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Abstract 
 
This thesis presents novel modelling applications for environmental geospatial data using 
remote sensing, GIS and statistical modelling techniques. The studied themes can be 
classified into four main themes: (i) to develop advanced geospatial databases. Paper (I) 
demonstrates the creation of a geospatial database for the Glanville fritillary butterfly 
(Melitaea cinxia) in the Åland Islands, south-western Finland; (ii) to analyse species diversity 
and distribution using GIS techniques. Paper (II) presents a diversity and geographical 
distribution analysis for Scopulini moths at a world-wide scale; (iii) to study spatiotemporal 
forest cover change. Paper (III) presents a study of exotic and indigenous tree cover change 
detection in Taita Hills Kenya using airborne imagery and GIS analysis techniques; (iv) to 
explore predictive modelling techniques using geospatial data. In Paper (IV) human 
population occurrence and abundance in the Taita Hills highlands was predicted using the 
generalized additive modelling (GAM) technique. Paper (V) presents techniques to enhance 
fire prediction and burned area estimation at a regional scale in East Caprivi Namibia. Paper 
(VI) compares eight state-of-the-art predictive modelling methods to improve fire prediction, 
burned area estimation and fire risk mapping in East Caprivi Namibia. 
        The results in Paper (I) showed that geospatial data can be managed effectively using 
advanced relational database management systems. Metapopulation data for Melitaea cinxia 
butterfly was successfully combined with GPS-delimited habitat patch information and 
climatic data. Using the geospatial database, spatial analyses were successfully conducted at 
habitat patch level or at more coarse analysis scales. Moreover, this study showed it appears 
evident that at a large-scale spatially correlated weather conditions are one of the primary 
causes of spatially correlated changes in Melitaea cinxia population sizes. 
        In Paper (II) spatiotemporal characteristics of Socupulini moths description, diversity 
and distribution were analysed at a world-wide scale and for the first time GIS techniques 
were used for Scopulini moth geographical distribution analysis. This study revealed that 
Scopulini moths have a cosmopolitan distribution. The majority of the species have been 
described from the low latitudes, sub-Saharan Africa being the hot spot of species diversity. 
However, the taxonomical effort has been uneven among biogeographical regions. 
        Paper III showed that forest cover change can be analysed in great detail using modern 
airborne imagery techniques and historical aerial photographs. However, when spatiotemporal 
forest cover change is studied care has to be taken in co-registration and image interpretation 
when historical black and white aerial photography is used.  
        In Paper (IV) human population distribution and abundance could be modelled with 
fairly good results using geospatial predictors and non-Gaussian predictive modelling 
techniques. Moreover, land cover layer is not necessary needed as a predictor because first 
and second-order image texture measurements derived from satellite imagery had more power 
to explain the variation in dwelling unit occurrence and abundance. 
        Paper V showed that generalized linear model (GLM) is a suitable technique for fire 
occurrence prediction and for burned area estimation. GLM based burned area estimations 
were found to be more superior than the existing MODIS burned area product (MCD45A1). 
However, spatial autocorrelation of fires has to be taken into account when using the GLM 
technique for fire occurrence prediction.    
        Paper VI showed that novel statistical predictive modelling techniques can be used to 
improve fire prediction, burned area estimation and fire risk mapping at a regional scale. 
However, some noticeable variation between different predictive modelling techniques for 
fire occurrence prediction and burned area estimation existed. 
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Preface 
 
“The Long and Winding Road” would be best to describe the process creating this thesis. 
“Long” because it has taken some years to finally finish it and “Winding”, mainly because it 
has taken me to so many places both thematically and from a geographical point of view. This 
thesis contains various study themes in the fields of geoinformatics and it covers studies from 
three different study areas, one is located in Finland and two in Africa, in addition one study 
is made at a world–wide analysis scale. For unknown strange reason, my destiny has pointed 
my way back to my study areas in Finland and Africa.  
        In 1996 I went for the first time to Katima Mulilo (17°30'11"S, 24°16'26"E) in East 
Caprivi Namibia as a Master’s student in development geography, taking part in FINNIDA’s 
Forest Fire Control Pilot Project in the East Caprivi region. Later on, in 2004 I just passed 
East Caprivi on a bus trip from Windhoek Namibia to Livingstone in Zambia, but in 2007 I 
made my return to East Caprivi, this time not in situ, but from my working desk as my interest 
to understand the fires in Africa, and especially in East Caprivi, arose again. This time I was 
not using development geography methods but instead I used remote sensing, GIS and 
statistical techniques to predict fire occurrences in East Caprivi region. In 1998 I started 
working with Melitaea cinxia butterfly geospatial database at the Metapopulation Research 
group (MRG) lead by Professor Ilkka Hanski. Our study area was in Åland Islands, which 
meant that I made a return again. I returned to the landscape of my youth as I spent some 
summers in a small Island called Grytgrundet (19°59'22"E, 59°59'17"N) in southern Åland 
Islands. During my 3 ½ years in MRG I came very familiar with Åland Islands landscape, 
especially with those dry meadows habitat patches suitable for Melitaea cinxia butterfly that 
we were delineating using a Global Position System (GPS) method. My latest work position 
at the Department of Geosciences and Geography has taken me several times to Taita Hills in 
Kenya and again I made a kind of a return to my study area. In my sabbatical leave in 2004, 
we took a rough bus ride from Moshi in Tanzania to Mombasa in Kenya. During the trip our 
bus travelled through West Tsavo National Park and the first stop after crossing the West 
Tsavo plains was to be made in Mwatate. Before the short stop at the Mwatate tremendous 
rock wall of Bura Cliff (3°29'18"S, 38°20'42"E) could be seen and at that point I remembered 
that Finnish geographers, some of them my old fellow students, might be up on the Taita Hills 
making research. It took me less than two years from that incidence and I found myself 
working with Taita Hills geospatial data at the Department of Geosciences and Geography, 
University of Helsinki.  
        In my life I have had the great fortune to spend long periods in the tropics and subtropics 
from the heat of South East Asia to the colds of the High Altiplano and down to the burning 
savanna plains of Africa. On these trips over the last 25 years I have travelled in almost 90 
countries and I have been able to witness the beauty of our Planet but unfortunately also the 
rapid environmental degradation that has happened in less than 25 years. Environmental 
degradation is proceeding with frightening speed and I deeply believe that something can, and 
has to be done, to stop environmental degradation. This thesis is my small contribution 
towards trying to protect our Planet as I believe that we need more information of the abiotic, 
biotic and anthropogenic factors and processes that are causing environmental degradation. 
We need more understanding of the diversity, distribution, and dynamics of species like 
Scopulini moths and the Melitaea cinxia butterfly and we need to develop methodologies for 
accurate estimation of forest cover change. We need more precise methods for up-to-date 
human population estimation and we need to create more explicit models of fire occurrence 
and burned area estimations   
        Geoinformatics and geospatial data sets have developed considerably in the last two 
decades and with the aid of GIS and remote sensing methods we can now create complex 
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geospatial databases and build complex geospatial models. However, all too often geospatial 
data sets, study results and information we scientist are creating in our First World offices, 
unfortunately stay hidden in our premises. We are more interested to top up our publication 
list and to gain personal credits than actually sharing the knowledge we have created. The 
sharing culture is still poor, especially when the knowledge should flow from the “Rich 
North” to less developed countries in the south. It is therefore important to realise that if we 
create useful geospatial databases or geospatial models, we also have to share them. This is 
especially true if we have made our studies in Third World Countries. By saying this, I mean 
that, I don’t want my East Caprivi geospatial fire database or ARC/INFO AML macros to be 
buried with my crashing computer when the hard drive stops working and my external backup 
hard drive fails to function. I want to share my data and my ARC/INFO AML macros. For 
this reason, ARC/INFO AML macros and some other code to automate GIS processing can be 
freely copied from the Appendix section. I want also to share as much of my methodological 
geoinformatics knowledge as it is possible in an academic dissertation. My way of thinking 
might arise from my long GIS teaching experience and in this thesis I want to emphasize the 
importance of the geoinformatics methodologies and therefore methodological frameworks 
are presented in detail in section 4. By emphasising geoinformatics methodologies in this 
thesis, I also hope that whoever is reading this could use similar kinds of geoinformatics 
methodologies for his/her environmental modelling that are used in this thesis. 
        I strongly believe that we need to take into account abiotic, biotic and anthropogenic 
factors and processes behind environmental problems before we can resolve them. We need to 
have a broad knowledge for all these study fields, not just one. We need to have a holistic 
understanding for environmental problems and we need to combine more than just one entity 
to form something new — we need synthesis. And because geography is a discipline of 
synthesis; “There has always been a view of geography as a discipline of synthesis. Holism 
has been there the whole time…” (Holt–Jensen 1988), I therefore strongly believe that 
geographers can contribute fighting against environmental problems in a very special way as 
we geographers have the skill to see the “The Whole Picture”.  
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1. Introduction 

1.1 The need for geospatial environmental modelling 
 
We are on the edge – Earth is experiencing tremendous environmental problems at global, 
regional and local scales. According to the UN Intergovernmental Panel on Climate Change 
(IPCC) there is currently high scientific agreement that human-induced climate change is 
unequivocal and operating as an accelerator for combination of climate change associated 
environmental disturbances such as flooding, droughts, melting of snow and ice, rising sea 
level and wildfires. Other human actions such as land use change, landscape fragmentation 
and overexploitation of natural resources are acting as drivers for climate change. Therefore, 
there is a great need for action to save our environment from destruction. During the last few 
decades the development of remote sensing and GIS software has been fast, allowing for 
more sophisticated geospatial environmental applications to be developed. Geospatial 
environmental modelling using remote sensing, GIS and more recently spatial statistical 
techniques have deepened our understanding of the factors, mechanisms, and driving forces 
behind environmental destruction. However, we need to account for abiotic, biotic and 
anthropogenic factors and we need more broadminded and visionary approaches and 
modelling applications to understand environmental problems in a holistic way.  
 

The need for accurate forest cover change analysis at a local scale 
 
        Deforestation continues at an alarming speed. About 13 million hectares were lost per 
year from 2000 to 2005, mainly to conversion for agricultural land. Globally ca. 36% of forest 
are primary forest, i.e. forests of native species, and about 6 million hectares of these forests 
has been lost or modified each year since 1990 (FAO 2006). However, during this same 
period from 2000 to 2005, natural expansion of forests and forest plantations affected 5.7 
million hectares per year, resulting in an annual net loss of total forest cover estimated at 7.3 
million hectares (FAO 2006). Furthermore, forests are acting as vital carbon sinks and it is 
estimated that the World’s forests store 283 gigatonnes of carbon in their biomass and that 
this stock decreases by 1.1.gigatonnes annually because of deforestation and forest 
degradation. The largest net loss of forests occurs in South America (ca. 4.3 million hectares 
annually), followed by Africa (ca. 4.0 million hectares annually) (FAO 2006). It is therefore 
clear that deforestation, especially in the tropics, has become a major concern, not only 
because of the impact on the global carbon budget, but also due to the loss of natural habitats 
and biodiversity (Melillo et al. 1996). 
 

The need to improve fire prediction and burned area estimation 
 
        Millions of hectares of forests are burned annually. Tansey et al. (2004) used SPOT 
VEGETATION satellite data and estimated vegetation fires to affect 350 million hectares in 
2000, whereas Roy et al. (2008) used MODIS satellite data to assess the globally burned area 
to be 360 million hectares from July 2001 to July 2002. Warming climate may have profound 
impacts on global fires. Fires occurrence and area burned may increase and prolonged fire 
seasons and more extreme fire events are expected (Stocks et al. 1998; Hennessy et al. 2006; 
Flannigan et al. 2009). Greenhouse gases, such as CO2 released by human activity are emitted 
into the atmosphere causing the earth to reach higher temperatures. It has been estimated that 
biomass burning contributes up to 40% of the annual CO2 released into the atmosphere by 
human activities (Levine 1996; Dweyer et al. 2000) and therefore it is important to be able to 
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have an accurate estimate of the global burned biomass. However, great uncertainty still 
exists in these calculations and one of the most critical inputs for these models is a precise 
estimation of burned areas. Different remote sensing methodologies and algorithms have been 
developed during the last few decades to achieve precise burned area estimation, but still there 
are some issues that have to be solved before truly accurate burned area information can be 
achieved. At the local and regional level, forest fire managers need more knowledge of active 
fire locations and areas that might be under fire risk. Fire prone areas can be identified by 
using remote sensing methods and preventive actions can be targeted to these core fire risk 
areas.  
 

The need for species diversity and distribution models 
 
        Tropical forest loss, degradation and fragmentation is regarded as the major cause of the 
current biodiversity crisis (Andrén 1994; Achard et al. 2002). Tropical forest loss affects also 
climate change, which is also accelerating biodiversity loss. According to IPCC (2007) it is 
estimated if global average temperature increases exceed 1.5 to 2.5°C, there are projected to 
be major changes in ecosystem structure and function, e.g. in species ecological interaction 
and species geographical ranges. Approximately 20 to 30% of plant and animal species are 
likely to be at risk of extinction with the presented climate change scenario. Global warming 
also represents perhaps the most serious threat to biodiversity and according to Malcolm et al. 
(2006) rising temperatures could have a dramatic impact for the species richness of 25 
"biodiversity hotspots". The worst affected areas include the Cape floristic region of South 
Africa, Southwest Australia, Caribbean, Indo-Burma, Mediterranean Basin and Tropical 
Andes. For these areas extinction of hundreds, even thousands of hotspot endemic plant and 
vertebrate species are expected under present climate scenarios. It is therefore important to 
understand the present global species diversity and distribution. 
        Habitat fragmentation and habitat loss can have profound effects on species at regional 
and local scale. In Åland Islands, south-western Finland habitat patches suitable for Melitaea 
cinxia butterfly have declined or degraded due to overgrowth of meadows and pastures, 
construction of roads and buildings. This has increased the extinction risk of Melitaea cinxia 
butterfly (Hanski 1998). It is therefore important to understand the effects of habitat 
fragmentation and loss to the local species. Sound spatio-temporal geospatial databases are 
needed to study species–environment interaction in real fragmented landscapes and for 
implementing realistic models and theories such as metapopulation theory using spatially 
explicit geospatial data. 
 

The need for human population occurrence and abundance prediction and mapping 
 
        The rapid population growth and increasing need for natural resources are the main 
sources of environmental degradation (Cropper & Griffiths 1994; Preston 1996). According to 
the UN, world population reached 6.5 billion in 2005 and the population of the world is 
expected to increase from ca. 6.5 billion today to 9.1 billion in 2050. The largest population 
growth is expected in Third World countries having significant social, economic, and 
environmental consequences on these regions. Spatially explicit up-to-date information of 
population distribution and abundance are needed for these areas because the traditional 
nationwide population census is an error-prone, tedious operation and often undertaken only 
with a 10-year interval. In addition, demographic information is usually provided in national 
or administrative units and these sub-national reference units can be vastly different in size 
and shape (Li & Weng 2005; Mubareka et al. 2008). For spatial analysis it is often preferable 
to record human population estimates in regular analysis grids such as Landscan (Dobson et 
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al. 2000). However, the problem for existing population models are their coarse scale e.g. 
Landscan 1 km2, thus generalizing and obscuring the internal variability of population data. 
Therefore at a local scale cost-efficient applications to create spatially explicit human 
population geospatial databases and distribution maps at finer scales are in great demand. 

1.2 Aims of the study 
 
The aim of the study is to develop, describe, analyse and interpret GIS/RS based geospatial 
data modelling techniques. This thesis contributes to geospatial data processing and analysis 
by presenting advanced geospatial applications exploring novel methodologies and analysis 
techniques in the context of environmental modelling. This thesis covers five important study 
themes: (i) designing and developing environmental geospatial databases; (ii) studying 
species diversity and distribution using geospatial database and GIS techniques; (iii) 
analysing spatiotemporal forest cover change using remotely sensed data; (iv) developing a 
method for human population occurrence and abundance modelling using environmental 
geospatial data; and (v) developing predictive modelling techniques for improvement of fire 
occurrence and burned areas estimation. The constituting themes and Papers (I–VI) are 
summarized in Figure 1. 
         Paper (I) presents geospatial database development and analysis methodologies for 
ecological applications. Advanced database creation techniques were used to create a 
geospatial database for the Melitaea cinxia butterfly in the Åland Islands, south-western 
Finland. The database was implemented in MS Access database management system and the 
database was compiled from three main data sources: (i) from bi-annual field survey data for 
the Melitaea cinxia butterfly; (ii) from Melitaea cinxia habitat patch GPS-delineation data; 
and (iii) from climate data obtained from historical archives and from radar precipitation data. 
By using the geospatial database various spatial analyses was conducted.     
        Paper (II) examines temporal and spatial patterns of the species descriptions, diversity 
and geographical distribution for Scopulini moths at a world-wide scale using GIS. Species 
data was collected from multiple sources and statistical methods and GIS techniques were 
used for diversity and geographical distribution analyses 
        Paper (III) describes indigenous and exotic species spatiotemporal forest cover change 
analysis methodologies using remotely sensed airborne digital camera imagery for Taita Hills 
in Kenya. Airborne colour image mosaics for 2004, black and white aerial photographs for 
1955 and 1994, and field survey data for 2007 and 2008, in addition with ancillary data from 
Taita Hills geospatial database were used for forest cover change detection analysis at a local 
scale.   
        Paper (IV) presents a predictive modelling methodology to estimate human population 
distribution and abundance in the mountainous rural area of Taita Hills, Kenya. Dwelling 
units were interpreted and digitized from airborne image mosaics and presence-absence of 
dwelling units in 100 m analysis grid was used as a response variable. Remote sensing-based 
(reflectance, texture and land cover) and geospatial (topography, climate and distance) data 
from the Taita Hills geospatial database were used as predictors. Generalized additive models 
(GAMs) were used to relate the dwelling units to remotely sensed and geospatial predictor 
data. Human population abundance models were compared with Kenyan population census 
data for 1999 and with two existing global coarse scale population estimate grids; Gridded 
Population of the World and LandScan 2005, respectively.  
        Paper (V) employs analysis techniques to improve knowledge for fire occurrence and 
burned area estimation at a regional scale in East Caprivi, Namibia. First fire hot spots 
occurrence was analyzed and spatial autocorrelation for fires investigated using Moran’s I 
correlograms. Generalized linear models (GLMs) were used to relate MODIS hot spots fire 
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data to geospatial predictors. Separate fire probability models were calibrated for abiotic, 
biotic, anthropogenic and combined predictors and autocovariate variable was tested for 
model improvement. Model performance was evaluated using area under the curve (AUC) 
from the receiver operating characteristic (ROC) plot and the hierarchical partitioning method 
was used to determine independent effects of explanatory variables. The predicted probability 
surfaces were translated into a burned area presence–absence classification maps for 
comparison analysis with Moderate Resolution Imaging Spectroradiometer MODIS burned 
area product (MCD45A1) data. 
        In Paper (VI) eight state-of-the-art predictive modelling techniques were tested for fire 
prediction, burned area estimation and fire risk mapping improvement relative to the existing 
MODIS burned area fire product (MCD45A1) in East Caprivi, Namibia. MODIS hot spots 
fire data was related to geospatial predictors using the BIOMOD modelling framework 
(Thuiller 2003; Thuiller 2009). Models were evaluated using AUC and Kappa statistics and 
the predicted probability surfaces were translated into a burned area presence-absence 
classification maps for comparison analysis with the MODIS (MCD45A1) burned area 
product. 

 
Figure 1. Summary of study areas, analysis scales, analysis themes and methods for Papers 
I–VI. 
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2. Theoretical and methodological background  

2.1 Geospatial databases – design and development 
 
Before any spatial analysis can be conducted a geospatial database has to be designed and 
developed. The first process is database design where the contents of the intended database 
are identified and described. According to Elmasri & Navathe (1994) database design can be 
divided into three major phases: (i) conceptual data modelling, where the data content is 
identified and described at an abstract, or conceptual, level; (ii) logical database design, where 
conceptual database design is transformed into the data model of a specific software system; 
and (iii) the physical design phase, where the data model is represented in the schema or 
semantic data model of the software. In this phase, issues such as data storage structures and 
indexing are determined. Laurini & Thompson (1992) named the final phase as internal 
design, a phase that provides a basis for data model implementation. In geospatial modelling 
the entity-relationship (E-R) modelling technique, developed by Chen in 1976, has gained 
popularity and it has been extremely effective over a wide range of applications. In this 
approach entities are the relevant objects for the database and in a GIS, an entity is any object 
that can be localised spatially. Attributes or physical characteristics of each object are 
attached to the entities. Between entities and attributes different kinds of spatially referenced 
relations or mechanisms can exist, e.g. ‘located in’ and ‘contained in’. 
        All GIS software has in-built database management system (DBMS) capabilities such as 
structured query language (SQL) properties. However, GIS software cannot handle complex 
relationships and therefore present day geospatial databases are managed from relational 
database management systems (RDBMS). These commercially available or Open Source 
database management software programs can be programmed to perform these same tasks, 
e.g. database queries outside of the GIS or RDBMS can be connected through Open Database 
Connectivity (ODBC) to GIS software. The structure of geospatial databases can be very 
simple, consisting of only a few entities and attributes, or they can be very large systems 
dealing with highly structured geographic data and complex spatial relationships. In this 
thesis, six different geospatial databases were designed and developed but only one is 
described in details as it was the main aim in Paper (I) to design and develop a geospatial 
database for the Melitaea cinxia butterfly. The structure of databases ranged from very simple 
for the Scopulini moth Paper (II), to a rather complicated one for the Melitaea cinxia butterfly 
Paper (I), which consisted of many entities and attributes and relations. A logical flowchart of 
geospatial database analytical operations and data models in different levels of abstractions 
can be seen from Figure 2.  
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Figure 2. A logical flowchart of geospatial database analytical operations (left hand side) 
and data models in different levels of abstraction (right hand side). 

2.2 Geographical diversity and distribution modelling and mapping for species data 
 
For centuries, biologists and ecologists have been preoccupied with the question of species 
distribution. Early studies such as von Humboldt & Bonpland (1805) tried to explain why 
species are present in some places and absent from the others? In the 1960s, some iconoclastic 
theories have been developed such as the theory of island biogeography by MacArthur & 
Wilson (1967) explaining that the number of species increases with increasing area, or 
latitudinal gradient theory of diversity represented by Fischer (1961) where he showed that 
the number of species decline moving away from the tropical to extratropical areas. However, 
notable exceptions exist to the general patterns of species distribution and these anomalous 
representations may be dependent on such things as spatial scale or taxonomic hierarchy or 
elevational gradients (Beck & Chey 2008). 
        The term metapopulation was fist introduced in a paper by Richard Levins (1969) and it 
was a starting point for a gradual paradigm shift and emergence of a new metapopulation 
theory and empirical research. A ‘metapopulation’ is a “population of populations” (Levins 
1969); in which distinct subpopulations (local populations) occupy spatially separated patches 
of habitat. The habitat patches exist within a matrix of unsuitable space, but organism 
movement among patches does occur, and interaction among subpopulations maintains the 
metapopulation. Levins’s classical metapopulation theory considers that species persistence in 
the landscape depends on a turnover of extinction-(re)colonisation of suitable habitat patches 
at each generation and metapopulation dynamics are approximated by binary changes in the 
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state of individual patches. However, real metapopulations do not consist of identical and 
equally connected populations, as is assumed in the basic models. Therefore, more recent 
empirical metapopulation models emphasize the importance of connectivity and isolation of 
populations in fragmented landscapes, ending up with the development of models like the 
Incidence Function Model (Hanski 1998).  
        The long-term research on the Glanville fritillary butterfly (Melitaea cinxia) in the Åland 
Islands south-western Finland was started in 1991 and soon it could be shown that Melitaea 
cinxia was an ideal modelling system for metapopulation studies. Since 1991 it has been the 
basis for a number of new empirical models in the context of metapopulation biology and 
ecology (see e.g; Hanski 1998; Hanski & Ovaskainen 2000). Creation of the Melitaea cinxia 
geospatial database started in 1998, which will be described in more detail in sections 3.1 and 
4.1. and in Paper I. In short, the main idea was to incorporate existing Melitaea cinxia field 
survey data, climatic data and GPS delimited habitat patch data to geospatial database.   
        In the last decade, with the rise of advanced ecological applications using GIS and 
remote sensing, a new paradigm of quantitative, spatial species distribution modelling has 
emerged. At present, overwhelming numbers of predictive species distribution applications 
exist at global, regional and local scales. For a comprehensive review of the species 
distribution methodologies utilizing remote sensing and GIS techniques refer, for example, to 
Guisan & Zimmermann (2000) or Rushton et al. (2004). These new studies have given some 
cogent results determining the driving biotic and abiotic factors for species distribution at 
global, regional and local scales. Some of the most important biotic factors that affect 
diversity, distribution and abundance of species have been shown to be dispersal, habitat 
selection, competition, predation, parasitism and mutualistic interactions with other species. 
Many abiotic factors such as temperature, precipitation, potential evapotranspiration and 
incoming solar radiation, are limiting diversity, distribution and abundance of species. Species 
distribution models have become very sophisticated but at the same time very complex and 
hard to interpret. Therefore, in Paper II a more traditional species distribution modelling 
perspective was chosen to describe various temporal and spatial patterns of the species 
descriptions, diversity and geographic distribution.   

2.3 Forest cover monitoring using satellite data and airborne imagery 
 
Initially, remotely sensed forest cover maps were produced at a local scale using visual 
interpretation of black and white aerial photographs, but the commencement of the Landsat 
program in the 1970s enabled the first use of high- to moderate-resolution satellite imagery 
for forest cover mapping over large areas (Woodcock et al. 2002). Since its launch in 1972 
Landsat satellite platforms (Landsat MSS, Landsat TM and Landsat ETM+), have been the 
most applied high- to moderate-resolution satellite imagery for forest cover monitoring 
(Fuller 2006). SPOT imagery has also been used to analyse land use change (e.g. Clark & 
Pellikka 2009). Coarse-resolution sensors have been utilized for global- and regional scale 
forest cover monitoring. At a coarse-scale, NOAA AVHRR (Advanced Very High Resolution 
Radiometer) satellite images with 1 km spatial resolution were used, for example, in the 
TREES project to create a map for tropical forest cover at scale of 1:5 000 000 (Malingreau et 
al. 1995; Mayaux & Lambin 1995, 1997). More recently other sensors such as Moderate 
Resolution Imaging Spectroradiometer (MODIS) and SPOT Vegetation sensor on board 
SPOT–4 and SPOT–5 satellites are replacing AVHRR to monitor forest cover in regional- 
and global scale because these sensors has improved geolocation and calibration capabilities 
relative to AVHRR sensors (Fuller 2006). Very high-resolution � 5 m satellite imagery such 
as Ikonos, QuickBird and GeoEye–1 has gained some popularity recently for forest cover 
change mapping, but purchase costs are high and these images covers only a relatively small 
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area, e.g. an Ikonos scene covers 11.3 ×11.3 km. Therefore, still at the present, Landsat is the 
most popular imagery for forest cover monitoring and change analysis at a regional scale.   
       A common feature for all the sensors described above is that they cannot penetrate 
clouds, thus hindering the acquisition of cloud free images, especially when monitoring 
tropical forests at low latitudes with persistent cloud cover. In addition, high- and moderate 
resolution satellites suffer from low temporal resolution. Therefore, radar imagery, for 
example from the Japanese Earth Resources Satellite (JERS–1) and European Remote 
Sensing Satellite (ERS), has been tested as an alternative method for forest monitoring 
(Sgrenzaroli et al. 2002; Podest & Saatchi 2002). However, it has been hard to interpret 
landscapes from radar images compared to imagery from the more traditional optical sensors, 
such as Landsat. 
        Due to the obstacles space-borne satellites might present, visual aerial photograph image 
interpretation can still be regarded as the most adequate and accurate remotely sensed method 
for forest cover change analysis at local and regional scale. Traditionally, aerial imagery has 
been the black and white photographs recorded on light-sensitive films but fairly recently the 
benefits of using digital aerial photographs has been recognized. There are some obvious 
advantages when digital airborne camera data is used: (i) the camera data is in a digital format 
allowing the automation of procedures during the whole processing chain from image data 
acquisition to image correction; and (ii) if needed, image manipulations are fairly easy to 
make for digital format images. However, digital camera image acquisition and processing is 
still a quite new field and therefore a consistent, repeatable methodological framework has to 
be developed suitable for forest cover change analysis. EnsoMOSAIC digital camera system 
represents a semi-automatic digital image processing technique which was used for a forest 
cover change study in Taita Hills (Paper III). 

2.4 Human population estimation using geospatial data 
 
Human population growth is one of the main threats to the world’s environment. Since the 
start of the Industrial Revolution population has rapidly grown and environmental degradation 
has proceeded at an accelerated speed. Population growth has had profound social, economic, 
and environmental consequences and, at present, a great concern has emerged with the 
growing number of population increasing per capita greenhouse gases in to the atmosphere 
thus accelerating the global warming. To cope with population growth and the related 
environmental degradation it is therefore important to have precise estimates of the number of 
population and spatially explicit information of the human population distribution (Sutton et 
al. 1997). In developed countries the number of population and the distribution is well know 
and computerized, but in many Third World countries the traditional census methods are still 
used. Population censuses are found to be time-consuming, costly, error-prone, difficult to 
update and the census interval is often too long for many types of applications (Li & Weng 
2005). Therefore, in addition to conventional census calculations other methods, such as 
aerial photo interpretation, have been used. Aerial photography has been the traditional 
airborne method to estimate population and to map the population distribution at local or 
regional scales. Large-scale aerial photographs have been used since the 1950s for dwelling 
unit counting, e.g. Porter (1956) used a rural dwelling unit count in Liberia, whereas Lo 
(1986) was able to estimate population for the city of Athens in Georgia U.S. using aerial 
photographs at the census tract level with high accuracy. However, the dwelling unit count 
method is a time-consuming, expensive process and it requires abundant high resolution aerial 
photographs to cover large areas (Lo 1989). 
        Orbital remote sensing has been considered as an adequate option for population 
estimation. Satisfactory population estimations results have been achieved despite the 
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limitations of spatial resolutions of the sensors used, for example Landsat and SPOT (e.g. 
Forster 1983; Lo 1995). A number of studies have combined orbital remote sensing data with 
regression techniques for population estimation. Forster (1983) used Landsat Multispectral 
Scanner (MSS) data and developed a multi regression equation with standard deviation of 
separate bands and various reflectance ratios, to predict housing density and Lo (1995) linked 
spectral radiance values of image pixels with residential densities for the Kowloon 
metropolitan area of Hong Kong using a multispectral SPOT image. In addition to local and 
regional scale population estimations there have been a few attempts at global scale 
population estimation using geospatial data modelling to create gridded population models. 
The most used global population models are: Gridded Population of the World (GPWv3) at 5 
km resolution (CIESIN 2005); LandScan at 1 km resolution (Dobson et al. 2000) and United 
Nations Environment Programme/Global Resource Information Database at 1–degree 
resolution (UNEP/GRID 2006), respectively. However, existing global population data have 
some serious issues, e.g. too coarse resolution generalize and obscure the internal variability 
of population when considered for use at a local or regional scale. Therefore, Paper IV 
concentrates on developing an enhanced probability based application that can be used for 
population distribution mapping and for population abundance estimation at a local or 
regional scale. 

2.5 Fire detection and prediction methods using geospatial data   
 
Fires burn million of hectares each year globally and fires play a very important role in 
ecosystems. There is scientific agreement that a significant fraction of trace gases and 
greenhouse gasses emitted into the atmosphere are originated from fires (Fuller 2000; 
Korontzi et al. 2004; Lentile et al. 2006). It has been estimated that biomass burning accounts 
up to 40% of annual anthropogenic CO2 emissions and ca. one-quarter of anthropogenic 
particulate matter (Levine, 1996). Fire affects not only the atmosphere but also the terrestrial 
environment, as biomass burning is a major driving force in anthropogenic land-cover change, 
especially in the tropics. Moreover, burning has been proved to be a significant factor in 
altering vegetation cover which in turn may lead to land degradation and loss of biodiversity 
(Eva & Lambin, 2000; Fuller 2000; Lentile et al. 2006; Clark & Bobbe 2007). Therefore, 
there has been a great need to discover methodologies to analyse fire frequency and extent. 
Over the last few decades remote sensing has been successfully used for active fire detection 
and for fire-scar detection, thus increasing our understanding of fire frequency and extent at 
global to local scales. In addition, some studies have been conducted to predict fire 
occurrence. Table 1 summarizes some of the current satellite sensors that are used for active 
fire detection and fire-scar detection.  
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Table 1. Characteristics of satellite sensors used for active fire and fire-scar detection 
(Modified after Fuller 2000). 
 

 
 

Sensor 
Major 

applications 
Spatial 

resolution Swath  width 
Bands  

(�m range) 
Major 

advantages 
Major 

limitations 

AVHRR Active fires,  1.1 km 2400 km 0.58–0.68 Widely available, 
325 K saturation 
in  channel 3 

 Fire scars   0.72–1.10  low cost,  
    3.55–3.93  high temporal  
    10.3–11.3  Frequency  
    11.5–12.5   
DMSP-
OLS Active fires 0.56 km 3000 km 0.58–0.91 High sensitivity; Night-time 
  2.07 km  10.3–12.9 high temporal use only during 
     Frequency low lunar 
      illumination 
SPOT-4 Fire scars 10 m PAN  60 km 0.50–0.59 High spatial  Low temporal 
  from 0.61   0.61–0.68 resolution, frequency, low 
  to 0.68 �m  0.79–0.89 MIR band area coverage, 
  20 m MS  1.58–1.75  high costs 
SPOT 
vegetation Fire scars 1 km 2000 km 0.43–0.47 MIR band, large Unknown 
    0.61–0.68 areas covered,  
    0.78–0.89 high temporal  
    1.58–1.75 Resolution  
Landsat  Fire scars 15 m PAN 185 km 0.45–0.52 MIR band, Low temporal 
(TM and 
ETM+)  30 m MS  0.52–0.60 high spatial resolution, 
    0.63–0.69 resolution, high cost 
    0.76–0.90 well-known  
    1.55–1.75 data source  
    10.4–12.5 Used as fire scar  
    2.08–2.35 reference data  

GOES-8 Active fires 
1 km 
(visible) Hemisphere 0.52–0.72 Very high Coarse spatial 

  
4 km 
(infrared)  3.78–4.03 Temporal resolution,  

    6.47–7.2 Resolution 3.9 �m band 
    10.2–11.2  saturates at 335 K 
    11.5–12.5   
ATSR Fire scars 1 km 500 km 3.51–3.89 Good spectral  Unknown 
    1.57–1.63 Configuration  
    10.4–11.3 for fire-scar  
    11.5–12.5 Mapping  
MODIS Active fires,  250 m 2330 km 36 bands Saturation of Unknown 

 Fire scars 
500 m, 
1km  Including 450 K at  

    3.9 and 4 �m and  
    11 �m 400 K at 11 �m  
       
Ikonos Fire scars 1 m PAN 11.3 km 0.440–0.516 Used as fire scar Low temporal 
  4 m MS  0.506–0.595 reference data resolution, 
    0.632–0.698  high cost 
        0.757–0.853     
QuickBird Fire scars 61 cm PAN 16.5 km 0.450–0.520 Used as fire scar Low temporal 
  2.4 m MS  0.520–0.600 reference data resolution, 
    0.630–0.690  high cost 
    0.760–0.900   
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       Active fire detection, also known as hotspot detection, is based on the detection of the 
middle infrared (MIR) and thermal infrared (TIR) radiation emitted by fires (Qu et al. 2008). 
Advanced Very High Resolution Radiometer (AVHRR) on board (NOAA) satellites has been 
used in several studies since the 1980s for active fire detection even though the sensor was not 
designed for that purpose (see e.g. Setzer & Malingreau 1996; Eva & Lambin 1998a: Dwyer 
et al. 2000; Eva & Lambin, 2000; Fuller 2000). AVHRR has mainly been used for active fire 
detection at a broad-scale because of the coarse resolution (1 km). More recently, researchers 
have turned to using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data 
for active fire detection (see e.g. Justice et al. 2002; Roy et al. 2002, 2005, 2008; Miettinen et 
al. 2007). Since its launce in 1999 MODIS onboard Terra satellite, and MODIS onboard 
Aqua satellite since 2002, have been the most popular satellite platforms for fire scar studies. 
MODIS system extends the active fire detection and fire scar mapping capabilities of 
AVHRR and, unlike AVHRR, MODIS has specially designed channels (band 21 and 22) that 
are suitable for fire detection (Justice et al. 2002). At the present there are various other 
space-borne coarse scale satellites suitable for active fire detection, e.g. Geostationary 
Operational Environmental Satellite (GOES), the Defense Meteorological Satellite Program 
Operational Linescan System (DMSP-OLS), Visible and Infrared Scanner (VIRS), onboard 
the Tropical Rainfall Measuring Mission (TRMM) satellite, and European Remote Sensing 
Satellite Along Track Scanning Radiometer (ATSR) and its enhanced version (AATSR). For 
a full treatment of remotely sensed active fire detection issues, e.g. space-borne sensors, 
algorithms, products and fire detection methods, refer to Qu et al. (2008).       
        Fire scar detection (burn scar detection) is a method where burnt areas are identified and 
delineated using their spectral signature and/or fire-induced spectral changes. Over the last 
two decades a wide range of satellite data has been utilized for fire scar detection. At a coarse 
resolution (� 1 km), AVHRR has been used in the past for broad-scale burned area mapping 
and various algorithms and methods have been produced (see for example Kaufman et al. 
1990; Barbosa et al. 1998; Barbosa et al. 1999; Roy et al. 1999; Fuller & Fulk 2001). Since 
1999 MODIS has gained more attention and various burned area estimation studies at a 
moderate resolution (250–500 m) have been conducted since that time (see for example Roy 
et al. 2002, 2005, 2008; Sá et al. 2003; Chuvieco et al. 2005). Other satellite platforms, such 
as SPOT VEGETATION (1 km resolution), have also been utilized (see Stroppiana et al. 
2002, 2003; Zhang et al. 2003; Silva et al. 2004). There are also a few radar based fire scar 
detection studies (e.g. Bourgeau-Chavez et al. 2002; Gimeno & San-Miguel-Ayanz 2004).       
        At a high resolution, Landsat TM and ETM+ images has been broadly used. Landsat has 
been used to derive reference burned area when comparison has been made with coarse or 
moderate resolution satellite imagery (see e.g. Eva & Lambin 1998a, 1998b). Landsat images 
allow for the measurement of the extent of burnt areas and the proportions of burnt surface 
and this information can used to estimate the effects of fires. The start of new millennium has 
brought several very high resolution space-borne satellites such as Ikonos and GeoEye–1 with 
resolution ranging from 0.5 meters to 4 m. With these images it is possible to have a very 
precise estimate of burned areas and validate the errors that occur in burned area estimations 
when using coarse or moderate resolution images. However, Landsat and very high resolution 
satellite data suffer from low temporal resolution and the costs for very high resolution 
images are still high and the areal coverage is very small.  
        Recently, various custom-made burned area products have been developed. The MODIS 
Burnt Area Product (MCD45A1) is a monthly Level 3 gridded 500 m product containing per-
pixel burning and quality information, whereas GLOBCARBON (BAE) burned area data at 1 
km resolution is based on three satellite sensors: ATSR2, AATSR and SPOT VEGETATION 
respectively. Another Global burned area product, L3JRC utilizes SPOT VEGETATION 
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satellite images for burn area estimation using a single algorithm for burned area detection at 
1 km resolution (Tansey et al. 2008). 
        However, the utilization of coarse resolution satellite images for fire detection raises 
some issues that need to be considered. Fire studies that have compared coarse resolution and 
high resolution reference fire data have found that apparent omission and commission errors 
exists (see Eva & Lambin 1998a; Boschetti et al. 2004; Laris 2005). Omission error occurs 
due to various reasons like: persistent cloud cover that hampers fire detection; difference 
between the time of fire occurrence and satellite overpass, and too coarse pixel size to detect 
small patchy fires (Eva & Lambin 1998a; Hawbaker et al. 2008; Roy et al. 2008). On the 
other hand, commission errors are caused by non-fire surfaces that are highly reflective, e.g. 
bare soil, water or cloud, or where sharp contrast exist, e.g. between desert and vegetation 
(Hawbaker et al. 2008). To overcome these problems, fire occurrence probability models have 
been developed. The few examples that exist mostly use regression techniques to relate fires 
to explanatory factors; for example Koutsias & Karteris (2000) used independent explanatory 
variables consisting of the spectral channels of the post-fire satellite image for logistic 
regression analysis to determine burned and unburned areas in Attica in Greece, whereas 
Lozano et al. (2007) used several spectral indices derived from multi-temporal Landsat data 
for fire occurrence probability modelling, and Preisler et al. (2004) utilized weather data as 
explanatory factors for probability based fire risk models. However, most of the regression 
models that have been calibrated for fire do not take into account the spatial autocorrelation 
effect of fires, even though it has been found to be a very important factor in probability based 
fire models (see Chou et al. 1993; Lynch et al. 2006). Papers V and VI explore methodologies 
to develop new applications for enhanced predictive fire occurrence modelling and burned 
area estimation in East Caprivi Namibia.  

3. Studied areas and data sets 
 
This thesis covers case studies from four different study areas ranging from the global scale to 
the local scale (Figure 3). Paper (I) concentrates on the Åland Islands in south-western 
Finland. Paper II presents a study made at a world-wide scale. Papers III and IV concentrate 
on Taita Hills, southeast Kenya and Papers V and VI presents case studies from East Caprivi, 
Namibia. The locations of these study areas can be seen from Figure 3.     
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Figure 3. Locations of the studied areas. The roman numbers refer to the papers in the thesis.  

3.1 Glanville fritillary Melitaea cinxia metapopulation data set, Åland Islands, Finland 
 
The study area in Åland archipelago in south-western Finland covers approximately 50 × 70 
km area (Hanski & Meyke 2005). The Landscape for the Åland mainland and other islands 
studied consists of heterogeneous landscape mosaics with forests, small farms, cultivated 
fields, pastures and meadows (Hanski et al. 1994, 1995, 1996). The long-term and large-scale 
metapopulation project on the Glanville fritillary butterfly (Melitaea cinxia) in the Åland 
Islands was started in 1991 to test of some metapopulation models (Hanski 1999). Since then, 
a large scale metapopulation data set for Glanville fritillary has been collected yielding to a 
database on a network of more than 4000 small habitat patches in the Åland Islands (Figure 
4). The Glanville fritillary occurs in a highly fragmented landscape and has a classic 
metapopulation structure in the Åland Islands (Moilanen & Hanski 1998). The suitable habitat 
patches are dry meadows with one or both of the larval host plants, Plantago lanceolata and 
Veronica spicata (Hanski 1999). The knowledge about the occupancy of the habitat patches in 
the entire patch network is gathered bi-annually by surveying all patches with the aid of a 
large group of students. Of the roughly 4000 habitat patches in the entire study area, about 
500–700 patches (small dry meadows) are occupied in any given year (Hanski 1999).  
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Figure 4. Åland Islands and the distribution of Melitaea cinxia habitat patches presented as 
black dots. 

3.2 Scopulini moths data set at a world–wide analysis scale 
 
The Scopulini moths were studied at a world-wide scale using a computerized database as the 
basis of the study. In ArcView 3.2 GIS an Avenue script (see Appendix 2) was used to divide 
the World into 5 degree equal-area grid squares in a geographic coordinate system (WGS84). 
Species data was geocoded using the information of type localities and further a geospatial 
database was created using the MS Access relational database management system to relate 
species information to 5 degree equal-area grid squares. MS Access was used because of the 
lack of suitable GIS software with support for internal geospatial database capabilities such as 
ArcGIS Geodatabase. The creation and content of Scopulini geospatial database is discussed 
in more detailed in methods section 4.2. The uppermost study area location map in Figure 3 
shows the Scopulini moth analysis 5 degree equal-area grid squares at a world-wide scale.    

3.3 Taita Hills highlands, Kenya 
 
Taita Hills is located in the Taita-Taveta District of south-eastern Kenya at 03°25'S, 38°20'E. 
The study area covers ca. 327 km² of the Taita Hills highlands and the boundary to distinguish 
highland from surrounding semi-arid shrubland and dry savannah lowlands was set to 1100 
m.a.s.l in Paper (IV) (see Figure 5). The average elevation of the Taita Hills is 1500 m and the 
highest peak is Vuria at 2208 m. The climate is influenced by the Inter-Tropical Convergence 
Zone (ITCZ) yielding a bi-modal rainfall incidence were long rainy season are expected 
during March to June and short rains in November–December. Annual precipitation in Taita 
Hills varies from 600 mm on the plains to over 1200 mm in the hills (Beentje 1988) and mist 
and cloud precipitation is usually a year-around phenomenon in the hills. Local climate is 
influenced by orographic rainfalls bringing more rain to south eastern slopes causing a 
distinctive ‘rain shadow’ effect on north western slopes of Taita Hills. Euphorbia 
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candelabrum and more commonly Euphorbia bussei var. kibwezensis are growing in the drier 
conditions. Cloud forest fragments are found in areas receiving more than 900 mm of annual 
precipitation and being above 1400 m on the south eastern slopes, and above 1700 m on the 
north western slopes (Jaetzold & Schmidt 1983). 

 
Figure 5. Map of Taita Hills showing the main geographical features and indigenous forest 
patches. 
 
        Due to the favourable climatic conditions Taita Hills are intensively cultivated and the 
landscape mosaic is constructed of abundant small-scale farms, exotic tree species patches 
such as Cupressus lusitanica, Pinus spp., Eucalyptus spp., and Grevillea robusta and 
indigenous forest patches. Only three larger hilltop indigenous forest remnants exist: Mbololo 
(ca. 179 ha), Ngangao (ca. 136 ha) and Chawia (ca. 94 ha) (Lens et al. 2002). In addition, 
much smaller indigenous forest patches are embedded in the landscape mosaic and they are 
scattered around the hills. The characteristic indigenous tree species include: Newtonia 
buchananii, Tabernaemontana stapfiana, Macaranga conglomerata, Albizia gummifera, 
Phoenix reclinata, Strombosia scheffleri, Cola greenwayi, Podocarpus spp., Ochna holstii, 
and Millettia oblate (Beentje 1988). Most people live on small farmlands in the hills at 
elevations between 1000 and 1700 m.a.s.l., where the rainfall is abundant and the temperature 
is more tolerable than in the lowlands. In the Taita Hills there is only one town – Wundanyi - 
with ca. 5000 inhabitants, and then smaller villages. Population in the Taita-Taveta district 
has grown from 60 000 in the 1960s to 246 671 in the last census of 1999 (Republic of Kenya 
2001).            

3.3.1 Data set for spatiotemporal forest cover change detection 
 
Since the start of the Taita project in 2003 a large geospatial database has been collected. This 
data set consists mainly of digital maps, satellite images and aerial photographs acquired from 
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different sources (Broberg & Keskinen 2004). In Paper (III) aerial photographs were used as 
the main data for analysing spatiotemporal forest cover change in Taita Hills. Black and white 
aerial photography for 1955 was obtained from Survey of Kenya and colour airborne digital 
camera data acquired during January 2004 (Pellikka et al. 2004). Airborne digital camera data 
was acquired using a custom true-colour NIKON D1X digital camera system along with a 
GPS navigation system and accompanying software (Holm et al. 1999). In addition, one black 
and white aerial photograph for year 1994 was obtained from the Survey of Kenya and used 
for Yale forest cover change analysis. GIS derived geospatial map layers such as road 
network, hydrography, administrative units and a digital elevation model (DEM) were used as 
ancillary data.  

3.3.2 Data set for human population prediction modelling in Taita Hills 
 
Taita Hills geospatial database was used as the main data source for the human population 
occurrence and abundance modelling (Paper IV). Dwelling units were mapped using on-
screen digitization from airborne digital camera data acquired during January 2004 covering 
30% of Taita Hills highlands. A SPOT 4 HRVIR 1 satellite image (15/10/2003, path & row 
143-357) with 20 m pixel size was used to derive surface reflectance-, image texture- and land 
cover based predictors. A DEM with 20 m pixel size was derived from Survey of Kenya 1:50 
000 scale topographic mapping (Clark & Pellikka 2005, 2009). The DEM was used to 
calculate the mean elevation, slope and aspect. The topographical wetness index (�) was 
derived utilizing a custom-made ArcGIS geoprocessing model. In addition, irradiance 
(kWh/m2/month) was calculated from the DEM using an ARC/INFO AML macro 
(shortwavc.aml) (Kumar et al. 1997; Zimmermann 2000). Long term mean precipitation grid 
layers were interpolated from monthly available meteorological data in Taita Hills and 
surrounding areas. ANUSPLINE software used the DEM and meteorological data for 
interpolation (Hutchinson 1995; Erdogan et al. in press). Vector map layers for main roads 
and rivers layers, digitized from the Kenya 1:50 000 scale topographic maps, were used as the 
source for Euclidean distance grid calculations in ArcGIS 9.3. Two existing global population 
datasets, Gridded Population of the World (GPWv3) at 5 km resolution and Landscan 2005 
(Dobson et al. 2000) at 1 km resolution, and Kenyan 1999 census data (Republic of Kenya 
2001) were used for human population abundance model comparison. 

3.4 East Caprivi, Namibia  
 
The East Caprivi region is situated in North-Eastern Namibia (18°30’-17°28’S, 23°18’- 25°22 
E) surrounded by Angola, Zambia, Zimbabwe and Botswana. East Caprivi lies between the 
Kwando River in the west, and the Zambezi and Chobe Rivers in the east. The East Caprivi 
region covers an area of approximately 12,000 km2, and has the highest rainfall in Namibia, 
receiving 600±700 mm of rain a year, at an altitude of 930±1020 m (Mendelsohn & Roberts 
1997). According to von Breitenbach (1968) three main physiographic and vegetation regions 
can be defined: (i) an elevated upland region predominantly tree-bush in the northwest of East 
Caprivi with typical Zambezi Teak (Baikiaea plurijuga) forests, (ii) a lower lying southern 
and south-eastern region with Mopane (Colophospermum mopane) forest and savanna and 
(iii) a marsh and swamp region (Figure 6). Human population density in the East Caprivi is 
second highest in Namibia and the number of human population was estimated at 73,982 in 
the 1996 census (Mendelsohn & Roberts 1997). The people in this area depend on subsistence 
farming and cattle herding. The climate is sub-tropical with mild dry winters from April to 
August and hot wet summers from September to March. The first rains are expected in 
October starting with light showers and peaking in January. From the January peak season 
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rains are gradually weakening so that they usually finish in the end of March. Approximately 
90% of yearly precipitation falls between September and March (von Breitenbach 1968; 
Devereux 1993). Highest temperatures are reached in September and October and the lowest 
temperatures are recorded in June and July (von Breitenbach 1968). 
 

 
Figure 6.  A map of East Caprivi, Namibia showing the main geographic features and 
vegetation zones. 

3.4.1 East Caprivi geospatial data sets for fire prediction and burned area estimation 
 
East Caprivi geospatial data sets used as predictors for fire occurrence and burned area 
estimation consist of vector GIS layers derived from the Caprivi database Internet page hosted 
by the Ministry of Environment and Tourism (Mendelsohn & Roberts 1997) and raster GIS 
layers derived from multiple sources. More detailed description of the geospatial data sets 
used in fire occurrence and burned area estimation is given in the original Papers V and IV. 
Moderate Resolution Imaging Spectroradiometer (MODIS) fire data were obtained from the 
Warehouse Inventory Search Tool (WIST). Two types of fire data were used: MODIS fire hot 
spots data (thermal anomalies/fire 8-day L3 global 1 km) for both Terra (MOD14A2) and 
Aqua (MYD14A2) satellites, and MODIS burned area product (MCD45A1). In addition a 
single Landsat ETM+ georeferenced satellite image (path 174, row 072; August 28, 2002) 
was obtained from Global Land Cover Facility and multiple MODIS 250 m images were 
obtained from the MODIS Rapid Response System Internet page. Landsat ETM+ and MODIS 
250 m images were used in accuracy assessment for burned area estimation analysis as true in 
situ fire measurements were nonexistent for the studies.  
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4. Analysis methods and methodological frameworks 
 
In this thesis, multiple analysis methods have been applied to various data sets and therefore 
all the details for geospatial database creation, GIS, remote sensing, and statistical methods 
are not described, except for Paper (I) because the details for database design and 
development are absent from the original paper. It is also appropriate to explain the database 
development in this thesis because the main emphasis in Paper I from a geoinformatics 
perspective was to describe the methodological aspects of the Melitaea cinxia GIS database. 
For each of the other studies a methodological framework is presented as flowcharts. The 
most important analysis methods used in this thesis can be seen from Table 2. The details for 
analysis methods are described in the original papers but, broadly, analysis methods used in 
this thesis can be divided into four main groups: (i) geospatial database creation (presented in 
detail for Paper I); (ii) spatial analysis for species diversity and distribution (Paper II); (iii) 
forest cover change detection methods (Paper III), and (iv) predictive modelling methods for 
occurrence and abundance mapping (Papers IV, V and VI). 
 
Table 2. The main methods used in this thesis. The Roman numbers refer to the original 
papers were a specific method was used.  
 

Analysis method 
Main 

methodology Used in paper 
Areal change analysis C III, V, VI 
Artificial neural networks (ANN) D VI 
Change trajectory analysis C III 
Classification tree analysis (CTA) D VI 
Comparison analysis C IV, V, VI 
Correlation analysis D IV, V, VI 
Descriptive statistics B, C, D I, II, III, IV, V, VI 
Distribution mapping B, C, D I, II, III, IV, V, VI 
Exploratory data analysis B, C, D I, II, III, IV, V, VI 
Generalized additive model (GAM) D IV, VI 
Generalized boosting models (GBM) D VI 
Generalized linear model (GLM) D V, VI 
Geospatial RDBMS creation and maintenance A I ( II, III, IV, V, VI) 
GPS field work A I, III, IV 
Hierarchical partitioning D V 
Historical climate data retrieval and analysis A I 
Image interpretation C III, IV 
Image mosaicing C III, IV 
Mixture discriminant analysis (MDA) D VI 
Multiple adaptive regression splines (MARS) D VI 
Multi-scale segmentation C IV 
Precipitation estimation using weather radar data A I 
Random forest (RF) D VI 
Spatial autocorrelation D V 
Spatial interpolation D IV, V, VI 
Zonal statistics D IV, V, VI 

 
A = Geographical databases; B = Geospatial analysis for distribution and diversity; 
C = Change detection; D = Predictive modelling 
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 4.1 Geospatial database creation methodologies for the Melitaea cinxia butterfly  
 
In Paper I, the geospatial database was created for the Glanville fritillary Melitaea cinxia 
butterfly. Data collecting for the species presence-absence and habitat patch characteristics for 
Melitaea cinxia has been ongoing since 1991. Field survey data are collected bi-annually in a 
way that each year ca. 4000 habitat patches are surveyed in autumn and those patches that 
were occupied in previous autumn are surveyed again in the next spring. Information from the 
field survey forms was manually entered in to the MS Access database. Each of the field 
survey forms had ca. 40 environmental entities and a hand written habitat patch map on the 
back of field form showing the outlining and locations of Melitaea cinxia larval nests, if any 
existed. The Access database consisted of data for bi-annual field surveys from 1993 to 2002. 
The most important part of the database consisted of presence-absence information for 
Melitaea cinxia butterfly larval nests and habitat characteristics for c.a. 4000 habitat patches 
and other data such as information of larval parasitoids. For modelling purposes, habitat patch 
central point (x-coordinate and y-coordinate in Finnish Uniform Coordinate System) was used 
as a spatial reference and the area for each habitat patch were estimated in situ during the field 
survey and from Basic maps.   
        To achieve more detailed information on habitat patches, a mapping project was started 
where GPS was used for delimiting the habitat patches with the information of surrounding 
habitat types. GPS field work for creating a geospatial database for Melitaea cinxia were 
conducted over three years. In each summer trained students outlined habitat patches in the 
field and the raw GPS data was later processed using PCGPS 3.6d2 software. First the raw 
GPS data in PC-GPS Feature File *.FTR format were imported from 3½-inch HD 1.44 MB 
floppy disks to PCGPS 3.6d2 software and for differential correction a correction data from 
Evo base station (http://gps-evo.hamk.fi/0001.htm) was used. Before the correction data could 
be used a conversion from the Pathfinder SSF format to the Receiver Independent Exchange 
Format (RINEX) format had to be made. Differential correction was necessary because of the 
intentional error signal of Selective Availability, until it was switched off in 2000. After the 
differential correction process, GPS data was exported to ESRI shapefile format. The 
necessary GIS operations to correct the data were processed in ArcView 3.2 software. 
Multiple GIS operations were used, e.g. connecting independent polylines to make closing 
lines in order to generate coherent polygons. Each of the 4000 patches was processed 
manually in GIS software. 
        The final database was created in the manner that first weekly outlined GPS patches 
were merged, then monthly and yearly patches were merged and finally all three years data 
were merged to create a full GIS database of suitable habitat patches for the Melitaea cinxia 
butterfly. This final polygon habitat database had the information of patch number, patch area 
and patch perimeter and landscape indices at patch level derived from area-perimeter ratio. In 
addition to the habitat polygon layer, another vector GIS layer was created as polylines. In 
this layer each of the lines had the information of habitat patch number and the surrounding 
land cover type, which were: forest, semi-open, field, other open, road and water, respectively 
(Figure 14). The GIS attribute tables for habitat patches were imported into the Access 
database and joined with the Melitaea cinxia field survey data using the Patch ID number as a 
common key field.  
        Two types of meteorological information were also collected. Firstly, historical 
meteorological data were collected from the Finnish Meteorological Institutes Meteorological 
yearbooks covering the years from 1885 to 2000 for the main weather stations in the Åland 
Islands. Both mean temperature and precipitation were recorded manually for June–August, 
first to notebooks and then to the Access database. Secondly, precipitation data was retrieved 
from the Finnish Meteorological Institute as raw radar data in ASCII text format for three 
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summer months of 1998–2001. Each data file consisted of 12 hour precipitation values and x 
and y -coordinates in the Finnish Uniform Coordinate System for south-western Finland at a 
spatial resolution of 1 km2. The data was first geocoded to ArcView 3.2 and further processed 
semi-automatically using Avenue scripts due to the vast information content (e.g. more than 
256 columns and more than 65536 rows, which is the Excel limitations). One example of an 
Avenue script used in the precipitation radar data analysis can be seen in Appendix 1. The 1 
km2 spatial resolution radar precipitation data were masked to cover the entire Åland Islands 
and then imported into the Access database. The final Melitaea cinxia GIS database was then 
created by maintaining three types of information in the Access database: (i) patch level 
Melitaea cinxia field survey data; (ii) GPS information of habitat patches; and (iii) climatic 
data from yearbooks and radar. Using Access queries all the necessary information was 
derived from the database and imported through an Open Database Connectivity (ODBC) link 
to ArcView 3.2 software for spatial analysis and for map creation. For spatial analysis a 1 km2 
analysis grid was created using the Avenue script in ArcView 3.2 shown in Appendix 2. 
Habitat patch area information was summarized for each 1 km analysis square and also the 
monthly radar precipitation data were summed. The methodological framework for creating 
Melitaea cinxia geospatial database is presented as a flowchart in Figure 7. 
 
 
 
 
                   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Flowchart for developing Melitaea cinxia geospatial database and the 
methodological steps of spatial analyses.  
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4.2 Spatial analysis methods for diversity and distribution mapping  
 
In Paper (II) various temporal, spatial, diversity and geographical distribution patterns of 
Scopulini moths were analysed. The methodological study design comprises patterns of 
species descriptions and relationships between the number of described species and their 
associated synonyms. The study design is similar to Gaston et al. (1995) and therefore enables 
a comparative analysis between these two studies. Eight variables, describing for example the 
rates of species description, synonymy rates, and geographical distribution of the Scopulini, 
were coded for all putatively valid species of Scopulini in 2003, and a database was created. 
The database is based on a preliminary world check-list of Scopulini, covering the world 
fauna, and it consists of 912 species. In addition, the Geometrid Moths of the World – A 
Catalogue (Scoble 1999) data was used for species that were not described in the world 
check-list of Scopulini. 
        More specifically, the following information was recorded in the database for each 
species: generic combination, author (multi-authored descriptions were counted under the 
senior author only), year of description, type locality (country), type locality (latitude and 
longitude), biogeographical region of type locality, number of synonyms, and type specimen 
depository. By following type localities, species were assigned to biogeographical regions 
after Gaston et al. (1995) to allow comparisons. Biogeographical regions are presented in 
Figure 8. All the eight variables were available for 792 species and type locality (country) was 
too inaccurate to be used in 11 cases, whereas the type locality (latitude and longitude) was 
too inaccurate in 25 cases. Furthermore, determining the biogeographical region for species 
was impossible in three occasions (ca. 0.3%) and type depository was unknown for 101 
species. The database has ca. 9200 entries and in addition, numerous comments.  
 

 
Figure 8. A map showing the boundaries of biogeographical regions (Modified after Gaston 
et al. 1995). 
 
        For geographical distribution analysis the species data included type localities 
information. i.e. latitude and longitude coordinates for species at an accuracy of 5 degrees. 
With the coordinate information of type localities, the species data could be imported into 
ArcView 3.2 software and geocoded to a geographic coordinate system with a WGS84 datum. 
A world-wide analysis grid with 5 degree analysis squares was created by using an ArcView 
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3.2 Avenue script (see Appendix 2). The frequency count of species in each analysis grid was 
calculated with the summarize function in ArcView 3.2 and the attribute data were exported 
to MS Access to develop a geospatial database. The data was then exported to a statistical 
program for statistical analyses and the species distribution maps were created in ArcView 3.2 
GIS software. A flowchart of the methodological framework used to develop and analyse the 
Scopulini moth geographical database for diversity and distribution analysis can be seen from 
Figure 9.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. A flowchart of methodological framework used for Scopulini moth diversity and 
distribution analysis. 
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4.3 Analysis methods for spatiotemporal forest cover change detection  
 
Paper (III) presents a spatiotemporal forest cover change analysis method for Taita Hills, 
Kenya. Airborne colour images and black and white aerial photography were used in analysis. 
Only the main analysis methods are presented here as the methodology section is described in 
detail in the original publication. Airborne colour images for 2004 were geometrically and 
spectrally corrected using EnsoMOSAIC software (StoraEnso 2003). This software covers the 
whole processing chain from flight planning to producing geo-referenced and ortho-rectified 
images and image mosaics (Holm et al. 1999). Black and white aerial photograph for years 
1955 and 1994 was obtained from the Survey of Kenya. Images were co-registered using 
2004 airborne imageries as reference data and co-referenced using the rubber sheeting method 
in ERDAS Imagine. GIS derived geospatial map layers were used as ancillary data. 
        For forest cover change analysis, a land cover model was created using on-screen 
digitizing in GIS software. Images for the year 2004 were first interpreted and digitized to 
four forest classes and into eight other land cover classes. Visual interpretation was based on 
image colour and texture and on the previous regional knowledge and it followed the LCCS 
class structure (Di Gregorio 2005). For black and white 1955 and 1994 images there was less 
forest classes interpreted. Table 1 and 2 in the original Paper III shows the forest classes and 
the land cover classes used in the analysis. Digitizing results for 2004 and 1994 images were 
verified by field survey in 2007 and 2008 and the digitizing was fine-tuned according to the 
field check. Three main parameters were used from the final land cover model: (i) area of the 
main indigenous forest fragment; (ii) the total area of the indigenous forest within the area 
analyzed; and (iii) total forest area including exotic forests and bushlands. For the change 
detection three calculations were conducted: (i) areal change; (ii) percentage change; and (iii) 
change trajectory analysis where the changes occurring from indigenous forest class to 
another classes, and from non-forest classes to indigenous or exotic forests were analyzed. 
Figure 10 presents the methodological steps used in the forest cover change analysis. 
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Figure 10. A flowchart of the methodology adopted for spatiotemporal change analyses for 
indigenous and exotic forest cover between 1955–2004.     

4.4 Predictive modelling methods for geospatial data  
 
Predictive modelling techniques were used for dwelling unit distribution and abundance 
analysis in Taita Hills (Paper IV) and for fire occurrence prediction and burned area 
estimation improvement for East Caprivi, Namibia in Papers V and VI. 

4.4.1 Statistical predictive modelling calibration techniques 
 
Linear regression techniques have been traditionally used in predictive modeling, e.g. in 
ecological and biogeographical research (Guisan & Zimmermann 2000). The basic linear 
regression model has the form: 
 
Y = α+XΤβ + ε     (1)  
 
where Y is the response variable, α is a constant called the intercept and X = (X1 , ..., Xp ) is a 
vector of p predictor variables, β = {β1, ... , βp} is the vector of p regression coefficients (one 
for each predictor), and ε is the error. However, when using linear regression four 
assumptions should be met: (i) linearity of the relationship between dependent and 
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independent variables; (ii) independence of the errors; (iii) homoscedasticity (constant 
variance) of the errors and (iv) normality of the error distribution (Zar 1999). Violation of one 
or more of the multiple linear regression assumptions may lead to incorrect or misleading 
results. These assumptions are seldom achieved when using geospatial data sets. To overcome 
these violations new prediction methods have been introduced. These methods allow non-
Gaussian error distributions and non-linear relationships between response and predictor 
variables (Guisan & Zimmermann 2000). In this thesis eight novel predictive modelling 
techniques were used: Generalized Linear Model (GLM) (McCullagh & Nelder 1989), 
Generalized Additive Model (GAM) (Hastie & Tibshirani 1990), Classification Tree Analysis 
(CTA) (Breiman et al. 1984), Artificial Neural Networks (ANN) (Ripley 1996), Multivariate 
Adaptive Regression Splines (MARS) (Friedman 1991), Mixture Discriminant Analysis 
(MDA) (Hastie et al. 1994), Generalized Boosting Models (GBM) (Friedman 2001), and 
Random Forest (RF) (Breiman 2001). Short descriptions of different predictive techniques are 
presented here as they are explained in more details in the original Papers IV, V and VI. 
 

• Generalized linear model (GLM) 
 

        Generalized linear models (GLMs) are an extension of classical multivariate linear 
regression, allowing non-normal response variables to be modelled (McCullagh & Nelder 
1989). In GLMs, the predictor variables Xj (j = 1, ..., p) are combined to produce a linear 
predictor LP which is related to the expected value μ=E(Y) of the response variable Y through 
a link function g(), such as: 
 
g(E(Y)) = LP = α + XTβ,      (2) 
 
where α, X, β are those described in equation (1). The model is now written for the generic 
variables X and Y; the corresponding terms for the ith observation in the sample is:  
 
g(μi) = α + β1xi1 + β2xi2 + ... + βpxip    (3) 
 
        Unlike classical linear models, which presuppose a Gaussian (i.e., normal) distribution 
and an identity link, the distribution of Y in a GLMs may be any of the exponential family 
distributions (e.g., Gaussian, Poisson or binomial) and the link function may be any 
monotonic differentiable function (like logarithm or logit). GLMs do not force data into 
unnatural scales and therefore allow non-linearity and non-constant variance structure in the 
data (McCullagh & Nelder 1989; Collet, 2003). In Papers V and VI GLM models were built 
using a full stepwise approach, in which explanatory variables are included or excluded from 
the full model using Akaike Information Criterion (AIC) (Akaike 1974) and changes in scaled 
deviance (McCullagh & Nelder 1989; Venables & Ripley 2002).  
 

• Generalized additive model (GAM) 
 
        Generalized additive models GAMs (Hastie & Tibshirani 1987; Yee & Mitchell 1991) 
support non-Gaussian error distributions and non-linear relationships between response and 
predictor variables. GAMs are non-parametric extensions of GLMs model regressions that 
apply nonparametric smoothers to each predictor and additively calculate the component 
response. GAMs are data-driven rather than model driven and allow consideration of more 
complex response shapes than those possible through GLMs (Yee & Mitchell 1991). GAMs 
were used in Papers IV and VI. A GAM model is expressed by 
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g(E(Y)) = � + s1(X1i) + s2(X2i) + . . . sp(Xpi)   (4) 
 
where g is the link function that relates the linear predictor with the expected value of the 
response variable Y, Xpi is a predictor variable and sp a smoothing function. The response 
variable was linked to the set of predictor variables through a logit link function for dwelling 
unit occurrence and log link function for dwelling unit abundance in Paper IV. In Paper VI a 
logit link function was used for fire occurrence prediction.  
 

• Classification Tree Analysis (CTA) 
 
        Classification and regression trees explain variation of a single response variable by one 
or more explanatory variables providing an alternative to regression techniques (Thuiller et al. 
2003). The CTA method consists of recursive partitions of the dimensional space defined by 
the predictors into groups that are as homogeneous as possible in terms of response. The 
partition divides the data in an iterative manner into smaller groups with binary split. A tree is 
built by repeatedly splitting the data based on thresholds for individual explanatory variables 
(Breiman  et al. 1984). 
 

• Artificial Neural Networks (ANN) 
 
        Feed forward neural networks belong to machine learning techniques and provide a 
flexible way to achieve generalize linear regression functions (Venables & Ripley 2002). The 
backpropagation algorithm by Rumelhart et al. (1986) is used in layered feed-forward ANN 
models. In feed forward ANN models, artificial neurons are organized in layers, and send 
their signals “forward”, and then the errors are propagated backwards. Then the network 
receives inputs by neurons in the input layer, and the output of the network is given by the 
neurons on an output layer. In the model one or more intermediate hidden layers can 
parameterized. Cross-validation is normally used to avoid the model overfitting and as 
different runs can provide different results, a common procedure is to make N-fold model 
runs and average the results in the final model. 
 

• Multivariate Adaptive Regression Splines (MARS) 
 
        Multivariate adaptive regression splines (MARS) is a multivariate non-linear regression 
method that combines linear regression, mathematical construction of splines and binary 
recursive partitioning to produce a local model in which relationships between response and 
predictors that are either linear or nonlinear (Friedman 1991). In MARS models, the amount 
of smoothing required for each predictor as well as the interaction order of the predictors are 
automatically selected. 
 

• Mixture Discriminant Analysis (MDA) 
 
        MDA is a classification method and can be viewed as an extension of linear discriminant 
analysis (LDA) (Venables & Ripley 2002). MDA allows the classifier to handle different 
prototype classes such as a mixture of Gaussians. The mixture of normals is used to obtain a 
density of estimation for each class (Hastie et al. 1994; Fraley & Raftery 2002). For optimal 
scaling process different regression methods can be used. R-BIOMOD modelling framework 
uses MARS to increase the predictive power of the models (Thuiller 2009). 
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• Generalized Boosting Models (GBM) 
  
        GBM is a non-parametric, highly efficient modelling method based on the Gradient 
Boosting Machine algorithm developed by Friedman (2001). A boosted regression tree (BRT) 
algorithm fits a large number of relatively simple models whose predictions are then 
combined to give more robust estimates of the response that classifies binary responses (e.g. 
fire presence-absence) where each of the individual models consists of a simple classification 
or regression tree; i.e. a rule based classifier that consists of recursive partitions of the 
dimensional space defined by the predictors into groups that are as homogeneous as possible 
in terms of response. The tree is built iteratively by repeatedly splitting the data, defined by a 
simple rule based on a single predictor. At each split, the data are partitioned into two 
exclusive groups, each of which is as homogeneous as possible (Ridgeway 1999; Friedman 
2001). In the first step predictors are the input to the first regression tree and thereafter for 
each step the focus is on the residuals. At the second step a tree is fitted to the residuals of the 
first tree and the model is then updated to contain two trees, and the residuals from these two 
trees are calculated and the sequence is repeated for as long as necessary. In the modelling the 
maximum number of trees can be set, e.g. to 2000–3000 (Elith et al. 2008).  
         

• Random Forest (RF) 
 
        Random forest (RF) is an ensemble machine-learning algorithm (Breiman 2001). RF 
generates hundreds of random classification trees by using both bagging and random variable 
selection for tree building. Rather than using all predictors and all individual data points to 
make a single tree, RF makes a forest of many trees, each one based on a random selection of 
predictors and individuals (Breiman 1996). Each tree is grown with a randomized subset of 
predictors and fitted using a bootstrap sample of data and grown utilising CART methodology 
to the largest extent possible. Each node is then split using the best among a subset of 
predictors randomly chosen at that node. Prediction is then made from the complete forest 
based on a majority vote of the prediction of all random variable trees (Breiman, 2001). 

4.4.2 Evaluation of predictive models  
 
In this thesis predictive models were evaluated as follows: (i) by using the percentage of 
explained deviance as an indicator of model explanatory power (D2) (Paper IV). This is 
obtained by dividing the difference between null and residual deviance by the null deviance 
(Guisan & Zimmerman 2000); (ii) using the area under the curve (AUC) from the receiver 
operating characteristic plot to indicate the model predictive power (ROC, Fielding & Bell 
1997). As a general rule, an AUC between 0.5 and 0.7 indicates a poor discriminate capacity; 
0.7-0.9 indicates reasonable capacity; and 0.9 or higher indicates a very good capacity (Swets 
1998). AUC were used in Papers IV, V and VI; (iii) conducting a five-fold cross-validation of 
area under the curve (AUC) from ROC plot (CVROC) Paper (IV); (iv) calculating cross-
validated Cohen’s Kappa (Papers IV and VI); (v) calculating the contribution for each 
predictor, giving an indication of the contribution of the variable within the selected model 
and corresponding to the possible range of variation on the scale of the linear predictor (Paper 
IV); (vi) visual interpretation of prediction maps (Papers IV, V, VI).  

4.4.3 Predictive modelling for human population studies in Taita Hills 
 
In Paper (IV) human population distribution and abundance in Taita Hills were modelled 
using Generalized Regression Analysis and the Spatial Prediction (GRASP) modelling 
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framework which uses generalized additive models (GAMs) for model calibration (Lehmann 
et al. 2002). The response variable (dwelling unit presence–absence) was derived from 
airborne imagery covering ca. 30% of Taita Hills using on-screen digitizing in GIS. 
Geospatial GIS- and remote sensing-based map layers were used as predictors. Prior to 
modelling, the full data set (n = 10488, 100 m analysis squares) was randomly divided into 
model calibration 70% (n = 7342) and model evaluation 30% (n = 3146) datasets following 
the split sample approach (Guisan & Zimmermann 2000). The outcome of dwelling unit 
prediction models were extrapolated to cover the whole Taita Hills area (n = 34143 100 m 
analysis squares) and a human population distribution map was created for Taita Hills semi-
automatically. In addition, human population abundance model was compared with two 
existing global population datasets, GPWv3 and LandScan 2005, and Kenyan census data for 
1999. Only the main steps for predictive modelling are presented here. For more detailed 
description for the methodologies used in Taita Hills dwelling unit occurrence and abundance 
prediction refer to the original Paper (IV). Figure 11 shows the methodological flowchart of 
the modelling steps. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Methodological flowchart of the modelling steps for human population 
distribution and abundance modelling. 
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4.4.4 Fire prediction and burned area estimation in East Caprivi 
 
An application for fire prediction and burned area estimation was developed for East Caprivi, 
Namibia. A methodological flowchart to create the application can be seen from Figure 12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Methodological flowchart for fire occurrence prediction and burned area 
estimation application for East Caprivi, Namibia. 
 
        The first step was to create the geospatial database and prior predictive fire occurrence 
model calibration, spatiotemporal characteristics of fires were analysed using fire hot spots 
frequency counts. In addition, spatial autocorrelation of fires was tested with Moran’s I 
correlograms. In Paper (V) fire occurrence was predicted using generalized linear models 
(GLMs) with binominal error distribution and logit link functions. Fire probability models 
were calibrated by using MODIS fire hot spots data as binary (0/1) response variable data and 
abiotic, biotic and anthropogenic factors as exploratory variable data. Prior to modelling, data 
was randomly divided into a model calibration set (n = 8167) and a model evaluation set (n = 
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3510). GLM models were built using a full stepwise approach, where variables were included 
or excluded from the full model using Akaike’s Information Criterion (AIC) (Akaike, 1974) 
and changes in scaled deviance (McCullagh & Nelder 1989; Venables & Ripley 2002). 
Models were developed for all four years 2003–2006 and for an aggregated fire occurrence 
(2003–2006). Four different explanatory variable sets (abiotic, biotic, anthropogenic and 
combined) were tested and two types of models were constructed: models with and without 
consideration of the spatial autocorrelation of fires. Models were evaluated using area under 
the curve (AUC) from the receiver operating characteristic (ROC) plot. Hierarchical 
partitioning (HP) method was used as a complementary analysis to GLMs to identify 
individual explanatory variables having the most independent influence on response variable, 
in this case, fire occurrence (MacNally 1996, 2000; Walsh & MacNally 2003). Predicted 
probability surfaces were translated into burned area presence-absence classification maps 
using threshold cut-off values determined with PresenceAbsence R package function 
MinROCdist (Freeman 2007; Freeman & Moisen 2008). Burned area classification maps were 
then compared with the MODIS burned area product (MCD45A1) and MODIS fire hot spots 
data.  

4.4.5 Fire prediction and burned area estimation in East Caprivi using eight techniques 
  
In Paper (VI) the BIOMOD computation framework (Thuiller 2003; Thuiller et al. 2009) was 
used for fire occurrence prediction. BIOMOD enables the use of up to eight state-of-the-art 
predictive modelling techniques; GLM, GAM, MARS, CTA, MDA, ANN, GBM and RF, 
respectively (Thuiller et al. 2009). Fire hot spots presence–absence in 1 km analysis squares 
was used as a response variable and geospatial environmental data were used as predictors. 
Data was first randomly divided into calibration (70%) and evaluation (30%) data sets and 
final prediction models were built for full data set (100%). Models were evaluated using 
cross-validated area under the curve AUC and with cross-validated Kappa values. Predicted 
probability surfaces were translated into burned area presence-absence classification maps 
using optimized threshold cut-off values determined with Kappa statistics. Classified burned 
area maps were compared with the MODIS burned area product (MCD45A1) and MODIS 
fire hot spots data. In addition to fire occurrence prediction and burned area estimation, GIS 
map overlay technique was used for fire risk mapping.  Figure 13 presents the methodological 
steps that were used in the analysis. 
  
 
 
 
 
 
 
 
 



 41

 
 
 
Figure 13. Methodological flowchart for fire occurrence prediction in East Caprivi using 
eight state-of-the-art modelling techniques 

5. Results and discussion 

5.1 Geodatabase creation for the Melitaea cinxia butterfly (Paper I) 
 
The main aim in Paper (I) was to design and develop a GIS database for the Melitaea cinxia 
butterfly and to conduct geospatial analyses using the database. The database consisted of bi-
annual field survey data of Melitaea cinxia, GPS delimited habitat patch information and 
meteorological data for temperature and precipitation. A relational database was created for 
all the entities and relations were created between different data sets. An ODBC link was then 
established to ArcView 3.2 GIS software to enable spatial analysis and cartographic 
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presentations (seen from I: Figures 4.3, 4.11, 4.12 and 4.14). These images present some of 
the spatial analysis capabilities for relational geospatial databases. The advance of a 
geospatial database is that tedious consistently repeatable manual operations can be replaced 
with semi-automatic data handling and processing. With ODBC linking, database queries 
could be conducted first in Access and then visually presented in ArcView 3.2 GIS software. 
Figure 4.13 in the original paper shows an analysis for temporal changes in habitat patch 
occupancy and population size for Melitaea cinxia. With the geospatial database this type of 
analysis could be made in several spatial scales and not only one. The habitat patch GPS work 
for Melitaea cinxia improved significantly the habitat patch information. Now the exact 
location of the patch is known and the patch area and patch perimeter calculations are more 
precise and the knowledge on the habitat surrounding the patch is also known. Thus, now the 
spatial modelling of Melitaea cinxia butterfly metapopulation is more realistic than it was 
before the mapping work. Figure 14 shows and example of one habitat patch information 
before and after the GPS work. It can be clearly seen that the true location, patch shape, area 
and perimeter, and habitat types surrounding the patch can now be modelled more 
realistically.  

 
Figure 14.  A presentation of a habitat patch before and after the GPS work. The “before” 
map on the left presents one example of the habitat patch drawings which was drawn during 
the field survey. The “after” image on the right shows the same habitat patch with GPS 
delimited surrounded areas overlaid on an aerial photograph. 
 
        Some critical notes of designing and developing the Melitaea cinxia GIS database should 
be pointed out. The geospatial database was implemented to be used with ArcView 3.2 
software, which does not support Unified Modelling Language (UML) conceptual modelling 
schema nor the new object-relational geodatabase capabilities seen in the current ArcGIS 9.3 
software. Contemporary GIS databases are often designed using UMLs as a conceptual 
modelling tool, e.g. Lambers & Sauerbier (2003) used UML to create an object-oriented UML 
data model to organize and integrate geoglyph data for Nasca lines in Peru. There are now 
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overwhelming numbers of UML designed geodatabases and it is therefore recommended that 
UML conceptual modelling should be used for database design with present day GIS 
software, such as ArcGIS 9.3. However, ESRI has announced in their very recent deprecation 
plan for ArcGIS 9.3.1 (January 7, 2010) that they will not support CASE tools for ULM 
modelling schema any more in their forthcoming ArcGIS 10.0 software version. Therefore it 
is recommended to closely follow which conceptual modelling technique will be used in the 
future GIS software. Another major shortcoming of using MS Access 97 as a basis for a 
geospatial database is that it is not possible to manage geographic or location-data in a native 
format in the way it is possible for example within an Oracle Spatial database system. Oracle 
Spatial provides functions that facilitate the storage, retrieval, update, and query of collections 
of spatial features in an Oracle database. Moreover, the Melitaea cinxia GIS database was 
designed as a closed system using proprietary data structures and file formats which normally 
causes interpretational problems between GIS and other software. GPS work was partly 
carried out before May 1, 2000, which means that the feature called Selective Availability 
(SA) was still on. Before SA was switched off it added intentional time varying errors up to 
100 m to the publicly available GPS navigation signal. This error was clearly seen in raw GPS 
data before the differential correction was made and even after differential correction some 
errors still existed for a number of habitat patches. This added some uncertainty to the 
accuracy of GPS delimited patches.  
        Some uncertainty also existed in the radar precipitation data. There was some clear 
“noise” in the data and mostly it could be eliminated but in some locations it could not be 
removed. However, a correlation analysis where radar precipitation data was plotted with 
weather station precipitation data shows statistically significant correlation (Hanski & Meyke 
2005). Moreover, 1 km2 precipitation radar data revealed that in Åland Islands there exists 
high spatio-temporal variation in precipitation patterns, which was not so evident when using 
only meteorological data from weather stations. On average, there was a clear decreasing 
precipitation trend from west to east and high variation existed in weekly, monthly and yearly 
precipitation in different areas. This high spatio-temporal variation may have serious 
consequences to local Melitaea cinxia populations. For example in dry summer months host 
plants may dry out or during wet condition larvae groups may drown and therefore local 
population may go extinct. It can be concluded that it appears evident that at a large-scale 
spatially correlated weather conditions are one of the primary causes of spatially correlated 
changes in Melitaea cinxia population sizes.   
        The making of the Melitaea cinxia GIS database was a challenging task and all the 
unexpected problems occurring during the development of database cannot be explained in 
this thesis. Furthermore, we have to put the project to the right time perspective. At the time 
the database was created, about ten years ago, the GPS receivers were not at such an advanced 
and accurate level as they are now. As an example, we tried to use a commercial differential 
correction signal obtained from FOKUS-service but most of the time we could not receive it 
in a proper way. In addition, GIS- and database software had limited capabilities compared to 
the contemporary software with all the sophisticated geospatial data handling possibilities. 
However, it can be concluded here that the geospatial database has greatly improved the 
knowledge of true Melitaea cinxia metapopulation structure and it has been used successfully 
in a number of studies since it was built (see e.g. Hanski & Meyke 2005).       

5.2 Scopulini moth spatial analysis for diversity and distribution (Paper II)  
 
Spatiotemporal analyses were conducted using a computerized geospatial database of 
Scopulini moths (Lepidoptera: Geometridae, Sterrhinae). Various aspects related to species 
description, diversity and geographical distribution were analysed. In general, the analyses 
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showed that diversity patterns for Scopulini moths reflected a similar pattern as those reported 
earlier for the whole Geometridae family (see Gaston et al. 1995). The numbers of described 
species of Scopulini by decade showed that it peaked between 1900–1940, during which 
period 528 species were described. Since the 1940s there has been a lower rate of descriptions 
c.a. 15 species per decade but the cumulative numbers of species descriptions has not yet 
reach the asymptote and inform a biogeographical perspective, species descriptions has been 
very uneven (II: Figures 1 and 2). Generally, the most species rich biogeographical area for 
the Geometridae has been reported to be Neotropics. However, for the Scopulini it was found 
to be Africa (II: Table 1). The synonymy rates were found to be highest in the New Zealand 
and Nearctic regions and lowest in Madagascar. 
        The Scopulini was found to be cosmopolitan in distribution but the distribution of type 
localities is uneven. The most species-rich analysis squares were located in sub-Saharan 
Africa and in northern India (II: Figure 6). Many of the most speciose squares of the 
Scopulini have also been identified earlier as biodiversity hotspots, based on non-invertebrate 
taxa (Myers et al. 2000). In other areas, virtually no species have been described from the 
interior parts of the Nearctic and Neotropics. When latitudinal patterns were investigated, it 
was found that the majority of the species have been described from low latitudes and 
numbers decrease steadily towards higher latitudes, following broadly the latitudinal gradient 
theory of diversity by Fischer (1961) (II: Figure 6). This finding contradicts the earlier finding 
of Holloway (1997) where he stated that Scopulini have been successful also in temperate 
zones. 

5.3 Spatiotemporal forest cover change detection (Paper III) 
 
The main aim in Paper (III) was to analyse forest cover spatiotemporal change between 1955 
and 2004 in Taita Hills, Kenya. Forest cover change was analysed in the study area 
quantitatively using black and white aerial photographs (1955 and 1994) and airborne digital 
camera mosaics (2004), and field survey data (2007 and 2008). Another aim was to create a 
consistent methodological framework for forest cover change detection using digital imagery 
techniques. Analysis methodologies were described in detail in the Paper III because previous 
forest cover studies in Taita Hills have lacked profound explanations of the used techniques 
and therefore hampered the validation of earlier results. Moreover, there exists a great 
variation in the forest cover areas given by other authors due to the different principles used 
for delineating indigenous forest from other land cover, due to the definition for indigenous, 
native or original forest or due to the interpretation methods used. 
        The main results indicated that the total forest cover decreased in the study area only by 
2% due to the planting of exotic trees. However, indigenous forests decreased by 50% (260.2 
ha) and based on change detection results they were mainly changed to agricultural areas but 
also to exotic tree plantations. This finding is in concordance with a land use study by 
Imberon (1999) were he used SPOT satellite image and aerial photographs to analyse land-
use over the past 40 years (1958 to 1995) at Embu highland on the slopes of Mount Kenya. 
He found that the total tree cover including forest, woodlots, tree lines and tree plantations, 
had not changed. However, the composition of tree cover had changes so that exotic tree 
species, such as eucalyptus, dominated over natural trees where in 1958 the composition was 
opposite. Moreover, the area under annual food crops increased significantly from 1958 to 
1985, probably because of the population growth in the area. A typical pattern in Sub–
Saharan land cover change is that natural tropical forest cover has changed to mainly 
agricultural land or to exotic trees. 
        This study presents the most accurate evaluation so far of the forest cover change for the 
studied forest patches in Taita Hills. However, there are still some important considerations 
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about the accuracy that should be pointed out here. These accuracy issues have to be taken in 
to account when using historical black and white aerial photographs and airborne digital 
imagery. Firstly, for the black and white photographs the metadata was very poor, only 
information on focal length of the camera was available and the aerial photographs had no 
fiducial marks, hindering their ortho-rectification correction. Therefore, an image-to-image 
co-registering method was employed. Black and white aerial photographs were co-registered 
using 2004 airborne imageries as reference data. By doing so it has to be recognized the fact 
that uncorrected black and white aerial photographs will inherit all the geometric distortions 
and location errors of the reference images and positional inconsistency between different 
map sets will become apparent. Fortunately in this study the 2004 airborne imagery had only 
minor geometric distortions (ca. 2 meters around main forest areas) validated by using 
differentially corrected GPS reference points. 
        Black and white aerial photographs were co-referenced using rubber sheeting, a 
piecewise polynomial method for geometric correction of digital imagery. Rubber sheeting 
attempts to correct errors by stretching a map to fit a known set of ground control points 
(GCPs) by forming a triangulated irregular network (TIN) over all the GCPs. The image area 
covered by each triangle in the network is rectified by the first (linear) or fifth (nonlinear) 
order polynomials (see e.g. White & Griffin 1985; Doytsher 2000; Doytsher & Hall 1997) 
therefore the rubber sheeted image is suffering for positional inconsistency related to 
referenced image. It is desirable that ample amount of evenly distributed GCPs are collected 
covering the whole image but in this study it was exceptionally hard to find matching control 
points between 1955 and 2004 images because of significant landscape changes. Fortunately 
some matching GCPs could be found from unchangeable places such as road crossings. But 
obviously the quality of GCPs might have some effect on the accuracy of co–registration.    
        A critical notice has to be placed also over on-screen digitization of forest patches using 
GIS. On screen digitizing is solely a subjective way of interpreting and delineating the forest 
patches and therefore errors may occur. This fact is showed in the original Paper III were 
some forest patches was fine-tuned by field check and the comparison between the visual 
interpretation before and after field work showed some differences (III: Figure 5). These 
probable interpretation errors are even more significant if considering that the interpretations 
of forests from 2004 colour images is fairly easy. This cannot be said about digitizing forests 
from 1955 and 1994 black and white images. From black and white images the interpretation 
is based only on the different colours of gray levels and image texture, it lacks the assistance 
of colour. As an example here, from 2004 airborne images it was fairly easy to interpret 
eucalyptus forests due to the distinctive greenish-brown crown cover.  
        These two possible sources for inaccuracy discussed above have to be taken in to 
account when analysing the exact forest cover change numbers. However, the advantages of 
digital airborne camera data compared to traditional airborne camera data were showed to be 
obvious. Firstly, when using digital imagery the whole process is digital from the start to the 
end. In addition, automation and integration of the GPS-system to the camera gave more 
accuracy to the aerial photographing. Moreover, the digital airborne imaging does not need as 
much light as traditional aerial photography and has important advantages such as digital data 
storage, manipulation, transmission and easier display. The quality of the data also increases 
when steps like chemical film, processing and scanning become unnecessary. On the other 
hand, the disadvantages of digital aerial photographs include unstable geometry and so called 
dead pixels. 
        It can therefore be concluded here that forest cover change at local and regional scale can 
be analysed by using historical images and airborne digital camera images. Nonetheless, it 
should be noted that spatiotemporal change trajectory analysis using historical data 
(photography or maps) is not a new method and over recent years it has been applied in 
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various studies. Lung & Schaab (2004) used remote sensing imagery and aerial photographs 
to study forest cover change in Kakamega forest in west Kenya. Vuorela & Toivonen (2003) 
analysed historical land cover and woodland cover change between 1690 and 1998 on the 
island of Ruissalo south-western Finland. Fuse & Shimizu (2004) used historical maps to 
construct a model for ancient Tokyo city (Edo). Imberon (1999) studied land cover change at 
Embu highland on the slopes of Mount Kenya. He used successfully aerial photographs and 
SPOT satellite image for change detection. 
        In Paper III the forest cover change was analysed with high accuracy for the selected 
forest patches in Taita Hills by using airborne colour imagery and historical black and white 
aerial photographs. The accuracy of co-registering of historical black and white photographs 
and the delineations of forest patches from these images using on-screen digitizing with GIS, 
in addition to the lack of historical ground-truth data, could lead however to some errors in 
the forest cover change calculations. As a final statement, according to Hording (2004) five 
significant advantages of visual interpretation of photo products over satellite image based 
land cover models can be found: “Less time required to create a usable product; Little, if any, 
expense incurred beyond the acquisition of the image; Image illumination "problems" (such 
as shadows and brightly illuminated surfaces) can be used as an interpretation aid; Minimal 
expertise required to interpret the image; and uses the power of the brain”.  

5.4 Human population prediction in Taita Hills (Paper IV) 
 
Population distribution and abundance were modelled for the rural mountainous area of the 
Taita Hills, Kenya, using dwelling unit data (presence-absence) and population count data 
(abundance) as the response variable and geospatial data as predictors. Prediction models 
were created using the GRASP method that utilizes the generalized additive model (GAM) 
regression technique. The results showed that population distribution models explained 19 to 
31% of variation in the dwelling unit occurrence data indicating a fair explanatory power and 
the predictive power for population distribution models was good (AUC 0.80 to 0.86). The 
abundance models explained 28% to 47% of the variation in human population abundance in 
the study area. Combined geospatial- and remote sensing-based predictors gave the overall 
best modelling results when compared with only remote sensed and GIS predictor models. 
The best single predictors for modelling the variability in human population distribution using 
combined predictors were: angular second moment image-texture measurement, precipitation, 
mean elevation, surface reflectance for SPOT red- and near-infrared bands, correlation image-
texture measurement and distance to roads, respectively (IV: Tables 3, 4, 5 and 6). The fairly 
poor performance of land cover classes used as predictors in human population predictive 
modelling indicates that it is not necessary to use classified land cover, instead first and 
second order image-texture measurement derived from satellite image should be used. 
Second-order image texture factors have been shown to be important factors in earlier urban 
population density analysis (see for example Shaban & Dikshit 2001; Li & Weng 2005). The 
second benefit to use the first and second order image-texture measurements is the fact that 
they can be used to quantify the variability of vegetation as a continuous variable in statistical 
modelling. These findings are important, especially when considering the laborious satellite 
image classification work to derive an accurate land cover map is not necessarily needed. This 
study also revealed that models using solely geospatial predictors had by far the lowest model 
performance in population models and therefore it is suggested that they should not be used 
alone as a predictors for dwelling unit distribution and abundance modelling. However, 
availability of a more precise geospatial predictors, e.g. a road network that also includes 
footpaths, might have improved the model performance. This is true especially in 
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mountainous rural areas, such as the Taita Hills, were the majority of houses are accessed 
only by footpaths. 
        Generalized additive model (GAM) were chosen for modelling because in various 
species distribution studies GAM models have outperformed conventional linear regression 
techniques (Yee & Mitchell 1991; Thuiller et al. 2003). Moreover, GAMs are more suitable 
for geospatial data modelling as environmental predictors are often non-Gaussian with non-
constant variance. However, in earlier human population modelling studies using geospatial 
data, mainly linear regression techniques have been used (see, e.g. Lo 1995; Schnaiberg et al. 
2002; Gustafson et al. 2005; Li & Weng 2005). To our knowledge, this study was the first 
time that GAM models were used for human occurrence and abundance prediction using 
geospatial predictors and the good modelling results encourage other predictive human 
population and abundance studies to consider the GAM modelling technique to be used 
alongside or alone with more traditional regression methods. 
        The GAM abundance model was extrapolated for the whole study area and the model 
was capable of discriminating between inhabited and uninhabited areas (VI: Figure 4). For 
example, there are no dwelling units in Ngangao forest and the model predicting presence of 
human population concentrations in and around the villages and absence of dwellings on 
cultivated fields. When abundance models were compared with two existing global 
population data sets, GPWv3 and LandScan 2005, the results affirmed that there was 
statistically significant correlation between combined and remote sensing based models and 
the GPWv3 product (r > 0.8) but the correlation was non-significant with geospatial model (r 
= 0.19). For LandScan 2005 the correlations were lower (VI: Table 7). The correlation 
between Kenyan census data for 1999 and predicted population abundance models are high 
for remote sensing data (r = 0.71) and combined models (r = 0.51) when solely sub-locations 
over 1100 m.a.s.l. (n = 32) were used. For geospatial models the correlation was non-
significant. There was low correlation (r = 0.34) between remotely sensed population 
abundance models and Kenyan census data for 1999 for the sub-locations also extending into 
the lowlands (n = 50) and no correlation for combined- and geospatial models (VI: Table 8). 
As a final conclusion it can be stated that the predictive models using predictors from remote 
sensing and geospatial data were found to be more accurate than global datasets and 
correlated well with the Kenyan 1999 census data too. However, it must be kept in mind that 
the modelling performance can be affected by different factors such as: analysis scale, spatial 
autocorrelation, chosen predictors and modelling technique and model parameterization. 

5.5 Fire prediction and burned area estimation in East Caprivi using GLM (Paper V) 
 
Generalized linear models (GLMs) were used for predictive fire modelling in East Caprivi, 
Namibia. MODIS hot spots fire data for four years 2002–2006 were used as a response 
variable and geospatial data was used as predictors. Prior to predictive modelling, 
spatiotemporal characteristics of fires were investigated. Firstly, fire frequency counts on a 
monthly basis were conducted and the fire frequency analysis showed a typical fire trend in 
Southern Africa were most of the fires are occurring during a few months in the dry season. In 
East Caprivi the peak season for fires is September–October (V: Table 4). The extent of 
burned areas was roughly estimated from fire hot spots data assuming that each hot spot 
represents a 1 km2 of burned area, fully aware of the possible misinterpretation that may occur 
with this type of assumption. For example Roy et al. (2008) have estimated that hot spots 
based burned area calculations underestimated the burned area by ca. 24% due to high 
omission error. The burned area in East Caprivi was estimated from hot spots data to vary 
between 19.2–24.4% (V: Table 4). The spatial characteristics of fires were investigated using 
Moran’s I correlograms and the results showed that high positive autocorrelation was present 
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for fire occurrence at short lag distances for all four years and aggregated four years fire data 
(V: Figure 3). This finding was in concordance with an earlier study made in Mali by Laris 
(2005) showing that the people set fires in regular annual pattern and the patches that burn 
every year are approximately in the same place at the same time.  
        Due to the high spatial autocorrelation of fires, two types of predictive models were 
conducted: models with and without consideration of the spatial autocorrelation of fires. 
Moreover, separate model were developed for abiotic, biotic, anthropogenic and combined 
explanatory variables, respectively. The modelling results showed that models accounting for 
spatial autocorrelation, i.e. autologistic models, had by far the best performance. This result is 
similar to Chou et al. (1993) and Lynch et al. (2006) where model improvement were 
significant when accounting for spatial autocorrelation in logistic fire models. Moreover, 
there was practically no difference in model performance between autologistic models using 
abiotic, biotic, anthropogenic or combined explanatory variables. Hierarchical partitioning 
(HP) was used as a complementary analysis method in order to reveal individual explanatory 
variables having the most independent influence on fire occurrence. The result showed that 
autocovariate (a mean value of total number of fires in the eight, where possible, nearest 
neighbour analysis squares) had by far the strongest independent influence on fire occurrence 
and as much as 24% of the variation in fire occurrence was explained by the autocovariate 
variable. 
        Fire prediction surfaces were transformed to classified burned area maps and compared 
with MODIS burned area product (MCD45A1) and reference burned area data that were 
derived from MODIS 250 m images. The overall result was that in this study, autologistic fire 
probability models estimated burned area more accurately than MODIS fire products (V: 
Table 9). Therefore, based on the clear results of superior performance for predictive fire 
occurrence modelling relative to MODIS burned area product, the future MODIS burned area 
product should investigate the possibilities to incorporate predictive fire occurrence modelling 
and improve the present burned area estimations.  
        However, some critical issues have yet to be raised even though the findings in this study 
were found to be satisfactory for both fire occurrence prediction and burned area estimation. 
Firstly, in this study there was no ground truth reference data available for burned areas, 
instead MODIS 250 m imagery were used to derive the reference burned area for each year. 
Thus, it has to be recognized that burned area estimation derived from coarse scale satellite 
imagery may also have errors due to incorrect georectification and boundary differences 
during on-screen digitizing (Felderhof & Gillieson 2006; Verlinden & Laamanen 2006). This 
will result that small fires are overlooked and burned areas are simplified as seen from (V: 
Figure 6). Secondly, the predictive modelling was conducted at 1 km analysis square due to 
the MODIS hot spots data resolution (1 km). The model performance could thereby be 
affected by the relatively coarse scale and downscaling would have been an option to consider 
for model performance improvement (Kidson & Thompson 1998), especially because the 
original spatial resolution for predictor map layers were less than 1 km, e.g. for the DEM the 
resolution was 90 m. On the other hand, a smaller analysis grid side would increase the 
sample size and risk pseudoreplication occurring in the statistical analysis (Hurlbert 1984). 
Thirdly, predictive models are scale and place -dependent and the results should be 
interpreted somewhat cautiously particularly when fire models are extrapolated to other areas 
or to different analysis scales. 
 
 



 49

5.6 Fire prediction and burned area estimation using eight modelling methods (Paper 
VI) 
 
Eight state-of-the-art modelling methods (GLM, GAM, MARS, CTA, MDA, ANN, GBM and 
RF) were used for predictive fire occurrence modelling, burned area estimation and fire risk 
mapping in East Caprivi, Namibia. MODIS hot spots fire data for four years 2002–2006 were 
used as a response variable and geospatial data was used as predictors. Two types of 
predictive models were tested: models accounting for spatial autocorrelation, i.e. models 
including the autocovariate predictor and models without the autocovariate predictor. 
Predictive accuracy was evaluated using cross-validated AUC and Kappa values. The results 
showed that distinctive variation existed between different modelling methods (VI: Figure 3 
and 4). The best overall model performance was achieved using generalized boosted models 
(GBM). The GBM models had good predictive power and good accuracy for burned area 
estimation. For fire occurrence prediction random forest (RF) had the best predictive power. 
However, when RF models were transformed to classified burned area maps, the performance 
was very poor. The model performance results and burned area estimations for all the models 
can be seen from the original paper VI (VI: Tables 4, 5 and 6). Furthermore, each of the 
modelling method results are discussed separately in detail in the original Paper VI section 5. 
        To outline the main findings: firstly, to the latest knowledge, GBM MARS, GAM 
modelling techniques, which had good modelling performance in this study, have never been 
used before in fire occurrence, burned area estimation or fire risk mapping. This is surprising 
considering the good results for these novel modelling techniques in, for example, ecological 
studies (Prasad et al. 2006; Elith & Leathwick 2007; Elith et al. 2008; Morin & Thuiller 
2009). Artificial neural networks (ANNs) and classification tree analysis (CTA) have been 
used successfully earlier for fire occurrence prediction and burned area estimation. ANNs 
were used in a study by Maeda et al. (2009) to predicted fire occurrence in Brazilian Amazon 
and Al-Rawi et al. (2001) estimated burned areas using NOAA-AVHRR imagery for the 
eastern part of Spain. However, in this study ANN models had very low accuracy for fire 
prediction and they overestimated burned areas (VI: Tables 4, 5, 6 and Figures 3 and 4). 
Stroppiana et al. (2003) used SPOT VEGETATION data and CTA modelling for burned area 
mapping in the Australian savanna with acceptable accuracy. In this study CTA models had 
also fairly good prediction accuracy and burned area estimation. This study also shows that 
GLM models had fair modelling performance for fire prediction and burned area estimation. 
The advantage of GLM models relative to more novel statistic techniques is that GLMs are 
fairly simple to understand and they present clear regression equations whereas, for example, 
RF and CTA models do not. The random forest regression technique has been used before for 
burned area estimation at coarse scales. Archibald et al. (2009) predict fires at a sub-
continental scale in Africa using 100 km analysis window size with fairly good results and the 
RF technique has out-performed more traditional modelling techniques (see Prasad et al. 
2006; Peters et al. 2007). However, in this study RF models had low accuracy for burned area 
estimation. Mixture Discriminant Analysis (MDA) models had generally poor performance 
for fire prediction and burned area estimation. This can be clearly seen from (VI: Figure 3) 
where burned area estimation for year 2003 is unrealistic as the model has detected some odd 
artificial boundaries for burned and unburned areas. For models including autocovariate 
predictor, i.e. for the models accounting for spatial autocorrelation of fires, MDA models had 
better model performance (VI: Figure 4). Figure 5 from the original paper VI presents a fire 
risk map created using GIS map overlay techniques. This figure and Table 7 shows that 
predictive GBM modelling technique estimated fairly good areas that were burnt in four years 
time. 
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        The results of this study showed that there existed some noticeable variation between 
different modelling techniques for fire occurrence prediction and burned area estimation. 
Variation existed between different prediction techniques but there was also some intra-model 
variation within single modelling techniques. Moreover, this study indicated that no single 
modelling method had absolutely the best performance for fire occurrence prediction and for 
burned area estimation, as there was some variation between different years. It is therefore 
important that a combination of modelling techniques and statistical algorithms using models 
with and without autocovariate should be utilized for obtaining the best modelling results for 
predictive fire occurrence modelling and burned area estimation. This study also highlighted 
the need to improve the current MODIS (MCD45A1) burned area product as several of the 
predictive modelling techniques used in this study had superior performance for burned area 
estimation relative to that of the MODIS product. 

5.7 The challenge to improve active fire detection and burn-scar detection 
 
Throughout the World fires threaten human lives, property and natural resources. In recent 
years devastating fires in California, Australia, Indonesia and Greece have gained a lot of 
media attention but the majority of fires burning around the World are not reported. For 
example, annually thousands of square kilometres are burned in Africa. In the past, fire has 
been an essential part of ecosystem dynamics in African savannas but at the present fires have 
increased and the majority of these fires are man-made (Laris 2005). Figure 15 shows the 
extent of present day fires in Africa. In the African continent and Madagascar there were ca 
2.5 million active fires detected with MODIS Terra and Aqua satellites in 2008 (data set 
obtained from MODIS Rapid Response Project). A picture on the right shows an example of 
burned savanna environment in East Caprivi in 1996.  

 
 
 
 

 
Figure 15. Active fires detected in African continent and Madagascar during 2008 with 
MODIS Terra and Aqua satellites and recently burned savanna in East Caprivi (photo by 
Mika Siljander 1996).  
 
        Remote sensing methods have been used for three decades for active fire and fire-scar 
detection. A multitude of sensors, algorithms and applications have been used during these 
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decades. However, uncertainties in active fire detection and burned area estimation exist and 
the accuracy of fire models is still far from perfect. A lot of work has to be done to improve 
present fire models and researchers are persistently seeking for new algorithms and modelling 
techniques to enhance active fire detection and burn scar estimation. New novel predictive 
modelling techniques are one possible solution to improve currently available fire occurrence 
and burned area models, as there are still great challenges before local fire managers can 
obtain precise fire occurrence information at local and regional scales, and before global 
climate modellers receive accurate burned area estimation at global scale derived from remote 
sensing or GIS originated geospatial data. 

6. Conclusions and future prospects 
 
The main purpose of this dissertation was to develop geospatial environmental data modelling 
applications using remote sensing, GIS and spatial statistics and this thesis presented six 
studies for environmental geospatial data analysis covering five themes: (i) design and 
development of an environmental geospatial database; (ii) species diversity and geographical 
distribution analysis; (iii) forest cover change detection; (iv) predictive modelling for human 
population distribution; and (v) predictive modelling for fire occurrence and burned area 
estimation. The main conclusions of the thesis are as follows: 
 

• A cogent geospatial database is an essential part of spatial analysis and functional 
RDBMS should be created for each study that utilizes geospatial data. Contemporary 
GIS has some inbuilt database capabilities such as Geodatabase in ArcGIS but to work 
effectively with geospatial data, true RDBMS software should be used. Present day 
database software such as commercial Oracle Spatial and Open Source 
PostgreSQL/PostGIS adds support for geographic objects. For creating the Melitaea 
cinxia geospatial database, MS Access 97 software was used which does not support 
geographical objects. However, with Access RDBMS it was possible to make 
complex database SQL queries and then link the database to ArcView 3.2 GIS 
software by using Open Database Connectivity (ODBC) thus providing semi-
automatic functionality to spatial analyses. The challenges to manage geospatial 
databases have increased at the same time as the data availability and the sizes of the 
data files have increased and therefore it is essential for scientists and for 
environmental modellers also to understand the potentialities and constraints of 
geospatial databases.    

 
• The species data derived from the world check-list and from species catalogues can be 

computerized and incorporated into GIS for species description, diversity and 
geographic distribution analyses. A geospatial database was developed for Scopulini 
moths and it was found that Scopulini moths have a cosmopolitan distribution. The 
majority of the species have been described from the low latitudes, sub-Saharan Africa 
being the hot spot of species diversity. However, the taxonomical effort has been 
uneven among biogeographical regions. 

 
• Tropical forest cover measurements at regional and local scales using orbital satellite 

imagery suffer from errors. Airborne digital camera imagery is more suitable to gain 
accurate forest cover measurements. However, when spatiotemporal forest cover 
change is studied care has to be taken in co-registration and image interpretation when 
historical black and white aerial photography is used. Furthermore, visually 
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interpreted GIS-based land cover models should be fine-tuned with field survey to 
enhance the accuracy.  

 
• Human population occurrence and abundance can be modelled with satisfactory 

results using GIS and remote sensing based data and non-Gaussian predictive 
modelling techniques. Land cover layer is not necessary needed as a predictor because 
first and second-order image texture measurements derived from satellite imagery had 
more power to explain the variation in dwelling unit occurrence and abundance. 
Predictive, local and regional scale human population abundance models were more 
suitable than existing more coarse scale global population data sets GPWv3 and 
LandScan 2005 to estimate the number and showing the distribution of population in 
the rural mountainous area of Taita Hills, Kenya.  

 
• Generalized linear model (GLM) is a suitable technique for fire occurrence prediction 

and burned area estimation. When predictive models were transformed to classified 
burned area maps they outperformed the MODIS (MCD45A1) burned area product in 
estimating the burned areas at a regional scale in East Caprivi. Namibia. However, 
spatial autocorrelation of fires has to be taken into account when using the GLM 
technique for fire occurrence prediction.   

 
• Novel statistical predictive modelling techniques can be used to improve fire 

prediction, burned area estimation and fire risk mapping at a regional scale. Predictive 
fire modelling can be used as a tool to provide communities and fire managers an 
early warning system to identify areas at a risk of likely fires. The burned area product 
MODIS (MCD45A1) is not accurate for estimating burned areas at a regional scale 
and predictive modelling based burned area estimations outperformed the MODIS 
burned area product. However, some noticeable variation between different predictive 
modelling techniques for fire occurrence prediction and burned area estimation 
existed. The random forest (RF) had the best predictive accuracy but performed very 
poorly for burned area estimation. Generalized boosted models (GBM) had both good 
predictive accuracy and burned area estimation.  

 
All the major problems that we are facing throughout the world today – overpopulation, food 
shortages, reduced agricultural production, poverty, deforestation, land degradation, land 
cover change, biodiversity loss, flooding, droughts, wildfires and climate change, - these are 
all fundamentally geographic problems. Geoinformatics is the science that develops and uses 
information science technologies and tools, combining geospatial analysis and modelling and 
development of geospatial databases to resolve geographic problems. Geoinformatics tools 
and techniques have been successfully used in contemporary environmental research and 
without these tools and techniques environmental modelling would not be the same at is it 
now.  
        We have come a long way from the 1960s map overlay analysis where transparent sheets 
of different map layers e.g. geology, land cover and infrastructure were overlaid one on top of 
the other to achieve most suitable areas of interest for a specified analysis. At present, GIS 
technology allows us to do e.g. map overlay analysis in a “push the button” manner and do 
things just in minutes instead of struggling for hours with a pen and paper. However, at the 
same time as GIS and remote sensing software will get easier to use there lurks a danger that 
users with a single afternoon GIS course will think themselves to be GIS experts. But this is 
not true as to become a GIS/RS professional takes years of hard learning, and mastering 
GIS/RS seems to be a “mission impossible” – a lifelong learning process with no ending in 
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sight. Before understanding GIS/RS one has to understand geography as a complete 
discipline; one has to understand the fundamentals of geography e.g. principles of projections 
and mapping scale, spatial autocorrelation, map interpretation, topology, and one has to 
understand the limitations and problems of spatial data; problems with data standards, 
problems of data definition, data accuracy, and data exchange. And most of all, one has to 
understand that GIS is only a tool, though a powerful tool in the right hands. 
        There is no doubt that the use of remote sensing and GIS in environmental research are 
increasing day by day. Governmental organizations and private companies are rapidly 
increasing the use and applications in various fields of vital importance. Increasing use of 
these techniques in environmental research will show also increasing specialization in GIS/RS 
applications in the future. Therefore there is a great challenge ahead to develop and 
implement innovative applications for environmental research. But if we are going to use 
these tools and techniques we must integrate physical, cultural, economic, and political 
geographical knowledge to understand the “Whole Picture”. And by doing that, we can 
understand more deeply the factors and actors that are behind environmental degradation and 
we might have a change to save our Planet for the future generations, so that they also have 
the chance to see our Planet as beautiful as I have seen it during my travels. 
 

Acknowledgements 
 
Firstly, I gratefully acknowledge my supervisor professor Petri Pellikka as he took me as a 
very unsure “non-traditional” student, returning from two-year sabbatical trip, to study for a 
Ph.D. Petri, I also have to thank you that you tenaciously insisted for me to take part in Taita 
Hills field trip and to return to Africa in winter 2006. At that point I was not too keen to return 
to Africa because of my mugging at knife-point incident in Windhoek in 2004 that was still 
too clear in my mind. But thanks Petri, the trip to Taita Hills returned my trust and love for 
Africa, and the “late night board meetings” that we shared with a glass or two of lukewarm 
Whisky or Cointreau at the Hebron Guest House in Wundanyi, these moments have melted 
deeply in to my consciousness. I am also grateful to you Petri for giving me free hands to 
study the subjects that I have a great interest in, like forest fires in East Caprivi. I know that 
most of the papers presented in this thesis are not about Taita Hills but I believe that you can 
cope with this. My interests have always been to understand things broadly as I am more a 
“Jack of all trades and master of none” kind of person, than a precise scientist knowing so 
much about so little. This might be the explanation why I also cover some other study areas, 
such as East Caprivi, in this thesis. Secondly, warm thanks go to Dr. P.K. Joshi and Dr. 
Tarmo Virtanen for pre-examining this thesis. 
        During my Ph.D. work Barnaby Clark and Alemu Gonsamo have been as supporting and 
encouraging as one can expect true working colleagues could be. I highly respect you both 
and it has been a fun ride with both of you “Boyz”. Barnaby, we have had some extraordinary 
moments talking deeply about the real life subjects, not about anything related to either Ph.D. 
thesis, remote sensing or GIS. These talks have given me a great pleasure and fun and more 
trust to believe in the wisdom of humankind. We had some tremendous time at Safari Park 
Hotel outside Nairobi when we were giving a remote sensing and GIS course at the Regional 
Centre for Mapping Resources for Development (RCMRD). And you Alemu, we have shared 
some three different rooms at the Department of Geosciences and Geography and there have 
been some outstanding moments with you. You truly reflect the best spirit of Africa. 
        This thesis was mainly made at the Department of Geosciences and Geography at the 
University of Helsinki premises. I therefore want to thank all the staff members and I also 
want to express gratitude to some particular persons. I would firstly like to thank the Head of 



 54

the Department, John Westerholm, for giving me the opportunity to work at the Department 
of Geosciences and Geography. Secondly, as I am mostly spending my working days with 
GIS it means computers and computers usually mean troubles! Tom Blom, who is now 
working at the IT-Services has been “the guy who gets you out of the trouble” at least when 
computers issues are concerned. Thanks Tom, you have helped me out so many times, I really 
appreciate it. This same goes also to you Hilkka Ailio; you have also helped me a lot with all 
sorts of computer issues. There would not be a Geographical Department without an efficient 
administration – “The Office”. And from “The Office” I especially want to thank Airi 
Töyrymäki to make most of my paperwork feel “smooth as a silk”. The thanks goes also to 
Johanna Jaako helping me out with some tricky administrative issues. Three persons from the 
Department have had some influence in my career. In 1996 Ritva Kivikkokangas-Sandgren 
was the leader for a Master's student trip to East Caprivi in Namibia and, as I still have some 
interest to East Caprivi fires, I thank you Ritva for the trip to East Caprivi. In 1997 Mari 
Vaattovaara was the person who had the courage to select me at Programme for Maintenance 
and Applications of Geographical Information Systems course. Without this course I doubt I 
would be working with GIS, remote sensing and databases issues. So Mari, I would like to 
thank you for having such an impact on my working career. Tuuli Toivonen you are the 
person who gave me the first GIS practical and that practical was with MapInfo. It took me 20 
minutes before I left the room with my classmate and we had to go to clear our heads with 
couple of beers in Tube Bar. I just could not understand anything about MapInfo – I pretty 
much still don’t. So I thank you Tuuli for giving me the first push towards the “ESRI World”, 
but also for many other things. I would also like to thank you also Nina, Tino, Jan, Jari–Pekka 
and Eduardo for assistance and great working companion and Miska Luoto for his early 
influence.  
        There are some persons not working at Department of Geosciences and Geography that I 
want also to acknowledge. Jaakko Suikkanen and Juha Oksanen were giving me the first GIS 
course after my MapInfo experience. I thank you both for taking my MapInfo GIS trauma 
away with the more sophisticated software ARC/INFO Workstation. Probably my final words 
will be “mape meku”. Jaakko we have had some memorable moments also outside the GIS 
world down in the Galaxy cellar jamming the night away so let’s keep it that way. I want to 
express gratitude to Prof. Ilkka Hanski to take me “On the wings of butterfly” at the MRG and 
I also want to thank Marko Nieminen and Pasi Sihvonen who were the main authors in Paper 
I and Paper II and I also wish to thank every one of the other co-authors in my thesis for 
advice, comments and support. And Janne Heiskanen, we shared some valuable talks while 
you were still working at the Department of Geosciences and Geography.  
        I also want to thank my family, especially my deceased mother and father as you let me 
live my life the way I wanted. My great love goes to my sisters Susanna and Heidi. You both 
have always supported and encouraged me. I want also to thank for encouragement and 
support from some of my relatives and friends: Petteri, Taru, Kati, Jussi, Jukka, Taina, 
Kimmo, Veijo, Tuula, and Marco.    
        Finally and above all, I am eternally grateful to my wife Tuija. Tuija, you are the force 
behind my existence and you were the first to encourage me to finish my high school and 
continue to University. We have soon shared 20 wonderful years and we have made countless 
trips together and witnessed together the beauty of this Planet. It has been a magnificent 
journey and I must admit that I am still very much in love with you. �������	    
 
Huvilakatu, Helsinki, February 2010  
 
Mika Siljander 
 



 55

References 
 
Akaike, H. (1974). A new look at statistical model identification. IEEE Transactions on 

Automatic Control 19, 716–722. 
 
Al-Rawi, K.R., Casanova, J.L. & Calle, A. (2001). Burned area mapping system and fire 

detection system, based on neural networks and NOAA-AVHRR imagery. 
International Journal of Remote Sensing 22, 2015–2032. 

 
Achard, F., Eva, H.D., Stibig, H.J., Mayaux, P., Gallego, J., Richards, T. & Malingreau, J.P. 

(2002). Determination of deforestation rates of the world’s humid tropical forests. 
Science 297, 999–1002. 

 
Andrén, H. (1994). Effects of habitat fragmentation on birds and mammals in landscapes with 

different proportions of suitable habitat—a review. Oikos 71, 355–366. 
 
Archibald, S., Roy, D., van Wilgen, B. & Scholes, R.J. (2009). What limits fire? An 

examination of drivers of burnt area in Southern Africa. Global Change Biology 
15, 613–630. 

 
Barbosa, P.M., Pereira, J.M.C. & Grégoire, J.M. (1998). Compositing criteria for burned area 

assessment using multitemporal low resolution satellite data. Remote Sensing of 
Environment 65, 38–49. 

 

Barbosa, P.M., Grégoire, J.M. & Pereira, J.M.C. (1999). An algorithm for extracting burned 
areas from time series of AVHRR GAC data applied at continental scale. Remote 
Sensing of Environment 69, 253–263. 

 
Beck, J & Chey, V.K. (2008). Explaining the elevational diversity pattern of geometrid moths 

from Borneo: a test of five hypotheses. Journal of Biogeography 35, 1452–1464. 
 
Beentje, H.J. (1988). An ecological and floristic study of the Taita Hills, Kenya, Utafiti 1, 23–

66. 
 
Bourgeau-Chavez, L.L., Kasischke, E.S., Brunzell, S. & Mudd, J.P. (2002). Mapping fire 

scars in global boreal forests using imaging radar data. International Journal of 
Remote Sensing 23, 4211–4234. 

 
Boschetti, L., Flasse, S.P. & Brivio, P.A. (2004). Analysis of the conflict between omission 

and commission in low spatial dichotomic thematic products: the Pareto boundary. 
Remote Sensing of Environment 91, 280–292. 

 
Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J. (1984). Classification and 

Regression Trees. Wadsworth and Brooks/Cole, Monterey, CA, 358 pp. 
 
Breiman, L. (1996). Bagging predictors. Machine Learning 26, 123–140. 
 
Breiman, L. (2001). Random forests. Machine Learning 45, 15–32. 
 



 56

Broberg, A. &  Keskinen, A. (2004). Geodatabase over Taita Hills, Kenya. In: Pellikka, P., J. 
Ylhäisi & B. Clark (eds.). Taita Hills and Kenya, 2004 – seminar, reports and 
journal of a field excursion to Kenya. Expedition Reports of Department of 
Geography, University of Helsinki 40. 148 pp. Department of Geography, 
University of Helsinki. 

 
Chou, Y.H., Minnich, R.A. & Chase, R.A. (1993). Mapping probability of fire occurrence in 

San Jacinto Mountains, California, USA. Environmental Management 17, 129–
140. 

 
Chuvieco, E., Ventura, G., Pilar Martín, M. & Gomez, I. (2005). Assessment of multitemporal 

compositing techniques of MODIS and AVHRR images for burned land mapping. 
Remote Sensing of Environment 94, 450–462. 

 
CIESIN (Center for International Earth Science Information Network), Columbia University, 

& Centro Internacional de Agricultura Tropical (CIAT). (2005). Gridded 
population of the world version 3 (GPWv3): Population grids. Palisades, NY: 
Socioeconomic Data and Applications Center (SEDAC), Columbia University. 
Available at http://sedac.ciesin.columbia.edu/gpw. 

 
Clark, B. & Pellikka, P. (2005). The Development of a Land Use Change Detection 

Methodology for Mapping the Taita Hills, South-East Kenya: Radiometric 
Corrections. Proceedings of the 31st International Symposium on Remote Sensing 
of Environment (ISRSE), 20-24 June, 2005, St Petersburg, Russian Federation. 
CD-Publication, no page numbers. (available from: 
http://www.helsinki.fi/geography/bclark_p-pellikka-ISRSE-paper.pdf). 

 
Clark, B.J.F. & Pellikka, P.K.E. (2009). Landscape analysis using multiscale segmentation 

and object orientated classification. In: Röder, A. & Hill, J. (Eds.). Recent 
Advances in Remote Sensing and Geoinformation Processing for Land 
Degradation Assessment, pp. 323–342 (Taylor & Francis). 

 
Clark, J. & Bobbe, T. (2007).Using Remote Sensing to Map and Monitor Fire Damage in 

Forest Ecosystems. In: Wulder, M. A. & Steven E. Franklin, S. E. (Eds.).  
Understanding forest disturbance and spatial pattern: remote sensing and GIS 
approaches pp. 246. CRC Press 

 
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and 

Psychological Measurement 20, 37–46. 
 
Collett, D. (2003). Modelling Binary Data, 2nd ed. Chapman and Hall/CRC, Boca Raton, 387 

pp. 
 
Cropper, M. & Griffiths, C. (1994). The Interaction of Population Growth and Environmental 

Quality. The American Economic Review 84, No. 2, Papers and Proceedings of the 
Hundred and Sixth Annual Meeting of the American Economic Association. 250–
254. 

 



 57

Devereux, S. (1993). Water and Sanitation in East Caprivi: A Knowledge Attitudes and 
Practices Survey. Social Sciences Division. Multi-Disiplinary Research Centre. 
University of Namibia. 

 
Dobson, J.E., Bright, E.A., Coleman, P.R., Durfee, R.C. & Worley, B.A. (2000). LandScan: a 

global population database for estimating populations at risk. Photogrammetric 
Engineering and Remote Sensing 66, 849–857. 

 
Doytsher, Y. (2000). A rubber sheeting algorithm for non-rectangular maps. Computers & 

Geosciences 26, 1001–1010. 
 
Doytsher, Y. & Hall, J.K. (1997). Gridded affine transformation and rubber sheeting 

algorithm with Fortran program for calibrating scanned hydrographic survey maps. 
Computers & Geosciences 23, 785–791.  

 
Dwyer, E., Pereira, J.M.C., Grégoire, J.M. & Da Camara, C.C. (2000). Characterization of the 

spatio-temporal patterns of global fire activity using satellite imagery for the 
period April 1992 to March 1993. Journal of Biogeography 27, 57–69. 

 
Elith, J. & Leathwick. J. (2007). Predicting species distributions from museum and herbarium 

records using multiresponse models fitted with multivariate adaptive regression 
splines. Diversity and Distributions 13, 265–275. 

 
Elith, J., Leathwick, J.R.& Hastie, T. (2008). A working guide to boosted regression trees. 

Journal of Animal Ecology 77, 802–813. 
 
Elmasri, R. & Navathe, S.B. (1994). Fundamentals of Database Systems. 2ed.  Redwood City, 

California: The Benjamin/Cummings Publishing Company, Inc. 873 pp. 
 

Erdogan, E.H., Pellikka, P. & Clark, B. Impact of land cover change on soil loss in the Taita 
Hills, Kenya between 1987 and 2003. International Journal of Remote Sensing, 
accepted for publication. 
 

Eva, H. & Lambin, E.F. (1998a). Remote sensing of biomass burning in tropical regions: 
sampling issues and multisensor approach. Remote Sensing of the Environment 64, 
292–315. 

 
Eva, H. & Lambin, E.F. (1998b). Burnt area mapping in Central Africa using ATSR data. 

International Journal of Remote Sensing 19, 3473–3497. 
 

Eva, H. & Lambin, E.F. (2000). Fires and land-cover change in the tropics: A remote sensing 
analysis at the landscape scale. Journal of Biogeography 27, 765–776. 

 
FAO, (2006). Global Forest Resources Assessment 2005: Progress towards sustainable forest 

management. FAO Forestry Paper 147, Rome.  
 
Felderhof, L. & Gillieson, D. (2006). Comparison of fire patterns and fire frequency in two 

tropical savanna bioregions. Austral Ecology 31, 736–746. 
 



 58

Forester, B.C. (1985). An examination of some problems and solutions in monitoring urban 
areas from satellite platforms. International Journal of Remote Sensing 6, 39–151. 

 
Flannigan, M.D., Krawchuk, M.A., De Groot, W.J., Wotton, B.M. & Gowman, L.M. (2009). 

Implications of changing climate for global wildland fire. International Journal of 
Wildland Fire 18, 483–507. 

 

Freeman, E. (2007). PresenceAbsence: an R Package for Presence–Absence Model 
Evaluation. USDA Forest Service, Rocky Mountain Research Station, 507 25th 
street, Ogden, UT, USA. http://cran.r-project.org/ 

 
Freeman, E.A. & Moisen, G.G. (2008). A comparison of the performance of threshold criteria 

for binary classification in terms of predicted prevalence and Kappa. Ecological 
Modelling 217, 48–58. 

 
Friedman, J. (1991). Multivariate adaptive regression splines. The Annals of Statistics 19, 1–

67. 
 
Friedman, J.H. (2001). Greedy function approximation: a gradient boosting machine. The 

Annals of Statistics 29, 1189–1232. 
 
Fraley, C. & Raftery, A.E. (2002). Model-based clustering, discriminant analysis, and density 

estimation. Journal of the American Statistical Association 97, 611–631. 
 
Fuller, D.O. (2000). Satellite remote sensing of biomass burning with optical and thermal 

sensors. Progress in Physical Geography 24, 543–561. 
 
Fuller, D.O. & Fulk, M. (2001). Burned area in Kalimantan, Indonesia mapped with NOAA-

AVHRR and Landsat TM imagery. International Journal of Remote Sensing 22, 
691–697. 

 
Fuller, D.O. (2006). Tropical forest monitoring and remote sensing: A new era of 

transparency in forest governance? Singapore Journal of Tropical Geography 27, 
15–29. doi:10.1111/j.1467-9493.2006.00237.x 

 
Fuse, T. & Shimizu, E. (2004). Visualizing the landscape of old-time tokyo (Edo city). 

Proceedings of the ISPRS working group v/6  International archives of 
photogrammetry, Remote sensing and spatial information sciences Volume xxxvi, 
part 5/w1 Editors: Gruen, A., Murai, Sh., Fuse, T. , Remondino, F.  Thursday 18 
November 2004. 

 
Gaston K.J., Scoble M.J. & Crook A. (1995). Patterns in species description: a case study 

using the Geometridae (Lepidoptera). Biological Journal of the Linnean Society 
55, 225–237. 

 
Guisan, A., & Zimmermann, N.E. (2000). Predictive habitat distribution models in ecology. 

Ecological Modelling 135, 147–186. 
 
Gustafson, E.J., Hammer, R.B., Radeloff, V.C. & Potts, R.S. (2005). The relationship 

between environmental amenities and changing human settlement patterns 
between 1980 and 2000 in the Midwestern USA. Landscape Ecology 20, 773–789. 



 59

Hanski, I. (1998). Metapopulation dynamics. Nature 396, 41–49. 
 
Hanski, I. (1999). Metapopulation Ecology. Oxford University Press Inc.: New York. 
 
Hanski, I., Kuussaari, M. & Nieminen, M. (1994). Metapopulation structure and migration in 

the butterfly Melitaea cinxia. Ecology 75, 747–762. 
 
Hanski, I., Pöyry, J., Pakkala, T. & Kuussaari, M. (1995). Multiple equilibria in 

metapopulation dynamics. Nature 377, 618–621. 
 
Hanski, I., Moilanen, A., Pakkala, T. & Kuussaari, M. (1996). Metapopulation persistence of 

an endangered butterfly: a test of the quantitative incidence function model. 
Conservation Biology 10, 578–590. 

 
Hanski, I. & Ovaskainen, O. (2000). The metapopulation capacity of a fragmented landscape. 

Nature 404, 755–758. 
 
Hanski, I. & Meyke, E. (2005). Large-scale dynamics of the Glanville fritillary butterfly: 

landscape structure, population processes, and weather. Annales Zoologici Fennici 
42, 379–395. 

 
Hastie, T., & Tibshirani, R. (1990). Generalized Additive Models. Chapman and Hall, 

London. 335 pp. 
 
Hastie, T., Tibshirani, R, & Buja, A. (1994). Flexible Disriminant Analysis by Optimal 

Scoring. Journal of the American Statistical Association 89, 1255–1270. 
 
Hawbaker, T.J., Radeloff, V.C., Syphard, A.D., Zhu, Z. & Stewart, S.I. (2008). Detection 

rates of the MODIS active fire product in the United States. Remote Sensing of 
Environment 112, 2656–2664. 

 
Hennessy, K.J., Lucas, C., Nicholls, N., Bathols, J.M., Suppiah, R. & Ricketts, J.R. (2005). 

Climate change impacts on fire-weather in southeast Australia. Consultancy report 
by CSIRO Marine and Atmospheric Research, Bureau of Meteorology and 
Bushfire CRC. 88. http://www.cmar.csiro.au/e-print/open/hennessykj_2005b.pdf. 

 
Holloway, J.D. (1997). The moths of Borneo: Family Geometridae, subfamilies Sterrhinae 

and Larentiinae. Malayan Nature Journal 51, 1–242. 
 
Holm, M., Lohi, A., Rantasuo, M., Väätäinen, S., Höyhtyä , T., Puumalainen, J., Sarkeala, J. 

& Sedano, F. (1999). Creation of large image mosaics of airborne digital camera 
imagery. In: Proceedings of the 4th International Airborne Remote Sensing 
Conference and Exhibition, vol. II, Ottawa, Canada, 21–24 June, pp. 520–526. 

 
Holt-Jensen, A. (1988). Geography. History and concepts 2nd ed. Chapman, London. 162 pp. 
 
Hording, N. (2004). Justification for using photo interpretation methods to interpret satellite 

imagery. (unpublished). Available at: 
http://nilerak.hatfieldgroup.com/French/NRAK/EO/10._Using_photo_interp_meth
ods_to_interpret_sat_imagery_AMNH.pdf (accessed 9 October 2009). 



 60

Hurlbert, S.H. (1984). Pseudoreplication and the design of ecological field experiments. 
Ecological Monographs 54, 187–211. 

 
Imbernon, J. (1999). Pattern and development of land use changes in Kenyan highland since 

1950s. Agriculture, Ecosystems and Environment 76, 67–73. 
 
Intergovernmental Panel on Climate Change. (2007). Climate change 2007: Synthesis report. 

summary for policymakers. Tech. rep. URL http://www.ipcc.ch/ipccreports/ar4-
syr.htm 

 
Jaetzold, R. & Schmidt, H. (1983). Farm Management Handbook of Kenya, vol.II. East 

Kenya. Ministry of Agriculture, Kenya. 
 
Justice, C.O., Giglio, L., Korontzi, S., Owens, J., Morisette, J.T., Roy, D.P., Descloitres, J., 

Alleaume, S., Petitcolin, F. & Kaufman, Y. (2002). The MODIS fire products. 
Remote Sensing of Environment 83, 244–262. 
 

Kaufman, Y.J., C., Tucker, C.J. & Fung, I. (1990). Remote sensing of biomass burning in the 
tropics, Journal of Geophysical Research 95, 9927–9939. 

 
Kidson, J.W & Thompson C.S. (1998). A comparison of statistical and model-based 

downscaling techniques for estimating local climate variations. Journal of Climate 
11, 735–753. 

 
Korontzi, S., Roy, D.P., Justice, C.O. & Ward, D.E. (2004). Modeling and sensitivity of fire 

emissions in southern Africa during SAFARI (2000). Remote Sensing of 
Environment 92, 376–396. 
 

Koutsias, N. & Karteris, M. (2000). Burned area mapping using logistic regression modelling 
of a single post-fire landsat-5 thematic mapper image. International Journal of 
Remote Sensing 21, 673–687. 

 
Kumar, L., Skidmore, A.K. & Knowles, E. (1997). Modelling topographic variation in solar 

radiation in a GIS environment. International Journal for Geographical 
Information Science 11, 475–497. 

 
Lambers, K. & Sauerbier, M. (2003) A data model for a GIS-based analysis of the Nasca lines 

at Palpa (Peru). Institute of Geodesy and Photogrammetry, ETH Hoenggerberg. 
doi:10.3929/ethz-a-004599145.  

 
Laris, P. (2005). Spatiotemporal problems with detecting and mapping mosaic fire regimes 

with coarse-resolution satellite data in savannah environments. Remote Sensing of 
Environment 99, 412–424. 

 
Laurini, R. & Thompson, D. (1992). Fundamentals of Spatial Information Systems. Academic 

Press, Février, 680 pp. 
 
Lehmann, A., Overton, J.M. & Leathwick, J.R. (2002). GRASP: generalized regression 

analysis and spatial predictions. Ecological Modelling 157, 189–207. 
 



 61

Lens, L., Van Dongen, S., Norris, K., Githiru, M. & Matthysen, E. (2002). Avian persistence 
in fragmented rainforest. Science 298, 1236–1238. 

 
Lentile, L.B., Holden, Z.A., Smith, A. M.S., Falkowski, M.J., Hudak, A.T., Morgan, P., 

Lewis, S.A., Gessler, P.E. & Benson, N.C.  (2006). Remote sensing techniques to 
assess active fire characteristics and post-fire effects. International Journal of 
Wildland Fire 15, 319�345. 

 
Levine, J.S. (1996) Introduction. In: Levine, J. (Ed.). Biomass burning and global change, 

Vol. 1. MIT Press, Cambridge, Massachusetts. p. xxxv-xliii. 646 pp. 
 
Levins, R. (1969). Some demographic and genetic consequences of environmental 

heterogeneity for biological control. Bulletin of Entomological Society of America 
15, 237–240. 

 
Li, G. & Weng, Q. (2005). Using Landsat ETM+ Imagery to Measure Population Density in 

Indianapolis, Indiana, USA. Photogrammetric Engineering & Remote Sensing 71, 
947–958.     

 
Lo, C.P. (1986). Accuracy of population estimation from medium-scale aerial photography. 

Photogrammetric Engineering and Remote Sensing 52, 1859–1869. 
 
Lo, C.P. (1989). A Raster Approach to Population Estimation Using High-Altitude Aerial and 

Space Photographs. Remote Sensing of Environment 27, 59–71. 
 
Lo, C.P. (1995). Automated Population and Dwelling Unit Estimation from High-Resolution 

Satellite Images: A GIS Approach. International Journal of Remote Sensing 16, 
17–34. 

 
Lozano, F.J., Suárez-Seoane, S. & de Luis, E. (2007). Assessment of several spectral indices 

derived from multi-temporal Landsat data for fire occurrence probability 
modelling. Remote Sensing of Environment 107, 533–544. 

 
Lung, T. & Schaab, G. (2004). Change-detection in Western Kenya. The documentation of 

fragmentation and disturbance for Kakamega Forest and associated forest areas by 
means of remotely-sensed imagery. In: ISPRS Archives, Vol. XXXV, Part B 
(DVD), Proceedings of the ISPRS XXth Congress, 12-23 July 2004, Istanbul. 

 
Lynch, H.J., Renkin, R.A., Crabtree, R.L. & Moorcroft, R.R. (2006). The influence of 

previous mountain pine beetle (Dendroctonus ponderosae) activity on the 1988 
Yellowstone fires. Ecosystems 9, 1318–1327. 

 
MacArthur, R.H. & Wilson, E.O. (1967). The theory of island biogeography. Princeton 

University Press, Princeton. 203 pp. 
 
MacNally, R. (1996). Hierarchical partitioning as an interpretative tool in multivariate 

inference. Australian Journal of Ecology 21, 224–228. 
 



 62

MacNally, R. (2000). Regression and model-building in conservation biology, biogeography 
and ecology: the distinction between – and reconciliation of – ‘predictive’and 
‘explanatory’ models. Biodiversity and Conservation 9, 655–671. 

 
Maeda, E.E., Formaggio,A.R., Shimabukuro,Y.E., Arcoverde, G.F.B. & Hansen, M.C. 

(2009). Predicting forest fire in the Brazilian Amazon using MODIS imagery and 
artificial neural networks. International Journal of Applied Earth Observation and 
Geoinformation 11, 265–272. 

 
Malcolm, J.R., Liu, C., Ronald P. Neilson, R.P., Lara Hansen, L. & Hannah, L. (2006). 

Global Warming and Extinctions of Endemic Species from Biodiversity Hotspots. 
Conservation Biology 20, 538–548. 

 
Malingreau, J.P., Achard, F., D’Souza, G., Stibig, H.J., D’Souza, J., Estreguil, C. & Eva, H. 

(1995). AVHRR for global tropical forest monitoring: The lessons of the TREES 
project. Remote Sensing Reviews 12, 29–40.  

 
Mayaux, P. & Lambin, E.F. (1995). Estimation of tropical forest area from coarse spatial 

resolution data: a two-step correction function for proportional errors due to spatial 
aggregation, Remote Sensing of Environment 53, 1–16. 

 
Mayaux, P. & Lambin, E.F. (1997). Tropical forest area measured from global land-cover 

classifications : inverse calibration models based on spatial textures. Remote 
Sensing of Environment 59, 29-43. 

 
McCullagh, P. & Nelder, J.A. (1989). Generalized Linear Models. 2nd ed. Chapman and Hall, 

New York. 511 pp. 
 
Melillo, J.M., Houghton, R.A., Kicklighter, D.W. & McGuire, A.D. (1996). Tropical 

deforestation and the global carbon budget. Annual Review of Energy & 
Environment. 21, 293–310. 

 
Mendolsohn, J. & Roberts, C. (1997). An environmental profile and atlas of Caprivi. 

Directorate of Environmental Affairs, Namibia. 
 

Miettinen, J., Langner, A. & Siegert, F. (2007). Burnt area estimation for the year 2005 in 
Borneo using multi-resolution satellite imagery. International Journal of Wildland 
Fire 16, 45–53. 

Moilanen, A. & Hanski, I. (1998). Metapopulation Dynamics: Effects of Habitat Quality and 
Landscape Structure. Ecology 79, 2503–2515. 

 
Moisen, G.G. & Frescino, T.S. (2002). Comparing five modelling techniques for predicting 

forest characteristics. Ecological Modelling 157, 209–225. 
 
Morin, X. & Thuiller, W. (2009). Comparing niche- and process-based models to reduce 

prediction uncertainty in species range shifts under climate change. Ecology 90, 
1301–1313. 

Mubareka, S., Ehrlich, D., Bonn, F. & Kayitakire, F. (2008). Settlement location and 
population density estimation in rugged terrain using information derived from 
Landsat ETM and SRTM data. International journal of remote sensing 29, 2339–
2357. 



 63

Myers N., Mittermeier R.A., da Fonseca G.A.B. & Kent, J. (2000). Biodiversity hotspots for 
conservation priorities. Nature 403, 853–858. 

 
Pellikka, P., Clark, B., Hurskainen, P., Keskinen, A., Lanne, M., Masalin, K., Nyman-

Ghezelbash, P. & Sirviö, T. (2004). Land use change monitoring applying 
geographic information systems in the Taita Hills. Proceedings of the 5th AARSE 
conference (African Association of Remote Sensing of the Environment), 18–21 
October, 2004, Nairobi, Kenya. CD-Publication. 

 
Peters, J., Baets, B.D., Verhoest, N.E., Samson, R., Degroeve, S., Becker, P.D. & Huybrechts, 

W. (2007). Random forests as a tool for ecohydrological distribution modelling. 
Ecological Modelling 207, 304–318. 

 
Podest, E., & Saatchi, S. (2002). Application of multiscale texture in classifying JERS-1 radar 

data over tropical vegetation. International Journal of Remote Sensing 23, 1487–
1506. 

 
Porter, P.W. (1956). Population Distribution and Land Use in Liberia. PhD thesis, London 

School of Economics and Political Science, London. 
 
Prasad, A.M., Iverson, L.R. & Liaw, A. (2006). Newer classification and regression tree 

techniques: bagging and random forests for ecological prediction. Ecosystems 9, 
181–199. 

 
Preisler, H.K., Brillinger, D.R., Burgan, R.C. & Benoit, J.W. (2004). Probability based 

models for estimation of wildfire risk. International Journal of Wildland Fire 13, 
133–142. 

 
Preston, S. (1996). The effect of population growth on environmental quality. Population 

Research and Policy Review 15, 95–108. 
 
Qu, J.J., Wang, W., Dasgupta, S. & Hao, X.  (2008). Active fire monitoring and fire danger 

potential detection from space: A review. Frontiers of Earth Science in China 2, 
479–486   

 
Republic of Kenya (2001). The 1999 Population & Housing Census. Central Bureau of 

Statistics, Ministry of Planning and National Development, Kenya. 
 
Ripley, B.D. (1996). Pattern Recognition and Neural Networks. Cambridge University Press. 
 
Roy, D.P., Giglio, L., Kendall, J.D. & Justice, C.O. (1999). Multi-temporal active-fire based 

burn scar detection algorithm. International Journal of Remote Sensing 20, 1031–
1038. 

 
Roy, D.P., Lewis, P.E. & Justice, C.O. (2002). Burned area mapping using multi-temporal 

moderate spatial resolution data – a bi-directional reflectance model-based 
expectation approach. Remote Sensing of Environment 83, 263–286. 

 



 64

Roy, D.P., Jin, Y., Lewis, P.E. & Justice, C.O. (2005). Prototyping a global algorithm for 
systematic fire-affected area mapping using MODIS time series data. Remote 
Sensing of Environment 97, 137–162. 

 
Roy, D.P., Boschetti, L., Justice, C.O. & Ju, J. (2008). The collection 5 MODIS burned area 

Product–global evaluation by comparison with the MODIS active fire product. 
Remote Sensing of Environment 112, 3690–3707. 

 
Rumelhart, D.E., Hinton, G.E. & Williams, R.J. (1986). Learning internal representations by 

error propagation. Nature 323, 533–536. 
 
Rumelhart, D. & McClelland, J. (1986). Parallel Distributed Processing. MIT Press, 

Cambridge. 
 
Rushton S.P., Ormerod, S.J. & Kerby, G. (2004). New paradigms for modelling species 

distributions? Journal of Applied Ecology 41, 193–200. 
 
Sá, A.C.L., Pereira, J.M.C., Vasconcelos, M.J.P., Silva, J.M.N., Ribeiro, N. & Awasse, A. 

(2003). Assessing the feasibility of sub-pixel burned area mapping in miombo 
woodlands of Northern Mozambique using MODIS imagery. International 
Journal of Remote Sensing 24, 1783–1796. 

 
Sawada, M. (1999). ROOKCASE: an Excel 97/2000 Visual Basic (VB) add-inn for exploring 

global and local spatial autocorrelation. Bulletin of Ecological Society of America 
80, 231–234. 

 
Schaab, G., Lung, T. & Mitchell, N. (2005). Land use/cover change analyses based on 

remotely-sensed imagery and old maps as means to document fragmentation and 
disturbance for East-African rainforests over the last ca. 100 years. In: CD-ROM 
Proceedings of the International Cartographic Conference 2005, 9-16 July 2005, 
A Coruña (Spain). 

 
Schnaiberg, J., Riera, J., Turner, M.G. & Voss, P.R. (2002). Explaining human settlement 

patterns in a recreational Lake District: Vilas County, Wisconsin, USA. 
Environmental Management 30, 24–34. 

 
Scoble, M.J. (1999) (Ed.). Geometrid Moths of the World: A Catalogue (Lepidoptera, 

Geometridae). Apollo Books, Stenstrup, Denmark. 1280 pp. 
 
Sgrenzaroli M, de Grandi G.F, Eva, H., & Achard, F. (2002). Tropical forest cover 

monitoring: estimates from the GRFM JERS-1 radar mosaics using wavelet 
zooming techniques and validation. International Journal of Remote Sensing 7, 
1329–55. 

 
Shaban, M.A. & Dikshit, O. (2001). Improvement of classification in urban areas by the use 

of textural features: the case study of Lucknow city, Uttar Pradesh. International 
Journal of Remote Sensing 22, 565–593. 

 



 65

Silva J.M.N, Cadima, J.F.C.L., Pereira, J.M.C. & Grégoire J.M. (2004). Assessing the 
feasibility of a global model for multitemporal burned area mapping using SPOT-
VEGETATION data. International Journal of Remote Sensing 25, 4889–4913. 

 
Setzer, A.W. & Malingreau, J.P. (1996). AVHRR monitoring of vegetation fires in the 

tropics: towards a global product. In: Levine, J.S. (Ed.). Biomass burning and 
global change, Cambridge: MIT Press, 48–81. 

 
Stocks, B.J., Fosberg, M.A., Lynham, T.J., Mearns, L., Wotton, B.M., Yang, Q., Jin, J.Z., 

Lawrence, K., Hartley, G.R., Mason, J.A. & McKenney, D.W. (1998). Climate 
change and forest fire potential in Russian and Canadian Boreal Forests. Climatic 
Change 38, 1–13. 

 
StoraEnso (2003). EnsoMOSAIC, Mosaicking user’s guide 5.00. StoraEnso Forest Consulting 

Oy Ltd. 
 
Stroppiana, D., Pinnock, S., Pereira, J.M.C. & Grégoire, J.M. (2002). Radiometric analysis of 

SPOT-VEGETATION images for burnt area detection in Northern Australia. 
Remote Sensing of Environment 82, 21–37. 

 
Stroppiana, D., Grégoire, J.M. & Pereira, J.M.C. (2003). The use of SPOT VEGETATION 

data in a classification tree approach for burnt area mapping in Australian savanna. 
International Journal of Remote Sensing 24, 2131–2151. 

 
Sutton, P., Roberts, C., Elvidge, C. & Meij, H. (1997). A comparison of nighttime satellite 

imagery and population density for the continental united states. Photogrammetric 
Engineering and Remote Sensing 63, 1303–1313. 

 
Swets, K. (1988). Measuring the accuracy of diagnostic systems. Science 240, 1285–1293. 
 
Syphard, A.D., Volker, C., Radeloff, V.C., Keeley, J.E., Hawbaker, T.J., Clayton, M.K., 

Stewart, S.I. & Hammer, R.B. (2007). Human influence on California fire regimes. 
Ecological Applications 17, 1388–1402. 

 
Tansey, K., Grégoire, J.M., Stroppiana, D., Sousa, A., Silva, J., Pereira, J.M.C., Boschetti, L., 

Maggi, M., Brivio, P.A., Fraser, R., Flasse, S., Ershov, D., Binaghi, E., Graetz, D. 
& Peduzzi, P. (2004). Vegetation burning in the year 2000: Global burned area 
estimates from SPOT VEGETATION data. Journal of Geophysical Research 109. 
D14S03. 

 
Tansey, K., Grégoire, J.M.C., Defourny, P., Leigh, R., Pekel, van Bogaert, E., Bartholomé, E. 

& Bontemps, S. (2008). A new, global, multi-annual (2000-2007) burned area 
product at 1 km resolution and daily intervals. Geophysical Research Letters, 
VOL. 35, L01401, doi:10.1029/ 2007 GL031567  

 

Thuiller, W. (2003). BIOMOD—optimizing predictions of species distributions and 
projecting potential future shifts under global change. Global Change Biology 9, 
1353–1362. 

 



 66

Thuiller, W., Araújo, M.B. & Lavorel, S. (2003). Generalized models vs. classification tree  
analysis: Predicting spatial distributions of plant species at different scales. 
Journal of Vegetation Science 14, 669–680. 

 
Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M.B. (2009). BIOMOD – a platform for 

ensemble forecasting of species distributions (Version 1.1-0). Ecography, 32, 369–
373. 

 
UNEP/GRID, 2006, UNEP/GRID spatial data clearinghouse. Available at: 

http://grid2.cr.usgs.gov/datasets/datalist.php (accessed 9 October 2009). 
 
Venables, W.N. & Ripley, B.D. (2002). Modern Applied Statistics with S. 4th ed. Springer–

Verlag, New York. 495 pp. 
 
Verlinden, A. & Laamanen, R. (2006). Long term fire scar monitoring with remote sensing in 

northern Namibia: relations between fire frequency, rainfall, land cover, fire 
management and trees. Environmental Monitoring and Assessment 112, 231–253. 

 
von Breitenbach, F. (1968). Long-term Plan of Forestry Development in the Eastern Caprivi 

Zipfel. Department of Forestry, Saasveld, South Africa. 
 
von Humboldt, A. & Bonpland, A. (1805). Essai sur la géographie des plantes : accompagné 

d'un tableau physique des régions équinoxiales, fondé sur des mesures exécutées, 
depuis le dixième degré de latitude boréale jusqu'au dixième degré de latitude 
australe, pendant les années 1799, 1800, 1801, 1802 et 1803. Chez Levrault, 
Schoell et compagnie, libraires, XIII–1805. Paris. 

 
Vuorela, N. & Toivonen, T. (2003). Can the past suggest the present day biodiversity? – 

detecting and classifying change transitions in the landscape. In: Mander, Antrop, 
M. (eds.): Multifunctional Landscapes - Vol III: Continuity and Change, 135-166. 
WIT Publications. 

 
Walsh, C., MacNally, R. (2003). Hierarchical Partitioning: R Project for Statistical 

Computing. http://cran.r-project.org/ 
 
White, M.S. & Griffin, P. (1985). Piecewise linear rubber-sheet map transformations, The 

American Cartographer 12, 123–131. 
 

Willig, M.R., Kauffman D.M. & Stevens R.D. (2003). Latitudinal gradients of biodiversity: 
Pattern, process, scale, and synthesis. Annual review of ecology, evolution, and 
systematics 34, 273–309.   

 
Woodcock, C.E., Scott, A., Macomber, S.A. & Kumar, L. (2003). Vegetation mapping and 

monitoring In: Skidmore, A. (Ed.) Environmental Modelling with GIS and Remote 
Sensing. pp. 268 Taylor & Francis. 

 
Yee, T.W. & Mitchell, N.D. (1991). Generalized Additive Models in Plant Ecology. Journal 

of Vegetation Science 2, 587-602. 
 

Zar, J.H. (1999). Biostatistical Analysis, 4th ed. Prentice-Hall, London. 929 pp. 



 67

 
Zhang, Y.H., Wooster, M.J., Tutubalina, O. & Perry, G.L.W. (2003). Monthly burned area 

and forest fire carbon emission estimates for the Russian Federation from SPOT 
VGT. Remote Sensing of Environment 87, 1–15. 
 

Zimmermann, N.E. (2000). Shortwavc.aml, 9.08.2000. http://www.wsl.ch/staff/ 
niklaus.zimmermann/programs/aml1_1.html. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 



 68

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
 
 
 



 69

Appendices 1–6 
 
Examples of ArcView 3.2 Avenue scripts, ARC/INFO AML macros, and ArcGIS 
geoprocessing model used for GIS analysis and process automation in different studies. 
 
Appendix 1. ArcView 3.2 Avenue script to calculate subtotals for attribute table (Paper I). 
 
' valisumma.ave 
' made by M.H SYKE and M.S HY 2002  
' ensin avaa aktiivinen attribuuttitaulu 
taulu = av.GetActiveDoc 
if (taulu.Is(Table)) then 
  theVTab = taulu.GetVTab 
  ' etsitään kentät 
  k_paiva = theVTab.FindField("paiva") 
  k_arvo = theVTab.FindField("arvo") 
  uusi_k = theVTab.FindField("uusi_arvo") 
  ' mikäli uusi_arvo kenttää ei ole, niin tehdään se 
  ' 
  if (uusi_k = NIL) then 
    uusi_k = Field.Make ("uusi_arvo", #FIELD_DECIMAL , 4, 0) 
    theVTab.SetEditable(true) 
    if (theVTab.IsEditable) then 
      theVTab.addfields({uusi_k}) 
    end 
    theVTab.SetEditable(false) 
  end 
  uusi_arvo = 0 
  ed_arvo = "999" 
  ' tehdään dictionary, jonne valisumma tiedot tallennetaan 
  ' 
  uusi_Dic = Dictionary.Make(11) 
  ' käydään loopilla läpi taulun arvot 
  ' 
  for each rec in theVTab 
    paiva = theVTab.ReturnValue(k_paiva,rec) 
    arvo = theVTab.ReturnValue(k_arvo,rec) 
    if (arvo > 0) then 
      uusi_arvo = uusi_arvo + arvo 
    else 
      uusi_arvo = 0 
    end 
    if (ed_arvo.asstring <> arvo.asstring) then 
      uusi_Dic.Empty 
    end 
    onko = uusi_Dic.Add(paiva,rec.asstring) 
    ' käydään läpi dictionaryyn tallennetut arvot, viimeisellä 
    ' kierroksella välisumma tallentuu oikein 
    ' 
    for each a in uusi_dic.returnkeys.clone 
        r = uusi_dic.Get(a).AsNumber 
        theVTab.SetEditable(true) 
        if (theVTab.IsEditable) then 
           theVTab.SetValue(uusi_k,r,uusi_arvo.AsString) 
        end 
        theVTab.SetEditable(false) 
     end 
    ed_arvo = arvo 
  end 
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end 
' scriptin loppu 
 
Appendix 2. ArcView 3.2 Avenue script to create Åland Islands 1 km2 analysis squares 
(Paper I) and world-wide analysis grid for Scopulini moths (Paper II). 
 
'******************************************************************** 
' Nimi:  Analyysi_Gridi.ave  
' Title:  Creates Analysis Grid (vector polygon) shapefile 
' Modified by Mika Siljander in 2002 original by Francisco Olivera 
' The View Map units and distance units have to be UNKNOWN 
'******************************************************************* 
theView=av.GetActiveDoc 
viewUnits=theView.GetDisplay.GetUnits 
viewProj=theView.GetProjection 
' Defining the rectangle  
' *** theRect=theView.ReturnUserRect 
theLabels ={"ALA VASEN X","ALA VASEN Y","YLÄ OIKEA X","YLÄ OIKEA Y"} 
theDefaults = {"","","",""} 
theParameters = MsgBox.MultiInput("Valitse gridin Parametetrit", 
"Gridin Parameterit",theLabels,theDefaults) 
x1 = theParameters.Get(0).AsNumber 
y1 = theParameters.Get(1).AsNumber 
x2 = theParameters.Get(2).AsNumber 
y2 = theParameters.Get(3).AsNumber 
therect = Rect.MakeXY(x1,y1,x2,y2) 
if (theRect=nil) then 
  exit 
end 
llx=therect.getleft 
lly=therect.getBottom 
theWidth=therect.getwidth 
theHeight=therect.getheight 
rows=Msgbox.Input("rivien määrä (ylös/alas)","Analyysi Gridi","10") 
if ((rows = nil) or (rows.asNumber < 1)) then 
  MsgBox.Error("Must use more than one row.","Aborting") 
  exit 
end 
cols=Msgbox.Input("sarakkeiden määrä (vasen/oikea):","Analyysi Gridi","10") 
if ((cols =nil) or (cols.asNumber < 1)) then 
  MsgBox.Error("Must use more than one column.","Aborting") 
  exit 
end 
rows=rows.asnumber 
cols=cols.asnumber 
rsize=theheight/rows 
csize=thewidth/cols 
letters="ABCDEFGHIJKLMNOPQRSTUVWXYZ" 
newshpname=filedialog.Put("AnalysisGrid.shp".AsFilename,"*.shp","Analysis 
Grid file") 
if (newshpname =nil) then 
  exit 
end 
gridftab=Ftab.MakeNew(newshpname,POLYGON) 
labelfield=Field.Make("Label",#FIELD_CHAR,6,0) 
gridftab.SetEditable(true) 
gridftab.Addfields({labelfield}) 
gridftab.SetEditable(True) 
shpfield=gridftab.FindField("shape") 
labfield=gridftab.FindField("label") 
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countup=0 
sizer=rows*cols 
av.setstatus(0) 
Av.ShowMsg("Analyysi ruudukkoa luodaan...") 
for each r in 1..rows 
  row_id=(rows-r+1).AsString 
  for each c in 1..cols 
    countup=countup+1 
    av.setstatus(countup/sizer*100) 
    if ((c/26) > 1) then 
      col_prefix=letters.middle((c/26).floor-1,1) 
    else 
      col_prefix="" 
    end 
    if (c.Mod(26) = 0) then 
      col_name=letters.Middle(25,1) 
    else 
      col_name=letters.Middle(c.Mod(26)-1,1) 
    end 
    col_id=col_prefix+col_name 
   originx=llx+((c-1)*csize) 
   originy=lly+((r-1)*rsize) 
   size=csize@rsize 
   theOrigin=originx@originy 
    rct=rect.make(theOrigin,size) 
    if (viewunits=#UNITS_LINEAR_METERS) then 
      rct=rct.ReturnUnprojected(viewproj) 
    end 
    newrec=gridftab.AddRecord 
    gridftab.SetValue(shpfield,newrec,rct.aspolygon) 
    gridftab.SetValue(labfield,newrec,col_id+row_id) 
  end 
end 
gridftab.SetEditable(false) 
av.clearMsg 
mytheme=ftheme.Make(gridftab) 
mysym=av.GetSymbolWin.GetPalette.GetList(#PALETTE_LIST_FILL).Get(0) 
mysym.setolwidth(0.1) 
mytheme.GetLegend.GetSymbols.Set(0,mysym) 
mytheme.SetName("AnalysisGrid") 
mytheme.SetActive(true) 
myTheme.SetVisible(true) 
theview.AddTheme(mytheme) 
mytheme.Invalidate(true) 
theview.GetDisplay.Flush 
yn=MsgBox.YesNo("Tekstitä analyysi Gridi?","Analyysi Gridi",true) 
if (yn) then 
  for each thm in theView.GetThemes 
    if (thm <> mytheme) then 
      thm.SetActive(False) 
    end 
  end 
  theView.LabelThemes(false) 
end 
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Appendix 3. ARC/INFO AML macro to automatically create raster GRIDS and shapefile 
point layers from MODIS fire hot spots data. (Papers V and VI)               
 
/**********************************************************************                 
/*                                                                                     
/* AML macro for creating Grids and pointcoverages from MODIS fire data                 
/* Looping for: imagegrid,projectgrid and gridpoint commands by Mika  
/* Siljander /* 31.5.2006 21.00    
/*                                                                                      
/********************************************************************** 
/* ----------------------------------------------------------------- 
/* input images are ERDAS IMAGINE *.img named m1.img to m46.img 
/* output will be grids named caprivi1 to caprivi46 and point shapefiles   
/* shpnt1.shp to shpnt46.shp   
/* Input Projection is sinusoidal from MODIS (HDF) fire hot spot data  
/* Output coordinate system is Lambert azimuthal equal area  
/* projection file is project.txt in working directory (look below) 
/* ----------------------------------------------------------------- 
/* projection.txt file 
/* -------------------------------------------------------------- 
/* INPUT 
/* PROJECTION SINUSOIDAL 
/* UNITS meters 
/* DATUM WGS84 
/* PARAMETERS 
/* 6371007.1809184756 /* Radius of the sphere of reference 
/* 0 0  0.000 /* Longitude of center of projection 
/* 0.0 /* False easting (meters) 
/* 0.0 /* False northing (meters) 
/* OUTPUT 
/* Projection    LAMBERT_AZIMUTHAL                                                  
/* Zunits        NO                                                                  
/* Units         METERS                                                             
/* Xshift        0.0000000000                                                       
/* Yshift        0.0000000000                                                       
/* Parameters 6370997.0000000000  0.0000000000                                      
/* 6370997.00000 /* radius of the sphere of reference                       
/* 20 0 0.000 /* longitude of center of projection                               
/* 5 0 0.000 /* latitude of center of projection                                 
/* 0.00000 /* false easting (meters)                                        
/* 0.00000 /* false northing (meters)                                       
/* END   
/* -------------------------------------------------------------- 
/* Macro starts from here 
&type  *************************************************************** 
&type  * Macro for creating Grids and point coverages from MODIS fire data              
&type  * Looping for: imagegrid,projectgrid, gridpoint, arcshape commands               
&type  *          made by Mika Siljander 31.5.2006 21.00                                
&type  *                                                                                
&type  *************************************************************** 
&pause &seconds 2 
&type macro is starting to run 
&pause &seconds 2 
/* imagegrid loop 
&do i := 1 &to 46           
  &type image to grid converting %i% image 
  imagegrid m%i%.img m%i% 
 &end 
grid 
/* projectgrid loop 
&do i := 1 &to 46 
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  &type projecting %i% image 
 capritmp%i% = PROJECTGRID(m%i%, project.txt, NEAREST) 
&end 
setwindow 324585.375  -2595160.250 568285.375 -2482560.250   
setmask capri_mask 
setcell 1000 
&type SET WINDOW, SETMASK and SETCELL set to Caprivi Mask 
&pause &seconds 2 
/* caprivi tmp loop after setwindow 
&do i := 1 &to 46 
  &type  %i% GRID coping 
 caprivi%i% = capritmp%i% 
&end 
q 
/* deleting capritmp grids 
&do i := 1 &to 46 
  &type DELETING temporary projected m%i% GRID 
 kill capritmp%i% all 
 &end 
/* deleting temporary m grids 
 &do i := 1 &to 46 
   &type DELETING temporary projected m%i% GRID 
  kill m%i% all 
  &end 
grid 
/* gridpoint loop  
&do i := 1 &to 46 
  &type GRIDPOINT Processing %i% GRID  
 capnt%i% = gridpoint(caprivi%i%, Grid_code) 
&end 
setmask off 
q 
/* looping coverages to shapefiles 
&do i := 1 &to 46 
  &type converting to shapefile %i% processing  
  arcshape capnt%i%  points  shpnt%i% 
&end 
&do i := 1 &to 46 
  &type DELETING GRIDS m%i% GRID 
 kill caprivi%i% all 
 &end 
&do i := 1 &to 46 
  &type DELETING GRIDS m%i% GRID 
 kill capnt%i% all 
 &end  
 
Appendix 4. Arc/Info AML macro to interpolate rainfall data using IDW interpolation method 
(Papers V and VI). 
 
/******************************************************************* 
/* IDW interpolation of rainfall  
/* weather stations (rstation coverage) from Namibia, Botswana and Zambia 
/* created by Mika Siljander 24.6.2006 21.00 
/* capri_mask GRID to masking 
/* 
/******************************************************************* 
grid 
/* mask grids needs to be in the same directory 
setcell rmaskgrd 
setwindow rmaskgrd 
setmask grd_mask 
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&type SET WINDOW, SETMASK and SETCELL done 
&pause &seconds 2 
&do i := 1 &to 12 
&type Interpolate %i% day 
r_%i%_temp = idw(rstation, month%i%, #, #, sample, #, #, 2000) 
r%i%month = r_%i%_temp 
kill r_%i%_temp all 
&end 
&type %i% month IDW interpolation completed 
&pause &seconds 1 
rgrd_ave = int(idw(rstation, month%i%, #, #, sample, #, #, 2000) 
&type IDW interpolations done 
&pause &seconds 1 
/* gridpoint loop  
&do i := 1 &to 12 
  &type GRIDPOINT Processing %i% GRID  
 rain_%i%p = gridpoint( r%i%month, value) 
&end 
r_ave = gridpoint(rgrd_ave, value) 
&type Converting GRIDS to points done 
&pause &seconds 2 
q 
/* looping coverages to shapefiles 
&do i := 1 &to 12 
  &type converting to shapefile %i% processing  
  arcshape rain_%i%p  points  r_pnt%i% 
&end 
&type Converting to shapefiles done 
&pause &seconds 2 
arcshape r_ave points rain_ave 
setmask off 
q 
 
Appendix 5. ARC/INFO AML macro to calculate monthly Thornthwaite's  potential 
evapotranspiration (PET) for East Caprivi study area. (Paper VI) 
 
&type ***************************************** 
&type * Macro to calculate Thornthwaite PET                    
&type *   (Potential evapotranspiration)                    
&type *      using Worldclim data                             
&type * copyright© Mika Siljander 24 May 2009             
&type ***************************************** 
/* &type PET calculation in brief: 
/*&type Potential evapo-transpiration (mm/day), 
/*&type   PET = if Ta > 0 then dl*16*(10*Ta/I)^a 
/*&type   if Ta > 26.5 then b = -415.85 + 32.24 * t%i% - 0.43 * ta^2                 
/*&type  else 0  
/*&type where 
/*&type   Ta is mean monthly temperature (Celsius) 
/*&type   a = 0.49+0.0179*I-7.71*10^ -5*I^2+6.75*10^ -7*I^3  
/*&type   dl = daylength in hours / 12 
/*&type   I = sum(i) 
/* &type   i is a monthly heat index given by 
/* &type     i = if Ta>0 then (Ta/5)^1.5 
/* &type         else 0  
/* &type start now. For large grid the calculation can take long time 
/* &type For one Worldclim area calculation takes up to one hour 
/* Macro to calculate Thornthwaite PET   
/* created by Mika Siljander 24 May 2009 
/* Use the mean value GRIDS tiles from Worldclim Internet site 
/* http://www.worldclim.org/tiles.php 
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/* Macro will first convert *.bil images to GRIDS before calculations 
/* Tarvitaan lämpötilan keskiarvo gridit: 
/* joka kuukaudelle lasketaan heat index gridit: 
/* temp is the average temperature of the i:th month in degrees C. 
/* start from Arc promt 
/* If you want to calculate PET for the whole tile 
/* then remove the mask part of the code 
/* This macro uses mask GRID layer for East Caprivi 
/* this macro change coord. system from geographic to Lambert-Azimuthal  
/* project.txt is needed in working directory 
/* If other projection is needed adjust output parameters.   
/* create a separate project.txt file as below  
/* INPUT 
/* Projection    GEOGRAPHIC                                                         
/* Datum         WGS84                                                              
/* Zunits        NO                                                                 
/* Units         DD                                                                 
/* Spheroid      WGS84                                                              
/* Xshift        0.0000000000                                                       
/* Yshift        0.0000000000                                                       
/* Parameters      
/* OUTPUT 
/* Projection    LAMBERT_AZIMUTHAL                                                  
/* Zunits        NO                                                                  
/* Units         METERS                                                             
/* Xshift        0.0000000000                                                       
/* Yshift        0.0000000000                                                       
/* Parameters 6370997.0000000000  0.0000000000                                      
/* 6370997.00000 /* radius of the sphere of reference                       
/* 20  0  0.000 /* longitude of center of projection                               
/* 5  0  0.000 /* latitude of center of projection                                 
/* 0.00000 /* false easting (meters)                                        
/* 0.00000 /* false northing (meters)   
/* END 
/* Caprivi mask grid copied from  
/* remove copy part of code if no mask grid needed 
copy C:\Temp\xCapclim\caprivi\capri_mask  C:\Temp\xCapclim\capri_mask 
&type EAST CAPRIVI MASK GRID copied 
/* this part of code is from Worldclim Internet pages 
&TERMINAL 9999 
&s program [locase [show program]] 
&if %program% ^= grid &then grid 
/* &if [exists yyy -grid] &then kill yyy 
/*&if [exists yyy2 -grid] &then kill yyy2 
/*&if [exists zzz -grid] &then kill zzz 
/*&if [exists zzz2 -grid] &then kill zzz2 
/*&if [exists zzz3 -grid] &then kill zzz3 
/*&do i := 1 &to 60 
/* &if [exists z%i% -grid] &then kill z%i% 
/*&end 
&do climvar &list tmean tmin tmax prec bio alt 
  &type Starting import of %climvar% 
  &sv nvars = 12 
  &if %climvar% = bio &then &sv nvars = 19 
  &if %climvar% = alt &then &sv nvars = 1 
  &do m := 1 &to %nvars% 
    &if %climvar% = alt &then 
    &do 
      &if [exists %climvar% -grid] &then kill %climvar% 
      &s bils := [listfile %climvar%*.bil -image] 
      &if [null %bils%] &then &type There are no tiles for %climvar% month %m% 
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    &end 
    &else 
    &do 
      &if [exists %climvar%%m% -grid] &then kill %climvar%%m% 
      &s bils := [listfile %climvar%%m%_*.bil -image] 
      &if [null %bils%] &then &type There are no tiles for %climvar% month %m% 
    &end 
    &if [null %bils%] &then &type next 
    &else 
    &do 
      &s num := [token %bils% -count] 
      &do i := 1 &to %num% 
        &sv name = [extract %i% %bils%] 
        &if %i% < 31 &then 
        &do 
          &if %i% = 1 &then &sv listnames = z%i% 
          &else &sv listnames = %listnames%, z%i% 
        &end 
        &else 
        &do 
          &if %i% = 31 &then &sv listnames2 = z%i% 
          &else &sv listnames2 = %listnames2%, z%i% 
        &end 
        arc imagegrid %name% z%i% 
      &end 
      &type merge 
      yyy = merge(%listnames%) 
      zzz = con(yyy >= 32768, yyy - 65536, yyy) 
      kill yyy 
      &if %num% > 30 &then 
      &do 
        yyy2 = merge(%listnames2%) 
        zzz2 = con(yyy2 >= 32768, yyy2 - 65536, yyy2) 
        kill yyy2 
        zzz3 = merge(zzz, zzz2) 
        kill zzz 
        kill zzz2 
        %climvar%%m% = setnull(zzz3 == -9999, zzz3) 
        kill zzz3 
      &end 
      &else 
      &do 
        %climvar%%m% = setnull(zzz == -9999, zzz) 
        kill zzz 
      &end 
      &do i := 1 &to %num% 
        kill z%i% 
      &end 
      arc projectdefine grid %climvar%%m% 
        projection geographic 
        units dd 
        datum WGS84 
        parameters 
      &if %climvar% = alt &then rename alt1 alt 
      &type %climvar%%m% done 
    &end 
  &end 
&end 
&type coversion of BIL files to GRIDS finished successfully! 
/* Code from Worldclim Internet pages ends 
/* Laskenta alkaa - NOW STARTS CALCULATION! 
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&type START temperature adjusting 
&do i := 1 &to 12 
   &type temperature float GRID number %i% is processing now 
tf%i% = float(tmean%i%) 
   &end 
&do i := 1 &to 12 
   &type devide by 10 all temperature float grids. GRID number %i% is processing  
t%i% = tf%i% / 10 
   &end 
   /* projectgrid loop 
&do i := 1 &to 12 
  &type projecting t%i% GRID 
 capritmp%i% = PROJECTGRID(t%i%, project.txt, NEAREST) 
&end 
/*mask part of the code 
setwindow 324585.375  -2595160.250 568285.375 -2482560.250   
setmask capri_mask 
setcell 1000 
&type SET WINDOW, SETMASK and SETCELL set to Caprivi Mask 
/* caprivi tmp loop after setwindow 
&do i := 1 &to 12 
  &type  %i% GRID coping 
 caprivi%i% = capritmp%i% 
&end 
/* deleting capritmp grids 
&do i := 1 &to 12 
  &type DELETING temporary projected m%i% GRID 
 kill capritmp%i% all 
 &end 
&do i := 1 &to 12 
  &type DELETING temporary projected t%i% GRID 
 kill t%i% all 
 &end 
 &do i := 1 &to 12 
  &type  %i% GRID coping 
 t%i% = caprivi%i% 
&end 
/* deleting temporary m grids 
 &do i := 1 &to 12 
   &type DELETING temporary projected m%i% GRID 
  kill caprivi%i% all 
  &end 
  /* ----------------------------------------------------------- 
&do i := 1 &to 12 
   &type delete all float grids. Delete GRID %i% now. 
kill tf%i% all 
   &end 
/* temperature devide by 5 
 &do i := 1 &to 12 
   &type devide by 5 tempeature GRID %i% now. 
 tdiv%i% = t%i% / 5 
   &end 
/* tdevide GRID POW by 1.514 
&do i := 1 &to 12 
 &type TEMP devide POW by 1.514 GRID %i% ready now. 
tpow%i% = pow(tdiv%i% , 1.514) 
 &end 
&type ALL TEMP/5 POW by 1.514 are ready now. 
&do i := 1 &to 12 
   &type delete all tdiv grids. Delete GRID %i% now. 
kill tdiv%i% all 
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   &end 
/* outgrid = pow(ingrid1 
/* con([t1]  > , ([t1] / 5)Pow(1.514) , [t1]) 
&type calculate conditional statements for 12 temperature GRIDS 
&type if pixel in t1 GRID > 0, then give value tpow1, otherwise 0. 
ht1 = con(t1 > 0, tpow1, 0) 
ht2 = con(t2 > 0, tpow2, 0) 
ht3 = con(t3 > 0, tpow3, 0) 
ht4 = con(t4 > 0, tpow4, 0) 
ht5 = con(t5 > 0, tpow5, 0) 
ht6 = con(t6 > 0, tpow6, 0) 
ht7 = con(t7 > 0, tpow7, 0) 
ht8 = con(t8 > 0, tpow8, 0) 
ht9 = con(t9 > 0, tpow9, 0) 
ht10 = con(t10 > 0, tpow10, 0) 
ht11 = con(t11 > 0, tpow11, 0) 
ht12 = con(t12 > 0, tpow12, 0) 
&do i := 1 &to 12 
   &type delete all tpow grids. Delete GRID %i% now. 
kill tpow%i% all 
   &end 
/* con(tempgrd%i% > 0, (tempgrg%i% / 5)^1.514,tempgrd%i% 
&type Monthly Heat index grids ready 
/* sum ht grids to get annual heat index grid 
I = ht1 + ht2 + ht3 + ht4 + ht5 + ht6 + ht7 + ht8 + ht9 + ht10 + ht11 + ht12 
&type Annual Heat index SUM GRID (I) is now ready 
I2 = I * I 
&type I^2 GRID ready 
I3 = I * I * I 
&type I^3 GRID ready 
&type Annual heat index sum GRIDS (I) is ready 
&do i := 1 &to 12 
   &type delete all ht grids. Delete GRID %i% now. 
kill ht%i% all 
   &end 
/* kirjan mukaan m = (6.75x10–7) I^3–(7.71x10–5) I^2+(1.79x10-2)I+0.492 
mgrd1 = (I3 * 0.000000675) 
mgrd2 = I2 * 0.0000771 
mgrd3 = I * 0.0179 
m4 = mgrd1 - mgrd2 + mgrd3 
mgrd = m4 + 0.492 
&do i := 1 &to 3 
   &type delete all mgrd grids. Delete GRID %i% now. 
kill mgrd%i% all 
   &end 
kill m4 all 
/* m = (6.75 x 10 –7) I3 – (7.71 x 10–5) I2 + (1.79 x 10-2) I + 0.492 
&type TESTI TESTING 
&do i := 1 &to 12 
 &type temp * 10 calculation GRID %i% ready now. 
xtok%i% = t%i% * 10 
&end 
&do i := 1 &to 12 
 &type temperature * 10 divided by I calculation GRID %i% ready now. 
xtdiv_I%i% = xtok%i% / I 
 &end 
kill I all 
kill I2 all 
kill I3 all 
&do i := 1 &to 12 
   &type delete temp * 10 grids. Delete GRID %i% now. 
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kill xtok%i% all 
   &end 
&do i := 1 &to 12 
 &type tdiv_I POW mgrd calculation GRID %i% ready now. 
xpow16%i% = pow(xtdiv_I%i% , mgrd) 
 &end 
&do i := 1 &to 12 
   &type delete xtdiv_I grids. Delete GRID %i% now. 
kill xtdiv_I%i% all 
   &end 
&do i := 1 &to 12 
 &type tdiv_I calculation GRID %i% ready now. 
xg16div%i% = xpow16%i% * 16 
 &end 
&do i := 1 &to 12 
   &type delete all xpow16 grids. Delete GRID %i% now. 
kill xpow16%i% all 
   &end 
&do i := 1 &to 12 
 &type temp times temp (t*t) calculation GRID %i% ready now. 
xtt%i% = t%i% * t%i% 
&end 
&type Calculate PARAMETER a = -415.85 + 32.24 * t%i% - 0.43 * pow(t%i%, 2) 
&do i := 1 &to 12 
 &type -415.85 + 32.24 *t1 - 0.43 * t1 * t1 calculation GRID %i% ready now. 
xt%i%_26 = -415.85 + 32.24 * t%i% - 0.43 * pow(t%i%, 2) 
&end 
&type calculate conditional statements for 12 temperature GRIDS 
&type if pixel in t1 GRID > 0, then give value tpow1, otherwise 0. 
&type calculate if statements for 12 temperature GRIDS 
&type if t1 > 0 then t1 <= 26.5, g16div1, xt1_26 or 0 
if (t1 > 0 && t1 <= 26.5) then xPET1 = xg16div1 
    else if (t1 > 26.5) then xPET1 = xt1_26 
  else xPET1 = 0 
endif 
&type 1 ends 
&type calculated if statements for 1 temperature GRID 
if (t2 > 0 && t2 <= 26.5) then xPET2 = xg16div2 
    else if (t2 > 26.5) then xPET2 = xt2_26 
  else xPET2 = 0 
endif 
&type 2 ends 
&type calculated if statements for 2 temperature GRID 
if (t3 > 0 && t3 <= 26.5) then xPET3 = xg16div3 
    else if (t3 > 26.5) then xPET3 = xt3_26 
  else xPET3 = 0 
endif 
&type 3 ends 
&type calculated if statements for 3 temperature GRID 
if (t4 > 0 && t4 <= 26.5) then xPET4 = xg16div4 
    else if (t4 > 26.5) then xPET4 = xt4_26 
  else xPET4 = 0 
endif 
&type 4 ends 
&type calculated if statements for 4 temperature GRID 
if (t5 > 0 && t5 <= 26.5) then xPET5 = xg16div5 
    else if (t5 > 26.5) then xPET5 = xt5_26 
  else xPET5 = 0 
endif 
&type 5 ends 
&type calculated if statements for 5 temperature GRID 
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if (t6 > 0 && t6 <= 26.5) then xPET6 = xg16div6 
    else if (t6 > 26.5) then xPET6 = xt6_26 
  else xPET6 = 0 
endif 
&type 6 ends 
&type calculated if statements for 6 temperature GRID 
if (t7 > 0 && t7 <= 26.5) then xPET7 = xg16div7 
    else if (t7 > 26.5) then xPET7 = xt7_26 
  else xPET7 = 0 
endif 
&type 7 ends 
&type calculated if statements for 7 temperature GRID 
if (t8 > 0 && t8 <= 26.5) then xPET8 = xg16div8 
    else if (t8 > 26.5) then xPET8 = xt8_26 
  else xPET8 = 0 
endif 
&type 8 ends 
&type calculated if statements for 8 temperature GRID 
if (t9 > 0 && t9 <= 26.5) then xPET9 = xg16div9 
    else if (t9 > 26.5) then xPET9 = xt9_26 
  else xPET9 = 0 
endif 
&type 9 ends 
&type calculated if statements for 9 temperature GRID 
if (t10 > 0 && t10 <= 26.5) then xPET10 = xg16div10 
    else if (t10 > 26.5) then xPET10 = xt10_26 
  else xPET10 = 0 
endif 
&type 10 ends 
&type calculated if statements for 10 temperature GRID 
if (t11 > 0 && t11 <= 26.5) then xPET11 = xg16div11 
    else if (t11 > 26.5) then xPET11 = xt11_26 
  else xPET11 = 0 
endif 
&type 11 ends 
&type calculated if statements for 11 temperature GRID 
if (t12 > 0 && t12 <= 26.5) then xPET12 = xg16div12 
    else if (t12 > 26.5) then xPET12 = xt12_26 
  else xPET12 = 0 
endif 
&type 12 ends 
&type calculated if statements for 12 temperature GRID 
&do i := 1 &to 12 
   &type delete xg16div 1 to 12 GRIDS. Delete GRID %i% now. 
kill xg16div%i% all 
   &end 
&do i := 1 &to 12 
   &type delete xtt%i%_26 GRIDS. Delete GRID %i% now. 
kill xtt%i% all 
   &end 
&do i := 1 &to 12 
 &type -415.85 + 32.24 *t1 - 0.43 * t1 * t1 GRIDs %i% ready now. 
kill xt%i%_26 all 
&end 
 &do i := 1 &to 12 
    &type delete tmean%i% GRIDS. Delete GRID %i% now. 
 kill tmean%i% all 
    &end 
/* &do i := 1 &to 12 
/*   &type delete xt%i%_26 GRIDS. Delete GRID %i% now. 
/* kill t%i% all 
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/*   &end 
kill mgrd all 
&type YOU have calculated unadjusted Potential evapotranspiration (mm) 
&type for each month and as annual sum using Thornthwaite method. 
&type Macro is proceeding to calculate adjusted PET values using daylight  
&type correction 
&type for each month in East Caprivi (latitude is S -18) 
&type correction factors are presented now 
&type PET01 = xPET1 * 1.14  
&type PET02 = xPET2 * 1.0  
&type PET03 = xPET3 * 1.05  
&type PET04 = xPET4 * 0.97 
&type PET05 = xPET5 * 0.96  
&type PET06 = xPET6 * 0.91  
&type PET07 = xPET7 * 0.95 
&type PET08 = xPET8 * 0.99  
&type PET09 = xPET9 * 1.0  
&type PET10 = xPET10 * 1.08 
&type PET11 = xPET11 * 1.09  
&type PET12 = xPET12 * 1.15 
PET1 = xPET1 * 1.14  
PET2 = xPET2 * 1.0  
PET3 = xPET3 * 1.05  
PET4 = xPET4 * 0.97 
PET5 = xPET5 * 0.96  
PET6 = xPET6 * 0.91  
PET7 = xPET7 * 0.95 
PET8 = xPET8 * 0.99  
PET9 = xPET9 * 1.0  
PET10 = xPET10 * 1.08 
PET11 = xPET11 * 1.09  
PET12 = xPET12 * 1.15 
PETann = PET1 + PET2 + PET3 + PET4 + PET5 + PET6 + PET7 + PET8 + PET9 + PET10 + PET11 + PET12 

PETannmean = PETann / 12 
 &do i := 1 &to 12 
    &type delete xPET%i% GRIDS. Delete GRID %i% now. 
 kill xPET%i% all 
    &end    
&do i := 1 &to 12 
  &type GRIDPOINT Processing PET%i% GRID  
 capPET%i% = gridpoint(PET%i%, Grid_code) 
&end 
&do i := 1 &to 12 
  &type GRIDPOINT Processing t%i% GRID  
 capt%i% = gridpoint(t%i%, Grid_code) 
&end 
petan = gridpoint(petann, Grid_code) 
petannme = gridpoint(petannmean, Grid_code) 
q 
/* looping coverages to shapefiles 
&do i := 1 &to 12 
  &type converting to shapefile PET%i% processing  
  arcshape capPET%i%  points  PETshp%i% 
&end 
&do i := 1 &to 12 
  &type converting to shapefile t%i% processing  
  arcshape capt%i%  points  tshp%i% 
&end 
arcshape petan  points  petannshp 
arcshape petannme  points  petannmeanshp 
 &do i := 1 &to 12 
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    &type delete capPET%i% GRIDS. Delete GRID %i% now. 
 kill capPET%i% all 
    &end   
 &do i := 1 &to 12 
    &type delete capt%i% GRIDS. Delete GRID %i% now. 
 kill capt%i% all 
    &end   
kill petan all 
kill petannme all 
&return 

 
Appendix 6. ArcGIS 9.2 Geoprocessing model (Java script) to calculate topographical 
wetness index (TWI). (Papers IV, V and VI) 
 
// --------------------------------------------------------------- 
// EastCaprivi_TWI_index.js 
// Created on: to elo 14 2008 09:50:34  
//   (generated by ArcGIS/ModelBuilder) 
// Description:  
// Calculates Topographical wetness index (TWI-index) for DEM. 
formula: Wi = ln(As / tanB) 
where: 
As = drainage area in m2 
B = slope 
For final TWI-index grid model fills voids using focalmean function and 
conditional statement (CON-function) with focalmean function until no voids 
detected 
CON function used: 
con(IsNull([twi_temp]), focalmean([twi_temp], RECTANGLE, 4, 4, DATA), 
[twi_temp]) 
// --------------------------------------------------------------- 
// Create the Geoprocessor object 
var gp = WScript.CreateObject("esriGeoprocessing.GPDispatch.1"); 
// Check out any necessary licenses 
gp.CheckOutExtension("spatial"); 
// Load required toolboxes... 
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Spatial Analyst 
Tools.tbx"); 
// Local variables... 
var dem_fill20m = "C:\\WorkSpace\\dem_fill20m"; 
var FlowAcc = "C:\\WorkSpace\\grdpois\\flowacc"; 
var flowdir = "C:\\WorkSpace\\grdpois\\flowdir"; 
var Output_drop_raster = ""; 
var drainarea = "C:\\WorkSpace\\grdpois\\drainarea"; 
var Raster_cell_size_20m = "20"; 
var slopedeg = "C:\\WorkSpace\\grdpois\\slopedeg"; 
var slope__2_ = "C:\\WorkSpace\\grdpois\\slope"; 
var Tanslope = "C:\\WorkSpace\\grdpois\\tanslope"; 
var drainslope = "C:\\WorkSpace\\grdpois\\drainslope"; 
var twi_temp = "C:\\WorkSpace\\grdpois\\twi_temp"; 
var contemp1 = "C:\\WorkSpace\\grdpois\\contemp1"; 
var Focal1 = "C:\\WorkSpace\\grdpois\\focal1"; 
var Focal2 = "C:\\WorkSpace\\grdpois\\focal2"; 
var focal3 = "C:\\WorkSpace\\grdpois\\focal3"; 
var TWI_index = "C:\\WorkSpace\\grdpois\\twi_index"; 
var streams = "C:\\WorkSpace\\grdpois\\streams"; 
var Streamlines_shp = "C:\\WorkSpace\\grdpois\\streamlines.shp"; 
// Process: Flow Direction... 
gp.FlowDirection_sa(dem_fill20m, flowdir, "NORMAL", Output_drop_raster); 
// Process: Flow Accumulation... 
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gp.FlowAccumulation_sa(flowdir, FlowAcc, "", "FLOAT"); 
// Process: Times... 
gp.Times_sa(FlowAcc, Raster_cell_size_20m, drainarea); 
// Process: Slope... 
gp.Slope_sa(dem_fill20m, slope__2_, "DEGREE", "1"); 
// Process: Tan... 
gp.Tan_sa(slope__2_, Tanslope); 
// Process: Single Output Map Algebra... 
gp.SingleOutputMapAlgebra_sa("tanslope / 57.2957795 
", slopedeg, "C:\\WorkSpace\\grdpois\\tanslope"); 
// Process: Single Output Map Algebra (2)... 
gp.SingleOutputMapAlgebra_sa("drainarea / slopedeg", drainslope, 
"C:\\WorkSpace\\grdpois\\drainarea;C:\\WorkSpace\\grdpois\\slopedeg"); 
// Process: Single Output Map Algebra (3)... 
gp.SingleOutputMapAlgebra_sa("ln(drainslope)", twi_temp, 
"C:\\WorkSpace\\grdpois\\drainslope"); 
// Process: Single Output Map Algebra (4)... 
gp.SingleOutputMapAlgebra_sa("con(IsNull([twi_temp]), focalmean([twi_temp], 
RECTANGLE, 4, 4, DATA), [twi_temp])", contemp1, 
"C:\\WorkSpace\\grdpois\\twi_temp"); 
// Process: Focal Statistics... 
gp.FocalStatistics_sa(contemp1, Focal1, "Rectangle 5 5 CELL", "MEAN", 
"DATA"); 
// Process: Focal Statistics (2)... 
gp.FocalStatistics_sa(Focal1, Focal2, "Rectangle 5 5 CELL", "MEAN", 
"DATA"); 
// Process: Focal Statistics (3)... 
gp.FocalStatistics_sa(Focal2, focal3, "Rectangle 5 5 CELL", "MEAN", 
"DATA"); 
// Process: Single Output Map Algebra (5)... 
gp.SingleOutputMapAlgebra_sa("con(IsNull([focal3]), focalmean([focal3], 
RECTANGLE, 12, 12, DATA), [focal3])", TWI_index, 
"C:\\WorkSpace\\grdpois\\focal3"); 
// Process: Single Output Map Algebra (6)... 
gp.SingleOutputMapAlgebra_sa("setnull(FlowAcc <100,1)", streams, 
"C:\\WorkSpace\\grdpois\\flowacc"); 
// Process: Stream to Feature... 
gp.StreamToFeature_sa(streams, flowdir, Streamlines_shp, "SIMPLIFY"); 
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