈ M iff
T(M, ψ, s(x 7→ a), σ′) = > for all a ∈M iff T(M, φ, s, σ) = >.

For a model M, formula φ ∈ FOD, team X and strategy σ, we say that
T(M, φ, s, σ) passes uniformly for s ∈ X, if for all instances of D-formulas in
φ, enumerated as ψ1, . . . , ψk, there are functions f1, . . . , fk such that, for all
s ∈ X, T(M, φ, s, σ) = > and if the test T(M, φ, s, σ) ends in the final test
T(M, ψi, s

′, σ) then s′(u) = fi
(
s′(t1), . . . , s′(tn)

)
, where ψi is (t1 . . . tn);u.

There is also a semantic game in the traditional sense in which we process
several semantic tests at once. A similar game for P-semantics was presented
already by Väänänen [19, Definition 5.5].

Definition 7.3.3. The 1-semantic game on teams, a1(M, φ,X) for a model
M, formula φ ∈ FOD and team X that is defined on the free variables of φ is
defined as follows. There are two players, ∀belard and ∃loise, whose actions
are limited by the game according to the form of φ as follows.

Case ⊥. If X = ∅, ∃loise wins. Otherwise she loses.

Case >. ∃loise wins unconditionally.

Case Rt1 . . . tn. If X =
{
s :
(
s(t1), . . . , s(tn)

)
∈ RM

}
, ∃loise wins. Other-

wise she loses.

Case (t1 . . . tn);u. If there is an n-ary function f such that X =
{
s : s(u) =

f
(
s(t1), . . . , s(tn)

)}
, ∃loise wins. Otherwise she loses.

Case ¬φ. The game continues according to a1(M, φ, {X).

Case φ ∨ ψ. ∃loise chooses teams Y and Z such that X = Y ∪ Z, and
∀belard chooses whether the game continues according to a1(M, φ, Y)
or a1(M, ψ, Z).

7.3. GAME THEORETIC SEMANTICS 113

Case φ ∧ ψ. ∃loise chooses teams Y and Z such that X = Y ∩ Z, and
∀belard chooses whether the game continues according to a1(M, φ, Y)
or a1(M, ψ, Z).

Case ∃xφ. ∃loise chooses a team Y such that Y �FV(∃xφ) = X�FV(∃xφ),
and the game continues according to a1(M, φ, Y).

Case ∀xφ. ∃loise chooses a team Y such that {Y �FV(∃xφ) = {X�FV(∃xφ),
and the game continues according to a1(M, φ, Y).

A game strategy (for ∃loise) for a model M and formula φ ∈ FOD is a
partial function σ that is defined on some pairs (ψ,X) where ψ is a subfor-
mula of φ and X is a team forM defined on FV(ψ). A game strategy maps
these pairs to teams or pairs of teams on M such that pairs of the forms
(ψ1 ∨ψ2, X) and (ψ1 ∧ψ2, X) are mapped to pairs of teams, and pairs of the
forms (∃xψ,X) and (∀xψ,X) are mapped to teams.

The semantic test procedure and the 1-semantic game seem to be closely
related.

Conjecture 7.3.4. For any formula φ ∈ FOD, modelM, team X and game
strategy σ there is a strategy σ∗ such that σ is winning in a1(M, φ,X) if and
only if X is maximal with respect to T(M, φ, s, σ∗) passing uniformly for
s ∈ X.

Theorem 7.3.5. For all formulas φ, models M and teams X, ∃loise has a
winning strategy in a1(M, φ,X) if and only if M, X |=1 φ.

Proof. We prove the claim for arbitraryM and X by induction on φ ∈ FOD.

Atomic cases. For ⊥, >, Rt1 . . . tn and (t1 . . . tn);u the claim clearly holds.

Case ¬ψ. Claim clear.

Case ψ1 ∨ ψ2. If σ is winning in a1(M, φ,X) then σ gives Y1 and Y2 such
that X = Y1∪Y2 and σ is winning in a1(M, ψn, Yn) for both n ∈ {1, 2}.
By the induction hypothesis, M, Yn |=1, ψn for both n ∈ {1, 2}, thus
M, X |=1 φ.

If M, X |=1 φ, then there is Y1 and Y2 such that X = Y1 ∪ Y2 and
M, Yn |= ψn for both n ∈ {1, 2}. By the induction hypothesis, ∃loise
has a winning strategy σn for a1(M, ψn, Yn) for both n ∈ {1, 2}. Let σ
be the strategy that maps (φ,X) to (Y1, Y2) and that maps otherwise
like σ1 and σ2. Then σ is winning in a1(M, φ,X).

Case ψ1 ∧ ψ2. Similarly to above.

114 CHAPTER 7. 1-SEMANTICS

Case ∃xψ. If σ is winning in a1(M, φ,X) then σ gives some team Y such
that X�FV(φ) = Y �FV(φ) and σ is winning in a1(M, ψ, Y). By the
induction hypothesis, M, Y |=1 ψ, thus M, X |= φ.

If M, X |= φ, then there is Y such that X�FV(φ) = Y �FV(φ) and
M, Y |=1 ψ. By the induction hypothesis, ∃loise has a winning strategy
σ′ for a1(M, ψ, Y). Let σ be the strategy that maps (φ,X) to Y and
that maps otherwise like σ′. Then σ is winning in a1(M, φ,X).

Case ∀xψ. Similarly to above.

The point of presenting the semantic test procedure is to place a critical
view on the concept of game theoretic semantics. The semantic test proce-
dure is an alternative “game theoretic” truth definition for first order logic
(and also for 1-semantics, given that Conjecture 7.3.4 holds) that handles
negation in a different way than is done in the traditional approach, fronted
by Hintikka, where the semantic game is played by two players and nega-
tion corresponds to the players swapping roles. Theorem 7.3.2 shows that
the semantic test procedure is as adequate a definition for game theoretic
semantics for first order logic as Hintikka’s two-player game. However, as
I suggest in Conjecture 7.3.4, when shifting from first order logic to depen-
dence logic (or independence friendly logic), the semantic test procedure is
the more practical choice of the two. Assuming that the conjecture holds,
the semantic test procedure yields 1-semantics, whereas Hintikka’s semantic
game yields P-semantics.

7.4 Further Ideas

Let us consider an analogy to Theorem 2.3.2 and Theorem 2.3.3 which state
that in second order logic one can equivalently restrict to function quantifiers
or relation quantifiers. Whereas a D-formula expresses the existence of a
function, we could have another kind of formula that expressed the existence
of a relation. In a sense, we already have this kind of quantification built in
1-semantics of first order formulas; a block of n quantifiers existential state
the existence of a new team that extends the old team in n variables, thus
in practice expressing the existence of an n-ary relation. What 1-semantics
on FOD lacks, however, is an explicit way of expressing atomic second order
formulas, that is, containment of a tuple in a quantified relation. We are
able to express containment via the detour through translation to function
quantifiers and then to FOD but this is not enough for practical use of the
feature.

7.4. FURTHER IDEAS 115

Define C-formula as a formula of the form (t1 . . . tn)⊂(u1 . . . un), where all
ti and ui are terms. We obtain containment logic by equipping the syntax of
FO with C-formulas and we denote it FOC. C stands for containment as in
“tuples defined by (ui)i≤n contain tuples defined by (ti)i≤n”.

First we need a helpful definition. Let X be a team and let t1, . . . , tn be
terms. Extend the previously defined operation Rel that turns a team into
a relation in the following way, allowing us to specify with terms how the
relation is decoded from the team:

Rel(X, t1, . . . , tn) :=

{(a1, . . . , an) : there is s ∈ X such that s(ti) = ai for all i ≤ n}.

We can now define the 1-semantics of C-formulas on ω-teams as follows.

M, X |=1 (t1 . . . tn)⊂(u1 . . . un) ⇐⇒
Rel(X, t1, . . . , tn) ⊆ Rel(X, u1, . . . , un)

C-formulas express the containment of one relation in another, where
both relations are encoded into the team by sequences of terms. This is a
generalisation of our previously stated goal of expressing the containment of
just one tuple in a relation. In teams containing several assignments, it would
be difficult to pick just one tuple. Therefore this more general expression is
easier to define. In fact, there should be no need to express the containment
of just one tuple in a relation. The reason is that semantics defined on teams
is in any case supposed to speak about several first order assignments at
once, that is, we have several simultaneous values for “first order variables”
and these values are grouped into a relation of their own.

I conjecture that FOC has the same expressive power as FOD. At least it
is easy to see that 1-semantics for FOC formulas is expressible in ESO. The
converse is formulated as the following conjecture, mimicking Theorem 7.2.6.

Conjecture 7.4.1. Let φ ∈ ESO with free variables x1, . . . , xm and free
relation variables R1, . . . , Rn such that each Ri appears only in occurrences
of the atomic formula θi := Riu

i
1, . . . u

i
k(i), where each uij is a variable. Then

there is ψ ∈ FOC with free variables x1, . . . , xm and yij for all i ≤ n and
j ≤ k(i) such that for all models M and teams X, M, X |=1 ψ if and only
if there are relations S1, . . . , Sn such that

Rel
(
X, yi1, . . . , y

i
k(i)

)
= Si

116 CHAPTER 7. 1-SEMANTICS

for all i ≤ n, and

Rel(X, x1, . . . , xm) ={(
s(x1), . . . , s(xm)

)
:M, s |= φ and s(Ri) = Si for all i ≤ n

}
.

Furthermore, FOC might have an advantage over FOD by being more
suitable for finding proof systems that capture entailment in fragments of
FOC. Recall from Chapter 6 the construction of a fragment of FOD by
taking a fragment of classical propositional logic and replacing propositions
Pk by fixed formulas θk ∈ FOD. Fragment F from Chapter 6 is constructed
in this way. It turned out that proof systems of classical logic are unsound
for the fragment F because of θk ∨ θk 6⇒ θk. In its simplest form, this
negative entailment is of the form (t1 . . . tn);y∨(t1 . . . tn);y 6⇒ (t1 . . . tn);y.
Intuitively, it states that even if we know that a team can be split in two
parts such that in each part the value of y is the value of a function on terms
t1, . . . , tn, there might not be a function that computes the value of y in the
whole team from the values of the terms t1, . . . , tn.

Proposition 7.4.2. (x)⊂(y) ∨ (x)⊂(y)⇒ (x)⊂(y)

Proof. If X |=1 (x)⊂(y) ∨ (x)⊂(y) then we can split X = Y ∪ Z such that
Y |=1 (x)⊂(y) and Z |=1 (x)⊂(y). Therefore for all s ∈ Y there is s′ ∈ Y such
that s(x) = s′(y) and for all s ∈ Z there is s′ ∈ Z such that s(x) = s′(y).
Let s ∈ X. Then s ∈ Y or s ∈ Z, whereby there is s′ ∈ Y or s′ ∈ Z such
that s(x) = s′(y). Obviously s′ ∈ X. This shows X |=1 (x)⊂(y).

This little proposition suggests a notable difference between FOD and
FOC when it comes to finding proof systems. FOC might, in some ways,
be better suited for adapting proof systems of classical propositional logic
for fragments constructed from propositional sentences by replacing propo-
sitional symbols by FOC formulas.

Chapter 8

Conclusions

In this thesis, I have investigated dependence logic from several aspects. On
the practical side, I have presented some rules for quantifier swapping in
dependence logic and team logic. Such rules are among the basic tools one
must be familiar with in order to gain the required intuition for using the
logic for practical purposes. For comparison, similar rules for the old and
well established logics such as first order logic are so central that they are
taught in elementary logic courses.

I have also looked into Ehrenfeucht-Fräıssé (EF) games. I have compared
the EF games of first order logic and dependence logic and I have defined a
third EF game that characterises a mixed case where first order formulas are
measured in dependence rank. I have also provided an effective conversion
between winning strategies.

These two areas of research provide basic facts about dependence logic.
The facts in themselves may not be of particular interest but they form part
of the basic understanding of dependence logic. More such research is needed
before we can claim to understand dependence logic and before the logic can
gain ground in more practical applications.

I have provided detailed proofs of several translations between dependence
logic, team logic, second order logic and its existential fragment. Translations
can be used in showing a relationship between the expressive powers of two
logics. Translations are also useful on a more detailed level—by inspecting
the form of the translated formulas, one can see how an aspect of one logic
can be expressed in the other logic. For example, in the translation of second
order logic to team logic, one can see how function quantifiers in second order
logic are expressed in team logic by a similar “first order” quantifier and a
suitable D-formula.

In this thesis I have also investigated proof theory in dependence logic,
an area that is mostly untouched in literature. My work in this field is still

117

118 CHAPTER 8. CONCLUSIONS

very much in the beginning. My attempts focused on finding a complete
proof system for some modest yet nontrivial fragment of dependence logic.
In particular, I investigated a fragment that one could describe as being a
tiny step from classical propositional first order logic towards dependence
logic. Even this fragment is a “tough nut”. I addressed a key problem in
adapting a known proof system of classical propositional logic to become a
proof system for the fragment, namely that the rule of contraction is needed
but is unsound in its unrestricted form. I provided a proof system for the
fragment but its completeness is yet only a conjecture.

Finally, I have investigated the foundation of dependence logic. I provided
an alternative semantics for the syntax of dependence logic. I call the new
semantics 1-semantics and the old semantics P-semantics because of the way
they relate to first order semantics. Whereas it is always easy to come up
with new semantics, 1-semantics stands out because it is derived from first
order semantics by a natural type shift. This means that 1-semantics reflects
an established semantics in a coherent manner. As a positive side effect, one
can shift any quantifier or connective from first order logic to 1-semantics by
the same shift.

In contrast, in P-semantics the meaning of each connective and quantifier
is defined separately without a unifying principle. This is illustrated by the
fact that one can define disjunction in P-semantics equivalently by referring
to a disjoint union,

X |=P φ ∨ ψ ⇐⇒ there are disjoint Y, Z s.t. X = Y ∪ Z and

Y |=P φ and Z |=P φ, (8.1)

as well as by referring to union of potentially overlapping teams,

X |=P φ ∨ ψ ⇐⇒ there are Y, Z s.t. X = Y ∪ Z and

Y |=P φ and Z |=P φ. (8.2)

Both (8.1) and (8.2) produce the same semantics. A similar degree of freedom
is in the existential quantifier; one can define it equivalently by extending a
team by a multi-valued function or a single-valued function.

1-semantics is closely related to P-semantics. In terms of formula in-
terpretations, P-semantics is the downward closure of 1-semantics. By this
relationship, one may be able to transfer some results between the two se-
mantics. Because of the downward closure, P-semantics hides some of the
information that 1-semantics carries. In other words, a simple operation
(namely downward closure) can turn the 1-interpretation of a formula into

119

its P-interpretation, but there is no operation that can turn P-interpretations
into corresponding 1-interpretations.

Despite the fact that the definition of 1-semantics differs only slightly
from P-semantics, 1-semantics has several additional properties. Most im-
portantly, negation is a semantic operation in 1-semantics, just like any other
connective. Negation also behaves differently; the law of excluded middle,
translated suitably from first order logic, holds for 1-semantics. This is re-
lated to the definition of negation as complementing the team in question. In
contrast, the syntactic negation of P-semantics moves to some subset of the
complement of the team in question, depending on the syntax of the formula.

I have provided a detailed translation of existential second order logic
into 1-semantics. Interestingly, it seems natural to translate formulas where
second order quantifiers are function quantifiers. The corresponding trans-
lation into P-semantics works naturally when second order quantifiers are
relation quantifiers. We also know that only downward closed formulas of
existential second order logic can be translated to P-semantics. This comes
as no surprise, of course, knowing that P-semantics is the downward closure
of 1-semantics. 1-semantics is free of this restriction.

Game theoretic semantics is the origin of P-semantics. First there was
game theoretic semantics for first order logic as a two-player game. Hintikka
made a twist in the game, providing a means to hide information from the
players, resulting in independence friendly logic. Hodges then came up with
P-semantics as a representation of game positions of several semantic games
that are played simultaneously. 1-semantics emerges the other way; we start
with the Tarskian semantics for first order logic, 1-shift it to teams, and
finally add D-formulas. In this thesis I have briefly explored how to provide
also a game theoretic form of 1-semantics. I conjecture that the semantic
test procedure will fulfill this task.

The key difference between Hintikka’s semantic game and the semantic
test procedure is the handling of negation. Hintikka’s negation switches the
roles of the two players. This is in effect the same syntactic operation on
compound formulas that I define for P-semantics. Hintikka’s negation is a
dramatic operation from ∃loise’s perspective—her winning strategy for some
formula φ has in general nothing to do with the game that is played on
¬φ because the negation makes ∃loise play in totally different places in the
formula. In the semantic test procedure, negation works differently. It lets
∃loise keep her strategy. Negation negates the result of one test. This is
of course different from negating the satisfaction of the formula which is
characterised by there existing a strategy for ∃loise with what the test that
the semantic test procedure specifies for the formula, model and assignment,

120 CHAPTER 8. CONCLUSIONS

passes.

Dependence logic and independence friendly logic are like twins; the for-
mer is the Tarskian twin and the latter is the game theoretic twin. It seems
that studying one can benefit both via the strong bond they have. After
all, dependence logic emerged from a reformulation of independence friendly
logic. On the other hand, 1-semantics may shed light on game theoretic
semantics. Therefore the study of these logics should not be left for philoso-
phers only as seems to have been the case so far. Logicians from the fields
of mathematics and philosophy have the best chance of making the most out
of these new logics by working together.

Bibliography

[1] Kai Brünnler, Deep inference and symmetry in classical proofs, Logos
Verlag, Berlin, 2004, http://www.iam.unibe.ch/~kai/Papers/phd.

pdf.

[2] Kai Brünnler and Alwen Fernanto Tiu, A local system for classical logic,
LPAR 2001 (R. Nieuwenhuis and A. Voronkov, eds.), Lecture Notes in
Artificial Intelligence, vol. 2250, Springer-Verlag, 2001, http://www.

iam.unibe.ch/~kai/Papers/lcl-lpar.pdf, pp. 347–361.

[3] John P. Burgess, A remark on Henkin sentences and their contraries,
Notre Dame J. Formal Logic 44 (2003), no. 3, 185–188 (electronic)
(2004).

[4] Xavier Caicedo, Francien Dechesne, and Theo M.V. Janssen, Equiva-
lence and quantifier rules for logic with imperfect information, Logic Jnl
IGPL 17 (2009), no. 1, 91–129, http://dx.doi.org/10.1093/jigpal/
jzn030.

[5] Peter Cameron and Wilfrid Hodges, Some combinatorics of imperfect in-
formation, J. Symbolic Logic 66 (2001), no. 2, 673–684. MR MR1833470
(2002e:03046)

[6] Herbert B. Enderton, Finite partially-ordered quantifiers, Z. Math. Logik
Grundlagen Math. 16 (1970), 393–397.

[7] Alessio Guglielmi, Deep inference and the calculus of structures, Web
site at http://alessio.guglielmi.name/res/cos.

[8] Alessio Guglielmi and Tom Gundersen, Normalisation control in deep
inference via atomic flows, Submitted. http://cs.bath.ac.uk/ag/p/
NormContrDIAtFl.pdf, 2007.

[9] David Harel, Characterizing second-order logic with first-order quanti-
fiers, Z. Math. Logik Grundlag. Math. 25 (1979), no. 5, 419–422.

121

http://www.iam.unibe.ch/~kai/Papers/phd.pdf
http://www.iam.unibe.ch/~kai/Papers/phd.pdf
http://www.iam.unibe.ch/~kai/Papers/lcl-lpar.pdf
http://www.iam.unibe.ch/~kai/Papers/lcl-lpar.pdf
http://dx.doi.org/10.1093/jigpal/jzn030
http://dx.doi.org/10.1093/jigpal/jzn030
http://alessio.guglielmi.name/res/cos
http://cs.bath.ac.uk/ag/p/NormContrDIAtFl.pdf
http://cs.bath.ac.uk/ag/p/NormContrDIAtFl.pdf

122 BIBLIOGRAPHY

[10] L. Henkin, Some remarks on infinitely long formulas, Infinitistic Meth-
ods (Proc. Sympos. Foundations of Math., Warsaw, 1959), Pergamon,
Oxford, 1961, pp. 167–183.

[11] Leon Henkin, J. Donald Monk, and Alfred Tarski, Cylindric algebras,
Part I, North-Holland Publishing Co., Amsterdam, 1971, Studies in
Logic and the Foundations of Mathematics, Vol. 64.

[12] Jaakko Hintikka, The principles of mathematics revisited, Cambridge
University Press, 1996.

[13] Jaakko Hintikka and Gabriel Sandu, Informational independence as
a semantical phenomenon, Logic, methodology and philosophy of sci-
ence, VIII (Moscow, 1987), Stud. Logic Found. Math., vol. 126, North-
Holland, Amsterdam, 1989, pp. 571–589.

[14] Wilfrid Hodges, Compositional semantics for a language of imperfect
information, Log. J. IGPL 5 (1997), no. 4, 539–563 (electronic).

[15] , Some strange quantifiers, Structures in logic and computer sci-
ence, Lecture Notes in Comput. Sci., vol. 1261, Springer, Berlin, 1997,
pp. 51–65.

[16] Juha Kontinen and Ville Nurmi, Team logic and second-order
logic, 16th International Workshop, WoLLIC 2009, Tokyo, Japan,
June 21-24, 2009. Proceedings, Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, June 2009, http://dx.doi.org/10.

1007/978-3-642-02261-6_19.

[17] Juha Kontinen and Jouko Väänänen, On definability in dependence
logic, Journal of Logic, Language and Information (2009), http://dx.
doi.org/10.1007/s10849-009-9082-0.

[18] Barbara H. Partee, Noun phrase interpretation and type-shifting prin-
ciples, Studies in Discourse Representation Theory and the Theory of
Generalized Quantifiers (Jeroen Groenendijk, Dick de Jongh, and Mar-
tin Stokhof, eds.), Groningen-Amsterdam Studies in Semantics, vol. 8,
Foris Publications, Dordrecht, 1986, pp. 115–144.

[19] Jouko Väänänen, Dependence logic: A new approach to independence
friendly logic, London Mathematical Society Student Texts, vol. 70,
Cambridge University Press, 2007.

http://dx.doi.org/10.1007/978-3-642-02261-6_19
http://dx.doi.org/10.1007/978-3-642-02261-6_19
http://dx.doi.org/10.1007/s10849-009-9082-0
http://dx.doi.org/10.1007/s10849-009-9082-0

BIBLIOGRAPHY 123

[20] Wilbur John Walkoe, Jr., Finite partially-ordered quantification, J. Sym-
bolic Logic 35 (1970), 535–555.

Index

sa (tuple as an assignment), 93
s(x 7→ a) (assignment, modified),

10
a(n 7→ a) (tuple, modified), 94
Rel(X) (corresponding relation of a

team), 17
Rel(X, t1, . . . , tn) (corresponding

relation of a team), 115
R(x1,...,xn) (corresponding team of a

relation), 17
CnX, see cylindrification
CxnX, see cylindrification
(t1 . . . tn)⊂(u1 . . . un), see formula,

C-formula
=(t1, . . . , tn, u) (D-formula,

Väänänen’s notation), 16
(t1 . . . tn);u, see formula,

D-formula
φ = ψ (syntactical identity), 8
{ }, see formula, hole
χ{ψ}, see formula, context
ψ ≤ φ, see subformula
Join(φ, ψ), see formula, join
FV(φ) (free variables), 8
TM, see fundamental predicate
EFFO

n (M,N), see EF-game, for FO
EF∗n(M,N), see EF-game, for FO

with dependence rank
EFFOD

n (M,N), see EF-game, for
FOD

a(φ, f, x), see element game
a1(M, φ,X), see game, 1-semantic
aFOD(M, φ), see semantic game,

for FOD
aSO(M, φ), see semantic game, for

SO
↑ (existence of winning strategy),

40
T(M, φ, s, σ), see semantic test

procedure
[[φ]]SM (interpretation), 9
ILM (set of interpretations), 51
FOC, see logic, containment
FOD, see logic, dependence
FODn (FOD up to rank n), 39
FO, see logic, first order
FOn (FO up to rank n), 39
FOFOD

n (FO up to dependence rank
n), 39

SO, see logic, second order
ESO, see logic, existential second

order
TL, see logic, team
φ⇒ ψ, see logical consequence
φ ≡ ψ, see logical equivalence
Mφ, see model, canonical
M≡LR,n N , see equivalent models
MVL

R,n N , see semiequivalent
models

ω (natural numbers), 7
P (powerset), 7
φ `S∆ ψ, see derivation
F (a fragment of FOD), 78
SKSg (a global proof system), 75
SKSgf (a global proof system), 78
SKS (a local proof system), 75

124

INDEX 125

SKSf (a local proof system), 78
Xτ
φ , see team, τ -team

Xτ,∆
φ , see team, τ -∆-team

rankFOD(φ), see rank, dependence
rankFO(φ), see rank, first order
φ(α 7→ β) (replacement), 8
M, X |=1 φ, see semantics,

1-semantics
M, X |=FOD φ, see semantics,

dependence
M, s |= φ, see semantics, first order
M, X |=P φ, see semantics,

P-semantics
M, s |= φ, see semantics, second

order
M, X |=TL φ, see semantics, team
Xφ, see team, canonical

Xφ
ψ, see team, φ-canonical

X, see team, ω-closure
XMV , see team, full
Xτ
φ , see team, game

X(x 7→ a) (team, modified), 17
X(x 7→ F) (team, modified), 17
X(x 7→M) (team, modified), 17
X�V , see team, restricted
X�V , see team, co-restricted
X◦�V , see team, cylindrically

restricted
X◦�V , see team, cylindrically

co-restricted
F ��V , see deeply restricted function
gNat
M , see translation, natural

semantic

assignment
first order, 10
second order, 12

atomic flow, 76
axiom of choice, 24, 95, 104

calculus of structures, 73

conclusion, 74
contractum, 74
cylindrification, 94, 98

deep inference, 73
deeply restricted function, 33
derivation, 74

decomposition, 76, 79

EF-game
for FO, 40
for FO with dependence rank,

44
for FOD, 41

element game, 82
entailment, see logical consequence
equivalent models, 39

flow condition, 78
formula

C-formula, 115
context, 74
D-formula, 16, 26
dependence, 16
first order, 9
flows to, see atomic flow
hole, 74
join, 73
propositional, 11
second order, 12
subformula, see subformula
team, 26

fragment, 9
fundamental predicate, 20

game
EF, see EF-game
Ehrenfeucht-Fräıssé, see

EF-game
element, see element game
semantic, see semantic game
1-semantic, 112

126 INDEX

semantic test procedure, see
semantic test procedure

inference, 74
inference rule, 74

language, 7
law of excluded middle, 23, 106
logic, 8

containment, 115
dependence, 2, 15
existential second order, 14
first order, 9
IF, see logic, independence

friendly
independence friendly, 28
independence friendly, 1
paraconsistent, 106
second order, 11
team, 26

logical consequence, 9
logical equivalence, 9

model, 7
canonical, 86
equivalence, see equivalent

models
semiequivalence, see

semiequivalent models

negation, 8, 19
game, 28
paraconsistent, 106
strong, 8, 27

normal form
conjunctive, 11
negation, 11
Skolem, 14
strict negation, 16, 26

premise, 74

quantifier

Henkin, 1
partially ordered, see

quantifier, Henkin
shriek, 8, 27

rank
dependence, 39
first order, 39

redex, 74

semantic game
for FOD, 32
for SO, 15
for TL, 28

semantic object, 9
semantic test procedure, 110

passing uniformly, 112
semantics

1-semantics, 100
dependence, 18
first order, 10
game theoretic, 2, 110
P-semantics, 98
second order, 13
team, 26
trump, 2

semiequivalent models, 39
1-shift, 96
similar functions, 57
subformula, 8

immediate, 8
sum, 8, 27

team, 16
ω-team

nontrivial part, 96
trivial part, 96

τ -team, 82
τ -∆-team, 82
ω-team, 93
ω-closure, 99
canonical, 86

INDEX 127

φ-canonical, 87
collection, 81
full, 17
game, 87
restricted, 17
co-restricted, 17
cylindrically restricted, 98
cylindrically co-restricted, 99

tensor, 8, 27
translation, 51

natural semantic, 52
semantic, 51
syntactic, 51

type shifting, 96

universe, 7

variable
bound, 8
determined by, 34
element, 11
free, 8
function, 11
independent of, 34
relation, 11

vocabulary, see language

	Title Page
	Acknowledgements
	Introduction
	History
	Goals of the Thesis
	Outline of the Thesis

	Preliminaries
	General Definitions
	First Order Logic (FO)
	Second Order Logic (SO)
	Dependence Logic (FOD)
	Team Logic (TL)

	Swapping Quantifiers
	Definitions
	Swapping Quantifiers in Team Logic

	FO vs. FOD in Logical Equivalence
	Definitions
	Comparing Semiequivalences
	EF-game for FO in FOD-rank
	Converting Winning Strategies
	Further Points of Interest

	Translating between Logics
	The General Setting
	Translating ESO to FOD
	Translating SO-Sentences to TL
	Translating SO-Formulas to TL
	Applications of Translations

	Axiomatising Fragments of FOD
	Calculus of Structures
	A Proof System for a Fragment of FOD
	Soundness of the Proof System
	Discussion on the Problem of Completeness

	1-Semantics
	Definitions
	1-Semantics in omega-Teams
	Type Shifting
	1-Semantics in Teams

	Basic Properties
	Similarity of P-Semantics and 1-Semantics
	The Law of Excluded Middle
	Expressive Power

	Game Theoretic Semantics
	Further Ideas

	Conclusions
	Bibliography
	Index

