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1. Introduction

The main objective of this thesis is to study properties of composition
operators and weighted composition operators on certain Banach spaces of
analytic or harmonic functions on the unit disk of the complex plane.

Articles [A], [B], and [C] mainly concern compactness properties of com-
position operators on certain spaces of vector-valued functions, i.e., func-
tions which take values in a complex Banach space. The function spaces
of interest include vector-valued BMOA spaces, harmonic Hardy spaces,
and spaces of Cauchy transforms. It turns out that composition operators
are usually not compact on the relevant vector-valued function spaces. On
the other hand, many previously known necessary and sufficient conditions
for the weak compactness of a composition operator generalize from the
scalar-valued setting to a more general vector-valued one. A novel feature
in the vector-valued theory is that there often are several natural ways
to introduce a vector-valued counterpart of a given scalar-valued function
space. Various examples illustrate the differences between versions of such
vector-valued function spaces.

In Article [D] characterizations are given of the boundedness and com-
pactness of weighted composition operators on the classical scalar-valued
BMOA space and its subspace VMOA. In addition, the essential norm of a
weighted composition operator on VMOA is estimated. These results gen-
eralize various previously known results about both pointwise multipliers
and composition operators on BMOA and VMOA.

The main results of Articles [A], [B], [C], and [D] will be discussed in
Sections 2 to 4. In the remaining part of this section a short introduction
is provided to composition operators and some relevant function spaces.

Composition operators and classical Hardy spaces

Let D = {z ∈ C : |z| < 1} be the open unit disk of the complex plane C
and let ϕ : D → D be an analytic map. Then the composition operator Cϕ
associated with ϕ is the linear map

Cϕ : f 7→ f ◦ ϕ,
defined on the linear space H(D) of all analytic functions f : D→ C. A fun-
damental problem concerning composition operators is to relate operator-
theoretic properties of Cϕ, such as the norm, compactness, and spectra,
to function-theoretic properties of the map ϕ when Cϕ is restricted to a
suitable Banach space of analytic or, more generally, harmonic functions
on D.

As a linear operator Cϕ was first studied in the 1960s, by J. Ryff, E. Nord-
gren, and H. Schwartz, in the context of analytic Hardy spaces Hp. Since
these spaces are closely related to other function spaces of our interest, it
will be useful to recall some fundamental results related to composition
operators on Hp. We will restrict ourselves to results which are relevant
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in the sequel. The reader is referred to [23, 26, 30] for the Hp theory, and
to [19, 43] for the basic results about composition operators on classical
function spaces.

For 1 ≤ p < ∞, the analytic Hardy space Hp consists of the analytic
functions f ∈ H(D) such that

‖f‖Hp = sup
0<r<1

(∫

T
|f(rζ)|p dm(ζ)

)1/p

<∞,

where m is the Lebesgue measure on the unit circle T = ∂D normalized
so that m(T) = 1. For later use we recall that Hp can be viewed as the
space of Poisson extensions of Lp functions on T whose negative Fourier
coefficients are zero. Indeed, if 1 ≤ p < ∞, then for each g ∈ Lp(T)

satisfying ĝn :=
∫
T ζ

n
g(ζ) dm(ζ) = 0 for n < 0, the Poisson integral

P[g](z) =

∫

T
gPz dm (z ∈ D),(1)

where Pz(ζ) = (1 − |z|2)/|ζ − z|2, defines an analytic function on D. The
map g 7→ P[g] establishes a linear isometry from the space

Lpa(T) = {g ∈ Lp(T) : ĝn = 0 for n < 0}(2)

onto Hp. By Fatou’s theorem the boundary function g ∈ Lpa(T) can be
recovered from f = P[g] ∈ Hp by taking the radial limit, which exists
almost everywhere on T. More precisely, g(ζ) = limr→1 f(rζ) for a.e. ζ ∈ T.

For every analytic map ϕ : D → D and 1 ≤ p < ∞, the composition
operator Cϕ is bounded on the space Hp. This follows from the classical
Littlewood subordination principle, which states that if ϕ(0) = 0, then

‖f ◦ ϕ‖Hp ≤ ‖f‖Hp,(3)

for f ∈ Hp; see [19, 23, 43]. A natural follow-up question concerns the
compactness of the operator Cϕ. Recall that a linear operator T on a
Banach space E is compact if T (BE) is a compact subset of E, where
BE = {x ∈ E : ‖x‖E ≤ 1} is the closed unit ball of E. Compactness
properties of composition operators have been quite intensively studied in
connection with various function spaces. Among the prominent results we
mention the exact formula due to J. Shapiro [42] for the essential norm
‖ · ‖e (i.e., the distance to all compact operators) of a composition operator
on H2 in terms of the Nevanlinna counting function

N(ϕ, z) =
∑

w∈ϕ−1({z})
log

1

|w| (z ∈ D \ {ϕ(0)}).(4)

Theorem 1 ([42]). Let ϕ : D→ D be an analytic map. Then

‖Cϕ‖e = lim sup
|z|→1

(
N(ϕ, z)

− log |z|

)1/2

.
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In particular, Cϕ is compact on H2 if and only if

lim
|z|→1

N(ϕ, z)

− log |z| = 0.(5)

It was known, by an earlier result of Shapiro and P. Taylor, that if Cϕ
is compact on Hp for some 1 ≤ p < ∞, then it is compact on Hp for all
1 ≤ p < ∞. Consequently, condition (5) characterizes the compactness of
Cϕ on Hp for all 1 ≤ p <∞.

Recall further that a linear operator T : E → E is weakly compact if
T (BE) is a weakly compact subset of E. For 1 < p < ∞, the spaces
Hp are reflexive so the identity operator of Hp, and hence all bounded
linear operators T : Hp → Hp, are weakly compact. In the interesting case
p = 1 the weak compactness of composition operators was characterized by
D. Sarason [41].

Theorem 2 ([41]). Weakly compact composition operators on H 1 are com-
pact.

The operators Cϕ have also been studied on many classical function
spaces other than Hp spaces. For example, various characterizations have
been obtained for the compactness and, in many cases, for the weak com-
pactness of composition operators on Bergman and Bloch spaces, the spaces
BMOA, VMOA, hp, and CT. Some of these results will be discussed in more
detail in the forthcoming sections.

Composition operators on spaces of vector-valued analytic
functions

In 1998 P. Liu, E. Saksman, and H.-O. Tylli [34] initiated the study of
compactness properties of composition operators on spaces of vector-valued
analytic functions. For example, they considered the weak compactness of
Cϕ on X-valued Hardy, Bergman, and Bloch spaces, where X is a complex
Banach space. These studies were further extended by J. Bonet, P. Do-
mański, and M. Lindström [8] to the contexts of vector-valued weighted
Bergman spaces and certain weak spaces wE(X) of vector-valued analytic
functions. We refer e.g. to [9,31,45] for other relevant vector-valued results.
As an example we will next describe some results related to composition
operators on the Hardy spaces Hp(X).

Let X = (X, ‖·‖X) be any complex Banach space. Recall that a function
f : D → X is analytic if it is weakly analytic, i.e., if x∗ ◦ f ∈ H(D) for all
functionals x∗ ∈ X∗, where X∗ is the dual space of X. Let H(D, X) be
the space of all analytic functions f : D → X and let 1 ≤ p < ∞. Then a
function f ∈ H(D, X) belongs to the vector-valued Hardy space Hp(X) if

‖f‖Hp(X) = sup
0<r<1

(∫

T
‖f(rζ)‖pX dm(ζ)

)1/p

<∞.
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In particular, in the scalar-valued case where X = C the spaces Hp(C) are
just the classical Hardy spaces Hp.

For general Banach spaces X the Hardy spaces Hp(X) have many prop-
erties analogous to those of Hp. However, certain aspects are much more
delicate in the vector-valued setting. For example, recall that every func-
tion in Hp (1 ≤ p < ∞) can be realized as a Poisson extension of some
integrable function on T, and Hp = PLpa := {P[g] : g ∈ Lpa(T)}. If X
is an arbitrary Banach space, then for a Bochner p-integrable function
g ∈ Lp(T, X) satisfying ĝn = 0 for n < 0, the Poisson integral (1) defines
an X-valued analytic function on D, and P[g] ∈ Hp(X). Moreover, the
space PLpa(X) = {P[g] : g ∈ Lpa(T, X)} is a closed subspace of Hp(X).
Here

Lpa(T, X) = {g ∈ Lp(T, X) : ĝn = 0 for n < 0},(6)

and the Fourier coefficients ĝn are defined as in the scalar-valued case. In
fact, PLpa(X) consists of the functions in Hp(X) which admit the radial
limit at almost every ζ ∈ T. However, PLpa(X) = Hp(X) only if X has the
analytic Radon–Nikodým property (ARNP).

Recall that all reflexive Banach spaces X have the ARNP. On the other
hand, for example, the sequence space c0 does not have this property. To
see this consider the bounded c0-valued analytic function f(z) = (zn)∞n=1

for which the radial limit limr→1 f(rζ) does not exist for any ζ ∈ T. The
possible absence of the radial limits has to be taken into account when
studying composition operators on vector-valued Hardy spaces. We refer
to e.g. [3, 28, 29] for further properties of vector-valued Hardy spaces, and
to p. 723 of [B] for the relevant discussion of the ARNP.

For any analytic map ϕ : D → D and f ∈ H(D, X), the composed func-
tion

Cϕf = f ◦ ϕ : D→ X

is analytic, so that the composition operator Cϕ is well-defined onH(D, X).
In analogy with the scalar-valued case one can show that every operator
Cϕ is bounded on each Hp(X) for arbitrary X [31, 34]. Therefore it is
reasonable to ask when Cϕ is compact on Hp(X).

Since composition operators fix the constant functions, it is easy to see
that, in the interesting case where X is infinite dimensional, they are never
compact. This observation suggests the study of weaker compactness prop-
erties, such as the weak compactness of Cϕ on H1(X) spaces. A simple
factorization argument shows that if Cϕ is weakly compact on H1(X), then
it is weakly compact on H1 and X is reflexive. Further, by Theorems 1 and
2, the operator Cϕ is compact on H1 and (5) holds. In [34] the converse
of this observation was established by extending some methods of Shapiro
and C. Sundberg [42, 44] to the X-valued setting.

Theorem 3 ([34]). The composition operator Cϕ is weakly compact on
H1(X) if and only if (5) holds and X is reflexive.
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Let us next consider another rather general approach introduced by
Bonet, Domański, and Lindström [8] for studying Cϕ on the vector-valued
Bloch spaces and certain weighted Bergman spaces.

Let E be any Banach space of analytic functions f : D → C such that
E contains the constants and the closed unit ball BE is compact in the
topology of uniform convergence on compact subsets of D. Then the weak
vector-valued space wE(X) associated with E consists of the functions f ∈
H(D, X) such that

‖f‖wE(X) = sup
x∗∈BX∗

‖x∗ ◦ f‖E <∞.(7)

It follows from the assumptions on E and the Dixmier–Ng theorem [37] that
E is isometrically isomorphic to the dual of a Banach space V . Hence a
linearization argument due to J. Mujica [36] shows that wE(X) is isometric
to L(V,X), the space of bounded linear operators V → X. In particular,
wE(X) is a Banach space.

It turns out that a composition operator is bounded wE(X) → wE(X)
if and only if it is bounded E → E; see also p. 736 of [B]. In [8] general
sufficient and necessary conditions were given for the weak compactness of
Cϕ on weak vector-valued spaces wE(X).

Theorem 4 ([8]). Let X be a complex Banach space.
(i) If Cϕ is weakly compact on wE(X), then X is reflexive and Cϕ is

weakly compact on E.
(ii) If X is reflexive and Cϕ is compact on E, then Cϕ is weakly compact

on wE(X).

Various properties of the weak spaces wE(X) have earlier been consid-
ered in the special cases of E = Hp and E = hp [3,24,25,36]; see Section 3
for the definition of whp(X) spaces.

Theorem 4 suggests the study of composition operators on the Hardy
spaces wHp(X). In fact, by combining Theorems 2 and 4, one obtains the
following counterpart of Theorem 3 for wH1(X).

Corollary 5. The operator Cϕ is weakly compact on wH1(X) if and only
if it is weakly compact on H1 and X is reflexive.

The similarity of Theorem 3 and Corollary 5 raises the question whether
the two different types of Hardy spaces, the “strong” spaces Hp(X) and
their weak counterparts wHp(X), are in fact the same. For z ∈ D and
1 ≤ p <∞, we have supx∗∈BX∗ |x∗(f(z))|p = ‖f(z)‖pX , so that

sup
x∗∈BX∗

sup
0<r<1

∫

T
|x∗(f(rζ))|p dm(ζ) ≤ sup

0<r<1

∫

T
‖f(rζ)‖pX dm(ζ),(8)

and Hp(X) embeds continuously into wHp(X). However, it is known that
the norms of Hp(X) and wHp(X), when restricted to Hp(X), are never
equivalent for infinite-dimensional X; see [24, 25,A,B]. Concrete examples
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which explain this phenomenon will be discussed below in the contexts of
vector-valued BMOA and harmonic Hardy spaces.

2. Composition operators and vector-valued BMOA

In Articles [A] and [C] the weak compactness of composition operators is
studied on vector-valued versions of BMOA, the space of analytic functions
of bounded mean oscillation. Before discussing these results in more de-
tail let us recall some properties and characterizations of the scalar-valued
BMOA space. This space consists of the analytic functions f ∈ H(D) such
that

‖f‖∗,1 = sup
a∈D
‖f ◦ σa − f(a)‖H1 <∞,(9)

where the Möbius transformations σa : D → D are given by σa(z) = (a −
z)/(1−az) for a ∈ D. The quantity ‖f‖∗,1 is a seminorm and ‖f‖BMOA,1 =
|f(0)|+ ‖f‖∗,1 defines a complete norm on BMOA.

The space BMOA plays an important role in various questions related
to complex analysis and operator theory. The importance of BMOA stems
partly from the famous result of C. Fefferman that BMOA can be identified
with the dual of the Hardy space H1. We refer to [2, 26, 27, 51] for this
and other basic facts about BMOA. We next consider some well-known
alternative characterizations of BMOA which will be useful in the sequel.

The name BMOA is related to the concept of bounded mean oscillation
(BMO) introduced by F. John and L. Nirenberg [32]. Recall that an inte-
grable function g ∈ L1(T) has bounded mean oscillation on T, denoted by
g ∈ BMO(T), if the seminorm

‖g‖∗∗ = sup
1

m(I)

∫

I

|g − gI| dm

is finite, where gI = (
∫
I
g dm)/m(I) and the supremum is taken over all

subintervals I of T. It is well known that an equivalent seminorm on
BMO(T) is obtained if the averages over intervals I in this supremum are
replaced by Poisson integrals (1); see [2, 26, 27]. More precisely,

‖g‖∗∗ ∼ ‖g‖∗∗,P := sup
a∈D
P
[
|g − P[g](a)|

]
(a),

where a ∼ b means that there exists an absolute constant c > 0 such that
c−1a ≤ b ≤ ca. Let us for a moment denote by BMOa(T) the Banach space
of functions g ∈ L1

a(T) endowed with the norm |
∫
T g dm| + ‖g‖∗∗,P , where

L1
a(T) is defined as in (2). Then, by using the properties of the Poisson

integral and the fact that g 7→ P[g] is an isometry L1
a(T) → H1, it is not

difficul to check that g 7→ P[g] defines a linear isometry from BMOa(T) onto
BMOA. In other words, BMOA consists of the analytic Poisson extensions
of BMO functions on the unit circle.

The main result of [32], known as the John–Nirenberg theorem, and the
resulting reverse Hölder inequality imply the useful fact that the H 1 type
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seminorm in (9) can be replaced by the corresponding Hp type seminorm
for any 1 ≤ p <∞; see [2, 26]. More precisely,

‖ · ‖∗,1 ∼ ‖ · ‖∗,p,(10)

where ‖f‖∗,p = supa∈D ‖f ◦ σa − f(a)‖Hp for 1 ≤ p <∞.
We finally recall an important alternative characterization of BMOA

which is related to Carleson measures. There are various ways to define
these measures; we only recall here that a finite positive Borel measure
µ on D is a Carleson measure if and only if supa∈D

∫
D |σ′a(z)| dA(z) < ∞,

where A is the two-dimensional Lebesgue measure on the plane. By some
well-known estimates for the H2 norm (see [26] or pp. 3–4 of [C]) one gets
that

‖f‖∗,2 ∼ ‖f‖C := sup
a∈D

(∫

D
|f ′(z)|2(1− |z|2)|σ′a(z)|

dA(z)

π

)1/2

.

In particular, f ∈ BMOA if and only if the measure µf , given by dµf (z) =
|f ′(z)|2(1− |z|2) dA(z), is a Carleson measure.

It is well known that every composition operator is bounded on BMOA;
see e.g. [11, 46]. Compactness and weak compactness of composition oper-
ators on BMOA have been studied by several authors [11,15,35,46,49,50].
We recall here the following characterization due to W. Smith [46] of the
compactness of Cϕ on BMOA in terms of the Nevanlinna function (4).

Theorem 6 ([46]). The operator Cϕ is compact on BMOA if and only if

lim
r→1

sup
{a : |ϕ(a)|>r}

sup
0<|w|<1

|w|2N(σϕ(a) ◦ ϕ ◦ σa, w) = 0,(11)

and, for all 0 < R < 1,

lim
t→1

sup
{a : |ϕ(a)|≤R}

m({ζ ∈ T : |(ϕ ◦ σa)(ζ)| > t}) = 0.(12)

In the literature there exist various necessary and sufficient conditions
for a composition operator to be weakly compact on BMOA; see [15, 35].
However, it seems that the weak compactness of Cϕ on BMOA has not yet
been completely characterized.

Composition operators on BMOA(X) and wBMOA(X)

Vector-valued bounded mean oscillation has been actively studied since the
1980s, when J. Bourgain [12] and O. Blasco [4,5] established vector-valued
versions of the the H1-BMO duality. More recently different versions of
vector-valued BMOA spaces on the unit disk have been investigated in the
setting of vector-valued multipliers [6, 7].

Let X be an arbitrary complex Banach space. We define BMOA(X) as
the space of analytic functions f ∈ H(D, X) such that

‖f‖∗,1,X = sup
a∈D
‖f ◦ σa − f(a)‖H1(X) <∞.(13)
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We equip BMOA(X) with the complete norm ‖f‖BMOA(X) = ‖f(0)‖X +
‖f‖∗,1,X . Clearly, BMOA(C) = BMOA in the special case where X = C.

As in the scalar-valued case, BMOA(X) is related to an X-valued BMO
condition on the unit circle. We will next recall what this means precisely.
We refer to [33] for the details which closely follow the corresponding scalar-
valued argument.

Following [4, 5], we say that a Bochner integrable function g ∈ L1(T, X)
has bounded mean oscillation, denoted by g ∈ BMO(T, X), if the seminorm

sup
1

m(I)

∫

I

‖g − gI‖X dm

is finite. Here gI is defined as in the scalar-valued case. It is again conve-
nient to replace this seminorm by an equivalent quantity

‖g‖∗∗,P ,X = sup
a∈D
P
[
‖g − P[g](a)‖X

]
(a),

and, if we equip the space BMOa(T, X) = BMO(T, X)∩L1
a(T, X) with the

complete norm ‖
∫
T g dm‖X +‖g‖∗∗,P ,X , where L1

a(T, X) is defined as in (6),
then the map g 7→ P[g] defines an isometric embedding BMOa(T, X) →
BMOA(X); see [33]. In particular, BMOA(X) contains the analytic Pois-
son extensions of the X-valued BMO functions on T. However, all of
BMOA(X) is obtained this way only if X has the analytic Radon–Nikodým
property. In particular, BMOA(X) is in general a bigger space than the
image P[BMOa(T, X)].

The main objective of [A] is to study the operators Cϕ on BMOA(X)
spaces. It is first observed, by applying an argument of Smith [46], that
every operator Cϕ is bounded on BMOA(X) for arbitrary Banach spaces X.
As in the context ofHp(X) spaces, it turns out that for infinite-dimensional
X the composition operator is never compact on BMOA(X). On the other
hand, if Cϕ is weakly compact, then it is weakly compact on BMOA and
X is reflexive. The main result of [A] is the following partial converse of
this observation.

Theorem 7 (Theorem 7 of [A]). Let X be reflexive and suppose that (11)
and (12) hold. Then Cϕ is weakly compact on BMOA(X).

The argument is essentially a vector-valued modification of the proof of
Theorem 6. It also involves some techniques used in [34] such as the de la
Vallée–Poussin operators and a general change of variables formula due to
C. Stanton [47]. Further, it involves the following vector-valued version of
the reverse Hölder inequality (10): For 1 ≤ p <∞, it holds that

‖ · ‖∗,1,X ∼ ‖ · ‖∗,p,X,(14)

where ‖f‖∗,p,X = supa∈D ‖f ◦ σa − f(a)‖Hp(X). A proof for general Banach
spaces X can be found in [13] in the context of functions defined the unit
ball of Cn. This result generalizes a corollary of the analytic John-Nirenberg
theorem due to A. Baernstein [2]. If X has the ARNP, then the equivalence
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(14) is easily obtained by modifying the corresponding classical proof for
functions defined on T; see [4, 33].

Since the problem of weak compactness of Cϕ on the scalar-valued BMOA
is still open, a full characterization is not available in the vector-valued set-
ting. However, by combining Theorem 7 with suitable results from [35]
or [15], some partial characterizations are obtained. For example, the fol-
lowing result is contained in Corollary 13 of [A]:

Corollary 8. If ϕ is univalent, then Cϕ is weakly compact on BMOA(X)
if and only if (11) and (12) hold and X is reflexive.

Another natural vector-valued generalization of BMOA is given by the
weak vector-valued space wBMOA(X) as defined in (7). Recall that the
scalar-valued BMOA space contains the constants and its unit ball is com-
pact in the topology of uniform convergence on compact subsets of D.
Hence wBMOA(X) is a Banach space and, by Theorem 4, one obtains a
counterpart of Theorem 7 for composition operators on wBMOA(X).

The final section of [A] exhibits concrete examples which indicate funda-
mental differences between BMOA(X) and wBMOA(X). In fact, although
BMOA(X) ⊂ wBMOA(X) as a continuous embedding (this can be de-
duced from (8) and (13)), the norms of BMOA(X) and wBMOA(X), when
restricted to BMOA(X), are never equivalent for infinite-dimensional X.

Example 9 (Example 15 of [A]). For any infinite-dimensional Banach
space X and n ∈ N, there exists a polynomial fn ∈ H(D, X) of degree n
such that

‖fn‖wBMOA(X) ≤ c and ‖fn‖BMOA(X) ≥
√

logn.

Here c > 0 is an absolute constant.

The argument of Example 9 also implies the known fact that the norms
of wHp(X) and Hp(X) are not equivalent for 1 ≤ p <∞ and any infinite-
dimensionalX. The argument is based on Dvoretzky’s `2

n-theorem (see [22])
and an (`2,BMOA)-multiplier result due to D. Girela [27].

Composition operators on BMOAC(X)

In [C] composition operators are studied on the space BMOAC(X) intro-
duced by Blasco [7]. This space consists of the functions f ∈ H(D, X) such
that

‖f‖C,X = sup
a∈D

(∫

D
‖f ′(z)‖2

X(1− |z|2)|σ′a(z)|
dA(z)

π

)1/2

<∞.

We equip BMOAC(X) with the complete norm ‖f‖BMOAC(X) = ‖f(0)‖ +
‖f‖C,X . In the special case X = C we have ‖f‖C,C = ‖f‖C so that
BMOAC(C) and BMOA coincide with equivalent norms. Moreover, f ∈
BMOAC(X) if and only if dµf(z) = ‖f ′(z)‖2

X(1− |z|2) dA(z) is a Carleson
measure.
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For general Banach spaces X, the relationship of the spaces BMOA(X)
and BMOAC(X) is more complicated. In fact, it follows from a result
in [7] that BMOA(X) and BMOAC(X) coincide, and the respective norms
are equivalent, if and only if X is isomorphic to a Hilbert space. More
precisely, if BMOAC(X) embeds continuously into BMOA(X) then X has
type 2, and if BMOA(X) embeds continuously into BMOAC(X) then X
has cotype 2. Recall here that a Banach space is isomorphic to a Hilbert
space if and only if it has type 2 and cotype 2; see e.g. [7] or [22] for the
definitions of type p and cotype q of a Banach space.

In [C] it is observed that BMOAC(X) = wBMOA(X), and the respective
norms are equivalent, if and only if X is finite dimensional. In particular,
there are reflexive Banach spaces X such that all of the above versions of
X-valued BMOA are different. This observation motivates the study of
composition operators on BMOAC(X) for general Banach spaces X.

In the light of Theorem 7 a particularly interesting question concerns
sufficient conditions for Cϕ to be weakly compact on BMOAC(X). The
following main result of [C] provides such a condition.

Theorem 10 (Theorem 4.1 of [C]). Let X be reflexive and suppose that
Cϕ is compact on BMOA. Then Cϕ is weakly compact on BMOAC(X).

The outline of the proof resembles that of Theorem 7. However, new diffi-
culties arise in the setting of BMOAC(X). For example, no John–Nirenberg
type theorem or reverse Hölder inequality are known to be available here.
In the proof of Theorem 10 these difficulties are overcome by replacing
condition (12) by the requirement that

lim
|w|→1

sup
{a∈D : |ϕ(a)|≤R}

N(ϕ ◦ σa, w)

− log |w| = 0,(15)

for every 0 < R < 1. In fact, it follows from the above argument that the
operator Cϕ is compact on BMOA if and only if ϕ satisfies the conditions
(11) and (15); see Theorem 2.1 and Corollary 4.5 of [C]. The proof of this
result is based on some methods and results from [11], [42], and [50].

3. Composition operators on vector-valued harmonic
functions and Cauchy transforms

Given a complex Banach space X and 1 ≤ p < ∞, the harmonic Hardy
space hp(X) consists of the harmonic functions f : D→ X such that

‖f‖hp(X) = sup
0<r<1

(∫

T
‖f(rζ)‖pX dm(ζ)

)1/p

<∞.

Recall here that a function f : D→ X is harmonic if it is weakly harmonic,
i.e., if x∗ ◦ f : D → C is harmonic for all x∗ ∈ X∗. Since the X-valued
analytic functions are harmonic, the analytic Hardy spaceHp(X) is a closed
subspace of hp(X).
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By the classical Herglotz theorem the space h1 = h1(C) can be viewed
as the space of Poisson extensions of complex measures on the unit circle.
Indeed, ifM(T) denotes the space of complex Borel measures on T equipped
with the total variation norm, then the Poisson integral µ 7→ P[µ], where
P[µ](z) =

∫
T Pz dµ (see (1)) defines on isometric isomorphism from M(T)

onto h1. The space PL1 = {P[g] : g ∈ L1(T)} is a closed subspace of h1.
Composition operators Cϕ on harmonic Hardy spaces were probably first

considered by Sarason [40], who showed that Cϕ is compact on h1 if and
only if

∫

T

1− |ϕ∗(ξ)|2
|ζ − ϕ∗(ξ)|2 dm(ξ) = Re

(
ζ + ϕ(0)

ζ − ϕ(0)

)
(ζ ∈ T).(16)

In particular, condition (16) implies the compactness of Cϕ on the subspaces
H1 and PL1 of h1. On the other hand, a subsequent result of Shapiro and
Sundberg [44] shows that Shapiro’s condition (5) implies the compactness
of Cϕ on h1. Therefore (16) and (5) are equivalent and, by Theorem 2,
they characterize the weak compactness of composition operators Cϕ on
h1, PL1, and H1. Moreover, by an observation of Sarason, condition (16)
is further equivalent to the requirement that Cϕ(h1) ⊂ PL1. The following
theorem collects some of these results.

Theorem 11. The following conditions are equivalent.
(i) Cϕ is weakly compact on h1.
(ii) Cϕ is weakly compact on PL1.
(iii) Cϕ is weakly compact on H1.
(iv) Cϕ(h1) ⊂ PL1.
(v) ϕ satisfies condition (16).

In [B] this result is extended to composition operators on h1(X) spaces.
Below PL1(X) = {P[g] : g ∈ L1(T, X)} is a closed subspace of h1(X).

Theorem 12 (Theorem 3.2 of [B]). Let X be a reflexive Banach space.
Then the following conditions are equivalent.

(i) Cϕ is weakly compact on h1(X).
(ii) Cϕ is weakly compact on PL1(X).
(iii) Cϕ is weakly compact on H1(X).
(iv) Cϕ(h1(X)) ⊂ PL1(X).
(v) ϕ satisfies condition (16).

It is again easy to check that each of conditions (i) to (iii) implies the
reflexivity of X. The implications (i) ⇒ (ii) ⇒ (iii) are clear, and by
Theorem 11, each of conditions (i) to (iv) implies (v). The idea of employing
a classical result of Dunford and Pettis for the more difficult implications
(v) ⇒ (i) and (v) ⇒ (iv) is from [40].

For a measure µ ∈M(T), the Cauchy transform

C[µ](z) =

∫

T

1

1− ζz
dµ(ζ) (z ∈ D)
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defines an analytic function D → C. It is well known that for 1 < p < ∞
the map f 7→ C[f dm], which essentially is the classical Riesz projection,
is a bounded linear map from Lp(T) onto Hp; see [16, 23]. However, it is
not bounded from M(T) into h1(T), and, as a set, H1 is strictly included
in CT = {C[µ] : µ ∈M(T)}.

We identify the linear space CT with a quotient space ofM(T) by equip-
ping it with the complete norm

‖C[µ]‖CT = inf{‖λ‖M(T) : C[λ] = C[µ]}.
We refer to the recent monograph [16] for the basic properties of the space
CT. Note that in the literature the space CT is often denoted by K.

Let us next consider Cauchy transforms of countably additive Borel vec-
tor measures µ : Σ(T) → X for an arbitrary complex Banach space X,
where Σ(T) is the Borel σ-algebra on T. Let M(T, X) denote the Ba-
nach space of such measures equipped with the total variation norm. For
µ ∈ M(T, X), the Cauchy transform C[µ](z) =

∫
T(1 − ζz)−1 dµ(ζ) again

defines an analytic function D → X. Here the integral of a continuous
map g : T → C against a vector measure is defined via approximation by
simple functions; see pp. 5–6 of [21]. We define CT(X) as the linear space
{C[µ] : µ ∈M(T, X)} equipped with the complete norm

‖C[µ]‖CT(X) = inf{‖λ‖M(T,X) : C[λ] = C[µ]},
so that CT(X) is isometrically isomorphic to a quotient space of M(T, X).
The Herglotz theorem extends to the vector-valued setting, that is, the
Poisson integral µ 7→ P[µ] establishes an isometry from M(T, X) onto
h1(X); see p. 722 of [B] for the references. Therefore CT(X) can also be
viewed as a quotient space of h1(X).

Composition operators on CT were first studied by P. Bourdon and
J. Cima [10], who observed that every operator Cϕ is bounded on CT.
Later Cima and A. Matheson [14] showed that Cϕ is (weakly) compact on
CT if and only if (16) holds.

In Section 4 of [B] boundedness and weak compactness of composition
operators are studied on CT(X). Here it is crucial that Cϕ essentially com-
mutes with the quotient map π : h1(X)→ CT(X); see Lemma 4.2 of [B]. In
the scalar-valued case this kind of factorization was established in [14]. The
proof of the vector-valued version involves Singer’s representation theorem
and an argument of W. Hensgen [28]. The fact that any composition oper-
ator Cϕ is bounded on CT(X) follows easily from this factorization and the
boundedness of Cϕ on h1(X). Together with Theorem 12 this factorization
also yields a characterization of the weak compactness of Cϕ on CT(X).
Below CTr(X) = {C[f dm] : f ∈ L1(T, X)} is a closed subspace of CT(X).

Theorem 13 (Theorem 4.3 of [B]). Let X be a reflexive Banach space.
Then the following conditions are equivalent.

(i) Cϕ is weakly compact on CT(X).
(ii) Cϕ(CT(X)) ⊂ CTr(X).
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(iii) ϕ satisfies condition (16).

In Section 5 of [B] composition operators are studied on weak spaces
of vector-valued harmonic functions by extending the analytic approach
of [8]. Let E be a Banach space of harmonic functions f : D→ C such that
E contains the constant functions and BE is compact in the topology of
uniform convergence on compact subsets of D. As in the analytic case, it
follows that the weak vector-valued space

wE(X) = {f : D→ X | f harmonic, sup
x∗∈BX∗

‖x∗ ◦ f‖E <∞}

is a Banach space; see Lemma 5.1 of [B]. The following result extends
Theorem 4 to the harmonic setting.

Theorem 14 (Theorem 5.2 of [B]). Let X be a complex Banach space.

(i) If Cϕ is bounded on E, then Cϕ is bounded on wE(X).
(ii) If Cϕ is weakly compact on wE(X), then X is reflexive and Cϕ is

weakly compact on E.
(iii) If X is reflexive and Cϕ is compact on E, then Cϕ is weakly compact

on wE(X).

The argument for (iii) closely follows that of Theorem 4 (ii), where the
crucial trick is to transfer the composition operator on wE(X) to an oper-
ator composition map on L(V,X), and then apply a result of Saksman and
Tylli [39].

In the special case of harmonic Hardy spaces one obtains a counterpart
of Theorem 12 for the weak spaces wh1(X). It is known that the harmonic
Hardy spaces hp(X) and whp(X) differ from each other for 1 ≤ p <∞ and
any infinite-dimensional X; see [3,24,25] and Example 9. The final Section
6 of [B] illustrates these differences by concrete examples. The following
example is based on Dvoretzky’s theorem and known estimates for lacunary
polynomials.

Example 15 (Example 6.1 of [B]). For any infinite-dimensional Banach
space X, n ∈ N, and 1 ≤ p < ∞, there exists a lacunary polynomial
fn ∈ H(D, X) of degree 2n such that

‖fn‖whp(X) ≤ cp and ‖fn‖hp(X) ≥
√
n.

Here cp > 0 depends only on p.

By a more careful development of these ideas an analytic function f ∈
H(D, X) is constructed such that f ∈ wHp(X)\Hp(X) (and f ∈ whp(X)\
hp(X)). The difference of the spaces CT(X) and wCT(X) is also studied
but in this case the results are less complete.
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4. Weighted composition operators on BMOA

Let ϕ : D → D and ψ : D → C be analytic maps. Then the weighted
composition operator Wψ,ϕ is the linear map defined for all f ∈ H(D) by

(Wψ,ϕf)(z) = ψ(z)f(ϕ(z)) (z ∈ D).

Hence the operator Wψ,ϕ is a simultaneous generalization of both the com-
position operator Cϕ and the operator Mψ : f 7→ ψ · f of pointwise multi-
plication.

Such weighted composition operators appear in various contexts. For
example, recall that the isometries of the Hp spaces are in fact certain
weighted composition operators; see [30]. These operators also appear in
connection with many other classical operators on analytic function spaces.
Boundedness and compactness of weighted composition operators have ear-
lier been studied on various spaces of analytic functions, such as the Hardy,
Bergman, and Bloch spaces; see [17,20,38] and the further references in [D].

In Article [D] weighted composition operators are studied on the space
BMOA. Recall from Section 2 that this space consists of the functions
f ∈ H(D) such that ‖f‖∗,2 < ∞ where the seminorm ‖ · ‖∗,2 is defined as
in (10). In [D] we set ‖f‖∗ = ‖f‖∗,2 and equip BMOA with the complete
norm ‖f‖BMOA = |f(0)|+‖f‖∗. The space VMOA, i.e., the space of analytic
functions of vanishing mean oscillation, is the closed subspace of BMOA
consisting of the functions f ∈ BMOA such that

lim
|a|→1
‖f ◦ σa − f(a)‖H2 = 0.

Alternatively, VMOA equals the closure in BMOA of the complex polyno-
mials, see [27].

We refer to Section 2 for results concerning boundedness and compact-
ness of composition operators on BMOA, and for the related references.
Boundedness of the pointwise multipliers Mψ on BMOA was first charac-
terized by D. Stegenga [48]. In fact, Mψ is bounded if and only if ψ is
bounded and has logarihmic mean oscillation. It is not difficult to check
that Mψ can be compact on BMOA only if ψ(z) = 0 on D.

Clearly, the boundedness of both Mψ and Cϕ implies the boundedness
of Wψ,ϕ, and the compactness of either Mψ or Cϕ implies the compactness
of Wψ,ϕ. However, neither of these sufficient conditions is necessary, as is
demonstrated by examples in Section 6 of [D].

The main purpose of [D] is to provide conditions which characterize the
boundedness and compactness of Wψ,ϕ on BMOA and VMOA. These con-
ditions will be formulated mainly in terms of the quantities

α(ψ, ϕ, a) = |ψ(a)| · ‖σϕ(a) ◦ ϕ ◦ σa‖H2

and

β(ψ, ϕ, a) =

(
log

2

1− |ϕ(a)|2
)
‖ψ ◦ σa − ψ(a)‖H2 ,
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where a ∈ D.
Theorem 16 (Theorem 3.1 of [D]). The operator Wψ,ϕ is bounded on
BMOA if and only if

sup
a∈D

α(ψ, ϕ, a) <∞ and sup
a∈D

β(ψ, ϕ, a) <∞.

The argument in the proof of Theorem 16 is a combination of Stegenga’s
multiplier result and the following modification of the subordination prin-
ciple (3): There is a constant c > 0 such that

‖f ◦ ϕ‖H2 ≤ c‖f‖H2‖ϕ‖H2 ,

for all f ∈ H2 and analytic maps ϕ : D → D satisfying f(0) = ϕ(0) = 0;
see Proposition 3.2 of [D]. The proof of this estimate is based mostly on
properties of the Nevanlinna counting function and a related lemma due to
Smith [46].

The following result characterizes the compactness of Wψ,ϕ on BMOA.

Theorem 17 (Theorem 4.1 of [D]). The operator Wψ,ϕ is compact on
BMOA if and only if

lim
r→1

sup
{a : |ϕ(a)|>r}

α(ψ, ϕ, a) = 0, lim
r→1

sup
{a : |ϕ(a)|>r}

β(ψ, ϕ, a) = 0,

and, for all 0 < R < 1,

lim
t→1

sup
{a : |ϕ(a)|≤R}

∫

{ζ∈T : |(σϕ(a)◦ϕ◦σa)(ζ)|>t}
|(ψ ◦ σa)(ζ)|2 dm(ζ) = 0.

The proof of Theorem 17 is partly analogous to that of Theorem 6. The
first two conditions are obtained by modifying the proof of Theorem 16.
The third condition is a weighted counterpart of (12).

In Section 5 of [D] the operators Wψ,ϕ are studied on the space VMOA.
It is first shown thatWψ,ϕ is bounded on VMOA if and only if it is bounded
on BMOA, ψ ∈ VMOA, and

lim
|a|→1
|ψ(a)| · ‖ϕ ◦ σa − ϕ(a)‖H2 = 0.

This generalizes a result of J. Arazy, S. Fisher, and J. Peetre [1] for composi-
tion operators. The following main result of that section provides estimates
for the essential norm

‖Wψ,ϕ‖e = inf{‖Wψ,ϕ −K‖ : K is a compact operator on VMOA}
of the weighted composition operator Wψ,ϕ on VMOA.

Theorem 18 (Theorem 5.3 of [D]). Assume that Wψ,ϕ is bounded on
VMOA. Then

‖Wψ,ϕ‖e ∼ lim sup
|a|→1

(α(ψ, ϕ, a) + β(ψ, ϕ, a)) .

In particular, Wψ,ϕ is compact on VMOA if and only if

lim
|a|→1

α(ψ, ϕ, a) = 0 and lim
|a|→1

β(ψ, ϕ, a) = 0.
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This result is partly based on a Carleson measure argument due to
M. Tjani [49].

The above results yield as special cases some previously known charac-
terizations of the boundedness and compactness of the operators Mψ and
Cϕ on BMOA and VMOA. For example, in the special case where ϕ(z) = z
for z ∈ D, so that Wψ,ϕ = Mψ, the conditions in Theorem 16 are equiv-
alent to the boundedness criterion of Stegenga. In the special case where
ψ(z) = 1 for z ∈ D, so that Wψ,ϕ = Cϕ, the conditions in Theorem 17 are
equivalent to (11) and (12); see Remark 4.4 of [D].

However, the estimate for the essential norm of Wψ,ϕ on VMOA appears
to be new also in both of these special cases.

In the final section of [D] the main results of the article are compared
with the corresponding results of S. Ohno and R. Zhao [38] for the Bloch
spaces B and B0. In particular, a simple argument is given which shows that
the boundedness (respectively compactness) of Wψ,ϕ on BMOA implies its
boundedness (respectively compactness) on B.

Errata

Article [A] contains the following errors known to the author:
(i) Page 736, line 7: “(1) and (2)” should be “(2) and (3)”.
(ii) Page 736, line 8: “(3)” should be “(1)”.
(iii) Page 740, line 11: “Snf ◦ ϕ” should be “(Snf) ◦ ϕ”.
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