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1. Introduction

The rare-gases were discovered at the end of 19th century and were long considered inert due

to their stable closed-shell electronic structure. It was not until 1933 that the generality of this

convenient octet rule was questioned by Pauling.[1] It was suggested that the octet rule fails at

least for the heavier rare-gas atoms such as xenon. There, the nuclear attraction experienced

by  the  outer  electrons  is  weakened  by  the  large  distance  from the  nucleus  and  the  shielding

effect of the inner electrons. The loosely bound valence electrons could hence participate in

bonding with highly electronegative species such as fluorine. Finally, in 1962 this hypothesis

was experimentally realised by Bartlett.[2] He successfully bonded xenon in the first rare-gas

compound Xe+[PtF6]-,  which  later,  however,  turned  out  to  be  a  mixture  of  XeF+[PtF6]- and

XeF+[Pt2F11]-.[3] Almost simultaneously two other xenon compounds, XeF2 [4]  and  XeF4 [5]

were prepared. The discovery of xenon compounds was shortly followed by the preparation

of the first krypton compound KrF2,[6] and the family of rare-gas compounds grew rapidly to

include numerous xenon, krypton and radon compounds.[7,8,9,10,11] Xenon is indeed, as Pauling

predicted, the most reactive of the rare-gases and its chemistry is not limited to fluorine-

containing compounds. By 1990, bonding with oxygen, chlorine, boron, nitrogen and carbon

had all been demonstrated in compounds such as XeO3 and XeO4,[12,13] XeCl2,[8] FXe-BF2,[14]

FXeN(SO2F)2,[15]  (C6F5Xe)+BF4
-,[16] and [C6F5Xe]+[C6F5BF3]-.[17]

In 1995 Pettersson and co-workers synthesised and characterised a group of rare-gas

compounds (HXeCl, HXeBr, HXeI and HKrCl) of a completely new type.[18] These so-called

rare-gas hydrides are neutral molecules of the form HRgY where H is a hydrogen atom, Rg is

a  rare-gas  atom,  and  Y is  an  electronegative  fragment  such  as  a  halogen  atom.  For  the  first

time, hydrogen was bonded with rare-gas atoms. Bonding of xenon with iodine and bromine,

as well as krypton with chlorine had also never been seen. In the years following, many other
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HRgY compounds (HXeH, HXeSH, HXeCN, HXeNC and HKrCN) that exhibited new rare-

gas bonds were identified.[19,20,21] Probably the most recognised accomplishment among rare-

gas hydrides was the synthesis of the first argon compound, HArF, by Khriachtchev et al.[22,23]

Prior to the present work, twenty-two molecules of this family had been synthesised and

characterised.

The growing number of rare-gas compounds demonstrates that rare-gases have real chemical

potential. This is particularly true for the most reactive, xenon. Further exploration of the

chemistry of xenon also has an environmental and biological motivation as the problem of

“missing Xe” [24,25] and the role of Xe in anaesthetics [26] remain unsolved. In this respect,

compounds and complexes forming between Xe and naturally occurring molecules are

important. Water is without doubt an interesting candidate as it is an abundant constituent on

earth and in biological organisms. Some years ago, the rare-gas hydrides HXeOH and HXeO

were characterised in our laboratory, and in addition to Xe, their preparation indeed requires

only water.[27,28] Soon after, their carbon analogues HXeCCH and HXeCC were identified

together  with  the  first  rare-gas  hydride  containing  two  xenon  atoms,  HXeCCXeH.[29] The

present work focuses on the preparation of its oxygen analogue – HXeOXeH.
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2. Rare-gas hydrides

2.1. Formation

A procedure for the synthesis of rare-gas hydrides was suggested by Pettersson and co-

workers.[30,31] This preparation method employs the matrix isolation (MI) technique

(section 3.1), though some HRgY compounds such as HXeI and HXeCCH have also been

produced in gas phase xenon clusters.[32,33,34] The procedure described by Pettersson and co-

workers involves first the trapping of HY species (for example HBr, HI, HCl) in a solid rare-

gas matrix, followed by their photodissociation into the atomic fragments H and Y. The

photofragments are then mobilised by a careful thermal annealing of the matrix, which leads

to the formation of an HRgY molecule (reaction (2.1)).

H + Rg + H  HRgY (2.1)

The mobile fragment is often hydrogen atom as its diffusion usually requires less thermal

energy than that of the Y fragment (section 3.1.2). The procedure is depicted in figure 2.1.

Figure 2.1: Formation of an HRgY molecule in a Rg matrix. I HY molecule trapped in a

solid Rg environment. II UV photodissociation of HY separates H and Y fragments which

become trapped individually. III Thermal annealing permits the global diffusion of H atoms

in  the  Rg  network;  as  the  H  atom  nears  an  immobile  Rg··· Y centre, the HRgY molecule

forms (IV).

 I  II  III  IV
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An important feature to note about the formation mechanism is that it involves neutral

fragments.[35] Due to specific photodynamic properties of rare-gas solids, this conclusion is not

trivial. Although the UV photodissociation of HY initially leads to neutral photofragments,

the same photon energies are known to lead to so-called charge-transfer transitions between

the  halogenic  Y  fragment  and  a  rare-gas  atom,  i.e.  an  electron  is  transferred  from  a  nearby

rare-gas atom to the electronegative halogenic species.[36,37,38] The resulting positive “hole” on

the rare-gas atom is highly delocalised in the solid network and, when H atoms are present,

can be trapped as an Rg2H+ cation.[39] The contribution of these ions in the formation of

HRgY should therefore be considered. Indeed, there have been several studies dedicated to

this. Feldman et al. tested the effect of adding electron scavengers into a hydrocarbon/Xe

matrix, which upon photolysis, promotes the formation of Xe2H+ cations.[40] A substantial

decrease in the HXeH formation was observed, indicating a formation mechanism not

benefiting from ions. The yield of HXeH molecules was reduced due to strengthening of the

competing H atom sink, Xe2H+ formation. A supporting study, published by the same group,

simultaneously monitored the concentrations of neutral H atom and HXeH, and showed

a clear correlation between these two species; H atoms decay as HXeH forms.[41] Pettersson et

al. further strengthened the formation model of HRgY from neutral species by measuring

a quantitative correlation between the formation of HXeI and the disappearance of neutral

iodine atoms.[35] They also showed that a rare-gas hydride, HKrCN, forms in an irradiated

HCN/Kr matrix, where the Kr2H+ ion is completely absent.[21]
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2.2. Bonding

The bonding in rare-gas hydrides is a combination of covalent and ionic contribution. The

model for bonding, inspired by Last and George,[42] and described by Pettersson et al.[18,43]

separates the HRgY molecule into an ion pair, [HRg]+ and  Y–. The cationic part, [HRg]+, is

held together by a strong covalent bond between the hydrogen atom and the electron deficient

rare-gas atom, while the anionic part is drawn to the cationic part by electrostatic forces. The

applicability of this “ionic model” is supported by numerous ab initio calculations. Strong

charge separations between the two fragments are consistently obtained for all studied HRgY

compounds.[18,31] Rare-gas hydrides with a strong electronegative fragment, such as HXeNC,

can produce charge separations resulting in dipole moments as high as 9.3 D. Indeed, the

existence of the HRgY compounds is due to this stabilizing charge separation character. The

more electronegative halogenic fragments produce larger charge separations between the Rg

and Y fragments and thus stronger coulombic attraction. Moreover, as the electron deficiency

of the rare-gas atom increases, the H–Rg interaction more closely resembles that of the HRg+

cations, which are indeed strongly bound.[44, 45]

Neither of the bonds in a HRgY molecule are however completely ionic or covalent. Although

[HXe]+ Y– is the dominant electronic configuration, resonance structures such as H– Rg+ Y and

H RgY  contribute to the bonding to some extent. The former gives ionic character to the

mostly covalent H–Rg bond, and covalent character to the mostly ionic Rg–Y bond. The

neutral configuration becomes significant at larger internuclear separations as illustrated in

figure 2.2. At the equilibrium distance, the ionic configuration is lowest in energy and provides

the largest contribution to the wavefunction of the bound HRgY molecule. The neutral

configuration at this point gives a repulsive contribution thus destabilizing the molecule.

However, as the bonds are stretched, the neutral configuration becomes the lowest energy
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configuration. The resulting transition between the ionic potential energy surface dominating

in the bound HRgY, and the neutral surface of the separated fragments, supports the

formation of HRgY from neutral fragments. The energetics between ionic and neutral limits is

determined by the ionization potential of the rare-gas atom, the electron affinity of Y, and the

dissociation energy of RgH+.

Figure 2.2: Potential energy curves of the ionic and neutral configurations for a HRgY

molecule. At the equilibrium bond length, Re, the ionic configuration is lowest in energy. At

longer bond lengths, the neutral configuration becomes the lowest energy configuration. The

intersection of the potential energy surfaces leads to an “avoided crossing” and to a smooth

transition from one potential energy surface to another.

2.3. Energetics

The rare-gas hydrides are metastable compounds occupying a local minimum on their

potential  energy  surface  (figure  2.3).  While  the  energy  of  the  separated  neutral  fragments  is

usually higher than that of a HRgY molecule, the precursors HY + Rg are always the lowest

energy species overall. As the transition from the neutral fragments, H + Rg + Y, into HRgY

is exothermic and more or less barrierless for most rare-gas hydrides, annealing-induced

formation at low temperatures is possible. The dissociation energies of the matrix isolated

HRg+ + Y–

E

Internuclear separation

H + Rg + Y

Re (HRgY)

Avoided crossing
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HRgY molecules vary from 0.4 eV for one of the weakest hydride, HXeI, to 1.4 eV for the

strongest, HXeCN.[35,21] Dissociation into HY and Rg is prevented by a barrier corresponding

to the bent transition state, and the HRgY molecules are thus kinetically stabilised at cryogenic

temperatures.

Figure 2.3: Illustration of the potential energy surface of HRgY along the stretching

and bending coordinate. HRgY molecules are metastable species occupying a local

minimum of the potential energy surface. HY and Rg are the global minimum species. While

the transition from the neutral, separated fragments to HRgY is exothermic and generally

barrierless, that of HRgY into HY + Rg is hindered by the energy barrier of the bent

transition state.

2.4. Detection

Characteristic to all rare-gas hydrides is the strongly infrared active H–Rg stretching mode.[30,31]

Formation of these compounds can thus be easily monitored with infrared absorption

spectroscopy. The band position of all known HRgY molecules falls in the region of 2100-

1000 cm–1, and depends sensitively upon the electronegative Y fragment connected to the

rare-gas atom. Although observed in some cases, other vibrations are usually too weak to be

used in spectral identification.

HRgY

H + Rg + Y

HY + Rg

E

Reaction coordinate

 Stretching Bending
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3. Experimental Methods

3.1. Matrix isolation technique

Matrix isolation (MI) is a technique introduced in 1954 simultaneously by Porter and Pimentel

for the study of radicals and other unstable species.[46,47] The central quest in matrix isolation is

to increase the lifetime of the species to be studied. The approach is to isolate the short lived

species in a solid cage composed of an inert host material (figure 3.1). Rare gases make

a desirable host due to their relative inertness and optical transparency. In the preparation of

rare-gas  compounds  however,  the  rare  gas  matrix  plays  the  role  of  a  reactive  medium  as  it

takes part in the essential reactions.[6,43]

Figure 3.1: An isolated species (guest) trapped in a solid medium (host).

In effective isolation, the monomeric guest species is surrounded only by the inert host species,

with which it has only a weak interaction, and therefore does not undergo reactions. Moreover,

the  rigid  cage  around  the  guest  species  prevents  its  migration  and  subsequent  reactions,

recombination or aggregation with other guests isolated in the medium. The temperature

required for rigidity depends on the host material used. For rare-gas matrices, the temperature

at which diffusion of molecules becomes appreciable, dT , is less than half of the actual melting

point.48 For xenon, with a melting point of 161.4 K, the matrix starts softening at around 60 K.

This introduces restrictions to thermal stability studies of molecules isolated in cryogenic

matrices. In a soft matrix, the decay of molecules due to intrinsic lability is difficult to separate

Host

Guest
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from that  due  to  other  routes.  Small  atoms  such  as  hydrogen  and  oxygen  can  diffuse  in  the

matrix well below this temperature (section 3.1.2).

Spectroscopy  of  matrix  isolated  species  is  attractive  in  many  ways.[49] The absence of strong

intermolecular interactions eliminates the spectral broadening that is typical for vibrational

bands of species in solid (pure) and liquid phases. Consequently, relatively sharp absorption

bands are observed. For the larger species, the tight matrix cage prevents molecular rotation,

which results in spectra free of rotational fine structure. Moreover, at cryogenic temperatures,

only the lowest vibrational states are populated, and hot bands are thus not observed.

Nevertheless, being a solid state technique, matrix isolation does provide some changes to the

spectral observations. The vibrational frequencies of species isolated in a matrix are usually

substantially shifted from the corresponding gas phase values.[50] This  shift  is  known  as  the

matrix shift and varies depending on the matrix material. Moreover, trapping of the guest

species in sites with different dimensions may result in splitting of the absorption bands.[51]

The isolated  species  may  occupy  a substitutional site, where the it replaces a host molecule, or

an interstitial site, where it is in between host molecules (figure 3.2). Different dimensions of the

trapping sites effect the vibrations of the guest molecules differently and hence splitting of the

absorption bands occurs. Imperfections in the crystal structure may provide additional

trapping sites and consequent splitting.

Figure 3.2: Guest species in multiple trapping sites. Substitutional site (right) and

interstitial site (left).
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Isolation  is  typically  performed  by  mixing  the  guest  species  in  the  gas  phase  with  an  excess

amount of the host. A typical M/A (matrix to guest) ratio for effective isolation is 1000:1. The

gas mixture is then sprayed on a cooled substrate, where it condenses to form a solid film with

trapped guest species isolated in the host material. High guest-to-host ratios result in

multimerisation and thus ineffective isolation. The substrate temperature and the deposition

rate are additional factors to be considered for obtaining a high quality matrix.

3.1.1. Production of atomic species

In order to prepare HRgY compounds with the MI technique, it is necessary to produce

atomic  H  and  Y  species  in  the  matrix.  A  commonly  used  method  is  to  first  isolate  a  stable

precursor in the rare-gas matrix, from which the atomic species are then photolytically

released.  Typically,  H  and  Y  dissociate  from  the  same  precursor  as  is  the  case  in  the

preparation of for example HXeI from HI and HXeBr from HBr. Separate H and Y sources

however can also be used, with a caveat that the residual photofragments do not disturb the

succeeding reactions.

In the present work, the desired atomic fragments for preparation of HXeOXeH are oxygen

and hydrogen atoms. Perutz lists several photolytic sources for O and H atoms.[52] Of  the

oxygen sources, N2O and H2O suit well our purposes as they are inexpensive, rather harmless

and easily dissociated with the available light sources in our laboratory. N2O dissociates into

an oxygen atom and a nitrogen molecule, which, being chemically and optically inert, is an

ideal by-product. Water serves as both the oxygen and the hydrogen atom source, and in

complete dissociation no by-products are produced. A hydrogen halide, HBr was used as an

additional hydrogen atom source. Table 3.1 lists the gas phase photodissociation thresholds

for H2O, N2O and HBr. All the desired processes lie in the region accessible with UV or VUV
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light sources such as the Xe lamp (6.5–8.3 eV) used in our experiments. Photodissociation of

N2 produces reactive and unwanted nitrogen atoms; hence energies exceeding 9 eV should not

be used.

Table 3.1: Photodissociation thresholds for H2O (for deuterated water in brackets),

N2O and HBr in the gas phase.[53]

Dissociation process Gas phase threshold / eV

H2O  OH + H 5.1 (5.2)

OH  O + H 4.4 (4.4)

N2O  N2 + O 1.64

N2  2 N 9.76

HBr  H + Br 3.795

Photodissociation in the matrix environment differs from that in the gas phase. Matrix

isolated species are surrounded by a rigid matrix cage, preventing the immediate separation of

the photoproducts after dissociation, a phenomenon called cage effect. The photodynamics in

rare-gas solids is discussed by Apkarian et al. [54] Due  to  the  cage  effect,  the  absorption  of

a  photon  with  energy  that  would  lead  to  dissociation  in  the  gas  phase  is  often  futile  in  the

matrix. The permanent dissociation of a matrix isolated molecule demands that one of the

photofragments exit the parent cage. This is achieved when the photofragment is left with

enough excess energy after dissociation. An atom with enough kinetic energy can force nearby

rare-gas atoms aside and exit the cage. Small atoms such as hydrogen are more successful in

exiting the cage, because upon photodissociation, the small fragment receives the majority of

the  excess  kinetic  energy.  Moreover,  small  atoms  lose  less  energy  per  collision  with  the

surrounding cage and thus have more attempts to exit the cage. As an example relevant to this

work,  H2O has a gas-phase dissociation threshold of 5.1 eV. In solid Xe, the threshold is

higher by 1.3 eV,[55] making it just accessible with 193 nm (6.42 eV) light from an ArF laser.
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3.1.2. Thermal mobilisation of photoproducts and

formation of rare-gas hydrides

When isolated in a cryogenic rare-gas matrix, the lifetime of the atoms is essentially unlimited.

To initiate chemical reactions, atoms are activated by thermal annealing, i.e. increasing the

temperature of the matrix. An increase in temperature provides the atoms with enough energy

to diffuse in the matrix and to eventually encounter a reactive centre. In preparation of rare-

gas hydrides, the reactive centre is usually the immobile Y fragment surrounded by rare-gas

atoms, and the migrating atom is hydrogen. The temperature required for global diffusion

depends on the migrating atom and the matrix through which the diffusion occurs. Hydrogen

atoms start diffusing effectively in solid xenon at 40 K, with an activation energy of

123 meV.[56] Deuterium has a slightly higher (~4 meV) activation energy.[57] Oxygen atoms

acquire enough energy for diffusion in solid xenon at 30 K [58] and the formation of rare-gas

hydrides with an oxygen atom as the electronegative fragment (HXeO) occurs at lower

temperature as the diffusing O atom encounters the still immobile Rg··· H centre.

Knowing the processes occurring at a specific temperature makes the interpretation of the

spectroscopic observations feasible. Changes that occur at low temperatures, below the

mobilisation temperature of the guests, can be addressed to local or barrierless processes. The

direct formation of certain rare-gas hydrides (HXeNCO,[59] HKrCl  [60]  and  HArF  [22]),  are

examples of local processes. In these cases, the photodissociation of the precursor molecule

can proceed with immediate rearrangement of the photofragments and formation of the rare-

gas hydride. The formation of Rg2H+ ions in irradiated matrices is an example of a barrierless

process and results from a globally mobile charge hole encountering an H atom trapped in the

Rg environment. Changes occurring in a Xe matrix at 30 K and 40 K follow the global

diffusion of O and H atoms, respectively. The formation of HXeO is an example of the
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former and that of HXeOH the latter. Moreover, the formation of HRgY molecules at the

same temperature as the mobilisation of the atoms shows that the formation is indeed

barrierless. The formation of certain HRgY molecules such as HXeI and HXeCC has been

observed at temperatures lower than that of hydrogen diffusion.[35,61] This low-temperature

formation occurs when the HRgY molecules are decomposed by IR light and recombined by

gentle low-temperature annealing. Low-temperature formation is possible because the

photofragments “remember” their original position in the lattice.

3.2. Experimental details

3.2.1. Samples

The samples in our work were gaseous mixtures of a precursor diluted in an excess host gas,

xenon. The precursors for oxygen atoms were N2O or H2O, and for hydrogen atoms H2O or

HBr. In the deuteration studies, we used D2O. The samples were prepared in glass bulbs (2 l),

in a separate gas mixing line using standard manometric methods. The oxygen and hydrogen

sources were placed in different bulbs so that their relative concentration in the matrix could

be adjusted. Water was added to the bulb as a liquid prior to the addition of Xe gas and was

allowed to reach equilibrium with the gas phase. The total pressure in a sample bulb was

typically 350-400 Torr. In the N2O and HBr samples, the precursor-to-xenon ratio was 1:1000

and 1:750, respectively.

Prior to gas sample preparation, the bulbs were pumped and simultaneously heated with a hot

air fan to remove impurities adsorbed onto the inner surfaces. Water is probably the most

persistent impurity that sticks to the walls, and could not be completely eliminated in the

experiments  where  its  presence  was  not  desired.  As  an  additional  precaution,  the  N2O, HBr
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and Xe gas lines from the gas bottles were flushed several times before use. N2O (laboratory

and industrial quality, AGA), HBr (99% purity, Aldrich) and Xe (99,997% purity, AGA) were

used without further purification. Water (distilled) was degassed by repeated freeze-pump-

thaw cycles using a dry ice-ethanol bath at 195 K. At this temperature, removal of dissolved

carbon dioxide is more efficient than it is using a liquid nitrogen bath (77 K). In the

preparation of deuterated samples, the bulb and the gas mixing line were passivated with

deuterium by repeatedly evaporating and pumping D2O into and from the volume. This was

sufficient to obtain about 50 % deuteration in the deposited matrix. For a higher level of

deuteration (95 %), the deposition line in the experimental setup was also passivated in

a similar way.

3.2.2. Experimental setup

The setup used in the experiments is presented in figure 3.3. The gas mixtures were deposited

from two bulbs (O and H sources each occupying a different bulb) via a metal capillary onto

a cooled, rotatable CsI window. The gas flow from the two bulbs was controlled by two high

precision needle valves connected to the capillary and calibrated to produce a matrix of the

desired thickness at a desired rate.
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Figure 3.3: Schematic picture of the experimental setup.

The CsI substrate was placed in a vacuum shroud, evacuated by a turbo pump with

a mechanical forepump. The typical pressure inside the shroud prior to cooling was 10–6 mbar.

Low pressure inside the shroud is essential to prevent heat convection from the cold substrate

and to minimise the deposition of impurities. Possible leaks were detected by measuring the

rate of pressure increase in the shroud after the pumps were shut off. A pressure rise from

10–6 to 10–4 mbar per minute was considered acceptable for a leak free system. Outgassing of

the surfaces after exposure to atmospheric pressure, responsible for the pressure rise was

minimised by heating the surfaces with hot air flow and overnight pumping.

The matrix substrate was cooled by a closed cycle helium cryostat (DE-202A APD). The

minimum substrate temperature was 9 K. The temperature was measured with a silicon diode

connected to the substrate frame and read from the external display of a temperature

controller. The controller also enabled thermal annealing of the substrate via a heating resistor

UV

MCT detector

Nicolet SX 60 FTIR spectrometer

Sample II

Sample I

Evacuated
sample cell

IR

Computer

Needle valves

Metal capillary

Position of LP filter
Temperature
control and
display
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connected to the substrate frame. The annealings were carried out at a rate of 0.5 K/min,

which has proved to be slow enough to avoid degradation of the matrix film.

During deposition, the substrate was usually held at a temperature of 30 K and at an angle of

90º relative to the gas flow. Deposition at 30 K is a compromise between obtaining good

optical  matrix  quality  and  avoiding  multimerisation  of  the  guest  species.  Xenon is  notorious

for forming highly scattering matrices at cryogenic temperatures; deposition temperatures up

to 66 K have been suggested to obtain optically good xenon matrices.[62] However, in the case

of a guest  species with a high tendency towards multimerisation,  as in the present work,  the

deposition temperature has to be low enough to minimise the multimerisation, and hence

30 K was typically used.

The IR spectra were measured with a Nicolet SX 60 Fourier transform infrared spectrometer

at  9  K  with  a  resolution  of  1  cm–1 and either 200 or 500 interferograms being averaged.

A Globar® (silicon carbide element) was used as an infrared source. The detector was a liquid

nitrogen cooled Mercury Cadmium Telluride (MCT) semiconductor providing a spectral range

from 4000 to 450 cm–1. In measurements with infrared sensitive species, low-pass filters were

used to remove destructive light from the sampling beam, which limited the spectral range to

about 1500-700 cm–1 depending on the filter. In some experiments, the beam was blocked

between measurements, which offered an advantage in that the spectral range was not limited

and that an additional interference pattern from the filter was avoided. The destruction of the

IR  sensitive  compounds  during  measurement  is  slow,  and  has  no  notable  effect  on  the

qualitative results. A malfunction of the dry air flow used to flush the spectrometer caused

a systematic appearance of water vapour and gaseous carbon dioxide bands in the spectra. The

water bands, appearing in the area of interest, were subtracted from the spectra. The baseline

due to the scattering of xenon matrices was corrected manually.
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The precursors (N2O, H2O and HBr) were photodissociated with vacuum ultraviolet (VUV)

irradiation to produce oxygen and hydrogen atoms. The irradiations were performed mainly

with a xenon lamp (Opthos), powered by a microwave generator, with a continuous emission

at 150-190 nm. 193 nm ultraviolet (UV) light from an ArF eximer laser (MPB, MSX-250) was

also used in some experiments. Hydrogen atoms however absorb at this wavelength and move

in the matrix, upon longer photolysis time thus, decreasing the overall H atom yield.

3.2.3. Matrices

The typical matrix thickness was 100-150 m. The thickness of the deposited matrix was

calculated from the sine-formed interference pattern of the spectrum with equation (3.1),

2
d

n
(3.1)

where d is the thickness of the matrix,  is a difference between two adjacent maxima in the

interference  pattern,  and  n  is  the  refractive  index  of  the  matrix  medium,  which  is  1.49  for

xenon.

The deuteration levels obtained in the matrix were estimated by comparing the intensities of

the asymmetric stretching vibrations of H2O, HDO and D2O (figure 3.4).
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Figure 3.4: Asymmetric stretching bands of H2O, HDO and D2O used to estimate the

deuteration level in the matrix. The obtained deuteration level in the spectrum is 55 %.

The absolute absorption intensity of the deuterium stretch is approximately half of that of

hydrogen  and,  knowing  that,  we  can  relate  the  amount  of  deuterium  atoms  to  the  total

amount of hydrogen and deuterium atoms by equation (3.2).

2

2 2

D O HDO

D O HDO H O

12I I
2Deuteration level    100%

2I I I
(3.2)
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4. Experimental results

The goal of the experimental work is to produce and identify a novel rare-gas compound,

HXeOXeH, in solid xenon. The preparation of HXeOXeH from various precursors,

including deuteration studies is described. Additional experiments were carried out in order to

shed light on the formation mechanism of HXeOXeH, and its thermal and photolytic

stability.

4.1. Preparation and identification of

 HXeOXeH in solid xenon

In the key experiment, HXeOXeH was prepared from water (H2O) and nitrous oxide (N2O)

in solid xenon. A common procedure for the preparation of rare-gas hydrides was used. The

precursors were VUV photodissociated to produce active oxygen and hydrogen atoms. The

irradiated matrices were annealed to mobilise the photoproduced atoms and to initiate

diffusion controlled reactions, including the formation of HXeOXeH. The experimental

assignment of HXeOXeH was supported by experiments with deuterated water and

alternative oxygen and hydrogen atom sources.
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4.1.1. Formation of HXeOXeH from water and N2O

Deposition

A typical IR absorption spectrum of a deposited water/N2O/Xe sample is shown in figure 4.1.

A complete interpretation of the spectrum is presented in table 4.1.
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Figure 4.1: IR absorption spectrum of water and N2O in solid xenon at 9 K. The matrix

was deposited at 30 K. All the main spectral features of H2O and N2O are visible. H2O has

characteristic absorptions in the OH stretching region around 3700 cm–1 and in the bending

region around 1600 cm–1.  Multiple  bands  in  these  areas  arise  due  to  the  rotation  of  a  water

molecule. The fundamental bands of N2O appear at 2215, 1280 and 584 cm–1 and  are

accompanied by several overtone bands (see table 4.1). Multimerisation and complexation give

rise to several bands blue-shifted from the parent bands. Bands on the right of the 2215 cm–1

band of N2O belong to its isotopologues with naturally occurring 15N isotope. The feature

around 2300 cm–1 is due to gaseous carbon dioxide inside the spectrometer. The band at

1234 cm–1 originates from a change in the substrate absorption and appears systematically in

all the spectra.
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Table 4.1: IR absorption bands of water and N2O in solid Xe. Band positions of water

and N2O agree with the previously measured values in solid xenon. [63,64]

Assignment Band (cm–1) Assignment Band (cm–1)

H2O stretch 3762.4 N2O ( 3) 2214.8

3740.7 N2O ( 2) 584.32

3693.9 N2O ( 1) 1280.0

H2O bend 1645.9 N2O ( 1 + 3) 3467.3

1629 N2O ( 2 + 3) 2784.7

1614.1 N2O (2 1) 2553.2

1604.4 N2O ( 1 + 2 2) 2447.2

(H2O)2 3530 N2O (2 2) 1158.5

1586.1 (N2O)2
† 2219, 2224

15N14N16O ‡

14N15N16O

2192.5

2169.0
† Assignment based on data from Kudoh et al. [65] and Sodeau et al. [66] (N2O in Ar).
‡ Assignment based on the isotopic shifts measured in solid N2 by Lapinski et al. [67]

Photodissociation – production of atomic oxygen and hydrogen

The VUV photodissociation of water and nitrous oxide efficiently produces H and O atoms.

The photon energies used are below the N2 dissociation threshold (9.8 eV). Neither of the

dissociation products is IR active and thus cannot be observed directly in our experiments.

Monomeric water decomposes into a hydrogen atom and an OH radical. Upon further

irradiation, the OH radical dissociates into O and H similarly to 193 nm UV-irradiation.[27] The

formation of OH radicals is evidenced by the appearance of a band at 3531.5 cm–1.[27,68,69] This

band  overlaps  with  that  of  the  water  dimer  at  about  3530  cm–1. The water dimer however,

rapidly decomposes into H2O OH  and  the  free  OH  radical  band  becomes  resolved

(figure 4.2). The slow decay of the free OH radical band probably results as it is the last

dissociation  intermediate  of  all  water  derivatives  before  atomic  O  and  H,  and  is  hence

replenished throughout the photolysis.
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Figure 4.2: VUV photodissociation of water. Photodissociation of water produces OH

radicals, observed at 3531 cm–1.  The  water  dimer  at  3530  cm–1 dissociates into H2O···OH

complex absorbing at 3403 cm–1 (on the right).

Dissociation of the water dimer proceeds via a complex between water and the hydroxyl

radical, H2 OH, which absorbs at 3403 cm–1. A complex between water and an oxygen

atom,  H2 O, which absorbs most strongly at 3704.3 cm–1,[68] was not observed. The

dissociation of H2 OH probably proceeds through hydrogen peroxide H2O2, which absorbs

at 3568, 3560, 1270 and 1266 cm–1,[70] as  small  amounts  of  it  were  observed.  Hydrogen

peroxide further photodissociates under UV light.[69] The major final dissociation products are

O and H atoms. Production of atomic hydrogen can be observed from the appearance of  the

Xe2H+ cation which has characteristic absorption bands around 700–1100 cm–1 (figure 4.3 and

table 4.2).[39,71,18] Small amounts of the hydroperoxyl radical (HO2) and ozone (O3) are formed

upon irradiation as evidenced by weak absorptions at 1383 cm–1 and 1027 cm–1, respectively.

The production of these species at this temperature can occur at centres of concentrated guest

molecules or via the light-induced mobility of O and H atoms.
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Figure 4.3: Formation of HXe2
+ upon the VUV dissociation of H2O in a xenon matrix

(Difference spectrum* after 30 min irradiation).

* A difference spectrum is a spectrum that shows the effect of a particular step in the experiment. The subtracted

background spectrum is that which is recorded before the step in question. Here, the difference spectrum shows

the effect of the irradiation step, and the subtracted background spectrum is that recorded after deposition.

Table 4.2: IR absorption bands of HXe2
+. The values agree with those measured previously

in xenon.[39]

Assignment Band (cm–1)

3 730.4

3 + 1 842.25

3 + 2 1 952.66

3 + 3 1 1061.6

After 180 min of VUV irradiation with a xenon lamp, practically all water, and 70 % of nitrous

oxide was dissociated. The irradiated matrices are believed to consist mainly of O and H

atoms, N2 molecules, and fewer OH radicals and residual N2O molecules. HXe2
+ ions are also

present in the matrix. Direct production of rare-gas hydrides was not observed.



28

Mobilisation of the photoproducts – formation of HXeOXeH

The irradiated matrices were annealed to mobilise photoproduced oxygen and hydrogen

atoms. Oxygen and hydrogen atoms start diffusing in solid xenon at about 25 and 35 K,

respectively.[58,56] For effective diffusion, the matrices were annealed at 35 and 45 K. Typically,

a sample was held at the appropriate temperature for 10 minutes to complete the diffusion

controlled reactions. The effect of the annealing of a photolysed water/N2O/Xe sample is

presented in figure 4.4.
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Figure 4.4: IR difference spectra of a photolysed water/N2O/Xe sample after

annealing at 35 and 45 K. Annealing at 35 K (lower trace) triggers the formation of HXeO

(1466 cm–1), HO2 (1383 and 1096 cm–1)  and O3 (1028 cm–1).  The band at  1234 cm–1 marked

with  a  dot  is  due  to  the  substrate.  Annealing  at  45  K  (upper  trace),  gives  rise  to  several

absorptions. In addition to the known bands of HXeOH (1577 cm–1), HXeH (1181 and

1166 cm–1)  and  several  bands  of  HNNO,  a  new  unknown  feature  marked  with  asterisk

appears at 1379.3 cm–1. A weak band of H2O2 at 1265.5 cm–1 is also visible at this stage. Both

spectra have the same background measured after irradiation and the changes in the 45 K

spectrum are due to O and H mobility, while those in the 35 K spectrum are mainly due to O

mobility.
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Annealing at 35 K selectively mobilises oxygen atoms and gives rise to absorptions at

1466 cm–1, 1383 cm–1, 1096 cm–1 and 1027.8 cm–1, which have previously been assigned to

HXeO,[28] HO2 (two  bands)  and  O3, respectively. The bands associated with oxygen

mobilisation are collected in table 4.3. At 45 K, hydrogen atoms diffuse efficiently and several

new  bands  appear.  The  strongest  are  HXeH  absorbing  as  a  doublet  at  1181  cm–1 and

1166 cm–1,[19] and HXeOH at 1577.4 cm–1.[27] These bands can already be seen to grow slowly

at 35 K which indicates that some hydrogen mobility already occurs at this temperature.

Several other bands appearing at 45 K are assigned to cis- and trans-HNNO (see table 4.3).[72]

The formation of HNNO is accompanied by a decrease in the N2O absorption intensity and is

concluded to proceed via reaction N2O  +  H  HNNO. One additional unassigned band

appears at 1379.3 cm–1. The bands associated with hydrogen mobility are collected in table 4.4.

Table 4.3: Bands appearing upon oxygen atom mobilisation at 35 K. The values agree

with those measured previously.[28,27]

Assignment Band (cm–1)

HXeO 1466.1

HO2 1383.1, 1095.8

O3 1027.8

Table 4.4: Bands appearing upon hydrogen atom mobilisation at 45 K. The values agree

with those measured previously. [27,19,72]

Assignment Band (cm–1)

HXeOH 1577.4

HXeH 1181.1, 1166.2

t-HNNO 1629, 1627, 1296, 1295, 1215, 1212

c-HNNO 1621.3, 1273,2

unassigned 1379.3
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The band at 1379.3 cm–1 appears consistently upon 45 K annealing of irradiated

water/N2O/Xe matrices. The band has previously been tentatively assigned to HO2.

However, in our experiments HO2 has a band at 1383 cm–1 accompanied by another band at

1096 cm–1. These bands decrease upon 45 K annealing, which is the opposite of the behaviour

exhibited  by  the  band  at  1379.3  cm–1. The possibility of the 1379.3 cm–1 band belonging to

HO2 in another matrix site or in complexed form is not supported as no accompanying band

is  observed  at  around  1100  cm–1. We believe that the band belongs to a new rare-gas

compound HXeOXeH and specifically to the H–Xe stretching vibration. We suggest that

HXeOXeH forms upon reactions (4.1) and (4.2) where HXeO is the immediate precursor for

HXeOXeH.

35KH + Xe + O  HXeO (4.1)

45KHXeO + Xe + O  HXeOXeH (4.2)

Figure 4.4 shows no decrease in HXeO concentration upon annealing at 45 K, which could be

considered to contradict the proposed formation mechanism. However, it is possible that

some HXeO is replenished upon annealing at higher temperatures and the losses in reaction

(4.2) would thus be masked. The suggested formation mechanism is analogous to that of

HXeCCXeH, which forms from HXeCC upon hydrogen mobilisation.[73] The following

chapters are dedicated to supporting this assignment. It should also be mentioned that no

similar absorption to that at 1379.3 cm–1,  with  a  normal  matrix  shift,  has  been  observed  in

krypton or argon matrices (figure 4.5).
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Figure 4.5: Comparison of the annealing products in Xe and Kr matrices. Annealing of

a photolysed water/Xe matrix at 45 K (upper trace) introduces bands belonging to HXeOH,

HXeO (forms at 35 K), HXeH, and a new band marked with an asterisk at 1379.3 cm–1. In the

photolysed water/Kr matrix, annealing at 25 K (lower trace) and 35 K (middle trace) only

permits the formation of HO2 (1386 cm–1) and H2O2 (1268 cm–1), respectively.* The recovery

of  photodissociated  water  in  the  Kr  matrix  (bands  at  around  1600  cm–1) also supports the

absence of reactions producing rare-gas compounds that would compete for the free oxygen

and hydrogen atoms. The feature at  1234 cm–1 marked with a dot is  due to the substrate.  In

the  Kr  sample,  75  %  of  the  water  was  photodissociated  prior  to  annealing.  In  Xe,  the

corresponding amount was 85 %.

* Annealing of the Kr matrix at 25 and 35 K permits the diffusion of O and H, respectively.
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4.1.2. Experiments with deuterated precursors –

formation of HXeOXeD and DXeOXeD

Similar experiments were carried out with deuterated water (D2O)  and  nitrous  oxide  as

precursors. The presence of deuterium was expected to lead to a partial and full deuteration of

HXeOXeH into HXeOXeD and DXeOXeD, and the appearance of the corresponding

absorption bands.

Figure 4.6 shows the IR spectra of water and nitrous oxide in solid xenon with no deuteration,

partial deuteration (55 %) and full deuteration (95 %). The strongest absorption bands of

HDO and D2O are collected in table 4.5.

3500 3000 2500 2000 1500 1000
-0.1

0.0

0.1

0.2

0.3

0.9

1.0

(c)

(b)

D
2O

D
2O

HDO

H
D

O

H
2
O

A
bs

or
ba

nc
e

Wavenumber (cm-1)

(a)H
2
O

HDO

Figure 4.6: IR spectra of the H2O/N2O/Xe matrix with different levels of deuteration.

(a) No deuteration, (b) 55 % deuteration and (c) 95 % deuteration. Only bands belonging to

water are marked.
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Table 4.5: IR absorption bands of deuterated water in solid xenon. The measured

frequencies  of  D2O  in  Xe  correspond  to  those  reported  earlier  by  Khriachtchev  et  al.[57]

Literature values for HDO in Kr matrix [74] in parentheses.

Vibrational mode Band (cm–1)

HDO D2O

Stretching 3685 (3692.0) 2782.2

2713 (2717.1) 2771.2

2604

Bending 1422 (1425.7) 1192.2

1411 (1414.2) 1183.5

1397

The deuterated samples were photolysed with VUV light. The photodissociation of deuterated

water into atomic fragments appears to be slightly less effective than that of non-deuterated

water. The differences may arise from such factors as a smaller absorption coefficient or

a different cage exit probability of the heavier D atom. The photodissociation thresholds do

not differ significantly (see table 3.1).

The  situation  after  annealing  of  photolysed  matrices  at  45  K  is  presented  in  figure  4.7.

Without deuteration, a single new band appears at 1379.3 cm–1 corresponding to the suggested

new rare-gas compound, HXeOXeH. Partial deuteration introduces three additional bands at

1433.3, 1035.1 and 1003.2 cm–1, which do not belong to the deuterated forms of any known

annealing induced compounds. In the fully deuterated sample, the band at 1003.2 cm–1

appears stronger, while the bands at 1433.3 and 1035.1 cm–1 are significantly weaker and the

band at 1379.3 cm–1 is practically invisible. Encouraged by the observed behaviour, we suggest

that the band at 1003.2 cm–1 belongs to the fully deuterated species DXeOXeD. The bands at

1433.3 and 1035.1 cm–1 are then due to the partially deuterated species HXeOXeD, where the

vibrational frequencies are accordingly shifted. The resulting H/D frequency ratio
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(1379.3 cm–1/1035.1 cm–1) is 1.375, a typical value for a rare-gas hydride. Other bands arising

upon annealing of deuterated samples are collected in table 4.6.
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Figure 4.7: IR difference spectra of annealed (45 K) water/N2O/Xe samples with

different levels of deuteration. The bands believed to belong to HXeOXeH and its

deuterated isotopologues are marked with asterisks. (a) No deuteration. A single new

absorption appears at 1379.3 cm–1. (b) Partial deuteration. Three weak additional bands appear

at 1433.3, 1035.1 and 1003.2 cm–1. (c) Full deuteration. The band at 1003.2 cm–1 appears

stronger in comparison with partial deuteration while those at 1433.3, 1379.3 and 1035.1 cm–1

are nearly absent. The background is that after irradiation and the bands belonging to HXeO

and DXeO have  already  appeared  at  35  K.  The  range  of  the  uppermost  spectrum is  limited

due to the LP filter used.
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Table 4.6: Bands associated with annealing of deuterated samples. The  values

correspond to those reported in the literature.[27,28,19,63] The literature value for DO2 (in

parentheses) is in solid Ar.[75,76] No bands indicating the presence of DNNO were observed.

Assignment Band (cm–1)

HXeOD 1572.2

DXeOH 1149.3

DXeOD 1141.3

DXeO 1070.4

HXeD 1146.9, 1121.4, 1093.8

DXeD 857, 846

DO2 1017 (1020)

4.1.3. Formation of HXeOXeH from alternative

precursors

The water/N2O/Xe experiments imply that HXeOXeH is formed in solid xenon from free

oxygen and hydrogen atoms. To confirm this conclusion, we carried out experiments with

alternative precursors, in N2O/HBr/Xe and H2O/Xe  matrices.  The  experiments  with

hydrogen bromide and nitrous oxide employ HBr as the hydrogen atom source while N2O

remains  the  source  of  oxygen  atoms.  In  the  experiments  with  water,  both  hydrogen  and

oxygen atoms are supplied by water. The absence of nitrous oxide also rules out the presence

of any nitrogen containing compounds.

The IR spectrum of hydrogen bromide and nitrous oxide in solid xenon is shown in figure 4.8.

Characteristic absorptions of HBr are collected in table 4.7.
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Figure 4.8: IR spectrum of HBr/N2O/Xe matrix at 9 K. The only bands of the diatomic

HBr appear around 2520 cm–1. Residual water in the system is unavoidable and can be seen in

the spectrum.

Table 4.7: IR absorption bands of HBr in solid xenon. The values agree with those

reported previously.[77,78]

Assignment Band (cm–1)

R(0) 2531.1

Q 2520.5

P(1) 2509.4

HBr dimer/multimer 2492.5

VUV photodissociation of HBr was efficient and is evidenced by the decrease in the

absorption bands of HBr and by the appearance of the Xe2H+ bands. Annealing of irradiated

matrices at 45 K (figure 4.9) introduces a strong band at 1503.7 cm–1 with a shoulder at about

1500 cm–1 accompanied by a weaker band at 1519.6 cm–1. These bands are known to belong to

HXeBr  [18]  and  are  collected  in  table  4.8.  Both  conformers  of  HNNO  as  well  as  HXeH,

HXeOH and HXeO are observed in the spectra. The HXeOXeH band appears at 1379.3 cm–1

similarly to the experiments with nitrous oxide and water.
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Figure 4.9: IR difference spectrum of annealed (45 K) HBr/N2O/Xe matrix at 9 K. The

main annealing products are HXeBr, HXeH, HNNO and HXeO accompanied by the

HXeOXeH band at 1379.3 cm–1. The band at 1099.7 cm–1 is assigned to DXeBr arising from

residual deuteration in the deposition line. Some HXeOH is also produced due to impurity

water.

Table 4.8: Absorption bands of HXeBr in solid xenon. The values agree with those

reported previously. [18,79]

Assignment Band (cm–1)

HXeBr 2869.8, 1519.6, 1503.7, 1500.3

DXeBr 1099.7

The  experiments  with  water  providing  both  hydrogen  and  oxygen  atoms  yield  the  expected

results with respect to the compounds formed (figure 4.10). Matrices annealed to 45 K contain

HXeOH, HXeO, HXeH as well as HXeOXeH.
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Figure 4.10: IR difference spectrum of annealed (45 K) H2O/Xe matrix at 9 K. The

background is that after irradiation. The main annealing products are HXeOH, HXeH, HXeO

and HXeOXeH. Some hydrogen peroxide is also produced. The band at  1234 cm–1, marked

with a dot, originates from the substrate as mentioned earlier.

A notable difference from the previous samples is the ratio of the products formed. Here, the

band of HXeOH strongly dominates those of HXeO and HXeOXeH, while in the

experiments with H2O/N2O or HBr/N2O the HXeOH band is of similar or weaker intensity

compared to the other two. This trend is most probably due to incomplete photodissociation

of OH radicals. Dissociation of H2O to H and OH proceeds fast, whereas the concentration

of OH radicals remains relatively high for a long period due to constant replenishing from

other dissociating water derivates. Hence, the OH concentration in the matrix remains high,

and the dominant annealing product is HXeOH forming via reaction (4.3).

45KH + Xe + OH  HXeOH (4.3)
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In the HBr/N2O  experiments  the  water  content  is  small,  which  explains  the  low  HXeOH

production. In experiments with H2O/N2O and HBr/N2O, free oxygen atoms come from

N2O and the inefficient dissociation of OH does not limit the formation of HXeO and

HXeOXeH which form from oxygen and hydrogen atoms.

4.2. Experiments on the stability and the

 formation mechanism of HXeOXeH

4.2.1. Thermal stability

The thermal stability of the annealing-induced xenon compounds was studied at 55, 57, 60

and 63 K. After the photolysed N2O/HBr/Xe  matrices  were  annealed  at  45  K  and  the

diffusion controlled reactions were complete, the temperature was raised to the

aforementioned levels for a period of time then brought back to 9 K for measurement. This

cycle was continued until the thermal decay of the compounds began to stabilise.

The data for each temperature are presented in figures 4.11 (a), (b), (c) and (d). HXeOXeH is

thermally the most stable of the molecules studied (although not in trace (c)). After 40 min at

55 K, 90 % of HXeOXeH remains while HXeOH has completely disappeared. Even HXeH

and HXeBr appear less stable with 70 % remaining. At higher temperatures, the decays of

HXeOXeH, HXeH and HXeBr are similar to each other which probably indicates softening

of the matrix.
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Figure 4.11: Thermal decay of annealing induced xenon compounds at (a) 55 K, (b)

57 K, (c) 60 K and (d) 63 K. The experiments were performed on N2O/HBr/Xe samples

where HXeOH originates from impurity water and is hence scarce. At temperatures above

55 K, the small amount of HXeOH dissociated very quickly and hence it was not possible to

measure the decay. The data from each step for each of the compounds were obtained by

integrating the appropriate peak at 9 K and then normalizing the obtained value to the initial

value.  The  results  from  HXeOXeH  most  probably  vary  because  of  the  weakness  of  the

observed spectral band and the consequent less accurate integration of the peak.
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4.2.2. Photostability

The photostability of the annealing-induced compounds was studied by irradiating the

annealed matrices with various light sources; infrared light from the spectrometer Globar, 488

nm light from an argon-ion laser,  780 nm light from a diode laser,  and 633 nm light from a

helium-neon laser.  All  irradiations were carried out at  9 K. The diode and He-Ne laser were

not observed to produce any effect. The effects of 488 nm and Globar irradiation are

presented in figures 4.12 and 4.13. Changes in the compounds upon irradiation are also

collected in table 4.9.
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Figure  4.12:  The  effect  of  488  nm  irradiation  (100  mW/cm2,  15  min,  9  K)  on  the

annealing induced compounds in deuterated water/N2O/Xe sample. The upper trace

was recorded after annealing at 45 K. The lower trace is a difference spectrum after

irradiation. Only the absorbers that change upon irradiation are labelled. HXeOH, DXeOH

and DXeOD do not dissociate while all of the other xenon containing molecules do. N2O is

the only increasing absorber. The band at 1234 cm–1 is due to the substrate.
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Figure 4.13: The effect of Globar irradiation (120 min, 9 K) on the annealing induced

compounds in the water/N2O/Xe sample. The upper trace was recorded after annealing at

45 K. The lower trace is a difference spectrum after irradiation.

Table 4.9: The effect of irradiation on the annealing induced compounds. (–) Band

decreases, (+) band increases and (0) no change in band intensity.

Compound 488 nm (Ar-ion) Globar 780 nm (diode) 633 nm (HeNe)

HXeOH 0 0 0 0

HXeO – – 0 0

HXeOXeH – 0 0 0

t-HNNO – + 0 0

c-HNNO – – 0 0

HXeH – – 0 0

488 nm Irradiation from an argon-ion laser dissociates the xenon containing compounds

including HXeOXeH. HXeOH, which has a dissociation threshold of 400-375 nm,[27] and its

deuterated counterparts, were the only compounds that remained unchanged. Globar

irradiation dissociates HXeO effectively. HXeH is also slightly sensitive to Globar light and

dissociates slowly. Interestingly, Globar irradiation converts t-HNNO into c-HNNO as the
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bands at 1622.3, 1621.3 and 1273 cm–1 decrease and those at 1628.9, 1627.1, 1296.0, 1294.7

and 1214.9 cm–1 increase.

4.2.3. HXeO as the precursor for HXeOXeH

If HXeO is the precursor for HXeOXeH, as was suggested in reaction (4.2), the absence of

HXeO should prevent the formation of HXeOXeH. To test this, we carried out experiments

where HXeO, formed upon oxygen mobilisation, was destroyed by Globar irradiation prior

to, and during, the mobilisation of hydrogen atoms. HXeOXeH was not observed to

dissociate upon Globar irradiation.

After irradiation of the water/N2O/Xe sample with VUV light for 60 min, the temperature of

the matrix was increased to 33 K to allow for the diffusion of oxygen atoms and the

subsequent  formation  of  HXeO.  The  sample  was  then  exposed  to  Globar  light  at  33  K  to

destroy the newly-formed HXeO. With the spectrometer aperture fully open, the HXeO was

completely decomposed in about 70 min. The other species formed upon oxygen

mobilisation, HOO and O3,  were  not  destroyed.  The  amount  of  residual  N2O decreased

slightly, possibly through the reaction with the additional mobile oxygen freed from HXeO.

After practically all of the HXeO was destroyed, the temperature was slowly increased in 2 K

steps, with a 10 min pause at each step to allow diffusion controlled reactions. Decomposition

was continued during the temperature rise to destroy any HXeO formed at higher

temperatures. Additional formation of HXeO was observed particularly at 39 K. This

supports the explanation that the decrease of HXeO concentration in rising from 35 K to

45 K due to reaction (4.2) is compensated by additional HXeO formation at higher

temperatures. When 45 K was reached, the sample was held there for 10 min to complete the

diffusion controlled reactions and then cooled back to 9 K for measurement. The measured
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spectrum is presented in figure 4.14 and compared with similar experiments wherein HXeO

was not destroyed.
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Figure 4.14: Comparison of matrices annealed at 45 K in (a) the presence and (b) the

absence of HXeO. No significant amount of HXeOXeH forms in the experiment without

HXeO.  The  band  marked  with  a  dot  is  due  to  the  substrate.  The  spectra  were  measured  at

9 K.

Destruction of HXeO prior to hydrogen mobilisation indeed prevented the formation of

HXeOXeH. All other compounds observed in these experiments are present in the annealed

matrix. The presence of HXeOH shows that it is not formed in reaction between HXeO and

hydrogen atom. Also, the presence of the unknown band at 1397 cm–1 in figure 4.14 (b) with

nearly  the  same  intensity  as  in  (a)  suggests  that  this  band  is  not  related  to  HXeOXeH  but

perhaps to HOO in another site or in complexed form.

An experiment with a partially deuterated water/N2O/Xe sample supports these conclusions.

The absence of HXeO and DXeO prior to H and D mobilisation prevents the appearance of

the bands assigned to HXeOXeH, HXeOXeD and DXeOXeD (figure 4.15).
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Figure  4.15:  Comparison of  deuterated matrices  annealed at  45  K in  (a)  the  presence

and (b) the absence of HXeO and DXeO. The four HXeOXeH related bands at 1379.3,

1433.3, 1035.1 and 1003.2 cm–1 visible in trace (a) are absent in trace (b).

4.2.4. Effect of photolysis time on products

Varying the photolysis time changes the relative amounts of products formed upon annealing.

Two water/N2O/Xe matrices with similar amounts of precursors were irradiated with a xenon

lamp for 30 and 180 min. In both cases essentially all water was dissociated. For N2O, 35 and

65 % of the initial amounts were dissociated, respectively. After photolysis, the matrices differ

in their composition since longer irradiation results in more complete dissociation of N2O and

OH, dissociated from H2O. Consequently the ratio of the products should differ accordingly.

Figure 4.16 shows the spectra for both cases after annealing at 45 K.
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Figure 4.16: Effect of photolysis time on the relative amounts of annealing products. IR

difference spectra of water/N2O/Xe matrices photolysed for 30 min (lower trace) and

180 min (upper trace) annealed at 45 K. Photolysis was done with a Xe lamp (electric power

35 W).

The matrix photolysed for 180 min contains less residual N2O  which  in  turn  leads  to  a

decreased amount of HNNO. More complete dissociation of N2O and OH also yields more

O  atoms,  which  increases  the  amounts  of  HXeO  and  O3.  The  increased  amount  of  HXeO

leads to an increased amount of HXeOXeH. The correlation between the yields of these

compounds supports HXeO as the precursor for HXeOXeH. The amount of HXeOH – also

an oxygen containing molecule – decreases with extended irradiation time, which supports its

formation from OH radicals that decay upon longer photolysis. HXeH is also slightly more

abundant upon longer photolysis due to the more complete dissociation of OH radicals as the

H atoms become more abundant.
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4.3. Thermal recovery of HXeO

HXeO, dissociated by Globar irradiation, could be recovered to some extent by annealing the

matrix. Annealing was carried out in steps of 5 K, from 15 K to 45 K. The matrix was held at

each temperature for 10 min, and the spectrum was measured at 9 K after each annealing. The

recovery curve of HXeO is presented in figure 4.17. The recovery of HXeO is fastest around

20-25 K which indicates that the process is a low-temperature formation due to the local

(short range) mobility of oxygen (or hydrogen) atoms. At 45 K, about 40 % of the total

amount  of  dissociated  HXeO was  thermally  recovered,  while  the  rest  of  the  freed  O and  H

atoms were probably consumed in processes resulting in other compounds.
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Figure 4.17. Thermal recovery of HXeO. No recovery  was  observed  at  9  K.  Recovery  is

fastest around 25 K. At 45 K, about 40 % of the dissociated HXeO was recovered.

Figure  4.18  shows  the  difference  spectra  of  the  90  min  Globar  irradiation  and  that  of

subsequent annealing at 45 K. Globar induced dissociation of HXeO is accompanied by

dissociation of HXeH and conversion of c-HNNO to t-HNNO as mentioned above.
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Annealing recovers HXeO. A small recovery of HXeH is also observed. A slight decrease in

the N2O bands is probably due to the reaction with freed oxygen atoms.
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Figure 4.18: Thermal recovery of HXeO after dissociation with Globar light.

(a) Difference spectrum illustrating the effect of 90 min of Globar irradiation. (b) Difference

spectrum showing the recovery of HXeO upon annealing at 45 K. The range of the spectra is

extended to cover the changes in HNNO and HXeH.
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5. Computations on HXeOXeH

The computations were provided by Arik Cohen and R. Benny Gerber and are published in

reference [80] together with our experimental work. The properties of HXeOXeH were

studied by ab initio methods using the Gaussian03 program package.[81] The equilibrium

molecular structure at its minimum on the ground potential energy surface was calculated with

B3LYP,[82,83] MP2 [84] and CCSD [85] techniques. Xenon atoms were described using the

averaged relativistic core potential basis of LaJohn.[86] The  basis  denoted  as  LJ-18,  is  a  fully

contracted basis-set with a total of 18 valence electrons. The H and O atoms were described

by the standard 6-311++G(2d, 2p) basis-set.

5.1. Geometry

The optimised  geometry  of  HXeOXeH and the  partial  charges  on  the  H,  Xe  and  O atoms,

calculated at the CCSD level of theory, are presented in figure 5.1. The values calculated at

various levels of theory are collected in table 5.1.

Figure 5.1: Equilibrium structure of HXeOXeH at the CCSD/6-311++G(2d, 2p), LJ-18

level of calculation. Intermolecular  distances  and  the  XeOXe angle  are  given  in  ångströms

and degrees, respectively. Partial atomic charges (in parentheses) were computed by the NBO

(Natural Bonding Orbital).
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Table 5.1: Optimised geometries and partial atomic charges of HXeOXeH computed

at various levels of theory. The bond distances and the XeOXe angle are in ångstroms and

degrees, respectively. The partial atomic charges were computed based on the NBO.

MP2 B3LYP CCSD

r(HXe) 1.764 1.769 1.746

r(XeO) 2.199 2.153 2.149

(XeOXe) 124.5 139.8 138.2

q(H) 0.171 0.167 0.180

q(Xe) +0.762 +0.820 +0.896

q(O) 1.182 1.306 1.431

The calculations with MP2, B3LYP and CCSD levels of theory all predict a bent, planar

equilibrium structure for HXeOXeH. Table 5.2 compares the geometry parameters and partial

atomic charges of HXeOXeH calculated with the most reliable CCSD technique and those of

HXeOH (CCSD(T)). The bond lengths of XeH+ and XeO are also shown.

Table 5.2: Calculated structures of HXeOH (CCSD(T)) and HXeOXeH (CCSD).

Partial atomic charges were calculated at the MP2 level of theory.

HXeOH a HXeOXeH XeH+/XeO(1 +) b

r(HXe) 1.740 1.746 1.603 Å/-

r(XeO) 2.218 2.149 -/2.06 Å

(HXeO) 177.4 177 c -/-

(XeOH(Xe)) 108.7 138.2 -/-

q(H) –0.24 0.171 -/-

q(Xe) +0.82 +0.762 -/-

q(O) –0.81 1.182 -/-
a data from ref. [27]
b bond distance for XeH+ from ref. [87] and for XeO from ref. [88]
c Communications with Arik Cohen
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The CCSD calculated bond lengths for HXeOXeH are close to those of HXeOH. The bond

distances in both molecules are close to those of covalently bound XeH+ and ionic XeO as is

expected for rare-gas hydrides with strong ionic nature. The partial atomic charges of

HXeOXeH indeed show strong ionic character similar to that of HXeOH and other rare-gas

hydrides. The negative charge is concentrated on the central oxygen atom leaving the two

XeH-groups positive. The Xe–O bonds in HXeOXeH are slightly shorter than the Xe–O

bond in HXeOH. The HXeO angles in both HXeOH and HXeOXeH deviate from linearity

by about 3º. A significant difference in the geometry of these molecules is the angle about the

central oxygen. In HXeOH, the XeOH angle is 108.7º, close to the HOH angle in water,

which is 104.5º. The addition of a large Xe atom into the O-H bond of HXeOH opens the

angle to 138.2º.



52

5.2. Vibrational spectrum

The calculated harmonic and anharmonic vibrational frequencies of HXeOXeH at the various

levels of theory are collected in table 5.3. Frequency calculations at MP2 level for singly and

doubly deuterated HXeOXeH, and for 18O substituted HXeOXeH are presented in table 5.4.

Table 5.3: Calculated vibrational frequencies of HXeOXeH at various levels of theory.

Harmonic frequencies are marked without brackets, intensities of the harmonic frequencies in

square brackets, and anharmonic frequencies in round brackets. The frequencies and

intensities are in cm 1 and km/mol, respectively. The anharmonic vibrations at the CCSD

level were extrapolated based on the harmonic vibrations at the MP2 and CCSD levels and the

anharmonic vibrations at the MP2 level. Experimentally observed H–Xe stretching mode is

shown in bold.

MP2 B3LYP CCSD

1703.3 [333.1] (1593.9) 1722.2 [124.6] 1616.1 (1512.3)

1571.8 [5081.5] (1478.4) 1644.1 [3744.5] 1454.9 (1368.4)

657.2 [6.3] (630.7) 658.7 [24.0] 693.9 (665.9)

627.1 [0.0] (599.5) 637.4 [0.0] 659.4 (630.35)

623.9 [19.5] (596.5) 628.5 [42.7] 654.9 (625.99)

605.5 [37.29] (579.8) 610.1 [37.5] 649.9 (622.3)

529.4 [230.55] (529.5) 543.3 [670.1] 500.1 (500.1)

267.9 [11.38] (257.7) 262.5 [17.3] 285.5 (274.6)

55.5 [0.50] (52.8) 72.1 [2.3] 74.7 (71.1)
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Table 5.4: Harmonic and anharmonic (in parentheses) frequencies calculated at the

MP2 level of theory for DXeOXeH, DXeOXeD, and HXe18OXeH.

DXeOXeD DXeOXeH HXe18OXeH

1211.2 (1155.7) 1643.9 (1541.6) 1703.5

1116.2 (1069.5) 1157.6 (1105.9) 1571.8

556.2 (534.1) 640.5 (614.3) 654.8

488.4 (472.7) 616.5 (590.5) 627.1

449.1 (434.6) 549.5 (525.9) 618.6

444.6 (430.9) 450.3 (436.2) 603.6

425.4 (412.5) 446.7 (432.3) 505.7

260.4 (252.0) 263.9 (254.6) 257.2

54.3 (51.8) 54.9 (52.1) 54.9

5.3. Energetics

The energetic properties of HXeOXeH calculated at the MP2 and B3LYP levels of theory are

presented in table 5.5. As is the case for other rare-gas hydrides, HXeOXeH is a metastable

species, lying in a local minimum on the potential energy surface. The immediate precursors,

H + Xe + HXeO, are 1.38 eV higher in energy than HXeOXeH. The exothermic nature of

the transition from H + Xe + HXeO to HXeOXeH allows it to form in the matrix, provided

that the reaction barrier is low enough. The exact energy of the transition state was not

calculated due to demanding computations required for three-body dissociation. However, at

this stage it is satisfactory to know that the barrier for the reaction is negligible as HXeOXeH

forms at the temperature of hydrogen diffusion and the reaction is thus more or less diffusion

controlled.
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Table 5.5: Energetic properties of HXeOXeH and its energy asymptotes at the MP2

and B3LYP levels of theory.

Structure Asymptote MP2 B3LYP

H + Xe + OXeH 1.38 1.47

HXeOXeH (TS)* 0.57 -

HXeOXeH 0.0 0.0

Xe + HXeOH 4.57 4.34

2Xe + H2O 8.28 8.01

* Transition state for = 139 deg.

The global minimum energy species are the initial precursors H2O + 2 Xe which lay 8.28 eV

lower in energy than HXeOXeH. This is probably a record-breaking value for a high-energy

species. All metastable rare-gas hydrides prepared in cryogenic matrices are kinetically

stabilised by a protecting barrier on their potential energy surface that prevents their

dissociation into the global minimum energy species HY + Rg. As the stretching of the bonds

leads to high energy separated fragments, the dissociation presumably proceeds via the

bending coordinate and the kinetic stability of the rare-gas hydride is determined by the height

of the bending barrier. The barrier for the dissociation of HXeOXeH via the bending

coordinate was calculated to be 0.57 eV. For HXeOH dissociation into H2O and Xe, the bent

transition state is 1.72 eV higher in energy than HXeOH.[89]
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6. Discussion

6.1. Overview of the processes

The  processes  taking  place  in  our  matrices  are  simple  and  controlled.  The  precursors,  N2O

and H2O, used in the key experiment are both relatively inert.  Upon VUV dissociation,  they

produce N2, atomic oxygen and hydrogen, and some OH radicals. At low temperature (9 K)

the isolated dissociation products are immobile and hence only interact with Xe atoms in their

immediate proximity. As such, neutral O, H, OH, and N2 do not react with neutral Xe atoms.

The molecular ion Xe2H+ is  the only molecular product observed at  this  stage;  its  formation

through charge-transfer transitions is a typical process in UV irradiated rare-gas matrices that

contain electronegative photoproducts (O atoms or OH radicals in this case) (reactions (6.1)

and (6.2)).[39]

VUV - - +O / OH + Xe  O / OH + Xe (6.1)
delocalization of charge+ +

2Xe + Xe + H  Xe H (6.2)

Initiation of other reactions in the matrix requires the mobilisation of reactive species, namely

oxygen and hydrogen atoms. As oxygen and hydrogen diffuse at different temperatures, the

reactions associated with mobile oxygen can be separated from those of hydrogen. Hence, the

compounds  that  form  at  35  K  can  be  connected  exclusively  to  free  oxygen  reacting  with

immobile centres in the matrix and those at 45 K to the corresponding processes involving

hydrogen. When oxygen is mobilised in our matrices, we observe the formation of ozone, O3,

peroxy radical, HO2, and a rare-gas hydride. HXeO. These species were observed in previous

experiments with similar samples.[27,28] Ozone is formed by the recombination of diffusing

oxygen atoms from the precursors and additionally from their reaction with impurity O2. HO2



56

most probably forms in the reaction of a mobile oxygen atom with an immobile OH radical.

This route is also supported by the observation that much less HO2 is observed in

N2O/HBr/Xe matrices where only small amounts of OH radicals are produced from impurity

water. Finally, a rare-gas radical HXeO forms as mobile oxygen atom encounters an immobile

H···Xe centre (reaction (4.1)).[28,58]

35KH + Xe + O  HXeO (4.1)

The compounds observed upon mobilisation of hydrogen at 45 K mostly correspond to those

in the experiments performed previously. In all samples, some of the H atoms are consumed

in processes involving HXeH (reactions (6.3) and (6.4)).

45KH + Xe + H  HXeH (6.3)
45K

2HXeH + H  H + Xe + H (6.4)

The HXeH concentration saturates rapidly via the reaction (6.3) as the H atoms are abundant

in the matrix. Soon after HXeH becomes abundant, the destructive reaction dominates and a

decrease in the HXeH concentration is observed. The formation kinetics of HXeH and other

rare-gas hydrides has been studied by Khriachtchev et al. [90,57] and will not be discussed in

detail here. In water containing samples, a characteristic annealing product is HXeOH which

forms in reaction (4.3) and is thus strongly dependent on the extent of the photodissociation

of water.

45KH + Xe + OH  HXeOH (4.3)

In experiments with HBr, the predominant annealing induced rare-gas hydride along with

HXeH is HXeBr (reaction (6.5)).

45KH + Xe + Br  HXeBr (6.5)
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Several bands of trans- and cis-HNNO were observed in N2O containing matrices. In

contradiction with Laursen et al. who stated that the reaction barrier (40 kJ/mol) for reaction

(6.6) is too high to be surmounted upon annealing at 40–45 K,[72] it is shown in our work that

it is in fact the formation route of HNNO.

45K
2H + N O  HNNO (6.6)

Firstly, formation of HNNO proceeds at the temperature of H mobilisation (45 K). Secondly,

a change in HNNO bands is always accompanied by an opposite change in the N2O bands; a

decrease upon formation and an increase during 488 nm photodissociation. Finally, a strong

correlation was found between the amount of residual N2O after irradiation and the amount

of HNNO after annealing.

In all experiments, regardless of the precursors, the appearance of the characteristic and well

known absorptions of the above mentioned rare-gas hydrides were consistently accompanied

by a single strong band at 1379.3 cm–1. The absorber responsible, HXeOXeH, is discussed in

the following sections.

6.2. Assignment

The appearance of an unknown band at 1379.3 cm–1 in conditions where the formation of

HRgY compounds is favourable, awakens hope for the identification of a new member of this

family. The band position lies in the region of other known HRgY compounds. Oxygen

derivatives are the only electronegative species present in all these matrices and therefore the

only suitable candidates for the Y fragment in a HRgY molecule (the presence of bromine is
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not required for the formation of the 1379.3 cm–1 absorber). The experiments with N2O

indicate that the electronegative oxygen fragment is most probably an O atom. Moreover, the

immediate formation upon mobilisation of hydrogen atoms implies that hydrogen is present

in  the  new absorber.  Also,  xenon must  be  present  as  no  similar  band  with  a  normal  matrix

shift was observed in argon or krypton matrices. The participation of nitrogen can be

discounted as the 1379.3 cm–1 absorber is similarly observed in experiments without N2O. The

1379.3 cm–1 absorber must hence contain of H, Xe and O atoms.

A candidate for the new oxygen containing rare-gas hydride is HXeOXeH, an oxygen

analogue of HXeCCXeH which was prepared via the photodissociation of HCCH in a Xe

matrix by Khriachtchev et al.[29] To test this candidate, we examined the number of hydrogen

atoms in the 1379.3 cm–1 absorber by means of isotopic substitution. In the case of a molecule

with  two hydrogen  atoms,  like  HXeOXeH,  partial  deuteration  (HXeOXeD)  will  give  rise  to

two additional bands corresponding to the D-shifted H–Xe stretch and the H-shifted D–Xe

stretch, while full deuteration into DXeOXeD will show only one band.

Isotopic substitution of the 1379.3 cm–1 absorber indeed confirmed the presence of two

hydrogen atoms. Partial deuteration introduced three additional bands at 1433.3, 1035.1 and

1003.2 cm–1. Full deuteration intensified the band at 1003.2 cm–1 while others nearly

disappeared. Based on this behaviour, we conclude that the band at 1003.2 cm–1 belongs to the

fully deuterated absorber and the bands at 1433.3 and 1035.1 cm–1 to the partially deuterated

absorber. Moreover, the large magnitude of the isotopic shifts indicates that the substituting

hydrogen directly participates in the absorbing vibration. In comparing the 1379.3 cm–1

absorber   with   its   deuterated   counterpart,   we   obtain   an   H/D   frequency   ratio

(1379.3 cm–1/1003.2 cm–1) of 1.375, which is characteristic of rare-gas hydrides (table 6.1). The
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similarity with HXeCCXeH is indeed striking, and the frequency ratios of the HXeO radical

and HXeOH mirror those of their organic analogues HXeCC and HXeCCH.

Table 6.1: Band positions of selected HRgY compounds and their H/D frequency

ratios.[29,28,27]

HXeY H(D)-Xe stretch (cm–1) H/D ratio

HXeCC 1478 (1081.5) 1.367

HXeO 1466.1 (1070) 1.370

1379.3 cm–1 abs. 1379.3 (1003.2) 1.375

HXeCCXeH 1301 (945) 1.377

HXeCCH 1486 (1077.5) 1.379

HXeOH 1577.6 (1141.2) 1.382

Figure 6.1 illustrates the experimental band positions of the 1379.3 cm–1 absorber and its

deuterated counterparts together with those of HXeCCXeH, and corresponding bands

calculated for HXeOXeH. The relative band positions of the isotope substituted 1379.3 cm–1

absorber are similar to those of HXeCCXeH. Substitution of one hydrogen atom with

deuterium (figure 6.1: H/H  H/D)  induces  a  53  cm–1 blue-shift in the H stretching

vibration. For HXeCCXeH, the corresponding shift is 41 cm–1.[29] The H-shifted D–Xe

stretching frequencies are 31 and 24 cm–1 for the partially deuterated 1379.7 cm–1 absorber and

HXeCCXeD, respectively. Such large isotopic shifts are unusual and originate from an

exceptionally strong coupling between these normal modes. The similarity of the isotopic

shifts in HXeCCXeH to those of the 1379.7 cm–1 absorber implies a similarity in the

fragments over which the isotope effect occurs. Hence, the fragment separating the hydrogen

atoms in the 1379.3 cm–1 absorber can be expected to be similar to that in HXeCCXeH and

the assignment for HXeOXeH is supported. For comparison, the isotopic shift upon HXeOH

deuteration to HXeOD is qualitatively different to the H-Xe stretching frequency shift (from

1577.6 to 1572.2 cm–1;  a  red shift  of about 5 cm–1).  In this  respect it  seems more reasonable
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that the 1379.3 cm–1 absorber  is  the  HXeCCXeH-like  HXeOXeH  rather  than,  for  example,

hypothetical HXeOOH.
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Figure 6.1: Illustration of the band positions of isotope substituted xenon compounds.

Upper trace: experimental band positions of HXeCCXeH and MP2 calculated isotopic shifts

(grey arrows). Lower trace: Experimental band positions of the 1379.3 cm–1 absorber (black

peaks),  CCSD  calculated  band  position  for  HXeOXeH  (dotted  peak),  MP2  calculated  band

positions for HXeOXeH (grey peaks) and corresponding isotopic shifts (grey arrows).

Quantum chemical calculations support the assignment of the 1379.3 cm–1 absorber as

HXeOXeH. The calculated isotopic shifts at the MP2 level of theory for HXeOXeH are 63

and 36 cm–1.  For HXeCCXeH, the corresponding values obtained were 40 and 24 cm–1, and

match quite well the experimental shifts.[29] Moreover, the H/D ratio obtained from

theoretical  H(D)–Xe  stretching  frequencies  (anharmonic  MP2)  of  HXeOXeH  and

DXeOXeD is 1.382 which is in reasonable agreement with the experimental value of 1.375.

All levels of theory, harmonic MP2, B3LYP and CCSD, yield band positions for the H–Xe

stretch of HXeOXeH much higher than the experimentally observed band at 1379.3 cm–1.

Overestimates  of  this  frequency  are  however  known  to  be  common  to  HRgY  molecules.[31]
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The anharmonic band position at the CCSD level of theory, 1368 cm–1, however nearly

coincides with the experimental value of 1379.3 cm–1. The calculated isotopic effect of 18O

substitution on the H–Xe stretching frequency is negligible, and was thus not studied

experimentally.

6.3. Formation of HXeOXeH

HXeOXeH forms in Xe matrices containing oxygen and hydrogen atom upon mobilisation of

the latter. Studies on HXeCCXeH again give some insight into the possible formation

mechanism of its oxygen analogue. HXeCCXeH was observed to form in an H and CC

containing Xe matrix upon hydrogen atom mobilisation.[29] The accompanying annealing

products were HXeCCH, HXeCC and HXeH. The formation mechanism of HXeCCXeH

was investigated by comparing the experimental HXeCCXeH formation with that predicted

by different theoretical models.[73] Model  A  was  based  on  reaction  (6.7)  and  suggests  a

secondary formation of HXeCCXeH from another simultaneously formed annealing product,

HXeCC. Model B considered the formation via a three-body collision of hydrogen atoms and

a CC fragment according to reaction (6.8). The experimental and modelled formations of

HXeCCXeH, together with other annealing products, are presented in figure 6.2.

45KHXeCC + Xe + H  HXeCCXeH (6.7)
45KH +Xe + CC + Xe + H  HXeCCXeH (6.8)
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Figure 6.2: Comparison of the experimental and modelled formations of annealing

induced products. Left: experimental formation of HXeCC, HXeCCXeH and HXeH. Right:

modelled formation of the same compounds via reaction (6.7) (top) and reaction (6.8)

(bottom). Graphs from reference [73].

In  model  A,  the  formation  of  HXeCCXeH proceeds  through the  HXeCC radical,  the  initial

concentration of which is zero. The production of HXeCCXeH is thus delayed compared to

that  of  HXeCC  and  HXeH  which  form  from  diffusing  hydrogen  atoms  and  free  CC

fragments. In model B, HXeCCXeH forms independently from free fragments and the

formation proceeds quickly from the beginning as the reactants, H and CC, are abundant. The

experimental formation of HXeCCXeH was observed to follow model A with a delayed

formation of HXeCCXeH compared to HXeCC. Hence the formation of HXeCCXeH was

concluded to proceed via reaction (6.7) where HXeCC is the precursor for HXeCCXeH. This

formation mechanism was confirmed by eliminating the suggested precursor HXeCC with

488 nm irradiation during the annealing step. Any HXeCC produced upon hydrogen

mobilisation was thus efficiently destroyed and secondary formation was thus prevented. No

HXeCCXeH was formed in the absence of HXeCC. HXeCCXeH thus forms upon hydrogen

mobilisation as shown in reactions (6.9) and (6.7).
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45KH + Xe + CC  HXeCC (6.9)
45KHXeCC + Xe + H  HXeCCXeH (6.7)

The analogous formation mechanism for HXeOXeH proceeds through reactions (4.1) and

(4.2).

35KH + Xe + O  HXeO (4.1)
45KHXeO + Xe + O  HXeOXeH (4.2)

HXeO is indeed present in our experiments as the formation of HXeOXeH occurs. However,

kinetic arguments similar to those made for HXeCCXeH cannot be made in this case because

of the non-simultaneous formation of HXeOXeH and its proposed precursor HXeO.

Reaction (4.1) takes place upon oxygen mobilisation at 35 K, and HXeO reaches more or less

its maximum concentration before reaction (4.2) has begun upon the diffusion of hydrogen at

40-45 K. A similar delay of the secondary reaction, as in the formation of HXeCCXeH, is thus

not observed. However, experiments were carried out in which HXeO was destroyed by

infrared light prior to annealing at 45 K where the formation of HXeOXeH occurs. The

elimination of HXeO prevented the formation of HXeOXeH and this strongly suggests that

HXeO is indeed the precursor for HXeOXeH and that the formation occurs through reaction

(4.2). Formation of HXeOXeH through a path similar to reaction (6.8) would benefit from

the destruction of HXeO as more building blocks would be made available for the formation

of HXeOXeH.

The proposed formation mechanism suffers from a minor controversy because it predicts that

the HXeO band at 1466 cm–1 should decrease upon HXeOXeH formation at 45 K. This has

not been the case in all our experiments. The 1466 cm–1 band intensity remains more or less at
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the same level. However, while raising the temperature slowly from 35 to 45 K, we noticed an

increase in HXeO production at about 39 K, in addition to that which occurs at the primary

oxygen diffusion temperature. This behaviour is probably due to the formation of HXeO not

being complete at 35 K. The additional formation may follow the mobilisation of oxygen

atoms trapped in “defective” sites or from reactions between mobile hydrogen atoms and

immobile Xe O centres.

The large calculated Mulliken-electronegativity of HXeO, 2.49 eV, provides further evidence

that the HXeOXeH precursor is HXeO. In the formation of HXeOXeH through reaction

(4.2), HXeO can be considered to be the electronegative Y fragment of an HRgY compound.

Furthermore, according to MP2 calculations the fragments H + Xe + HXeO are 1.37 eV

higher in energy than HXeOXeH, giving an exothermic transition that is possible under

annealing of the matrix. Remarkably, HXeOXeH and HXeCCXeH are the only rare gas

hydrides that have other rare-gas hydrides as precursors.
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6.4.  Stability

There is a controversy surrounding the experimental and calculated stability of HXeOXeH.

Experimentally, HXeOXeH is more thermally stable than HXeOH. Also, HXeO, HXeH and

HXeBr  were  found  to  dissociate  more  readily  than  HXeOXeH  (figure  6.3).  In  previous

experiments  HXeOH was  found to  decompose  on  a  time  scale  of  10  min  at  54  K,[63] which

agrees well with our experiments. Computationally, HXeOXeH is however less stable than

HXeOH. The MP2 calculated decomposition barriers along the bent transition state are 0.57

and 1.72 eV [89] for HXeOXeH and HXeOH, respectively. The calculated bending barrier of

0.57 eV is thus not enough to explain the observed stability, and HXeOXeH might enjoy

additional stabilisation from the surrounding xenon environment.
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7. Future directions

Experimentally HXeOXeH appears to be the most stable water related xenon compound and

is  hence  a  candidate  for  a  naturally  occurring  rare-gas  hydride.  The  conflict  between  the

experimental  stability  and  the  computational  results  should  be  further  studied.  It  will  be

interesting to learn how various surroundings and complexation might enhance the stability of

HXeOXeH. Nemukhin et al. studied the intermolecular complexes of HXeOH and water,[89]

and found that HXeOH (H2O)n with n = 0, 1, 2 are indeed metastable species. Complexation

was found to strengthen the H–Xe bond and thus stabilise the molecule with respect to

stretching of the bonds. Computationally the complexation however reduces the stabilizing

bending barrier height from 1.72 eV (free HXeOH) to 1.15 and 0.49 eV for complexes with

one and two water molecules, respectively. Complexes with three or more water molecules

were found to be unstable and the existence of HXeOH in a water ice environment therefore

seems unlikely. The complexation of HXeOXeH with water presents new chemical

possibilities and should therefore be explored in future research. It will also be interesting to

consider the effect of pressure which might be relevant to the stability of compounds trapped

in ice on earth.
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8. Conclusions

In this work, we have prepared and characterised a new rare-gas hydride, HXeOXeH and

thereby expanded the list of known rare-gas compounds. HXeOXeH was prepared with the

matrix isolation technique and the assignment was supported by extensive ab initio

calculations. HXeOXeH is the oxygen analogue of HXeCCXeH and adds to the group of

oxygen  containing  rare-gas  hydrides,  HXeO  and  HXeOH.  The  molecules  in  this  group  are

significant because in addition to xenon, they need only water, a naturally abundant molecule,

to form. These molecules might hence be found in ice environments and may contribute to

the earth’s “missing xenon” problem.

HXeOXeH was prepared in a two-step process involving in-situ photoproduction of atomic

oxygen and hydrogen in solid xenon, followed by their thermal mobilisation. It was shown

that the formation of HXeOXeH proceeds through diffusion controlled reactions (4.1) and

(4.2) and that HXeO is the immediate precursor. When HXeO is absent, HXeOXeH does not

form. The mechanism is similar to that of the formation of HXeCCXeH where one rare-gas

hydride is formed from another rare-gas hydride.

35KH + Xe + O  HXeO (4.1)
45KHXeO + Xe + O  HXeOXeH (4.2)

HXeOXeH was identified through its strong H–Xe stretching mode detected by IR

spectroscopy at 1379.3 cm–1. Computations place this band at 1368.4 cm–1 as calculated with

the anharmonic CCSD level of theory. We have shown that the formation of the absorber

only requires O and H atoms in a Xe environment and various photolytical precursors such as

water or a combination of N2O and HBr can be used. The presence of Xe in the absorber was
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confirmed as no similar absorber with a normal matrix shift was observed in Ar or Kr

matrices. The deuteration studies confirmed the presence of two hydrogen atoms in the

absorber as three additional bands were observed at 1433.3 cm–1 (H–XeOXeD), 1035.1 cm–1

(HXeOXe–D), and 1003.2 cm–1 (DXeOXeD). The magnitude of the isotopic shift indicates a

direct participation of the hydrogen atoms in the absorbing vibration, i.e. the H–Xe stretching

mode. The MP2 calculated isotopic shifts for HXeOXeH agree well with the experiments. We

compared the isotopic shifts in this molecule to those measured for HXeCCXeH and found a

clear  analogy,  which  indicates  a  similarity  in  the  structures  of  the  molecules.  Finally  the

obtained H/D frequency ratio of 1.375 is typical for the known rare-gas hydrides.

The stability of HXeOXeH was also computationally confirmed. HXeOXeH was calculated to

be  a  metastable  species  1.38  eV  lower  in  energy  than  its  immediate  precursors  H  +  Xe  +

HXeO, and higher than the global minimum energy species H2O + 2 Xe, by as much as

8.28 eV. HXeOXeH is kinetically stabilised by a bending barrier of 0.57 eV. Thermally

HXeOXeH is more stable than HXeO, HXeH, HXeBr and HXeOH. Of note is the

difference from HXeOH, which has a computational bending barrier three times larger than

HXeOXeH but is experimentally much less stable. HXeOXeH might enjoy exceptional

stabilisation from the surrounding xenon matrix. If HXeOXeH is stabilised by complexation

with  other  molecules,  especially  with  water,  it  may  yet  be  found  to  be  a  naturally  occurring

molecule.
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