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ABSTRACT 
 
The Taita Hills in southeastern Kenya form the northernmost part of Africa’s Eastern 
Arc Mountains, which have been identified by Conservation International as one of 
the top ten biodiversity hotspots on Earth. As with many areas of the developing 
world, over recent decades the Taita Hills have experienced significant population 
growth leading to associated major changes in land use and land cover (LULC), as 
well as escalating land degradation, particularly soil erosion. Multi-temporal medium 
resolution multispectral optical satellite data, such as imagery from the SPOT HRV, 
HRVIR, and HRG sensors, provides a valuable source of information for 
environmental monitoring and modelling at a landscape level at local and regional 
scales. However, utilization of multi-temporal SPOT data in quantitative remote 
sensing  studies  requires  the  removal  of  atmospheric  effects  and  the  derivation  of  
surface reflectance factor ( s).  Furthermore,  for  areas  of  rugged  terrain,  such  as  the  
Taita Hills, topographic correction is necessary to derive comparable s throughout a 
SPOT scene. Reliable monitoring of LULC change over time and modelling of land 
degradation and human population distribution and abundance are of crucial 
importance to sustainable development, natural resource management, biodiversity 
conservation, and understanding and mitigating climate change and its impacts. 

The main purpose of this thesis was to develop and validate enhanced 
processing of SPOT satellite imagery for use in environmental monitoring and 
modelling at a landscape level, in regions of the developing world with limited 
ancillary data availability. The Taita Hills formed the application study site, whilst the 
Helsinki metropolitan region was used as a control site for validation and assessment 
of the applied atmospheric correction techniques, where multiangular s field 
measurements were taken and where horizontal visibility meteorological data 
concurrent with image acquisition were available. The proposed historical empirical 
line  method  (HELM)  for  absolute  atmospheric  correction  was  found  to  be  the  only  
applied technique that could derive s within  an  RMSE  of  <  0.02  s in  the  SPOT  
visible and near-infrared bands; an accuracy level identified as a benchmark for 
successful atmospheric correction. A multi-scale segmentation/object relationship 
modelling (MSS/ORM) approach was applied to map LULC in the Taita Hills from 
the multi-temporal SPOT imagery. This object-based procedure was shown to derive 
significant improvements over a uni-scale maximum-likelihood technique. The 
derived LULC data was used in combination with low cost GIS geospatial layers 
describing elevation, rainfall and soil type, to model degradation in the Taita Hills in 
the form of potential soil loss, utilizing the simple universal soil loss equation 
(USLE). Furthermore, human population distribution and abundance were modelled 
with satisfactory results using only SPOT and GIS derived data and non-Gaussian 
predictive modelling techniques. The SPOT derived LULC data was found to be 
unnecessary as a predictor because the first and second order image texture 
measurements had greater power to explain variation in dwelling unit occurrence and 
abundance. The ability of the procedures to be implemented locally in the developing 
world using low-cost or freely available data and software was considered. The 
techniques discussed in this thesis are considered equally applicable to other medium- 
and high-resolution optical satellite imagery, as well the utilized SPOT data. 

 
Keywords: atmospheric correction, HELM, LULC change, MSS/ORM, population 
distribution and abundance modelling, SPOT, USLE. 
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EARTH 
 
 
"The Blue Marble" is a famous photograph of Earth taken on December 7, 1972 by 
the crew of the Apollo 17 spacecraft at a distance of about 29,000 kilometres (18,000 
miles). It shows Africa and the Arabian Peninsula, Madagascar, and Antarctica. It was 
an  important  image  in  opening  the  eyes  of  the  world  to  Earth  as  a  single  planetary  
entity, to the connectedness and oneness of our home, to Earth as a living organism - 
Gaia, and to the beauty and vulnerability of Earth within the overwhelming dark 
vastness of space. 
 
This is a NASA public domain image. 
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PREFACE 

 
“Activities that devastate the environment and societies continue unabated. Today we 
are faced with a challenge that calls for a shift in our thinking, so that humanity stops 
threatening its life-support system. We are called to assist the Earth to heal her 
wounds and in the process heal our own – indeed, to embrace the whole creation in 
all its diversity, beauty, and wonder. This will happen if we see the need to revive our 
sense of belonging to a larger family of life, with which we have shared our 
evolutionary process.” 

Dr. Wangari Maathai 
2005 Nobel Peace Prize acceptance speech  

 
As I write this I am sitting at my cluttered desk in my diminutive flat in Helsinki on a 
bitterly cold Sunday afternoon in late January 2010. Out of my window, through the 
fading dim grey light, I can see a flurry of snowflakes swirling through the blustery 
air, desperate in their futile battle to stay aloft and resist joining their brethren already 
congealing on the frozen ground. My mind begins to wonder and I start to think of the 
huge variations between the Finnish seasons,  of Nature’s rhythms and cycles,  of the 
inexorable passage of time, but moreover of the fate of the future for our 
incomprehensibly beautiful and precious, but threatened planet. 

It  was  an  early  start  to  a  bright  Canadian  summer’s  day  in  St  John,  New  
Brunswick, on the 23rd July 1917, then a small town nestled amongst the seemingly 
endless boreal forest, when Elizabeth Maud Goodeve Hutchings came into the world. 
She is my wonderful grandmother, and she is a respectable 92 years old at the time of 
writing. It is both awe-inspiring and deeply disturbing to consider, even for a fleeting 
moment, the changes that have occurred on Earth during her lifetime; so much good, 
so much bad, so many astonishing technical advances, so many irreplaceable losses. 
More than anything, the twentieth century witnessed extraordinary human population 
growth from 1.65 billion to 6 billion, and world population is expected to reach 6.9 
billion in 2010 (UN Population Division 1999; UN Population Division 2008). The 
highest rates of population growth, averaging 2% per year, were experienced during 
the late 1960s, and the largest annual increments to world population of 
approximately 86 million persons each year occurred in the late 1980s (UN 
Population Division 1999). 

Today, whilst citizens of the world’s developed countries are privileged to live 
in a technologically advancing consumerist age, within the timeframe of a few human 
lifetimes, the unabated growth of human population, geographically uneven rapid 
economic development and industrialization, the ever increasing exploitation of the 
world’s resources, and the continued global disparities and inequalities in income and 
access to resources, have led to an escalation of environmental problems and 
pressures to the extent that they now threaten sustainability at a global scale. It is easy 
for those in the food secure developed countries to overlook that, according to the 
Food and Agriculture Organization of the United Nations (FAO 2009), in 2009 1.02 
billion people were undernourished, that is to say were starving. That is 
approximately 1 in 6 people on Earth, and 100 million more individuals than in the 
previous year, 2008. 

It  is  difficult  to  overstate  the  severity  of  the  current  situation,  and  a  summary  
listing of major environmental threats makes for very grim reading indeed: ¼ of the 
Earth’s land surface is undergoing degradation, ½ the World’s wetlands have been 
drained, ¾ of fishing grounds are fully or overexploited, and some predictions state 
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that, due to rising sea temperatures and acidification, coral reefs could have 
completely disappeared by 2050 (UNEP 2010a). The 2007 UN Intergovernmental 
Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) unequivocally 
stated that humans have significantly changed the composition of the atmosphere and 
that,  as  a  result,  Earth’s  climate  is  changing  and  operating  as  an  accelerator  for  
associated environmental disturbances such as melting of snow and ice, rising sea 
level, flooding, droughts and wildfires. In addition to direct emissions of greenhouse 
gases, other human actions such as land use change, landscape fragmentation and 
overexploitation of natural resources are acting as drivers of climate change. For 
increases in global average temperature exceeding 1.5 to 2.5°C, there are projected to 
be major changes in ecosystem structure and function, species’ ecological interactions 
and shifts in species’ geographical ranges, with predominantly negative consequences 
for biodiversity and ecosystem goods and services, e.g. water and food supply. 
Approximately 20 to 30% of plant and animal species are likely to be at increased risk 
of extinction, and the resilience of many ecosystems is likely to be exceeded this 
century (IPCC-AR4 2007). As noted in the Climate Change Science Compendium 
(UNEP 2009a), the growth in carbon dioxide (CO2) emissions from energy and 
industry has exceeded even the most fossil-fuel intensive scenario developed by the 
IPCC at the end of the 1990s. Global emissions were growing by 1.1% each year from 
1990-1999 and this accelerated to 3.5% per year from 2000-2007. 

Globally, deforestation continues at an alarming speed, with around 13 million 
hectares of forest lost per annum from 1900 to 2005 (FAO 2007), mainly from 
conversion into agricultural land. That is a loss in forest cover equivalent to the size of 
Bangladesh every year. Furthermore, forests act as vital carbon sinks and it is 
estimated that the World’s 4 billion hectares of forests (FAO 2007) store 283 
gigatonnes (Gt) of carbon in their biomass and that this stock decreases by 1.1 Gt 
annually because of deforestation and forest degradation (FAO 2006). Deforestation 
and forest degradation accounted for 17% of total anthropogenic greenhouse gas 
emissions in 2004 in terms of CO2 equivalents (UN-MDG 2009), for example. 
Globally c. 36% of forest areas are primary forest, that is forests of native species in 
which there are no clearly visible indications of human activity and where ecological 
processes are not significantly disturbed. About 6 million hectares of these forests 
have been lost or modified each year since 1990 (FAO 2007). The continuing decline 
in primary forests in humid tropical countries especially is a matter of most serious 
concern, not only because of the impact on the global carbon budget, but also due to 
the loss of important natural habitats and rich biodiversity (Melillo et al. 1996). While 
there are currently insufficient data to determine globally the level of forest biological 
diversity decline, there is nonetheless a clear downward trend in key countries in 
which primary forests are under pressure from growing populations, expansion of 
agriculture, poverty and logging (FAO 2007). From 2000 to 2005 nine of the ten 
countries that account for more than 80% of the World’s primary forest lost at least 
1% of this area, led by Indonesia (13% loss in just five years), Mexico (6%), Papua 
New Guinea (5%) and Brazil (4%) (FAO 2007). 

Humid tropical forest clearing from 2000 to 2005 was estimated by Hansen et 
al. (2008) to be 27 million hectares, which represented a 2.4% reduction in the area of 
humid tropical forest. 55% of total biome clearing occurred within only 6% of the 
biome  area,  emphasizing  the  presence  of  forest  clearing  "hotspots."  Forest  loss  in  
Brazil accounted for 48% of total biome clearing, nearly four times that of the next 
highest country, Indonesia, which accounted for 13%. Over three-fifths of clearing 
occurred in Latin America and over one-third in Asia. Africa contributed 5% to the 
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estimated loss of humid tropical forest cover, reflecting the absence of current agro-
industrial scale clearing in humid tropical Africa. However, considering all forest 
types, Africa played a significant part in global deforestation. Over the period 2000 to 
2005 the largest net losses of forests occurred in Latin America and the Caribbean, 
with c. 4.3 million hectares of deforestation annually, but this was closely followed by 
Africa with c. 4.0 million hectares lost annually (FAO 2006; UN-MDG 2009). The 
estimated total forest area for Africa in 2005 was 635 million hectares, accounting for 
c. 16% of global forest area. 

The UN Global Biodiversity Outlook 2 study estimates that 130 species become 
extinct every day, more than 1000 times the natural extinction rate (Secretariat of the 
Convention on Biological Diversity 2006). Whilst it is thought there are 90 million or 
more  species  on  Earth,  only  around  2  million  species  are  known  to  science  (UNEP  
2010a). Therefore, we know little of what biodiversity we are irrevocably losing every 
year. According to the International Union for Conservation of Nature (IUCN) 2009 
red list, 12% of birds, 21% of mammals, 28% of reptiles, 30% of amphibians, 35% of 
invertebrates,  37%  of  freshwater  fish,  and  70%  of  all  plants  are  threatened  with  
extinction. In response to the severity of this situation, the UN has declared 2010 as 
the International Year of Biodiversity. To date, the international community has failed 
to reverse the rate of loss of biodiversity, despite that nearly all countries signed the 
1992 UN Convention on Biological Diversity. Economies everywhere continue to 
dismantle the productive life-support systems of Earth. The most recent UNEP 
Economics of Ecosystems and Biodiversity (TEEB) study estimates that up to US$5 
trillion-worth of natural or nature-based capital is lost annually. 

The  true  value  of  ecosystem  products  and  services  flowing  into  the  world  
economy have not previously been understood or successfully integrated into the 
world economy. As Dr. Achim Steiner, the current executive director of the UN 
Environment Programme (UNEP), stated in a 2010 radio interview with the BBC 
World Service, “the invisibility of biodiversity in economic terms has been one of the 
tragedies of the 20th century.” Biodiverse ecosystems not only provide essential goods 
to  humanity,  such  as  fresh  water,  food,  fibre,  and  medicines,  but  also  irreplaceable  
services, including purification of air and water, and regulation of pests, disease and 
soil erosion. Biodiverse forested watersheds in particular are a sustainable source of 
clean water, especially important with the ever increasing urbanization of humanity. 

Apart from nature’s immediate usefulness to humankind, many - including 
myself - argue that all life has an intrinsic right to exist, and thus deserves protection. 
We must also recognize the right of future generations to inherit, as we have, a 
healthy planet thriving with life, and that continues to provide opportunities to harvest 
the economic, cultural and spiritual benefits of nature. However, the direct causes of 
biodiversity loss throughout many of the varied ecosystems of the Earth’s biosphere, 
such as habitat change, the introduction of invasive alien species, and climate change, 
show no signs of abating. Furthermore, the contributions of ecosystems to human 
societies promise to become all the more apparent and important as environmental 
change accelerates. Biodiverse ecosystems tend to be more resilient, and can therefore 
better cope with an increasingly unpredictable world (Secretariat of the Convention 
on  Biological  Diversity  2006).  Climate  change  will  bring  more  extreme  weather  
events, from which intact ecosystems can offer physical protection. Higher levels of 
pollution will call for more detoxification processes, a service provided by healthy 
wetlands for example. Sadly, those already suffering from poverty will be most 
affected by biodiversity loss as the rural poor rely on ecosystems for their daily needs, 
and to sustain them through challenging times. When the services provided by 
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ecosystems are disrupted, the disadvantaged also lack the means to replace them. 
With proper sustainable management, however, ecosystems could potentially offer a 
path out of poverty. 

I was born in 1975 and therefore environmental remote sensing, using civilian 
Earth observation satellite imagery, as a distinct scientific academic discipline is not 
much older than me! After leaving university the first time around, having obtained a 
BSc in Geography from Bristol, I joined the “rat race” and went to work on the 15th 
floor of a towering, shiny blue-glass office block in London’s post-industrial 
reconceptualized and revitalized Docklands. It was an intimidating new office world 
for me on my first day as a sprightly, enthusiastic and somewhat naive 21 year old. 
That first morning at 9 o’clock sharp, as the lift doors opened with a ping and I 
subconsciously adjusted my already pinching taut tie before stepping forward over the 
threshold, and into the bright neon-like lighting of the reception, I began my initiation 
into corporate life and into the ins and outs of supplying and generating geospatial 
data for the ever changing and cutthroat telecoms market. The work was hard and the 
hours where long, but at least, I thought, I was on the way. 

The view from my desk out of the tinted window was engrossing, drawing my 
gaze in the infrequent moments when I was able to take a break from the incessant 
phone  calls  and  e-mails.  It  offered  a  vista  across  the  entire  sprawling  grey  mass  of  
south and central London; through tantalizing glimpses of the slivery snaking Thames 
making its way, almost ignored, through the gritty heart of London, to the distant 
promise of the rural idyll in the far off, but just visible on a clear day, North Downs of 
Kent and Surrey. In the back of my mind I was always aware that there was a whole 
planet  out  there,  a  whole  different  world  from  London  office  life  waiting  to  be  
explored. 

Though the job was good, honing my skills in remote sensing and GIS, and the 
people I worked with were great, gradually, over the years I began to wonder if this 
really  was  what  life  was  all  about;  the  9  to  5;  eating  takeaway jacket  potatoes  with  
cheese for lunch at your desk with one hand, whilst typing out an urgent quote for the 
overpaid sales team with the other – indigestion guaranteed; reading about the latest 
celebrity hairdo in the Metro every morning whilst waiting for the perpetually delayed 
8:16 to Waterloo… then one day it happened. I had my epiphany. I got to the office, 
logged in, and opened my e-mail inbox. Straight to work, there was no Facebook in 
those days! Another request for mapping data pricing, “no problem” I thought, “I 
have  covered  that  before,  although  a  while  ago  now”,  so  I  opened  up  the  previous  
quote and updated the info, but… I had totally forgotten what year it was… never 
mind the day or the week! That was when it hit me like a train, my life had become 
stayed; there was no differentiation; there was no real meaning; one year was the 
same as  another.  What  else  then,  but  time for  a  change,  a  real  change,  a  significant  
change. At that point, having been lucky enough to have met and be in a relationship 
with a beautiful young Finnish woman, whom I had chanced upon in a heaving 
laughter filled bar in London’s atmospheric Covent Garden, I made a decision there 
and then to pack it all in and head off on a new path in life. Having worked for 7 years 
with the various stresses and strains of London’s hyper-competitive office scene, I 
have indeed, therefore, been a very fortunate human being to be able to take the 
opportunity to go back to “studying” and to have the time once again to really think 
more deeply about matters. 
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“The wisdom of a learned man cometh by opportunity for leisure: and he that hath 
little business shall become wise. 
How can he get wisdom that holdeth the plough, and that glorieth in the goad, that 
driveth oxen, and is occupied in their labours, and whose talk is of bullocks?” 
 

The Bible, Ecclesiasticus, 38:24-25. 
 
Within this thesis I have covered a lot of academic ground in terms of the subject 
areas that I have delved into - ranging from a consideration of the hydrocarbon 
absorption spectra of an asphalt car park in Espoo (Finland) to the indigenous forest 
core habit distribution of the critical endangered East African Taita Thrush Turdus 
helleri - throughout all of which I have strived continuously not to talk ‘bullocks’! I 
do, nonetheless, accept any errors and omissions within this thesis as my own 
responsibility. Through necessity of the specifics of the subject matter, this thesis is 
very methodological and technically oriented and thus offers little in the way of deep 
meaningful insights into the background causes and drivers of the environmental 
changes that have been mapped and modelled. However, I want to stress that these 
issues are of course fundamental and essential in addressing and hopefully resolving 
environmental degradation. Were it not for the specific aims of this thesis, a lack of 
detailed discussion on these issued would evidently be a fundamental oversight. 
Within the TAITA and TATATOO projects, however, there are others whose research 
considers the socio-economic and cultural aspects behind land use practices in the 
Taita Hills. 

By offering insights into reliable processing methods for SPOT data - which are 
just as viable applied to any other type of medium or high resolution optical satellite 
imagery - it is my sincere desire that this thesis may be of some interest and use to the 
work of others in accurately monitoring and modelling environmental changes, 
hopefully with the aim of conserving natural resources and implementing sustainable 
development. Especially, I hope this thesis is of some assistance to those living and 
working in developing countries with limited financial, data and software resources. 
Ways of implementing the outlined methodologies in such circumstances are 
discussed throughout this thesis. 
 
"You must be the change you wish to see in the world." 
 

Mahatma Gandhi, Indian political and spiritual leader (1869 - 1948) 
 
The failure of the 2009 Copenhagen UN Climate Change Conference to reach 
consensus shows both the complexity of global environmental issues and a general 
lack of political will to move forward in properly addressing these problems. Are 
politicians’  real  roles  to  keep  the  status  quo  or  to  change  it?  As  the  French  theorist  
Michel Foucault notes, knowledge is power. Therefore a better education and 
understanding for all human beings not only enables better local management of the 
environment, but can also give real weight to a grassroots change in approach and a 
chance  to  implement  truly  sustainable  development.  It  is  the  duty  of  all  forward  
thinking citizens of Earth to further a higher level of environmental consciousness and 
to do everything they can to work towards true sustainability in all aspects of their 
life. It’s not easy to do, and it will take time and effort, but as my grandmother used to 
tell me, if you take care of the pennies the pounds will take care of themselves. 
 



 XX

A good friend and colleague of mine, Mika Siljander, wrote in the Preface to his PhD 
thesis: 
 

“I  strongly  believe  that  we  need  to  take  into  account  abiotic,  biotic  and  
anthropogenic factors and processes behind environmental problems before we 
can resolve them. We need to have a broad knowledge for all these study fields, 
not just one. We need to have a holistic understanding for environmental problems 
and we need to combine more than just one entity to form something new — we 
need synthesis. And because geography is a discipline of synthesis; “There has 
always been a view of geography as a discipline of synthesis. Holism has been 
there the whole time…” (Holt–Jensen 1988), I therefore strongly believe that 
geographers can contribute fighting against environmental problems in a very 
special way as we geographers have the skill to see the “The Whole Picture”.” 

 
I think this also very well describes my opinion about the potential of geography. 
Geographers are often belittled as the “jack of all trades, and the masters of none”, but 
this  power  of  oversight  may  actually  prove  to  be  a  crucial  skill  in  successfully  
addressing the myriad of environmental issues that will no doubt continue to confront 
us in the years to come.  
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1. INTRODUCTION 

1.1 Remote sensing based environmental monitoring of the Earth’s land surface 
 
Earth is currently experiencing very serious environmental problems and threats at all 
scales from the local level right through to the global level. Figures from the United 
Nations (UN) Population Division (2008) show that world population rose from 
approximately 2.5 billion in 1950 to 6.5 billion in 2005, and is expected to reach 6.9 
billion in 2010. Moreover, world population is projected to continue growing quickly 
and, for example, to increase to 9.1 billion by 2050. This unprecedented rapid 
population growth, and the consequent escalating requirements for natural resources 
to meet even the most basic human needs of water, food, and shelter, are without 
doubt one of the main drivers of land cover change and increasing environmental 
degradation (Preston 1996). 

The largest rates of population growth have been, and are expected to continue 
to be, in the developing countries of Africa and Asia, and are having significant 
social, economic, and environmental impacts on these regions. Africa’s population 
has grown from c. 227 million in 1950 to about 1 billion people in 2010. With the 
highest birth-rate of any continent – 2.3% (2005-2010) compared to a world average 
of 1.1% (2005-2010) – the population is projected to grow to 2 billion by 2050 (UN 
Population Division 2008). Africa’s total land area is about 29.6 million km2, which 
represents  20%  of  the  Earth’s  surface.  Over  65%  of  Africa  is  arid  or  semi-arid  (of  
which 43% is desert), c. 22% is forest, and only ~20% is suitable for cultivation 
(FAOSTAT 2006). Pressure on Africa’s environment, which is mainly the result of 
population growth, has intensified and in many areas has exceeded the capacity of 
natural resources to meet expanding human needs with the current technology. This 
has resulted in loss of forests and biodiversity, land degradation, increasing water 
shortages and declining water quality (Eva et al. 2006). 

Land degradation is a composite term that describes the negative impacts of a 
large number of naturally occurring but human influenced processes on an 
environment (Stocking & Murnaghan 2000). It implies a reduction in the productive 
capacity of an ecosystem and in its value as an economic resource (UNEP 1992). At a 
localized landscape level there is a strong cyclical connection between land use and 
degradation. Changes in land use over time, such as agricultural expansion, influence 
degradation processes and this in turn affects the future utilization of the land. Across 
many parts of Africa, conversions of land to agriculture associated with poor land 
management practices have caused considerable land degradation and erosion. About 
25% of Africa is subject to water erosion and 22% to wind erosion, and desertification 
processes affect over 45% of the land area, of which 55% is at high or very high risk 
(UNEP 1992). Water stress and scarcity are endemic in approximately a quarter of all 
African countries, and generally water quality is deteriorating while water-related 
diseases are increasing (Eva et al. 2006). Africa has only 9% of global renewable 
freshwater resources and the average water availability per person is far less than the 
global average and falling (FAO AQUASTAT 2006). It is estimated that around 6,000 
people die in Africa every day as a result of contaminated water and poor hygiene, 
and  about  3  million  annually  as  a  result  of  water-related  diseases  (UNEP  2005).  In  
many regions, especially northern and eastern Africa, land degradation and water 
stress are exacerbated by the high variability and unreliability of rainfall, often 
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resulting in prolonged droughts followed by periods of intense rainfall, which 
regularly causes severe flooding (Eva et al. 2006). 

The last 40 years have seen unprecedented land cover and land use changes 
occurring in sub-Saharan Africa. These have been a consequence of a series of both 
naturally occurring and man-made factors and major disturbances; notably high rates 
of population increase, civil wars and resultant population movements, economic 
development and globalization, as well as droughts and increasingly significant 
climate change (Brink & Eva 2009). These factors have acted to continuously erode 
natural resources and ecosystems in the region. The conversion of natural vegetation 
to agriculture by the expansion of croplands is the major land cover dynamic in sub-
Saharan Africa. For example, based on a stratified random sampling procedure with 
Landsat Thematic Mapper (TM) satellite imagery, Brink & Eva (2009) found that, 
over the period 1975 to 2000, agricultural areas increased by 57% in sub-Saharan 
Africa from c. 200 million hectares (ha) to nearly 340 million ha, an average annual 
change rate of 2.3%. This resulted in a 5% loss of woodlands and grasslands (60 
million ha) and a 16% loss of forests (71 million ha), although it should be noted that 
the largest forest losses occurred outside the humid forests of the Congo basin, which 
accounted for only 16% of the total forest loss, despite accounting for more that 80% 
of sub-Saharan Africa’s forest area. Assuming linear change over time, this indicates 
a yearly deforestation rate of 0.7%, meaning that the region has been losing nearly 3 
million ha of forests per annum. Further, barren areas increased by 15%, amounting to 
6.5 million ha. Every year from 1975 to 2000, then, over c. 50 000 km2 of natural 
vegetation in sub-Saharan Africa was converted to croplands. 

Such decreases in natural vegetation lead not only to a fragmentation and loss of 
habitat, biodiversity and stored carbon, but also to a degradation or loss of ecosystem 
services such as sources of freshwater, pastures, forest resources, fuel wood and bush 
meat, with potential long-term impacts on climate, socio-economic stability, 
sustainable food production, food security and human welfare (Foley et al. 2005; Eva 
et al. 2006). A consequence of this, for example, can be to make protected areas or 
reserves  some  of  the  few  remaining  zones  within  a  region  where  fuel  wood,  richer  
pastures and game resources are more abundant or easily available, hence attracting 
and encouraging illegal and unmanaged resource use activities in such areas (Clerici 
et al. 2006). Furthermore, where expansion in and management of agricultural areas is 
poorly organized and administered, as is often the case in sub-Saharan Africa, 
changes in the soil water cycle, vegetation cover and nutrient depletion, can give rise 
to feedback mechanisms in localized land degradation processes leading to increased 
soil  erosion,  as  well  as  natural  hazards  such  as  floods  and  landslides  (Brink  &  Eva  
2009). 

The population of eastern Africa increased from c. 65 million in 1950 to 287 
million in 2005, and is projected to reach 711 million by 2050 (UN Population 
Division 2008). In Kenya, both the total fertility rate of 5.0 and a growth rate of 2.8% 
are extremely high. Kenyan population has grown from c. 6 million in 1950 to 31.5 
million in the 1999 census, and is projected to be 85.5 million by 2050 (UN 
Population Division 2008). Many land cover change studies have reported intensified 
land use, expanding agricultural areas at the expense of natural vegetation cover, 
increased environmental pressures, and forest loss, fragmentation and degradation 
throughout Kenya’s ecologically important regions. For example, using aerial 
photography from 1958 and 1985 and SPOT satellite image from 1995, Imbernon 
(1999) reported an almost total loss of bushland in the upper Embu area, with a 75% 
increase in the cultivated area between 1985 and 1995, and although there was only a 
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minor reduction in forest cover, there was a significant change in the species 
composition of the forests from native tree species to exotic species, such as grevillea 
and eucalyptus. Using Landsat TM satellite imagery from 1986, 1995, and 2003, 
Baldyga et al. (2007) studied land use changes in the Mau forest area, the largest 
indigenous forest in East Africa and Kenya's most vital water tower (UNEP 2010b), 
and identified significant deforestation between 1995 and 2003 related to the 
expansion of small-scale agriculture, shared almost equally between exotic plantations 
and indigenous forests. Lung & Schaab (2006) studied land cover changes and forest 
fragmentation and disturbance in the vicinity of Kakamega forest from 1972 to 2001, 
based on the analysis of seven Landsat satellite images, and they too identified severe 
deforestation and fragmentation increasing over time, especially in the southern part 
and edges of the forest, related to accessibility and local population distribution. A 
general overview of environmental degradation for a number of key Kenyan 
ecosystems is given in the UNEP Kenya: Atlas of Our Changing Environment report 
(UNEP 2009b). 

In the ecologically important and environmentally sensitive Taita Hills in 
southeastern Kenya, which are the main study area of this thesis, local population in 
the Taita-Taveta district as a whole has increased from 90 000 in 1962 to 246 671 
inhabitants counted in the 1999 census (Republic of Kenya 2001). The population is 
particularly concentrated in the fertile Taita Hills themselves, where population 
density is 400-500 persons per km2 in the best agricultural areas and over 900 persons 
in some sub-locations (Republic of Kenya 2001). There has been an increase in the 
area under cultivation in the Taita Hills and due to poor agricultural management, 
erodible soils and the rugged topography, the area is subject to land degradation and 
accelerated soil erosion (KARI 2005), especially in the foothills. The Taita Hills form 
the northernmost part of Africa’s Eastern Arc Mountains, which have been identified 
by Conservation International as one of the top ten biodiversity hotspots in the world. 
Of particular scientific and conservation interest are the remnant indigenous forest 
patches, which are home to many rare or endangered endemic animals and plants 
(Githiru & Lens 2007). Identified threats to the these forest patches include 
encroachment, over extraction of firewood and building materials, charcoal burning, 
illegal logging, lack of awareness among the communities living adjacent to forests, 
fires (both deliberate and naturally occurring) and colonization by suppressive and 
fast  growing  exotic  tree  species  (EAWLS 2005).  It  can  be  seen,  therefore,  that  land  
use and land cover (LULC) change, land degradation and population growth are key 
issues in the Taita Hills which require detailed study. 

It can clearly be seen, then, that throughout Africa, and indeed throughout the 
developing world in general, there is an ongoing and pressing requirement for better 
spatial databases at local, national and regional levels covering a range of natural and 
socio-economic variables; most especially population, and LULC and LULC change 
over time (Eva et al. 2006). Further, these databases need to be regularly updated and 
should be standardized and interoperable, so that comparisons with and utilization 
within other studies can be undertaken. Spatially explicit up-to-date information on 
population is very useful for areas of the developing world experiencing rapid 
changes in population distribution and abundance, because the traditional nationwide 
census is often a painstaking error-prone operation, normally undertaken only once a 
decade. Additionally, demographic information is usually provided in national or 
administrative units of which the sub-national reference units can be of vastly 
different size and shape (Li & Weng 2005; Mubareka et al. 2008). For spatial 
analysis, however, it is often preferable to record human population estimates in 
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regular analysis grids, such as is the case with the LandScan database (Dobson et al. 
2000). Moreover, the problem with existing population models is their coarse scale, 
for example LandScan has a grid resolution of 1 km2, thus generalizing and obscuring 
the internal variability of population data. Therefore, at a local scale, there is great 
demand for cost-efficient applications to generate spatially explicit human population 
geospatial databases and distribution maps at finer resolutions. 

Increasing population pressure and agricultural expansion, together with 
insufficient attention to natural resources management and environmental concerns is 
rapidly undermining Africa’s environmental sustainability, particularly affecting the 
poorest countries and peoples. There is an urgent requirement, therefore, to develop 
and implement sustainable natural resources management policies, programs and 
planning (Eva et al. 2006). Whilst specific erosion processes and their resultant 
landforms, such as gully formation through soil erosion by water, can be usefully 
studied at a micro level, land degradation cannot be directly assessed at a macro level 
through any single measure. Rather, use must be made of indicator variables that 
demarcate the likely occurrence of degradation. At a landscape level, these indicators 
are changes in LULC patterns over time such as loss of vegetation cover, including 
deforestation. Crucial to an understanding of landscape changes is, then, to accurately 
map and quantitatively assess LULC and LULC changes over time at periodic 
intervals. As Brink & Eva (2009) note, further studies are required to provide 
information not just on the magnitude and nature of LULC changes but also to 
spatially localize them. 

All these factors unequivocally show the significant and ongoing pressing 
requirement for quantitative, scientifically based, repeatable and accurate 
environmental monitoring and modelling from the local level through to global scales; 
an issue to which spaceborne satellite remote sensing of the Earth’s surface is 
uniquely placed to provide information and insight. Satellite remote sensing offers the 
possibility for routinely monitoring the environment over regional, as well as national, 
continental,  and global scales,  and makes it  feasible to collect  synoptic and spatially 
explicit data of inaccessible and extensive areas, with information available in 
spectral, spatial, angular and temporal resolutions and polarization domains. 
Consequently, remote sensing has played a substantial pivotal role in the development 
of understanding and modelling of a myriad of environmental processes, as well as in 
the monitoring of LULC (De Jong et al. 2004), from global down to local scales since 
the first civilian Earth observation satellites were launched in the early 1970s. 

Land cover is defined as the observed (bio)physical cover on the Earth’s 
terrestrial surface and includes vegetation and man-made features, as well as bare 
rock, bare soil and inland water surfaces (DiGregorio 2005). The primary units for 
characterizing land cover are thematic categories (e.g. Forest) or continuous variables 
classifiers (e.g. fraction of Tree Canopy Cover). Secondary outputs include surface 
area of land cover types, land cover change, and observational by-products such as 
field survey data and geometrically and atmospherically corrected satellite imagery 
products. Categories and classifiers must be defined consistently in order to identify 
land cover changes over time, and standardization of classification schemes is an 
important issue if greater use and understanding of digital mapping products is to be 
facilitated. However, existing inconsistencies between different land cover mapping 
products and change monitoring systems have complicated the ability to successfully 
synthesize land cover assessments on regional and global scales (GTOS-T9 2009). 
Consequently, the Land Cover Classification System (LCCS) software was developed 
by FAO and UNEP (DiGregorio 2005), which offers a standardized a priori 
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classification system that can be used for any land cover mapping exercise regardless 
of the methodology, scale, source material and geographic location (DiGregorio 
2005). The LCCS classifiers provide a comprehensive and flexible framework for 
thematic land cover characterization, and enable compatibility to be achieved between 
existing datasets and for future monitoring systems. However, it is only recently that 
LCCS has become recognized and widely used to provide a basic level of thematic 
land cover standardization (GTOS-T9 2009). 

In current practice, many research institutes and observational programmes do 
not explicitly distinguish between land cover and land use. Land use characterizes the 
arrangements, activities and inputs people have undertaken on a certain land cover 
type to produce, change or maintain it (DiGregorio 2005). However, because of the 
implicit or explicit role of humans in land use characterization and mapping, 
DiGregorio (2005) argues it should be considered distinct and dealt with separately 
from land cover type, thus ensuring internal and external consistency and 
comparability. Land cover and land use transitions may be interoperable, such as a 
change from natural vegetation cover to cropland agriculture, but this relationship 
does not hold in all circumstances because land use characterization includes 
considerations that go beyond land cover. Nevertheless, in this thesis discussion and 
in thesis Paper IV, the term LULC is used in place of land cover where appropriate as, 
by including the Cropland, Plantation Forest and Built-up Areas classes in the 
mapping of the Taita Hills, some inference is being made about the land use, even if 
in the strictest sense the classes have been derived from LCCS. However, in the 
modelling Papers V and VI the mapping data is referred to specifically as land cover. 

LULC and vegetation have a central role in the Earth’s climate and hydrological 
systems, and in biogeochemical cycling. Vegetation meditates ca. 90% of the gaseous 
exchange between the terrestrial biosphere and the atmosphere (Ozanne et al. 2003); 
consequently, changes in LULC that modify vegetation alter the rate of carbon 
exchange (Houghton 2003) and can have a significant impact on atmospheric carbon 
dioxide (CO2) concentrations (Hilker et al. 2008). Furthermore, the emergence of a 
number of global scale environmental problems has led to many policy-driven needs, 
notably binding international agreements, which have motivated the production of 
land cover information for biodiversity assessments (Secretariat of the Convention on 
Biological Diversity 2006), climatic modelling, and quantification of carbon cycling 
(DeFries & Belward 2000; Rosenqvist et al. 2003), for reporting and scientific 
modelling purposes. The 2007 UN Intergovernmental Panel on Climate Change 
(IPCC) Fourth Assessment Report (AR4) unequivocally stated that humans have 
significantly modified the composition of the atmosphere and that, as a result, Earth’s 
climate is changing and operating as an accelerator for associated environmental 
disturbances, such as melting of snow and ice, rising sea level, flooding, droughts and 
wildfires (IPCC-AR4 2007). The precise quantification of the rate of climate change 
is a divisive issue, but is very important in determining whether feedback or 
amplification mechanisms, in which the terrestrial surface plays an important role, are 
operating within the climate system. Consequently, the issue of climate change in 
particular has generated significant science- and policy-driven requirements for 
globally consistent sets of observational data, which are needed to attribute the causes 
of climate change, analyse the potential impacts, and evaluate the adaptation options 
(GTOS-52 2008). The climate observing system in the terrestrial domain is, however, 
still poorly developed, while at the same time there is increasing significance being 
placed on terrestrial data for impact, adaptation and mitigation activities. 
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The Global Climate Observing System (GCOS) Second Adequacy Report noted 
that the many difficulties encountered with regards to terrestrial observations, 
including the lack of homogeneous datasets and internationally agreed validation 
protocols and benchmarks, could be resolved by the creation of an intergovernmental 
technical commission for terrestrial observations, similar to those that existed for the 
atmospheric (GCOS) and oceanic domains (Global Ocean Observing System, 
GOOS).  As  a  result,  the  Global  Terrestrial  Observing  System (GTOS)  was  initiated  
by  FAO,  UNEP,  WMO,  UNESCO,  ICSU  and  other  stakeholders,  to  support  the  
terrestrial observational requirements of the United Nations Framework Convention 
on Climate Change (UNFCCC). In particular, in collaboration with the Global Earth 
Observing  System  of  Systems  (GEOSS)  Committee  on  Earth  Observation  Satellites  
(CEOS) Working Group on Calibration and Validation (WGCV), GTOS was tasked 
with establishing standardization (guidelines, benchmarks, acceptable data 
processing/generation methodologies) and developing international coordination for 
the  13  terrestrial  Essential  Climate  Variables  (ECVs)  originally  identified  by  the  
GCOS Implementation Plan: consisting of Land cover and Albedo, as well as 
Biomass, Fire disturbance, Fraction of absorbed photosynthetically active radiation 
(FAPAR), Glaciers and ice caps, Groundwater, Lake levels, Leaf area index (LAI), 
Permafrost and seasonally-frozen ground, River discharge, Snow cover, and Water 
use; observations of which are currently measured by numerous organizations for a 
variety of purposes. 

A range of space agencies, research institutes, and national agencies currently 
carry out the operational production of multi-temporal global, regional and national 
land cover and LULC datasets. Trade-off between the spatial and temporal resolutions 
is a key issue in the selection of satellite imagery for LULC mapping (Aplin 2006), 
which can be divided between the requirement of mapping at “coarse” resolutions 
(250 m-1 km) for determining land cover type globally or over continental scales, and 
mapping at “medium” resolutions (5-50 m) for determining type and detecting land 
cover change (Achard et al. 2008; GOFC-GOLD 2008). In “medium” and “fine” (  5 
m) resolution studies, the spatial extent of the data coverage is relatively small and the 
temporal resolution of the revisit time and the acquisition of cloud-free imagery is 
poor, whilst in the “coarse” resolution studies the data cover very large areas with 
high temporal resolution (Cihlar 2000); typically global coverage every 1-2 days. 
Additionally, in situ data are acquired for the monitoring of land cover, and as 
reference for calibration and validation of satellite derived land cover and land cover 
change measurements. Over the last twenty years a number of satellites have been 
launched that are specifically designed with capabilities to monitor land cover and 
land cover changes. For example, the MODIS, ASTER and MISR sensors of NASA’s 
Earth Observing System (EOS) offer a wide range of high level preprocessed data 
products, such as global land cover (Friedl et al. 2002) or LAI (Myneni et al. 2002), 
and with low cost or free web dissemination. Following the launch of very high 
resolution optical satellites such as IKONOS (4 m multispectral resolution) and 
QuickBird (2.44 m multispectral resolution) at the start of the last decade, sensors that 
have a spatial resolution of 20 to 30 m, such as SPOT and Landsat TM/ETM+ (30 m), 
are now often referred to as “medium” resolution (Blaschke et al. 2004), whereas 
previously they were considered high resolution. Somewhat confusingly, the term 
“moderate” resolution is used variously to apply to both Landsat type data and 250-
500 m resolution MODIS type data. In this thesis discussion, satellite imagery having 
a pixel size larger than the ~80 m of Landsat MSS data are considered as being 
“coarse” resolution. 
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As is detailed in Table 1 and illustrated in Figure 1 below, even though there is a 
current strong emphasis in the remote sensing community on the development and 
standardization of operational global scale products, there is a permanent requirement 
for LULC mapping at a variety of scales, especially at the medium resolutions 
appropriate for detailed analysis of LULC and LULC change. The relevance and 
benefit of the research efforts into global level products, for the utilization of medium 
resolution optical satellite imagery data for environmental monitoring and modelling, 
is that it has driven forward standardization in data processing and validation. This 
allows small scale localized research projects and studies, such as the work carried out 
for this thesis, to contribute more widely, and the generated datasets can be utilized if 
detailed metadata on the preprocessing, processing and product validation are given. 
For example, by adhering to the GTOS developed standards and guidelines, and using 
LCCS for deriving the classification scheme, LULC data are interoperable with data 
from other scales and study areas. 

This thesis concentrates on the utilization of multispectral SPOT data. The 20 m 
pixel spatial resolution of the HRV and HRVIR sensors, and the 10 m resolution of 
the HRG sensors, the 60 km by 60 km scene area (at nadir view), combined with 
spectral information covering the green, red, near infrared (NIR) and shortwave 
infrared (SWIR) wavelengths, make images captured by these instruments suitable for 
local and regional scale studies at what can be termed a landscape level. A landscape 
is actually a complex term that has changed meaning through time, although 
landscapes are increasingly regarded as complex systems composed of a large number 
of spatially heterogeneous components that interact in non-linear ways and exhibit 
emergence, self-organization and adaptive properties through time (Wu & Marceau 
2002; Hay & Marceau 2004; see Section 4.6 for further discussion). Within the 
discipline of landscape ecology, diverse interacting patches are central to a 
conceptualisation of a landscape (Wu & Hobbs 2007). In this thesis, the term 
“landscape  level”  is  taken  to  mean  at  a  scale  that  coincides  with  human  vision  and  
perception of the environment, where humans differentiate a landscape into 
components such as fields, woodlands, built-up areas, etc, which relate to patches. 

The landscape features in the Taita Hills are heterogeneous, small scale and 
dominated by cultivation, forming a patchwork of human settlements, small-holder 
subsistence plots, and small stands of plantation and native tree species. The average 
farm size is 2 ha (Soini 2005a; Ruotsalainen 2008) and the largest indigenous forest 
patches occur in a scatter of three hilltop remnants; Mbololo (c. 179 ha), Ngangao (c. 
136 ha) and Chawia (c. 94 ha) (Lens et al. 2002). However, most of the other remnant 
indigenous forest patches are very much smaller; for example Yale was 15.7 ha, 
Fururu 8.1 ha, Macha 2.5 ha and Mwachora 2.3 ha in 2004 (Pellikka et al. 2009). 
There are also a number of patches formed from plantation forests. This landscape can 
be differentiated in the  20 m spatial resolution SPOT data, whereas in the c. 30 m 
Landsat TM/ETM+ imagery the resolution is insufficient to identify many of the 
smaller landscape features. Landsat data has additional spectral bands in the blue and 
SWIR wavelengths,  but  SPOT data  has  sufficient  spectral  information  to  enable  the  
differentiation of major land cover types. SPOT temporal resolution is also 
appropriate for inter-annual LULC change studies (see Table 1 and Figure 1). The 
SPOT data therefore represents the coarsest “medium” resolution imagery that can be 
easily utilized for detailed LULC mapping and LULC change analysis in the Taita 
Hills, and this was a major reason why SPOT data was chosen. The SPOT data were 
acquired at low cost through the French Centre National d’Etudes Spatiales (CNES) 
ISIS programme.  
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The GTOS ECV-T9 guidelines for 30 m land cover type data requirements and 
suggested technical approach are also a useful basis as a general standard for 
landscape level LULC mapping for environmental monitoring and modelling studies 
in regions of the developing world with limited ancillary data availability: 
Data requirements (adapted from GTOS-T9 2009): 

1. Classification scheme based on LCCS with categories relevant for assessing a 
wide range of environmental applications. In particular, attention should be 
given to classes that are poorly represented in coarse-resolution output products, 
and those classes reflecting human land use (e.g. urban types, agricultural types, 
impervious surfaces). 

2. A spatial resolution of  30 m with temporal updates every 3-5 years. 
3. Overall and regional accuracies exceeding 90% at the highest level of 

aggregation. 
4. Validation should be based on the use of a probability-based sampling strategy. 

Technical approaches (adapted from GTOS-T9 2009): 
The use of computer-assisted methods enables a cost-effective approach to creating 
accurate, high resolution products. Automated methods are preferable where 
possible as the interpretation is repeatable and efficient. Even in a fully automated 
process, visual inspection of the result by an analyst familiar with the region should 
be carried out to ensure correct interpretation. Validation must be statistically 
rigorous, although obtaining suitable sources of validation can be problematic; high 
resolution satellite imagery and aerial photography are comparable to in situ data, 
but may be costly; see Table 1. 
 

Table 1. The role of medium resolution optical satellite imagery, such as SPOT data, within land cover 
monitoring studies at multiple scales (after GTOS-T9 2009). 
 

Sensor & 
Resolution 

Examples of Current 
Sensors 

Common 
MMU 

Update 
Frequency 

Cost of Data 
Acquisition 

Utility for Land 
Cover Mapping 

Coarse Optical 
(250 m-1 km) 

SPOT-VGT (1998- ) 
Terra-MODIS (2000-) 
Envisat-MERIS (2004-) 

10-100 ha Annual Free Internet 
dissemination 

or very low cost 

Consistent global 
annual monitoring 

to identify 
phenological 

pattern, basic land 
cover types, large 

changes and locate 
“hotspots” for 

further analysis with 
finer resolution data 

Medium 
Optical 
(5-50 m) 

Landsat MSS  
(1972-1982) 
Landsat TM/ETM+  
(1982-) 
SPOT (1986-) 
IRS AWiFs or LISS 
(1988-) 
CBERS (1999-) 

0.5-5 ha 1-5 years Some free, 
otherwise 

<$0.001/km2 
for historical 

data 
$0.02/ km2 to 

$0.5/ km2 
for recent data 

Primary tool to 
map major LULC 

and LULC 
changes and 

associated area 
estimates 

Fine Optical 
 5 m) 

IKONOS (1999-) 
QuickBird (2001-) 
Aerial photos (post 
WWII-) 
(Also in situ data) 

< 0.1 ha 1-10 years High to very 
high 

$2-30 km2 

Detailed surveys 
and mapping, 

validation of results 
from coarser 

resolution analysis, 
and training of 

algorithms 
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Figure 1. Conceptual location of medium resolution Landsat/SPOT type data within a framework for 
integrated observations of land cover and vegetation for environmental monitoring and modelling 
studies (from Herold et al. 2008). 

 
It  can  be  seen,  then,  that  for  many  developing  regions  of  the  world,  LULC  

change, land degradation and population growth are key issues. During the last few 
decades the growing number of remote sensing data sources, the development of 
remote sensing and geographical information systems (GIS) data analysis software, 
along with very significant improvements in computing resources, and the science- 
and policy-driven requirements for environmental data, have created major 
opportunities for improvements in LULC characterization (DeFries & Belward 2000) 
and have allowed for more sophisticated geospatial environmental applications to be 
developed. Geospatial environmental modelling using remote sensing, GIS and more 
recently spatial statistical techniques have deepened understanding of the mechanisms 
and driving forces behind environmental degradation. However, there is a need for 
further studies using standardized classification schemes, and data processing and 
validation procedures, to provide information on the magnitude and nature of LULC 
changes, and to spatially localize them. When also supplied with detailed metadata, 
this allows for interoperability and greater data usability. Moreover, there is still a 
requirement for improved methods of environmental monitoring and modelling 
utilizing remote sensing and geospatial data, in order to derive higher accuracy 
products. 
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1.2 Objectives of the thesis 
 
This thesis contributes to knowledge on the utilization of medium resolution optical 
satellite imagery data for environmental monitoring and modelling at a landscape 
level, in regions of the developing world with limited ancillary data availability. This 
is based on the application of multi-temporal SPOT multispectral data to the Taita 
Hills study site in Kenya. Environmental monitoring in the Taita Hills involved the 
derivation of a time-series of surface reflectance factor ( s) retrievals, as well as 
LULC maps and the analysis of LULC change over time. Together with a further 
SPOT imagery database and extensive multiangular s field measurements for the 
Helsinki metropolitan region, which was utilized as a control site, research was 
conducted into the best performing applicable atmospheric correction methodology to 
both accurately retrieve s and provide radiometric stability within a set of multi-
temporal SPOT scenes. Also, in order to derive as accurate as possible mapping of the 
complex heterogeneous LULC in the Taita Hills, an advanced classification technique 
based on multi-scale segmentation/object relationship modelling (MSS/ORM) was 
applied and compared to a standard maximum-likelihood (ML) procedure. 
Environmental modelling in the Taita Hills involved the application of the remote 
sensing derived data along with other geospatial information to consider potential soil 
loss due to changes in land cover. Further, predictive modelling techniques were 
applied to map the distribution and abundance of human population based on SPOT 
and GIS derived geospatial data as predictor variables. The conceptual overlaps 
between the various stages in the preprocessing/processing of, and environmental 
monitoring and modelling with, the SPOT data are summarized in Figure 2. 

Paper I examines the characteristics of spectrally pseudo-invariant surface types 
suitable for use in the application of empirical line (EL) spectral calibration 
techniques. Based on goniometer s measurements taken in the Helsinki metropolitan 
region control site study area, the spectral spatial, temporal, and multiangular 
reflectance variability of various asphalt, sand, gravel, grass, and fake turf targets are 
detailed. Consideration is given to the physical causes of the different behaviours and 
the most appropriate surface types, and the requirements for suitable site selection for 
EL calibrations, are discussed. 

Paper II outlines the proposed historical empirical line method (HELM) for the 
retrieval of s from multi-temporal SPOT multispectral data. The application of 
HELM to SPOT imagery datasets covering the Taita Hills and the Helsinki 
metropolitan area is detailed, and the s retrieval accuracy results are compared to the 
partially corrected at-satellite reflectance ( SAT). Calibration to nadir only s is 
denoted  as  the  HELM-1  approach,  whilst  calibration  to  s modelling the exact 
illumination and view geometries of the imagery is termed the HELM-2 approach. 
The estimated error in applying HELM-1 to the control site SPOT imagery database, 
given the ± 31° range in the SPOT sensor view incidence angle ( V), is modelled. 

Paper III utilizes nadir s collected in the Taita Hills application site, as well the 
multiangular s field  data  from  the  Helsinki  metropolitan  region  control  site,  to  
undertake a comparative assessment of the absolute atmospheric correction 
techniques applicable in local and regional landscape level remote sensing studies, in 
circumstances where no detailed overpass concurrent atmospheric measurements or 
meteorological data are available. Namely, in addition to HELM, dark object 
subtraction (DOS) and the Second Simulation of the Satellite Signal in the Solar 
Spectrum (6S) radiative transfer model (RTM) atmospheric correction methods are 
applied to the multi-temporal SPOT imagery databases covering both the Taita Hills 
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application site and the Helsinki metropolitan region control site. Performance is 
assessed both on the ability of each methodology to accurately retrieve s and also to 
provide radiometric stability within the multi-temporal datasets. 6S is applied using 
modelled atmospheres and general estimates of atmospheric optical depth (AOD) at 
0.55 m for the Taita Hills dataset, but is applied using meteorological data for the 
Helsinki control dataset. Together, Papers I, II and III give a complete description and 
verification of HELM. 

Paper IV examines mapping LULC and LULC changes for environmental 
monitoring at a landscape level in the Taita Hills, utilizing an object-oriented (OO) 
MSS/ORM classification procedure applied to the SPOT imagery. This enables the 
integration of the mapping process into the heart of a conceptual framework for 
landscape analysis based on the theory of hierarchical patch dynamics (HPD), within 
which the interaction of ecological processes operating at different scales can be 
understood. This represents a significant theoretical advancement over standard uni-
scale per-pixel classification techniques. The OO and ML classifications are 
compared and assessed based mainly on ground reference data collected in the Taita 
Hills. As a preprocessing step before classification, the HELM atmospheric correction 
developed  in  Papers  I,  II  and  III  is  applied  to  the  data,  along  with  topographic  
corrections. To enable the multi-disciplinary utilization of the generated LULC data, 
classification is based on the FAO LCCS. 

Paper V uses the universal soil loss equation (USLE) and the SPOT derived 
LULC data generated by the MSS/ORM classification procedure, as described in 
Paper IV, to model potential soil loss in the Taita Hills, and to determine the areas of 
highest potential soil loss risk. In accordance with working in regions of the 
developing world with limited ancillary data availability, and considering the ability 
of the procedures to be replicated locally using a minimum of resources, low cost and 
freely available GIS data were utilized. Local rainfall records of the Kenyan 
Meteorological Department were interpolated into a 20 m grid, a 20 m digital 
elevation model (DEM) was generated from Survey of Kenya 1:50,000 scale 
topographic paper maps, and the 1:1,000,000 scale Explanatory Soil Map of Kenya 
was digitized to derive a generalized digital soil map. 

Paper VI utilizes s derived in Paper II and LULC maps generated by the 
MSS/ORM classification procedure applied in Paper IV, as well as calculated SPOT 
imagery texture measurements and other GIS derived geospatial data (topography, 
climate and distance), as predictor variables to model the distribution and abundance 
of human population within the Taita Hills. Dwelling units were interpreted and 
digitized from airborne image mosaics and presence-absence of dwelling units in a 
100 m analysis grid was used as a response variable. Prediction models were created 
using a generalized regression analysis and spatial prediction (GRASP) method that 
utilizes the generalized additive model (GAM) regression technique. The population 
abundance modelling results were compared with two existing global population data 
sets: Global Population of the World Version 3 (GPWv3) and LandScan 2005. With 
local population growing quickly in the Taita Hills, but a census being taken only 
once every decade, the ability to adequately map population distribution and 
abundance solely from GIS and remote sensing based variables is of significant 
importance. Again, the methodology was developed considering the ability of the 
procedures to be replicated locally using a minimum of resources. 
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Figure 2. Conceptual synthesis of the environmental monitoring and modelling approaches, and 
geographical areas, applied in Papers I–VI, centred around the utilized SPOT multispectral satellite 
imagery data. 
 

2 BACKGROUND 

2.1 Key properties of optical remote sensing of the Earth’s land surface 

In general terms, remote sensing refers to obtaining information about an object or an 
area by utilizing electromagnetic radiation (EMR) without being in direct contact with 
the object or area (De Jong et al. 2004). In 1988 the American Society for 
Photogrammetry and Remote Sensing (ASPRS) adopted a formal definition of remote 
sensing as:  “the art, science, and technology of obtaining reliable information about 
physical objects and the environment, through the process of recording, measuring 
and interpreting imagery and digital representations of energy patterns derived from 
non-contact sensor systems” (Colwell 1997). Remote sensing is a scientific discipline 
as the sensors used to make measurements are designed and built using physical 
principles, and the collected data are processed using mathematical and statistical 
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analyses (Jensen 2000). Remote sensing is, then, integrated with other mapping 
sciences,  such  as  geoinformatics  and  GIS.  However,  remote  sensing  can  also  be  
considered an art as usually, at some point in the imagery interpretation process, 
skilled human judgement comes into play. For example, in the LULC data generated 
for the Taita Hills utilizing the MSS/ORM approach, as detailed in Paper IV of this 
thesis,  the  selection  of  training  areas  for  the  classifiers,  the  identification  of  
appropriate segmentation parameters, the derivation of semantic rules for object 
classification,  and  the  final  manual  editing  of  the  maps  to  remove  apparent  errors,  
were all tasks undertaken directly by the remote sensing analyst. Consequently, the 
appropriateness and accuracy with which these tasks were achieved relied on the 
knowledge, understanding and skills of the analyst. The total experience, scientific 
knowledge and background understanding that the analyst has obtained throughout 
their lifetime are brought to bear on the interpretation process. Such learning cannot 
easily be measured or programmed, or completely understood (Jensen 2000), thus 
remote sensing is as much an art as it is a science. 

The majority of remote sensing instruments measure changes in the properties 
and amount of EMR, although other force fields may also be utilized, for example 
sound waves in sound navigation and ranging (sonar), which is used underwater 
(Jensen 2000). Remote sensing devices are not in physical or intimate contact with the 
object of interest, but may be very close such as in the case of in situ field 
measurements of radiance made with spectrometers. Remote sensing for Earth 
observation most commonly utilizes airborne and especially spaceborne sensor 
platforms. In terrestrial remote sensing, sensors collect reflected, emitted and 
scattered EMR from visible to microwave wavelengths, with the aim of inferring 
information on the physical, chemical and biological conditions of the Earth’s surface 
(Campbell 2002). Passive sensors, which form the majority of Earth observation 
remote sensing instruments, detect naturally occurring EMR that is emitted or 
reflected by the observed surface, with reflected EMR originating from the Sun being 
a very commonly utilized source of the radiation. Passive sensors include charge-
coupled devices (CCD), radiometers, and traditionally aerial photography film. Active 
sensors,  on  the  other  hand,  emit  their  own  EMR  in  order  to  scan  objects  and  areas  
whereupon the sensor then detects and measures the EMR reflected or backscattered 
from the target. Examples include radio detection and ranging (RADAR) and the 
increasingly popular light detection and ranging (LIDAR). 

The focus of this thesis is on satellite based optical remote sensing in the visible 
to  SWIR  spectral  regions,  related  to  the  spectral  resolutions  of  the  SPOT  HRV,  
HRVIR, and HRG sensors. “Optical” remote sensing refers to wavelengths of EMR 
that can be manipulated by mirrors, lenses, and prisms, to reflect, refract, disperse, 
absorb, and polarize the EMR for data collection. The optical region in Earth 
observation is generally considered to range from visible to thermal infrared 
wavelengths, i.e. from 0.4–14 micrometres ( m) (Liang 2004), due to the restrictions 
imposed by atmospheric absorption. In terrestrial remote sensing the Earth’s surface is 
the object of interest, from which perspective the atmosphere is usually considered to 
be an impediment which distorts the EMR signal received from the surface, rather 
than an object of investigation in its own right (Goetz et al. 1985). The atmosphere 
attenuates  EMR  both  on  its  path  from  the  Sun  to  the  ground  surface,  and  from  the  
surface to the satellite sensor, though the effects are heavily wavelength dependent 
and  also  vary  with  changes  in  the  atmospheric  conditions  at  the  time  of  image  
acquisition. Sensors designed to image the Earth’s surface operate in specific spectral 
wavebands in which the atmospheric transmission is high, known as atmospheric 
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windows. This dissertation deals in detail with the removal of atmospheric effects in 
SPOT satellite imagery, covered in Papers I, II, and III. 

EMR  reaching  the  Earth's  surface  from  the  Sun  is  either  reflected  (scattered),  
transmitted or absorbed. The amount of reflected EMR varies as a function of 
wavelength, view and illumination directions (angles), time, polarization, and surface 
type, which enables inference of surface properties from the measured reflectance 
(Barnsley  1999).  A  basic  axiom  of  remote  sensing  is  that  specific  surface  types  or  
covers, such as water with varying levels of suspended impurities, soils of various 
types, or vegetation of various species, have an individual and characteristic manner 
of interacting with incident EMR. The spectral response (i.e. the wavelength 
variability) of the reflectance is traditionally the most utilized information source for 
remote sensing of land surfaces (see Figure 3 below). 

Considering the spectral response of vegetation, which forms the major 
component of the Earth’s land surface, a characteristic spectral curve for healthy 
green vegetation is shown in Figure 3. Vegetation typically has low reflectance in the 
visible spectrum (0.4–0.7 m), particularly in the blue and red wavelengths, a very 
steep increase in reflectance around 0.7 m, known as the “red edge”, and high 
reflectance in the NIR (0.7–1.3 m). The primary chemical and physical determinants 
of leaf optical properties are plant pigments, notably chlorophylls a and b, carotenoids 
and xanthophylls, and leaf mesophyll structure and water content (Tucker & Sellers 
1986). Leaf reflectance in the visible wavelengths is controlled by the pigments, 
particularly chlorophyll, which has high absorptance and low reflectance and 
transmittance in the blue and far red portions of the visible spectrum. The absorption 
involves electronic transitions in the chlorophyll molecule centred on the magnesium 
component of the photoactive site (Goetz et al. 1985). Absorption in the blue 
wavelength region is also a consequence of electronic transitions in carotenoid 
pigments. In the NIR, the dominant feature of high leaf reflectance is associated with 
leaf cell structure and cellular arrangement within leaves, and hydration state (Slaton 
et al. 2001). As leaf structure is highly variable between plant species, NIR 
reflectance is useful in discriminating vegetation types. Further, plant stresses will 
alter reflectance in this spectral region (Lillesand & Kiefer 1994). Reflectance in the 
middle-infrared or SWIR regions (1.3–3.0 m) is mainly dominated by the presence 
of water in the leaves. Generally speaking, leaf reflectance in the NIR is affected 

primarily by leaf structure, whereas reflectance in the visible is determined mostly by 
photosynthetic pigments, the transition between the two around 0.7 m giving the red 
edge (Jensen 2000). The aggregations of plants and leaves that occur as vegetation 
cover on the Earth’s surface are highly variable, and can form complex canopies, such 
as in forest covers, which have complicated and varying scattering properties. 
Multiple leaf layers in a canopy allow multiple scattering, and consequently NIR 
reflectance increases with a greater number of canopy layers (Lillesand & Kiefer 
1994). Reflectance of vegetation cover is typically highly anisotropic, i.e. variable 
depending on the viewing and illumination direction (Sandmeier et al. 1998b), 
determined by the optical properties of the canopy components, canopy structure, and 
also the local topography (Asner et al. 1998). 
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In contrast, soil and other bare surfaces, such as the human built environment, 
display a less variable spectral response, which typically increases steadily across the 
visible and NIR (VIS/NIR) spectrum (Figure 3). Further, reflectance from water 
surfaces is more or less zero at wavelengths beyond the red (Tso & Mather 2001) 
(Figure 3). The reflectance of land surfaces can vary very substantially as a function 
of time. An obvious case is a field of crops as they develop from the leafing stage, 
through growth to maturity and, finally, to harvest and senescence. The topographic 
location of a target area, in terms of slope orientation, and the atmospheric conditions 
also effect reflectance.   

Remote sensing makes it possible to collect data of inaccessible and extensive 
areas with information available in spectral, spatial, angular and temporal resolutions 
and polarization domains. Consideration of polarization, however, is outside the scope 
of this thesis. Optical satellites typically collect multispectral imagery, i.e. radiance is 
measured in a number of wavebands, which are described by the spectral sensitivity 
functions. The spectral resolution of a sensor refers to the number and bandwidth of 
the wavebands, whilst the radiometric resolution refers to the sensitivity of the sensor 
to detect variation in the received radiance. The range of the view and illumination 
angles over which satellite imagery acquisition occurs is determined by the satellite 
orbital characteristics and the sensor viewing geometry (Barnsley et al. 1994). The 
pixel size of a satellite image denotes the area on the ground covered by a single 
pixel.  The  spatial  resolution,  however,  refers  to  the  level  of  spatial  detail  that  is  
discernable within an image (Aplin 2006), and is determined by the ground 
instantaneous field-of-view (GIFOV) and spatial response function of the sensor. The 
temporal resolution of a satellite refers to the average revisit period to a particular 
location on Earth (Aplin 2006). This is dependent upon various factors such as the 
swath width, orbital altitude and inclination, the sensor view angle and off-nadir 
viewing capabilities, and the latitude of the location itself. In the case of optical 
satellite imagery, the probability of acquiring cloud free imagery is also related to the 
latitude of the location as well as the temporal resolution of the satellite. 

Remote sensing in Earth resource analysis can be applied in the physical, 
natural, and social sciences (Jensen 2000), for example in geography, soil science, 
geology, hydrology, urban planning, agriculture, and forestry. The greatest limitation 
of remote sensing is, perhaps, that its utility is often overestimated or overstated 
(Jenson 2000). There is a huge amount of ‘power’ embedded in digital mapping 
products, in the same way that there is with topographic maps (Wood & Fels 1992; 
Pickles 1995), and often end users will unquestioningly assume that all the contained 
information is correct and represents the “truth” (whatever that may be). By those 
outside  of  remote  sensing  circles  there  is,  then,  perhaps  a  propensity  to  see  remote  
sensing  and  GIS as  a  panacea for providing all the required information to address 
and resolve spatially oriented problems. The use of standardized nomenclatures, 
generation and validation procedures, and detailed metadata will assist end users in 
comprehending the realities and usage limitations of remote sensing derived data 
products.



Figure 3. Characteristic reflectance spectrums of common Earth surface materials in the visible and near to middle infrared wavelengths. The full width at half maximum 
(FWHM) positions of the SPOT spectral green (B1), red (B2), NIR (B3) and SWIR (B4) bands are indicated along with the general usage applications of the spectral data for 
Earth surface remote sensing studies (adapted from Lillesand & Kiefer 1994). 
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Remote sensing of the Earth’s land surface is generally considered to have 
commenced in 1859 when Gaspard Tournachon took an oblique aerial photograph of 
a village near Paris from a balloon (De Jong et al. 2004). Many years later, in July 
1972, the United States of America successfully launched the Earth Resources 
Technology Satellite-1 (ERTS-1) into orbit and ushered in a revolutionary new era of 
civilian spaceborne Earth observation. ERTS-1 was, in fact, a Nimbus weather 
satellite modified to carry two types of sensor systems, but it proved able to provide 
high quality images from the four waveband multi-spectral scanner (MSS), which 
collected data in two visible and two NIR bands at a 68 m x 83 m spatial resolution 
over a 185 km by 185 km scene area, and three return beam vidicon (RBV) television 
cameras. Most importantly, these MSS images gave widespread worldwide scientific 
recognition of the capabilities and possibilities of remote sensing, and an appreciation 
of its significant value as a tool in environmental monitoring (Harper 1983). The main 
advantages recognized at the time were the global, repetitive, and multispectral 
coverage of the data, the low cost, and the lack of the previously pervasive and 
stifling political, security and copyright restrictions (Curran 1985). In January 1975 
the programme name was changed to Landsat, and would prove to be of critical 
significance throughout the history of spaceborne environmental remote sensing, both 
in  the  high  points  and  the  low points  of  the  programme.  Up until  the  failure  of  the  
Landsat 7 ETM+ scan-line corrector (SLC) on the 31st May 2003, which has severely 
limited the data quality and usability of subsequent imagery, Landsat imagery had 
consistently been by far the most widely utilized satellite data source in the Earth 
sciences (De Jong et al. 2004). 

Following the lead of the Landsat programme, many other countries decided to 
develop their own Earth observation missions. In 1978 the French government 
initiated the SPOT (Satellite Pour l'Observation de la Terre) programme, which 
included a series of, for that time, high-resolution optical imaging Earth observation 
satellites and ground control resources for satellite control and programming, image 
production,  and  distribution.  The  satellites  were  developed  by  the  French  Centre  
National  d’Etudes  Spatiales  (CNES)  in  cooperation  with  the  Belgian  Scientific,  
Technical and Cultural Services (SSTC) and the Swedish National Space Board 
(SNSB) partner agencies. The SPOT programme was designed to improve the 
knowledge and management of the Earth's resources, but was from the start a 
commercial operation. In 1982 Spot Image, a public limited company created by 
CNES, IGN, and various private contractors, was established in Toulouse, France, to 
run the operation. However, data has always been obtainable for free or at low cost 
for scientific research purposes. For example, in June 2007 Spot Image launched the 
non-profit Planet Action initiative (www.planet-action.org), along with major 
geospatial industry partners such as ESA and ESRI, through which free imagery can 
be obtained for environmental monitoring projects with a core emphasis on climate 
change impacts, causes and solutions. 

 

2.2 Overview of SPOT data 
 

This thesis intentionally concentrates specifically on the utilization of medium 
resolution 20 m and 10 m multispectral SPOT multi-temporal imagery for landscape 
level environmental monitoring and modelling applications. Focusing solely on SPOT 
multispectral imagery allows for adequate consideration of the peculiarities of the 
data, most notably the ability of SPOT sensors to view off-nadir. It is therefore useful 
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to provide a brief overview of the characteristics of the SPOT sensors and the derived 
imagery data. 

The SPOT series of satellites have been providing high quality consistent optical 
imaging of the Earth’s surface since SPOT 1 was launched into an 822 km high near-
polar sun-synchronous orbit on the 22nd February 1986. To date, five SPOT satellites 
have been successfully launched into orbit. SPOT 1 provided several innovations in 
civilian Earth resources remote sensing at that time; notably the use of two 
independent across track off-nadir pointable linear array ‘pushbroom’ sensors to 
collect 10 m spatial resolution panchromatic, and 20 m spatial resolution 
multispectral, imagery. SPOT 2 joined SPOT 1 in orbit on the 22nd January 1990 and 
SPOT  3  followed  on  the  26th  September  1993  (Table  2).  The  design  of  these  first  
three  satellites  was  exactly  the  same;  each  of  their  payloads  consisting  of  two  
identical High Resolution Visible (HRV) optical imaging instruments, magnetic tape 
data recorders, and a telemetry system for transmitting the images to the ground-based 
receiving stations. 

Each HRV sensor could acquire images in either a panchromatic (P) mode, with 
a single wide band covering the visible part of the electromagnetic spectrum, or in a 
multispectral (XS) mode with three bands covering the green, red, and NIR parts of 
the spectrum (Table 2). The two HRV sensors could function in either XS or P mode, 
both  simultaneously  or  independently.  At  nadir  view,  each  HRV  sensor  imaged  an  
area of 60 km x 60 km with a 3 km overlap, giving a total swath width of 117 km. 
This is greater than the maximum inter-track distance of 108 km occurring at the 
Equator,  given  the  orbital  characteristics  of  the  SPOT  satellites  with  an  822  km  
altitude, 98.7° inclination, 101.4 minute orbital period, and a local Equatorial crossing 
time of 10:30 a.m. in descending node. If HRV was a nadir view only sensor, then the 
revisit time for any given point on the Earth would be 26 days. This is obviously far 
too coarse a temporal resolution to allow for adequate phenological/land cover change 
detection studies or disaster mapping and monitoring, especially considering the issue 
of cloud cover. Consequently, the HRVs were designed so that the position of each 
entrance mirror could be tilted off-nadir across track by ground control through ± 27° 
in 0.6° increments. This allowed for the observation of regions of interest over a 950 
km wide strip centred on the ground track, and not just those areas directly beneath 
the satellite. The off-nadir viewing capability also gave the HRV sensors the ability to 
acquire across track stereoscopic pairs of images that can be used in DEM generation. 

An individual HRV image swath width therefore varied from 60 km at nadir 
view, to 80 km at maximum off-nadir view, and the temporal resolution of the 
satellite was increased from 26 days to a revisit interval of 1 to 4 days depending on 
the latitude. At 45° latitude a given area could be imaged on 11 occasions during the 
26-day orbital cycle and, at the Equator, a given point observed 7 times. Above 40° N 
or S any point could be observed each day, whereas at the Equator a thin 
approximately 250 km wide strip (out of the 2,823 km separating the two adjacent 
orbital tracks) remained inaccessible on any given day. 

SPOT 4 and SPOT 5 share the same orbital characteristics as SPOT 1, 2 and 3, 
and also carry a pair of imaging sensors with the same off-nadir viewing capabilities, 
but the design specifications in both cases are upgraded compared to the earlier 
satellites. SPOT 4 was launched on the 24th March 1998, the principal improvements 
being the addition of a 20 m resolution SWIR band B4 covering 1.58-1.75 m and the 
onboard registration of all the spectral bands by replacing the panchromatic band with 
band B2 (0.61-0.68 m) operating in both a 10 m resolution so-called monospectral 
(M) mode, as well as in a 20 m resolution multispectral mode (XI) (Table 2). 
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Improved knowledge of ground reflectance, acquired by SPOT 1 and 2, was used to 
introduce variable sensor gains according to landscape type and season, allowing 
better utilization of the 8-bit dynamic range. Greater onboard data storage capacity 
was also added and the design lifetime was increased from 3 to 5 years, although all 
the SPOT satellites have long outlived their design life. As a result of these 
modifications, the instruments were renamed High Resolution Visible Infrared 
(HRVIR) sensors. 

SPOT  5  was  launched  on  the  4th  May  2002  and  carries  two  High  Resolution  
Geometric (HRG) instruments, which are a further development of the HRVIR 
sensors on SPOT 4. The spatial resolution of the bands in the multispectral mode (HI) 
has been increased to 10 m, although the SWIR B4 is actually imaged at 20 m and is 
supplied by Spot Image resampled to 10 m to match the spatial resolution of the other 
bands. The panchromatic band (HM) was changed back to a green-red bandwidth 
(0.48-0.71 m), similar to the HRV P mode, but with an increased spatial resolution 
of 5 m. Furthermore, each HRG sensor can operate in a so-called Supermode where 
two panchromatic images are acquired simultaneously by two dedicated arrays of 
CCD detectors that are vertically and horizontally offset by half a pixel (2.5 m) in the 
focal plane. Utilizing a patented three-phase process, a 2.5 m resolution black and 
white image can then be generated from these 5 m images. Also, 5 m or 2.5 m 
resolution colour imagery can be derived operationally by combining the 
panchromatic information with simultaneously acquired 10 m multispectral (HI) data. 

Additionally,  SPOT  4  and  SPOT  5  both  also  carry  identical  wide  angle  
VEGETATION 1 and 2 sensors, respectively, designed for continental and global 
scale vegetation mapping and the production of daily and ten-day global synthesis 
products for utilization in monitoring long-term environmental changes (Duchemin & 
Maisongrande 2002). Furthermore, SPOT 5 also carries a High Resolution 
Stereoscopic (HRS) imaging instrument for acquiring simultaneous 10 m resolution 
panchromatic along track image stereopairs, specifically for DEM generation. 
However, description of these instruments is beyond the scope of this thesis because 
the research presented here concentrates on the utilization of multi-temporal images 
derived in the multispectral modes (XS, XI, and HI) of the HRV sensors on SPOT 1, 
2, and 3, the HRVIR sensors on SPOT 4, and the HRG sensors on SPOT 5. 

Currently only SPOT 4 and 5 are in orbit and fully operational. SPOT 2 ceased 
operations on 30th June 2009 and was deorbited one month later. SPOT 1 was 
withdrawn on the 31st December 1990 and it broke up in the atmosphere after 
deorbiting in 2003. SPOT 3 stopped working after it suffered a stabilization system 
failure on the 14th November 1997. The continuity of data collection in future will be 
ensured by the 8 m multispectral resolution SPOT 6 (Astroterra) satellite due for 
launch in 2012 and SPOT 7 planned for 2014. Furthermore, SPOT Image is involved 
in the PLEIADES program (http://smsc.cnes.fr/PLEIADES/), which in 2010 should 
see the launch of Pleiades 1 (PHR1A), forming the first of a constellation of new-
generation mini-satellites that are smaller, cheaper, more agile, and offer better overall 
performance than the previous SPOT sensors, collecting visible and NIR (VIS/NIR) 
data at 2.8 m nadir resolution and with an off-nadir viewing capability of ± 45° in any 
direction. However, at such large off-nadir viewing angles the differences in 
reflectance to nadir for the observed Earth surface materials are very likely to be 
significant. This issue is investigated in detail in this thesis and in Paper I, considering 
the view angle range of the SPOT HRV/HRVIR/HRG sensors. 
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Table 2. SPOT satellite series technical data. 
 

 SPOT 1, 2 & 3 SPOT 4 SPOT 5 
Instrument 
Payload 

2 x HRV 2 x HRVIR a 2 x HRG b 

Spectral Bands 
& Spatial 
Resolution (m) 

Panchromatic (P) 10 m 
Multispectral (XS) 20 m 

Panchromatic (M) 10 m 
Multispectral (XI) 20 m 

Panchromatic (HM) 5 m 
Multispectral (HI) VIS/NIR 10 m, 

SWIR 20 m 
Spectral 
Resolution ( m) 

P: 0.50-0.73 M: 0.61-0.68 HM: 0.48-0.71 
B1 (Green): 0.50-0.59 B1 (Green): 0.50-0.59 B1 (Green): 0.50-0.59 
B2 (Red): 0.61-0.68 B2 (Red): 0.61-0.68 B2 (Red): 0.61-0.68 
 B3 (NIR): 0.78-0.89 B3 (NIR): 0.78-0.89 B3 (NIR): 0.78-0.89 

 B4 (SWIR): 1.58-1.75 B4 (SWIR): 1.58-1.75 
Image Swath 
Width 

60 km (nadir), 
80 km at max off-nadir view 

60 km (nadir), 
80 km at max off-nadir 

view 

60 km (nadir), 
80 km at max off-nadir view 

Radiometric 
Resolution 

8 bit 8 bit 8 bit 

Angle of 
Incidence 

± 31.06° ± 31.06° ± 31.06° 

Launch Date 
(Retirement 
Date) 

SPOT 1: 22.02.1986 
(Retired: 31.12.1990) 
SPOT 2: 22.01.1990 
(Retired: 29.07.2009) 
SPOT 3: 26.09.1993 
(Retired: 14.11.1997) 

24.03.1998 04.05.2002 

Revisit 
Capability 

1 to 4 days, dependent on 
latitude 

1 to 4 days, dependent on 
latitude 

1 to 4 days, dependent on 
latitude 

a Note that SPOT 4 also carries the VEGETATION 1 sensor. 
b Note that SPOT 5 also carries the HRS and VEGETATION 2 sensors. 
 

In the metadata provided with SPOT imagery, the off-nadir view of the sensor is 
defined by the angle of incidence ( V), which is the angle between the normal to the 
reference spheroid passing through the scene centre, and the instrument look direction 
for the same point (Spot Image Corp. 1997).  The angle is  denoted as right (R),  or a 
negative value, when the sub-satellite point passes to the east of the scene centre, and 
left  (L),  or  a  positive  value,  when  the  sub-satellite  point  passes  to  the  west  of  the  
scene centre, considering the solar illuminated descending orbit. Because of the 
curvature of the Earth, whilst the sensor view angle ( VZ)  itself  has  a  ±  27°  angular  
range, V has a ± 31.06° range. The scene orientation angle is defined as the 
clockwise angle between the centre line of the raw scene and the meridian passing 
through the centre of the raw scene (Spot Image Corp. 1997). The sensor azimuth ( V) 
was therefore calculated as the orientation angle plus 90° for right (negative) off-nadir 
views, and the orientation angle plus 270° for left (positive) off-nadir views. The 
relative azimuth ( r) between the sensor azimuth and the solar principal plane can be 
defined following the convention as outlined by Sandmeier et al. (1998a), where the 
solar position is taken as 180° azimuth. Therefore, 0° relates to a sensor view of the 
forward scattering and 180° to backscattering; 0° to 360° is clockwise from the 
forward scattering position (Figure 4). This coordinate system was also applied to the 
field measured multiangular s utilized throughout this thesis. Therefore, note that 
whilst negative V relates to SPOT viewing from east of a scene centre, - VZ relates 
to forward scattering viewing. 
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Figure 4. Coordinate system for multiangular surface reflectance factor ( s) (after Sandmeier et al. 
1998a). 
 

The SPOT program has been designed to improve the knowledge and 
management of the Earth's resources and numerous research projects have utilized 
multi-temporal HRV, HRVIR or HRG multispectral imagery in various 
environmental monitoring studies. For example, mapping deforestation and forest 
degradation in the Brazilian Amazon (Alves & Skole 1996; Souza et al. 2003); 
determining African tropical forest structure characteristics (de Wasseige & Defourny 
2002); detecting change in the wetlands of the US (Houhoulls & Mlchener 2000); 
mapping and modelling the spatial distribution of forest fires in Andhra Pradesh, India 
(Vadrevu et al. 2006); discriminating crops in the Saga Plains, Japan (Murakami et al. 
2001); mapping and modelling urbanization in the Tunis Metropolitan Area (Weber & 
Puissant 2003); and local validation of the thematic accuracy of the International 
Geosphere-Biosphere Programme Data and Information System (IGBP-DIS) 1 km 
Global Land-Cover Data Set (Scepan 1999). 

SPOT data also makes an important contribution in multi-temporal, multi-sensor 
environmental studies, especially following the SLC failure on Landsat 7 ETM+ in 
May 2003. SPOT imagery has been used, for example, in combination with Landsat 
data for vegetation change detection in the Brazilian Amazon (Lu et al. 2008), and for 
monitoring land use changes in the Hangzhou urban area in China (Deng et al. 2008); 
in combination with ASTER and Landsat imagery for change detection over a 
forested landscape in Canada (Wulder et al. 2008); in conjunction with IRS and 
Landsat data for Boreal forest leaf area index (LAI) estimation in central Finland 
(Stenberg et al. 2008); in data fusion with ERS Synthetic Aperture Radar (SAR) 
imagery and Landsat data for mapping land cover in a Mediterranean landscape 
(Chust et al. 2004); in combination with IKONOS data for inventorying landslides 
(Nichol & Wong 2005); and SPOT XS data has been integrated with panchromatic 
aerial photography for land cover change detection (Petit & Lambin 2001). 
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2.3 Utilization of SPOT data  
 
As Song et al. (2001) note, by far the most common use of optical satellite imagery is 
in mapping LULC and LULC change over time through image classification and 
change detection methodologies. There are now more than 20 million archived SPOT 
scenes covering the time span since SPOT 1 was flown in 1986 available (source: 
www.cnes.fr/web/CNES-en/1419-a-wealth-of-applications.php) for use in multi-
temporal studies, and the number of archived images grows continuously. 
Unfortunately, the raw digital numbers (DN) recorded in a satellite image are not an 
accurate measure of change over time because they are a function not only of surface 
conditions but also of the diurnally variable atmospheric conditions, the seasonally 
variable Earth-Sun distance, the solar zenith angle ( Z), the sensor view incidence 
angle ( V), and the sensor calibration (Moran et al. 2001). Sensor calibration can be 
achieved utilizing the gain coefficients supplied with the SPOT data that allow the 
conversion of the 8-bit DN into top of atmosphere at-satellite radiance (LSAT), in units 
of Watts per square metre per steradian per micrometre (W m-2 sr-1 m-1), on a 
spectral band basis. It is then possible to convert these radiances into top of 
atmosphere at-satellite reflectance ( SAT), which normalizes for variations due to the 
Earth-Sun distance and the solar zenith angle. This then leaves the contribution of the 
atmosphere and the effect of an off-nadir sensor view angle to be accounted for. 

A  substantial  part  of  this  thesis  is  concerned  with  the  removal  of  atmospheric  
effects  from  SPOT  imagery,  dealt  with  specifically  in  Papers  I,  II  and  III,  and  also  
covered in Paper IV. Consequently, it is necessary to justify why such a large amount 
of effort was invested in determining the best methods for accurately retrieving ps, 
and to consider in which circumstances and why absolute atmospheric correction 
should be applied, and indeed also to consider when it might be unnecessary. Further, 
it is also pertinent to give a brief general overview of the effects that the atmosphere 
has on optical satellite imagery, as well as on the SPOT spectral bands wavelengths 
specifically. 

This thesis deliberately concentrates exclusively on the utilization of medium 
resolution multispectral SPOT multi-temporal imagery for landscape level 
environmental monitoring and modelling applications, allowing full consideration of 
the particularities of the data. However, it is acknowledged that in general it is much 
more useful to utilize optical satellite imagery from multi-sensor sources in 
environmental studies. This not only improves the chances of cloud-free image 
acquisition, but also increases the temporal, spectral, spatial, and possibly angular 
information that can be gathered for the challenging task of environmental 
monitoring. Furthermore, the failure of the Landsat 7 ETM+ SLC in May 2003, which 
has severely limited the data quality and usability of subsequent imagery, combined 
with the threat of a possible future data gap in the Landsat programme (Goetz 2007), 
clearly demonstrates the inherent pitfalls of relying too heavily on any one single 
satellite system. It is clear, therefore, that long-term landscape level environmental 
remote sensing studies will increasingly become based on data from multiple sensors, 
with medium resolution satellites other than the historically most heavily utilized 
Landsat series, such as SPOT, ASTER, IRS and CBERS, gaining greater importance. 

Further, it is likely that an increased utilization of multi-scale image 
segmentation and classification approaches will lead to greater numbers of studies 
making better and more theoretically integrated use of multiple resolutions of imagery 
covering a particular landscape or ecosystem. Although there are significant financial 
costs involved in the use of SPOT data for commercial applications, imagery is 
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usually free or considerably cheaper for research purposes. The consistency of the 
imagery quality, the relatively long-term imagery achieve dating back to 1986, and 
the planned continuation of the programme, makes SPOT a viable source of medium 
resolution data for environmental monitoring applications 

However, with the likely continuation of the trend for the satellite data providers 
to supply optical imagery processed to higher level specific reflectance products, there 
will be an increasing requirement for the integration of historical and newly acquired 
multi-sensor imagery into existing databases. All these factors are major drivers for 
the need to have optical satellite imagery pixel information processed to a common 
comparable physical unit of measurement, which is the surface reflectance factor ( s). 
This can only be achieved through the application of reliable absolute atmospheric 
correction. 

2.3.1 Atmospheric effects: in what circumstances are corrections necessary? 
 
Setting aside, for a moment, the argument above that the long-term integration of 
optical imagery requires the application of an absolute atmospheric correction 
procedure, whether or not it is actually necessary to atmospherically correct a multi-
temporal image dataset basically depends on the research application. As Song et al. 
(2001) point out, if every image is to be classified individually and the derived LULC 
maps used in post-classification change detection analysis, or if the change analysis is 
based on image differencing with no a priori assumption on the thresholds, then 
radiometric correction is unnecessary. If, however, the classification is to be based on 
a common set of derived training signatures, or the change detection is based on a 
methodology which assumes a zero mean for stable classes in the difference image, 
then radiometric normalization (i.e. a relative atmospheric correction) is needed. 
Relative atmospheric correction is an empirical approach based on an assumption of a 
linear relationship between image spectral bands across time, which can be 
determined by identifying spectrally stable and spatially well defined pseudo-
invariant features (PIFs) present in all the scenes (Yuan & Elvidge 1996). For 
example, Schott et al. (1988) developed a method that estimates the slope and 
intercept of the assumed linear relationship from the mean and standard deviation of 
the PIFs’ DN values, normalizing the different image dates together and accounting 
for the purturbative factors. Chavez & MacKinnon (1994) developed a hybrid method 
whereby a selected Landsat MSS scene from a multi-temporal dataset was calibrated 
to field measures of s,  taken concurrently with the image acquisition,  and the other 
images where then normalized to this radiometric master scene. 

In general, therefore, for applications where a common radiometric scale is 
assumed among the multi-temporal imagery, then at least a relative correction is 
necessary. As Song et al. (2001) note, however, if multi-temporal imagery from 
multiple satellite sensors is to be used, a relative normalization approach is 
complicated and an absolute correction is better. Furthermore, if the classification 
training data or the change detection methodology are to be extended through space 
and time, i.e. utilized or compared with additional imagery from outside the original 
study area (for example in a multi-sensor, multi-resolution project), then a full 
absolute atmospheric correction becomes necessary. Moreover, if there is a 
requirement to derive any biophysical parameters, such as biomass or LAI, or 
vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), and 
to compare them with derivations from other scene dates, sensors, or geographic 
areas, then the retrieval of s is mandatory. As noted by Moran et al. (2001), s has 
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become the basic measurement required for most remote sensing applications and 
models. 

It can be argued, therefore, that the application of absolute atmospheric 
corrections is a prerequisite for quantitative remote sensing studies. Accurate retrieval 
of s from optical satellite imagery, such as SPOT data is, then, a highly desirable and 
important preprocessing step. Numerous approaches to absolute atmospheric 
correction have been developed, but fundamentally they all consist of two major steps 
(Liang et al. 2001): firstly, the estimation or determination of the various atmospheric 
parameters required for the proposed calculation methodology and, secondly, the 
prediction of s, or the process of reflectance factor retrieval (RFR) as it is also 
commonly known. 

2.3.2 Retrieval of surface reflectance factor from SPOT multispectral data 
 
Considering attenuation of electromagnetic radiation travelling through the 
atmosphere, due to the combined effects of scattering and absorption by gases and 
aerosols, the amount of radiant energy transmitted, relative to that for no atmosphere, 
is known as the atmospheric transmittance (T) and can be approximated as: 
 

cos/eT         (1) 
 
where  is the atmospheric optical thickness, T can represent either TV the atmospheric 
transmittance from ground target to sensor or TZ the atmospheric transmittance from 
sun to ground target, and  can be either V or Z respectively. This relationship holds 
for atmospheric transmittance with scattering and weak absorption when V and Z 
values are < 70° (Moran et al. 1992). 

Scattering is typically the most dominant atmospheric effect in optical satellite 
imagery (Chavez 1988; Chavez 1989; Song et al. 2001) and adds brightness to the 
visible bands of the SPOT data, such that the recorded LSAT of  dark-objects  will  be  
much higher than their true surface values (Moran et al. 1992). Conversely, 
atmospheric absorption acts to subtract brightness from the longer SPOT NIR and 
SWIR wavelength bands (Moran et al. 1992). Consequently, it can be considered that 
scattering has an additive, and absorption a multiplicative, effect on the remotely 
sensed signal (Song et al. 2001). 

Rayleigh (gaseous) scattering is the main type of scattering occurring in clear 
conditions  (Chavez  1989),  such  as  those  at  the  time  of  cloud-free  SPOT  scene  
acquisition. It occurs throughout the visible spectrum, but its effect decreases rapidly 
with increasing wavelength ( -4) (Gao et al. 2009). Further, there is no blue band on 
the SPOT sensors, where Rayleigh scattering effects are greatest. Fortunately, 
Rayleigh scattering and absorption by ozone and oxygen can be well characterized 
because of the relative stability of the gaseous composition of the atmosphere (Liang 
et al. 2001). More problematic, however, is scattering and absorption due to 
tropospheric aerosols, because of the high temporal and spatial variability of 
atmospheric aerosol loadings (Kaufman 1993; Teillet & Fedosejevs 1995; Liang et al. 
2001). Thus, this constitutes the greatest difficulty in the atmospheric correction of 
optical satellite imagery, such as SPOT data (Liang et al. 2001). Here the total amount 
of aerosol (Mie) scattering is greater than Rayleigh scattering and also affects longer 
wavelengths, as the effect of aerosol scattering decreases with increasing wavelength 
at a slower rate that Rayleigh scattering (typically -2 to  -1)  (Gao et  al.  2009).  The  
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role of Mie scattering, however, only becomes more dominant in hazy and very hazy 
atmospheric conditions (Chavez 1989). 

A useful generalization is that  the NIR and SWIR wavelengths (> 0.7 m) are 
largely free from atmospheric scattering (Moran et al. 2003), whilst the visible region 
(0.4 – 0.7 m) is heavily affected. Atmospheric gaseous absorption is principally due 
to water, carbon dioxide, oxygen and ozone, and primarily affects the NIR and SWIR 
wavelengths (Vermote et al. 1997b). The SPOT spectral bands are deliberately placed 
in portions of the spectrum relatively unaffected by gaseous absorption. Nevertheless, 
absorption needs to be accounted for in radiometric correction (Chavez 1996). 

The theoretical framework, definitions and nomenclature for reflectance 
quantities in optical remote sensing have been developed from those originally 
specified by Nicodemus et al. (1977). The physically based terminology outlined by 
Nicodemus et al. (1977) was adapted to the remote sensing case by Martonchik et al. 
(2000) and further extended and updated by Schaepman-Strub et al. (2006). The 
development of operational reflectance products from NASA’s MODIS and MISR 
sensors has also contributed to the adoption of more uniform and physically consistent 
reflectance terminology within the remote sensing community (Schaepman-Strub et 
al. 2006). However, ambiguous or erroneous terminological usage remains, and 
description of the physical conditions of measurement are often lacking, even within 
the peer reviewed literature (Schaepman-Strub et al. 2006). The surface reflectance 
( ) is defined as the ratio between the radiant exitance (M [W m-2]) and the irradiance 
(E [W m-2]) at the surface within a specific spectrum. The surface reflectance factor 
( s) is the ratio of the radiant flux reflected by a surface to that reflected into the same 
reflected-beam geometry and wavelength interval by an ideal (i.e. non-absorbing and 
non-transmitting) Lambertian standard surface under identical conditions of 
illumination (Schaepman-Strub et al. 2006). This standard surface is commonly 
approximated in field measurement circumstances by a Spectralon® panel. Under 
typical field conditions viewed by spaceborne, airborne, or ground based sensors, with 
a GIFOV formed from a conical solid angle of observation, the ambient sky forms a 
hemisphere of illumination and radiation diffuses downward with variable intensity 
from different parts of the sky. This situation can be approximated by modelling the 
total irradiance as the superposition of both direct solar illumination, from a specific 
direction, and anisotropic diffuse irradiance (Martonchik et al. 2000; Schaepman-
Strub et al. 2006). The ratio of direct to diffuse irradiance is a function of wavelength, 
with  decreasing  Rayleigh  and  (to  a  lesser  extent)  aerosol  scattering  with  increasing  
wavelength, which strongly influences the spectral dependence of directional 
reflectance from the surface (Martonchik et al. 2000). 

Typical observation circumstances are, then, most accurately described by what 
could be termed the “in-field” hemispherical-conical reflectance factor (HCRF), 
following the overall naming convention originally established by Nicodemus et al. 
(1977) that the angular characteristics of the illumination are mentioned first followed 
by the angular characteristics of the reflected radiance; the addition of the term “in-
field” acknowledges that the hemispherical diffuse irradiance component is not 
isotropic like a theoretical HCRF. If the instantaneous field-of-view (IFOV) solid 
angle of observation of a sensor is very small, then the reflected radiance may be near 
constant over the full cone angle, approximating a directional reflectance; a 
directional reflectance meaning the conceptual scattering of a collimated beam of 
light into a specific direction within the hemisphere (Nicodemus et al. 1977), and 
which cannot be measured directly. The multiangular s field measurements taken for 
this thesis were made with the Finnish Geodetic Institute Field Goniospectrometer 
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(FIGIFIGO; Suomalainen et al. 2009; see Section 4.1.2 below), utilizing foreoptics 
with a 3° field-of-view (FOV). As noted by Suomalainen (2009), the difference 
between a conical and a directional reflectance factor can only be seen if there are 
significant second derivative angular effects at the scale of the optics opening angle. 
Away from the direct backscatter hotspot region, where it is not possible to measure 
in any case, real surfaces or samples tend to have quite smooth multiangular 
reflectance properties. Therefore, in such circumstances, the measured in-field HCRF 
can be assumed to be equivalent to the in-field hemispherical-directional reflectance 
factor (HDRF). However, the SPOT satellites have an IFOV with a full conical angle 
of 4.18°, which can consequently only be considered as an approximation of HDRF. 
Moreover,  HDRF  or  HCRF  depends  on  the  angular  distribution  of  the  illumination  
and the proportion of the diffuse to direct irradiance, as well as the scattering 
properties of the surface itself. The amount and spectral distribution of diffuse 
irradiance is dependent on atmospheric conditions, local topography and the 
reflectance properties of the adjacent ground surface (Martonchik et al. 2000). 
Consequently, as Lyapustin & Privette (1999) note, multiangular s measurements 
made under ambient sky conditions show significant shape differences relative to the 
reflectance characteristics of the actual surface itself. 

In an ideal situation and circumstances, therefore, the most desired reflectance 
quantity to be retrieved would be the bidirectional reflectance factor (BRF) because it 
is a function only of the intrinsic scattering properties of the surface and consequently 
describes the directional reflectance characteristics of the surface itself. The BRF also 
relates to the theoretical bidirectional reflectance distribution function (BRDF), which 
describes the scattering of a parallel beam of incident light from one specific direction 
in the hemisphere into another explicit direction in the hemisphere (Schaepman-Strub 
et al. 2006). Omitting the spectral dependence, the BRDF (fr [sr-1]) can be defined as 
(Schaepman-Strub et al. 2006): 
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where i, i; r, r are the zenith and azimuth angles of the direction of illumination 
and reflection, respectively; dEi (W  m-2) is the irradiance from the illumination 
direction; and dLr (W m-2 sr-1) is the radiance reflected into the differential solid angle 
at r, r (Schaepman-Strub et al. 2006). Being a ratio of infinitesimal quantities, the 
BRDF is conceptual and cannot be measured, but it can be theoretically estimated 
with a level of uncertainty from HCRF and/or biconical measurements. The BRF is 
the ratio of the reflected radiant flux r from the surface area dA in a specific 
direction to the reflected flux of the same dA from an ideal Lambertian surface r

LAM 
irradiated under identical conditions and, unlike BRDF, it is a unitless quantity. 
Ignoring the spectral dependence, BRF can be denoted as (Schaepman-Strub et al. 
2006): 
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The view zenith and azimuth angles are omitted from d r

LAM because there is no 
angular dependence for an ideal Lambertian surface, which reflects equally in all 
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viewing directions as thus has a BRDF of 1/ . The BRF of a surface is therefore 
numerically equivalent to its BRDF multiplied by  (Schaepman-Strub et al. 2006): 
 

rriirrrii f ,;,,;,BRF      (4) 
 
Omitting the spectral dependence, the HDRF can be defined as (Schaepman-Strub et 
al. 2006): 
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where, in this instance, i, i is  the  solar  position  and 2  [sr] is irradiance of 
hemispherical extent. Further, again omitting the spectral dependence, the HCRF can 
be defined as (Schaepman-Strub et al. 2006): 
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where r is  the  conical  solid  angle  of  the  sensor  IFOV and  is  the  projected  solid  
angle of the cone, the subscripts i and r denoting the incident and reflected radiance. 

It can be seen, then, that remote sensing measurements do not coincide directly 
with conceptual bidirectional reflectance quantities, rather they are approximations 
which can be used as the basis for further diffuse irradiance corrections and modelling 
to estimate BRF, or the BRDF. Consequently BRDF estimation is also dependent on 
the model accuracy, as well as the quality of the measurement data. Moreover, 
however, BRF is not retrievable in any meaningful way from single observation angle 
satellite imagery, such as SPOT data. Nonetheless, by accounting for the atmospheric 
effects in SPOT imagery, it is possible to retrieve s described as the in-field HCRF, 
which is equivalent to spectroradiometric s measurements made at the surface; i.e., 
that is to say an absolute atmospheric correction is necessary. 

Numerous approaches to absolute atmospheric correction of optical satellite 
imagery for RFR have been developed. The choice of the technique applied will 
depend mostly on the availability and quality of atmospheric or meteorological data 
coinciding with the image acquisition dates and geographic areas. Where there are 
detailed overpass concurrent measurements of atmospheric properties available, 
notably  the  atmospheric  optical  depth  (AOD),  it  is  possible  to  make  full  use  of  
radiative transfer models (RTMs), such as MODTRAN (Berk et al. 2000) or 6S 
(Second Simulation of the Satellite Signal in the Solar Spectrum; Vermote et al. 
1997b), which require such parameters as inputs for RFR. RTMs represent the most 
mathematically advanced absolute correction methodologies, and can output very 
accurate predictions of s. For example, Moran et al. (1992) found that using RTMs in 
conjunction with overpass concurrent measures of AOD and water vapour, s could be 
retrieved with an accuracy of ± 0.02 (absolute reflectance units) for the Landsat TM 
VIS/NIR bands. 

However, it is expensive and logistically difficult to obtain detailed atmospheric 
measurements concurrent with the image acquisition, and it may be impossible to 
obtain such data for archived imagery. Good quality historical meteorological data 
and generalized assumptions about the atmospheric composition, based on modelled 
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atmospheres, allows for a wider application of RTMs. Nevertheless, in many areas of 
the world there is a paucity of meteorological data available that is detailed enough, 
and has an appropriate spatial and temporal frequency, to allow for the accurate 
application of RTMs to multi-temporal imagery datasets. Moreover, there are also 
many regions of the world where little or no meteorological data is available at all. 
Unfortunately, often these areas are also the places where the most rapid and 
significant changes in LULC are occurring, and where the need for accurate historical 
and up-to-date mapping and environmental monitoring is the greatest. 

Such were the circumstances in the TAITA research project undertaken by the 
Department of Geosciences and Geography, at the University of Helsinki 
(www.helsinki.fi/science/taita/taitahills.html), which required the absolute 
atmospheric correction of multi-temporal SPOT imagery to study LULC changes in 
the ecologically important and environmentally sensitive Taita Hills in Kenya. A 
research issue that consequently arose was to determine the most appropriate 
procedure, which entailed an accuracy assessment and comparison of the various 
applicable methods, the results of which are detailed in this thesis. 

Firstly, it is actually still possible to utilize an RTM for RFR by using inputs 
derived from model atmospheres and estimates of AOD. Several image-based 
methods have been suggested for predicting AOD based on the expected relationships 
between reflectance in the mid-infrared region around 2.2 m and the blue and red 
spectrums over areas of dark dense vegetation; the DDV approach (Kaufman et al. 
1997). Application of similar AOD retrieval techniques to SPOT data is possible (Lin 
et al. 2002) but, however, matters are severely complicated by the lack of an 
appropriate middle-infrared band or a blue band on the HRV/HRVIR/HRG sensors 
(see Table 2), and also by the off-nadir V range (Lin et al. 2002). Consequently, in 
the study conducted for the TAITA project and detailed in this thesis, the AOD at 
0.55 m for the Taita Hills application study site was approximated as the average of 
the AREONET measurement for southern Africa, as reported by Remer et al. (2005), 
and used in conjunction with standard atmosphere and aerosol models; see Section 
4.3.4 below. 

Alternatively to RTMs, there are also simplified absolute atmospheric correction 
methodologies available that do not require in situ atmospheric/meteorological data, 
and which can be used operationally for RFR. For example, image-based corrections 
utilize only information derived entirely from the satellite scene itself. Estimates of 
the atmospheric path radiance (Lp) (i.e. the sensor recorded radiance contributed by 
the atmosphere itself) and downwelling diffuse irradiance can be made for each of the 
SPOT bands based on the recorded radiance for within-scene areas of assumed very 
low reflectance; such as areas of clear water or topographic shadow. Such approaches 
are general termed dark-object subtraction (DOS) techniques (Chavez 1988), as an 
additive scattering component is estimated for each band and subtracted from every 
pixel in the image. However, the atmospheric transmittance also has a multiplicative 
effect and further procedures, such as the COST method (Chavez 1996), have been 
developed to improve the accuracy of DOS corrections. The DOS approaches utilized 
in this thesis are detailed in Section 4.3.3 below. 

Furthermore, where the opportunity exists to visit the study area, which is the 
case in most local or regional scale remote sensing projects (for example to collect 
LULC training and ground reference test data), and a spectrometer or goniometer is 
available for use or can be borrowed, then it is possible to make measurements of s in 
the field. So-called empirical line (EL) methods align LSAT data to field measurements 
of the s of dark and bright spectrally stable within-scene calibration sites (Smith & 
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Milton 1999), utilizing a standard linear regression equation in the form y = ax + b; 
where a is the slope of the regression line, representing the atmospheric attenuation, 
and b is the intercept with the x-axis, representing the atmospheric path radiance (Lp) 
(see Figure 5). A separate correction is derived for each spectral band in the data. 

 

 
Figure 5. The derivation of a prediction equation from two-within scene calibration targets 

using the empirical line (EL) atmospheric correction method. 
 

Previous researchers have successfully retrieved s from remotely sensed data 
utilizing EL approaches (e.g., Smith & Milton 1999; Perry et al. 2000; Moran et al. 
2001; Karpouzli & Malthus 2003; Moran et al. 2003; Xu & Huang 2006). The two 
main assumptions are that (i) the atmosphere is approximately homogenous 
throughout the image area, and (ii) that there is a linear relationship between LSAT and 

s. As noted by Chavez (1989), assuming atmospheric stability across a scene area 
could leave local errors due to non-homogeneity. However, as a SPOT scene is a 
relatively small 60 km by 60 km area, compared to the 180 km by 180 km Landsat 
TM scene area for example, this is unlikely to be a significant source of error unless 
there are clouds present, which indicates that there is localized spatial variability in 
the atmospheric properties. Furthermore, as Moran et al. (1990) note, although the 
relationship between LSAT and s is quadratic for the full range of reflectance, it is 
sufficiently linear over the range 0–0.7 s to allow linear interpolation with negligible 
error. Few naturally occurring surface types have a reflectance greater than 70%. 

Research efforts into EL methods have enabled the minimization of required 
field measurements. For example, in outlining their refined empirical line (REL) 
method for Landsat data, Moran et al. (2001) showed that, because of the near-linear 
relationship between LSAT and s, an accurate estimation of the correction lines could 
be obtained using only two reflectance targets (Figure 5): firstly, detailed field 
measurements of s for one appropriate within-scene bright calibration target and, 
secondly, an estimate of LSAT for s = 0 derived using an RTM and “reasonable” water 
and aerosol models, or measurements of atmospheric conditions on a typical cloud-
free day. The historical empirical line method (HELM) proposed and detailed in this 
thesis is similar to the REL approach and is based on the derivation of a linear s 
prediction equation from two within-scene calibration targets. In HELM, however, the 
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estimate of path radiance (Lp) is derived from identified within-scene dark-objects 
(such as areas of clear water or topographic shadow) directly from the imagery, by 
making assumptions about their intrinsic reflectance (similar to DOS approaches), and 
therefore negates the requirement to utilize an RTM and estimate atmospheric 
parameters. Consequently, as a minimum, s field measurements of only one 
calibration target are required, although it is good practice to collect data for 
additional sites in order to validate and assess the accuracy of the correction lines. 
Moreover, as Smith & Milton (1999) note, if the calibration and validation targets are 
spectrally pseudo-invariant over time, which they should be if correctly chosen, then 
the measurement of s need not coincide with the image data acquisition. 

The purpose of HELM is, therefore, to (re)construct the historical linear 
relationship between LSAT, as recorded in the multi-temporal SPOT imagery, and s 
for the spectrally pseudo-invariant pixels (PIPs) as measured in the field. Compared to 
a nadir viewing only sensor, such as Landsat, matters with SPOT multispectral data 
are complicated by the off-nadir viewing capability of the HRV/HRVIR/HRG 
sensors, which gives a ± 31° possible range in V of an off-nadir SPOT scene. Ideally 
the multiangular s behaviour of the calibration site should be measured in the field 
and modelled. This obviously entails the use of some kind of goniometer. However, 
given that any form of reliable multiangular s measurements will give useful 
information about the target, this need not be a very advanced expensive automated 
instrument, such as FIGOS (Sandmeier & Itten 1999), and could be a simple manually 
manoeuvrable device with a limited zenithal arc measurement range. For example, the 
goniometer utilized by Jackson et al. (1990) consisted of a 2.3 m long tubular 
aluminium arm affixed next to a metal protractor and guide, which had notches every 
5° between –45° and +45° zenith into which the arm could be manually positioned. 
This enabled the measurement of 19 view angles that could be achieved over 
approximately a 5-minute time period. In this instance the spectrometer was held at 
the top of the arm, but it is just as practical to have the spectrometer at ground level 
and  position  the  foreoptics  at  the  top  of  the  arm,  connected  to  the  spectrometer  by  
fibre optic cable. It is within the budget and capabilities of most remote sensing 
groups to construct a simple goniometer. 

Nevertheless, it is accepted that in some usage circumstances it may only be 
possible, for a variety of reasons, to collect nadir s measurements of the calibration 
target. For this thesis it was possible to utilize the Finnish Geodetic Institute Field 
Goniospectrometer (FIGIFIGO; Suomalainen et al. 2009). Consequently, FIGIFIGO 
was used to take detailed multiangular s measurements and investigate the effect of 
HELM calibration to nadir s on RFR accuracy. Calibration to nadir s is denoted as 
the HELM-1 approach, whilst calibration to s data modelling the exact illumination 
and view geometry of the SPOT imagery is termed the HELM-2 approach. 

HELM was developed in response to the TAITA research project requirement to 
perform absolute atmospheric correction of multi-temporal SPOT imagery based on 
the limited ancillary data availability of working in the Taita Hills, in common with 
many areas of the of the developing world. Consequently, HELM is designed for use 
in absolute atmospheric correction in circumstances where there are no overpass 
concurrent atmospheric or detailed meteorological measurements available, but there 
is access to a spectrometer (and preferably a goniometer) and field access to the 
research site(s). For practical reasons, HELM is limited to regional scale and local 
landscape level studies, as opposed to countrywide or continental areas, because of 
the  requirement  for  a  calibration  target  to  be  found  within  each  scene  area  and  
measured in the field. Because it is an empirical statistical method, HELM gives no 
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estimation of atmospheric parameters; rather, a direct prediction of s is derived for 
given input LSAT values, and it is against these that the accuracy of HELM can be 
assessed.  Further  details  of  HELM  are  given  in  Section  4.3.2  below,  and  are  
summarized in Paper II. 

Often assessments of atmospheric correction methodologies are based on 
improvements in the accuracy of derived parameters such as classifications and 
landscape metrics (Mahiny & Turner 2007), Jeffries-Matusita distances (Song et al. 
2001), estimates of timber volume (Norjamäki & Tokola 2007), or the ability of the 
approaches to normalize the reflectance throughout multi-temporal images (Schroeder 
et al. 2006). Arguably, though, the best method is to compare RFR with s of targets 
as measured in the field. For SPOT data this does, however, necessitate detailed 
multiangular measurements of validation sites be made, which is not always possible. 
Therefore, whilst the Taita Hills provided an application site representing the typical 
circumstances of a region of the developing world with limited ancillary data 
availability, it was also necessary to have a control site, where full meteorological 
data records were available and where the multiangular reflectance behaviour of the 
ground targets could be measured. For this thesis study it was possible to utilize 
FIGIFIGO and the Helsinki metropolitan region was taken as the control site. 

Based on the work of Moran et al. (1992), Schroeder et al. (2006) state that a 
benchmark for establishing successful absolute atmospheric correction of optical 
satellite imagery in the VIS/NIR bands is an overall accuracy of ± 0.02; i.e. 2% 
absolute reflectance units. Liang et al. (2002) were able to atmospherically correct 
Landsat ETM+ data with an absolute RMSE of 0.009 to 0.015 s in the visible bands 
and 0.027 to 0.041 s in the NIR, based on a comparison with spectrometer field 
measurements. This represented a relative error of ~10% throughout the VIS/NIR 
bands, because of the larger absolute reflectance values in the NIR. Using the REL 
approach, Moran et al. (2001) were able to retrieve s with a mean absolute difference 
(MAD) of  0.01 for the TM/ETM+ VIS/NIR bands, assessed relative to spectrometer 
field measurements. Sellers et al. (1995) identified the accuracy level required for 
reflectance inputs into, and/or validation data for, land surface-atmosphere models 
and climate models as ± 0.02 reflectance units. It should be noted, however, that 
climate models usually require broadband albedo, and consequently the s derived 
from the SPOT data would not be a suitable input. Nonetheless, the stated required 
accuracy levels are indicative of what can be considered as a useable reflectance 
product. ± 0.01-0.02 absolute s accuracy was referenced as being achievable in the 
VIS/NIR bands of Landsat and SPOT data using RTMs and overpass concurrent 
radiosonde profiles (Hall et al. 1992), although the TM SWIR bands were found to be 
problematic with ± 0.06 absolute accuracy (Hall et al. 1991). Based on these previous 
studies, therefore, an absolute atmospheric correction methodology should be 
expected to achieve VIS/NIR RFR within ± 0.02 s absolute accuracy, derive SWIR 
absolute accuracy better than the SAT estimates, and achieve 10% overall relative 
accuracy in all spectral bands, in order to be considered an effective and usable 
atmospheric correction methodology. 
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3. STUDY AREAS  

This thesis focuses on the application of multi-temporal SPOT multispectral data to 
environmental monitoring and modelling at a landscape level in the Taita Hills, 
Kenya. This is representative of utilizing medium resolution optical satellite imagery 
for environmental studies in regions of the developing world with limited ancillary 
data availability. Further, the Helsinki metropolitan region was taken as a control site 
where full meteorological data records were available and where the FIGIFIGO 
goniometer could be used to measure the multiangular s behaviour of ground targets. 
This enabled the investigation of HELM calibration errors, and also an assessment of 
the RFR accuracy of both the proposed HELM technique, and a comparative 
assessment with other absolute atmospheric correction methodologies that are 
applicable in the intended HELM usage circumstances.  
 

3.1 Taita Hills, Kenya 

The Taita Hills are located in the Taita-Taveta District of southeast Kenya at latitude 
3º 25´ S, longitude 38º 20´ E (Figure 6). The hills cover an area of approximately 
1000 km2 and are surrounded by the semi-arid Acacia/Commiphora shrubland and dry 
savannah  of  the  Serengeti  Plains,  some  of  which  falls  within  sections  of  Tsavo  
National Park. The area of mapping utilized in Paper IV covers 89 220 ha from 3° 31  
27  S to 3° 16  46.5  S  and  from 38°  14  21.6  E to 38° 22  11  E (Figure 6 (a)). 
Whilst the surrounding plains are at an elevation of 600-700 m a.s.l., the Taita Hills 
rise abruptly in a series of ridges with the highest peak of Vuria at 2208 m, although 
the average elevation of the hills is 1 500 m. The hills are steep due to the hardness of 
quartzite caps overlaying softer metamorphic rocks, including gneisses. For the 
population modelling in Paper VI, the elevation threshold to separate the hills from 
the lowlands was set to 1 100 m a.s.l., based on the gradient change from the plains to 
foothills, resulting in a study area of 326 km². 

The climate of this region is influenced by the Inter-Tropical Convergence Zone 
(ITCZ) which leads to a bi-modal rainfall incidence, with a longer rainy season during 
March-May/June and short rains in October-December. However, the annual 
variability of precipitation is high, especially in the semi-arid shrubland surrounding 
the hills. According to records from the Kenya Meteorological Institute (KMI), 
average annual precipitation in the years 1986 to 2003 was 1 132 mm at the Mgange 
station, located in the hills at 1 768 m a.s.l., and 587 mm at the Voi station, located in 
the lowlands at 560 m a.s.l. (Figure 6 (b)). Annual variation was strong, as yearly 
maximums at Mgange reached ca. 2 000 mm and minimums were as low as 700 mm. 
The variation between rainy seasons was also strong. In Mgange, the short rains in 
October-December in the years 1986 to 2005 resulted in precipitation between 161 
and 1 352 mm, with a mean of 462 mm (KMI). 

In addition to the measured rainfall, mist and cloud precipitation usually occur 
throughout the year and provide a significant moisture component to the areas over 1 
500 m a.s.l. Despite that the Taita Hills lie approximately 150 km inland from the 
coast, orographic rainfall plays an important part in the local climate as the hills form 
the first significant barrier which moisture laden air from the Indian Ocean 
encounters. Due to the orographic rainfall pattern, the southern and eastern slopes 
receive more precipitation than northern or western slopes, and a ‘rain shadow’ effect 
is discernable especially on the northwestern side of the hills, with the distinctive 
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Euphorbia candelabrum and more commonly Euphorbia bussei var. kibwezensis 
growing in the drier conditions. The annual mean average temperature ranges from 
20ºC in the hills to 25ºC in the lowlands (Jaetzold & Schmidt 1983). 

The agroecological zones follow closely the precipitation zones. In general, the 
farming in the hills is intensive small-scale subsistence farming. In the lower highland 
zone and in the upper midland zone over 1 400 m with annual rainfall on average 1 
100 mm, the typical crops are maize, beans, cassava, peas, potatoes, cabbages, 
tomatoes, cassava, mango and banana (Jaetzold & Schmidt 1983, Soini 2005a). On 
the slopes and lower parts of the hills with average annual rainfall between 600 and 
900 mm, early maturing maize species and sorghum and millet species are cultivated. 
In the lower midland zones with average rainfall between 500 and 700 mm, dryland 
maize  types  and  onions  are  cultivated,  among  others.  The  two  growing  seasons,  
totalling to 150-170 days, coincide with the long and the short rains (Jaetzold & 
Schmidt 1983). The land is prepared during the dry season, and the crops are seeded 
prior to the short rains and long rains. Harvesting takes place after the end of the rainy 
seasons (Gachimbi et al. 2005). Maize is the most characteristic crop in the landscape 
and is seeded in August-September and harvested in January-February, and seeded 
again in March and harvested in June-July.  

Terracing is widespread on the slopes, although the steepest slopes are 
unsuitable for crop growing. In addition to terracing, soil and water conservation 
measures include contour farming, grass banks, trash banks, planting of agro-forestry 
trees, mulching, and crop rotation (De Bie 2005), indicating that the local population 
in the hills are generally aware of the problem of soil erosion. Furthermore, local 
studies have also found awareness of these issues amongst the farmers and shown that 
they take the overexploitation of natural resources and falling productivity seriously; 
see, for example, the Participatory Rapid Appraisal (PRA) carried out by the Kenya 
Agricultural Research Institute (KARI) in the Wusi sub-location of the Taita Hills 
(Lekasi et al. 2005). Nevertheless, despite the soil conservation measures, visible soil 
erosion (rill, sheet and gully erosion) is evident in the croplands (Gachimbi et al. 
2005). 

The Taita Hills form the northernmost part of Africa’s Eastern Arc Mountains, 
which run from southern Tanzania (Lovett & Wasser 1993) and boast an extremely 
high diversity of flora and fauna and high levels of endemism (Githiru & Lens 2007), 
and have consequently been identified by Conservation International as one of the top 
ten biodiversity hotspots in the world. Of particular scientific and conservation 
interest are the indigenous forest patches that are home to many rare or endangered 
endemic animals and plants. Today, only a small amount of native forest remains, 
occurring in a scatter of three larger hilltop remnants; Mbololo (c. 179 ha), Ngangao 
(c. 136 ha) and Chawia (c. 94 ha) as reported by Lens et al. 2002, from a field survey 
(see Figure 6 (b)), and further much smaller fragments embedded in a mosaic of 
human settlements, small-holder cultivation plots (known locally as ‘shambas’), and 
plantations of exotic tree species such as Cupressus lusitanica, Pinus spp., Eucalyptus 
spp., and Grevillea robusta that were established in the hills between the 1950s and 
1980s (Pellikka et al. 2009). The indigenous forest cover has been termed upland 
moist or mist forest by Beentje & Ndiang’ui (1988), but is also referred to as montane 
forest or cloud forest by other workers. It is mapped in Papers IV and Paper V as 
closed canopy broadleaved forest (see Table 8 below). The characteristic tree species 
include Newtonia buchananii, Tabernaemontana stapfiana, Macaranga 
conglomerata, Albizia gummifera, Phoenix reclinata, Strombosia scheffleri, Cola 
greenwayi, Podocarpus spp., Ochna holstii, and Millettia oblate (Beentje & 
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Ndiang’ui 1988). These indigenous forest patches also play an important role in both 
capturing additional moisture and storing the precipitation on the hilltops. 

The population of the whole Taita-Taveta district has grown from 90 000 (1962) 
to 246 671 inhabitants in 1999 (Republic of Kenya 2001), with a 1.8% annual growth 
rate between 1989 and 1999 (Msagha 2004). Population is concentrated in the fertile 
Taita  Hills,  Sagala  Hills  and  the  town  of  Taveta  close  to  Mt.  Kilimanjaro,  and  in  
trading  centres,  such  as  Voi  and  Mwatate.  The  population  within  the  Taita  Hills  is  
concentrated in the best agricultural areas close to fertile river valleys in areas 
receiving rainfall more than 1 000 mm annually. The district capital Wundanyi is the 
only town in the hills with ca. 4 500 inhabitants in Wundanyi sub-location in 1999, 
while the rural area consists of villages of varying size. The population density in the 
best agricultural areas is between 400 to 500 inhabitants per km2, but some sub-
locations have a density of more than 900 persons according to the 1999 Kenya 
census. The sub-locations consisting of areas in the hills and the lowlands have a 
density between 100 to 200 people per km2, while the rural lowlands have a density 
between 5 to 30 people. The population in Wundanyi, Mwatate, Tausa and 
Mwambirwa divisions was 135 000 based on the 1999 census, in an area of 3000 km2, 
resulting in an average population density of 253 per km2. The least populated areas 
are  the  western  and  northern  plains  and  northwestern  parts  of  the  Taita  Hills  due  to  
the rain shadow effect. Most people in the hills live on small farms at elevations 
between 1300 and 1800 m a.s.l., where the annual long-term rainfall varies between 
360 mm to 1935 mm and the mean daytime temperature is 20 °C. The average size of 
a farm is 2 ha (Soini 2005a; Ruotsalainen 2008). 

The population growth has been a driving factor behind rising environmental 
pressure on the Taita Hills. Consequent intensification and increases in the area under 
cultivation for subsistence farming has led to a scarcity of available land in the hills, 
which has contributed to clearance of new agricultural land in the lowlands and a 
movement of population towards the lowlands, giving dynamic changes in the land 
use patterns. Due to poor agricultural management, erodible soils and the large 
relative height differences in the hills, the foothills especially are subject to escalating 
land degradation (KARI, 2005) in the form of accelerated soil erosion, loss of natural 
vegetation cover, and lowering of water tables (Pellikka et al. 2005). 

Identified threats to the remnant indigenous forest patches include encroachment 
(for settlement, agriculture and livestock grazing), over extraction of firewood and 
building materials, charcoal burning, poor enforcement of government policies and 
regulations, illegal logging, lack of awareness among the communities living adjacent 
to forests, fires (both deliberate and naturally occurring) and colonization by 
suppressive and fast growing exotic tree species (EAWLS 2005). There is, therefore, 
a pressing requirement for environmental monitoring and modelling in the Taita Hills 
to allow for planning for the sustainable use of natural resources. The production of a 
digital geospatial database for the Taita Hills, and the mapping and analysis of LULC 
changes over time, have been major aims of the TAITA research project undertaken at 
the Department of Geosciences and Geography at the University of Helsinki. 
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(a) 
 

 
(b) 

 
 
Figure 6. (a) Locations and extents of the Helsinki metropolitan region, Finland, and the Taita Hills, 
Kenya, study areas of Papers I-VI, and (b) Taita Hills as depicted in the 15.10.2003 SPOT 4 HRVIR 1 
scene, with the main indigenous forest patches, discussed in Paper IV, denoted. 
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3.2 The Helsinki metropolitan region control site, Finland 
 
The Helsinki metropolitan region in Finland was chosen as the control site for 
assessing HELM as it provided field access from both the University and the Finnish 
Geodetic Institute for utilising the FIGIFIGO goniometer to measure the angular s 
behaviour of the calibration and validation ground targets. Additionally, detailed 
meteorological data records were available. The Helsinki metropolitan region is 
situated at approximately 60° 12' N, 24° 56' E, along the Baltic coastline of southern 
Finland (Figure 6 (a)). The area is topographically flat, with a near sea-level elevation, 
and has extensive urbanization and development as well as agricultural areas, lakes 
and forests. Being located along the coastline, the climate is consequently transitional 
between maritime and continental and, due mainly to the Gulf Stream, is not as cold 
as other regions at the same latitude north, such as southern Greenland or Siberia. 
Average temperatures fall below 0°C from December until March and the spring 
arrives  at  the  start  of  April  (Finnish  Meteorological  Institute:  www.fmi.fi). Only in 
May is there much green vegetation present and summer lasts until mid-September. 
SPOT scene selection for the Helsinki control dataset was consequently limited to 
images acquired during the northern hemisphere late spring and summer period 
because of the requirement for snow free data. 
 

4. MATERIALS AND METHODS 

4.1 Data 

The following sections describe the details of the datasets utilized in this thesis, and 
the procedures applied in their generation and processing, whilst the preprocessing of 
the SPOT satellite imagery is covered separately in Section 4.2. Table 3 summarises 
the remote sensing and in situ datasets used in the dissertation and the corresponding 
research papers. 
 
Table 3. In situ, airborne and satellite remote sensing datasets used in the original Papers. 

Data Paper 
SPOT satellite imagery, Taita Hills, Kenya II; III; IV; V; VI 
SPOT satellite imagery, Helsinki metropolitan region, Finland I; II; III 
Airborne remote sensing: colour digital imagery mosaics covering parts of Taita Hills IV; VI 
Field measured nadir HCRF data, Taita Hills, Kenya I; II; III 
FIGIFIGO field measured multiangular HDRF, Helsinki metropolitan region, Finland I; III 
In situ land use/land cover training and ground reference test data, Taita Hills, Kenya IV; V 

 

4.1.1 SPOT HRV, HRVIR and HRG satellite imagery 
 
Whilst the objective of the image selection for the Taita Hills application site was to 
choose dry season cloud free SPOT scenes most suitable for LULC mapping, the 
objective for the control dataset was to provide as wide a range as possible in the 
scene sensor and solar geometries; particularly in the scene incidence angle ( V), 
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which is the key variable of interest for verifying HELM. For reference purposes 
within this thesis, the Helsinki metropolitan region control SPOT imagery dataset is 
referred to as Dataset 1 and the Taita Hills application site imagery dataset is referred 
to as Dataset 2. As detailed in Table 4, for the control Dataset 1 five available multi-
temporal scenes dating from 1993 through 2005, and seasonally from the 8th May to 
the 13th July throughout the late spring and summer, were chosen. These provided a 
range of off-nadir V from L29.7° to R28.7° (which represents near-maximum off-
nadir views in both directions), a range of solar zenith angles ( Z) from 37.5° to 43.8°, 
a range of solar azimuth angles ( Z) from 161° to 182.7°, and a variation in the local 
overpass time from 12:26 for SPOT 5 through 13:26 for SPOT 3. 1993 to 2005 was 
also a long enough time span to cover significant changes in the LULC in the area, in 
this instance through the process of urbanization, and thus provided a further 
challenge to the application of HELM in terms of the identification of a persistent 
ground calibration target. 
 
Table 4. Details of the SPOT satellite imagery in the study Datasets 1 and 2. 
 
Dataset 1. Control Site: Helsinki Metropolitan Region, Finland, Lat 60º 12' N, Long 24º 56' E 
Image Date Local Time a Path/ 

Row 
SPOT 
Sensor 

V V b Z Z r c 

11.07.1993 13:01:29 073/226 1 HRV 1 L 9.3 289.7 38.2 170.6 299.1 
08.05.1994 13:25:56 073/226 3 HRV 2 L 29.7 294.4 43.5 182.7 291.7 
11.06.2002 d 12:53:58 073/226 4 HRVIR 1 L 2.5 288.3 37.5 170.1 298.2 
10.05.2003 12:26:06 073/226 5 HRG 1 R 28.7 103.4 43.8 161.8 121.6 
13.07.2005 12:34:18 073/226 5 HRG 2 R 16.1 106.2 39.2 161.1 125.2 
Dataset 2. Application Site: Taita Hills, Kenya, Lat 3º 25' S, Long 38º 20' E 
Image Date Local Time a Path/ 

Row 
SPOT 
Sensor 

V  V b Z Z r c 

01.07.1987 10:48:32 143/357 1 HRV 1 R 10.4 98.9 36.3 41.4 237.5 
25.03.1992 10:49:52 142/357 2 HRV 1 R 13.8 98.9 26.5 79.0 199.9 
25.03.1992 10:49:51 143/357 2 HRV 2 R 9.3 98.9 26.0 78.7 200.2 
12.02.1999 10:57:14 143/357 4 HRVIR 2 L 4.2 278.7 27.7 113.7 345.0 
02.06.2002 11:03:19 142/357 4 HRVIR 1 L 20.2 278.6 32.4 36.9 61.7 
15.10.2003 10:49:36 143/357 4 HRVIR 1 R 10.4 98.8 21.0 104.3 174.5 

Z is solar zenith angle; Z is solar azimuth angle; V is sensor view incidence angle; V is sensor azimuth angle, 
and r is the relative azimuth between sensor azimuth and the solar principal plane. 
a Helsinki images are UTC +3 hours (accounting for daylight saving time [DST] during summertime period); DST is 
not used in Kenya, so Taita Hills images are all local times UTC +3 hours. 
b Sensor azimuth is calculated as the orientation angle + 90 for right (negative, east) off-nadir view and the 
orientation angle + 270 for left (positive, west) off-nadir view.  
c The relative azimuth between sensor azimuth and the solar principal plane follows the convention of Sandmeier 
et al. (1998a); the sun is taken as 180° azimuth. Therefore 0° relates to a sensor view of the forward scattering 
and 180° to backscattering; 0° to 360° is clockwise. 
d The 2002 image suffers saturation in the green, red, and SWIR bands, and calibration error in the red 
band. 
 

As detailed in Table 4, the application Dataset 2 consisted of five multi-temporal 
scenes dating from 1987 through 2003, and from the 12th February to the 15th 
October. Despite being acquired at various times of the year and falling at the end or 
start of potential rainy seasons, all these images have similar dry moisture and 
phenological conditions, as no significant rainfall occurred in the month of (or before) 
scene capture in each instance, according to the local rainfall records of the Kenyan 
Meteorological Department. This reflects the unreliability of rainfall in this region of 
east Africa. There is a range of off-nadir V from L20.2° to R13.8°, a range of Z from 
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21° to 36.3°, a range of Z from 36.9° to 113.7°, and a variation in the local overpass 
time from 10:48 through to 11:03. 

As an application site for HELM, the Taita Hills represent a challenge because 
the rural agricultural and savannah make-up of the area offers very limited 
homogeneous manmade or vegetation free areas that could be taken as calibration 
targets. There is also an absence of any significant areas of clear standing water; the 
only major water body in the area being a heavily silted reservoir, that has varying 
sediment load (and therefore reflectance properties) and water-levels throughout the 
year. This area may, then, present difficulties for the identification of a dark-object for 
the HELM and DOS methods. 

As can be seen from Table 4 and Figure 7, in the imagery in Dataset 1, because 
of the northerly latitude of Helsinki, the sun remains relatively low in the sky 
(smallest Z is  37.5°)  and  in  the  south  and  eastern  side  of  the  hemisphere.  The  
exception is the 1994 image where, due to the later overpass time (because V = 
L29.7°), the sun just makes it into the southwestern sector of the sky ( Z = 182.7°). 
Note that the geometrical situation would be similar at high latitudes in the southern 
hemisphere, although here the sun would remain in the northeastern sector of the sky 
and the local solar time would be earlier. In the 2005 and 2003 images the sensor was 
viewing the backscattering, but approximately 55° off from the solar principal plane. 
For the other years, the sensor was viewing the forward scattering, but approximately 
65° off from the principal plane. It is well established that s anisotropy effects are 
usually most pronounced along the principal plane (Sandmeier et al. 1998b; 
Sandmeier  &  Itten  1999),  so  multiangular  effects  are  likely  to  be  weaker  at  off-
principal plane relative azimuth angles ( r), such as in Dataset 1. Countering this, 
however, a lower sun position in the sky enhances multiangular effects relative to a 
smaller Z along the same plane. 

Conversely, as can be seen from Table 4 and Figure 7, the difference of being in 
the Tropics is clear in the Dataset 2 imagery as, although the sun remains to the east 
of the scene centre because of the mid-morning overpass time of SPOT satellites at 
the Equator, the sun is higher in the sky and falls both in the north and southern half 
of  the  hemisphere,  depending  on  the  time  of  year.  Consequently,  a  similarity  or  
coincidence of the sensor azimuth angle and the principal plane can occur and 
multiangular effects in the imagery are likely to be more prominent. Indeed, in the 
2003 image the sensor was viewing the backscattering approximately 5° off from the 
principal plane whilst in the 1999 scene the sensor was viewing the forward scattering 
approximately 15° off from the principal plane. In the 1992 image the sensor was 
viewing the backscattering 20° from the principal plane, and in the 1987 and 2002 
scenes the sensor backscattering view was 57.5° and 61.7° from the principal plane, 
respectively. Because of the different latitudinal locations, and the differences in 
overpass times, there is no overlap in the Z or Z between Dataset 1 and Dataset 2. 
The two sites together, therefore, provide and allow for a thorough assessment of 
HELM in handling various geometrical circumstances. 

The Taita Hills SPOT data was acquired through the TAITA project as part of 
the CNES ISIS program. The Helsinki SPOT data was provided by Spot Image under 
OASIS research grant 51. All the images were supplied as Level 2A scenes, with 
radiometric correction of distortions due to variations in the sensors’ CCD sensitivity 
and  geometric  corrections  for  systematic  effects  (such  as  the  Earth’s  rotation  and  
curvature and variations in the satellites’ orbital altitude), as well as rectification to a 
UTM/WGS-84 projection system based on ephemeris data (i.e. without ground 
control points). The stated average accuracy of the rectification for SPOT 1 to 4 
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scenes was only 350m (30m for SPOT 5 images), and consequently the imagery 
required further geometric processing before it was useable; see Section 4.2.1 below. 
 

 
 
Figure 7. Polar plots of the solar and sensor positions for the SPOT scenes in Datasets 1 and 2. 
 

4.1.2 Field measurements of surface reflectance factor  
 
For the Helsinki metropolitan region control site study area, FIGIFIGO (Suomalainen 
et al. 2009) was used to take detailed multiangular daylight s measurements of 
different surface types as candidates for HELM calibration/validation sites. Following 
preliminary identification in Google Earth™, eight sites were visited in the field and 
deemed suitable for data collection and utilization (Table 5). The major constraints in 
data acquisition were the limited northern hemisphere spring/summer measurement 
window and the requirement for sustained cloud-free weather conditions, as well as 
other usage requirements for the goniometer itself in various different summer 
acquisition campaigns around Finland. This made planning and execution of a 
coherent sampling strategy very difficult and consequently data was collected over a 
period of 3 summers from 2005 to 2007. As shown in Table 5, the measured surface 
types included sand, gravel, asphalt, artificial turf, and managed real turf. 

FIGIFIGO utilizes an ASD FieldSpec® Pro  FR  spectrometer  with  a  spectral  
range from 350 – 2500 nm and an output spectral resolution of 1 nm, but a true 
observation resolution of 3 nm at 700 nm, and 10 nm at 1400 and 2100 nm. In order 
to enable the approximation of HDRF, foreoptics with a 3° FOV were mounted on the 
goniometer measurement arm, giving a 10 cm diameter GIFOV at nadir.  FIGIFIGO 
automatically measures zenith angles ( VZ) up to ± 70° with either a 2.5° or 5° 
interval. Self-shadowing was present only over an area of 5° diameter around the 
exact backscattering direction. The full hemispherical view range in azimuth was 
achieved by rotating the whole instrument around the target in 10° to 30° steps. The 
view geometry was defined with a digital high-precision inclinometer and compass, 
and the solar position was calculated using GPS time signal and coordinates. To allow 
for the compensation for any variation in the amount of illumination occurring during 
measurement, incident irradiance was continuously monitored with a pyranometer. 
Measurement of 3 to 6 zenith arcs between 0° and 90° azimuth from the principal 
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plane was considered to be sufficient for description of the target s, and therefore full 
hemispherical measurement took 15 to 45 minutes depending on the desired level of 
sampling. FIGIFIGO s have an estimated relative accuracy of 1 – 5% depending on 
wavelength, sample properties, and measurement conditions (Suomalainen et al. 
2009). For each target a BRDF model based on the Lommel-Seeliger law 
(Suomalainen 2006; Hapke 1993) was fitted to the FIGIFIGO s measurements to 
allow interpolation and extrapolation of the data. 
 
Table 5. Site details of the field data collected in the Helsinki metropolitan region control site study 
area for utilization in HELM. 
 

# Site Name Site Location Surface Type Measurement Dates Site Usage 
1 Hietsu Beach  60° 10' 28'' N 

24° 54' 28'' E 
Medium sand a 13.09.2005 

17.07.2006 
08.06.2007 

 

Calibration/
Validation 

 

2 Vermo Car Park 60° 12' 52'' N 
24° 50' 22'' E 

Asphalt 20.05.2005 
25.05.2005 
05.07.2005 

 

Validation 
 

3 Pasila Sports Ground 60° 12' 29'' N 
24° 56' 39'' E 

Very fine gravel a 07.06.2005 
13.09.2005 

 

Validation 
 

4 Pasila Velodrome 60° 12' 10'' N 
24° 56' 35'' E 

Artificial turf 04.06.2007 
07.06.2007 

 

Validation 
 

5 Malmi Airfield 60° 15' 00'' N 
25° 02' 41'' E 

 

Asphalt 04.06.2007 Validation 
 

6 Töölö Soccer Pitch Turf 60° 10' 28'' N 
24° 54' 28'' E 

Managed grass 19.07.2006 
05.06.2007 

 

Validation 
 

7 Kumpula Sports Ground 60° 12' 50'' N 
24° 58' 09'' E 

 

Very coarse sand a 13.09.2005 Validation 
 

8 Pasila Baseball Ground 60° 12' 23'' N 
24° 56' 31'' E 

Very coarse sand a 07.06.2005 
13.09.2005 

Validation 
 

a Aggregate classes as described by the Wentworth scale 
 
For  the  Taita  Hills  application  site,  following  inspection  of  the  Dataset  2  SPOT  
imagery and field visits in the Taita Hills themselves, only five locations were deemed 
suitable for s measurement, and it was clear that only the roadside quarry (see Table 
6) could be taken as a HELM calibration target. This was ~60 m wide and 200 m long 
and formed of light-grey calcareous coarse sand, underlain by bare rock and some 
angular pebbles of the same material. In order to include some validation data, it was 
necessary to utilize sub-optimal locations. As can be seen in Table 6, nadir s 
measurements  were  made  of  a  sandy  school  playground,  a  compacted  red  soil  road  
area, and an area of asphalt hard-standing, all of which were ~60 m by 60 m in extent. 
At each site GPS was used to record the location of the target centre so its  position 
could be accurately determined within the imagery. Differential GPS was not 
employed, as the appropriate equipment was unavailable during this particular field 
trip, but the device was left averaging until the reported estimated accuracy was  5 
m. Across each of the sites the nadir s was measured 15 times, each recorded 
measurement itself being the average of 15 spectrum samples, utilizing an ASD 
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FieldSpec® Handheld VNIR (325 – 1075 nm, 3.5 nm spectral resolution) 
spectrometer. At the start of each measurement set the spectrometer was calibrated to 
a Spectralon® white reference panel. No pyranometer was available to allow 
corrections for variation in illumination conditions during measurement. The 
spectrometer was handheld in a nadir view position at 1.2 m height facing towards the 
sun, with a 25° bare-head optic giving a GIFOV of 53 cm in diameter. Consequently, 
the measured s was the nadir “in-field” HCRF. 
 
Table 6. Details of the field data collected in the Taita Hills application site study area. 
 

# Site Name Site Location Surface Type Measurement Dates Site Usage 
1 Roadside Quarry  03° 30' 19'' S 

38° 15' 46'' E 
Calcareous bare 

rock/ /Pebbles/Sand 
 

25.01.2005 
 

Calibration/
Validation 

 
2 Roadside Hard Standing 03° 23' 52'' N 

38° 32' 56'' E 
 

Asphalt 27.01.2005 
 

Validation 
 

3 Bare Red Soil 03° 29' 50'' S 
38° 19' 25'' E 

 

Bare lateritic soil 27.01.2005  Validation 
 

4 School Playground Sand 03° 21' 01'' S 
38° 20' 29'' E 

Medium sand 26.01.2005 Validation 

 

4.1.3 Field data for classification training and accuracy assessment 
 
During field visits to the Taita Hills in January 2005 and 2006 both training areas for 
the LULC classes to be classified (see Section 4.6.1 and Table 8 below), and ground 
reference test data to enable accuracy assessment of the 2003 SPOT scene 
classifications, were obtained. The ground reference test data were collected using 
stratified random road sampling (points falling in areas visually identified to have 
changed land cover relative to the 2003 image were discarded and regenerated), and 
from 0.5 m resolution true-colour digital aerial photography (see Section 4.1.4 below) 
flown  in  January  2004,  3  months  after  the  SPOT  scene  acquisition,  using  stratified  
random sampling. The photography is limited to 8 mosaic areas covering ca. 12% of 
the Taita Hills, with three large mosaics covering ca. 30% of the upland area 
specifically (see Paper VI: Figure 1), and whilst the road sampling extended into the 
lowlands, less reference points were collected in the field because of logistical and 
financial constraints. A minimum statistically valid class sample size of 60 was 
calculated based on the multinomial distribution approach outlined by Plourde & 
Congalton (2003). Lesser numbers of points were collected for the spatially limited 
classes, such as Water, and more for the spatially extensive classes, like Cropland. 
The ephemeral Burned Area and Cloud/Shadow classes could not be sampled, and 
Bare Rock was not assessed as it could not be automatically mapped. 
 

4.1.4 Airborne remote sensing data 
 
A NIKON D1X true colour (RGB) digital camera, equipped with a 14 mm lens 
producing a 78 degree opening angle, was mounted on a light aircraft and used to 
acquire airborne imagery with 60% overlap and 30% sidelap between flight-lines. The 
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camera was utilized as part of the EnsoMOSAIC system, consisting of flight planning 
software, navigation software, a triggering unit, GPS and a power source (Holm et al. 
1999). Data acquisition took place between 8 and 9 am on January 25 2004, and 
between 12 and 1 pm on January 27 2004, at altitudes between 2100 and 2700 m 
above the land surface, resulting in an approximate ground resolution varying 
between 27 and 40 cm for the study area. The imagery was processed on a frame-by-
frame basis to remove brightness variations due to light-falloff and bi-directional 
effects, using the correction methods developed by Pellikka (1998). The frames were 
then  mosaicked  together  using  the  EnsoMOSAIC  software  (Holm  et al. 1999). The 
resulting mosaics were orthorectified, projected to a Transverse Mercator projection 
with a Clarke 1880 spheroid and Arc 1960 datum, and resampled to 0.5 m ground 
resolution. The geometric accuracy of the mosaics was verified during field work to 
be ± 2 m, using GPS Trimble® GeoXT™ GPS with differential correction base 
(reference) data. 
 

4.1.5 Taita Hills Digital Elevation Model (DEM) 
 
The  digital  elevation  model  (DEM) for  the  Taita  Hills  study  area  was  derived  from 
nine adjacent scanned Survey of Kenya 1:50 000 scale topographic maps, from which 
the 50-feet (~15 m) contours were automatically captured and then merged together in 
ArcGIS. These contours were interpolated into a 20 m planimetric resolution raster 
DEM utilizing the TOPOGRID method based upon the ANUDEM program 
(Hutchinson 1989). The method applies a discretised thin plate spline technique, in 
which the roughness penalty has been modified to allow the fitted DEM to follow 
abrupt changes in relief, such as streams and ridges, which is useful in rugged terrain. 
The heights were converted from feet to metres to be compatible with other metric 
measurements. Based on a digitisation accuracy of ± 1 mm and a general estimate of 
combined source mapping and interpolation error of half the contour interval, the 
DEM planimetric accuracy was estimated as ± 50 m and the altimetric accuracy as ± 8 
m. Further, as spot height information on the scanmaps was not utilised in the 
interpolation process, these heights were used to assess the altimetric root mean 
square error (RMSE) of the DEM, which was also ~8 m. 
 

4.1.6 Taita Hills rainfall geospatial data layer 
 
Mean monthly precipitation surfaces were produced from monthly rainfall records of 
11 stations within the Taita Hills from 1987 to 2005 obtained from the Kenya 
Meteorological Institute (KMI); see Paper V Table 4. Only eight years of rainfall data 
were used due to the poor availability of records of monthly precipitation before the 
year 1987. Mean annual precipitation was interpolated on to a 20 m resolution grid 
using the procedures from the ANUSPLIN package (Hutchinson 1991), which 
generates good results in areas of rugged topography (Cole & Arundel 2004), such as 
the Taita Hills. This technique uses tri-variate functions of longitude, latitude, and 
elevation in kilometres to fit thin plate spline functions, which can be viewed as a 
generalization of standard multi-variate linear regression. The degree of smoothness 
of the fitted function is usually determined automatically from the data by minimizing 
a measure of predictive error of the fitted surface given by the generalized cross 
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validation (Craven & Wahba 1979). The DEM was then used to generate rainfall 
layers in with a 20 m resolution. 
 

4.1.7 Data for human population modelling in the Taita Hills 
 
The  Taita  Hills  geospatial  database,  created  as  part  of  the  TAITA  and  TAITATOO  
projects, was used as the main data source for the human population occurrence and 
abundance modelling in Paper VI. Dwelling units were mapped using on-screen 
digitization from airborne digital camera data acquired during January 2004 covering 
30% of Taita Hills highlands, as described in Section 4.1.4 above. The 20 m DEM, 
described in Section 4.1.5 above, was used to calculate the mean elevation, slope and 
aspect. The topographical wetness index ( ) was derived utilizing a custom-made 
ArcGIS geoprocessing model. In addition, irradiance (kWh/m2/month) was calculated 
from the DEM using an ARC/INFO AML macro (shortwavc.aml) (Kumar et al. 1997; 
Zimmermann 2000). The precipitation grid layers, as described in Section 4.1.6 
above, were also utilized in Paper VI. Vector map layers for main roads and rivers 
were digitized from the Kenya 1:50 000 scale topographic maps, and were used for 
the Euclidean distance grid calculations, undertaken in ArcGIS. Two existing global 
population datasets, Gridded Population of the World (GPWv3) at 5 km resolution 
and LandScan 2005 (Dobson et al. 2000) at 1 km resolution, and Kenyan 1999 census 
data (Republic of Kenya 2001) were used for the human population abundance model 
comparison. 

The remote sensing predictor variables derived from the 15.10.2003 SPOT 4 
HRVIR 1 20 m satellite image covering the Taita Hills consisted of (i) the mapped 
land cover, as also utilized in Papers IV and V and detailed in Section 3.6.1 below, (ii) 

s retrieved using HELM, as also utilized directly in Papers II and III, and (iii) image 
texture measurements made from the finally processed HELM atmospherically 
corrected and topographically corrected scene (see Section 4.5 below). Only four of 
the mapped LULC classes (Croplands, Thicket, Woodland and Plantation Forest) 
were used due to the relatively low prevalence or high correlation with other 
predictors of the other land cover classes. The percentage of spatial coverage for 
different land cover classes in each 100 m analysis square was calculated using the 
summarize function in ArcGIS. The first-order image statistics were the mean s of 
SPOT bands 2 and 3 (red and NIR). The green band 1 s was  excluded  from  the  
modelling because of high correlation with the red band (r > 0.95).  For the second-
order image texture measurements based on the Gray Level Co-occurrence Matrix 
(GLCM), the angular second moment, contrast, correlation, sum of squares variance, 
inverse difference moment and entropy were calculated, as they were the most 
relevant texture measures according to Baraldi & Parmiggiani (1995). Three different 
sizes of moving windows were tested using the GRASS GIS freeware, 3×3, 7×7 and 
15×15, with the result that the 3×3 window gave a ”salt and pepper” effect and the 
15×15 window gave very strong smoothing effect. Consequently, the 7×7 window 
size was employed (as did Shaban & Dikshit 2001). The texture measures were 
calculated in four directions (0°, 45°, 90° and 135°) and averaged, as suggested by 
Haralick et al. (1973). The GLCM second-order image texture measures were 
calculated for both the red and NIR bands but, due to high correlation, only texture 
measures for the red band were used in the final regression analysis. Furthermore, all 
the red band second-order image texture measures had strong correlation with each 
other, with the exception of the angular second moment (ASM) and correlation 
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(COR) (r < 0.1); see Equations 7 & 8 below. Therefore, only these two measures were 
utilized in the final regression analysis. To summarize these image texture measures 
in each 100 m analysis grid square, the mean of pixel values from the texture images 
were calculated.  
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where quantk = quantization level of band k (e.g., for SPOT imagery 28 = 0 to 255); 
hc(i, j) = the (i, j)th entry in one of the angular spatial-dependency matrices, and: 
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4.2 SPOT data preprocessing 

4.2.1 Geometric correction 
 
The first step in processing the Level 2A SPOT imagery was to make the multi-
temporal scenes spatially comparable through geometric correction. The images in the 
Helsinki metropolitan area control Dataset 1 were rectified to a 1:20,000 scale digital 
scanmap with a 2 m pixel resolution. All rectifications were better than ½ pixel, 
which is ~10 m for the HRV and HRVIR 20 m multispectral data and ~5 m for the 
HRG 10 m multispectral data. For the Taita Hills application Dataset 2, because of the 
rugged terrain in the area, the imagery was orthorectified utilizing the generated 20 m 
DEM  and  the  SPOT  geometric  correction  model  available  in  ERDAS  IMAGINE  
software. This model uses manually identified ground control points (GCPs) in the 
image and a geometric control source, the DEM, and a single frame space resection 
technique to complete the orthorectification for a single SPOT scene, processed 
individually (ERDAS 2005). Firstly, the 2003 image was orthorectified to the 
1:50,000 scale scan-maps and then the 1987 and 1992 scenes were orthorectified 
based on this geometric master scene, deriving an inter-scene agreement of 0.45 
pixels RMSE. With both imagery datasets, a nearest-neighbour resampling technique 
was employed to ensure that the original pixel values were preserved. 
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4.2.2 Conversion of SPOT image DN into at-satellite radiance 
 
The first radiometric processing step applied to the SPOT imagery for a HELM 
atmospheric calibration is to convert the 8-bit DN values into top of atmosphere at-
satellite radiance (LSAT) in W m-2 sr-1 m-1. The conversion is implemented using the 
band-specific absolute calibration gain coefficients (G) supplied in the SPOT image 
metadata and the simple equation: 
 

GDNL /SAT         (11) 
 

4.3 Atmospheric correction of SPOT data in ancillary data limited circumstances 

4.3.1 Identification of within-scene dark-object radiance values 
 

For the HELM atmospheric correction detailed in Paper II and the DOS (dark object 
subtraction) techniques applied in the correction comparisons in Paper III, it was 
necessary to estimate path radiance (LP) from the SPOT scenes themselves. Usually 
within a SPOT image, some pixels will either be formed from a surface material with 
very low reflectance, such as clear water, or will be in complete topographic shadow. 
Such pixels are known as dark-objects and the LSAT recorded in the VIS/NIR can be 
considered to be composed primarily of the atmospheric upwelling LP, assuming that 
the areas are large enough to counter the adjacency effects of surrounding land cover 
types (Chavez 1996). A dark-object reflectance of 0.01 (1%) (Moran et al. 1992; 
Chavez 1996) was considered appropriate for the SPOT green and red bands. 
However, in this study, based on reflectance measurements of clear lake water, it was 
felt that a nominal value of 0.001 (0.1%) was a better assumption for the NIR, as the 
reflectance from water surfaces is more or less zero at wavelengths beyond the red 
(Tso & Mather 2001). Furthermore, because the amount of scatter is negligible in the 
SWIR (Moran et al. 2003), it was considered scattering could effectively be ignored 
for SPOT band 4, which is primarily attenuated by absorption by atmospheric water 
vapour (Moran et al. 2003). 

The utilized dark-object radiance value identification procedure was to visually 
inspect both the histogram and spatial location of the darkest pixels in a scene. This 
was done both to ensure that the dark-object was a meaningful feature, such as an area 
of topographic shadow and not an edge pixel, and also to ensure that the values were 
similar to those of adjacent pixels, as this indicated that the value was not a dropout. 
This,  therefore,  also  allowed  values  with  a  small  frequency  of  occurrence  to  be  
selected. 

For both Dataset 1 and 2 imagery it was found that, whilst the spatial location of 
the dark-object for the green and red bands was the same, the location of the NIR 
dark-object was always different. Furthermore, the NIR dark-objects identified in both 
datasets were, without exception, areas of water, justifying basing the assumption of a 
0.1% nominal NIR dark-object reflectance on the characteristics of water. Therefore, 
another factor in need of consideration was the possibility that the identification of 
separate dark-objects for the visible and NIR wavelengths from different spatial 
locations could incorrectly alter the relative relationships between the bands. 
However, as Chavez (1988) noted in a comparison of a simple histogram based and 
an improved mathematically correlated selection technique, both methods generated 



 66

very similar haze values when sufficient topography existed; that is to say, when there 
were truly very low reflectance dark-objects existing within every scene. 

Topographically flat desert regions are the only likely problematic application 
area, as here there may be a complete absence of water or topographic shadow within 
a scene. In such circumstances, however, the atmosphere is very stable and dry and it 
would be possible, for example, to utilize the REL (Moran et al. 2001) approach of 
estimating LSAT for s =  0  using  an  RTM  and  standard  atmosphere  and  aerosol  
models. 

In this study, then, the same input dark-object radiance values were used for the 
HELM and DOS approaches, although each technique varies slightly in the method 
used to estimate LP from  these  inputs.  Note  also  these  approaches  assume  a  
homogenous  atmosphere  throughout  the  scene  area  and  consequently  that  the  same  
spectral band specific additive scattering components can be subtracted from every 
pixel in the image. 

 

4.3.2 The Historical Empirical Line Method (HELM) for atmospheric correction 
 
The full details of HELM are outlined in Paper II, whilst an assessment of the spectral 
spatial, temporal, and multiangular reflectance variability of various asphalt, sand, 
gravel, grass, and fake turf potential pseudo-invariant ground calibration targets is 
given  in  Paper  I.  HELM  is  designed  for  absolute  atmospheric  correction  of  SPOT  
imagery in local landscape level and regional scale remote sensing studies where no 
detailed meteorological data are available, but where there is field access to the 
research site(s) and a goniometer or spectrometer is available. The purpose of HELM 
is to (re)construct the historical linear relationship between LSAT,  as  recorded  in  the  
multi-temporal SPOT imagery, and s for spectrally pseudo-invariant features (PIFs), 
as measured in the field. 

Ideally, the HELM calibration target multiangular reflectance behaviour can be 
modelled from s goniometer measurements. This enables the derivation of spectral 
band specific s equivalent to geometrical circumstances of existing and future SPOT 
imagery  within  a  database,  which  can  be  used  for  a  HELM-2  calibration  for  RFR.  
Where a goniometer is unavailable, however, it is necessary to undertake a HELM-1 
calibration to nadir s field measurements. The induced calibration error in doing so, 
relative to the possible ± 31° V range  of  SPOT  data,  was  investigated  for  control  
Dataset 1 and the results are detailed in Paper II. In the atmospheric comparison 
study, as the emphasis was on applying corrections in data limited circumstances, 
HELM was applied as a HELM-1 calibration to nadir s.  

The  HELM  sampling  strategy  is  straightforward  and  there  are  two  main  
objectives that can be fulfilled within one day of good weather: (1) quantifying the 
spectral stability of the nadir s across the site, and (2) capturing the variation in the 
multiangular reflectance characteristics (or, if a goniometer is not being used, the 
nadir s) at a single location within the target, with the range of Z corresponding to 
the overpass times that will be experienced by the SPOT sensors throughout the entire 
year, or the season(s) of interest. 

Site multiangular s behaviour can be investigated by calculating the HDRF 
anisotropy factor (HDRFANIF) by normalizing the multiangular HDRF data to the 
nadir HDRF (HDRFO). This allows for the direct comparison of multiangular effects 
from  different  spectral  bands.  For  a  specific  wavelength  or  wavelength  interval  ( ), 
HDRFANIF can be defined as (after Sandmeier & Itten 1999): 
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In the limiting circumstances where only nadir s measurements are available, 

the assessment of target s stability for a HELM-1 application can be simplified to 
determining the relationship between nadir s and Z and computing the mean 
absolute difference (MAD) between the measured and modelled values for each 
SPOT band. A site with a small MAD across all wavelengths would likely be a 
suitable calibration target (Moran et al. 2001). This relationship can be modelled 
using a simple second order polynomial, where b and ci are fitted constants: 
 

2
Z2Z1s ccb        (13) 

 
Successful  application  of  HELM  relies  on  the  identification  of  a  spectrally  

homogenous and bright calibration target within each SPOT scene area, as required to 
cover the study site(s). Previous localized studies that have applied small sized sites in 
an EL correction have utilized concrete, asphalt, beach sand, ‘packed earth’ bare soil, 
bare rock, managed sports ground turf and artificial turf sports fields as calibration 
targets (Smith & Milton 1999; Moran et al. 2001; Karpouzli & Malthus 2003; Xu & 
Huang 2006). 

Where very large pseudo-invariant surfaces occur, which is mainly in the semi-
arid regions of the world, they have been used extensively both in regional studies and 
for the operational on-orbit calibration and validation of satellite sensors. For 
example, de Vries et al. (2007) used field measurements of s from three claypan sites 
ranging in size from 23,000 to 44,000 m2 in Queensland, Australia to calibrate multi-
temporal Landsat TM/ETM data. The on-orbit calibration of the TM/ETM sensors 
themselves is based on the extensive alkali gypsum flats at Chuck Site, White Sands, 
New Mexico, USA (Slater et al. 1987; Thome et al. 1997), where the target site is in 
excess of 50 km2 (Thome 2001). Teillet et al. (2001) proposed a generalized vicarious 
calibration procedure for multiple satellite sensors based on airborne hyperspectral 
and ground based spectrometer s measurements of a dry lake playa in Nevada, USA, 
and a rangeland area in Alberta, Canada, from which 7 km by 7 km ‘prime’ sites were 
chosen. The procedure was successfully applied to provide on-orbit calibration of 
NOAA-14, AVHRR, OrbView-2 SeaWiFS, SPOT-4 VGT, SPOT-1/2 HRV and 
Landsat-5 TM data. 

The on-orbit calibration of SPOT HRV data was based on the La Crau test site 
in southeastern France, which is a 400 m x 400 m area (160,000 m2) formed of sandy 
clay soil with pebbles (Santer et al. 1992; Rondeaux et al. 1998), and SPOT data have 
also been validated against measurements from the White Sands test site (Teillet et al. 
2001; Gellman et al. 1993). Such spatially extensive sites are, however, generally 
very rare and for the worldwide application of HELM in localised or regional studies 
the utilisation of much smaller calibration targets is necessary. Nevertheless, it is still 
potentially problematic to identify spectrally homogenous calibration targets that are 
large enough to counter the radiometric ‘contamination’ from adjacency effects and 
from the point spread function (PSF) of the GIFOV of the SPOT sensors. 

Karpouzli & Malthus (2003) state that targets need to be at least three times the 
pixel size to derive a central LSAT pixel value allowing a good estimate of the target s. 
This represents a minimum size requirement of 60 x 60 m for 20 m resolution SPOT 
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HRV/HRVIR data, and 30 x 30 m for 10 m HRG imagery. Based on a mathematical 
consideration of sensor PSF and atmospheric blurring, however, Richter (1997) 
calculated that a target size seven times the GIFOV of the sensor is necessary so that 
the central nine pixels can be sampled effectively. More conservatively, Moran et al. 
(2001) argue that, even where the target is bright and surrounded by a darker surface, 
a ratio of sensor resolution to target size of 1:8 is required to ensure that at least four 
central pixels remain uncontaminated. This, then, translates to a minimum target size 
of 160 x 160 m for 20 m and 80 x 80 m for 10 m imagery, a more stringent size 
constraint that can be applied to the requirements for a HELM calibration target, as 
opposed to a validation site. Evidently, the larger the spatial extent of the site the 
better, in terms of obtaining an accurate LSAT representation of the target s from the 
SPOT imagery, as more pixels can be included into the target AOI (area of interest). 

As discussed by Smith & Milton (1999), Thome (2001), Karpouzli & Malthus 
(2003), and de Vries et al. (2007) there are several critical characteristics that must be 
considered in pseudo-invariant site selection, especially given it may be necessary to 
make HELM calibrations to nadir only s measurements. A calibration target should 
be (1) spatially extensive, (2) have near-Lambertian reflectance characteristics to 
minimize s effects  due  to  changes  in  solar  and  view  geometry,  and  (3)  be  a  
homogeneous bare surface devoid of temporally variant features, such as vegetation 
cover. Furthermore, the site should also (4) be located on flat and level terrain so there 
are no topographic illumination variations present. The calibration site also needs (5) 
to be spectrally bright enough in all the SPOT bands to enable a good estimate of the 
correction lines, given that dark-object selection identifies the lower radiance values. 
In order that measurement of s need not coincide with the image data acquisition, the 
calibration target also needs (6) to have stable or predicable s over time, although it 
is acknowledged that this is the most time-consuming factor to assess. Finally, (7) the 
field accessibility of the site is also a consideration, especially if a goniometer is to be 
utilized. These requirements are not insurmountable, however, and indicate that 
manmade/artificial surface features, or vegetation free natural surfaces, are likely to 
be the most appropriate calibration targets. 

In order to assess the accuracy of the derived correction lines, ideally further 
measurements of s for a number of validation ground targets with varying reflectance 
should  also  be  collected.  Given  the  SPOT  sensors’  GIFOV,  it  may  be  necessary  to  
utilize sub-optimal sites for some validation targets, depending on the specifics of the 
study area. Prior to field measurements, an estimate of spectral stability across a 
potential calibration/validation site at the scale of the sensor GIFOV can be obtained 
by examining the range and standard deviation (SD) of the LSAT pixel values of the 
target AOI in the SPOT satellite image itself. Care should be taken to avoid the 
selection of mixed pixels at the periphery of the target. Additionally, for areas where 
very high-resolution imagery is available online, the Google Earth™ or other similar 
mapping websites are a good way of visually interrogating possible 
calibration/validation sites before visiting them in the field. Consideration should be 
given  to  the  constituent  parts  of  a  site  that  will  not  be  visible  in  the  SPOT imagery  
because they cannot be resolved at a 20 m or 10 m pixel resolution. For example, as 
noted by Milton et al. (1997), large asphalt parking lots or areas of hard standing are 
often used as PIFs, but they usually contain painted lines and markings and may also 
contain areas of surface contaminants, such as oil stains, which may be overlooked by 
the human observer. Nevertheless, the reflectance of such features will be integrated 
into the GIFOV recorded by the SPOT sensor. Another, seemingly obvious, point to 
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consider is the likely presence of motor vehicles, which may not be visible in the 
SPOT imagery. 

The temporal spectral stability of a target is another area where assumptions are 
more often made than tested, which may be a critical oversight. For example, 
Anderson & Milton (2006) measured the surface of a disused weathered concrete 
runway and found that there were both diurnal and seasonal variations in s. It was the 
scale  of  the  annual  s variation, for a target type that is often used for calibration, 
which was most surprising. There was seasonal darkening of the surface by a factor of 
two in the visible spectrum caused by the growth of a biological material (algal 
lichen) during the springtime, and an increase in s throughout the rest of the year. 
They also measured a non-systematic diurnal reduction in s over the 400-1000 nm 
spectral range during a day in June 2003 that was attributed to the activation of algal 
lichen photosynthetic activity brought about by the arrival at the site of an air mass 
with high humidity. Additionally, as might be expected, a systematic daily change in 

s due to the variation in Z was also noted, with a general trend of decreasing nadir s 
with increasing Z and vice-versa. 

Changes in surface moisture conditions at a vegetation-free site, related to recent 
rainfall and its intensity or – in some instances – related to fluctuations in the height 
of the local water table, can drastically alter its reflectance characteristics as wetness 
lowers s (Wheeler et al. 1994; Moran et al. 2001). However, drying times may be 
fairly rapid in cloud-free and moderately windy conditions. For example, Moran et al. 
(2001) found that a packed earth target in a semi-arid area artificially saturated to a 
depth of 2 cm dried within 15 minutes. Given that cloud-free SPOT images are 
usually chosen for utilization, it is relatively unlikely that target wetness will be a 
major factor in the temporal spectral stability. Nevertheless, it may be prudent to 
consult any available rainfall records for the study area in the period immediately 
prior to the image acquisition dates, to ascertain if there had been any precipitation 
and  if  so  how much.  Bare  soil  targets  may also  show a  gradual  brightening  of  their  
reflectance over a season due to rain compaction (Moran et al. 2001). 

Vegetated targets are tantalizing as calibration sites because of their high 
reflectance in the NIR band, a characteristic that other surface materials do not often 
share. Moran et al. (2001) argued that sites with > 90% cover and very high LAI 
could be utilized, and they gave a measured example of an irrigated field of mature 
cotton. Similarly, Karpouzli & Malthus (2003) used the managed turf of a sports pitch 
as an EL calibration target. Nonetheless, vegetated sites are problematic for HELM 
because they are likely to show at least some temporal variability, and also are likely 
to show strong s variability with the sensor view angle (Sandmeier & Itten 1998b). 

As detailed in Paper II, site 1 (see Table 5 above), Hietsu beach, was chosen as 
the Dataset 1 HELM calibration target because of its temporal persistence, large size, 
relative brightness, spectral homogeneity and limited multiangular reflectance 
properties. To apply HELM to the Dataset 1 imagery, the average LSAT values for 
each spectral band for the calibration and validation sites were derived from each LSAT 
image. Care was taken to avoid the selection of mixed pixels at the periphery of the 
targets. The utilization of a spectrally homogenous calibration site, covering a number 
of uncontaminated pixels, meant that the spatially averaged site mean reflectance 
spectrum could be directly equated with the support of the SPOT sensor response. 
Next, models describing the multiangular s behaviour, based on the Lommel-Seeliger 
function (Hapke 1993; Suomalainen 2006), were fitted to the FIGIFIGO ground target 
measurements (Table 5) to allow interpolation of the data. Then, for each spectral 
band, both nadir and geometrical s relating to each scene were synthesized based on 
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the wavelength intervals and relative sensitivities of the utilized sensors. This allowed 
for the application of both HELM-1 and HELM-2 calibrations, in order to study the 
effects on RFR accuracy, as well as the derivation of the best possible s estimates of 
the validation sites for utilization in the accuracy assessment. Then the within-scene 
dark-object radiance values for the VIS/NIR were identified using the methodology 
discussed in Section 4.3.1 above. Based on the assumptions of HELM, these LSAT 
values relate to s of 0.01 in the green and red, and 0.001 in the NIR. For each spectral 
band in each image, a separate HELM-1 and HELM-2 correction line was calculated 
utilizing a standard linear regression equation of the form y  =  ax  +  b;  where  the  
SPOT LSAT was taken as the independent variable and nadir s as the dependent 
variable, and a is the slope of the regression line, representing atmospheric 
attenuation, and b is the intercept with the x-axis, representing LP. Finally, the derived 
HELM-1 and HELM-2 correction equations for each band and image were applied to 
compute an output s file from each input Dataset 1 LSAT SPOT image. 

A 60 m wide and 200 m long roadside quarry was taken as the Dataset 2 Taita 
Hills application site HELM calibration target (see Table 6 above). To apply HELM 
to Dataset 2, the average LSAT values for each spectral band for the calibration and 
validation sites, and the dark-objects, were identified in each image. The nadir HCRF 
field measurements were then processed to simulate the response of the spectral bands 
of the various SPOT sensors that captured the imagery (see Table 4 above). Finally, 
HELM correction equations were derived for each spectral band for each image, and 
applied to compute an output s file from each input Dataset 2 LSAT SPOT image. The 
calibration to nadir HCRF represented a HELM-1 application. 
 

4.3.3 Image-based atmospheric correction methods 
 
In ancillary data limited circumstances, the ability to make an absolute atmospheric 
correction based only on information derived from the SPOT data itself represents a 
significant advantage. Consequently, in Paper III four different DOS approaches were 
implemented and compared with the 6S and HELM corrections. Ignoring atmospheric 
polarization, refraction and adjacency effects, and assuming isotropic sky irradiance 
in a homogenous cloud free atmosphere and Lambertian reflectance from a flat, 
uniform ground surface, the relationship between LSAT and surface reflectance ( s) can 
be characterized as (Song et al. 2001): 
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where LP is  the  path  radiance  (W  m-2 sr-1 m-1); S is the fraction of up-welling 
radiation back-scattered by the atmosphere to the surface and is small enough that it 
can be omitted (Song et al. 2001); TV is the atmospheric transmittance from ground 
target to sensor; TZ is the atmospheric transmittance from sun to ground target; EO is 
the exoatmospheric solar constant (W m-2 m-1); EDOWN is the downwelling diffuse 
irradiance (W m-2 m-1); and cos Z is the cosine of the solar zenith angle. To retrieve 

s, Equation 14 can be rearranged as (Chavez 1996; Song et al. 2001): 
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EO = E ÷ d; where E is the SPOT sensor and band specific equivalent solar irradiance 
in  W  m-2 m-1 (obtained from the SPOT website: 
www.spotimage.fr/html/_167_224_229_.php), and d is the date corrected Earth-Sun 
distance in astronomical units (d = au2) estimated as (Tso & Mather 2001): 
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where JD denotes the Julian Day. Equation 15 forms the basis for the implementation 
of the image based atmospheric correction approaches applied in this study and it can 
be seen that there are four unknown atmospheric correction variables to be estimated: 
LP, TV, TZ and EDOWN. Omitting these completely derives the at-satellite reflectance 
( SAT), which normalizes for variation in the Earth-Sun distance and Z:  
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This partially corrected case was included in the study as a comparator with the DOS, 
6S and HELM full correction methods. Similar to the work of Song et al. (2001), four 
DOS approaches were implemented, each of which estimates s based on different 
simplifying assumptions for the calculation of LP, TV, TZ and EDOWN, as summarized 
in Table 7 below. In all four DOS methods the same procedure as that adopted for 
HELM was utilized in identifying the darkest within-scene pixels in each spectral 
band from which to estimate LP (Section 4.3.1). Consequently, the same input dark-
object radiance values were derived and the same assumptions for the surface 
reflectance of the dark-objects were applied. However, because of the different 
assumptions in the calculation of TV, TZ and EDOWN in each of the four approaches, 
they  all  derived  slightly  different  estimates  of  LP. Assuming a dark-object surface 
reflectance of 1% for the SPOT green and red bands 1 and 2, and 0.1% for the NIR 
band 3, LP can be calculated as: 
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where LDOS is the radiance value of the identified darkest within-scene object. It was 
considered unnecessary to apply a correction to remove LP for SWIR band 4. 

As detailed in Table 7, DOS1 is the simplest approach where TV and TZ for all 
spectral bands are assumed to be 100% and EDOWN is ignored (Chavez 1989). 
Calculation of LP for bands 1 to 3 is based on Equations 18 and 19 above, applying 
these simplified DOS1 assumptions for TV, TZ and EDOWN. This is a basic haze 
removal approach. As no scattering is assumed for band 4, SWIR s prediction is 
identical to SAT. DOS1 is likely to produce unacceptable results, especially for higher 
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surface reflectance values (Chavez 1996), because it does not correct for the 
multiplicative effect of transmittance. 

 
Table 7.  Parameterisations utilized in the four implemented DOS approaches. 
 
Method TV TZ EDOWN 
DOS1  1 1 0 
DOS2 (COST)  cos( V) cos( Z) a 0 
DOS3 e r/cos( v) e r/cos( z) 6S 

DOS4 e /cos( v) e /cos( z) Lp 
a for green, red and NIR bands, and unity for SWIR. 
 

Chavez (1996) argued that for Landsat images with an atmospheric optical 
thickness between 0.08 – 0.3 and a solar zenith angle of 30° - 50° (which were 
considered as usual viewing conditions) TZ can be approximated to a first order by the 
cosine of the solar zenith angle, cos Z. Thus, a simple multiplicative DOS correction 
can be derived by equating TZ to cos Z for the VIS/NIR bands, which Chavez (1996) 
termed the COST approach, and which for a test dataset in a semi-arid environment 
was shown to derive as accurate estimates of s as corrections based on RTMs and in 
situ atmospheric  measurements  (Chavez  1996).  COST forms the  basis  of  the  DOS2 
approach in this study although, as a further step, variation in TV due to differences in 
the SPOT imagery off-nadir V was accounted for by equating TV to  cos  V for all 
bands. In DOS2, SWIR TZ is assumed 100%, therefore the only difference in s 
prediction compared to SAT is the correction for V. Note, however, that both DOS1 
and 2 ignore EDOWN, which according to Moran et al. (1992) can contribute as much 
as 25% of the spectral radiance received at the surface, even for relatively clear 
atmospheres. Consequently, this is likely to induce error in s estimation. Calculation 
of LP for DOS2 is based on Equations 18 and 19 above, applying the given DOS2 
assumptions for TV, TZ and EDOWN. 

Following Song et al. (2001), DOS3 was a simplified Rayleigh scattering only 
atmosphere model approach whereby the effect of aerosols is ignored. The optical 
thickness for Rayleigh scattering ( r) was estimated on a per-band basis using 
Equation 20 (Kaufman 1989), where  is wavelength in m, taking the median value 
of the spectral channel width as the band centre wavelength in each SPOT band (this 
being the same for SPOT HRV/HRVIR/HRG sensors):  
 

424 00013.00113.01008569.0r   (20) 
 

Following the standard approximation for atmospheric transmittance (Moran et 
al. 1992), TV and TZ for the Rayleigh scattering only atmosphere model were 
estimated as e r/cos( v) and  e r/cos( z). Further, EDOWN for a Rayleigh atmosphere was 
estimated from the 6S RTM defined as zero aerosol optical depth at 0.55 m, based 
on the midlatitude summer standard atmosphere model for Dataset 1 and the tropical 
standard atmosphere model for Dataset 2. EDOWN was taken as scene-specific 
atmospheric diffuse irradiance at ground level reported by 6S. Calculation of LP was 
based on Equations 18 and 19, iterating on the 6S estimates of EDOWN. 

In DOS4, an attempt was made to account for the additional effects of 
atmospheric aerosols and TV and TZ were calculated as e /cos( v) and e /cos( z). Given the 
assumption of isotropic sky radiance, 4 LP was  considered  as  an  estimate  of  
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exoatmospheric irradiance loss and the optical thickness of the atmosphere can 
therefore be estimated by (Song et al. 2001): 
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Solving for  and substituting with Equation 18 for estimating LP for a 1% dark 
reflector in the visible wavelengths derives (Song et al. 2001): 
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The  difference  for  the  NIR  is  the  assumption  of  a  0.1%  dark-object  reflectance.  In  
DOS4, all four atmospheric correction variables (LP, TV, TZ and EDOWN) are initially 
unknowns before  is estimated. Consequently it was necessary to derive a solution 
iteratively. Initial calculations were made based on defining LP as the uncorrected 
radiance values of the identified within-scene dark-objects, deriving EDOWN directly 
from these approximations of LP, and by setting TV = TZ = 1. After the initial 
calculation of , new values of TV and TZ were obtained and these were fed back into 
the calculations again until the estimate of  stabilized. 

There are limitations in the assumptions and simplifications of these DOS 
approaches, nevertheless such DOS methodologies have the significant benefit that 
they are totally image based and can consequently be implemented easily on historical 
multi-temporal satellite imagery, with no need for additional information. This makes 
them a valid alternative to HELM corrections. 
 

4.3.4 Second Simulation of the Satellite Signal in the Solar Spectrum (6S) RTM 
 
In Paper III, the 6S RTM (Vermote et al. 1997a, 1997b) was utilized as it is robust, 
universally applicable, freely available, and widely utilized and it offers a viable 
alternative to HELM and DOS correction methods if used with atmospheric models 
and reasonable aerosol estimates. 6S requires inputs for the geometrical conditions of 
the  scene  acquisition,  a  model  of  the  gaseous  composition  of  the  atmosphere,  a  
description of the concentration and type of aerosols, details of the spectral sensitivity 
of the satellite band, and the type and spectral variation of the ground reflectance 
(Vermote et al. 1997b). Various typical atmospheric scenarios are already 
implemented in the software and are available for the user. 

Definition  of  the  geometrical  conditions  at  the  time  of  scene  capture  was  
straightforward, based on the supplied SPOT metadata. 6S does not, however, account 
for the SPOT V.  For all  images in the Taita Hills  application site Dataset 2,  the 6S 
tropical standard atmosphere model (which determines the gaseous composition) and 
the continental aerosol model were selected as the closest approximation. To 
determine the concentration of aerosols, the user can either specify the AOD at 0.55 

m or the horizontal visibility in km at the time of scene acquisition (which 6S uses to 
estimate the AOD based on the standard aerosol profile). For Dataset 2, because of the 
lack of horizontal visibility measures, the AOD at 0.55 m was approximated as the 
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average of the AREONET measurements for southern Africa, 0.19, as reported by 
Remer et al. (2005, Table 8, p.965). This compares to a global average AOD at 0.55 

m for land of 0.18 (Remer et al. 2005). 
For the Helsinki metropolitan region control site Dataset 1, the midlatitude 

summer standard atmosphere model and the continental aerosol model were selected. 
In order to facilitate a comparison of the possible differences in the output s, 6S 
corrections were applied to Dataset 1 using both overpass concurrent measurements 
of horizontal visibility, taken as the average UTC09:00 (12:00 local time) visibility of 
the five weather stations falling in the Helsinki area (WMO 02795, 02974, 02978, 
05105, 05194; obtained from the Finnish Meteorological Institute: www.fmi.fi), and 
also  a  general  estimate  of  AOD  at  0.55  m  of  0.17  derived  as  the  average  of  the  
AREONET measurements for Western Europe, as reported by Remer et al. (2005, 
Table 8, p.965). 

The spectral bandwidths and sensitivities of the SPOT 1 HRV1 and HRV2 
sensors are implemented in 6S, but the sensitivities for the other SPOT sensors had to 
be calculated and defined as required in 0.0025 m steps. Input values to be 
atmospherically corrected were given as LSAT.  For  both  Dataset  1  and  2,  the  same  
Hietsu  beach  and  roadside  quarry  HELM  calibration  sites  were  also  utilized  for  6S  
calibration. For every image, the average LSAT value for each spectral band within the 
site AOI polygon was taken as the input. Within 6S the surface type was defined as 
sand in all cases, this being correct for Hietsu beach and the nearest approximation for 
the roadside quarry surface. As the assumption is being made that detailed knowledge 
of the BRDF of the calibration sites is unknown at the time of atmospheric correction, 
the sand surfaces were defined as homogenous with no directional effects (i.e. 
Lambertian). The elevation of the calibration sites was also required for 6S, this being 
sea level for Hietsu beach and 960 m above sea level for the roadside quarry. 

The a, b and c correction coefficients output from 6S can be used in conjunction 
with Equations 23 and 24 below to apply the correction to the whole SPOT image, 
give an assumption of a homogenous atmosphere throughout the scene area. For a 
specified spectral band: 
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Several test runs made with different measurement locations within the same scene 
taken as the 6S calibration site (and therefore with varying LSAT values as inputs) 
derived identical a, b and c transformation coefficients as outputs. This is because all 
the input parameters for 6S, other than site elevation and LSAT, were held constant 
throughout the image area. Consequently, as a basic implementation, it was 
appropriate to base a correction of the whole image on 6S outputs derived only from 
the calibration site. 
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4.4 Atmospheric correction accuracy assessment methodology 
 
For both Papers II and III, the performance and accuracy of the atmospheric 
correction methodologies applied to control Dataset 1 and application Dataset 2 were 
assessed using two approaches. Firstly, consideration was given to the difference 
between the predicted s and the field measured s for  the  verification  sites,  the  
precision of both of which was derived to 0.001 s. The HELM calibration sites for 
Datasets 1 and 2 were included in the accuracy assessments as validation targets, as in 
this way the HELM induced error in calibration to nadir s was included into the 
assessment. For control Dataset 1, the field estimates of s were  defined  as  those  
relating to the specific illumination and V geometry of the 2005, 2003 and 2002 
SPOT scenes, as modelled from goniometer measurements. For Dataset 2, only nadir 

s were available and consequently the 2003 image, which was nearest in time to the 
field measurements and had a relatively small V of  R10.4°,  was  chosen  for  
assessment. Both the absolute and relative root mean square error (RMSE and 
RMSEr) and bias (Bias and Biasr) (see Equations 25-28) of the different atmospheric 
correction approaches in predicting s in each spectral band for each site, compared to 
that derived from field measurements, were calculated and the summary mean 
average RMSE, RMSEr and bias for all bands and all measurement sites were 
compared. The utilized equations were as follows (Heiskanen 2006): 
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where iŷ  is the estimate, iy  is the field observation, y  is the mean of the observations, 
and n is the number of measurement sites. The statistical significance of the bias with 
n-1 degrees of freedom, based on repeated dependent measurements, was tested 
using: 
 

n
t Bias          (29)  

 
where  is the standard deviation of the residuals ii yŷ . The level of statistical 
significance of the bias in a spectral band was considered by noting when t exceeded 
the t values corresponding to a probability of both p < 0.05 and p < 0.01. 
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Secondly, the ability of each atmospheric correction methodology to maintain or 
reduce the variation in the average s between all the multi-temporal SPOT scenes 
within each dataset, compared to the partially corrected SAT, was assessed. 
Theoretically, the removal of atmospheric effects should reduce the spectral variation 
between images (Schroeder et al. 2006). The spectral band specific absolute 
difference in the mean average s of the scene between every image pair in each 
dataset was calculated and the mean average absolute difference for each band, as 
well  as  the  overall  average  for  all  bands  combined,  were  compared.  Because  of  
differences due to the presence of clouds at the edges of some of the images in both 
datasets, and due to shifts along track in Dataset 1 imagery, a subset area was utilized 
for each dataset in calculating the mean s. 
 

4.5 Topographic correction 
 
For mountainous and rugged terrain regions, such as the Taita Hills, topographic 
correction is at least as important as atmospheric correction, if comparable s are to be 
derived throughout the area (Liang 2004). Therefore, after applying the HELM 
atmospheric corrections to the SPOT imagery, it was necessary to further remove the 
slope-aspect effects. Use was made of a topographic correction method based on the 
cosine function described by Teillet et al. (1982), with band specific ‘c’ correction 
factors calculated for general vegetation classes identified using a novel method. Due 
to the requirement to identify vegetation classes in the imagery before a topographic 
correction and classification were applied, Normalized Difference Vegetation Indexes 
(NDVI) were derived for each scene and were then clustered using the automated 
ISODATA algorithm in ERDAS IMAGINE software. NDVIs were used because they 
are a ratio between the red and NIR bands and are consequently relatively unaffected 
by topographic effects, i.e. both bands respond to the variation in illumination in a 
similar way. The ISODATA algorithm is more usually utilized to automatically 
identify data clusters in multi-spectral feature space, but here it is used in a one-
dimensional manner to capture naturally occurring frequency clusters in the NDVI.  

Illumination  can  be  defined  as  the  cosine  of  the  solar  incidence  angle  (cos  i), 
representing the proportion of direct solar radiation hitting a pixel within a SPOT 
image. The amount of illumination is therefore dependent on the relative orientation 
of the pixel toward the Sun’s actual position during image acquisition, as determined 
from a DEM of the area, and can be calculated as: 
 

SSZSZ cossinsincoscoscos Zi     (30) 
 
where Z is the solar zenith angle, Z is the solar azimuth, and S is the slope and S is 
the aspect of the pixel. If the surface is flat then the aspect is undefined and i is simply 

Z.  
Following heuristic experimentation, ten NDVI cluster classes were initially 

derived for each image and, for each spectral band and vegetation class combination, 
the reflectance values for pixels with a slope greater than 5° were regressed against 
the corresponding cos i values using standard linear regression. Where there was not a 
significant  relationship,  which  occurred  with  some  of  the  least  vegetated  NDVI  
clusters, the classes were merged and re-regressed until groupings with a usable 
stronger coefficient of determination were generated. A c correction factor for each 
utilized spectral band and vegetation class combination was then calculated by 
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dividing the intercept of the finalized regression line by its slope; see Equation 31. No 
c factors were applied to slopes less than 5° in the implementation of the correction, 
as the cosine correction here is very slight in any case. Removal of slope-aspect 
effects from the HELM corrected SPOT imagery was implemented as:   
 

m
bc

ci
c

cos
cos Z

TH

        (31) 

 
where pH is the surface reflectance of a corrected pixel, T is the surface reflectance of 
an uncorrected pixel, and b is the y-intercept and m is the gradient of the linear 
regression line of cos  i against T for a specific spectral band and vegetation cover 
type combination. This model does, however, have limitations; for example, it does 
not account for irradiance reflected from surrounding terrain. However, several 
studies have found that good correction results can be obtained using the c-correction 
model (see, for example, Riaño et al. 2003). 
 

4.6 Multi-scale segmentation and object-oriented classification of SPOT data 

A crucial first step in an understanding of landscape changes is to accurately quantify 
and map LULC over time. Remote sensing offers the most efficient methodology for 
routinely monitoring at a landscape level over local and regional scales. However, as 
noted  by  Burnett  &  Blaschke  (2003),  in  common  with  all  observation  of  reality,  
remotely sensed images are an imperfect capturing of patterns, which are themselves 
an imperfect mirror of ecosystem processes. The GIFOV of a sensor, which is 
realized as the pixel resolution of the imagery, is actually a complex phenomenon 
determined by technical constraints as much as by mapping requirements. Moreover, 
there is not one individual scale that is appropriate for mapping a landscape if it is 
accepted that reality is formed of a mosaic of process continuums. Drawing on the 
work of Koestler (1967), Wu & Loucks (1995) and Wu (1999) argue that by breaking 
down ecological complexity through a hierarchical scaling strategy, so called 
hierarchical patch dynamics (HPD) can provide a conceptual framework within which 
the interaction between ecological processes operating at different scales may be 
understood. An important characteristic of complex systems is that they take the form 
of a nested hierarchy, termed a holarchy; thus hierarchies are composed of interrelated 
subsystems known as holons, each of which are made of smaller subsystems, until a 
lowest level is reached. The interwoven patterns of heterogeneity and homogeneity 
have as their basic units the landscape element or patch. Patches may be defined as 
conceptual groupings of spatial homogeneity, that are ubiquitous and which vary at 
different scales (Wu 1999). 

Within the formal framework of Hierarchy theory, a hierarchically organized 
entity can be conceived as a three-tiered nested system in which levels corresponding 
to slower behaviour are at the top (Level +1), while those reflecting successively 
faster  behaviour  are  seen  as  a  lower  level  in  the  hierarchy  (Level  –1).  The  level  of  
interest is referred to as the focal level (Hay et al. 2002). These systems exhibit 
instability at lower levels, but possess meta-stability at higher levels as, in general, 
small scale processes tend to be more stochastic. O’Neill et al. (1986) recommend the 
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use of three hierarchical levels as a minimum in analytical studies. This multi-scale 
analysis conceptualises a landscape as a holarchy, see Figure 8 below; i.e. as a 
spatially nested patch hierarchy where larger patches are formed of smaller, functional 
patches. When translating hierarchy theory to landscape ecology, holons are 
synonymous with patches: the ecological unit at a particular scale. Patches interact 
with other patches at the same and at higher and lower levels of organization through 
loose horizontal and vertical coupling. The hierarchical structuring of a landscape is 
defined at various critical levels of organization where interactions are stronger within 
levels than between them, and where each level operates at specific spatial and 
temporal scales (Hay & Marceau 2004). Stronger gradients in these flux rates results 
in more apparent boundaries, or local heterogeneity (Burnett & Blaschke 2003). 

The concept of scale then becomes central to an understanding and analysis of 
landscapes (Levin 1992). Scale represents the ‘window of perception’, the filter, or 
measuring tool, with which a system is viewed, quantified and analysed; consequently 
real-world  objects  only  exist  as  meaningful  entities  over  a  specific  range  of  scales  
(Hay et al. 2002). Landscape ecologists define scale as having grain and extent, where 
grain refers to the smallest intervals in an observation set and extent refers to the 
range over which observations at a specific grain are made (O’Neill & King 1998). In 
remote sensing, grain is equivalent to the spatial, spectral and temporal resolutions of 
the image pixels, whilst the extent represents the geographic area, combined spectral 
bandwidths and temporal duration covered by an image as a whole (Hay et al. 2001). 
Scale may be measured in absolute units or relative to the phenomenon of interest; i.e. 
the focal scale. 

As Hay et al. (2001) note, the type of information obtained from remote sensing 
data is largely determined by the relationship between the actual size of objects in the 
scene,  and  the  size,  or  resolution,  of  the  analysis.  Considering  a  specific  real  world  
object of interest, as discussed by Strahler et al. (1986), there are two fundamental 
types of resolution present within a remotely sensed image: in the high-resolution (H-
resolution) case, the objects of interest vary at a lower spatial frequency than image 
sampling and features can be resolved. Theoretically, traditional uni-scale per-pixel 
classification processes are most suited to the H-resolution case, as an object is 
described by a number of pixels and these pixels are more likely to have homogenous 
spectral attributes related to the nature of the object itself. In the low-resolution (L-
resolution) scenario, the objects of interest are smaller than the pixel size and 
therefore the spectral response recorded for a single pixel is an integration of many 
smaller image objects. This results in mixed pixels (mixels) and it should be noted 
that there are always mixels present in a remotely sensed image as different objects of 
different spatial extents will be in H- and L-resolution within the same scene from a 
particular satellite image; i.e. there are multiple scales of objects represented within a 
single image. Furthermore, different images representing the same objects will be 
have H- and L-resolution cases depending of the pixel resolution of a particular 
image. This, then, relates to the general point already made that real-world objects 
only exist as meaningful entities over a certain range of scales. 

Standard image classification procedures, such as the maximum-likelihood 
(ML) classifier, work on a uni-scale pixel-by-pixel basis and therefore ignore both 
useful spatial information surrounding the pixel and multi-scale information within 
the image. Class assignment is based solely on the principle that pixels of the same 
land cover type will be close in multi-spectral feature space. As Burnett & Blaschke 
(2003) themselves note, this does not hold true for complex environments. Rather, 
Burnett & Blaschke (2003) propose a multi-scale segmentation/object relationship 
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modelling (MSS/ORM) methodology for landscape analysis based on HPD theory 
and suggest that more accurate analysis can be derived through the application of this 
technique, especially for heterogeneous landscapes. Central to this methodology is the 
generation of meaningful image objects relating to landscape patches by multi-scale 
segmentation, where a search is made for the gradient of flux zones within and 
between patches. Critically, because MSS/ORM is a move away from pixel-based to 
object-based image analysis, it is possible to explore multiple scales of objects within 
the same image (Figure 8).  

 
 
Figure 8. MSS/ORM applied to SPOT imagery covering the Taita Hills to derive a landscape holarchy 
of 3 hierarchical levels. 
 

Segmentation is the division of remotely sensed images into discrete regions or 
objects formed of aggregations of pixels that are homogenous with regard to spectral 
and/or spatial characteristics. Homogenous in this instance refers to the fact that the 
within-object variance is less than the between-object variance. Research into 
segmentation techniques is not new, see for example Haralick (1983) and Haralick & 
Shapiro (1985), and there are a large number of possible methodologies, but the 
availability of operational software is a development of the last decade. In the Paper 
IV study, all MSS/ORM work was implemented with the eCognition software (now 
known as “Definiens”), which utilizes a fractal net evolution approach (FNEA) to 
multi-scale segmentation. Further details are given in Section 2 and Section 3.2.1 of 
Paper IV itself, and the full details of the FNEA methodology and of the workings of 
eCognition’s object-oriented fuzzy analysis and classification are covered in depth in 
Baatz & Schäpe (2000) and Benz et al. (2004). FNEA is the most appropriate 
segmentation methodology for enabling the implementation of the desired MSS/ORM 
conceptual approach to landscape analysis. Additionally, a major advantage of FNEA 
is that the heuristics do not evaluate the absolute heterogeneity of a region, but rather 
evaluate the change in heterogeneity over a merge. This has the desirable effect of 
enabling relatively homogeneous image segments to remain separate, even if the 
mean  values  of  adjacent  regions  are  similar.  This  is  important  in  terms  of  deriving  
ecologically meaningful image segments from medium resolution data, such as SPOT 
imagery, where there are large numbers of pixels formed of mixed land cover types 
and general spectral overlaps, i.e. there is low spectral contrast. 
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Following a multi-scale segmentation, a model of the hierarchical relationships 
between the image objects was built up using both directly calculable properties, such 
as  the  mean  spectral  values  or  the  number  of  sub-objects,  and  by  the  derivation  of  
semantic rules requiring the input of a human expert on the landscape in question. 
This can be considered as a training phase in an object-oriented (OO) LULC 
classification methodology. For the OO classification of the Taita Hills, segmented 
image objects covering the same sample areas that were used in the ML classification 
were used as training polygons for the fuzzy nearest neighbour classifier implemented 
in eCognition. The OO classification of the 13 different LULC classes for the Taita 
Hills, see Section 4.6.1 below, was based on a large number of hierarchical and spatial 
fuzzy rules, as well as object spectral properties. For full details of the implemented 
MSS/ORM approach and the OO classification, refer to Paper IV. 

As noted by Blaschke (2010), whilst earlier work in the field utilized the term 
‘object-oriented’ image analysis (for example, Blaschke & Hay 2001 and Benz et al. 
2004), more recently many authors have switched to the term ‘object-based’ (with or 
without the hyphen) as ‘oriented’ was seen as too close to the object-oriented 
computer programming paradigm (see Hay & Castilla 2008 for discussion). However, 
others have continued to use the phrase ‘object-oriented’ (e.g. Navulur 2007), as was 
the case with the terminology utilized in Paper IV. Moreover, there has also been a 
recent and ongoing debate within the multi-disciplinary object based image analysis 
(OBIA) community as to whether or not geographical space should be included in the 
name of this concept (Blaschke 2010). Hay & Castilla (2008) argue that the most 
appropriate name is ‘geospatial’ or ‘geographical’ object based image analysis 
(GEOBIA),  so  as  to  clearly  identify  the  area  as  a  sub-discipline  of  GIScience.  This  
debate has yet to be resolved, although it is interesting to note that the most 
substantial work published in the field to-date (Blaschke et al. 2008) was entitled 
‘Object-based image analysis’. 

In accordance with working in regions of the developing world with limited 
resources, there is a requirement for low cost or preferably freely available data and 
software. Although in this study the land cover was generated using the commercial 
Definiens eCognition software, there are freeware alternatives; for example SPRING 
(www.dpi.inpe.br/spring/english/index.html), which is a product of Brazil's National 
Institute for Space Research and is capable of image segmentation. However, the 
classification capabilities of the software may be limited, but the segmentation 
classification could be conducted in other freeware tools such as WEKA 
(www.cs.waikato.ac.nz/ml/weka/), which is open-source data mining software in 
which utilization of the expectation maximization clustering algorithm would be 
appropriate. 
 

4.6.1 LCCS classification nomenclature 
 
Standardization of LULC classification schemes is an important issue if greater use 
and understanding of digital mapping products is to be facilitated. The LCCS software 
developed by FAO and UNEP (DiGregorio 2005) has emerged as a widely accepted 
conceptual system and was consequently utilized to derive the LULC classes for the 
TAITA project, as shown in Table 8. The LCCS is a comprehensive, standardized a 
priori classification system that can be used for any mapping exercise regardless of 
the methodology, scale, source material and geographic location (DiGregorio 2005), 
and is available at: 
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www.glcn-lccs.org & www.fao.org/docrep/008/y7220e/y7220e00.htm. 
As well as logically guiding the user through the derivation of appropriate 

mutually exclusive LULC classes, as is shown in Table 8, the LCCS software 
generates unique codes (third column in Table 8) and Boolean formulas (fourth 
column in Table 8) for each class which allows other users to precisely reconstruct the 
detailed definitions utilized. This is very useful as previously it would not necessarily 
be  certain  what  was  meant  when  a  map  contained  a  LULC  class  name,  such  as  
‘Thicket’. 

In LCCS terminology, a ‘classifier’ is one of many measurable diagnostic 
characteristics that are used in the definition of a land cover class, such as vegetation 
cover  and  height.  Additionally,  a  ‘modifier’  is  a  further  optional  refinement  to  a  
classifier which helps specify the exact properties of a class. Thanks to the code and 
Boolean formula in LCCS, the user is free to call the class any general or colloquial 
name desired and retain interoperability. The classes listed in Table 8 were developed 
based on extensive inspection of the SPOT imagery and fieldwork knowledge to 
determine  what  was  feasible  to  map.  Note  that  burned  areas,  and  clouds  and  cloud  
shadows are not included as possible classes in the LCCS software but they occur in 
the imagery and are consequently specified in the Taita Hills map legend.  
 
Table 8. LCCS nomenclature adopted for SPOT imagery LULC mapping of the Taita Hills. 
  
ID User Land Cover Name LCCS Code LCCS Boolean Formula (Classifiers) 
1 Cropland 11251 - 12699 A3B2XXC2D1 - C4C10C17C13C17 
2 Shrubland (20% to 70% Cover) 20373 A4A11B3XXXXXXF1 
3 Thicket (Closed Shrubland >70% 

Cover with Emergent Trees) 
20354 - 13554 A4A10B3XXXXXXF2F5F10G2F1  - B9G7 

4 Woodland 20013 A3A11 
5 Plantation Forest 10001- 

S1002S1003W7 
A1-S1002S1003W7 

6 Broadleaved Closed Canopy 
Forest 

20088 -13152 A3A10B2XXD1 - B5 

7 Grassland with scattered shrubs 
and trees 

20412 -104774 A2A10B4XXXXXXF2F5F10G2F2F6F10G3 - 
B12G7G9 

8 Bare Soil & Other  
Unconsolidated Material 

6005 A5 

9 Built-up Area 5001 A1 
10 Bare Rock 6002-1 A3 - A7 
11 Water 8002-5 A1B1 - A5 
12 Burned Area Not Available - 
13 Cloud/Cloud Shadow Not Available - 
 

4.7 Soil loss modelling using the Universal Soil Loss Equation (USLE) 
 
In Paper V, multi-temporal land cover maps of 1987, 1992 and 2003, derived from the 
SPOT imagery using the MSS/ORM methodology as detailed in Paper IV, were 
utilized in combination with compiled geospatial layers of soil, rainfall and 
topography to model soil erosion in the Taita Hills. In a simple approach, based on the 
Universal Soil Loss Equation (USLE), potential soil loss was estimated quantitatively 
as (Wischmeier & Smith 1978; Lal 1996; Morgan & Davidson 1991): 
 

PCSLKRA         (32) 
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where A is mean annual soil loss due to water erosion per unit area per year (t ha-1 yr-

1). R is rainfall erosivity factor (MJ mm ha-1 h-1 yr-1), K is soil erodibility factor (t ha h 
ha-1 MJ-1 mm-1), L is slope length factor, S is slope steepness factor, C is cover 
management factor, and P is support practice factor. Even though soil conservation 
practices do exist in the Taita Hills, it was not possible to assess the P-factor for the 
whole study area, and therefore it was not varied in the calculations. 

In accordance with working in regions of the developing world with limited 
ancillary data availability, and considering the ability of the procedures to be 
replicated locally using a minimum of resources, low cost and freely available GIS 
data and a simplified methodology based on USLE, were utilized. A 20 m DEM was 
generated from cheaply obtained Survey of Kenya 1:50,000 scale topographic paper 
maps, see Section 4.1.5 above, and inexpensive local rainfall records of the Kenyan 
Meteorological Department were interpolated into 20 m grid layers, as detailed in 
Section 4.1.6 above, whilst the freely available 1:1,000,000 scale Explanatory Soil 
Map of Kenya was utilized as a generalized digital soil map. Although in this study 
the land cover was generated using the commercial Definiens eCognition software, 
there are freeware alternatives, as discussed in Section 4.6 above. All the required GIS 
processing for this simplified methodology could be carried out in the well-known 
GRASS (http://grass.itc.it/) freeware GIS. 

Slope-length factor (LS) is calculated from the slope steepness (percentage) and 
length  (m)  of  a  given  slope.  In  Paper  V,  the  steepness  layer  was  derived  from  the  
DEM and slope length was assumed to be a fixed 150 m for each pixel (Ogawa et al. 
1997). The Exploratory Soil Map of Kenya at a scale of 1:1 000 000 (Sombroek et al. 
1980) was used for the derivation of the soil erodibility factor (K-factor). The map 
contained 12 major soil mapping units using the FAO classification based on soil 
survey measurements. By assuming that the resolution of the K-factors matches that 
of the soil mapping units, the mean K-factors were obtained according to Kassam et 
al. (1991) for each soil class and their texture classes. The rainfall erosivity factor (R-
factor),  defined  as  the  potential  ability  of  rain  to  cause  erosion  and  given  as  the  
product (EI30) of the total energy of rainstorm (E) and the maximum 30-min intensity 
(I30) (Wischmeier et al. 1958; Foster et al. 1981), is often determined from rainfall 
intensity. However, since detailed data on storm intensity was unavailable for the 
Taita Hills, it was necessary to use a proximate quadratic regression method based on 
annual rainfall (Millward & Mersey 1999). In the Taita Hills, R-factor (MJ mm ha-1 h-

1 yr-1) was determined using the annual rainfall amount (mm) as suggested by Morgan 
& Davidson (1991) as: 
 

5.0pR           (33) 
 
where p = mean annual rainfall (mm) and R = rainfall erosivity factor (MJ mm ha-1 h-1 
yr-1). Crop management factor (C) depends on the vegetation cover, which dissipates 
the  kinetic  energy  of  the  raindrops  before  impacting  the  soil  surface.  Therefore,  
vegetation cover and cropping systems have a large influence on runoff and erosion 
rates. In principle, the more vegetation cover or LAI there is over the soil the more 
protective is the vegetation cover. C-factors were derived from the land cover layers 
produced for 1987, 1992 and 2003 using the values described by Wischmeier & Smith 
(1978). For a full description of the implemented simple methodology for estimating 
potential soil loss, refer to Paper V. 
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4.8 Human population modelling 
 
To help manage population growth and the related environmental pressures, it is 
important to have precise estimates of the number of inhabitants and spatially explicit 
information of the human population distribution (Sutton et al. 1997). In developed 
countries, the population numbers and distribution are well known, and data 
collection and dissemination are computerized and accessible, but in many developing 
countries traditional census methods are still utilized. Such censuses are often time-
consuming, costly, error-prone, difficult to update and the census interval is often too 
long for many applications (Li & Weng 2005). Therefore, in addition to conventional 
census calculations, other methods have been used to derive geospatial data on 
population. Aerial photography interpretation has been the traditional remote sensing 
based method to estimate population and to map the population distribution at local or 
regional scales. Large-scale aerial photographs have been used since the 1950s for 
dwelling unit counting, e.g. Porter (1956) used a rural dwelling unit count in Liberia, 
and Lo (1986) was able to estimate population for the city of Athens, Georgia USA, 
using aerial photographs at the census tract level with high accuracy. However, the 
aerial photography based dwelling unit count method is itself time-consuming and 
expensive, and problematically for developing countries where it is potentially most 
useful, it requires abundant up-to-date high resolution aerial photographs to cover 
large areas (Lo 1989). 

For a relatively long period, therefore, satellite based remote sensing has been 
considered as a potentially adequate option for population estimation. A number of 
studies have reported satisfactory results by combining satellite data with regression 
techniques for population estimation, despite the limitations of the medium spatial 
resolutions of the sensors used. For example, Forster (1983) used Landsat MSS data 
and developed a multi-regression equation with standard deviation of separate bands 
and various reflectance ratios to predict housing density, and Lo (1995) linked 
radiance values of image pixels with residential densities for the Kowloon 
metropolitan area of Hong Kong using a multispectral SPOT image. In addition to 
local and regional scale population estimations, global scale population databases 
have been developed using geospatial data modelling to create gridded population 
models. The most commonly utilized global population models are the Gridded 
Population of the World (GPWv3) with 5 km resolution (CIESIN 2005), LandScan at 
1 km resolution (Dobson et al. 2000) and the UNEP/Global Resource Information 
Database at 1–degree resolution (UNEP/GRID 2006). However, these existing global 
population datasets have limitations at a local or regional level as they are relatively 
too coarse in resolution and consequently generalize and obscure the internal 
variability of population when considered for use at these scales. Therefore, Paper VI 
concentrates on the development of an enhanced probability based application that 
can be used for population distribution mapping and for population abundance 
estimation at local or regional scales. 

In Paper VI, therefore, human population distribution and abundance in the 
Taita Hills were modelled using the Generalized Regression Analysis and Spatial 
Prediction (GRASP) modelling framework, which uses generalized additive models 
(GAMs) for model calibration (Lehmann et al. 2002). The response variable 
(dwelling unit presence - absence) was derived from airborne imagery mosaics 
covering ca. 30% of Taita Hills through on-screen digitizing in GIS. Geospatial GIS- 
and remote sensing-based map layers were used as predictors. Prior to modelling, the 
full data set (n = 10488, 100 m analysis squares) was randomly divided into model 
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calibration 70% (n = 7342) and model evaluation 30% (n = 3146) datasets following 
the split sample approach (Guisan & Zimmermann 2000). The outcome of the 
dwelling unit prediction models were extrapolated to cover the whole Taita Hills area 
(n = 34143, 100 m analysis squares) and a human population distribution map was 
created for the Taita Hills semi-automatically. Additionally, the human population 
abundance model was compared with two existing global population datasets, 
GPWv3 and LandScan 2005, and the Kenyan census data for 1999. Refer to Paper VI 
for a full description of the applied predictive modelling methodology used in Taita 
Hills dwelling unit occurrence and abundance prediction. Figure 9 below details the 
methodological flowchart of the modelling steps. 
 

4.8.1 Applied statistical model calibration techniques 
 
Linear regression techniques have been traditionally used in predictive modelling, e.g. 
in ecological and biogeographical research (Guisan & Zimmermann 2000). The basic 
linear regression model has the form: 
 
Y X

where Y is the response variable, is a constant called the intercept and X = (X1 , ..., 
Xp ) is a vector of p predictor variables, = { 1, ... , p} is the vector of p regression 
coefficients (one for each predictor), and is  the  error.  However,  when using  linear  
regression several assumptions should be met: (i) linearity of the relationship between 
dependent and independent variables, (ii) independence of the errors, (iii) 
homoscedasticity  (constant  variance)  of  the  errors,  and  (iv)  normality  of  the  error  
distribution (Zar 1999). Violation of one or more of these multiple linear regression 
assumptions may lead to incorrect or misleading results. However, these assumptions 
are seldom all met when utilizing geospatial datasets. To overcome these violations, 
new prediction methods have been developed which allow non-Gaussian error 
distributions and non-linear relationships between response and predictor variables 
(Guisan & Zimmermann 2000). In modelling human population distribution and 
abundance in the Taita Hills in Paper VI, use was made of GAMs (Hastie & 
Tibshirani 1990), which are non-parametric extensions of generalized linear models 
(GLMs) (McCullagh & Nelder 1989). 
 

4.8.2 Generalized linear models (GLM) and generalized additive models (GAM) 
 
Generalized linear models (GLMs) are an extension of classical multivariate linear 
regression, allowing non-normal response variables to be modelled (McCullagh & 
Nelder 1989). In GLMs, the predictor variables Xj (j = 1, ..., p) are combined to 
produce a linear predictor LP which is related to the expected value =E(Y)  of  the  
response variable Y through a link function g(), such as: 
 
g(E(Y)) = LP = + XT ,         (35) 
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where , X, are those described in Equation 34 above. The model is written for the 
generic variables X and Y; the corresponding terms for the ith observation in the 
sample is:  
 
g( i) = + 1xi1 + 2xi2 + ... + pxip      (36) 
 
Unlike classical linear models, which presuppose a Gaussian (i.e. normal) distribution 
and an identity link, the distribution of Y in  GLMs  may  be  any  of  the  exponential  
family distributions (e.g., Gaussian, Poisson or binomial) and the link function may be 
any monotonic differentiable function (like logarithm or logit). GLMs do not force 
data into unnatural scales and therefore they allow non-linearity and non-constant 
variance structure in the data (McCullagh & Nelder 1989; Collet 2003). GLM models 
are usually built using a full stepwise approach, in which explanatory variables are 
included or excluded from the full model using Akaike Information Criterion (AIC) 
(Akaike 1974) and changes in scaled deviance (McCullagh & Nelder 1989; Venables 
& Ripley 2002). 

Generalized additive models GAMs (Hastie & Tibshirani 1990; Yee & Mitchell 
1991) support non-Gaussian error distributions and non-linear relationships between 
response  and  predictor  variables.  GAMs  are  non-parametric  extensions  of  GLMs  
model regressions that apply nonparametric smoothers to each predictor and 
additively calculate the component response. GAMs are data-driven rather than model 
driven and allow consideration of more complex response shapes than those possible 
through GLMs (Yee & Mitchell 1991). A GAM model is expressed by: 
 

g(E(Y)) =  + s1(X1i) + s2(X2i) + . . . sp(Xpi)      (37) 
 
where g is the link function that relates the linear predictor with the expected value of 
the response variable Y, Xpi is a predictor variable and sp a smoothing function. In 
Paper VI the response variable was linked to the set of predictor variables through a 
logit link function for dwelling unit occurrence and log link function for dwelling unit 
abundance. 
 

4.8.3 Evaluation of predictive models 
 
In Paper VI the predictive models were evaluated as follows: (i) by using the 
percentage of explained deviance as an indicator of model explanatory power (D2), 
obtained by dividing the difference between null and residual deviance by the null 
deviance (Guisan & Zimmerman 2000); (ii) by using the area under the curve (AUC) 
from the receiver operating characteristic plot to indicate the model predictive power 
(ROC, Fielding & Bell 1997). As a general rule, an AUC between 0.5–0.7 indicates a 
poor discriminate capacity, 0.7–0.9 indicates reasonable capacity, and 0.9 or higher 
indicates a very good capacity (Swets 1998); (iii) calculating Cohen’s Kappa (Cohen 
1960) and cross-validated Kappa; (iv) calculating the contribution for each predictor, 
giving an indication of the contribution of the variable within the selected model and 
corresponding to the possible range of variation on the scale of the linear predictor; 
and also (v) visual interpretation of the prediction maps. 
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Figure 9. Methodological flowchart of the modelling steps for human population distribution and 
abundance modelling (source: Siljander 2010). 
 
 

Consideration  should  also  be  given  to  the  ability  of  the  procedures  to  be  
replicated by local specialists in the developing world using a minimum of resources, 
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low cost or freely available data and software, and a reproducible methodology. In the 
Paper VI study, GRASP was implemented with commercial software S-PLUS 6.2 
(Insightful Corp.), but there is also a GRASP package for the freeware R-program (R 
Development Core Team 2008: http://www.r-project.org/).  Similarly,  the  required  
GIS  processing  for  the  creation  of  geospatial  datasets  could  be  carried  out  in  the  
GRASS (http://grass.itc.it/) freeware GIS. 
 
5. RESULTS AND DISCUSSION 

5.1 Selection of appropriate HELM calibration targets 

As noted by Moran et al. (1995), the accuracy of calibrations to field measured s and 
of validation based on these targets depends critically on the accuracy of s 
measurements and the derived BRDF estimates, and errors are minimized for targets 
that are spectrally bright and uniform with near-Lambertian scattering properties. Gu 
et al. (1992) evaluated the BRDF of the La Crau SPOT calibration site in France and 
found that reflectance measurements could vary by ± 10% over a range of viewing 
angles from 0° to 30°. Similarly, based on the BRDF of gypsum sand measured at the 
White Sands site in New Mexico, USA, Jackson et al. (1990) found variation in the 
BRF from nadir of ± 10% for SPOT maximum off-nadir views. 

Based on goniometer s measurements taken in the Helsinki metropolitan region 
control site study area, Paper I examined the spectral spatial, temporal, and 
multiangular reflectance characteristics of various potential pseudo-invariant surface 
types suitable for use in the application of empirical line (EL) spectral calibration 
techniques, such as HELM, to SPOT imagery. As detailed in Table 5 above, the 
surface types consisted of asphalts, sands, gravel, grass, and fake turf targets. 
Consideration was given to the physical causes of the different behaviours of the 
measured surfaces, and the most appropriate surface types and the requirements for 
suitable site selection for EL calibrations, were discussed. 

The Paper I  results showed that all  real  world surfaces exhibit  some degree of 
non-Lambertian multiangular scattering properties, particularly along the solar 
principal plane, as well as spatial and temporal spectral variability. This has 
implications for the accurate application of EL spectral calibration procedures for 
optical satellite imagery, especially data like SPOT that can be collected with off-
nadir  view  angles.  As  the  multispectral  spatial  resolution  of  high  resolution  next  
generation  civilian  satellites  continues  to  improve,  so  too  does  the  agility  and  off-
nadir viewing capabilities of the sensors. This has two implications: firstly, the size 
requirement for a calibration target is reduced and their likely occurrence increases, so 
selection therefore becomes easier. This is likely to boost interest in the application of 
EL approaches in future. For example, the forthcoming SPOT 6 and SPOT 7 satellites 
have a planned 8 m multispectral spatial resolution, which would give a minimum 
calibration target size requirement of 64 by 64 m. 

Secondly, however, the multiangular reflectance properties of the calibration site 
become increasingly important and can have a significant impact on the error in EL 
calibrations if not accounted for properly. For example, the forthcoming PLEIADES 
mini-satellites program, due for launch in 2010, will collect visible/NIR data at 2.8 m 
nadir resolution and will have an off-nadir viewing capability of ± 45° in any 
direction. Based on the field measurements made even for pseudo-invariant targets, at 
such large off-nadir viewing angles the difference in reflectance to nadir are very 
likely to be significant. 
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Ideally, therefore, the multiangular reflectance characteristics of a calibration 
target should be captured using a goniometer. In the HELM atmospheric correction, 
developed specifically for SPOT data, this enables the derivation of spectral band 
specific s equivalent to geometrical circumstances of existing and future SPOT 
imagery  within  a  database,  which  can  be  used  for  a  HELM-2  calibration  for  RFR.  
Currently, however, it will more usually be necessary to undertake a HELM-1 
calibration to nadir s field measurements, where it is imperative that appropriate 
pseudo-invariant ground targets are carefully selected. Of the sand, gravel, asphalt, 
grass turf, and artificial turf surface types investigated in Paper I, a medium grained 
beach sand offered the most appropriate characteristics for use in the HELM-1 or 
HELM-2 absolute atmospheric correction of multi-temporal SPOT imagery. 

Vegetation-free sites make better calibration targets as the multiangular 
reflectance properties, within the ± 30° VZ range  relating  to  the  SPOT sensors,  are  
generally more limited and are similar throughout the spectrum, unlike vegetation; 
compare Figures 10 and 11 below. The Hietsu beach sand was found to be the most 
spectrally stable site over time as here weathering changes are a very long term 
process.  The  most  desirable  calibration  target  sand  properties  are  a  well-sorted  and  
finer grained material because this will have less surface roughness, and consequently 
less sensitivity to Z and VZ variations, and lesser multiangular s anisotropy. Further, 
it is also likely to have increased volumetric scattering leading to a brighter spectrum, 
which is useful in better determining HELM correction lines. 

New asphalt is too spectrally dark to be a calibration target, but weathers 
quickly so that within the space of a few years the s spectrum resembles that of the 
exposed constituent gravel aggregates (Paper I: Figures 7 & 8 (D)). The presence of 
structural damage from usage will further increase multiangular s anisotropy, 
because of a consequent significant increase in surface roughening and the increased 
presence of shadowing. As well as temporal variance, asphalt use can be problematic 
because of the presence of painted markings and motor vehicles, as well as patch 
repairs, which all increase spatial spectral heterogeneity (Paper I: Figure 6). 

Results from the site 6 grass turf showed that vegetation is too spectrally dark in 
the visible bands, and has too strong wavelength dependent multiangular s properties 
to be a viable HELM calibration target, see Figure 10, even if managed sites may 
actually be relatively spatially and temporally spectrally stable (Paper I: Figure 11 (B) 
& (C)). However, a managed vegetated site may be useful as a validation target for 
the NIR band because of its high s if field measurements are made very close to the 
imagery acquisition time. The same could also be said for asphalt targets. 

Where angular s field measurements are unavailable, it is unwise to attempt EL 
calibrations to nadir s for SPOT imagery with viewing geometries near to the solar 
principal plane, as here multiangular s variations  will  be  the  greatest.  In  all  cases,  
field measurements should be made within the Z range within which SPOT overpass 
will occur, and it is recommended that detailed knowledge and measurements of the 
calibration site be collected and a minimum of assumptions be made. It should be 
noted that these findings are also applicable to any EL atmospheric correction 
methodology that is applied to SPOT data, or any other medium or high resolution 
optical remote sensing imagery. 
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Figure 10. Site  6  managed  grass  turf  SPOT  spectral  band  specific  HDRF  anisotropy  factor  
(HDRFANIF); mean Z = 44°. 
 

 
 
Figure 11. Site 1 Hietsu beach medium sand SPOT spectral band specific HDRFANIF; mean Z = 51°. 
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5.2 HELM calibration error 
 
Paper II outlined the proposed HELM absolute atmospheric correction technique for 
the retrieval of s from multi-temporal SPOT multispectral data. Calibration to nadir 
only s is  denoted  as  the  HELM-1  approach,  whilst  calibration  to  s modelling the 
exact illumination and view geometries of the SPOT imagery is termed the HELM-2 
approach. In Paper II the application of HELM-1 and HELM-2 to the Helsinki 
metropolitan region control site Dataset 1 SPOT imagery, and the application of 
HELM-1 to the Taita Hills application study area Dataset 2 SPOT imagery, were 
detailed and the RFR accuracy results were compared to the partially corrected SAT 
(Paper II: Sections 3.2 & 3.3). Given the ± 31° range in the SPOT sensor view 
incidence angle ( V), a general error model for HELM-1 calibration to nadir s for 
SPOT imagery was derived based on FIGIFIGO measurements from the Helsinki 
control site study area. Further, the estimated calibration error in applying HELM-1 to 
the control site Dataset 1 SPOT imagery was modelled based on the multiangular s 
behaviour of the site 1 beach sand calibration target (Paper II: Section 3.1). 
 

5.2.1 HELM-1 nadir calibration error estimates 
 
Given the stated ± 0.02 s VIS/NIR benchmark for successful atmospheric correction, 
HELM-1 nadir calibration uncertainty also needs to be within this range. The actual 
error encountered will depend on the multiangular s characteristics of the utilized 
surface and the SPOT image geometry, as covered in detail in Paper I. Based on an 
assessment  of  the  Helsinki  control  site  study  area  FIGIFIGO  measurements  for  the  
non-vegetated site 1 sand and the site 2 and 5 asphalts, a general error model for 
HELM-1 calibration to nadir s for SPOT imagery was identified in Paper II as  2% 
(0.02) s across all bands. Imagery viewing in the forward scattering direction is likely 
to have very small calibration error, even at maximum 31° V in the principal plane. 
However, as illustrated in Figure 12 below, the exception is when V is  R20° in the 
backscattering direction within ± 55° azimuth of the principal plane, assuming 
azimuthal symmetry in the calibration target multiangular s behaviour. This relates to 
a r range of 110° between 125°–235°. SPOT imagery with viewing geometry falling 
within these limits could be HELM-1 atmospherically corrected, but the error in the 
calibration may then exceed 0.02 s. Alternatively, it is possible to avoid utilizing 
such scenes by establishing the illumination and view geometries in the SPOT 
SIRIUS online image catalogue before ordering. These HELM-1 limitations 
demonstrate that, if at all possible, multiangular s measurements of the calibration 
target (at least along the principal plane in the backscattering direction) should be 
collected and are useful information. Nevertheless, for a large range of view 
geometries, the nadir calibration error for targets with near-Lambertian reflectance 
properties is likely to be  0.02 s. 
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Figure 12. Generalized error model for the application of HELM-1 nadir calibration to SPOT imagery 
with a possible ± 31° range in view incidence angles ( V). Grey shading indicates viewing angles 
where the difference between nadir s and angular s may exceed 0.02 at backscatter viewing V  20° 
within ± 55° azimuth of the solar principal plane, assuming azimuthal symmetry in the target 
multiangular characteristics. Because of the SPOT satellites’ orbit geometry, imagery viewing the 
backscattering will always be denoted in the metadata by R (right, negative, east) V. 
 
 

The  calibration  error  in  applying  HELM-1  to  the  control  site  Dataset  1  SPOT  
imagery was estimated from the modelled geometric s derived for the site 1 beach 
sand calibration target from the FIGIFIGO measurements. As shown in Paper II Table 
6, the overall average calibration RMSE for all bands and all years was 0.014 s and, 
except for the 2002 image, band specific angular s was always greater than the nadir 

s; i.e. nadir calibration was always an underestimation. The band specific RMSE for 
all years also increased with wavelength. For the forward scattering viewing images, 
average RMSE for all bands and all years was 0.008, but for backscattering viewing 
images 0.019. As expected, the largest differences between the nadir and image 
geometry s occurred in the 2003 scene, which had a R28.7° V at 43.8° Z,  with  a  
band specific error of -0.019 in the green, -0.023 in the red and NIR, and -0.029 in the 
SWIR. In contrast, although the 1994 scene had a L29.7° V at 43.5° Z, because of 
the forward scattering view the RMSE was -0.011 in the green, -0.014 in the red, and 
-0.015 in the NIR. The 2005 image was viewing the backscattering at R16.1° V, and 
had an RMSE for all bands of 0.012. There was negligible error for the 1993 scene, 
which was viewing the forward scattering at L9.3° V, and the nadir and geometric s 
were essentially identical for the 2002 scene because the image was viewing the 
forward scattering at only L2.5° V. 
 

5.2.2 Surface reflectance factor prediction accuracy 
 
The application of HELM to SPOT imagery Datasets 1 and 2 covering the Taita Hills 
and the Helsinki metropolitan area is detailed in Paper II, and the s retrieval accuracy 
results are compared to the partially corrected SAT.  Application  of  HELM-1  and  
HELM-2 to the Dataset 1 2002, 2005 and 2003 images allowed for the assessment of 
RFR accuracy from scenes with similar Z, but variations in V of L2.5°, R16.1°and 
R28.7°. These scenes were used as they occurred closest in time to field 
measurements of the validation targets, taken over the summers of 2005–2007 (Table 
5). The HELM procedures were also successfully applied to the 1994/1993 images. 
However, the long length of time from field measurement added too much uncertainty 
to include them into the accuracy assessment. Overall, as can be seen from Paper II 
Tables 7, 8 and 9, examination of the results revealed several main points. Firstly, as 
expected, there was an increase in HELM-1 RFR error with an increase in V in the 
backscattering direction. Secondly, contrary to expectation, the nadir calibrated 
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HELM-1 approach derived slightly higher accuracy RFR than the HELM-2 geometric 
calibration. Thirdly, HELM-1 VIS/NIR RFR RMSE was within 0.02 s for all scenes 
and bands, except 0.21 for the 2003 image red band. However, HELM-2 VIS/NIR 
RFR RMSE exceeded 0.02 s in all bands in the 2003 image. Fourthly, for HELM-1 
the overall relative RMSE (RMSEr) was 10% or better, with the exception of the red 
band which was slightly higher at 13.5%. The HELM-2 overall relative RMSEr were 
higher and exceeded 10% in both the red (15.9%) and SWIR (13.3%) bands (Table 7). 
In both cases the NIR RMSEr was substantially lower. These values are mostly near 
the desired 10% RMSEr and are within the ~10–15% range. Fifthly, and most 
importantly, both HELM-1 and HELM-2 derived substantially more accurate RFR 
than the SAT estimates, most significantly in the SWIR band where this was the basis 
of successful RFR. 

The reason the HELM-1 approach derived slightly higher accuracy RFR than 
the HELM-2 geometric calibration was because the Hietsu calibration target s were 
slightly higher than those of the validation targets, relative to the input LSAT values 
(Paper  II:  Figure  9  [A]).  As  a  result,  calibration  to  nadir  s already led to HELM-1 
correction lines that slightly overestimated the modelled image geometry s for the 
validation targets, even if the correction lines were a slight underestimation of the 
calibration target geometric reflectance itself. As detailed in Paper II Section 3.1, 
Hietsu beach sand s increased with increasing off-nadir V in the backscattering 
direction. Consequently, as the Lp estimates remained the same, calibrating HELM-2 
to higher image geometry s increased  the  slope  of  the  correction  lines  slightly  and  
actually made the RFR overestimation slightly worse in this instance. There was 
undoubtedly uncertainty and error propagation in predicting image geometry specific 

s of targets from fitted models, and matching them to a single linear prediction line 
for  each  band,  but  this  alone  may  not  have  accounted  for  the  observed  HELM  
overestimation. By way of scattering, atmospheric aerosols reduce the apparent 
reflectance of bright targets and increase it for dark-objects leading to a loss of 
information (Song et al. 2001). This lost information cannot be fully recovered by a 
HELM correction because the number of levels of LSAT values will not exceed that 
originally captured in the image DN. Furthermore, the spectrally bright beach sand 
was surrounded by dark sea water on two sides. It was considered that this derived a 
strong adjacency effect, giving lower LSAT relative to the targets completely over land 
where greater scattering was likely. Because of short path lengths, adjacency effects 
in s field measurements are negligible (Richter et al. 2006). Consequently, site 1 LSAT 
were relatively lower and derived higher s estimates (Paper II: Figure 9 [A]). 

Nevertheless, overall, Dataset 1 results indicated Hietsu beach sand was a 
suitable HELM calibration target, even if HELM-1 predictions were actually better 
than estimates based on the modelled image geometry s. As illustrated in Figure 12 
above, the Dataset 1 imagery viewing geometries were within the ranges identified as 
being suitable for application of HELM-1 with minimal error. In circumstances where 
SPOT image geometry is viewing backscattering at near-maximum off-nadir V at 
relative azimuth angles nearer to the principal plane than was the case in Dataset 1 
(~50°–58°), it is likely that there will be variation between nadir and geometric s > 
0.02. In such instances, HELM-1 calibration error becomes significant and HELM-2 
RFR performance should be better. Further, where the calibration target s is  not  
relatively brighter than the validation sites, HELM-2 should give improved RFR over 
HELM-1 in any case. It should be remembered, however, that the difference between 
HELM-1 and HELM-2 RFR was generally very small, ~0.01 s in all bands. 
Moreover, both HELM-1 and HELM-2 gave significantly better s estimates than 
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SAT,  indicating  they  were  effective  in  reducing  atmospheric  effects  in  the  SPOT  
scenes. Based on the Dataset 1 RFR results, a generalized statement was made in 
Paper II that HELM-1 performance was ± 0.02 s in the VIS/NIR and ± 0.03 s in the 
SWIR, whilst HELM-2 performance was ± 0.03 s in the VIS/NIR and ± 0.04 s in the 
SWIR. This represented band specific overall relative errors of ~10–15%. 

As can be seen from Paper II Table 10, nadir calibrated HELM-1 prediction 
accuracy results for Dataset 2 were similar to those for Dataset 1. Based on the 2003 
scene with an off-nadir V of R10.4°, HELM-1 derived an average VIS/NIR RMSE of 
0.018 in predicting s for the three verification targets. As with Dataset 1, this value is 
within the desired 0.02 s benchmark and 10% relative accuracy. The partially 
corrected SAT gave a higher average RMSE of 0.039. There was no SWIR assessment 
as an ASD FieldSpec® Handheld VNIR spectrometer was used in Taita Hills. Overall, 
then, both sets of RFR results indicated HELM was effective in reducing atmospheric 
effects in SPOT data relative to SAT. 

 

5.3 Comparisons of atmospheric correction procedures for SPOT data 

The study reported in Paper III utilized field measured nadir s collected in the Taita 
Hills application site (see Table 6), as well FIGIFIGO measured multiangular s field 
data  from  the  Helsinki  metropolitan  region  control  site  (see  Table  5),  as  validation  
data to undertake a comparative assessment of the absolute atmospheric correction 
techniques for SPOT data applicable in local and regional landscape level remote 
sensing studies, in circumstances where no detailed overpass concurrent atmospheric 
measurements or meteorological data are available. Namely, in addition to HELM, 
which  was  applied  as  a  HELM-1  nadir  calibration,  the  four  DOS  and  the  6S  RTM  
absolute atmospheric correction methods were applied to the multi-temporal SPOT 
imagery databases. Performance was assessed both on the ability of each 
methodology to accurately retrieve s and also to provide radiometric stability within 
the multi-temporal datasets. 6S was applied using modelled atmospheres and general 
estimates of AOD at 0.55 m for the Taita Hills dataset, but was applied using 
horizontal visibility meteorological data for the Helsinki control dataset. 
 

5.3.1 Surface reflectance factor retrieval accuracy  
 
Considering the application of the atmospheric correction methodologies to the 
Helsinki metropolitan region control site Dataset 1 SPOT imagery, the overall average 
RFR accuracy assessment results for the 2005, 2003 and 2002 SPOT scenes are 
detailed in Paper III Table 10. As noted in Table 4 above, the 2002 image suffered 
problems with sensor calibration in the red band, which affected LSAT values for all 
validation sites, and saturation in the green, red, and SWIR bands, which affected 
several of the spectrally brighter validation targets as well as the Hietsu beach 
calibration site for HELM. Consequently, the individual RFR accuracy results for 
2002 were not reported. Nevertheless, the averaged results were coherent and 
consistent with the results obtained individually from the 2003 (Paper III: Table 11) 
and 2005 (Paper III: Table 12) scenes. It can be noted from Tables 11 and 12 in Paper 
III that results for the 2005 and 2003 images were similar in that they derived the 
same ranked order in the RFR accuracy performance of the applied techniques: 
HELM, DOS2  (COST), 6S Met Data, 6S AOD 0.17, DOS4, DOS3, and DOS1. 
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As can be seen from Paper III Table 10, and Figure 13 (a) and Figure 14 (a) 
below, based on the 2005, 2003, and 2002 control site scenes, HELM derived the least 
overall RMSE in predicting s for the six validation targets, with an overall average 
RMSE for all SPOT spectral bands of 0.017, a VIS/NIR value of 0.014 and a SWIR 
value of 0.025. This VIS/NIR error value is within the desired 0.02 s benchmark. 
Also, HELM SWIR performance was significantly better than SAT (0.064), which 
was taken as the basis of successful SWIR correction. The average overall RMSEr for 
all bands was 8.5%, and the band specific overall RMSEr were ~10% or less for all bands, 
with the NIR RMSEr being the lowest. 

Most importantly, none of the other applied methodologies were within the 
desired VIS/NIR absolute accuracy limit or equalled HELM SWIR performance. Next 
most  accurate  were  DOS2 (COST),  with  an  overall  average  RMSE for  all  bands  of  
0.034, and the 6S approaches, both with an overall average RMSE of 0.036. DOS1 
was the least accurate method, with an overall RMSE of 0.058, which was worse than 
applying no atmospheric correction at all, as SAT gave  an  overall  RMSE  of  0.047.  
DOS3,  with  an  overall  RMSE  of  0.049,  was  also  slightly  worse  than SAT, whilst 
DOS4, with an RMSE of 0.046, was marginally better than SAT. 

Additionally,  as  illustrated  in  Figure  13  (b)  below,  HELM had a  small  overall  
average bias (0.005), although DOS2 (COST) was the smallest overall (-0.004). 
Moreover, HELM was the only method that did not underestimate s overall. DOS1, 
DOS3 and DOS4 all had larger negative overall biases than the -0.021 of SAT, 
although the bias of the 6S approaches were smaller but still negative, with both 
deriving -0.018. 

Considering each spectral band separately, it can be seen from Paper III Table 
10 and Figure 14 below that HELM derived the lowest average RMSE in every 
spectral band, and of these the average SWIR RMSE was the highest, as was the case 
with DOS2, DOS3 and DOS4 and SAT. Futher, SAT had negative bias except in the 
green band, caused by the greater amount of scattering at shorter wavelengths. DOS1, 
3 and 4, and the 6S approaches had negative bias in all bands, whilst DOS2 had 
overall positive bias in the red and NIR. HELM had a slight negative bias of -0.001 in 
the green band, no bias in the NIR, and positive bias in the red and SWIR. 

The results of the Paper III atmospheric correction comparisons showed that all 
the applied methods, except HELM consistently underestimated s for both the Taita 
Hills and the Helsinki study areas (Paper III: Tables 10, 11, 12 and 13). Furthermore, 
in SPOT data with near-maximum off-nadir view incidence angles (± 31° V), RFR 
error increased for all the applied corrections. Most importantly, HELM derived the 
best and most consistent RFR performance, and was the only approach that achieved 
RFR in the VIS/NIR bands with a RMSE within the desired 0.02 s benchmark. Also, 
HELM SWIR performance was significantly better than the other techniques as well 
as the partially corrected SAT. 

DOS1 corrections did not account for the multiplicative effects of atmospheric 
attenuation and consequently, following subtraction of LP for the VIS/NIR bands, s 
was consistently underestimated and led to less accurate RFR than SAT. Because the 
applied DOS2 (COST) method derives estimates of atmospheric transmittances based 
on the cosine of V and the solar zenith angle ( Z), its RFR accuracy was found to be 
too  dependent  on  the  SPOT  scene  illumination  and  view  geometries,  which  are  not  
related to atmospheric conditions at the time of image acquisition. It is a well-known 
problem with COST that the cosine function for TZ generally underestimates TZ for 
larger Z, while overestimating TZ for smaller Z (Wu et al. 2005; Chavez 1996). 
DOS3 models a Rayleigh scattering only atmosphere and does not consider the role of 



 95

aerosols, which were clearly demonstrated in Paper III as fundamental in determining 
the radiometric attenuation properties of a real atmosphere. Consequently, DOS3 s 
was consistently underestimated for all the spectral bands. DOS4 derived inconsistent 
RFR  results,  and  was  found  to  be  sensitive  to  the  estimates  of  LP derived from the 
identification of within scene dark-objects. Application of 6S using standard 
atmosphere and aerosol models, even with the utilization of horizontal visibility 
meteorological data, although better overall than the DOS methods, was not accurate 
enough to meet the desired RFR accuracy requirements. 

 
 

 
 

Figure 13. (a) Surface reflectance factor ( s) overall average RMSE and (b) s overall average bias of 
all spectral bands for each atmospheric correction methodology applied to the 2005, 2003 and 2002 
SPOT scenes covering the Helsinki metropolitan region control site study area. 
 



 96

 
 
Figure 14.  (a)  Average  RMSE  ( s) and (b) average bias ( s) of each SPOT spectral bands for each 
atmospheric correction methodology applied to the 2005, 2003 and 2002 SPOT scenes covering the 
Helsinki metropolitan region control site study area. 
 

5.3.2 Time series stability 
 
As noted by Schroeder et al. (2006), theoretically the removal of atmospheric effects 
should reduce spectral variation between satellite images in a multi-temporal dataset. 
In a study by Song et al. (2001), DOS3, closely followed by DOS1 and a relative 
normalization method, were found to be the best techniques in minimizing reflectance 
variations within a multi-temporal Landsat dataset, compared to DOS2 (COST), 
DOS4, and dark dense vegetation (DDV) approaches. Similarly, Schroeder et al. 
(2006) found that relative normalization derived the greatest reflectance stability 
within a multi-temporal Landsat dataset compared to DOS3, 6S, and DDV absolute 
correction approaches and SAT. As neither study had field measured s data, they 
were unable to assess absolute atmospheric correction accuracy, but both showed that 
the more complicated correction methodologies actually increased the spectral 
variation between images. 

Similar results were observed in the results reported in Paper III. As can be seen 
from Paper III Table 14, overall HELM derived the lowest sum total variation in 
average s between the multi-temporal SPOT scenes for Datasets 1 and 2 combined. 
However, considering each dataset separately, HELM showed a mixed ability to 
reduce variation compared to SAT. Whilst in Dataset 2 the mean average absolute 
difference for all bands combined was 2.78 (% s) for SAT and 2.23 for HELM, in 
Dataset 1 it was 2.43 for SAT and 2.60 for HELM. SAT derived lower variation than 
the DOS and 6S approaches in both Dataset 1 and 2, except for DOS1 in Dataset 1. 
Overall, therefore, it can be seen that the more complicated methods in predicting s 
did not lead to reduced variability between scenes, with DOS1 and DOS3 giving 
lesser  variation  than  6S or  DOS4,  in  both  Dataset  1  and  2.  It  should  also  be  noted,  
however, that the differences between the methods were very small and have to be 
reported to 1/100th of 1% in order to differentiate between the approaches. 

Considering the individual spectral bands for the control site Dataset 1 imagery, 
as can be seen in Figure 15 below, the largest variation in average s between scenes 
was in the NIR and the least variation in the green for all correction methods. This is 
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most likely because the NIR, although it has little atmospheric scattering, is directly 
affected by atmospheric absorption and slightly differing amounts of vegetative 
photosynthetic activity between the scenes due to, for example, phenological or plant 
moisture differences. Because of the high NIR reflectance of vegetation compared to 
the green and red bands, these variations in vegetative conditions derive the observed 
higher variability in s. The very small variation seen in SAT green band average s 
for the Dataset 1 imagery suggests that the contribution from atmospheric scattering 
was consistent and also that, as was noted by Song et al. (2001), because atmospheric 
aerosols reduce the apparent reflectance of bright targets and increase it for dark-
objects, scattering may even be acting to smother the signal coming from the Earth’s 
surface itself. This is contrary to the expectation that variations in atmospheric 
scattering in the shortest wavelength SPOT band would act to add to the variability in 
average s between scenes. As consequence of this stability in the SAT imagery, as 
can be seen in Figure 16 below, with the exception of DOS1 which derived a slight 
reduction in variability, all the other correction methods added slightly to the variation 
in mean s. The difference between all methods was minimal, however, only ranging 
from 2.36 for DOS1 to 2.92 for DOS2, a 0.56 difference. 

 

 
 

Figure 15. Mean absolute difference (% s) of each spectral band for each atmospheric correction 
methodology applied to the Helsinki metropolitan region control site Dataset 1 SPOT imagery. 
 

 
 
Figure 16. Overall mean absolute difference (% s) for all spectral bands for each atmospheric 
correction methodology applied to the Helsinki metropolitan region control site Dataset 1 SPOT 
imagery . 
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What can be stated in general, therefore, is that the HELM variations in average 

s are commensurate with SAT. Overall, HELM did not significantly add to or reduce 
the variability in mean s between multi-temporal SPOT scenes, although the effect is 
wavelength dependent. It should be noted, however, that HELM has the advantage 
over the other applied corrections that performance is equivalent in imagery time-
series stability, but significantly better in predicting s accurately.  For  HELM to  be  
effective requires the careful selection of suitable dark-objects and the identification 
of one appropriate pseudo-invariant spectrally bright ground calibration target per 
SPOT scene area. Use of appropriate HELM calibration targets is important to enable 
up-scaling of averaged s field measurements to the SPOT sensors’ GIFVO and to 
counter  adjacency  effects.  Given  the  results  of  the  Paper  III  study,  in  circumstances  
where no suitable HELM targets can be identified or where there is no field access 
within  a  particular  scene  area,  then  the  application  of  6S  with  standard  atmosphere  
and aerosol models, and general estimates of AOD at 0.55 m, would likely give the 
next best RFR performance. Furthermore, if the spectrometer used to make s 
measurements for HELM does not cover the SWIR, 6S is again likely to offer the next 
best s estimates. However, the 6S prediction error in the VIS/NIR bands is likely to 
exceed the desired 0.02 s benchmark and, depending on the specifics of the SPOT 
scene illumination and viewing geometry, could be more than twice the expected 
HELM RFR RMSE. 
 

5.4 LULC data from multi-scale segmentation and object-oriented classification 
 
In Paper IV, a multi-scale segmentation/object relationship modelling (MSS/ORM) 
approach was applied to map LULC at a landscape level in the Taita Hills, Kenya, 
from multi-temporal SPOT multispectral satellite imagery. This object-oriented 
procedure was shown to derive improvements over a uni-scale maximum-likelihood 
(ML) technique in this area of complex heterogeneous land cover. This was in terms 
of both an increase in the assessed overall accuracy of the 11 LULC class 
classification from 65.6% to 73.5%, and in a Kappa Index of Agreement from 0.6 to 
0.66 (Paper IV: Table 4), but also more significantly in the derivation of visually 
superior land cover maps based on meaningful homogeneous landscape patches and 
free from the ‘salt-and-pepper’ classification noise effect typical of maximum-
likelihood  results  (Paper  IV:  Figure  3).  This  is  due  to  the  theoretical  advancements  
possible when conceptualizing a landscape and its depiction in a remotely sensed 
image as a spatially nested patch hierarchy definable at various critical levels of 
organization operating at specific spatial and temporal scales. Useful spatial 
information surrounding each pixel and multi-scale information within the image are 
incorporated into the classification process by the MSS/ORM approach, where a 
search is made for apparent boundaries in the gradient of flux zones within and 
between landscape patches identifiable through local heterogeneity. In particular, the 
fractal net evolution approach (FNEA) to multi-scale segmentation was successful at 
capturing image objects relating to ecologically meaningful landscape patches 
identifiable in the SPOT data. Segmentation studies are usually focused on high 
resolution imagery, such as digital aerial photography or IKONOS data, so it was 
interesting  to  note  the  successful  application  of  the  MSS/ORM  approach  to  data  
derived from a medium resolution sensor such as SPOT. Despite improvement in 
classification performance with the MSS/ORM approach, it was nevertheless still 
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necessary to undertake manual editing, by reference to the original imagery, in order 
to increase the accuracy of the LULC classifications to a level suitable for further 
utilization in multi-disciplinary applications. This level was identified as a validated 
classification accuracy of  90% at the highest level of class type aggregations by the 
GTOS ECV-T9 guidelines for 30 m land cover type data requirements (GTOS-T9 
2009). Manual editing increased the Taita Hills LULC mapping overall accuracy to 
89%, and the Kappa Index of Agreement to 0.87, with the individual users’ and 
producers’ accuracies both being > 90% with the exception of three cover types 
(Paper IV: Table 4). 

Blaschke (2010) gave a recent review article of the state-of-the-art in object-
based image analysis (OBIA) based on analysis of over 820 articles, including 145 
journal papers and 84 book chapters. Blaschke (2010) identifies OBIA as a growing 
major trend in remote sensing and GIScience over the last decade, with Gamanya et 
al. (2009) even claiming that object-oriented processing is becoming more popular 
that traditional pixel-based image analysis. Not all OBIA utilizes multi-scale 
segmentation and classification, though, and Lang & Langanke (2006) demonstrated 
that for specific cases a one level representation (OLR) may be sufficient and more 
straightforward. In either case, however, remote sensing information is used as a 
proxy for phenomena or processes (Blaschke 2010), and enables improvements in 
image analysis. As was the case in the Paper IV study, overcoming the ‘salt-and-
pepper’ effect of per-pixel type image analysis has been widely recognized in research 
work as a major benefit of OBIA (Blaschke 2010). 

Furthermore, a very large number of studies have reported improvements in 
OBIA land cover mapping and change analysis accuracies compared to per-pixel 
based approaches (Blaschke 2010). For example, Shackelford & Davis (2003) derived 
a fuzzy logic OBIA methodology to map urban land cover from IKONOS data 
incorporating image texture measures and a length-width contextual measure. 
Compared to ML approach results of 79% accuracy for urban areas and 87% accuracy 
for suburban areas, the OBIA technique derived 8% and 11% improvements in 
accuracy, respectively. It should be noted that this reported ~10% increase in 
classification accuracy was similar to the results obtained in Paper IV. Im et al. (2008) 
compared change detection techniques based on per-pixel change classification, 
object/neighbourhood correlation, and image segmentation and found that the object 
based change classifications had a higher Kappa Index of Agreement of up to 0.9, 
compared to 0.8–0.85 for the traditional approaches. Platt & Rapoza (2008), in a 
comparison of a ML classification with an OBIA approach for mapping land cover 
around Gettysburg, Pennsylvania, noted that there are at least four components in 
OBIA not typically used in per-pixel analysis which contribute to the enhanced 
performance: (1) the segmentation procedure, (2) the nearest neighbour classifier, (3) 
the integration of expert knowledge, and (4) feature space optimization. Similarly, all 
these components were utilized in the Paper IV study.  

The final maps derived in the Paper IV study were used to identify major 
landscape changes that occurred in the Taita Hills over the 1987 to 2003 research 
period. As discussed in Paper IV, the mapped changes where overwhelming in the 
form of the clearance of natural vegetation for agricultural expansion, with croplands 
increasing by 10,478 ha, mainly into shrubland (6,414 ha) and thicket (closed canopy 
shrublands; 3,300 ha) areas (Paper IV: Tables 6 & 7), especially on the lowlands and 
foothills. This was similar to trends detected in other parts of Kenya and East Africa 
(Imbernon 1999; Soini 2005b; Baldyga et al. 2007), and also over sub-Saharan Africa 
as whole (Eva et al. 2006). Increasing environmental pressure on the Taita Hills was 
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implicated by other mapped landscape level changes. Although strong seasonal 
variations in water levels are acknowledged for the East African environment, there 
was a major 77% reduction in the extent of standing water from 84 to 19.5 ha, despite 
that reference to local meteorological data shows that all three images were acquired 
during similarly dry periods. There was also a large 145% (546 ha) increase in the 
area of bare soil, mainly from cropland and shrubland areas (Paper IV: Table 7), and a 
34% increase in built-up areas. Given this, it was heartening to report that the extent 
of the core area of the remnant indigenous forest patches had remained stable from 
1992 (Paper IV: Table 5), although no attempt was made to assess the health of the 
forests from the SPOT imagery, which is an important factor for habitat quality. 

 However, there was a 10% reduction in the total area of indigenous forest 
(mapped as Broadleaved Closed Canopy Forest) over the study period, dropping from 
774 ha in 1987, to 741 ha in 1992 and 694 ha in 2003 (Paper IV: Table 6). In 
combination with this, the number of patches increased slightly between 1987 and 
1992 whilst the mean size reduced (Paper IV: Table 5), indicating fragmentation, but 
then by 2003 the total number of patches fell while the mean size increased, reflecting 
a  loss  of  smaller  patches.  Most  of  this  loss  (54  ha)  was  to  plantation  forest  and  
woodland, with only a relatively minor 22 ha being mapped as converted to croplands 
(Paper IV: Table 7). Although there were large scale conversions of shrublands and 
thicket to agriculture, it therefore appears that there has been little deforestation in the 
Taita Hills during the studied period, as both woodland and plantation forest cover 
increased (9% and 1.5% respectively). This contrasts with a study by Ward et al. 
(2004) based on an analysis of Landsat imagery from 1987 and 1999 utilizing 
unsupervised classification methods, which reported a large 37% decrease of 
indigenous forest in the Taita Hills, but mapped for both 1987 and 1999 with an 
erroneous over-estimation of cover with nearly the entire upland areas of the hills 
depicted as forest. In reality the remnant patches present during this time period were 
very  small  and  only  covered  less  than  1%  of  the  total  area,  as  indicated  both  from  
field measurements by Lens et al.  2002  and  from  the  results  of  this  study.  It  is,  
however, acknowledged that the three-date ‘snap-shot’ study reported in Paper IV 
forms a minor temporal sampling of a complex environmental system in constant 
flux. Nevertheless, in an area of the world where detailed accuracy assessed landscape 
level digital mapping and change analysis is sparse, this information derived using the 
standardized UN FAO LCCS nomenclature is useful in many applications, as well as 
an indicator for the likely presence and extent of land degradation processes occurring 
in the Taita Hills. 

Further, Paper IV also demonstrated a novel method of implementing a “c” 
correction based topographic normalization (Teillet et al. 1982) to SPOT imagery 
(Paper IV: Section 3.1.2). For mountainous and rugged terrain regions, such as the 
Taita Hills, topographic correction is at least as important as atmospheric correction, 
if comparable s values are to be derived throughout the area (Liang 2004). This is 
critical both for traditional classification techniques and for image segmentation 
procedures, where changes in reflectance should relate solely to differences in land 
cover and not to variation in illumination conditions. To identify general vegetation 
classes, from which to derive c factors, before a topographic correction and 
classification were applied, NDVIs were derived and cluster classes were identified 
within them using the automated ISODATA algorithm. This is unusual as the 
ISODATA algorithm is normally utilized to automatically identify data clusters in 
multispectral feature space, but here it was used in a one-dimensional manner to 
capture frequency clusters in the NDVI. It was considered that the use of c factors 
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accounted for both diffuse irradiance and the non-Lambertian reflectance behaviour of 
the vegetation within each generalized group, and it also had the effect of limiting the 
overcorrection of weakly illuminated pixels. Visual inspection and re-regression of 
the corrected reflectance values for each class area against the cosine of the cos i 
values, which derived no relationships, demonstrated that topographic effects had 
been successfully removed from the SPOT imagery. 
 

5.5 Modelling potential soil loss using GIS data and SPOT derived LULC maps 
 
In Paper V, multi-temporal land cover maps of 1987, 1992 and 2003, derived from 
SPOT imagery using an MSS/ORM methodology as detailed in Paper IV, were 
utilized in combination with compiled geospatial layers of soil, rainfall and 
topography to model potential soil loss in the Taita Hills, Kenya. In accordance with 
working in regions of the developing world with limited ancillary data availability, 
and considering the ability of the procedures to be replicated locally using a minimum 
of resources, low cost and freely available GIS data and a simplified methodology 
based on the Universal Soil Loss Equation (USLE), were utilized. Local rainfall 
records of the Kenyan Meteorological Department were interpolated into a 20 m grid 
layer, a 20 m DEM was generated from Survey of Kenya 1:50,000 scale topographic 
paper maps, and the 1:1,000,000 scale Explanatory Soil Map of Kenya was utilized as 
a generalized digital soil map. 

Even considering the minimized data requirements of the applied methodology, 
the lack of a detailed soil map and of a support practice factor (P-factor) layer (i.e. a 
geospatial layer denoting the application of soil conservation measures, such as 
terracing and agro-forestry, which have been implemented in certain areas of the Taita 
Hills) could be considered as limitations of the Paper V study. Nevertheless, the 
implemented procedure demonstrated that, in a GIS environment, it was possible to 
quickly and easily collate and process geospatial data to enable adequate quantitative 
modelling of potential soil loss in data limited circumstances. A simple USLE model 
was applied to identify the areas of highest potential soil loss risk in the Taita Hills, 
and this was related to the mapped changes in land cover in order to predict long term 
erosion hazard. The availability of the mapped USLE factors and the quantitative 
spatial information concerning annual potential soil loss supports the design and 
development of soil conservation programs in an area suffering from land degradation 
and localized severe soil loss, such as gully formation, as detailed in Sirviö et al. 
(2004) and evidenced in the field. 

Land cover change in the Taita Hills was significant over the studied period 
from 1987 and 2003, with population growth leading to a shortage of agricultural land 
and the movement of people into the lowlands, evidenced by a 39% (9.3 km2) 
increase in croplands from 30% to 41% of the study area (Paper V: Table 7). 
Agricultural expansion took place mostly in the foothills and lowlands surrounding 
the hills, at the expense of natural shrubland and thicket (closed canopy shrublands), 
but also occurred to lesser extent within the higher areas of the hills themselves (Paper 
V: Figure 3). These land cover changes were shown to have a strong impact on 
modelled annual potential soil loss, which was classified into low (0–2 t h-1 yr-1), 
moderate (2–10 t h-1 yr-1), high (10–30 t h-1 yr-1) and very high (> 30 t h-1 yr-1) soil 
loss classes (Paper V: Figure 5). The USLE modelling results showed a 60% (4 km2) 
increase in the area of very high potential soil loss, from 5 758 ha to 9 656 ha and 
from 7% of the study area in 1987 to 12% in 2003, due mainly to the expansion of 
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croplands, accounting for a 2 085 ha increase in very high soil loss potential (Paper V: 
Figure 5 & Table 9). However, the relative proportion of very high soil loss potential 
within croplands remained 20% both in 1987 and 2003, indicating that newly cleared 
agricultural lands with vulnerable soils were the most at risk areas. 

Overall, the slope steepness and length factor (LS-factor) and the rainfall 
erosivity factor (R-factor) for croplands decreased because agricultural expansion has 
encroached into lowlands with more gentle topography and lower rainfall (Paper V: 
Table 8). The opposite trend can be seen with shrubland, where the LS- and R-factors 
increased since shrublands were cleared and the remaining areas were overall on 
steeper slopes. Another significant change to be detected was the substantial increase 
in burned areas (Paper V: Table 7) located more on the lowlands at the edges of 
agricultural expansion areas (Paper V: Figure 3), thus decreasing the LS- and R-
factors significantly (Paper V: Table 8). This related to the local practice for 
establishing new fields in areas of shrublands by clear cutting the boundaries then 
burning the encircled area to clear the vegetation and add some nutrients to the soil. In 
the hills themselves, the soil loss potential generally decreased due to increased 
vegetation cover within the croplands, a consequence of continued adoption and 
implementation of agroforestry practices. However, agricultural areas occurring on 
the steeper slopes still remained as zones of very high soil erosion potential (Paper V: 
Figure 6). The parts of the study area most severely at risk of soil erosion were found 
to be the newly cleared croplands in the southern, southwestern and northern foothills 
and lowlands. 

The land cover changes mapped in the Taita Hills, and discussed in Paper V, are 
similar to trends detected throughout many parts of East Africa (Imbernon 1999; Soini 
2005b), and in fact throughout sub-Saharan Africa as whole (Brink & Eva 2009). It is 
therefore considered likely that potential soil loss due to water and wind erosion has 
increased throughout many environmentally pressured parts of the region, as a direct 
consequence of rapid and unmanaged land cover changes overwhelming in the form 
of the clearance of natural vegetation for agricultural expansion (Eva et al. 2006). 
 

5.6 The use of SPOT derived predictor variables in human population prediction 
 

In Paper VI, population distribution and abundance were modelled for the rural 
upland subsistence farming area of the Taita Hills, Kenya, using dwelling unit data 
(presence-absence) and population count data (abundance) as the response variable 
and geospatial and remote sensing based data as predictors. The prediction models 
were created with the GRASP method, which utilizes the GAM regression technique. 
The Paper VI results showed that population distribution models explained 19% to 
31% of variation in the dwelling unit occurrence data, indicating a fair explanatory 
power, and that the predictive power for population distribution models was good 
with AUC of 0.80 to 0.86. The abundance models explained 28% to 47% of the 
variation in human population abundance throughout the study area. Combining the 
geospatial and remote sensing based predictors gave the overall best modelling results 
when compared with only remotely sensed or geospatial based predictor models. The 
best individual predictors for modelling the variability in human population 
distribution when using combined predictors were: angular second moment image-
texture measurement, precipitation, mean elevation, surface reflectance for SPOT red 
and NIR bands, correlation image-texture measurement and distance to roads, 
respectively (Paper VI: Tables 3, 4, 5 and 6). The fairly poor performance of the land 
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cover classes utilized as predictors in the human population predictive modelling 
indicated that it is not necessary to make use of classified LULC data. Instead, the 
first and second order image-texture measurements derived from the SPOT satellite 
image gave higher contributions to the models. Second-order image texture measures 
have been shown to be important factors in previous urban population density analysis 
studies (for example Shaban & Dikshit 2001; Li & Weng 2005). 

A further benefit of using the first and second order image-texture 
measurements is the fact that they can be calculated quickly and easily, and can be 
used as a proxy indicator to quantify the variation in vegetation as a continuous 
variable in statistical modelling. Whilst in the MSS/ORM classification discussed in 
Paper IV, it was found that it was not possible to differentiate between croplands and 
shrublands at any level in the segmentation hierarchy, based on the image texture of 
segmented image primitives, this finding is limited to a consideration of these specific 
land covers. This analysis was motivated by the difficulty in distinguishing between 
lowland croplands and shrublands in the classification, because of the close spectral 
similarly between the two within the SPOT data. Image texture was found to be useful 
in modelling population as here image wide texture measures evidently varied with 
more substantial variations in vegetation type and cover related to the likely 
occurrence of dwelling units. That land cover data may not necessarily be needed for 
successfully modelling population distribution and abundance is an important finding, 
considering the laborious and costly classification work required to derive and assess 
accurate LULC maps from satellite imagery. 

This study also showed that modelling using only GIS derived geospatial 
predictors had the lowest performance in population models, and therefore it is 
suggested that they should not be used in isolation as a predictors for dwelling unit 
distribution and abundance modelling. However, it should be noted that the important 
distance to road predictor was generated from 1:50,000 scale topographic mapping. In 
the Taita Hills, in common with many other rural areas in the developing world, the 
majority of homestead dwellings are in fact only accessed by footpaths. 
Consequently,  the  availability  of  a  more  detailed  road  network  GIS  layer  that  also  
included footpaths, and its use as a geospatial predictor, might have improved the 
model performance. 

GAMs were chosen for modelling because in various ecological species 
distribution studies they have outperformed conventional linear regression techniques 
(Yee & Mitchell 1991; Thuiller et al. 2003). Moreover, GAMs are more suitable for 
geospatial data modelling as environmental predictors are often non-Gaussian with 
non-constant variance. However, in previous human population modelling studies 
using geospatial data, it is mainly linear regression techniques that have been utilized 
(for example, Lo 1995; Schnaiberg et al. 2002; Gustafson et al. 2005; Li & Weng 
2005). To the authors’ knowledge, this study is the first time that GAM models have 
been used for human occurrence and abundance prediction using geospatial 
predictors. Thus, the good modelling results should encourage other predictive human 
population and abundance studies to consider using the GAM technique alongside, or 
instead of, more traditional regression methods. 

The  GAM  abundance  model  was  extrapolated  for  the  whole  Taita  Hills  study  
area and the model was capable of discriminating between inhabited and uninhabited 
areas. For example, in the vicinity of the Ngangao indigenous forest (Paper VI: Figure 
4) an absence of dwelling units was predicted within the forest itself and low dwelling 
unit probability was modelled for the cultivated fields, whilst high population 
concentrations were correctly identified in and around the villages. When abundance 
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models were compared with two existing global population datasets, GPWv3 and 
LandScan 2005, the results showed that there was statistically significant correlation 
between the combined and the remote sensing based models and the GPWv3 product 
(r > 0.8) but the correlation was non-significant with the geospatial based model (r = 
0.19). For LandScan 2005 the correlations were lower (Paper VI: Table 7). The 
correlation between Kenyan census data for 1999 and predicted population abundance 
models were high for the remote sensing based (r = 0.71) and combined models (r = 
0.51) when only sub-locations over 1100 m elevation (n =  32)  were  used.  For  the  
geospatial model the correlation was non-significant. However, there was low 
correlation (r = 0.34) between the remotely sensed based population abundance 
models and the Kenyan census data for 1999 for the sub-locations also extending into 
the dry lowland areas (n = 50) surrounding the Taita Hills, where the population 
density is highly variable, and no correlation for combined and geospatial models 
(Paper VI: Table 8). This is mainly due to the inadequate description provided by the 
census sub-locations for these areas, which vary in size and shape and generalize and 
obscure the internal variability of population relative to the spatially explicit 
combined models, which have 100 m grid size.  

In summary, then, it can be stated that the predictive models using combined 
geospatial and SPOT derived predictors were found to be more accurate than the 
global datasets and also correlated well with the Kenyan 1999 census data. However, 
it must be kept in mind that in general the modelling performance can be affected by 
different  factors  such  as  the  analysis  scale,  the  possible  occurrence  of  spatial  
autocorrelation, the selected predictors, and the applied modelling techniques and 
model parameterization. 
 

6. CONCLUSIONS AND FUTURE PROSPECTS 

The Taita Hills in southeastern Kenya form the northernmost part of Africa’s Eastern 
Arc Mountains, which have been identified as one of the top ten biodiversity hotspots 
on Earth. As with many areas of the developing world, over recent decades the Taita 
Hills have experienced significant population growth. This has led to associated major 
changes in land use and land cover (LULC), as well as escalating land degradation, 
particularly in the form of soil erosion. Multi-temporal medium resolution 
multispectral optical satellite data, such as imagery from the SPOT HRV, HRVIR, 
and HRG sensors, provides a valuable source of information for environmental 
monitoring and modelling at a landscape level over local and regional scales. Satellite 
remote sensing represents the most efficient methodology for routinely collecting 
synoptic and spatially explicit data of extensive and inaccessible areas, with 
information available in spectral, spatial and temporal resolutions. 

However the utilization of multi-temporal SPOT data, or any other multispectral 
medium or high resolution satellite imagery, in quantitative remote sensing studies 
requires the removal of atmospheric effects and the derivation of surface reflectance 
factor ( s). Furthermore, for mountainous regions or areas of rugged terrain, such as 
the Taita Hills, it is necessary to apply topographic correction to remove slope-aspect 
effects to derive comparable s throughout a scene area. Reliable monitoring of LULC 
and LULC change over time and modelling of land degradation and human 
population distribution and abundance are of crucial importance to sustainable 
development, natural resource management, biodiversity conservation, understanding 
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ecosystems and biogeochemical cycling, and understanding and mitigating climate 
change and its impacts. 

The main purpose of this thesis was to develop and validate enhanced 
processing of SPOT satellite imagery for use in environmental monitoring and 
modelling, in regions of the developing world with limited ancillary data availability. 
The Taita Hills formed the application study site (Papers II, III, IV, V, VI), whilst the 
Helsinki metropolitan region was used as a control site for validation and assessment 
of the applied atmospheric correction techniques, where multiangular s field 
measurements could be taken and where horizontal visibility meteorological data 
concurrent with image acquisition were available (Papers I, II, III). The main findings 
of this study, which can be considered as methodological enhancements in the 
processing and utilization of multi-temporal SPOT multispectral satellite imagery for 
environmental monitoring and modelling at a landscape level over local or regional 
scales, are as follows: 
 
 The application of the proposed historical empirical line method (HELM) for 

absolute atmospheric correction of SPOT data requires the identification of a 
spectrally pseudo-invariant calibration site within each scene area. Considering 
the ± 30° view zenith angle ( VZ) range relating to the SPOT sensors, vegetation-
free sites make better calibration targets than vegetated ones. This is because the 
multiangular reflectance properties are more limited and are similar throughout 
the spectrum, unlike vegetated surfaces. Of the measured sands, gravel, asphalts, 
and artificial turf vegetation-free surface types, sand was found to be the most 
appropriate as a HELM calibration site. Sand is spectrally stable over time, as 
changes due to weathering are a very long term process. The most desirable sand 
calibration target properties are a well-sorted and finer grained material because 
this will have less surface roughness, and consequently less sensitivity to solar 
zenith angle ( Z) and VZ variations, and lesser multiangular s anisotropy. 
Further, finer grained sands are also likely to have increased volumetric scattering 
leading to a brighter spectrum, which is useful in better determining HELM 
correction lines. 

 
 Of the seven absolute atmospheric correction methodologies applied and 

compared in this thesis - HELM, four dark-object subtraction (DOS) methods, and 
the 6S radiative transfer model (RTM) applied with general estimates of 
atmospheric optical depth (AOD) at 0.55 m and with horizontal visibility 
meteorological data - HELM derived the most accurate s retrieval, with HELM-1 
giving an overall absolute accuracy of  < 0.02 s for the SPOT visible and near-
infrared (VIS/NIR) bands, and  < 0.03 s for the SPOT shortwave infrared (SWIR) 
band. This represented a relative RMSE of ~10% or less for all bands. Most 
importantly, HELM was the only applied procedure that achieved VIS/NIR s 
retrieval with a RMSE within the desired 0.02 s benchmark identified as a 
measure of successful atmospheric correction. Further, HELM SWIR s retrieval 
was better than the other applied methodologies as well as the partially corrected 
at-satellite reflectance ( SAT),  which  was  taken  as  the  basis  of  successful  SWIR  
atmospheric correction in this study. HELM was also able to maintain radiometric 
stability within multi-temporal SPOT imagery datasets comparable with the SAT, 
and better than the other applied techniques. This is a significant enhancement for 
the retrieval of s in areas of the world there is  a paucity of meteorological data 
available that is detailed enough, and has an appropriate spatial and temporal 
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frequency, to allow for the full application of RTMs to multi-temporal satellite 
imagery datasets. These areas are also often the places where the most rapid and 
significant changes in LULC are occurring, and where the need for environmental 
monitoring is greatest. 

 
 6S applied with horizontal visibility meteorological data, and with general 

estimates of AOD at 0.55 m, utilizing standard atmosphere and aerosol models, 
derived almost identical accuracy and bias in predicting s for the validation 
targets in the Helsinki control site from SPOT data. This is important as it shows 
6S can be applied in areas where no meteorological data are available with equal 
accuracy to those areas where horizontal visibility meteorological data are 
available. Further, in the atmospheric correction comparison conducted for this 
thesis,  6S  was  found to  give  the  next  best  s retrieval performance after HELM 
and derived better accuracy than the applied DOS approaches. Therefore, in 
circumstances where no suitable HELM targets can be identified or where there is 
no field access within a particular scene area, then the application of 6S with 
standard atmosphere and aerosol models, and general estimates of AOD at 0.55 

m, would likely give the next best RFR performance. Also, if the spectrometer 
used to make s measurements for HELM does not cover the SWIR, 6S is again 
likely to offer the next best s estimates. However, in such circumstances, the 6S 
prediction error in the VIS/NIR bands is likely to exceed the desired 0.02 s 
benchmark and, depending on the specifics of the SPOT scene illumination and 
viewing geometry, could be more than twice the expected HELM s retrieval 
RMSE. 

 
 For mountainous areas, such as the Taita Hills, topographic correction is 

important if comparable s values are to be derived across SPOT scenes. This 
thesis showed NDVIs and automated data clustering algorithms can be utilized to 
identify general vegetation classes, from which to derive “c” factors, before a 
topographic correction and classification are applied. This enables the successful 
application of a “c” correction based topographic normalization to SPOT data, to 
remove the slope-aspect effects in the imagery. It is argued that the application of 
the “c” factors derived in this manner accounts for both diffuse irradiance and the 
non-Lambertian reflectance behaviour of the vegetation within each generalized 
group, and it also has the effect of limiting the overcorrection of weakly 
illuminated pixels. 

 
 A multi-scale segmentation/object relationship modelling (MSS/ORM) approach 

was applied to map LULC at a landscape level in the Taita Hills, from the multi-
temporal SPOT imagery. This object-based procedure was shown to derive 
improvements over a uni-scale maximum-likelihood technique in this complex 
heterogeneous area, both in terms of an increase in the assessed overall accuracy 
of  the  classification  from  65.6%  to  73.5%,  and  in  a  Kappa  Index  of  Agreement  
from 0.6 to 0.66, but also more significantly in the derivation of visually superior 
land cover maps based on meaningful homogeneous landscape patches and free 
from the ‘salt and-pepper’ classification noise effect typical of maximum-
likelihood  results.  This  is  due  to  the  theoretical  advancements  possible  when  
conceptualizing a landscape and its depiction in a remotely sensed image as a 
spatially nested patch hierarchy definable at various critical levels of organization 
operating at specific spatial and temporal scales. Useful spatial information 
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surrounding each pixel and multi-scale information within the image are 
incorporated into the classification process by the MSS/ORM approach, where a 
search is made for apparent boundaries in the gradient of flux zones within and 
between landscape patches identifiable through local heterogeneity. In particular, 
the fractal net evolution approach (FNEA) to multi-scale segmentation was 
successful at capturing image objects relating to ecologically meaningful 
landscape patches identifiable in the SPOT data. However, manual editing of the 
final  LULC  maps  was  still  necessary  to  bring  the  data  up  to  an  accuracy  level  
(90%) that was appropriate for the application of the information to environmental 
monitoring and modelling in the Taita Hills. 

 
 In regions of the developing world with limited ancillary data availability, such as 

the Taita Hills, simplified and easily implemented methodologies for modelling 
land degradation at a landscape level are useful in supporting local efforts in 
sustainable land use planning and soil conservation programmes. LULC and 
LULC changes mapped from SPOT imagery can be used in combination with low 
cost GIS derived geospatial layers describing elevation, rainfall and soil type, to 
model degradation in the form of potential soil loss, utilizing the simple universal 
soil loss equation (USLE). Utilization of LULC mapped from SPOT imagery 
allows for the derivation of pertinent cover management factors (C-factors) for the 
USLE application, and changes in LULC can be related to variation in the 
modelled potential soil loss to identify areas at significant risk from soil erosion.  

 
 Human population distribution and abundance can be modelled with satisfactory 

results using only GIS and SPOT derived data and non-Gaussian predictive 
modelling techniques applied using the Generalized Regression Analysis and 
Spatial Prediction (GRASP) modelling framework. The SPOT imagery derived 
land cover data was found to be unnecessary as a predictor because the first and 
second order image texture measurements had greater power to explain variation 
in dwelling unit occurrence and abundance. This makes the application of human 
population modelling significantly easier, since the derivation and validation of 
accurate land cover information from SPOT data is a relatively time consuming 
and costly process. Local scale predictive human population abundance models 
were more suitable than the existing coarser scale GPWv3 and LandScan 2005 
global population datasets in estimating the abundance and mapping the 
distribution of population in the Taita Hills. SPOT derived predictor variables 
utilized on their own did not derive satisfactory modelling results, as was also 
found  to  be  the  case  with  GIS  derived  geospatial  predictor  variables  utilized  in  
isolation. However, combining the geospatial and remote sensing based predictors 
gave the best overall modelling performance, and demonstrated that human 
population distribution and abundance could be modelled with satisfactory results. 

 
The methods outlined in this thesis utilized multi-temporal SPOT satellite imagery; 
however it is considered that they are equally applicable to any medium or high 
resolution multispectral optical remote sensing data. s was derived within 0.02 s 
absolute accuracy (~10% relative accuracy), a benchmark identified as a measure of 
successful atmospheric correction. To enable interoperability and more widespread 
data usability, LULC was mapped using a nomenclature generated with the FAO 
LCCS, and the applied data processing and validation procedures were in line with the 
Global Terrestrial Observing System (GTOS) guidelines for deriving land cover at 
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medium resolution mapping scales as an essential climate variable (ECV-T9). Despite 
the application of an advanced MSS/ORM approach in deriving LULC, manual 
editing of the final maps was still necessary to bring the data up to an accuracy level 
(90%) that was appropriate for the application of the information to environmental 
monitoring and modelling in the Taita Hills. Consequently, it can be seen that the 
semi-automatic derivation of accurate LULC in complex heterogeneous landscapes, 
such as those of the Taita Hills, remains a challenging task and needs further research. 
This  is  a  reason  why  the  GTOS  guidelines  recommend  that,  in  all  cases,  LULC  
products are inspected by a remote sensing analyst familiar with the mapped region. 
When utilizing the MSS/ORM approach, automated derivation of the scale parameters 
for an FNEA image segmentation, rather than the application of heuristic rules, would 
be a significant step forward in extending the application of the approach. This could 
probably be achieved by calculating the scale-space appearance and persistence of 
landscape patches, but this is still currently a research area. 

This thesis has focused on the methodological aspects of monitoring and 
modelling the key environmental issues of LULC change, land degradation and 
population growth, based on the Taita Hills application study site. During the last few 
decades the development of remote sensing and GIS data analysis software, along 
with very significant improvements in computing resources, the growing number of 
remote sensing data sources, and the science- and policy-driven requirements for 
environmental data, have generated major improvements in LULC characterization 
and have allowed for more sophisticated geospatial environmental applications to be 
developed. Throughout the developing regions of the world, there is an ongoing 
requirement for further environmental studies at multiple scales using standardized 
classification schemes, and data processing and validation procedures, supplied with 
detailed metadata, to allow interoperability and greater usability of information on the 
magnitude and nature of LULC changes. The most effective environmental 
monitoring and modelling procedures will be those which can be successfully 
implemented locally in circumstances of limited financial, data and software 
resources. 

However, a full understanding of the mechanisms and driving forces behind 
environmental changes requires the consideration of socio-economic, cultural, and 
political, as well as physical, factors. Environmental monitoring and modelling using 
remote sensing and GIS derived geospatial data and spatial statistical techniques are, 
therefore, only tools, albeit powerful ones, applied to the study of what are complex 
real world problems. Integrated research on environmental changes requires the 
collaboration of earth scientists such as physical geographers, ecologists and 
climatologists, and social scientists such as human geographers, anthropologists and 
economists, as well as remote sensing scientists, and is thus truly interdisciplinary as a 
research paradigm. As all these issues are inherently socio-spatial, the discipline of 
geography is well placed to make significant contributions to such studies, and to 
offer the benefit of oversight over a wide range of pertinent factors. The complex 
nature of the problems requires high-levels of cooperation. By pulling together, 
though, research efforts can be concentrated and offer a real chance to move towards 
scientifically determined actions for conserving natural resources and implementing 
truly sustainable development. 
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