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ABSTRACT

Remote sensing provides methods to infer land cover information over large geographical areas at 
a variety of spatial and temporal resolutions. Land cover is input data for a range of environmental 
models and information on land cover dynamics is required for monitoring the implications of global 
change. Such data are also essential in support of environmental management and policymaking. 
Boreal forests are a key component of the global climate and a major sink of carbon. Th e northern 
latitudes are expected to experience a disproportionate and rapid warming, which can have a major 
impact on vegetation.

Th is thesis examines the use of optical remote sensing for estimating aboveground biomass, leaf 
area index (LAI), tree cover and tree height in the boreal forests and tundra–taiga transition zone in 
Finland. Th e continuous fi elds of forest attributes are also required for improved detection of forest 
extent. Th e thesis focuses on studying the feasibility of satellite data at multiple spatial resolutions, 
assessing the potential of multispectral, -angular and -temporal information, and provides regional 
evaluation for global land cover data. Th e reference data consist of fi eld measurements, forest inven-
tory data and fi ne resolution land cover maps. Th e preprocessed ASTER, MISR and MODIS image 
products are the principal satellite data.

Fine resolution studies demonstrate how statistical relationships between biomass and satellite 
data are relatively strong in single species and low biomass mountain birch biotopes in comparison 
to higher biomass coniferous stands. Th e combination of forest stand data and fi ne resolution AS-
TER images provides a method for biomass estimation using medium resolution MODIS data. Th e 
multiangular data improve the accuracy of land cover mapping in the sparsely forested tundra–taiga 
transition zone, particularly in the mires. Similarly, multitemporal data improve the accuracy of 
coarse resolution tree cover estimates in comparison to the peak of the growing season data. Further-
more, the peak of the growing season is not necessarily the optimal time for land cover mapping in 
the northern boreal regions. Th e evaluated coarse resolution land cover data sets have considerable 
shortcomings in northernmost Finland and should be used with caution in similar regions. Th e 
quantitative reference data and upscaling methods for integrating multiresolution data are required 
for calibration of statistical models and evaluation of land cover data sets. Th e preprocessed satellite 
data products have potential for wider use as they can considerably reduce the time and eff ort used 
for data processing.

Keywords: vegetation, biomass, tree cover, multiangular, multitemporal, accuracy assessment, 
tundra–taiga boundary
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1. INTRODUCTION

1.1 Land cover, boreal forests and remote sensing

Land cover refers to the observed (bio)physical cover of the Earth’s surface, the description of vegeta-
tion being a key component of it (DiGregorio 2005). Land cover and vegetation have a central role 
in the climate, hydrology and biogeochemical cycling. Th ey also provide humans with a vast natural 
resource base. Land use refers to the human activities to produce, change and maintain land cover 
(DiGregorio 2005). Land use has a major impact on the environment (Foley et al. 2005), for exam-
ple, to the rate of carbon exchange between the Earth’s surface and the atmosphere (Houghton 2003) 
and to biodiversity (Chapin et al. 2000). Information on land cover and land cover change is required 
to understand and manage the environment at variety of spatial and temporal scales. It is essential for 
monitoring global change and for sustainable management of natural resources. It is also input data 
for a range of environmental models (Hall et al. 1995; Sellers et al. 1997). Furthermore, policy-driven 
needs, particularly the international agreements, motivate the production of land cover information 
for the climate models, quantifi cation of carbon cycle and biodiversity assessments (DeFries & Bel-
ward 2000; Rosenqvist et al. 2003).

Th e circumpolar boreal vegetation zone extends across the northern hemisphere south of the 
treeless arctic zone, or tundra. Th e boreal zone is mainly characterized by coniferous forests and is 
almost synonymous with taiga (Heikkinen 2005). Boreal forests and tundra ecosystems are critical 
components of the Earth’s climate system (Bonan et al. 1992, 1995). Th e boreal forests are also a 
major carbon sink (Goodale et al. 2002; Dong et al. 2003). Th e boreal forest and treeless arctic zone 
are separated by the northern timberline (Hustich 1966; Heikkinen 2005), or tundra–taiga transition 
zone (Callaghan et al. 2002a, 2002b), which is a latitudinal gradient of forest attributes, such as tree 
cover and tree height, modifi ed by the topography and presence of rivers and peatlands. Mountain 
birch ecosystems are characteristic for this transition zone in Fennoscandia (Wielgolaski 2001). Th is 
transition zone is sensitive to changes in climate and human land use, and it is where the changes in 
the northern extent of the boreal forest biome occur. Th e northern latitudes are expected to experi-
ence a disproportionate and rapid warming in response to global climate change, which can have a 
major impact on vegetation distribution in the tundra–taiga ecotone (Grace et al. 2002; Skre et al. 
2002) and feedback eff ects to the climate (Foley et al. 1994; Harding et al. 2002). Several studies 
have observed recent changes in the high latitude vegetation and photosynthetic activity (Myneni 
et al. 1997; Suarez et al. 1999; Kullman 2001; Sturm 2001; Slayback et al. 2003; Tape et al. 2006; 
Karlsen et al. 2007). Th e boreal forests and the northern extent of forest are also subject to change due 
to natural disturbances, particularly fi res and insects, and anthropogenic infl uences, such as timber 
harvesting and land cover conversion (Gromtsev 2002; Vlassova 2002).

Satellite remote sensing provides capabilities for gathering land cover information over large areas 
in a synoptic and spatially explicit manner. Th e science- and policy-driven needs for land cover infor-
mation, the unprecedented variety of remotely sensed data, and improved computing resources and 
data analysis tools have created new opportunities for major improvements in the global and regional 
land cover characterization (DeFries & Belward 2000). Remote sensing also provides information to 
assess the state of forests and to manage forest resources in a sustainable manner (Franklin 2001).

A great deal of progress has been made in the remote sensing of boreal forests since the launch of 
the fi rst Earth observation satellites in 1970s (Kasischke et al. 2004; Boyd & Danson 2005). How-
ever, due to the great diversity of forests, the feasibility of methods needs to be evaluated in a range of 
environments. Although the boreal forests are well-inventoried in many countries, the land cover and 
vegetation of the climatically sensitive tundra–taiga transition zone has remained poorly characterized 
(Callaghan et al. 2002a, 2002b). For example, the Fennoscandian mountain birch forests are prone 
to land cover changes, but the estimation of forest attributes using remote sensing has been studied 
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insuffi  ciently (Dahlberg 2001; Tømmervik et al. 2005). So far, classifi cation has been the most popu-
lar method for land cover characterization, but its intrinsic limitations at coarse spatial resolution 
and change detection have turned the attention towards continuous fi eld estimation (DeFries et al. 
1995b; Lambin & Linderman 2006). Th e development of better methods is also required for more 
accurate biomass estimation and carbon stock accounting (Brown 2002; Rosenqvist et al. 2003; Lu 
2006). Th e successful exploitation of remote sensing relies on defi ning the link between the remotely 
sensed data and surface variable of interest. Th erefore, novel strategies are needed for upscaling fi eld 
observations to match the coarse resolution pixels for calibration and validation of remote sensing 
models and land cover data sets (Liang 2004).

A number of new satellite sensors designed more specifi cally for observing land cover and land 
cover changes have been launched recently. Th ese provide improved data in terms of spatial, spectral 
and angular resolutions, and atmospheric, radiometric and geometric correction. However, land cover 
mapping is most often based on the spectral information although, for example, the angular sampling 
of the sensors has improved considerably (Asner et al. 1998; Diner et al. 1999). Furthermore, new 
medium spatial resolution sensors have good temporal resolution, which increases the potential ap-
plications of temporal information in cloud-prone northern latitudes. For example, the NASA’s Earth 
Observing System (EOS) sensors ASTER, MODIS and MISR are used to make available a range of 
preprocessed data products in support of a variety of applications. Higher level data products include, 
among others, global land cover maps (Friedl et al. 2002) and retrievals of biophysical parameters, 
such as leaf area index (Myneni et al. 2002). Th ese data are distributed together with extensive meta-
data over the Internet free of charge or at low price. Furthermore, the temporal continuation of the 
satellite observations is important for monitoring long-term land cover changes. Th e threat of a 
possible data gap in the very popular Landsat program has motivated the search for substitutive data 
sources (Goetz 2007). EOS sensor ASTER, for example, could provide supplementary data, which 
has been used so far only rarely to study land cover and forests.

1.2 Objectives of the thesis

Th is thesis contributes to our knowledge on the application of optical remote sensing for estimation 
of forest attributes in the boreal forests and tundra–taiga transition zone in Finland. Th e forest at-
tributes under interest were aboveground biomass, leaf area index (LAI), tree cover and tree height. 
More specifi cally, this thesis is investigating the feasibility of new satellite data at multiple spatial reso-
lutions, assessing the potential of multispectral, -angular and -temporal information, and providing 
regional evaluation for global scale land cover data sets. Th e constituting Papers I–VI are summarized 
in Figure 1.

Paper I examines the potential of the fi ne resolution multispectral ASTER data for biomass and 
LAI estimation in single species mountain birch forests in northernmost Finland. Th e low biomass 
mountain birch ecosystems form the treeline both towards north and at high elevations in northern 
Fennoscandia. Th e statistical relationships between the plot level fi eld measurements and ASTER 
data are studied using linear and non-linear regression analyses. Th e examined spectral features in-
clude the single spectral bands, several spectral vegetation indices and canonical correlation analysis 
transformed refl ectance.

Paper II examines the statistical relationships between the ASTER data and biomass in the south-
ern boreal forests. Contrary to Paper I, the study area is characterized by coniferous and mixed forests, 
and much higher biomass levels. Th e ground reference data consist of stand level forest inventory 
data. Th e non-linear regression models and neural networks are used for statistical analyses. Paper III 
applies the statistical models calibrated in Paper II and medium resolution MODIS data to estimate 
biomass and stand volume for the forests of southern Finland.
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Paper IV examines the potential of moderate and coarse resolution multiangular MISR data to 
improve the accuracy of tree cover and height estimates. Th e study area is located in the tundra–taiga 
transition zone in northernmost Finland and it is characterized by treeless heaths, mountain birch 
forests and woodlands, sparse coniferous forests and open mires. Neural networks are employed to 
study how the accuracy of the tree cover and tree height estimates depends on the utilized spectral-
angular band combination. Th e ground reference data consist of biotope inventory polygons, which 
have been interpreted from aerial photographs. Th e explanatory power of coarse resolution multi-
spectral, -temporal and -angular MODIS data is examined in Paper V using the same calibration data 
as in Paper IV. Th e generalized linear models are used for statistical modelling and for studying the 
explanatory power of diff erent variable groups. Th e selected models are employed to map tree cover 
and forest–non-forest boundary over northernmost Finland.

In Paper VI, the selected coarse resolution land cover data sets are evaluated in northernmost 
Finland. Th e evaluated data sets diff er from each other in terms of the legend defi nition, input data 
and mapping methodology, and provide a comprehensive sample of the current land cover mapping 
at continental and global scales.

Figure 1. Summary of the geographical areas, spatial resolution, remote sensing 
data and forest attributes examined in Papers I–VI. 
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2. BACKGROUND

Th e aim of terrestrial remote sensing is to infer information on the physical, biological and chemical 
conditions of the Earth’s surface from the measurements of refl ected, emitted or scattered electromag-
netic radiation. Th e amount of radiation is measured by a variety of passive and active sensors, which 
are typically onboard air- and spaceborne platforms and operate over a wide range of the electromag-
netic spectrum from visible to microwave wavelengths. Th e focus of this thesis is on optical satellite 
remote sensing in the visible to shortwave infrared (SWIR) spectral region, i.e. approximately in the 
range of 400–2500 nm.

 

2.1 Key properties of optical remote sensing data

In the visible to SWIR spectral region, most of the radiation measured by the sensor is emitted from 
the Sun. Th e atmosphere scatters and absorbs the radiation on its path from the Sun to Earth’s surface 
and from Earth’s surface to the sensor. Th e sensors designed to study the land surface operate in spec-
tral wavebands in which the atmospheric transmission is high (atmospheric windows). Refl ectance is 
the interaction between the solar radiation and the Earth’s surface, which creates the information on 
the images. Th e amount of refl ected radiation varies as a function of wavelength, angle (direction), 
time, polarization and location, which enables the inference of surface properties from the measured 
refl ectance (Barnsley 1999).

Th e spectral (i.e. wavelength dependent) variability of refl ectance is probably the most utilized 
information source in the remote sensing of land surfaces. Th e vegetation shows typically a low re-
fl ectance in the visible range of the spectrum, particularly in the blue and red wavelengths, a steep 
increase in refl ectance around 700 nm (red edge) and high refl ectance in the near infrared (NIR). 
Th e principal chemical and physical characteristics determining the leaf optical properties are plant 
pigments, particularly chlorophylls a and b, carotenoids and xanthophylls, leaf mesophyll structure 
and water content (Gates et al. 1965; Tucker & Sellers 1986). Th e refl ectance varies also as a func-
tion of the illumination and viewing angles (Kimes 1983; Kleman 1987). Th is angular dependence 
of the refl ectance is described by the bidirectional refl ectance distribution function (BRDF). Surface 
refl ectance refers usually to the more specifi c measures of bidirectional refl ectance factor (BRF) or 
hemispherical-directional refl ectance factor (HDRF) (Martonchik et al. 2000). Th e refl ectance of 
forests is typically highly anisotropic and determined by the optical properties of canopy compo-
nents, canopy- and landscape-level structural characteristics, and topography (Asner et al. 1998). Th e 
refl ectance of the land surfaces can also vary considerably as a function of time due to the seasonality 
of vegetation and snow cover.

Th e spectral, radiometric, angular, spatial and temporal resolutions describe how the surface leav-
ing radiation is recorded by the sensor. Polarization is outside the scope of this study. Th e measure-
ments are typically made in several wavebands (multispectral data), which are described by their 
spectral sensitivity functions. Th e spectral resolution refers to the number and bandwidth of the 
wavebands, and radiometric resolution to the sensors ability to distinguish diff erent levels in ob-
served radiance. Multiangular observations can be collected by viewing the target from several angles 
near-simultaneously or by observing the target during several overpasses (Asner et al. 1998; Diner 
et al. 1999). Th e range of the view and solar illumination angles over which data can be acquired is 
controlled by the sensor viewing geometry and satellites orbital characteristics (Barnsley et al. 1994). 
Spatial resolution refers to the level of spatial detail that is provided by the image (Aplin 2006). Th e 
content of the pixel is determined by the sensors instantaneous fi eld of view on the ground and spatial 
response function. Th e pixel size denotes to the area on the ground covered by a single pixel in the 
image. Th e temporal resolution refers to the average revisit period at a constant site (Aplin 2006). It 
depends on various factors, including the swath width, satellites orbital altitude, sensor view angle, 
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sensor tilting capabilities and latitude. In the optical range, the probability of obtaining cloud free 
observations is directly related to the temporal resolution.

None of the image resolutions or image extent can be increased without increasing the amount of 
data. Th e trade-off  between the spatial and temporal resolutions is one of the key issues in the selec-
tion of the remotely sensed data for any application (Lefsky & Cohen 2003; Aplin 2006; Figure 2). 
Cihlar (2000) divides the land cover mapping over large areas roughly into two categories: those that 
use fi ne spatial resolution data and those that use coarse spatial resolution data. In the ‘fi ne’ resolu-
tion studies, the spatial resolution is relatively high (typically 5–30 m) but the extent of the data is 
relatively small and temporal resolution poor. Th e extent of the fi ne resolution data can be increased 
by mosaicking several cloud free images together (Virtanen et al. 2004). In the ‘coarse’ resolution 
studies, data cover larger areas with good temporal resolution, but the spatial resolution is rather low 
(typically around 1 km). In these studies, it is common to composite data for multiple days to reduce 
cloud contamination (Holben 1986). However, this division has recently diminished somewhat be-
cause of the ‘medium’ spatial resolution sensors (e.g., Terra/Aqua MODIS and Envisat MERIS) and 
improved tilting capabilities of the fi ne resolution sensors.

Th e land cover and vegetation mapping and monitoring require data at multiple spatial reso-
lutions (Stow et al. 2004). Fine resolution data have been used frequently in the local to regional 
scale studies. Medium and coarse spatial resolution sensors are particularly useful for monitoring the 
seasonal and annual variability of vegetation over larger areas. In the cloud prone regions, such as 
northern latitudes, the high temporal resolution is essential for regular land cover monitoring (Rees 
et al. 2002; Roy et al. 2006). Multitemporal data can be also required for distinguishing certain land 
cover types. Th e coarse resolution analyses of land cover change help in focusing the attention on the 
areas experiencing the most rapid land cover changes (Hansen & DeFries 2004; Lepers et al. 2005). 
Townshend & Justice (1988) determined that a resolution fi ner than 1 km is desirable for global 

Figure 2. Th e spatial resolution of fi ne, medium and coarse resolution satellite data against the average 
revisit period and typical cloud-free revisit period of the sensors at 70°N latitude. Temporal scales from Rees 
et al. (2002).
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scale vegetation monitoring and a resolution of 250 m is needed to depict human-induced land cover 
changes. Th e less frequent imaging with fi ne spatial resolution sensors is useful for calibration and 
validation of lower resolution observations and enables more detailed analyses of land cover change 
(Stow et al. 2004).

Although it is common to categorize the image data according to the absolute pixel size, the spa-
tial resolution is probably best understood relative to the size of objects that we want to sense. Strahler 
et al. (1986) developed a taxonomic structure for remote sensing models and introduced the concepts 
of L- and H-resolution. Important concepts are scene and image, and size of the scene objects and 
spatial resolution of the image. In the H-resolution case, the scene varies at a lower spatial frequency 
than image sampling and features can be resolved. Conversely, in L-resolution case, the scene objects 
are smaller than the spatial resolution of the image. Mixed pixels are a typical L-resolution problem, 
occurring when two or more scene objects of interest fall within a single pixel. Th e spatial resolution 
is also closely related to the selection of image processing methods (Strahler et al. 1986; Woodcock 
et al. 1987).

2.2 Approaches to extract land cover information

Th e success of the remote sensing analysis depends on fi nding the accurate way to represent relation-
ship between the radiance measured by the sensor and the land surface properties. Th e basic types of 
remote sensing models are physical models and empirical (statistical) models, although many varia-
tions and hybrids exist (Liang 2004). Th e optical remote sensing system can be physically modelled 
as a selection of several subsystems, which describe how the land surface properties relate to the 
remotely sensed data. Th e most important subsystems are scene, atmosphere and sensor models, but 
the data are also aff ected by navigation model and mapping and binning methods (Liang 2004). In 
the image interpretation, the physical models have to be inverted to predict what caused the observed 
signal. Although the physical models can have great explanatory power and are not as site-specifi c 
as empirical models, they can be diffi  cult to implement in practice and often require measurement 
of variables that are hard to acquire (Nilson et al. 2003). Th e empirical models do not account for 
physical processes, but are fi tted statistically between the land surface attributes and remotely sensed 
data. Th e advantage of empirical models is that they can use data very eff ectively, but the applicability 
depends primarily on the strength of the relationship between remotely sensed data and the variable 
of interest. Th e disadvantage is that statistical models are usually highly site and time specifi c and not 
transferable to other areas (Foody et al. 2003).

Th e methods for extracting land cover information can be classifi ed according to the type of in-
formation they produce: discrete classes or continuous estimates. Classifi cation is the most common 
method for mapping the discrete land cover attributes, such as land cover type (Tso & Mather 2001; 
Franklin & Wulder 2002). Th e classifi cation assigns the pixels to a set of categories described in the 
classifi cation legend. Th e land cover type is a ‘hybrid’ variable, as classes are typically defi ned in terms 
of several characteristics, for example, according to the vegetation composition and structure. Ideally, 
the legend should consist of non-overlapping, all encompassing, mutually exclusive and quantita-
tively defi ned classes (Cohen et al. 2003b). In the ‘hard’ classifi cation, the sub-pixel heterogeneity can 
be taken into account by defi ning classes for mixed and complex land cover types. Th e classifi cation 
has been historically the most popular method to produce land cover data, which according to the 
DeFries et al. (2000a) stems from the tradition in bioclimatology.

Another approach is to estimate land cover characteristics as continuous variables. Sub-pixel clas-
sifi cation aims to estimate fractional covers of diff erent land cover types. Furthermore, the land cover 
can be characterized by vegetation structural and biophysical attributes. In the forest ecosystems, 
the typical attributes include tree cover, tree height, stand volume, aboveground biomass and LAI. 
Opposite from the fractional cover estimates, the continuous fi elds approach assumes that there is 
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no spatial covariation among land cover attributes within the pixel (Fernandes et al. 2004). Some of 
the variables can be estimated by inverting the physical models (e.g., Myneni et al. 2002), but more 
commonly those are estimated through empirical relationships. Various methods have been used 
for calibrating models between ground reference data and satellite data, for example, linear spectral 
unmixing, regression analysis, k-nearest-neighbours method (k-nn) and neural networks (Boyd et al. 
2002; Tomppo et al. 2002; Fernandes et al. 2004). Th e combination of spectral vegetation indices 
(SVIs) and empirical modelling has been particularly common in the estimation of vegetation at-
tributes. Th e numerous SVIs have been designed to isolate the contribution of vegetation from the 
contribution of other materials (background, atmosphere) to the refl ectance (Asner et al. 2003). Th e 
most common SVIs are either ratios or linear combinations of spectral bands, typically calculated 
from red and near infrared data, such as Normalized Diff erence Vegetation Index (NDVI; Rouse et 
al. 1973; Tucker 1979).

Th e image processing algorithm is applied assuming either L-resolution or H-resolution (Strahler 
et al. 1986; Woodcock & Strahler 1987). Classifi cation is an H-resolution method, because the scene 
objects of interest are larger than pixels. If the objects are relatively homogeneous at the level of the 
sensors spatial resolution, discrete land cover labels may be appropriate. Also image segmentation can 
be applied to delineate homogeneous units for analysis (Pekkarinen 2004). Th e physical and empiri-
cal models relating biophysical attributes to multispectral measurements are proper methods in the L-
resolution case. When classifi cation is applied to the L-resolution case, problems occur because land 
cover appears as mixtures and mosaics. Th e classifi cation of coarse resolution pixels typically results in 
underestimation of the less abundant and more fragmented classes (Braswell et al. 2003; Virtanen et 
al. 2004). Th e subjectivity and poor reproducibility of the classifi cation are another problem (Cihlar 
2000). Th e analyst’s role cannot be eliminated because the class distinctions are always to some degree 
artifi cial. Classifi cation relies on the analyst’s skills in labelling training sites or clusters. Th e third 
limitation is related to the change detection, because the classifi cation based methods overemphasize 
the land cover conversions and neglect the more subtle land cover modifi cations within land cover 
categories (Lambin & Linderman 2006).

Th e continuous fi eld estimation can better exploit the inherent variability of the images and pro-
vide more appropriate land cover characterizations for the ecotones and spatially fragmented regions. 
It provides also means for detecting subtle temporal changes in land cover (DeFries et al. 1995b; 
Fernandes et al. 2004; Lambin & Linderman 2006). Furthermore, the fl exibility of continuous fi elds 
enables the derivation of several classifi cations from the same data (Cohen et al. 2001). If classifi ca-
tion is based on continuous fi elds, the subjectivity of the classifi cation is reduced (Cihlar 2000). Th e 
continuous fi elds allow also better parameterization of the environmental models (DeFries et al. 
1995b).

2.3 Land cover characterization of boreal forests and tundra–taiga transition zone 

2.3.1 Estimation of the forest structural and biophysical attributes

Th e application of aerial photography has long traditions in vegetation mapping and forest resource 
management (Colwell 1960). Th erefore, it is natural that satellite remote sensing has received con-
siderable attention in land cover mapping since the early 1970s when the fi rst Landsat satellite was 
launched. Th e fi ne resolution studies have focused mainly on the classifi cation of forests according 
to the composition and estimation of forest inventory variables (e.g., stand volume). More recently, 
the quantifi cation of the carbon cycle and mapping of biophysical variables for parameterization of 
the ecosystem process models has got also more attention (Franklin 2001; Boyd & Danson 2005). 
Now the value of continuous fi elds has been realized in a range of applications, for example in the 
large-scale habitat mapping (McDermid et al. 2005). Although the continuous fi eld estimation has 
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been common in the boreal zone and treeless arctic regions (Wulder 1998; Laidler & Treitz 2003; Ka-
sischke et al. 2004), the land cover of the tundra–taiga transition has been mapped almost exclusively 
by classifi cation (Clark et al. 1985; Käyhkö & Pellikka 1994; Rees et al. 2002; Kharuk et al. 2003; 
Tømmervik et al. 2003; Virtanen et al. 2004) and continuous fi eld estimation has received only little 
attention (Ranson et al. 2004a; Olthof & Fraser 2006). For example, only a few studies have tried 
to map forest biophysical attributes in the Fennoscandian mountain birch forests (Dahlberg 2001; 
Tømmervik et al. 2005).

Th e forest attributes can be grouped to the canopy cover, canopy height (structure) and stand 
composition related attributes (Lefsky & Cohen 2003). Th e attributes related to the canopy cover 
include, for example, tree cover and LAI. Tree cover can refer either to the tree crown or tree canopy 
cover, depending on if within canopy gaps are included or excluded from the cover (Hansen et al. 
2002). Th e canopy cover is important variable in the refl ectance of the forest stand and therefore 
the canopy cover related variables have been estimated rather successfully by optical remote sensing 
(Wulder 1998; Franklin 2001; Nilson et al. 2003). LAI is defi ned as one half of the total leaf area per 
unit ground surface area (Chen & Black 1991) and it is an important biophysical variable control-
ling many biological and physical processes (Waring & Running 1999). LAI is also a key factor in 
the forest growth and its accurate estimation is a prerequisite for derivation of the improved forest 
growth estimates by ecosystem process models (Franklin 2001). Th e estimation of LAI is complicated 
by the fact that LAI has an asymptotic relationship with canopy cover, because additional layers of 
leaves have little eff ect on canopy cover after a particular LAI. As the stand refl ectance is mainly af-
fected by the canopy cover, the refl ectance tends to saturate at high LAI values. Also the refl ectance 
of background and undergrowth vegetation hinders the estimation of canopy cover related variables 
(Spanner et al. 1990; Baret & Guyot 1991).

Tree height, stand volume and aboveground biomass are forest attributes which usually show 
weaker relationships with optical remote sensing data than those related to the canopy cover (Nilson 
et al. 2003; Kasischke et al. 2004). For example, the accuracy of the stand volume estimates is usually 
too inaccurate for purposes of forest management (Franklin 2001). Th e problem is that in many for-
est types, the basal area and other stand properties continue to evolve after the canopy cover reaches 
its maximum, but the stand refl ectance is not signifi cantly aff ected by those increases (Nilson & Pe-
terson 1994). Th erefore, the applicability of the remote sensing data is determined by the relationship 
of canopy cover and the forest attribute. When canopy is closed, the success in the estimation of forest 
attribute depends on the extent to which a closed canopy can predict them (Franklin 2001).

Th e third group of attributes is related to the composition, including the species composition, 
leaf type (broadleaved vs. needleleaf ) and leaf longevity (deciduous vs. evergreen) (Lefsky & Cohen 
2003). Th e composition is typically viewed as a categorical attribute (e.g., forest type). Th erefore, 
the success in mapping is dependent on the type and detail of the classifi cation legend. However, 
for example, leaf type and leaf longevity information can be estimated also as continuous variables 
(DeFries et al. 1995b).

2.3.2 Potential and limitations of optical information sources

Th e spectral information, i.e. multispectral images and SVIs, are the most utilized source of informa-
tion in the land cover characterization. As mentioned above, the spectral information lacks sensitivity 
to forest attributes at the moderate and high biomass levels (Lu 2006). Th e stand refl ectance is also 
aff ected by the background and understory characteristics, particularly in sparse and open regions 
(Spanner et al. 1990; Rautiainen et al. 2007). Furthermore, the spectral confusion between the non-
forest and forest vegetation, for example, the confusion between open mires, low shrublands and 
forests are common problems in the northern regions (Kalliola & Syrjänen 1991; Käyhkö & Pellikka 
1994; Häme et al. 1997; Tomppo et al. 2002; Rees et al. 2002). Because of the limitations of the 
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spectral information, the angular and temporal information seems attractive for improving the land 
cover characterizations. Th e spatial domain of optical images (Wulder 1998) and, for example radar 
and lidar techniques (Rees et al. 2002; Ranson et al. 2004b), could also improve the estimates of for-
est attributes and accuracy of land cover mapping, but those were outside the scope of this thesis

Sometimes the angular information may have higher sensitivity to land cover variability than 
purely spectral information (Barnsley et al. 1997). Th e BRDF research has focused on the develop-
ment and implementation of mathematical models to normalize the satellite observations to the com-
mon viewing and illumination geometry, and to derive information on certain biophysical properties 
of the Earth’s surface (Roberts 2001). Although the applications of multiangular data for land cover 
mapping are still relatively rare, the potential of multiangular data for land cover characterization has 
been demonstrated by several studies (Abuelgasim et al. 1996; Barnsley et al. 1997; Bicheron et al. 
1997; Sandmeier & Deering 1999a, 1999b; Grant 2000; Lovell & Graetz 2002; Zhang et al. 2002). 
Th e angular information has been input into the empirical models in the form of multiangular images 
(Barnsley et al. 1997), multiangular indices (Sandmeier & Deering 1999a; Gao et al. 2003; Chen et 
al. 2005) and fi tted BRDF-model parameters (Brown de Colstoun & Walthall 2006; Armston et al. 
2007). As the structural diff erences between the forest and tundra vegetation are large, but spectral 
diff erences of some land cover types are small, the multiangular data could improve the land cover 
depiction in the tundra–taiga transition zone.

Th e seasonality of the vegetation is an important feature of the northern latitudes. Th e simplest 
way to exploit the temporal domain is to acquire data at the time of maximum contrast between 
the land cover types (Kasischke et al. 2004). Th e phenological development can also be utilized for 
inferring the land cover characteristics. Th e multitemporal data have been employed particularly in 
the global scale mapping (Lloyd 1990; DeFries et al. 1995a; Hansen et al. 2005), but it has also been 
used at fi ner spatial resolution studies for land cover classifi cation and prediction of forest attributes 
(Wolter et al. 1995; Lefsky et al. 2001; Toivonen & Luoto 2003). Furthermore, multitemporal data 
can improve the wetland classifi cation and help to separate wetlands from the other land cover types 
(Ozesmi & Bauer 2002). Th e analysts can use directly a temporal series of satellite images or seasonal 
variability can be characterized by a set of phenological variables or metrics, which are derived, for ex-
ample, from the temporal NDVI profi le (DeFries et al. 1995a). Th e advantage of the latter approach 
is that diff erences in the timing of the seasonal events are normalised. Th e data are also ‘compressed’ 
into a fewer numbers of bands (Hansen et al. 2005). Th e temporal information have been used only 
rarely for land cover characterization of the tundra–taiga transition zone (Ranson et al. 2004a), but 
the mapping is usually based on peak of the growing season images (Rees et al. 2002; Kharuk et al. 
2003; Olthof & Fraser 2006). Th e short growing season, cloudiness, snow cover and low solar eleva-
tion angles complicate the use of multitemporal data in the northern latitudes (Häme et al. 1997; 
Rees et al. 2002).

2.3.3 Upscaling issues in the model calibration and validation

Th e model calibration is an important step in developing the statistical models for forest attributes. 
Validation (accuracy assessment) is the process of assessing the accuracy of data products derived from 
the system outputs by independent means and it determines the usefulness of the product for specifi c 
purposes (Morisette et al. 2002). Th e validation of the continuous estimates is usually based on the 
correlative analysis of the satellite derived products and ground reference data. Th e classifi ed data 
are usually assessed using the error (confusion) matrix (Foody 2002). Th e calibration and validation 
of remote sensing models have in common that they require the integration of remotely sensed and 
ground reference data. Th is can be complicated, because the area represented by the fi eld measure-
ments does not necessarily correspond to area of remotely sensed pixels, particularly at coarse spatial 
resolution. Th e land cover tends to be also very heterogeneous at the sensor resolution. Th erefore, the 
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methods for upscaling the fi eld measurements to the resolution of remote sensing data are central in 
the calibration and validation (Liang 2004).

Th e fi eld observations are typically made at the scale of fi eld plots. Although some attributes can 
be diffi  cult to measure even at the scale of relatively fi ne resolution data (e.g., Landsat ETM+), the 
fi eld plots usually correspond rather well with pixels at that resolution. Th erefore, the fi ne resolution 
data have been popular for upscaling plot level data to the landscape scale for calibration and valida-
tion of low resolution models (Iverson et al. 1989; Häme et al. 1997, 2001; Tomppo et al. 2002; 
Cohen et al. 2003b). However, when relating plot level measurements with high resolution satellite 
data, the co-registration errors between the fi eld and satellite data can deteriorate the estimation 
results (Halme & Tomppo 2001). Th e collection of new fi eld data is usually time-consuming and 
expensive. Sometimes the fi ne resolution reference data is available (e.g., land cover map) and can be 
used directly for calibration or validation.

Th e ground reference data can be also over stands or some administrative units. Th e forest stand, 
or compartment, is an area of relatively homogeneous forest attributes and it is typically the smallest 
unit in the forest management (Poso 1983; Koivuniemi & Korhonen 2006). Th e stands are handled 
as polygons in the geographical information systems (GIS). Traditionally the stands are delineated 
from aerial photographs and forest attributes measured in the fi eld or estimated from the photographs. 
As stands are typically larger than fi ne resolution satellite image pixels, models can be developed per 
stands (Poso et al. 1987; Ardö 1992; Kilpeläinen & Tokola 1999). However, if stands are plenty, they 
can be used directly for calibrating and validating coarse resolution models. Th e estimates can be also 
validated over larger areas than stands, typically as mean values over some administrative areas. Th e 
National Forest Inventory (NFI) statistics provide appropriate reference data at this level.

Th e accuracy assessment of global land cover classifi cations has got lots of attention as new prod-
ucts have been released lately (Loveland et al. 2000; Friedl et al. 2002; Bartholomé & Belward 2005). 
Similarly, the validation of biophysical retrievals has received mounting attention (Cohen et al. 2003b; 
Morisette et al. 2006). Th e accuracy assessment is diffi  cult because of the large areas to be sampled. 
It is also complicated by the diffi  culties to observe categorical variables at coarse resolution. Land 
cover types have poor scalability and it is diffi  cult to determine representative land cover labels for 
heterogeneous pixels, although fi ne resolution reference data would be available (Cihlar 2000; Foody 
2002). Th e statistically sound validation of land cover data sets has been based on the interpretation 
of reference data from fi ne resolution satellite images and other existing data sources by regional ex-
perts (Scepan 1999; Mayaux et al. 2006). Some studies have compared the global land cover data sets 
to identify the areas where they agree or disagree (Hansen & Reed 2000; Latifovic et al. 2004; Giri et 
al. 2005; McCallum et al. 2006). Th e other studies have concentrated on more regional study areas 
(Cohen et al. 2003b, 2006; Schwarz & Zimmermann 2005; Waser & Schwarz 2006). Although these 
case studies cannot state the accuracy of the whole data set, they can provide valuable information on 
the data defi ciencies and suggest improvements to the future products. However, such evaluations are 
rare over the tundra–taiga transition zone (Virtanen & Kuhry 2006).
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3. STUDY AREAS

Th e study areas of this thesis concentrate on two regions, one located in southern Finland (II, III) and 
another in northernmost Finland (I, IV–VI, Figure 3). Finland is part of Fennoscandia and has a rela-
tively warm climate in comparison to the other regions in the equivalent latitudes due to the strong 
infl uence of Atlantic Gulf Stream (Tikkanen 2005). In north to south direction Finland stretches 
across the whole boreal vegetation zone, which is bordered with treeless arctic zone towards the north 
and with temperate zone towards the south (Ahti et al. 1968). Th e northernmost parts of Finland 
belong to the hemiarctic and orohemiarctic subzones of the northern boreal zone (Heikkinen 2005). 
In general, the biomass of the vegetation is decreasing towards the north with decreasing temperatures 
and shorter growing season. Th erefore, the studied areas correspond to two ends of biomass gradient 
in the Finnish boreal forests.

Th e most common tree species in Finland are Scots pine (Pinus sylvestris), Norway spruce (Picea 
abies), silver birch (Betula pendula) and downy birch (B. pubescens). Typically the forest stands consist 
of more than one tree species. Pure pine stands occur in rocky terrain, on dry sandy soils and in for-
ested mires. Natural spruce stands occur in richer soils. Birch is commonly found as an admixture, 
but can also form pure stands. Mountain birch (B. pubescens ssp. czerepanovii) forms the transitional 
forests towards north and on the fell slopes almost everywhere in the Fennoscandia (Wielgolaski 
2001). Mountain birch biotopes range from forests and woodlands (Figure 4) to low growing shrub-
lands (Sihvo 2002). Th e typical undergrowth vegetation in the Finnish forests includes dwarf shrubs, 
particularly crowberry (Empetrum hermaphroditum), cowberry (Vaccinium vitis-idaea) and blueberry 
(V. myrtillus), and mosses and lichen in variable proportions. Various kinds of peatlands and mires 
are also important in the Finnish landscape (Vasander 1996; Seppä 2002). Most of the Finland is 

Figure 3. (a) Th e location of Finland relative to the circumpolar boreal forests. Boreal forests are shown in 
dark gray and based on Olson et al. (2001). (b) Th e location and extent of the study areas of Papers I–VI 
relative to the boreal vegetation zones (Ahti et al. 1968). Th e northernmost parts of the northern boreal 
zone belong to the hemiarctic and orohemiarctic subzones (Heikkinen 2005). 

(a) (b)
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characterized by gently undulating terrain. About 80% of the country lies below 200 m and may be 
classifi ed as lowland (Tikkanen 1994). Th e highest fells are over 1000 m high and located in north-
westernmost Finland.

Nearly all the productive forest land in Finland is intensively managed. Despite the active harvest-
ing and reduction of national territory after the Second World War, the biomass of the Finnish forests 
is now greater than during the 20th century and continues to increase (Liski et al. 2006). Most of 
the non-productive forest land and the largest protected areas are located in northern Finland. Th e 
eff ect of natural disturbances on Finnish forests is relatively small as the forest fi res are eff ectively sup-
pressed. Reindeer herding is an important form of land use in the northernmost Finland, having also 
considerable eff ects on land cover (Käyhkö & Pellikka 1994; Helle 2001). Th e mountain birch forests 
are also regularly defoliated by insects herbivores (Seppälä & Rastas 1980; Neuvonen et al. 2001).

4. MATERIALS AND METHODS

4.1 Reference data

Th e overview of the materials and methods used in this thesis is given in Figure 5. 
Th e ground reference data on aboveground biomass and LAI of mountain birch woodlands and 

forests were surveyed in northernmost Finland in July 2004 (I). Th e measurements were made in 
four 1 km2 study sites covering a range of mountain birch biotopes. Th e total number of fi eld plots 
was 128. Th e plot size was 100 m2 in the site having the highest tree density and 200 m2 in the three 
sparser sites. Th e plots were located using a GPS-device. Th e basic stand parameters (diameter at 
breast height, height) were measured for scrubs and trees taller than 1.3 m. Th e biomasses of the tree 
components were estimated using the allometric models developed for mountain birch by Starr et 
al. (1998). Th e leaf area was estimated using the estimated leaf biomass and specifi c leaf weight data 
from literature.

Th e stand level forest inventory data were used in Papers II and III. Two data sets were used: the 
statistical models were calibrated using one data set and models evaluated by another data set. Th e 
data were provided by Metsähallitus and Finnish Forest Research Institute (Metla). Th e stand volume 

Figure 4. Mountain birches in the study area of Paper I (69°36’’1’ N, 27°15’’5’ E). 
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and stand age were used for calculating the aboveground biomass of tree components and understory 
vegetation. Only forest stands in mineral soils were examined, since the available biomass conversions 
(Lehtonen et al. 2004; Muukkonen & Mäkipää 2006) were applicable only to those conditions.

Th e biotopes of the nature reserves, wilderness areas and national parks of northernmost Finland 
have been inventoried between 1996 and 1999 by Metsähallitus (Sihvo 2001, 2002). According to 
the defi nition, biotope is an area with uniform soil, tree stand and human impact. Th e survey is based 
on 1:20 000 scale colour-infrared aerial photographs, the minimum mapping unit being approxi-
mately one hectare. In addition to the biotope classifi cation, the database includes quantitative data 
on tree crown cover, species composition, tree height and shrub cover. Th e data have been stored in a 
GIS-database in vector format. Th e biotope inventory data were used for regional model calibration 
and evaluation (IV, V) and for assessment of global land cover data sets (VI). Th e data were used from 
approximately 250 km long and 60 km wide transect (Figure 3b).

Finnish Environment Institute (SYKE) has produced a fi ne resolution land cover database for 
the whole of Finland as a part of European CORINE Land Cover 2000 project (CLC2000-Finland 
2005). Th e Finnish CORINE land cover map has a resolution of 25 m and it is based on the data in-
tegration of automated Landsat 7 ETM+ image interpretation and existing GIS data. Th e continuous 
forest variables have been estimated using an unsupervised clustering and cluster labelling method. 
CORINE data were used for deriving a forest mask (III) and validating forest–non-forest maps (V, 
VI).

4.2 Satellite data and preprocessing

Th e technical specifi cations of the utilized satellite sensors are summarized in Table 1, and satellite 
data products and global land cover data sets in Table 2. All the satellite data were obtained through 
NASA’s EOS Data Gateway  (http://edcimswww.cr.usgs.gov/pub/imswelcome/).

Th e fi ne resolution Advanced Spaceborne Th ermal Emission and Refl ection Radiometer (ASTER) 
is onboard NASA’s Terra satellite, which was launched in December 1999 (Yamaguchi et al. 1998). 
Th e atmospherically corrected surface refl ectance data (Abrams 2000) were used in Papers I and II. 
Th e surface refl ectance product has three spectral bands in the visible and near-infrared (VNIR) and 

Figure 5. Summary of Papers I–VI relative to the typical steps of remote sensing analysis.
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six bands in the SWIR spectral regions at 15 and 30 m spatial resolution. Th e VNIR bands have been 
designed particularly for vegetation assessment, but SWIR bands mainly for the purpose of surface 
soil and mineral mapping (Yamaguchi et al. 1998). ASTER also provides fi ve bands in the thermal 
infrared (TIR) spectral region at 90 m spatial resolution, but this data were not used. ASTER images 
were rectifi ed to the national coordinate system by using ground control points collected from digital 
topographic maps and fi rst order polynomials. In Paper I, the image data were also topographically 
normalized by using digital elevation model (DEM) at 25 m resolution and C-correction (Teillet et 
al. 1982). Several SVIs were also calculated (I: Table 1).

Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua satellites 
provides multispectral, -temporal and -angular data for medium and coarse resolution land cover 
characterization (Justice et al. 1998, 2002). MODIS has 36 spectral bands, seven being particularly 
designed for land applications; three bands in the visible, one band in NIR and three bands in SWIR 
spectral ranges. Th e spatial resolution of MODIS data is either 250 m, 500 m or 1 km depending 
on spectral band and data product. Terra MODIS data are available since 2000 and Aqua MODIS 
data since 2002.

Sensor Band Bandwidth 
(nm)

Spectral
region

Spatial 
resolution

Swath 
width

Reference

ASTER 1 520–600 green 15 m 60 km Yamaguchi et al. 1998

2 630–690 red

3 760–860 NIR

4 1600–1700 SWIR 30 m

5 2145–2185 SWIR

6 2185–2225 SWIR

7 2235–2285 SWIR

8 2295–2365 SWIR

9 2360–2430 SWIR

MODIS 1 620–670 red 250 m 2330 km Barnes et al. 1998

2 841–876 NIR

3 459–479 blue 500 m

4 545–565 green

5 1230–1250 SWIR

6 1628–1652 SWIR

7 2105–2155 SWIR

MISR* 1 425–467 blue 275 m, 1.1 km** 360 km Diner et al. 1998

2 543–572 green

3 661–683 red

4 847–886 NIR

* MISR has nine cameras pointing to 0º, ±26.1º, ±45.6º, ±60.0º and ±70.5º view zenith angles.
** Th e nadir viewing camera and all the red bands are at 275 m resolution and other bands at 1.1 km resolution.

Table 1. Technical specifi cations of the ASTER (bands 1–9), MODIS (bands 1–7) and MISR sensors.
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In Paper III, the atmospherically corrected MODIS refl ectance for red and NIR bands at 250 m 
resolution were used. Th e data for three 8-day periods from the growing season 2001 (July 4th–11th, 
August 13th–20th, August 21st–28th) were obtained. Th e average refl ectance of three data sets was 
also calculated.

In Paper V, MODIS BRDF model parameters and nadir BRDF-adjusted surface refl ectance 
(NBAR) products were used (Schaaf et al. 2002). Th is data are provided at 1 km resolution for 16-
day periods. MODIS BRDF/Albedo algorithm makes use of a kernel-driven linear BRDF model, 
which relies on the weighted sum of an isotropic parameter and two functions (kernels) of viewing 
and illumination geometry. Th e BRDF model parameters are provided for MODIS bands 1–7 and 
three broadbands. Th e model parameters are used for producing the NBAR data for bands 1–7. In 
principle, MODIS NBAR data correspond to temporal composite data, which have been normalised 
for BRDF eff ects. MODIS data were obtained for the snow-free period (9 June–13 September) of the 
years 2000–2006. Th e data were used for calculating average of nadir-view BRF and NDVI, average 
BRDF model parameters and selected multiangular indices for the peak of the growing season period 
(V: Table 2). Th e temporal variability of the refl ectance was described by the mean, maximum and 
range of BRF and NDVI over the growing season (DeFries et al. 1995a). Th ree cloud-free MODIS 
granules at 1 km resolution were used for comparison.

Data product Description Reference Used in

ASTER

AST_07 ASTER level 2 surface refl ectance, version 2.8. 
Bands 1–9. Pixel size 15/30 m.

Abrams 2000 I–III

MODIS 

MOD021KM 
MYD021KM

MODIS level 1B radiance, collection 5. Bands 1–7. 
Pixel size 1 km.

MCST 2006 V

MOD09Q1 MODIS surface refl ectance, collection 4. 
Bands 1 and 2. Pixel size 250 m.

Vermote et al. 
2002

III

MOD43B1 MODIS BRDF model parameters, collection 4. 
Bands 1–7. Pixel size 1 km.

Schaaf et al. 2002 V

MOD43B4 MODIS nadir BRDF-adjusted refl ectance, collection 4. 
Bands 1–7. Pixel size 1 km.

Schaaf et al. 2002 V

MISR

MI1B2T MISR terrain projected top-of-atmosphere radiance, 
version F02_0020. Pixel size 275 m/1.1 km.

Bothwell et al. 
2002

IV

MIL2ASLS MISR surface bidirectional refl ectance factor (BRF), 
version F04_0013. Pixel size 1.1 km.

Bothwell et al. 
2002

IV

Global land cover data set

MODIS-IGBP 
(MOD12Q1)

MODIS global land cover, IGBP legend, collection 4. 
Pixel size 1 km.

Friedl et al. 2002 VI

MODIS-VCF 
(MOD44B)

MODIS vegetation continuous fi elds, collection 3. 
Pixel size 500 m.

Hansen et al. 
2003

VI

GLC2000-NE Global Land Cover 2000 Northern Eurasia. Based on 
SPOT-4 VEGETATION data. Pixel size (1/112)º.

Bartalev et al. 
2003

VI

Table 2. Summary of the preprocessed ASTER, MODIS and MISR data products, and global land cover 
data sets.
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Multiangle Imaging SpectroRadiometer (MISR) is another instrument onboard Terra providing 
multispectral and -angular data (Diner et al. 1998, 2002). MISR has nine cameras: four cameras 
point in forward direction, one points towards nadir and four point in aftward direction. Th e nomi-
nal view angles of the cameras are 0º, ±26.1º, ±45.6º, ±60.0º and ±70.5º. Each of the nine cameras 
has four bands in the VNIR spectral range. MISR data are acquired at a spatial resolution of 275 m, 
but in the ‘global mode’ the original resolution is preserved only for the red bands and nadir camera, 
the other bands being averaged to 1.1 km resolution.

A range of standard MISR data products are available, ranging from the raw instrument data to 
the calibrated and geolocated radiances, and geophysical retrievals of atmospheric and surface prop-
erties (Bothwell et al. 2002). Terrain projected top-of-atmosphere radiance data and surface bidirec-
tional refl ectance factors for 29 July 2000 were used (IV).

 
4.3 Global land cover data sets

Th ree global scale land cover data sets were evaluated in Paper VI: Global Land Cover 2000 Northern 
Eurasia map (GLC2000-NE), MODIS global land cover map IGBP legend (MODIS-IGBP) and 
percentage tree cover layer of MODIS vegetation continuous fi elds product (MODIS-VCF). Th ese 
products diff er in terms of classifi cation legends, employed satellite data and mapping methodology.

Th e GLC2000 land cover database has been produced by an international partnership of over 
30 research groups, coordinated by European Commission’s Joint Research Centre (Bartholomé & 
Belward 2005). Th e database consists of 18 separately produced continental and regional scale maps, 
which have been harmonized also to a global map. Most of the maps have been produced by unsuper-
vised classifi cation, the main input data being the SPOT-4 VEGETATION data for 1999 and 2000. 
Th e data are delivered in the Lat/Lon projection and have the spatial resolution of (1/112)º, which 
corresponds to resolution of 1 km at the equator. Th e legend of GLC2000-NE map has 27 classes 
(Anon. 2003; Bartalev et al. 2003).

Th e MODIS-IGBP map at approximately 1 km resolution has been produced by Boston Uni-
versity (Friedl et al. 2002). A supervised decision tree classifi er, a global database of training sites 
interpreted from fi ne resolution images and MODIS data for the year 2001 have been used in the 
classifi cation. Th e MODIS IGBP legend has 17 classes.

Th e MODIS-VCF has been produced by University of Maryland (Hansen et al. 2003). Th e 
evaluated version of the product includes percentage tree cover, percentage non-tree vegetation and 
percentage bare layers at 500 m resolution, but only the tree cover layer was studied. Th e layers have 
been generated using global training data and phenological variables derived from monthly MODIS 
composites for November 2000 – December 2001. A regression tree algorithm has been used in 
model calibration.

 
4.4 Integration of multiresolution reference and satellite data

Several approaches were required to integrate multiresolution reference and satellite data in Papers 
I–VI. Th e selected method depended on the type of ground reference data and spatial resolution of 
the satellite data (Figure 6).

In Paper I, ASTER data at 15 and 30 m resolution were used together with plotwise fi eld meas-
urements. Th e refl ectance was averaged for 25 m buff er zones around the fi eld plots (on average nine 
VNIR pixels and two SWIR pixels). Th e averaging was used for reducing the geometric errors both 
in the GPS measurements and image rectifi cation, and to account for diff erence in the pixel size of 
VNIR and SWIR bands.
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In Paper II, ASTER refl ectance was averaged for forest stands. A large number of pixels were lo-
cated on the borders of the forest stands because the mean stand size is relatively small (II: Figure 3). 
Th erefore only the pixels located in the core areas of the forest stands (i.e. pixels not crossing the stand 
boundary) were used in calculation of average refl ectance (Kilpeläinen & Tokola 1999; Mäkelä & 
Pekkarinen 2004). Th is operation should compensate for the geometric errors in the remote sensing 
data and stand maps. Th e forest stands are too small to be integrated directly with 250 m resolution 
MODIS pixels. Th erefore, the standwise models developed in Paper II were applied to MODIS data 
(III) after intercalibration of the ASTER and MODIS red and NIR bands by linear regression (Häme 
et al. 1997; III: Figure 4). Th e procedure avoids the calibration of the mixed pixels and averaging of 
the ground reference data.

In Papers IV and V, the ground reference data (biotope inventory polygons) is comparable to Pa-
pers II and III (forest stands), but the satellite data have coarser resolution. Th erefore, the ground ref-
erence data were averaged for pixels. All the biotope inventory data were rasterized and transformed 
to the projections of the satellite data, which avoided resampling it. Th en percentage tree cover (IV, 
V), tree height (IV) and some ancillary variables (percentage shrub cover, fractional covers of water 
and mire) were calculated for the pixels.

Th e reference percentage tree cover data were derived for evaluating the MODIS-VCF data using 
the previous method (VI). However, the determination of the representative land cover labels for the 
coarse resolution pixels was more challenging. First, the biotope inventory polygons were labelled to 
match the GLC2000-NE and MODIS-IGBP classes according to the tree cover, tree height, species 
composition, shrub cover and biotope class (VI: Table 1). Th e land cover class was determined for 
coarse resolution pixels by majority rule (VI: Figure 2). First, it was tested if a pixel is land or water. 
If the majority of the pixel was land, the class in the next level was determined, and then in the third 
level, if necessary. Th e method compensates for the diff erent level of detail in the diff erent classes. 
For example, none of the forest classes necessarily cover the majority of the pixel area although the 
forest classes together might cover the majority of the pixel. If pixel was forested, the forest class was 
determined according to the fractional covers of needleleaf and broadleaf trees. Th e method also 
enables the identifi cation of complex classes, because fractional covers of diff erent classes are known. 
Th e reference forest extent from CORINE data was determined from a forest–non-forest mask by 
majority rule (V, VI).

Figure 6. Summary of the methods used for integrating multiresolution reference and satellite data in Pa-
pers I–VI. Th e fi ne resolution satellite data were averaged for fi eld plots (I) or stands (II). In Paper III, the 
models developed for stands (II) were applied to the medium resolution pixels without spatial overlay of the 
data sets. In Papers IV–VI, the attributes and land cover labels were determined for medium and coarse 
resolution pixels by averaging the standwise reference data (IV–VI) or by majority rule (V, VI).
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4.5 Model calibration and evaluation

A variety of methods were applied to examine the strengths of statistical relationships and to calibrate 
models for forest attributes. Th e principal methods were correlation analysis (I, II), linear regression 
(I), nonlinear regression (I, II), neural networks (II, IV) and generalized linear models (V). Th e in-
dependent calibration and evaluation sets were used in all the papers. Th e data sets were either split 
randomly (I, IV, V) or two separate data sets were used (II).

In Paper I, the reduced major axis (RMA) regression was used for simple linear regression between 
biomass, LAI and ASTER data (Cohen et al. 2003a). Th e more commonly used ordinary least squares 
(OLS) regression is often an inappropriate method to relate remotely sensed data and forest attributes 
(Curran & Hay 1986; Ardö 1992; Cohen et al. 2003a). OLS requires the specifi cation of independ-
ent and dependent variables, it assumes that independent variable is measured without error, and 
the estimates have attenuated variation in the direction of estimation in comparison to the observed 
values. Th e canonical correlation analysis (CCA) was used in order to apply the RMA regression in a 
multiple regression context. CCA is a multivariate procedure that maximizes the correlation between 
two sets of variables, providing a set of weights to align the spectral bands with the variation in the 
forest attribute or attributes. Th e resulted CCA scores can be used equally to more traditional SVIs in 
simple linear regression (Cohen et al. 2003a).

In Papers I and II, the nonlinear relationships were studied by data transformations and nonlin-
ear regression analysis. In Paper I, logarithmic transformations of ASTER bands and applicability of 
power law and exponential models were studied. Th e models were linearized and model parameters 
estimated using RMA regression. In Paper II, stand volume and biomass components were estimated 
using nonlinear multiple regression. Th e models using ASTER red and NIR bands were applied to 
medium resolution MODIS data (III).

Neural networks were used for modelling stand volume and biomass (II), and for estimating tree 
cover and height using multiple MISR band combinations (IV). Neural networks are general-purpose 
computing tools that can solve complex non-linear problems (Bishop 1995). Th eir major attraction 
in estimation of forest attributes using remotely sensed data is that they can be applied without mak-
ing assumptions about the data distribution (Boyd et al. 2002; Fernandes et al. 2004). Feed-forward 
multilayer neural networks were used in Papers II and IV. Th e models were trained separately for all 
target variables by investigating various network architectures having one and two hidden layers and 
variable number of hidden units. Th e networks were trained using Levenberg-Marquardt algorithm, 
and early stopping was adopted in order to avoid overfi tting of the models (Bishop 1995).

In Paper V, the generalized linear models (GLM) were used for calibrating statistical models 
between tree cover, coniferous cover, broadleaved cover and MODIS data. GLMs are an extension 
of linear regression to model non-normal data. GLMs allow a wide range of distributions for the re-
sponse variable and do not require constant variances. Th e response variable is connected to the linear 
predictor through a link function (Dobson 2002). Th e binomial GLM with logit link (logit or logistic 
regression) was used for calibrating statistical models between the response variables and MODIS 
data. Th e method has been used only rarely to estimate vegetation continuous fi elds from remotely 
sensed data (Schwarz & Zimmermann 2005). However, the method has been used for other purposes, 
for example, to burned area mapping (Koutsias & Karteris 1998) and change detection (Morisette et 
al. 1999). Logit regression is appropriate model for a binomially distributed and bounded (0–100%) 
response variable, such as tree cover (Schwarz & Zimmermann 2005). Th e explanatory variables were 
selected using backward elimination with a strict criterion for variable inclusion (Chisq, p < 0.0001). 
Both linear and quadratic terms of explanatory variables were included to the models. Th e benefi t of 
using the multiangular variables together with multispectral and -temporal variables was assessed by 
variation partitioning, which is based on a series of (partial) regression models (Borcard et al. 1992). 
Th e tree cover models were used for predicting tree cover fi elds for the northernmost Finland.
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Th e model fi t of the linear and nonlinear regression models was assessed by the coeffi  cient of 
determination (r2) and fi t of the logit regressions by percentage deviance explained (D2). Th e agree-
ment of the observed and estimated continuous variables was studied by Pearson correlation coef-
fi cient (r) (I, IV–V) or concordance correlation coeffi  cient (rc) (Cox 2006; VI). Th e accuracy of the 
estimates was assessed by the mean absolute error (MAE), root mean square error (RMSE), bias and 
their relative counterparts, MAE

r
, RMSE

r
 and bias

r
 (Hyvönen 2002; Mäkelä & Pekkarinen 2004; 

Schwarz & Zimmermann 2005). Th e stand volume and biomass estimates were also compared to the 
municipality and forestry centre level forest inventory statistics (II, III). Th e categorical variables, i.e. 
forest–non-forest maps (V) and global land cover maps (VI), were assessed using error (confusion) 
matrix and standard accuracy statistics, percentage correctly classifi ed, user’s and producer’s accuracy 
and kappa coeffi  cient (Foody 2002). In Paper VI, percentage average mutual information (percentage 
AMI) was also used for assessing the similarity of the maps (Finn 1993).

5. RESULTS AND DISCUSSION

5.1 Continuous fi eld estimation at fi ne resolution: the sensitivity of refl ectance data 
to forest attributes

Th e fi ne resolution satellite images are particularly suitable for examining the sensitivity of refl ectance 
to forest structural and biophysical attributes as it is relatively easy to integrate satellite data with fi eld 
plots (I) and forest stands (II). Th e sensitivity of satellite data can be studied also at coarser resolution 
(IV, V), but the interpretation of the statistical relationships is complicated due to the heterogeneity 
of land cover within pixels. Th e fi ne resolution data also enable the landscape scale mapping of the 
forest attributes (e.g., Heiskanen 2005) and provides calibration (III) and validation (Morisette et al. 
2006) of coarser resolution data.

Th e mountain birch forests and woodlands in northernmost Finland are characterized by low 
biomass levels and open canopies (I). Th e mean tree biomass of the fi eld data was only 8.35 t ha–1 and 
canopy closure of the densest plots around 50–60%. Th e ASTER red band showed the strongest cor-
relation with biomass (r –0.83) and LAI (r –0.85). Also the NIR band showed a strong positive and 
the SWIR band 4 a strong negative correlation with the attributes (I: Table 5, Figure 3). Th e strong 
correlation with the red band and the direct relationship of forest attributes and NIR data are typical 
for mountain birch (Dahlberg 2001) and other broadleaved forests (Häme et al. 1997; Eklundh et 
al. 2003). Th e plant pigments in the green leaves absorb radiation eff ectively in the red spectral range 
and the canopy refl ectance is inversely related to the quantity of the pigments. In NIR range, the leaf 
refl ectance of broadleaf trees is high and the canopy refl ectance increases with increasing leaf area. In 
SWIR range, the refl ectance decreases with increasing leaf area as the absorption of water increases 
(Gates et al. 1965; Tucker & Sellers 1986). Th e logarithmic transformations improved the linear cor-
relations in most bands. Simple Ratio (SR) and NDVI were SVIs having the strongest relationships 
with biomass and LAI. Th e linear model was the best for SR and the exponential model for NDVI. 
Th e results agree with the other comparisons of SVIs in broadleaved forests (Häme et al. 1997; Dahl-
berg 2001; Eklundh et al. 2003) and low and medium LAI values (Broge & Leblanc 2000). However, 
the SVIs using also SWIR band have been often better than SR and NDVI in the coniferous stands 
(Nemani et al. 1993; Brown et al. 2000; Stenberg et al. 2004).

Th e mountain birch biomass and LAI were predicted most accurately by CCA scores (I: Figure 
5). Th e logarithmic transformations of the bands were used as they improved the linear relationships. 
CCA is comparable to the multiple regression analysis (Cohen et al. 2003a), which usually off ers 
substantial improvement over simple regressions (Fassnacht et al. 1997; Dahlberg 2001; Eklundh et 
al. 2003). CCA scores explained 84% and 85% of the variability in biomass and LAI, respectively. 
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Th e lowest RMSE was 3.45 t ha–1 (41.0%) for biomass and 0.28 m2 m–2 (37.0%) for LAI. Th e mod-
els were applied by Heiskanen (2005) to map biomass and LAI at a landscape scale, and to derive 
biomass and LAI statistics for mountain birch biotopes. Th e results were reasonable in comparison to 
biomass and LAI estimates in the literature. However, the advantage of the remotely sensed estimates 
is that summary statistics for diff erent mountain birch biotopes are based on a relatively large number 
of stands in comparison to the fi eld studies (Heiskanen 2005; Tømmervik et al. 2005).

Th e biomass levels in Paper II were much higher than in Paper I (mean tree biomass > 100 t ha–1). 
Th e dominant tree species were also coniferous. Th e correlations between stand averaged ASTER 
refl ectance and forest attributes were statistically signifi cant although not particularly strong (II: Table 
3). Th e green band had the strongest correlation with stand volume and most biomass components 
(r between –0.67 and –0.69). Th e NIR band had the strongest correlation with stand age (r –0.40) 
and biomass of understory vegetation (r –0.36). Th e band 4 was the SWIR band showing the highest 
correlations. In the coniferous forests, green and SWIR refl ectance have typically had the strongest 
correlations with stand volume (Ardö 1992; Hyvönen 2002) and LAI (Fassnacht et al. 1997). Th e 
correlation of the stand age with NIR data have been also reported (Hyvönen 2002). All the rela-
tionships were inverse, which is typical for coniferous stands (Ardö 1992; Nilson & Peterson 1994; 
Häme et al. 1997; Hyvönen 2002; Eklundh et al. 2003). In contrast to the broadleaved stands, the 
refl ectance of coniferous stands is reduced in the NIR range, because of the pronounced within-shoot 
scattering (Rautiainen & Stenberg 2005). Th e results also show that it does not make a signifi cant 
diff erence if biomass conversion for stand volume is done before or after the model calibration.

In Paper II, red and NIR refl ectance predicted the forest attributes more accurately than any other 
single band or band combination (II: Table 5). Th e fi ts of non-linear regression models were the best 
for stand volume, biomass components of trees and total biomass of all forest vegetation with only 
minor diff erences (r2 between 0.54 and 0.59). Th e model fi ts were worse for stand age and biomass 
of understory vegetation. When the regression models were applied to the validation data, RMSE

r 

varied mostly between 24.6% and 53.7%. Low biomass levels were overestimated and high biomass 
levels underestimated. Th e biases were signifi cant for almost all the attributes. Th e neural networks 
produced slightly better model fi ts and lower biases but the diff erences were not statistically signifi -
cant (II: Table 6, Figure 5).

Th e model fi ts in Paper I are comparable or better than in most of the similar studies in broad-
leaved or coniferous forests (Ardö 1992; Häme et al. 1997; Dahlberg 2001; Chen et al. 2002; Ek-
lundh et al. 2003; II). In Paper II, the estimation error of stand volume is also lower than in many 
previous studies in boreal coniferous and mixed forests (II: Table 7). Th e typical broadleaved stands 
in the boreal and temperate zone consist of multiple tree species, which weakens the relationships 
(Eklundh et al. 2003). Th erefore, the relatively strong relationships observed in mountain birch for-
ests are partly explained by the single tree species. In the mountain birch forests LAI is also relatively 
low and refl ectance is not saturated as severely as in the higher biomass forests. However, in the open 
mountain birch stands the undergrowth vegetation has a strong eff ect to the refl ectance. Th e under-
growth vegetation is the most luxuriant in the forest type having the highest overstory LAI. On the 
other hand, the undergrowth is scarce in the sparsest mountain birch biotopes. Th erefore, the cor-
relation of the undergrowth and overstory LAI can partly explain the strong relationships. Th e eff ect 
of undergrowth vegetation could also explain why SVIs using the SWIR band could not improve the 
models in comparison to SR and NDVI. Th e forest refl ectance simulations could clarify the role of 
undergrowth vegetation in the refl ectance of mountain birch stands (Kuusk et al. 2004; Rautiainen 
et al. 2007).
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5.2 Continuous fi eld estimation at medium and coarse resolution: biomass 
estimates for a large area and assessment of optical information sources

In Paper III, the non-linear regression models developed for biomass and stand volume (II) were ap-
plied to medium resolution MODIS data (red and NIR bands at 250 m resolution). Th e estimation 
was limited to the forests on mineral soils by using forest mask derived from the CORINE data. Th e 
validation of biomass estimates is often limited by the lack of appropriate reference data (Lu 2006). 
Because the estimation accuracy of the stand volume was approximately the same as that of biomass, 
the stand volume estimates were compared to the Forestry Centre level estimates provided by the 
Finnish NFI (III: Table 2, Figures 5a & 6). Th e diff erences in Forestry Centre level stand volumes 
varied between –16.0 and 10.6 m3 ha–1 (–12.7% and 8.0%). Th e estimation error for the whole of 
southern Finland was –4.0 m3 ha–1 (–3.6%). Furthermore, the biomass estimates for southern Fin-
land were rather close to the biomass estimates based on NFI data (Liski et al. 2006; III: Table 3).

Paper III demonstrates that models based on standwise forest inventory and fi ne resolution AS-
TER data can be applied to the medium resolution MODIS data. Th e accuracy of large area estimates 
is relatively good if the small amount of calibration data is considered. However, the per-pixel ac-
curacy of the estimates might be poor. Th e fi ne resolution satellite data have been used commonly as 
an intermediate step in linking the reference data with medium and coarse resolution data (Iverson 
et al. 1989; Tomppo et al. 2002). However, the models have been typically calibrated separately be-
tween the reference and fi ne resolution data, and between fi ne resolution maps and coarser resolution 
data. Th erefore, the advantage of the method used in Paper III is that regression models need to be 
calibrated only once. Th is could also reduce the co-registration errors between the reference and satel-
lite data (discussed in 5.4). Th e models based on forest stands also correspond better to the scale of 
medium resolution pixels than models based on fi eld plots and fi ne resolution data.

Paper IV examined the potential of multiangular information for tree cover and tree height esti-
mation in Northernmost Finland using single-orbit MISR data. Th e MISR BRF had a strong depend-
ence on view zenith angle (IV: Figures 5 & 6), although the view azimuth angle did not correspond 
exactly to the principal plane (IV: Figure 3). Th e directional refl ectance of forest stands is typically 
characterised by strong refl ectance in the backscatter direction with a peak in the hot spot. Th e di-
rectional dependency of refl ectance is usually weaker in the forward scatter direction and refl ectance 
reduces quickly as view azimuth angle diverges from the principal plane (Kleman 1987; Russell et al. 
1997; Deering et al. 1999). Th e atmospheric correction has a major eff ect on the directional refl ect-
ance because of the path radiance and directional scattering of the atmosphere, particularly in the 
shortest wavelengths and largest view angles (Deering & Eck 1987; Barnsley et al. 1997).

In Paper IV, the most accurate tree cover and height estimates were produced by neural networks 
when using all the spectral-angular bands as input data. Th e multiangular data produced more ac-
curate estimates than the equivalent nadir-view bands (IV: Tables 2 & 3, Figures 7 & 8). Th e smallest 
RMSEs were 6.5% and 2.0 m for tree cover and tree height at 275 m resolution (RMSE

r
 56.1% and 

37.6%), and 4.1% and 1.3 m at 1.1 km resolution (36.9% and 25.4%). Th e relative estimation errors 
were considerably larger when coniferous and broadleaved tree cover were estimated separately, which 
is typical in species-wise estimation of forest attributes (Tokola & Heikkilä 1997; Hyvönen 2002; 
Mäkelä & Pekkarinen 2004). Th e tree cover and broadleaved tree cover were estimated most accu-
rately by the multiangular red bands and coniferous tree cover by the NIR bands. Th e green bands 
were the best in the tree height estimation, but the diff erence to the red and NIR bands was small. 
Th e largest estimation errors occurred in the mires and low shrublands, but the multiangular bands 
reduced the overestimation in these sparsely wooded regions (IV: Figures 13–16).

Th e assessment of optical information sources was continued in Paper V, which examined the 
feasibility MODIS data at 1 km resolution for tree cover mapping. According to the results, the mul-
titemporal and -angular variables increase the accuracy of tree cover estimates and forest–non-forest 
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mapping in comparison to the peak of the growing season nadir-view multispectral data (V: Tables 4 
& 8). Th e tree cover estimates and forest–non-forest maps were the most accurate when produced by 
the multitemporal and -angular explanatory variables together. Th e smallest RMSE of the tree cover 
estimates was 4.6% (RMSE

r
 42.2%). Although the pure eff ect of the multiangular variables was small 

in the models (V: Figure 4), the improvement was substantial in the low tree covers and mires in com-
parison to the peak of the growing season nadir-view data and multitemporal variables (V: Figures 6 
& 8). Th e season of the data acquisition also aff ected the model fi t and accuracy, the late-spring and 
early-summer data being superior to mid- and late-summer data (V: Tables 4 & 7).

Th e per-pixel accuracy has been assessed only rarely for forest attributes at medium and coarse 
resolution (Hansen et al. 2002). However, the estimation accuracies in Papers IV and V seem to be 
comparable with other regional scale studies (e.g., Schwarz & Zimmerman 2005). Th e results clearly 
demonstrate how optical satellite data typically overestimates forest attributes in open forests and 
non-forested areas. Th is occurs because the refl ectance of undergrowth and other non-tree vegetation 
resembles to some extent the refl ectance of trees. Typically the refl ectance also saturates in the dense 
forests, which causes underestimation of forest attributes (DeFries et al. 2000b).

Th e potential of the angular information to improve the discrimination of land cover classes and 
estimation accuracy of continuous fi elds have been indicated by several studies in a multitude of en-
vironments (Abuelgasim et al. 1996; Barnsley et al. 1997; Bicheron et al. 1997; Sandmeier & Deering 
1999a, 1999b; Grant 2000; Lovell & Graetz 2002; Zhang et al. 2002; Braswell et al. 2003; Brown 
de Colstoun & Walthall 2006; Armston et al. 2007; Su et al. 2007). Papers IV and V support the 
conclusions of the earlier studies, which have stated that multiangular data have increased sensitivity 
to the vegetation structure, it has reduced sensitivity to the variability of undergrowth vegetation, and 
that use of it can reduce the confusion of the structurally diff erent but spectrally similar land cover 
types, such as mires and forests (Barnsley et al. 1997; Sandmeier & Deering 1999a; Gemmel 2000). 
Although the potential of multiangular data has been demonstrated, the use of such data remains rare 
in land cover mapping. In Paper IV, MISR data was used for examining the potential of multiangular 
data for tree cover and height estimation, but MISR images are not suitable for large scale land cover 
mapping without atmospheric correction and use of an appropriate BRDF model. MODIS BRDF 
model parameters product used in Paper V provides data that is more readily applicable to land cover 
mapping, either in the form of model parameters or multiangular indices.

Th e advantage of using multitemporal information has been demonstrated at a variety of scales 
and spatial resolutions (Wolter et al. 1995; Toivonen & Luoto 2003; Hansen et al. 2005). Hansen et 
al. (2005) compared the single-date images, monthly composites and phenological metrics for tree 
cover mapping and demonstrated that the advantages of the data sets depend on the extent of the 
study area. Single-date images were superior at local and regional scales and image composites and 
temporal metrics at continental and global scales. Th e eff ect of seasonality on the estimation accuracy 
has been studied only occasionally. Chen & Cihlar (1996) found that late spring Landsat TM images 
were superior to summer images for determining overstory LAI for boreal coniferous stands. Ranson 
et al. (2004a) found that tundra–taiga boundary was sharply distinguished by the maximum red band 
refl ectance in the spring time. At coarse spatial resolution, the interpretation of the phenological ef-
fects is complicated by the land cover heterogeneity within pixels. However, early-summer seems to 
be the most appropriate time for estimating broadleaved cover in northernmost Finland, because the 
mires are wet, and mire, heath and undergrowth vegetation are not yet fully developed, but birch 
leaves are almost full-sized. Furthermore, the contrast between the dark coniferous forests and other 
land cover types seems to be the best in the mid- and late-summer, when mires are drier, birch leaves 
are full-sized and mire and heath vegetation is most luxuriant.
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5.3 Perspectives from the global scale land cover data

Th e evaluation of the global scale land cover data sets in northernmost Finland (VI) gives perspective 
on the current limitations of the coarse resolution land cover mapping in the tundra–taiga transition 
zone. Th e evaluation also demonstrates the diff erences of the categorical and continuous land cover 
data and provides a global scale reference for the regionally calibrated tree cover estimates (IV, V) and 
forest–non-forest maps (V).

According to the results, the categorical land cover depictions (GLC2000-NE, MODIS-IGBP) 
are inaccurate over northernmost Finland if assessed in the most detailed level of the classifi cation leg-
end (VI: Figures 3–5, Table 4). Th e maps have diffi  culties in classifying evergreen needleleaf and de-
ciduous broadleaved (mountain birch) forests according to the class descriptions (VI: Table 1). Wet-
lands (mires) are also either lacking from the maps or misclassifi ed. Th e results support the conclusion 
of Cohen et al. (2006), who state that MODIS-IGBP map is based more on colloquialism than strict 
class defi nitions. Th erefore, the accuracy is poor if quantitative class defi nitions are strictly followed in 
the map assessment. Naturally, inaccuracies in the classifi cations appear very evident over vegetation 
transitions, where the class boundaries should follow the exact tree cover and height thresholds. Th e 
MODIS-VCF tree cover estimates are inaccurate in comparison to the regionally calibrated models 
in Papers IV and V (VI: Table 5, Figure 7). Similarly to the regional scale models, MODIS-VCF 
overestimates low tree cover values and underestimates large values (VI: Figure 8), which is in line 
with previous assessments (Schwarz & Zimmerman 2005; White et al. 2005). However, although 
the accuracy of the maps is low when strict class defi nitions are followed, the land cover data sets can 
depict the CORINE forest–non-forest boundary (tree cover threshold 15%) rather accurately (VI: 
Table 6). Th e most accurate forest–non-forest masks have only slightly lower accuracy than regionally 
calibrated masks at 1 km resolution (V).

Th ere are many factors, which could explain the low accuracy of the global land cover data sets. 
Th e diffi  culty of mapping open forests, shrublands and wetlands has been considered as a major 
reason for the disagreement of global land cover data sets (Latifovic et al. 2004; Giri et al. 2005). 
Th e reasons for tree cover over- and underestimation in MODIS-VCF are likely to be the same as 
in the regional scale studies (IV, V), i.e. the eff ect of undergrowth vegetation, the spectral confusion 
of forest and non-forest vegetation and the saturation of refl ectance. Th e GLC2000-NE map is also 
based on the unsupervised classifi cation and it is unlikely that clusters would correspond exactly to 
the specifi c tree cover and height thresholds. On the other hand, the accuracy of the MODIS-IGBP 
and MODIS-VCF products based on supervised methods is dependent on the quality of the training 
data. Th ere is only a small amount of training data from the regions comparable to the study area and 
from wetlands, which show huge variability at global scale (Anon. 2006).

Th e defi nition of classifi cation legend is a very important part of the categorical land cover char-
acterization (DiGregorio 2005). Th e smaller the map extent, the more regional emphasis can be 
given in the legend. On the other hand, the global legend has to work everywhere on Earth and it is 
inevitably a compromise when evaluated in a regional context. Th is diff erence is evident when the 
legends of GLC2000-NE and MODIS-IGBP are compared. Th e class names and class descriptions 
of GLC2000-NE are familiar to the region and regionally important classes related to tundra and 
wetlands have been taken into account. However, the GLC2000 map can not be considered as a 
true global land cover classifi cation because it has been combined from several separately classifi ed 
regional/continental scale maps (Hansen et al. 2005). Th erefore, the land cover map is not consist-
ent in the global scale, not even in the circumpolar scale, which is a major weakness of the data set. 
A well-defi ned legend is also a prerequisite for the successful accuracy assessment, as overlapping, 
incomplete and vaguely defi ned classes complicate the determination of the reference class (Cohen et 
al. 2003b). A novel tool for the legend defi nition is described in DiGregorio (2005).
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Th e potential of continuous fi eld products to provide improved land cover characterization over 
classifi cation has been noted by several authors (DeFries et al. 1995b; Fernandes et al. 2004; Hansen 
& DeFries 2004; Lambin & Linderman 2006). In principle, the continuous fi eld estimation could 
provide improved methods for unbiased land cover characterization over large areas by using coarse 
resolution data, and for depicting the spatial gradients and temporal changes. Th ese improvements 
would be important in the regions where land cover is heterogeneous and composed of spatial gra-
dients, like in the tundra–taiga transition zone. Th e fl exibility of the continuous fi eld databases (De-
Fries et al. 1995b; Cohen et al. 2001) would also enable the depiction of the forest extent by variable 
criteria (V: Figure 7). Th e categorical and continuous land cover characterizations have been usually 
evaluated separately. For example, MODIS-VCF has been excluded from the recent studies on the 
agreement of the global land cover products (Latifovic et al. 2004; Giri et al. 2005; McCallum et al. 
2006; Waser & Schwarz 2006) although the forest extent is key information, which can be derived 
from both types of maps. Th e one disadvantage of the continuous fi eld estimation is the need for 
quantitative calibration data, which have limited availability and are more expensive to collect than 
qualitative training data for classifi cation (Kasischke et al. 2004). However, in some regions, such 
data exists in the forest inventory databases and that data could be used more effi  ciently (II, IV, 
V). Another disadvantage is the need to produce separate data layers for all the required land cover 
characteristics (Kasischke et al. 2004). Furthermore, all the land cover characteristics are not easily 
translated into quantitative variables to be inferred from satellite data (Cihlar 2000). Wetlands and 
mires are a good example of such land cover type.

5.4 Factors aff ecting the estimation accuracy and sources of uncertainty

Th e estimation of forest attributes such as biomass and tree cover from remotely sensed data is a 
complex procedure in which many factors interactively aff ect the estimation accuracy (e.g., Lu 2006). 
In addition to the sensitivity of the optical remote sensing data to forest attributes, the other factors 
include, among others, the spatial resolution, the correspondence of the reference and satellite data, 
data quality, and the selection of estimation and evaluation methods. Understanding and identify-
ing the sources of uncertainty in the models is indispensable for improving estimates of the forest 
attributes and land cover characterizations.

Th e spatial resolution of the satellite data has a major eff ect on the estimation accuracy, the esti-
mation errors typically decreasing with coarser pixel size (Hagen et al. 2002; Hansen et al. 2003; IV). 
Th is is partly explained by the reduced variation in data when it is averaged to the lower resolution. 
However, the spatial averaging reduces also the adjacency eff ects and improves the spatial correspond-
ence between the reference and satellite data (Townshend et al. 2000; Huang et al. 2002; Tan et al. 
2006). Similarly, if forest attributes are estimated for stands, the estimation errors are typically the 
largest for the smallest stands (Hyyppä et al. 2000; Hyyppä & Hyyppä 2001; Mäkelä & Pekkarinen 
2004; II: Figure 8). Th e estimates also improve as the extent of inventoried area is increased (Tokola 
& Heikkilä 1997; III).

When relating ground reference data to remotely sensed data, it is important that reference data 
represent a similar area to the pixel of the image (Wulder 1998). Th e area represented by plotwise fi eld 
data corresponds roughly to the pixel size of fi ne resolution images, such as Landsat TM and ASTER. 
Th erefore the models are applicable to the fi ne resolution images and resulting maps provide neces-
sary upscaling for calibration and evaluation of coarse resolution models (Iverson et al. 1989; Tomppo 
et al. 2002; Cohen et al. 2003b, Morisette et al. 2006). However, the pixels do not correspond to any 
meaningful unit in the fi eld. Also the precise co-registration of the fi eld and satellite data can be dif-
fi cult (Halme & Tomppo 2001). Th e advantage of the standwise data is that map objects correspond 
to ‘homogeneous’ units (forest stands) avoiding the mixed pixels. However, the regression models are 
not directly applicable to the fi ne resolution pixels, but the image should be fi rst segmented to stands 
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of similar size (Pekkarinen 2004). In Paper III, the models were applied to the satellite data having 
approximately the same pixel size with the stands. If inventory polygons are plenty and have relatively 
small size in relation to the pixel resolution, the continuous attributes can be averaged within pixels 
(IV, V).

Th e uncertainty in co-registration of fi eld and satellite data is another source of unexplained varia-
tion. Although the georegistration accuracy of the preprocessed ASTER product was not suffi  cient for 
relating fi eld plots directly with pixels, the fi ne spatial resolution VNIR bands enabled the accurate 
geometric correction (I, II). Th e eff ect of co-registration errors was also reduced by using buff er zones 
in the retrieval of refl ectance values for the fi eld plots (I). Th e stand level fi eld data is also assumed 
to be less sensitive to the co-registration errors than plot-level data (Kilpeläinen & Tokola 1999; 
Hyvönen 2002; Mäkelä & Pekkarinen 2004; II). In the medium and coarse resolution studies the co-
registration errors are likely to be smaller (Hagen et al. 2002; IV–VI). Th e mean georegistration error 
of MISR data is below 60 m (standard deviations ranging from 100 to 300 m) and the co-registration 
of most of the cameras is within one pixel (Diner et al. 2002; Jovanovic et al. 2002). Th e MODIS 
data have also sub-pixel georegistration accuracy (Wolfe et al. 2002). Th e mismatch between grid cells 
and observations create gridding artifacts to the MODIS data used in Papers III and V (Wolfe et al. 
1998; Tan et al. 2006). Th ose have implications for the algorithm calibration and validation at the 
pixel level, because the average overlap between observations and grid cells is less than 30% (Tan et al. 
2006). One way to improve the correspondence would be to aggregate data to coarser resolution. An 
advantage of the method used in Paper III is that it does not require spatial overlay of the reference 
and MODIS data, which minimizes the eff ects of georegistration errors and gridding artifacts.

Th e inaccuracies in calibration and validation data can also reduce model fi t and bias accuracy 
statistics. Th e errors in the fi eld measurements and allometric models create uncertainty to the bio-
mass and LAI models in Paper I. Th e accuracy of the standwise reference data in Papers II and III is 
determined by the errors in standwise inventory and in biomass conversions. Th e standard error of 
standwise inventory is typically around 20–30% (Poso 1983; Koivuniemi & Korhonen 2006). Th e 
errors of the biotope inventory data (IV–VI) have also been estimated to be within the typical error 
of the standwise inventory (Kunnari 2000). Th e averaging of the biotope inventory data to the reso-
lution of MISR and MODIS is likely to increase its accuracy (IV, V). Th e geometric and thematic 
accuracy of the Finnish CORINE Land Cover 2000 data is reported by Törmä (2005). Some disa-
greements between the forest–non-forest maps (V: Figure 10) could be due to the classifi cation errors 
in the CORINE data. However, the thematic aggregation of the map to the forest–non-forest level 
and upscaling of it to 1 km resolution is likely to improve the accuracy (V, VI).

Another source of uncertainty is data quality. Th e topographic normalization can produce ar-
tifacts to the image data because of the mismatch in DEM and image resolution (Gu & Gillespie 
1998). Th e topographic correction of ASTER data is unlikely to aff ect the results of Paper I, because 
the fi eld plots were not located on steep slopes. However, the artifacts of topographic normalization 
could be important when images are used for mapping biomass and LAI fi elds (Heiskanen 2005). 
Th e medium and coarse resolution temporal composites contain typically more artifacts than single 
images. Th erefore, it can be preferable to use single images in local and regional scale studies (Hansen 
et al. 2005). Th e noise is also emphasized when multitemporal and multiangular variables are derived 
(V). Th e artifacts can originate from the gridding and compositing of the satellite data (Tan et al. 
2006), from the inaccurate surface refl ectance retrieval (atmospheric correction) or from the integra-
tion of several data sets at multiple resolutions (IV). Th e missing data, sub-pixel snow patches and 
phenological variability can also create noise. Also the topography can aff ect the multiangular data 
(Schaaf et al. 1994; V). Sometimes averaging seems to provide a possible means for noise reduction 
(III, V). Th e high temporal repeatability is a major advantage of the medium and coarse resolution 
data, but this advantage is diminished by temporal averaging. In paper V, the noisiness of the MODIS 
BRDF/Albedo data might reduce somewhat the explanatory power of multiangular variables (V: 
Figure 4). Th e future MODIS products having higher spatial resolution and combining MODIS 
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and MISR data should provide better data quality, because the number of cloud free observations is 
increased (Roy et al. 2006).

Several statistical methods have been used for estimating the continuous fi elds of land over and 
forest attributes (e.g., Fernandes et al. 2004). Several methods were also employed in this thesis. Th e 
linear regression models are simple to fi t and apply. RMA regression is better suited for remote sens-
ing data than ordinary least squares method and CCA enables the use of RMA comparably to the 
multiple regression analysis (Cohen et al. 2003a; I). Th e transformations of the explanatory variables 
and non-linear regression models can be used for modelling the non-linear relationships when the 
data amount is little and/or the statistical relationships are relatively simple, for example, the analy-
sis is restricted to one land cover or forest type (I, II). Th e non-parametric neural networks are an 
appropriate method when data are readily available, the assumptions of the regression analysis are 
diffi  cult to meet and statistical relationships are complex, for example, due to the heterogeneity of 
land cover (IV). However, the neural networks can be time consuming to fi t and diffi  cult to apply 
to satellite data. In Paper II, the regression models and neural networks performed very similarly (II: 
Figure 5), which is equal to results of Hyyppä et al. (2000). GLMs are also suitable for modelling 
complex relationships. Th e logit regression models are easy to fi t and models produce values only in 
a realistic range (Schwarz & Zimmerman 2005). Th e models are also easy to apply for predictions in 
GIS (V). Variation partitioning provides a method for studying the relative explanatory power of dif-
ferent explanatory variable groups (V). However, when studying the explanatory power of the optical 
domains, it can be diffi  cult to separate spectral, temporal and angular information as domains are not 
independent but overlap (Asner et al. 2003).

Th e problem of the empirical (statistical) models is that they are site and sensor specifi c. Th ere-
fore, the statistical models of forest attributes are only rarely applicable outside the area of calibration 
(Foody et al. 2003). Many physical refl ectance models have been developed (e.g., Verhoef 1984; Li 
& Strahler 1985; Kuusk & Nilson 2000) and can be used for simulating the eff ect of diff erent stand 
characteristics on canopy refl ectance, and for inverse modelling to estimate canopy characteristics 
by numerical inversion techniques (Asner et al. 2003; Nilson et al. 2003). Th e promise of the forest 
refl ectance models is that they could provide an interface between forestry databases and satellite data 
(Nilson et al. 2003). However, so far the use of more physically based approaches has been limited 
mainly to the derivation of biophysical variables at global scale (e.g., Myneni et al. 2002).

Th e greatest source of uncertainty in the evaluation of coarse resolution land cover data sets is 
related to the determination of reference classifi cations (VI). To reduce the subjectivity of the as-
sessment, it is important to defi ne classes quantitatively and have quantitative reference data, which 
enable the classifi cation of the reference data according to the class descriptions (Cohen et al. 2003b, 
2006). Th e fl exibility of the quantitative reference data also allows the evaluation of several land cover 
maps by using the same data. Th e map legends are also resolution dependent. Th erefore it is not nec-
essarily feasible to classify fi ne resolution data (e.g., Landsat ETM+ data, 30 m resolution) by using 
a legend designed for coarse resolution mapping. Th e biotope inventory polygons provided a good 
compromise, because relatively large polygons can be classifi ed by using the coarse resolution legend. 
Th e fi ne resolution land cover maps with fi xed legends are more conventional evaluation data. Some-
times the maps are made particularly for the validation purposes, but very often the existing land 
cover data sets are used (e.g., Waser & Schwarz 2006). If legends are inconsistent, the comparison is 
diffi  cult. Th e maps might agree too well, which is particularly true if both maps are based more on 
colloquialism than quantitative data. Another problem of the remotely sensed reference data is that it 
might repeat some of the errors in the lower resolution map leading to false agreement. Th e Finnish 
CORINE Land Cover 2000 map has been derived using continuous forest attributes (CLC2000-Fin-
land 2005), which reduces the subjectivity of the classifi cation. Furthermore, the data combination 
with the existing GIS data enabled the accurate mapping of the mires (CLC2000-Finland 2005). 
Th erefore CORINE data provided good reference data for evaluating the forest–non-forest depiction 
using a regionally meaningful tree cover threshold (V, VI). However, it is important to note that for-
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est–non-forest map, which is based on the fi ne resolution land cover map and majority rule, does not 
correspond perfectly to map which has been derived from the coarse resolution tree cover estimates 
by applying a threshold value (V).

6. CONCLUSIONS AND FURTHER STUDIES

Th is thesis examined the application of optical remote sensing for estimating forest attributes in the 
boreal forests and tundra–taiga transition zone. More specifi cally, this thesis focused on investigating 
the feasibility new satellite data at multiple spatial resolutions, assessing the multispectral, -angular 
and -temporal information, and providing regional evaluation for the global scale land cover data 
sets. Th e study areas were located in the tundra–taiga transition zone in northernmost Finland and in 
boreal forests of southern Finland. Th e main conclusions of the thesis are:

1) Th e statistical relationships between biomass, LAI and fi ne resolution ASTER data are strong 
in the single species and low biomass mountain birch biotopes in comparison to higher 
biomass coniferous stands. Th e regression models developed for mountain birch are applicable 
for estimating the biomass and LAI at local and landscape scales. However, the factors aff ecting 
the refl ectance of mountain birch stands, particularly the eff ect of the undergrowth vegetation, 
should be examined more carefully by a physical forest refl ectance model.

2) Th e combination of standwise forest inventory and fi ne resolution ASTER data provide a novel 
method for integrating the ground reference data with medium resolution MODIS data. Th e 
stand level models are less sensitive to mixed pixels and co-registration problems than the pixel 
level models. Th e demonstrated approach provides a method for cost-eff ective biomass estimation 
over large areas when more accurate national or large scale forest inventories do not exist or 
independent verifi cation data are needed. However, the applicability of the current method is 
somewhat limited by the need for a forest mask and further studies should quantify the role of 
forest mask in the estimation and should consider also peatlands.

3) Th e multiangular satellite data show potential for improving the accuracy of land cover 
characterization in the tundra–taiga transition zone. In northernmost Finland, the use of 
multiangular data reduced the overestimation of tree cover and tree height in the open mires and 
low shrublands. Th e use of BRDF model parameters and multiangular indices are one way to 
use multiangular data for large scale land cover mapping. Further studies should consider using 
more physically based models for better utilization of multiangular observations. Th e fi ner spatial 
resolution of the forthcoming data products and coupling of observations from several sensors, 
for example from MODIS and MISR, will provide improved data for land cover mapping in the 
near future. Furthermore, as global land cover data sets are usually based on the spectral-temporal 
information, the use of multiangular data could increase the accuracy of the global scale mapping 
in the tundra–taiga transition zone.

4) Th e multitemporal nadir-view data can improve tree cover estimates in comparison to the 
peak of the growing season data. Th e coarse resolution data also suggests that the peak of the 
growing season is not necessarily the optimal time to acquire image data for land cover mapping 
purposes in northernmost Finland. Although the availability of multitemporal fi ne resolution 
data is limited in the northern latitudes, the medium and coarse resolution data are more readily 
available. However, to better understand how the time of growing season aff ects to the estimation 
accuracy, the observations should be validated by using fi ner resolution data, which can be related 
more precisely with fi eld observations.
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5) Th e global land cover data sets have considerable shortcomings in northernmost Finland and 
should be used with caution in tundra–taiga transition zone. Th e accuracy of the land cover 
maps is diffi  cult to evaluate in the most detailed level of classifi cation, but the accuracy seems 
to be low in the studied area. Also the global tree cover estimates are biased and inaccurate in 
comparison to the regionally calibrated estimates. However, if data sets are aggregated to the 
forest–non-forest level, the agreement with reference data is rather good. Th e spatial resolution 
of the data sets is not too coarse for general land cover characterization at circumpolar scale, but 
the improvement of the spatial resolution could enhance the accuracy. Th e land cover product 
calibrated only for the northern boreal forests and tundra, and based on quantitative reference 
data from the region could have an improved accuracy in comparison to global scale data set. 
Although this thesis focused on passive optical remote sensing, the use of other remote sensing 
techniques, such as spaceborne lidar (Ranson 2004b), could provide major improvements to the 
land cover mapping in tundra–taiga transition zone.

6) Th e land cover classifi cation and the continuous fi eld estimation do not need to be considered as 
two separate branches of land cover characterization. Th e mapping of the tundra–taiga transition 
zone as continuous fi elds is tempting because it is composed of the gradients of forest attributes, 
such as tree cover and height, particularly at coarser spatial resolutions. Th ere is also potential for 
the wider use of continuous fi elds in support of classifi cation. For example, the depiction of the 
forest classes and extent should be based on the continuous tree cover and tree height fi elds. Th e 
estimation demands quantitative calibration data but can improve the quantitative content of the 
classes and reduce the subjectivity of the classifi cation.

7) Th e sensors and preprocessed data sets studied in this thesis have potential for wider use in 
the remote sensing of land cover and forests. Th e possible discontinuity of the Landsat program 
has turned the attention towards other sensors providing data for similar applications. ASTER 
images have been used only rarely to study land cover and forests. Th e extensive use of ASTER is 
hindered by the relatively small image extent and non-systematic data collection. However, the 
good spatial resolution of the VNIR bands and spectral correspondence to the other sensors make 
it a potential data source for fi ne resolution studies. ASTER SWIR data had only little explanatory 
power in the estimation of the forest attributes. Th e medium resolution data, such as MODIS red 
and NIR bands at 250 m resolution, bridge the cap between the fi ne and coarse resolution data. 
MISR has been used only rarely for land cover mapping, but it provides multiangular data in the 
red spectral band at approximately the same resolution. Th e preprocessed ASTER, MISR and 
MODIS data products were principal data in this thesis. All the data were available for free in the 
Internet. Although some image processing was needed to improve the geometric and radiometric 
properties of the data, these data products (e.g., surface refl ectance data) have potential to reduce 
considerably the time and eff ort consumed to the preprocessing of satellite data.

8) Th e calibration and evaluation of land cover depictions require quantitative reference data and 
methods for upscaling the reference data to the resolution of satellite data. As quantitative 
data is expensive and time consuming to collect, the more eff ective use of existing digital 
databases should be encouraged. Th e standwise forest inventory and biotope inventory databases 
provided quantitative reference data that were already upscaled to match the medium and coarse 
resolution pixels. Th e continuously recorded forest attributes in the biotope inventory database 
were necessary to reveal that global land cover maps have poor correspondence with quantitative 
class descriptions. Th e users who hold accurate regional data sets can have an important role in 
the independent evaluation of land cover data sets and hence in the improvement of the future 
products. However, to facilitate the independent evaluation of the land cover maps, the data 
providers should also reduce the ambiguity of the class descriptions.
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Paper II 1) Th e equations for calculating bias and bias
r
 should be corrected as follows:

where  is the modeled value,  is the observed value,  is the mean of the 
observed values and n is the number of the observations. Th e results were calcu-
lated correctly. Th erefore, the negative biases correspond to the underestimation 
and positive biases to the overestimation of observed values.

2) Tokola & Heikkilä (1997) is cited incorrectly in Table 7. Instead of 82.0%, the 
relative standard error of stand volume was 70.3% for fi eld plots and 37.4% for 
simulated areas size of 1 ha.

Paper III Relative RMSE for district-level mean stand volume given in the abstract should be 
7.6% (III: Table 2), not 9.9%.

(6)

(7)

ERRATA

Th e author regrets the following errata in Papers II and III:
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