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Chapter 1

Introduction

T HE bimetallic clusters have attracted considerable attention due to the potential tech-
nological applications of mixed-metal systems and their aberrant catalytic properties

as compared to monometallic catalysts [5]. For example, the high catalytic activity of nano-
sized gold clusters and gold islands on carrier surfaces suggests that cold-containing bimetal-
lic clusters can be ecient catalysts [6]. Solid alkali-auride compounds such as CsAu and
RbAu have been extensively studied to ascertain the nature of the alkali-gold bonds [7, 8,
9, 10, 11, 12, 13, 14] . Their studies showed that the electric properties change intensely
along the alkali metal series from Na to Rb. CsAu and RbAu are ionic semiconductors,
whereas the lighter alkali-auride solids are metals [8]. The stability of the diatomic alkali-
auride compounds in the gas phase have been investigated experimentally using mass-
spectrometry analysis of vapor compositions and by two photon ionization measurements
[15, 16, 17, 18, 19, 20, 21] . One of the studies included in this thesis is to investigate sodium
auride by performing quantum chemical calculations. Our calculations together with ex-
perimental photoelectron spectroscopic (PES) studies are able to characterize the molecular
structures of these newly generated clusters [2, 22].

As described in most organic chemistry textbooks nowadays, a group of compounds are
classified as aromatic compounds because of their remarkable stabilities, particular geomet-
rical and energetic properties and so on. The notion of aromaticity is essentially qualita-
tive. The Hückel’s rule was the first quantitative approach to describe aromaticity. Later, it
was followed by the definition of resonance energy (RE) by Pauling and Sherman [23, 24].
More recently, attempts have been made to connect aromaticity with energetic and mag-
netic properties, such as electric polarisabilities, hyperpolarisabilities, magnetic susceptibil-
ities, nuclear magnetic shieldings, and nuclear spin-spin coupling constants. Based on these,
there are various aromaticity indices proposed to examine the aromaticity magnitude: aro-
matic stabilization energies (ABE) [25]; nucleus-independent chemical shifts (NICS) [26];
aromaticity methods derived from the ring-current model (RCM) [23, 24, 25, 27, 28, 29, 30,
31, 32, 33, 34]. Computational chemists introduced more aspects on the subject; the discus-
sions of the aromatic nature of molecular rings are no longer limited to organic compounds
obeying the Hückel’s rule. By applying several aromaticity criteria, the magnetic properties
of Al2−4 , Al4−4 , Cu2−

4 and (HF)3 have been calculated in order to understand the nature of
aromaticity of these clusters [1, 2, 3].
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Chapter 2

Theory: Molecular Energies

ONE of the most important theoretical bases in computational chemistry is quantum me-
chanics. By 1926, Heisenberg and Schrödinger had built the non-relativistic mathe-

matical models for describing the motion of nuclei and electrons in molecules [35, 36]. The
difference between these two models is only in how time is specified. In the Heisenberg pic-
ture, time dependence is possessed in the operators whereas time is carried in state vectors
in the Schrödinger picture. Time-dependent and time-independent Schrödinger equations
are respectively formulated as i ∂Ψ

∂t = ĤΨ and ĤΨ = EΨ where Ĥ is the Hamiltonian, Ψ is
the wave function, and E is the total energy of the molecular system. Shortly afterwards, a
relativistic generalized equation was proposed by Dirac [37]. The concept of theoretical in-
vestigation on molecular systems has been important ever since. However, it is impossibe to
analytically solve the exact wavefunction for any system other than the one-electron hydro-
gen atom and the H+

2 molecule. It was also stated by Dirac in 1929 [38] that ”The underlying
physical laws necessary for the mathematical theory of a large part of physics and the whole
of chemistry are thus completely known, and the difficulty is only that the exact application
of these laws leads to equations much too complicated to be soluble.” Over the past decades,
a considerable number of attempts have been made not only to solve the wavefunctions ap-
proximately but also to construct expressions for calculations of electron densities instead.
The latter approach is the so-called Density Functional Theory (DFT) method [39].

2.1 Approximate Wavefunctions

We shall introduce the often used non-relativistic Hamiltonian and leave out the discusstions
on other Hamiltonians which treat many-electron systems relativistically. Within the frame-
work of Born-Oppenheimer approximation [40], the nonrelativistic and spin-free molecular
electronic Hamiltonian in the orbital basis can be expressed in the language of second quan-
tization as

Ĥ = ∑
pq

hpqÊpq +
1
2 ∑

pqrs
gpqrs êpqrs + hnuc (2.1)

In Eq. 2.1, one- and two-electron operators are represented by the products of creation a†

and annihilation a operators obeying the fermionic anticommutation rules: Êpq = a†
pαaqα +

a†
pβaqβ and êpqrs = ÊpqÊrs − δqr Êps = ∑

στ
a†

pσa†
rτasτaqσ. One- and two-electron integrals hpq

3



CHAPTER 2. THEORY: MOLECULAR ENERGIES 4

and gpqrs are defined as

hpq =
ˆ

φ∗p(x)(−1
2
∇2 −∑

I

ZI

|RI − r| )φq(x)dx (2.2)

gpqrs =
ˆ ˆ

φ∗p(x1)φq(x1)φ∗r (x2)φs(x2)
|r1 − r2|

dx1dx2 (2.3)

where the integrations are over spatial degress of freedom. The last term hnuc denotes the
nuclear-repulsion energy. This Hamiltonian omits interactions which are assumed to be
small such as relativistic effects, spin-orbital interaction and Lamb shift. Relativistic effects
in our studies were taken into account by empolying effective core potentials (ECPs) mean-
ing that the core electrons in a calculation are replaced with an effective potential. In addi-
tion, the need for the core basis functions can be eliminated.

The molecular electronic wavefunctions |CSF〉 are popularly constructed from N-electron
Slater determinants, and each determinant represents an antisymmetric product of one-
electron orbitals to fulfill the antisymmetry condition of fermions . The total energy of the
molecular system can be then obtained as

E = ∑
pq

Dpqhpq +
1
2 ∑

pqrs
dpqrsgpqrs + hnuc (2.4)

where Dpq and dpqrs are one- and two-electron density matrices which are defined as Dpq =
〈CSF| Êpq |CSF〉 and dpqrs = 〈CSF| êpqrs |CSF〉. One can, of course, approach the exact so-
lution to the Schrödinger equation by systematically improving the one-partical basis and
N-electron description, but in most cases it is not possible due to the expensive computa-
tional costs. In this section, several standard methods of constructing approximate electronic
wavefunctions are briefly delineated in order to provide the background for the calculations
included in the thesis. The details of the theories and the relevant equations presented in
this section can be found in several publications [41, 42, 43, 44, 45, 46, 47, 48, 49].

THE HARTREE-FOCK SELF CONSISTENT-FIELD METHOD

For many-electron systems, the idea of the self consistent field (SCF) method was originally
introduced by Hartree in 1928. He first constructed the many-electron wavefunction as a
product of hydrogenlike orbitals and then continued to calculate improved orbitals from
an effective one-electron equation until there is no further change in the orbitals. Later in
1930, Fock and Slater pointed out that one must use an antisymmetric linear combination of
products of spin-orbitals instead [50]. Since then, the SCF approach has been implemented
in most quauntum chemistry programs.

In most applications, the Molecular Orbitals (MOs) φp are expanded in a set of atomic or-
bitals (AOs) or basis functions χµ. A set of contracted Gaussian functions: φp = ∑

µ
χµCµp

is usually used to span the MOs. The expansion coefficients can be used as variational pa-
rameters when imposing the orthonormalization conditions on the orbitals. The so-called
Roothaan-Hall equations [51, 52] on the HF method can be then represented as a generalized
eigenvalue expression

FC = SCε (2.5)

where F is the Fock matrix, C the coefficient matrix, S the overlap matrix of AO basis func-
tions, and ε a diagonal matrix containing the orbital energies. For a closed-shell system, the
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Fock matrix elements can be calculated as

f AO
µν = hµν + ∑

i
(2gµνii − gµiiν) = hµν + ∑

ρσ

DAO
ρσ (gµνρσ −

1
2

gµσρν) (2.6)

where the AO density matrix DAO
ρσ is defined as 2∑

i
CρiCσi. An iterative process can be per-

formed by recalculating the Fock matrix from a given set of MOs. The eigenvalue problem
yields a new set of orbitals and the corresponding density matrix. This cycle is then repeated
until the solution is practically unchanged in two subsequent iteration cycles. The use of the
expression in the AO basis avoids the expensive transformations of the two-electron inte-
grals to the MO basis [41]. An improved Fock operator can be generated by averaging over
the MO coefficients of the current and the previous iteration steps in order to stabilize the
iterative procedure. A popular and successful approach to stabilize and speed up the so-
lution of the SCF equation is known as the direct inversion in the iterative subspace (DIIS)
method [53, 54].

The optimization of the HF wavefunction by the SCF procedure sometimes fails to converge
even with the DIIS method. In such cases, one should apply a second-order optimization
such as the Newton method which is based on a local quadratic model of the energy sur-
face. The Newton step is obtained by solving a set of linear equations involving the Hessian
matrix. With the Roothaan-Hall method, the cost of the diagonalization of the Fock ma-
trix scales cubically with the size of the system (∼ N3) making it less useful for very large
systems. The density-based optimization method thereby becomes a better choice than the
Roothaan-Hall method because the computational cost can be made to scale only linearly
with the size of the system [55, 56, 57, 58, 59, 60].

The energy difference between the HF and the exact solutions is defined as the correla-
tion energy in the non-relativistic scheme [61]. The HF wavefunction is often considered as
a reference function for electron correlation methods in order to acquire accurate correla-
tion energy. However, this is not an option if the electronic wave functions are dominated
by more than one electronic configuration, i.e. a single determinant is no longer enough
to qualitatively describe the wavefunction. Cases in point of this problem are the investi-
gations into the electronic ground state of the ozone molecule and the dissociation of the
nitrogen molecule. For such studies, the multiconfigurational self-consistent field (MCSCF)
method should be applied to replace the HF wavefunction as a starting point. The details of
the MCSCF method are not dicscussed here.

CONFIGURATION-INTERACTION THEORY

The configuration-interaction (CI) wave function consists of a linear combination of Slater
determinants:

|CI〉 = ∑ ci
i
|i〉 (2.7)

with the expansion coefficients ci. The CI coefficients are variationally determined leading
to an eigenvalue problem for the coefficients and the energy.

HCCI = ECCI (2.8)

In Eq. 2.8, H is the Hamiltonian matrix with the matrix elements Hij = 〈i| Ĥ |j〉 and CCI is
a vector containing the expansion coefficients ci. In the full CI (FCI) model, the complete
set of determinants generated by distributing all electrons among all orbitals is considered.
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The correlation energy is defined as the difference between the FCI and the Hartree-Fock
energies and the FCI model has been used to provide benchmarks for other approximate
wavefunction models for small systems. With increasing number of electrons and orbitals,
the FCI wave functions become intractable due to the enormous number of determinants.
A straightforward solution to this shortcoming is to obtain approximate CI wavefunctions
by truncating the FCI expansion. There are several different ways of trunctations, and the
techniques can be then chosen according to the treatments of static correlation, dynamic
correlation or both. For example, a large part of the dynamic correlation energy can be
recovered by including all configurations generated by excitations out of the reference space
such as all single and double excitations (CISD). However, one should be aware that the
size-extensivity of the FCI wave functions is destroyed by the truncation.

COUPLED-CLUSTER THEORY

The coupled-cluster (CC) wave function [41, 42, 62] is an alternative of the wave function
expressions which can be extended to the exact wave function. While the CI method is based
on a linear parametrization, the CC wavefunction can be written as an exponential ansatz
for the wavefunction:

|CC〉 = eT̂ |HF〉 (2.9)

where the cluster operator for a n-electron system is defined as a linear combination of
excitation operators multiplied by the corresponding connected cluster amplitudes: T̂ =
T̂1 + T̂2 + · · ·+ T̂i with T̂i = ∑

νi

tνi τνi . The label νi refers to an ordering with respect to excita-

tion levels i and numbering ν within excitation classes. The full coupled-cluster (FCC) wave

function is implicitly equivalent to the FCI wave function: eT̂ |HF〉 =
N
∑

i=o
Ĉi |HF〉.

eT̂ = 1︸︷︷︸
Ĉ0

+ T̂1︸︷︷︸
Ĉ1

+ T̂2 + 1/2T̂1
2︸ ︷︷ ︸

Ĉ2

+ T̂3 + T̂1T̂2 + 1/6T̂1
3︸ ︷︷ ︸

Ĉ3

+ · · · (2.10)

The main advantage is that the exponential ansatz automatically generates all disconnected
clusters (the product of the lower-order excitation amplitudes) even at the truncated level.
Only the connected terms, such as T̂1, T̂2, T̂3 · · · , are missing according the choice of the
truncation. Some of the higher-order excitations are implicitly considered in the coupled-
cluster calculations.

The full coupled-cluster wavefunction satisfies the Schrödinger equation:

ĤeT̂ |HF〉 = EeT̂ |HF〉 (2.11)

The variational minimization of the coupled-cluster wave function is more complicated
than the one for the CI energy expression. Projections of the Schrödinger equation onto
the HF wavefunction and onto the determinant |µ〉 give an non-variational expression for
the coupled-cluster energy and the coupled-cluster equations for the amplitudes:

〈HF| ĤeT̂ |HF〉 = E (2.12)

〈µ| ĤeT̂ |HF〉 = E 〈µ| eT̂ |HF〉 (2.13)

The values for the amplitudes can be obtained by iteratively solving Eq. 2.13, whose en-
ergy is taken from Eq. 2.12. The Schrödinger equation (Eq. 2.11) can be reformulated by
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multiplying it from the left with the operater e−T̂ :

e−T̂ ĤeT̂ |HF〉 = E |HF〉 (2.14)

In Eq. 2.14, ĤT = e−T̂ ĤeT̂ is an effective , non-Hermitian similarity-transformed Hamil-
tonian. A new set of equations for the coupled-cluster amplitudes and energy can then be
written as

〈HF| ĤT |HF〉 = E (2.15)

〈µ| ĤT |HF〉 = 0 (2.16)

Size-extensivity is achieved no matter how thet excitation operators in T̂ are truncated in the
so-called similarity-transformed, linked formulation of the CC framework. A great advan-
tage of the coupled-cluster approach is that it gives a systematic hierarchy of well-defined
black-box methods with increasing computational accuracy. In the sequence of CCS, CC2,
CCSD, CCSD(T), CC3, CCSDT models, higher order excitation amplititudes are considered
yielding better accuracy and also higher computational costs [63, 64]. The CCS model is a
standard coupled-cluster model with only T̂1 included; D and T denote the addition of T̂2
and T̂3, respectively. The approximate coupled-cluster singles and doubles (CC2) model is
obtained by a different treatment of T̂1 and T̂2, and it is distinguished from the CCSD model
by the fact that the CC2 doubles equations are approximated to be correct through first order
in the fluctuation potential [65]. The CC2 amplitude equation can be written as

〈µ1| Ĥ +
[
Ĥ, T̂2

]
|HF〉 = 0

〈µ2|
[
F̂, T̂2

]
+ Ĥ |HF〉 = 0

(2.17)

with a Fock operator F̂ defined as the difference between Hamiltonian Ĥ and a fluctuation
potential. The CC3 model is analogously approximated from the CCSDT model by retaining
those terms which are of second order in the fluctuation potential in the triplet equations.
The same manner as for the CCSDT model is then proceeded i.e. the CCSDT (or CC3) equa-
tions are solved iteratively until convergence. A popular non-interative approximation to
CCSDT is the CCSD(T) model — it is constructed to achieve the same improvement as CC3
in energy by adding the necessary corrections to the CCSD energy directly from perturba-
tion theory by examining the lowest-order terms that contain connected triplets [66, 67].

Rather accurate molecular electronic coupled-cluster energies can be calculated using such
a nonvariational projection approach. However, the calculations of molecular properties
are more difficult at the coupled-cluster level as the conditions for the Hellmann-Feynman
theorem are not readily fulfilled. The solution to this problem is to construct a variational
Lagrangian [68, 69] for the coupled-cluster theory. In the presence of a perturbation αV̂, a
generalization of the Hellmann-Feynman theorem to coupled-cluster wave functions can be
then established as

dE
dα

∣∣∣
α=0

= 1
2

{[
〈HF|+ ∑

ν
t(0)
ν 〈ν| e−T̂(0)

]
V̂ |CC〉+

[
〈HF|+ ∑

ν
t(0)
ν 〈ν| e−T̂(0)

]
V̂ |CC〉∗

}
= 1

2
[
〈Λ| V̂ |CC〉+ 〈Λ| V̂ |CC〉∗

]
(2.18)

where T̂(0) is the cluster operator and t(0)
ν the Lagrange multipliers in the absence of the per-

turbation. In principle, a calculation for each excited state of interest can be carried out sepa-
rately by applying an appropriate zeroth-order reference determinant, but several problems
come along with this direct strategy. It starts with a difficult and often impossible search for
a suitable zeroth-order reference determinant for a excited state; the individual calculation
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of each state is as demanding as one for the ground state; moreover, the excited states are
generated in such a way that they are not orthogonal meaning that they are not easy to be
identified [41]. One possibility of calculating the excited states within the coupled-cluster
theory is to see the excited states as a linear expansion in the space spanned by all states of
the form containing the coupled-cluster ground state |CC〉. They are called the equation-of-
motion coupled-cluster (EOM-CC) excited states [70]:

|c) = ∑
µ

cµτ̂µ |CC〉 = eT̂∑
µ

cµτ̂µ |HF〉 = ∑
µ

cµ |µ) (2.19)

where the summation is over the identity operator τ̂0 and over the excitation operator
present in the cluster operator T̂. The EOM-CC energy can be expressed as a pseudo-
expectation value or an expectation value associated with the similarity-transformed Hamil-
tonian.

E(c, c) =
(c| Ĥ |c)
(c | c)

=
〈c| ĤT |c〉
〈c | c〉 (2.20)

where (c| is defined as ∑
µ

cµ 〈HF| τ̂†
µ e−T̂ = ∑

µ
cµ (µ|. The overbars are used for bra coefficients.

They differ numerically from the coefficients of the ket vectors. The similarity-transformed
Hamiltonian matrix elements referring to the excited projection manifold can be derived as

Hµυ = (µ| Ĥ |υ) = 〈HF| τ̂†
µ ĤTτ̂υ |HF〉 = (µ|

[
Ĥ, τ̂υ

]
|HF) + δµυE0 (2.21)

The term δµυE0 in Eq. 2.21 is obtained with the use of the resolution-of-the-identity (RI)
approximation [71]. Proved as an efficient technique of reducing calculation time, the RI
approximation has been widely invoked in some other coupled-cluster models as well as
in the second-order Møller-Plesset perturbation theory (MP2) and the DFT methods. Before
discussing the excited-state solutions to the EOM-CC eigenvalue equations, we can first take
a look at the EOM-CC Hamiltonian in the partition form for an optimized coupled-cluster
state [41].

H =
(

0 ηT

0 A

)
+ E01 (2.22)

where the elements of the column vector η and the elements of the coupled-cluster Jacobian
matrix A are given in the following:

ηµ = (HF| Ĥ |µ) (2.23)

Aµυ = (µ|
[
Ĥ, τ̂υ

]
|HF) (2.24)

The EOM-CC eigenvalue problem can first be obtained by differentiating Eq. 2.20 with
respect to the (c| and |c) coefficients; then, the excitation energies are obtained by solving
the corresponding level-shifted equations:

Hc = Ec
cTH = cTE =⇒ ∆Hc = ∆Ec

cT∆H = cT∆E (2.25)

where the Hamiltonian ∆H is obtained as H− E01 and the energy difference ∆E is given by
E− E0 meaning that the nonzero eigenvalues correspond to the excitation energies from the
ground state. A pair of eigenvectors can be chosen in form of

c =
(

s
t

)
, c =

(
s
t

)
(2.26)
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where s and s are the coefficients associated with the reference state µ = 0 and, on the other
hand, t and t for the excited configurations µ > 0. The excited-state solution for the k-th
state to the EOM-CC eigenvalue equations can then be solved. The excitation energies are
finally obtained as

Atk = ∆Ektk, tT
kA = tT

k ∆Ek (2.27)

and the coefficients for the reference-state are given by

sk = ∆E−1
k ηTtk, sk = 0 (2.28)

The key factor is that the first column vector of the EOM-CC Hamiltonian ∆H vanishes so
that excitation energies can be calculated as eigenvalues of the Jacobian A. For the standard
coupled-cluster model (CCSD and CCSDT) whose first column contains Eq. 2.16, this con-
dition is satisfied. The EOM-CC theory can therefore be applied at the standard CC models.
Other than EOM-CC application, the excitation energies and the transition moments can
also be defined by deriving CC response funcitons in a form which is compatible with the
structure of the exact response function [72]. In the presence of a time-dependent one elec-
tron perturbation V̂t, the system can be defined as Ĥ = Ĥ0 + V̂t where Ĥ0 contains the Fock
operator and the fluctuation potential. With the quasienergy approach, the linear response
function can be written as〈〈

V̂A; V̂B〉〉
ω

= ∂2{L}T
∂εA(−ω)∂εB(ω)

∣∣∣
0

= 〈Λ|
[
V̂A, T̂B(ω)

]
|CC〉+ 〈Λ|

[
V̂B, T̂A(ω)

]
|CC〉

+ 〈Λ|
[[

H0,T̂A(ω)
]

, T̂B(ω)
]
|CC〉

(2.29)

where {L}T denotes the time-averaged Largrangian. The equations for the cluster ampli-
tudes t are obtained from the variational requirement:

(ω1−A) tA = −ξA (2.30)

and the zeroth-order multipliers are determined from

t(0)A = ζ(0) (2.31)

where A is the CC Jacobian whereas ξA and ζ(0) are the corresponding vectors. Excitation
energies and transition moments can be calculated as poles and residues of the linear re-
sponse function. The poles of the response function occur at the poles of the amplitude
responses [72, 73]. The CC excitation energies can thereby be determoned as

ASk = ωkSk (2.32)

The advantage of this approach is that it can be applied to approximate coupled-cluster
models. Take the CC2 model as an example, the vectors ξA and ζ(0) can be defined as

ξA =

 〈µ1| V̂A +
[
V̂A, T̂(0)

2

]
|HF〉

〈µ2|
[
V̂A, T̂(0)

2

]
|HF〉


ζ
(0)
νi = 〈HF|

[
Ĥ0, τνi

]
|HF〉

(2.33)
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PERTURBATION THEORY

The coupled-cluster method can be applied to yield calculation results of chemical accuracy.
However, the computational costs may not be affordable for extended systems, and it would
be profitable to canvass some other approaches such as perturbation theory. The basic idea
of the perturbation theory is to partition the Hamiltonian into the zeroth-order Halmiltonian
Ĥ0 and the pertubation, and then to expand the eigenfunction of the exact Hamiltonian Ĥ
with the eigensolutions to Ĥ0.

In order to calculate the correlation energy, the zero-order Hamiltonian is commonly chosen
as the Fock operator, the zero-order states are then presented by the Hartree-Fock deter-
minant and the determinants excited with respect to this state. This is known as Møller-
Plesset perturbation theory (MPPT) [74]. The perturbation (also referred as the fluctuation
potential Φ̂) represents the difference between the averaged and instantaneous interactions
[41]. We can now make a perusal of the systematic scheme. The first-order wave function
correction |MP1〉 can be regarded as T̂(1)

2 |HF〉 where the perturbation operator T̂(1)
2 is a lin-

ear combination of excitation operators multiplied by a first-order amplitude; the second-
order correction |MP2〉 involves single, double, triple and quadruple excitations from the
Hartree-Fock state: |MP2〉 =

(
T̂(2)

1 + T̂(2)
2 + T̂(2)

3 + T̂(2)
4

)
|HF〉. The second-order quaduple

excitation T̂(4)
4 can be represented as 1

2 T̂(1)2

2 being the only disconnected term in the MP2
wavefunction. The corresponding energy corrections can be written in a form of

E(1)
MP = 〈HF| Φ̂ |HF〉 , E(2)

MP = 〈HF|
[

Ĥ, T̂(1)
2

]
|HF〉 (2.34)

In commutator expressions, the energy corrections are termwise separable and the wave
funcitons are size-extensive. Explicit expressions for the second-order energy correction
E(2)

MP in terms of integrals and orbital energies is given by

E(2)
MP = −∑

a>b
i>j

∣∣∣gaibj − gajbi

∣∣∣2
εa + εb − εi − ε j

(2.35)

where g are the two-electron integrals and ε are the orbital energies. The MP2 energy de-
notes the total energy obtained with the inclusion of all corrections up to second order:

EMP2 = E(0)
MP + E(1)

MP + E(2)
MP + hnuc = EHF + E(2)

MP (2.36)

It can be noticed that both CC and MPPT approaches use HF wave function as reference in-
dicating that they in general cannot be applied to systems with degenerate or nearly degen-
erate electronic configurations. One can then introduce multiconfigurational SCF wavefunc-
tions such as the complete-active-space (CAS) SCF wave functions. The static correlation is
taken care of by employing multiconfiguration wave functions. Within the CAS framework,
the core orbitals of any system are usually treated as inactive and the valence orbitals as
active [75]. The CAS perturbation theory (CASPT) is currently the most applicable method
of taking dynamic effects into account for such systems.

2.2 Density Functional Theory

Being the founders of modern density functional theory, Hohenberg and Kohn proved in
1964 that all ground-state properties are uniquely determined by the ground-state electron
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probability density ρ0(x, y, z) which is a function of only three variables for molecules with
a nondegenerate ground state [76]. Kohn and Sham later took a long step forward present-
ing a method for finding ρ0 without first solving the wave function and for finding E0 from
ρ0 [77]. The formulation of the Kohn-Sham equation is similar to the SCF equation. The
main difference between Hartree-Fock (HF) and Kohn-Sham (KS) equations is that the ex-
change term in HF is replaced by the exchange-correlation potential υxc(r) representing the
exchange-correlation energy Exc [ρ][78].

The subject of density functional theory has been well elaborated for decades [39]. If the
true functional could be found, the energy obtained by the KS method would be the same as
the eigenvalue of the Schrödinger equation. However, the exact Exc [ρ] is unfortunately un-
known; finding (designing) suitable approximations for Exc [ρ] becomes an important task in
modern DFT theory. One should keep in mind that there is no methodical nor systematical
scheme of how to construct more accurate Exc [ρ] whereas the accuracy is correspondingly
improved with better description of the molecular wave functions. The application of DFT
must be thus carried out with attentions on the choice of functionals. DFT has the advan-
tage that correlation effects are included in a calculation that takes much less time compared
with ab initio electron correlation methods, and it can therefore be applied on large systems.





Chapter 3

Theory: Molecular Properties

B ESIDES the energy of the molecular systems, various molecular properties such as molec-
ular structures, excitation energies, vibrational frequencies, nuclear magnetic shield-

ings and magnetically induced currents have been investigated in this thesis. A general
expression of molecular properties calculated as energy derivatives is first introduced in
this chapter, . Then it is applied on several aspects of magnetic properties, and finally to the
magnetic criteria for aromaticity.

3.1 Molecular Properties Calculated as Energy Derivatives

When the molecular system is affected by an external perturbation and the perturbation is
small, the change in the total energy can be expressed as a power series in the perturbation

E(λ) = λE(1) + λ2E(2) + ...., (3.1)

where λ is a parameter that characterizes the perturbation, and the coefficients E(n) are the
n : th derivative of the energy representing the response of the system to the external per-
turbation [48, 79, 80]. The E(n) are usually known as the n : th order molecular observables.

E(n) =
1
n!

dnE(λ)
dλn (3.2)

A first-order property, which is linearly dependent on λ, can be deduced from the first
derivative of the energy

dE(λ)
dλ

∣∣∣∣
c=c′

=
∂E(λ; c)

∂λ

∣∣∣∣
c=c′

+
∂E(λ; c)

∂c
∂c
∂λ

∣∣∣∣
c=c′

(3.3)

where c is a set of wave-function or electronic parameters that determines the electronic
state. Both terms on the right-hand side of Eq. 3.3 represent the dependence of the elec-
tronic energy as a function of λ: the former arises from the dependence of the energy on
the perturbation when assuming that the wave function is not affected by the external field,
whereas the later arises since the electronic structure via the molecular orbitals (MO) and
configuration parameters change due to the perturbation.

13
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Here we assume that the electronic energy for the unperturbed situation is fully variational
with respect to the electronic parameters c. The electronic energy can then be calculated as

E(λ) = E(λ; c′) (3.4)

where the parameters c′ represent the optimal value of c. The optimized energy function
E(λ; c′) satisfies the variation conditions for all state parameters

∂E(λ; c)
∂c

∣∣∣∣
c=c′

= 0 (3.5)

By combining Eq. 3.3 and Eq. 3.5, the resulting equation for the first-order property can
be simplified using the Hellmann-Feynman theorem: for a fully optimized wave function,
the first derivative of the energy with respect to an external perturbation is equal to the
expectation value of the first derivative of the Hamiltonian with respect to the perturbation.

∂E
∂λ

=
∂

∂λ

〈
Ψ
∣∣Ĥ∣∣Ψ

〉
=
〈

Ψ
∣∣∣∣∂Ĥ

∂λ

∣∣∣∣Ψ
〉

(3.6)

To evaluate a second-order property, such as the nuclear magnetic shielding tensor and the
magnetically induced densities of a molecule, the second derivative of the energy can be
obtained as

d2E(λ)
dλ2 =

∂2E(λ; c)
∂λ2

∣∣∣∣
c=c′

+
∂2E(λ; c)

∂λ∂c

∣∣∣∣
c=c′

∂c
∂λ

(3.7)

The last term in Eq. 3.7 can be obtained by differentiating Eq. 3.5 with respect to λ and
applying the chain rule[

d
dλ

∂E(λ; c)
∂c

]∣∣∣∣
c=c′

=
∂2E(λ; c)

∂λ∂c

∣∣∣∣
c=c′

+
∂2E(λ; c)

∂c2

∣∣∣∣
c=c′

∂c
∂λ

= 0 (3.8)

Take CC as an example of non-variational approaches, a similar relation can be obtained us-
ing the Lagrangian formulation of the response equation making the CC energy variational
[81] . The response contributions ensure that the wave function is stationary to first-order in
the presence of the perturbation. By introducing the following notations for the electronic

gradient z = ∂E(λ;c)
∂c

∣∣∣
c=c′

and for the corresponding Hessian G = ∂2E(λ;c)
∂c2

∣∣∣
c=c′

, Eq. 3.8 can
be written as

G
∂c
∂λ

= −∂z(λ)
∂λ

, (3.9)

which is called Newton’s equation. The first-order response of the wave function ∂c
∂λ is

obtained by solving Newton’s equation. The calculation of the second-order properties
needs the solution of response equation. In general, to compute energy derivatives of order
(2n + 1) requires derivatives of variationally determined coefficients of n .

3.2 Magnetic Properties

The construction of the Hamiltonian for a molecule in the presence of a magnetic field will
be introduced first. Then I will discuss a few magnetic properties which have been used as
an aromaticity index for assessing the degree of molecular aromaticity.
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THE HAMILTONIAN AND ITS ENERGY EXPRESSION

For molecules exposed to a uniform magnetic field with the flux density B, the perturbation
Hamiltonian for a closed-shell molecule can be derived by introducing the vector potential
which describes the magnetic field [47]. The simplest way to construct the Hamiltonian in
the presence of the magnetic field is to begin with the Hamiltonian in the absence of the
field. The momentum p is then replaced by the generalized momentum p + e

c A wherever
p occurs in the Hamiltonian. The vector potential of the field A consists of Aex and Anuc.
The subscript “ex” denotes an externally applied field and the “nuc” describes the magnetic
field arising from magnetic moment of the nucleus. The vector potential Aex and the flux
density B are related through Aex = 1

2 B× r whereas the vector potential Anuc arising from
the magnetic moment of the nucleus is given by Anuc = ∑

I
mI × rI

|rI |3
. mI is the magnetic

moment of the nucleus I and rI denotes the position vector from the nucleus.

When the Coulomb gauge is used, the Hamiltonian for an electron in the presence of the
field becomes

H = H(0) +
e

cme
Aex · p︸ ︷︷ ︸
H(1)

ex

+
e2

2c2me
A2

ex︸ ︷︷ ︸
H(2)

ex

+
e

cme
Anuc · p +

e
cme

Aex ·Anuc +
e2

2c2me
A2

nuc︸ ︷︷ ︸
Hnuc

(3.10)

The total energy of the molecular system, calculated as the expectation value of the Hamil-
tonian, depends now on the strength of the external magnetic field and the size of magnetic
moments of the nuclei. Considering the vector potential as perturbations to the system, the
energy can be expressed as a similar power series expansion as given in Eq. 3.1.

In the presence of an external magnetic field and the magnetic moments of nuclei, the total
energy to the perturbed Hamiltonian can then be written as

E = E0 +
1
2

BT
(

∂2E
∂B∂B

)
︸ ︷︷ ︸

χB

B + ∑
I

BT
(

∂2E
∂B∂mI

)
︸ ︷︷ ︸

σI

mI +
1
2∑

I,J
mT

I

(
∂2E

∂mI∂mJ

)
︸ ︷︷ ︸

σI,J

mJ (3.11)

where the term χB, depending quadratically on B, is the magnetizability tensor. The first-
order linear terms in B and mI vanish for the closed-shell molecules. The third term in Eq.
3.11 is the second-order interaction energy due to the interaction of nuclear moments with
the external field; the derivative denoted σI is the magnetic shielding tensor of the nuclei I.
The last term in Eq. 3.11 contains the spin-spin coupling of the nuclear magnetic moments.

THE NUCLEAR MAGNETIC SHIELDING

The most interesting magnetic properties of molecules are based on the parameters encoun-
tered in magnetic resonance. The parameters, including shielding constants and g-values,
are related to various molecular characteristics and can be rationalized in terms of the cur-
rent induced in the electronic distributions of molecules by the magnetic interaction.

Different nuclei in a molecule have different resonance frequencies since they experience
differing local magnetic fields Bloc which can be related to the applied external field through
Bloc = B− σB where σ is the magnetic shielding tensor [47].
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The second-order energy for the magnetic interaction between the applied field and the
nuclear magnetic moment can also be expressed in terms of the induced current and the
magnetic vector potential due to the corresponding nuclear magnetic moment:

E(2)
B,mI

= −
ˆ

Anuc · JB(r)dr (3.12)

It shows how energy shifts arise from the coupling of the magnetic dipole with the currents
that are induced in the electron distribution.

The magnetic shielding tensor of the nuclei I, σI , is the second-order change of the energy
with respect to magnetic moments of the nuclei and the external magnetic field. In the limit

of zero magnetic field, the magnetic shielding tensor can be obtained as σI
αβ = ∂2E

∂mI
α∂Bβ

∣∣∣∣ B=0
mI =0

.

Differentiating the energy in Eq. 3.12 yields an alternative expression for the magnetic
shielding tensor.

σI
αβ = −εαδγ

ˆ
rIδ

|rI |3
∂Jγ(r)

∂Bβ
dr = −εαδγ

ˆ
rIδ

|rI |3
J

Bβ
γ (r)dr (3.13)

In Eq. 3.13, J
Bβ
γ are the tensor elements of the first-order induced current density, and εαδγ is

the Levi-Civita tensor.

THE CURRENT DENSITY

More insights into the nature of magnetic properties of a molecule can be obtained by in-
vestigating the electronic currents which are induced by the applied magnetic field. Here,
the current density, J(r, t), is introduced by differentiating the time-dependent probability
density, ρ(r, t), with respect to the time coordinate: ∂

∂t ρ(r, t) = −∇J(r, t) which represents
the charge conservation law. A change in the density in some region must be balanced by
a flux in or out of that region. Therefore, the current density or the probability current can
be obtained as J(r, t) = 1

2i
´

dr2 . . . drN (Ψ∗∇Ψ−∇Ψ∗Ψ). The current must vanish when
the wave function is real and when the system is independent of time. In the presence of a
uniform and time-independent magnetic field introduced by the magnetic vector potential,
the probability current is given by

J(r, t) =
1
2i

ˆ
dr2 . . . drN

(
Ψ∗∇Ψ−∇Ψ∗Ψ +

2i
c

AΨ∗Ψ
)

(3.14)

The electronic density is involved in the last term of Eq. 3.14. The other two terms are
no longer zero because the wave function is distorted by the applied field. Finally, when
carrying out the perturbation expansion to the first-order in the magnetic field, B, the wave
function can be expressed as Ψ = Ψ0 + ∂Ψ0

∂B B + . . .. Eq. 3.14 can then be written as

J(r, t) =
1
2i

ˆ
dr2 . . . drN

[(
Ψ(1)∗

0 ∇Ψ0 + Ψ∗0∇Ψ(1)
0 −Ψ(1)

0 ∇Ψ∗0 −Ψ0∇Ψ(1)∗
0

)
B +

2i
c

AΨ∗0Ψ0

]
(3.15)

The current density can naturally be divided into two parts [48]: The last term in Eq. 3.15 is
referred to as the diamagnetic current density which only depends on the ground-state wave
function. The other terms are known as the paramagnetic current density depending on the
admixture of excited states. However, one should keep in mind that the division of the
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current density is affected by the particular choice of the gauge of the vector potential. Only
the overall current density has real physical significance since both the size and the sign of
two contributions vary with the selection of the gauge. For a molecule in a stationary state,
the charge conservation must hold in any point of space. It can alternatively be stated in the
terms of the Sambe-Epstein integral condition:

´
J(r, t) · dr = 0 [32]. The currents sustained

in a molecule cause a secondary magnetic field. By applying Biot-Savart’s law, the strength
of the induced magnetic field at nucleus I can be obtained as Bint = − ∂2E

∂mI ∂B B = −σIB
which also defines the nuclear magnetic shielding tensor for nucleus I, σI .

THE USE OF GAUGE-INCLUDING ATOMIC ORBITALS

The gauge problem results from the fact that there are an infinite number of vector poten-
tials describing a certain magnetic field, since the magnetic field is defined as B = ∇× A
and the gradient of any scalar function ∇Λ can be added to A without changing B. The
energy of a given system must be invariant to the choice of the gauge. A transformation of
the Hamiltonian by a unitary gauge transformation of the vector potential must leave the
energy invariant; it can be obtained as H(A′) = e−iΛH(A)eiΛ when applying a gauge trans-
formation of the vector potential by adding the gradient of a scalar function to the vector
potential A(r) → A′(r) = A(r) +∇Λ(r). The corresponding wave function is related to
the original wave function by a phase factor: Ψ(A′) = e−iΛΨ(A). The charge conservation
must be fulfilled and it can be shown to be equivalent to gauge invariance by using the hy-
pervirial theorem [82]:〈Ψ(A) |[Λ, H(A)]|Ψ(A)〉 = 0. The exact solutions to the Schrödinger
equation are gauge invariant [83], whereas approximate solutions using finite basis sets are
in general not. In addition, for non-variational methods, the hypervirial theorem is not ex-
actly satisfied [84]. However, the gauge error arising from the truncation of the basis sets
is much greater than the gauge error originating from the hyperviral theorem problems of
non-variational methods.

To deal with the gauge problem, London proposed to use explicitly field-dependent basis
functions [85]. The basis functions are defined as

χµ(r) = e−
i

2c (B×[Rµ−Ro]·r)χ0
µ(r) (3.16)

where χ0
µ(r) denotes a standard magnetic field independent basis function with Rµ as cen-

ter and Ro is the chosen gauge origin. They are called either London orbitals or Gauge-
Including Atomic Orbitals (GIAOs). The use of GIAOs eliminates the explicit reference to
the global gauge origin Ro in the expressions for the nuclear magnetic shielding constants
[86]. Furthermore, it ensures a rapid basis set convergence for many second-order magnetic
properties. One should be aware that the GIAOs are not proper gauge transformations of
either the wave function or the molecular orbitals. Gauge invariance is not achieved by us-
ing them, whereas gauge independence is though obtained. Within the GIAO framework,
Wolinski et al. introduced modern analytic derivative theory to efficiently calculate the nu-
clear magnetic shieldings [87]. Since then, the GIAO approach has been implemented any
many levels of theory in most quantum chemistry program packages.

3.3 The Magnetic Criteria for Aromaticity

Since Faraday isolated benzene from the liquid residue formed during the production of
lamp gas in 1825, the concept of aromaticity constitutes a fundamental topic and lies at the
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heart of chemistry [32]. There are ca. 300000 papers dealing with the aromatic properties
of chemical systems published in the scientific literature since 1981 [88]. In modern organic
chemistry textbooks, aromatic compounds are considered as having high stability. They
have an exceptional chemical behavior for highly unsaturated structures with a tendency
to undergo ionic substitution. Several attempts have been made to define and quantify the
aromatic characters of substances; in particular, theoreticians have introduced a number of
suitable indices to be used as computational measures of aromaticity. In this section, I shall
discuss a few of them.

MAGNETIC SUSCEPTIBILITY ANISOTROPY

Exalted magnetic susceptibilities, Λ, were the first magnetic criterion to be employed to
characterize aromaticity. They represent the variation of diamagnetism due to the molecu-
lar conjugation [89]. It was understood that the enhanced diamagnetic aromaticity is related
to the fully delocalized electrons sustaining ring currents. Based on comparisons of theo-
retical and experimental degrees of aromaticity for a series of aromatic molecules, it was
pointed out by many researchers that one cannot expect agreement between the calculated
London or ring-current diamagnetism and the magnetic anisotropy because the important
paramagnetic contribution to the anisotropy is not included [30, 90, 91].

If a sample of anisotropic molecules is exposed to a magnetic field, the molecule tends to
orient itself in such a way that the axis of maximum algebraic susceptibility in the rota-
tion plane approaches the direction of the lines of the force. For example, a small align-
ment of benzene has been experimentally observed [92]. Flygare and his coworkers were
entirely aware of the importance of experimental studies and developed the general con-
cept of magnetism in aromatic systems [93, 94, 95, 96]. By studying the Zeeman effect in
microwave spectra, they gave an outstanding contribution to measurement and rational-
ization of molecular magnetic response properties of a great number of compounds. They
considered the values of the susceptibility anisotropy ∆χ = χzz− 1

2 (χxx + χyy) as a criterion
of aromaticity or delocalization of π–electrons in ring systems. The ∆χ value is the out-of-
plane susceptibility component minus the average in-plane components of the susceptibility
tensor. From the experimental point of view, this criteria provided a fundamental tool for
the assessment of RCM [97].

CHEMICAL SHIFTS

The calculations for NMR shieldings at various levels of theory have been developed to be a
standard tool in chemistry [98, 99, 100] since NMR spectroscopy is considered as one of the
best analytical methods for characterizing molecular structures [101]. Magnetically active
nuclei, such as 1H and 7Li, can be used to probe the nearby shielding influences because
of the sensitivities to the electronic structures. 1H and 7Li NMR chemical shifts can be also
used to demonstrate aromaticity. The chemical shifts of hydrogens in bridging positions
have been used to provide the examinations of aromaticity and antiaromaticity because the
rings of most aromatic systems are too small to adapt inner protons [102]. Because the
lithium bonding is electrostatic, experimental 7Li chemical shifts generally show little vari-
ation among different compounds. In general, lithium cations complex at the π faces of
aromatic systems exhibiting significant shielding or deshielding of the 7Li NMR signals and
the 7Li chemical shifts can be used to examine induced ring current effects. However, the
distances between Li+ and the aromatic rings are at least 2 Å so the ring current effects are
relatively small. The number of Li+ complexes is limited; therefore, it narrows the utility of
Li+ as an aromaticity probe.
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Figure 3.1: The NICS grid plot of benzene and cyclobutadiene calculated at the GIAO-
B3LYP/6-311+G*//B3LYP/6-311+G* level of theory. The red and green dots denote diat-
ropic (aromatic) and paratropic (antiaromatic) ring currents, respectively [103].

NUCLEUS-INDEPENDENT CHEMICAL SHIFT

The nucleus-independent chemical shifts (NICS) introduced by Schleyer et al in 1996 are
used to probe aromaticity by computing the absolute chemical shielding at any point of
space [26]. The development of NICS emanated from studies of ring current effects on the
chemical shifts of 1H and Li+ above aromatic rings. They were aware of the fact that H
and Li probe nuclei would not only measure the magnetic shielding in that point but they
also affect the outcome of the calculations. However, the magnetic shielding can also be
computationally measured by using virtual or dummy atoms as probes and thus avoiding
the modifications of the sample.

NICS indices correspond to the negative magnetic shielding computed at chosen points in
the vicinity of molecules. They are typically calculated at the centers of rings and cages, at
points above the molecular rings, and even in uniformly distributed grid points yielding
complete magnetic shielding functions. The grid distribution of NICS values illustrated for
C4H4 and C6H6 is shown in Figure 3.3 [103]. Large negative NICS values calculated in the
interior positions of rings and cages indicate the presence of induced diatropic ring currents
and aromaticity, whereas positive values denote paratropic ring currents and antiaromatic-
ity. There are several reasons why this very simple method has recently become a popular
tool for assessing molecular aromaticity: (i) No reference standards, increment schemes, nor
calibrating equations for evaluation are required. (ii) In contrast to exalted magnetic suscep-
tibilities, which depend on the square of the ring area, NICS only shows the dependence on
the ring size and the number of π electrons. (iii) NICS correlates well with other aromaticity
indices based on energetic, geometric and magnetic criteria [88, 104, 105, 106, 107].(iv) It is
easy to compute NICS by using standard quantum chemical programs.

Usually NICS gives qualitative agreement with other aromaticity indices; however, a num-
ber of studies have risen the question: can NICS really be used to detect ring currents, and
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does it yield a quantitative index of aromaticity [32, 108, 109, 110]. The reasons why NICS
in general is not a reliable descriptor of aromaticity have been explained by Lazzeretti [111].
NICS is calculated as one third of the negative trace of the shielding tensors at the center of
the ring. The trace is the sum of the three diagonal components whose relative magnitudes
may be very different from each other. Therefore, the information about the out-of-plane
deshielding, which is the unique possible measure of magnetic aromaticity, is unavoidably
lost in the average NICS. More reliable aromaticity indices would possibly be obtained from
the out-of-plane component of the shielding tensor, or alternatively the anisotropy of the
shielding defined as the out-of-plane minus average in-plane components.

Above all, NICS works so far pretty well for simple aromatic systems, such as benzene; how-
ever, it fails to describe or predict the aromaticity properties for more complicated systems
such as the copper clusters with Cu2−

4 rings which were studied in this work.

AROMATIC RING-CURRENT SHIELDINGS

The Aromatic Ring-Current Shieldings (ARCS) method was developed by Jusélius et al.
[112] The nuclear magnetic shieldings are calculated for a set of points along a line per-
pendicular to the aromatic ring. The shielding as a function of distance from the center of
the molecular ring σ(r) is used to determine the degree of aromaticity which is often as-
sumed to be proportional the strength of the ring current. This method is the first attempt
to quantify the strength of the ring current.

The long-range shielding results from the magnetic field induced by the ring current circu-
lating in a molecular ring. By using the Biot-Savart law [113], the long-range shielding can
be related to the strength of the currents sustained in the ring. The ring current suscepti-
bility, ∂I

∂Bex
, can be estimated by using the expression for an infinity thin circular conducting

wire

σ(r) = −µ0

2
∂I

∂Bex

R2

(r2 + R2)3/2
(3.17)

where µ0 is the permeability of vacuum, R is the ring radius, and r is the perpendicular
distance from the ring center. The ring current strength from a given magnetic field can be
obtained as I = ∂I

∂Bex
Bex. The maximal r values needed in a ARCS calculation depends on

the aromatic ring size. It is usually 30-60 Bohr. At short distances, the shielding function
does not fit the Biot-Savart law due to local current densities and eventually the presence
electron charge. Therefore, it is necessary to choose the minimal r value properly in order to
get reasonable fits. However, as long as the part of the shielding function inside the electron
charge distribution area is avoided, the results are quite stable.

The ARCS value is, as the NICS value, deduced from the isotropic shieldings making the
ARCS method a less reliable tool for accessing the degree of aromaticity for more compli-
cated multi-ring species. A more accurate aromaticity index might be obtained by using the
perpendicular components of the shielding function in the ARCS fit.

THE GIMIC METHOD

The GIMIC method [114] applied through the studies done in this thesis is based on the
ring-current model (RCM). The essential features of RCM were first outlined by Pauling
[27], Lonsdale [115] and London [28, 85, 116] in an attempt to explain experimental results.
For planar or nearly planar molecules, they found that the diamagnetic susceptibility of
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aromatic molecules is numerically much greater in a direction normal to the ring plane than
in the directions parallel to it [115]. RCM has later been refined and extended by Pople
[117, 118] and McWeeny [119]: the former first interpreted the chemical shift of benzene
observed in proton magnetic resonance in terms of ring current and the later successfully
developed a semiempirical approach to calculate the current.

The GIMIC method to calculate magnetically induced current densities is based on analyt-
ical derivative theory and the use of GIAOs. The derivation is achieved by comparing the
nuclear magnetic shielding tensor from the Biot-Savart’s expression in Eq. 3.13 with the ten-
sor given by the quantum chemistry expression for the second-order change of the energy
with respect to the nuclear magnetic moment and the external magnetic field [120].

Together with the use of field-dependent basis functions χµ(r) given in Eq. 3.16, the com-
ponents of the magnetically induced current density tensor can be obtained as

J Bβ
α (r′) = −εαβδ∑
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α
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with the derivatives of the one-electron Hamiltonian which are defined as
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The resulting expression in Eq. 3.18 only involves basis functions and the derivatives of
basis functions in discrete points as well as the corresponding one-electron density matri-
ces, and it is easily evaluated at any point in space except at the nuclei. The singularity
at the nuclei can be avoided because the same denominator |rI |3 occurs in every term of
Eq. 3.18. Even though the second-order derivatives of one-electron Hamiltonian is explic-
itly dependent on the gauge origin seeming to make the current tensor gauge dependent,
it can be shown that the gauge-dependent terms cancel exactly with the terms arising from
the differentiation of the GIAOs. Therefore, no reference to the gauge origin appears in the
final expression for the first-order induced current density. As discussed previously, the
obtained currents are gauge-origin independent but not gauge invariant. The gauge invari-
ance is only acquired in the limit of a complete basis set, and the gauge problem leads to
non-zero divergence [114].

The use of GIAOs yields gauge-independent current densities with a fast basis-set conver-
gence; standard basis sets give current densities close to the basis-set limit making GIMIC
calculations on large molecules feasible. GIMIC calculations can also be performed at any
computational level for which the one-body density matrix and the magnetically perturbed
density matrices are available. This method is hence an important tool in our studies.





Chapter 4

Results

SEVERAL molecular systems have been studied by applying the methods described in the
previous chapters. We first paid attention on the lithium-aluminum clusters with com-

position of LiAl−4 , Li2Al4, Li3Al−4 and Li4Al4. Even though many studies on these clusters
had been carried by other groups [121, 122, 123], the details of aromatic properties were
not well clarified. In this work, the aromatic properties of the Al2−4 and Al4−4 cores were
accessed computationally by employing different aromaticity indices. It showed that the
GIMIC method is a useful tool for analyzing the nature of aromaticity for these clusters. The
GIMIC applications were then extented to some copper clusters based on the idea of planar
copper rings proposed by Tsipis, Fuentealba, and Chen [124, 125, 126, 88]. Our collaborators,
Wang et al., were able to produce the Cu4Na−, Au4Na− and other small sodium-auride clus-
ters at that time; they further characterized these clusters by photoelectron spectroscopy[2].
The computationally simulated PES spectra were used to identify the molecular structure
of these two clusters observed in the PES experiment. The calculations were carried out at
the CCSD level using the equation-of-motion coupled-cluster (EOMIP) approach. In order
to understand the electron delocalization and aromaticity properties of the Cu2−

4 ring, the
magnetically induced current densities calculated for Cu4Li− and Cu4Li2 using the GIMIC
method. The ring-current strengths and the shape of the ring current clearly demonstrated
that the square-shaped planar Cu2−

4 four-membered rings are σ-aromatic systems primarily
due to the s orbital bonding.

Many bimetallic sodium auride clusters have experimentally been studied since the first ob-
servation of diatomic NaAu 30 years ago [15, 17, 127, 128, 129, 130]. The generation of small
anionic sodium-auride clusters with the composition of NamAu−n ( n = 1− 4, n ≥ m and
m + n ≤ 6) was recently reported [2, 4]. The structures of the anionic clusters were also de-
termined by comparing experimental and computational photoelectron spectra (PES). The
calculations showed that the clusters have many low-lying isomers making an identifica-
tion difficult based on calculations. However, the computed PES spectra of the isomers
significantly differ rendering the structure determination feasible when having access to ex-
perimentally measured spectra. Explicit calculations of the electron density showed that
the excess electron of the anions is basically shared by the gold atoms yielding a preference
for the formation of extended cluster structures with separated gold atoms to minimize the
Coulomb repulsion.

23
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Table 4.1: The analysis of the vibrational frequency calculations of benzene acquired at the
MP2 level by employing different basis sets.

At least one vibrational
frequency All frequencies are real

Uncontraction
basis sets a

12S6P/5S, 12S6P1D/5Sb,
12S6P/6S, 12S6P1D/6Sb

12S6P2D/5Sc, 12S6P2D1F/5Sc,
12S6P2D/6Sc, 12S6P2D1F/6Sc

contracted basis
sets

6-311+G, 6-311+G(d),
6-311+G(d,p), 6-311++G

6-311++G(d)

6-311+G (2d), 6-311+G (2df),
6-311+G (2d, p), 6-311+G (2df,p),

6-311++G (2d) 6-311++G (2df)
a. Even-tempered basis sets
b. D function is extracted from the Dunning cc-pVDZ basis set
c. D and F functions are extracted from the Dunning cc-pVTZ basis set

4.1 Molecular Structures

Finding a proper minimum structure is the first step of examining a molecular system. In
our cases, the lithium-aluminum clusters were optimized at the CCSD level while the molec-
ular structures of other clusters were obtained at the RI-MP2 level which is the most applica-
ble ab initio method. In our studies, the MP2 method indeed provides valuable information.
Instead of reviewing the molecular structures obtained in the MP2 optimization, I shall sim-
ply discuss how the MP2 method works and some problems we found. The optimized
structures are discussed in the enclosed publications.

THE MOLECULAR STRUCTURE OF BENZENE AND Na2Au−3

It has been recently discovered that the post-HF methods such as MP2 in conjunction with
standard basis sets might predict the benzene structure to be non-planar [131]. In Table 4.1,
it shows that the planar benzene was obtained only with the higher angular momentum
function introduced for both contracted and uncontracted basis sets. The deficiency in MP2
method occurs until a better description of the Coulomb correlation can be provided with
the use of large enough basis sets.

Also, the structural information obtained at the MP2 and DFT levels is known to be dis-
tinct for small gold clusters; therefore, the choice of appropriate basis sets for the molecules
should be carried out with care. For the Na2Au−3 anion, the two lowest isomers at the
MP2/QZVPP level is a linear cluster (Figure 4.1a) and a planar conformation of Cs sym-
metry (Figure 4.1b). The linear isomer is the lowest structure at the MP2/QZVPP level,
whereas the planar one is a local minimum only 6 kJ/mol higher in energy; in single-point
SCS MP2/QZVPP calculations, the linear Na2Au−3 isomer is 30 kJ/mol below the planar
one. The linear isomer is also observed in the experiment. Optimization of the cluster
structures for Na2Au−3 using the TZVPP and QZVPP basis sets yielded significantly dif-
ferent geometries. At the MP2/TZVPP level, a bent structure of C2v symmetry (Figure 4.2)
was obtained, whereas at the MP2/QZVPP level the corresponding minimum is the linear
structure. The bent Na2Au−3 structure is found probably due to the two-electron basis-set
incompleteness error also found to result in nonplanar benzene at ab initio correlation levels
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(a) (b)

Figure 4.1: The molecular structures of Na2Au−3 obtained at the MP2/QZVPP level: (a) a
linear structure and (b) a planar conformation of Cs symmetry.

Figure 4.2: The molecular structure of Na2Au−3 obtained at the MP2/TZVPP level: a bent
structure of C2v symmetry

when too small basis sets are employed [131]. The two-electron basis-set incompleteness
error can make bent structures artificially lower in energy than planar and linear clusters.

4.2 Photoelectron Spectrum Studies

Photoelectron spectroscopy utilizes photo-ionization and energy-dispersive analysis of the
emitted photoelectrons to study the composition and electronic state of molecules. The pho-
toelectron spectrum can be experimentally obtained as follows [132]: The clusters are first
produced by laser vaporization of targets; after each cluster is possessed of an additional
electron, the anions are extracted from the cold cluster beam perpendicularly and separated
by a time-of-flight mass spectrometer. The cluster anions of interest were then selected and
decelerated before crossing with a detachment laser beam in the interaction zone of the
magnetic-bottle PES analyzer. Finally, photoelectrons were collected by the magnetic-bottle
and analyzed in a long electron flight tube. The computed photoelectron spectra can be
achieved either by performing the ionization-potentials calculation of the cluster anion us-
ing the EOM-IP or alternatively by calculating the energy difference between the anion and
the neutral of the cluster and adding the excitation energy of the neutral system. In the
calculations of excitation energies, the optimized anion structure should be used. In our
studies, the ionization potentials using EOM-IP approach were obtained at the CCSD level,
and the excitation energies were calculated at the RI-CC2 level. In the alternative and more
accurate approach, the first ionization potential (IP) was calculate as the MP2 energy differ-
ence between the anionic and the neutral clusters. The energetically higher PES transitions
were acquired by adding the lower excitation energies of the neutral system to the first IP. It
will be followed by an example of the comparison between experimental and computational
PES.

THE EXPERIMENTAL AND COMPUTATIONAL PHOTOELECTRON SPECTRA:
THE NaCu−4 AND NaAu−4 CLUSTERS.

The combination of photoelectron spectroscopy (PES) and computational chemistry calcu-
lations provides information of the character of the molecular structure and its electronic
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Table 4.2: The vertical detachment energies (VDE in eV) for LiCu−4 , NaCu−4 , and NaAu−4
calculated at the EOMIP-CCSD level as compared to the experimental data.

LiCu−4 NaCu−4 NaAu−4
calcd calcd exp calcd exp

(C4v) (C4v) (C2v) (C4v) (C2v)

1.313 1.229 1.137 1.13 2.501 2.662 2.98

3.193 3.259 2.586 3.26 3.769 3.980 4.12

3.636 3.864 3.840 3.84 4.295 4.751 4.79

4.062 3.876 3.871 4.923 4.758 4.98

states, and it can be used to determine the molecular structure. It is especially useful to ap-
ply this approach for the energetically lower isomer structures of a cluster when the energy
differences between these isomers are small.

The molecular structures of the C4v and C2v symmetries are the two energetically lowest
isomers of the anionic sodium-metal coinage-metal clusters (NaM4

−, M=Cu, Ag, and Au)
obtained at the MP2 level, and the relative energies were calculated at the MP2, CCSD,
CCSD(T) levels. Even if the higher correlated methods with adequate basis sets were in-
troduced, finding the global minima of the molecular structures for these clusters is still
challenging. The vertical detachment energies (VDE) calculated at the EOMIP-CCSD level
for LiCu−4 , NaCu−4 , and NaAu−4 as well as the experimental data for NaCu−4 , and NaAu−4
are listed in Table 4.2. The PES patterns of the two isomers for NaCu−4 as well as for NaAu−4
are quite different since the distinctive PES feature results from the character of the elec-
tronic states of each system. It can be seen in Table 4.2 that the computational PES of the
C4v isomer for NaCu−4 and the C2v isomer for NaAu−4 agree well with the corresponding
experimental PES spectra indicating that the observed structures of NaCu−4 and NaAu−4 are
the pyramidal structure of C4v symmetry and the C2v planar conformation, respectively [2].
This is an example illustrating that both the experimental PES and the corresponding cal-
culations are of vital importance in cluster identification. In addition, the similarity of the
computational PES spectra of the LiCu−4 and the NaCu−4 clusters suggests the stability of
the Cu2−

4 core in these two clusters and the role of Li and Na atoms as a supporting cation.

4.3 The aromaticity of Al2−
4 , Al4−

4 , Cu2−
4 and (HF)3

In this section, the discussion starts with the aromaticity related calculations for the clusters
consisting of all-metal four-membered rings. By applying the GIMIC method, the strong
diatropic currents sustain mainly by the σ orbitals in all clusters. The Al2−4 ring in LiAl−4
and Li2Al4 is found to also have substantial π aromaticity, the Al4−4 moiety in Li3Al−4 and
Li4Al4 contrarily π antiaromaticity, whereas no evident currents were noticed in π-orbital
region of the Cu2−

4 species [1, 2].
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Table 4.3: The integrated ring-current susceptibilities (in nA/T) for LiAl4−, Li2Al4, Li3Al4−,
Li4Al4, LiCu4

− and Li2Cu4 calculated at the CCSD level using the GIMIC method

LiAl4− Li2Al4 Li3Al4−b Li4Al4 LiCu4
− Li2Cu4 Cu4H4

diamagnetic 32.4 36.7 18.9 18.6 19.4 23.2 2.1

paramagnetic 0.0 0.0 -19.9 -16.8 -0.4 -0.4 -2.7

total current 32.4 36.7 -1.0 1.8 19.0 22.8 -0.6

contributed by Lia 4.3 8.6 4.9 4.9 6.4 12.9 —

total ring current 28.1 28.1 -5.9 -3.1 12.6 10.0 -0.6
aThe estimated net current circling around the Li+ cations.
b The currents passing the two identical Al-Al bonds are given in the table. The correspond-
ing values for the shortest Al-Al bond are 22.4, -23.6, -1.3, 4.9 and -6.2 nA/T, respectively.

ALL-METAL FOUR-MEMBERED RINGS: Al2−
4 , Al4−

4 and Cu2−
4

The first-order magnetically induced current densities for the Al2−4 , Al4−4 and Cu2−
4 com-

pounds were calculated at the CCSD level using the GIMIC method. The obtained current
densities are used to provide not only qualitative but also quantitative information of the
aromaticity.

The degree of aromaticity for the all-metal four-membered rings is based on the numerical
integrations [120] of the current densities passing the Al-Al and Cu-Cu bonds. As an ex-
ample, the molecular ring and the integration plane cutting the Al-Al bond are shown in
Figure 4.3. Quantitative values for the diatropic and paratropic contributions to the ring
currents can be acquired by integrating them individually i.e. separating the positive and
negative contributions to the total current. The integrated current strengths are given in Ta-
ble 4.3. The positive currents are here defined as the diatropic currents whereas the negative
values denote paratropic currents. The diatropic and paratropic currents are related to aro-
matic and antiaromatic features, respectively. The ring-current strength circling the ring was
calculated as the subtraction of the total current strengths and the induced currents circling
around the Li+ cations above the ring center. For comparison, the ring current susceptibility
of benzene was found to be 11.8 nA/T calculated at the CCSD/TZP level [120]. As the net
current susceptibility for Al2−4 is positive, it can be considered to be an aromatic aluminum
four-membered ring, whereas the small but negative current susceptibilities for the Al4−4
species show that they are non-aromatic or possibly weakly antiaromatic. The integration
planes cutting through different Al-Al bonds in Li3Al−4 yield qualitatively the same current
strengths. The net current susceptibilities only differ by 0.3 nA/T (5%). The ring-current
susceptibility of the Cu2−

4 ring is about as large as in benzene and 2-3 times weaker than for
the Al2−4 species. The Cu4 ring in Cu4H4 does not sustain any strong magnetically induced
ring current. The weak diatropic current circles inside and outside the Cu4 ring, whereas
the region in the vicinity of the H atoms and outside them is dominated by a paratropic ring
current. The net ring-current susceptibility for Cu4H4 is only -0.6 nA/T. Thus, Cu4H4 is not
aromatic as previously suggested.

Also, the integrated current strengths are defined as a function of the radius (width) of the
integration cross section, and numerical differentiation of the current function with respect
to the radius (width) yields the profile of the ring currents passing the integration plane.
In Figure 4.4, the contributions from σ and π orbitals were evaluated separately for the
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Figure 4.3: The integration cross section used in the calculation of the integrated current-
density distributions.

Table 4.4: For LiAl4−, Li2Al4, Li3Al4− and Li4Al4, the NICS values were calculated at
B3LYP/TZVP and CCSD/TZP levels using the CCSD/TZP optimized structures. (in ppm)

LiAl4− Li2Al4 Li3Al4− Li4Al4
B3LYP/TZVP -18.2 -1.7 -5.9 -10.4

CCSD/TZP -24.1 -6.5 -10.5 -16.7

LiAl−4 and Li4Al4 current-density profiles. For the Al2−4 species, strong diatropic currents
are sustained in both the σ and the π orbitals and the integrated ring-current contributions
from these orbitals are 16.7 and 9.0 nA/T, respectively. The ring of the Al2−4 species can
thus be considered to be both σ and π aromatic. For Li4Al4, the integrated diamagnetic
ring-current contributions from the σ and the π orbitals are 11.8 and 1.9 nA/T, whereas
the corresponding paramagnetic contributions are -0.4 and -8.4 nA/T. Li3Al−4 as well as
Li4Al4 sustain significant diatropic and paratropic currents: strong paratropic currents are
sustained in the π region while diatropic currents are contributed by the σ electrons.

One might claim that the Al4−4 species are σ aromatic and π antiaromatic. This interpreta-
tion is also supported by the ARCS calculations. The ARCS functions show that the ring
currents in the Al4−4 species give rise to paramagnetic shieldings distant from the molec-
ular ring, whereas the magnetic shielding function is positive at small distances from the
ring [1]. Even though the strength of the net ring current in the Al4−4 species is close to
zero as shown by the GIMIC calculations, the molecule possesses a significant magnetic
shielding at long distances from the Al4 ring outside the electron density. For nonaromatic
molecules, the magnetic shieldings away from the ring weakens fast and becomes prac-
tically zero outside the charge density. Therefore, the Al4−4 species are neither aromatic,
antiaromatic, nor nonaromatic. Instead, the Al4−4 species can be considered to belong to a
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Figure 4.4: The current-density profiles for LiAl4− and Li4Al4 calculated at the CCSD/TZP
level: total current of LiAl4− (upper), the diatropic current-density of Li4Al4 (lower left) and
paratropic current-density of Li4Al4 (lower right). The integration intervals (in bohr) in the
width direction are defined as three parts: (a) [-1.5, 1.5], (b) [-3.5, -1.5] + [1.5, 3.5], and (c)
[-10.0, -3.5] + [3.5, 10.0], representing the σ density, the π density, and the rest.

Figure 4.5: The current-density profiles calculated at the CCSD/TZVPP level as a function
of the radius for LiCu4

− (left) and as a function of the height for Li2Cu4 (right)
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new class of molecules with the peculiar property of having long-range magnetic shieldings
without sustaining any strong net ring current. Another member of this class of molecules
is C60 which has recently studied by Johansson et al. [133] ARCS studies show that the cur-
rent in the five-membered rings is mainly paratropic and the six-membered rings sustain
diatropic currents [134]. The spherical rings current is diatropic outside and paratropic in-
side the fullerene. For this class of molecules, the long-range magnetic shielding does not
vanish, because the average radii of the diatropic and paratropic currents are significantly
different. According to Biot-Savart’s law, the current with the largest radius characterizes
the magnetic shieldings at very long distances.

The NICS calculations for LiAl−4 , Li2Al4, Li3Al−4 and Li4Al4 were employed here for com-
parison. The NICS values calculated at B3LYP/TZVP and CCSD/TZP levels are also listed
in Table 4.4. The negative NICS values suggest that they are all aromatic. The approximately
constant difference between the NICS values calculated at the B3LYP and CCSD levels is due
to the well-known fact that magnetic shieldings are in general underestimated at DFT levels
of theory [135]. The number of counter ions should not significantly affect the magnitude of
aromaticity properties in the aluminum four-membered-rings due to only small structural
changes of the Al2−4 core between LiAl−4 and Li2Al4. However, the NICS values of LiAl−4 do
not agree with those obtained for Li2Al4. The NICS data for Li3Al−4 are about 5 ppm smaller
than the data for Li4Al4 indicating that the NICS value is not a very reliable aromaticity
index for Al42− and Al44− species.

The current-density profiles calculated at the CCSD/TZVPP level as a function of the radius
for LiCu−4 and as a function of the height for Li2Cu4 are shown in Figure 4.5. The current
profiles of LiCu−4 and LiAl−4 are strikingly similar except that for Cu2−

4 the current in the
interior of the molecular ring is weak and dominantly paramagnetic, whereas for Al2−4 the
ring current is diatropic both inside and outside the ring. The orbital plot in Figure 4.6 shows
that the a1g orbital has large amplitude at the center of the Li2Cu4 cluster. The presence of
a significant amount of electron charge at the cluster center shields the external magnetic
field in the NICS point. The diamagnetic shielding contribution from the a1g orbital in the
NICS point apparently results from the presence of its electrons but not from ring currents
sustained in the Cu4 ring. The eu orbital is however ring-shaped and has a significant am-
plitude outside the Cu2−

4 ring suggesting that the HOMO is sustaining the ring current and
therefore responsible for the aromaticity properties of the Cu2−

4 ring; in other words, the
large ring current appearing outside the Cu2−

4 ring indicates that the eu orbital is mainly
responsible for the transport of the electrons.

The explicit orbital contributions to the magnetically induced currents cannot be obtained
using the GIMIC method, because the current contributions from the mixing of occupied
orbitals cannot be eliminated in the GIMIC scheme [136]. The contribution from valence
4s orbitals was therefore estimated by removing valence s functions from the basis set. In
the current calculations without valence s orbitals, the ring-current susceptibility obtained
at the MP2 level is only 4.0 nA/T; the Cu2−

4 ring sustains only a weak ring current when
the valence s basis functions are absent. In contrast to Wannere et al. [88], we find no need
to invoke the d-orbitals in order to explain the aromaticity of planar four-membered Cu2−

4
rings.

AROMATICITY ORIGINATED FROM THE HYDROGEN BONDS IN (HF)3?

Despite the fact that aromaticity is not very well defined, new computational tools are
widely used to discuss even predict molecular aromaticity qualitatively and quantitatively.
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Figure 4.6: The HOMO (left) and HOMO-1 (right) molecular orbitals of Li2Cu4 calculated
at the HF SCF/TZVPP level using the MP2/TZVPP molecular structure. The orbitals are
viewed along the C4 axis. The orbital energies (in eV) are given within parentheses. The
pictures have been made using gOpenMol [137].

Figure 4.7: Nuclear magnetic shielding function (in ppm) of (HF)3 calculated at the
CCSD/QZ2P level. The shielding function is calculated from the ring center along the sym-
metry axis perpendicular to the ring.

As a result, new aromaticity concepts are introduced from time to time. The term H-bonded
aromaticity was recently proposed by Datta et al. based on the significant diamagnetic
shieldings at the center of cyclic HX (X=F, Cl, and Br) trimers and water molecules [138, 139].
In their studies, they suggested that the hydrogen bonds between the monomers possess a
significant aromaticity . The hydrogen bonds in (HF)3 trimer were here reexamined; the
degree of aromaticity and electron correlation were studied by applying ARCS and GIMIC
methods [3].

The calculation of the magnetic shielding function along the symmetry axis (the ARCS func-
tion) illustrated in Figure 4.7 shows that the long-range magnetic shielding vanishes outside
the electron charge density indicating that the molecular ring does not sustain any strong
ring current. By using the GIMIC approach, the ring-current susceptibilities of 0.34 and 0.44
nA/T for the (HF)3 trimer were obtained at the MP2 and B3LYP levels. The current profiles
of the current passing a cut plane through the HF bond and through the hydrogen bond of
the (HF)3 trimer are shown in Figure 4.8. In Figure 4.9, the magnetically induced current
density in the complex plane is revealed. The GIMIC calculations clearly demonstrates that
the currents predominantly circles around the HF monomers rather than the entire trimer.
Both ARCS and GIMIC calculations give the same conclusion that the (HF)3 ring is nonaro-
matic. The problem in using the NICS values simply as an aromaticity index without careful
consideration has been canvassed by Lazzeretti et al. [111], and another example is here pre-
sented.
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Figure 4.8: Diamagnetic and paramagnetic currents passing a cut plane (a) through the HF
bond and (b) through the hydrogen bond of the (HF)3 trimer. Note that the maximum for the
hydrogen bond is about a factor of 6 smaller than that for the HF molecule. The calculation
was performed at the MP2/ TZVPP level.

Figure 4.9: Magnetically induced current density of (HF)3 in the molecular plane calculated
at the MP2/TZVPP level.



Chapter 5

Summary

THE aim of the studies in the thesis is to provide the microscopic information of small
bimetallic clusters in order to acquire a better understanding of mixed-metal systems.

Small lithium-aluminum clusters were investigated at the CCSD level. The obtained molec-
ular structures form four-membered Al2−4 and Al4−4 rings with the Li atoms acting as coun-
terions. Many methods for assessing the degree of aromaticity have been developed. They
have been successfully used to determine the aromaticity of the traditional organic com-
pounds. This system immediately became a popular touchstone, and then the term ”σ aro-
maticity” came along in order to describe the aromaticity contributed from σ orbitals. The
M2−

4 (M=Cu, Ag, and Au) clusters were predicted by Wannere et al to have a similar struc-
ture as Al2−4 [140]. In our studies, the GIMIC method was applied to the Al2−4 , Al4−4 and
Cu2−

4 clusters at the CCSD level. This series of calculations showed that these rings sustain
strong diatropic currents the σ orbitals. The currents induced in the π orbitals are diatropic
in Al2−4 and paratropic in Al4−4 whereas the Cu2−

4 ring sustains currents mainly in the σ
orbitals. Based on NICS calculations, Wannere et al propsed that the alkali-coinage metal
clusters are the first example of d-orbital aromatic molecules, whereas our GIMIC calcula-
tions showed that the d-orbitals do not significantly participate in the current flux around
the ring. In the computational (HF)3 study, the obtained ring-current susceptibility is only
0.37 nA/T at the MP2 level showing that (HF)3 is not an aromatic complex as suggested
by Rehaman et al [139]. The weak diatropic and paratropic currents flowing around the
complex almost cancel while the substantial edge currents of 9.1 nA/T circling around the
monomers give arise to the significant magnetic shielding values at the center of the trimer.

The negatively charged NaCu−4 and sodium-auride clusters with the composition of NamAu−n
( n = 1− 4, n ≥ m and m + n ≤ 6) were generated and studied spectroscopically as well as
computationally. Photoelectron spectroscopy has been combined with ab initio calculations
to examine the molecular structures of the anionic clusters. A striking difference between
Cu2−

4 and Au2−
4 structures was found. The copper species has a ring-shaped Cu2−

4 core
whereas NaAu−4 is a planar cluster of C2v symmetry. Because the excess electron is mainly
distributed on the gold atoms, the gold atoms orient themselves away from each other. The
sodium-auride clusters form planar structures analogously to small gold clusters: the small
anionic clusters prefer to be linear or quasi-linear due to the Coulomb repulsion. A com-
prehensive strategy for interpretation of experimental photoelectron spectroscopic data has
been conceived. The vertical detachment energies deduced from the ab initio calculations are
found to have an accuracy of 0.2 eV as compared to experimental values rendering reliable
identification of alkali-coinage metal clusters feasible.
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