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1. INTRODUCTION 
 

Plants emit various kinds of volatile organic compounds (VOC) into the atmosphere. 

These compounds consist of alkenes, aldehydes, ketones, esters, ethers, alcohols and 

acids (Arey et al., 1991 a,b, 1995; Isidorov, 1994; Winer et al., 1992; Kesselmeier & 

Staudt, 1999). Of great importance is a group of compounds called isoprenoids or 

terpenoids consisting of isoprene (C5H8), monoterpenes (two isoprene units) and 

sesquiterpenes (three isoprene units). Usually they are characterised as volatile, poorly 

water-soluble and very reactive compounds with a strong scent. The structures of 

some terpenoids and common oxygen-containing compounds, also considered to 

belong to the terpenoids group, are in Figure 1.  

 

Monoterpenes are emitted from plants for a variety of reasons, including defence 

against insects and other herbivores and attraction of pollinators and enemies of 

herbivores (Fall, 1999). The reason for isoprene emission is still not quite clear. 

Singsaas et al. (1997) suggested that the emission of isoprene benefits plants by 

increasing their thermotolerance.  

 

The amount of biogenic terpenoid emissions is estimated to exceed the amount of 

anthropogenic VOC emissions. Müller et al. (1992) gave the amount of global 

anthropogenic VOC emissions as 149 Tg/year (technological sources and biomass 

burning), while according to Guenther et al. (1995) the amount of global biogenic 

VOC emissions is estimated to be about 1150 Tg (C)/year, composed of 44% 

isoprene, 11% monoterpenes, 22.5% other reactive VOC (defined as compounds with 

a lifetime of less than one day) and 22.5% other VOC (lifetimes longer than one day).  

Finland is a densely-forested country and here  
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isoprene α-pinene β-pinene camphene
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β-phellandrene β-myrcene cis-β-ocimene trans-β-ocimene

linalool 1,8-cineol β-caryophyllene

Figure 1: The structures of some of the terpenoid compounds emitted by vegetation
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too the annual biogenic hydrocarbon emissions surpass the anthropogenic VOC 

emissions. Annual anthropogenic VOC emissions in Finland are estimated to be 193 

kilotonnes (Mroueh, 1994) whereas the first estimates of biogenic emissions 

calculated by Lindfors & Laurila (2000) reach 318 kilotonnes per annum.  

 

The chemistry of the atmosphere is strongly influenced by biogenic VOC emissions 

due to their magnitude and high reactivity towards the OH radical, NO3 and ozone. 

During the past two decades a lot of effort has been put on the identification and 

quantification of oxidation products resulting in these reactions. Product studies under 

atmospheric conditions have faced difficulties due to analytical problems in detecting 

multifunctional groups, as well as the lack of commercial standards for the anticipated 

products. Product and mechanistic studies have recently been reviewed by Calogirou 

et al. (1999), Fuentes et al. (2000) and Atkinson (2000). 

 

The oxidation process of isoprene and monoterpenes is important because it can 

produce ozone in the presence of nitrogen oxides (mainly emitted from combustion 

sources). Ozone is a reactive oxidant that is harmful to vegetation and animals. In 

addition to their ozone-forming potential, monoterpenes and especially sesquiterpenes 

have a potential for forming secondary organic aerosols (Hoffmann et al., 1997). New 

particle formation in a forested area has been reported (Mäkelä et al., 1997); these 

new particles are most probably caused by interaction of organic acids produced by 

the photo-oxidation of terpenes with other organic or inorganic species present in the 

atmosphere (Kavouras et al., 1998).  
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The first objective of this work was to measure terpenoid emission rates from boreal 

deciduous trees for the VOC emission inventory purposes. Deciduous trees were 

chosen, because available data concerning boreal deciduous species were almost 

absent. Boreal coniferous trees have been studied earlier by Janson (1993), Schürman 

et al., (1993), Janson & de Serves (2001) and Janson et al. (2001). Accurate estimates 

of the biogenic VOC emissions are needed for the development of efficient ozone 

control strategies. They are also essential in the evaluation of the contribution of 

biogenic VOCs to atmospheric aerosol formation. As a result of these measured 

emission rates the first biogenic VOC emission estimates in Finland have been 

published (Lindfors & Laurila, 2000; Lindfors et al., 2000). The ambient 

concentrations of biogenic VOCs were measured in order to validate emission rate 

measurements. They were considered to reveal possible new VOC sources, to give 

more information about the seasonality of the emission rates and to describe the effect 

the biogenic VOCs have on photochemistry.  

 

In the atmosphere, monoterpenes react with hydroxyl and nitrate radicals and ozone. 

While reaction rate coefficients for many of these reactions have been determined 

(Atkinson, 1994), there are not much data available concerning the products of these 

reactions. The second objective of the study was to identify and quantify the main 

products formed in the reactions with ozone and OH radical and monoterpenes.  Most 

of the products identified earlier were tentative based on mass spectra alone (Arey et 

al., 1990). In this work an experimental technique was developed to allow sufficient 

amounts of the products formed in these reactions to be collected and purified for 

complete spectroscopic identification. The only quantitative yield data earlier was 

from the reactions of α-pinene and β-pinene with OH radical and ozone (Hatakeyama 
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et al., 1989, 1991) and the OH radical reactions with α-pinene, β-pinene, limonene, 

myrcene, sabinene, terpinolene and ∆3-carene (Arey et al., 1990). 

 

Papers I and II deal with emission rate measurements from Betula pendula, Betula 

pubescens, Populus tremula and Salix phylicifolia. Special attention has been paid to 

the seasonal variation of the emission rates. Paper III presents ambient concentrations 

of biogenic VOCs in a boreal, forested site. Papers IV and V deal with the chemistry 

of monoterpenes in air. Paper IV presents a method of producing, collecting and 

separating products formed in monoterpene reactions with O3 and the OH radical in a 

chamber experiment for complete spectroscopic analysis.  This technique was then 

applied in paper V to several monoterpenes and some of the products formed in these 

reactions were identified and quantified. 

 

Several other persons have made important contributions to these papers. J. Rinne 

arranged the temperature, radiation, relative humidity and CO2 measurements in the 

emission-rate measurements. In papers IV and V, the author’s contribution was to 

develop a method for the separation of products and to conduct the spectroscopic 

identification while the quantification was conducted by Professors Arey and 

Atkinson. 

 

2. REACTIONS OF MONOTERPENES IN AIR 
 

Isoprene and monoterpenes are alkenes and their gas-phase atmospheric reactions are 

generally analogous to those of other alkenes such as propene. Many of the 

mechanistic studies have been conducted on small alkenes but the reactions of 

monoterpenes can be more complicated for example due to strained rings in some 
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monoterpene structures. Isoprene and monoterpenes are highly reactive towards the 

OH and NO3 radicals and ozone. In the troposphere OH radicals are formed mainly 

due to the photolysis of O3 in the presence of water vapour according to reactions (1)-

(4). 

 

 

 

 

 

 

The excited O(1D) atoms are either deactivated to ground state oxygen, O(3P), in 

collisions with air molecules, or react with water vapour to generate OH radicals. 

Hydroxyl radicals are formed in this process only during daylight. At night they can 

be produced in the reactions between alkenes and O3 and this source can also be 

significant (Atkinson et al., 1992).  

 

Ozone is produced in the troposphere by photolysis of NO2 (National Research 

Council, 1991). 

 

 

 

On the other hand, ozone rapidly oxidizes the nitrogen oxide molecule formed in 

reaction (5) back to nitrogen dioxide. 

 

 

NO2 + hv NO + O (3P)

O (3P) + O2 O3

(5)

(6)

O3 + NO NO2 (7)

 O3  + hv O2 + O (1D)        

O (1D) + M O (3P)  +   M (M=O 2, N2)        

O (3P)  +  O2  +M O3  +   M                 

(1)

   (2)

   (3)

 O (1D) + H2O 2 OH     (4)
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In the atmosphere these three reactions are in photochemical balance, unless there are 

other oxidants in addition to ozone to convert NO to NO2. In this case reactions (5) 

and (6) may lead to net ozone production.  

 

The hydroxyl radicals mainly react with atmospheric alkenes by addition to the 

double bond. The atmospheric oxidation reactions of biogenic (and also 

anthropogenic) hydrocarbons with OH radicals produce organic peroxy radicals 

(RO2
.) and hydrogen peroxy radicals (HO2

.) (reactions 8-13). These radicals readily 

oxidize NO to NO2, thus leading to ozone production.  
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In reactions (5)-(13) 2 NO molecules are oxidized thus leading to the production of 

two ozone molecules for each reacted alkene molecule. In clean air with very low 

NOx concentrations, the number of NO molecules is not sufficient for reactions (10) 

and (13) to be effective. In this case, the peroxy radicals can combine (reactions 14 

and 15) and no ozone is formed, or they can react with ozone, thus leading to ozone 

destruction (reactions 16 and 17).  

 

 

 

 

 

 

 

 

 

Whether ozone is destroyed or produced in the troposphere depends on the rates of 

reactions (14)-(17) (Chameides et al., 1992; Atkinson, 2000).  To arrive at efficient 

ozone control strategies, the emissions of anthropogenic and biogenic VOCs, as well 

as the NOx emissions have to be assessed.  

 

The β-hydroxyalkoxy radical produced by the reaction (10) has three possible reaction 

pathways: decomposition, reaction with molecular oxygen or isomerization (Atkinson, 

2000). Decomposition (reaction 11a) produces a hydroxyalkyl radical that can react 

with molecular oxygen (12). The decomposition mechanism thus results in two 

aldehyde/ketone molecules (reactions 11a and 12) or, as with bicyclic monoterpenes, 

HO2
. HO2

.
+ H2O2   +   O2 (14)

RO2
. HO2

.
+ ROOH   +   O2

(15)

HO2
.

HO2
. +    O2

+      O3 OH.    +    2 O2

OH.    +     O3 (16)

(17)
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the ring containing the double bond can break, leading to a monocyclic dicarbonyl 

product. Decomposition is the most important pathway for the smaller alkenes 

(Atkinson, 1994), but for the larger alkenes (C6-C8) the isomerization (reaction 11c) 

dominates  (Eberhard et al., 1995; Kwok et al., 1996). The β-hydroxyalkoxyradical 

isomerizes to a dihydroxyalkylradical that continues to react with molecular oxygen 

and NO to form dihydroxycarbonyl compounds (Kwok et al., 1996). β-

Hydroxyalkoxyradical can also react with molecular oxygen to produce 

hydroxycarbonyls (reaction 11b). So far not many hydroxycarbonyl compounds have 

been identified, but Aschmann et al. (2000) detected a β-hydroxycarbonyl product 

after an α-pinene reaction with an OH radical in the absence of NO, while in the 

presence of NO decomposition was the main mechanism. 
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In very polluted air NO can combine with a β-hydroxyalkylperoxy radical forming β-

hydroxynitrate instead of reaction 10. However, this reaction is of minor importance.  

 

 

 

 

Muthuramu et al. (1993) have determined the yield of 2-nitrooxy-3-hydroxybutane 

formation from OH radical reaction with cis-2-butene in the presence of NO, to be 

0.037. 

 

Besides the addition to the double bond, hydroxyl radical can also react with alkenes 

by abstracting a hydrogen atom. Generally, abstractions are of minor importance 

(Atkinson, 1994), but sometimes they are not negligible; for example 20% of 1-octene 

was found to react with OH radical by hydrogen abstraction, while 80% reacted by the 

addition mechanism (Paulson & Seinfeld, 1992). 

 

The oxidation of monoterpenes by O3 also starts with an addition to the double bond. 

Contrary to the oxidation by hydroxyl radical this reaction proceeds both during the 

day and at night. The mechanism produces two sets of carbonyl and a biradical 

(Atkinson, 2000).  
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The biradicals formed in the ozone reaction can be collisionally stabilized or 

decompose in a number of ways (Alvarado et al., 1998; Atkinson 2000).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The products arising from the biradicals during monoterpene oxidation are not 

completely understood. However, it is known that the reaction of ozone with alkenes 

produces OH radicals (Atkinson et al., 1992) often in large yields (Paulson et al., 

1998). Reaction 21 is the main pathway at least for α-pinene (Alvarado et al., 1998) 

while the reaction producing an oxygen atom (reaction 22) is of minor importance.  
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.

*
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O.

R2
.

*
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(22)

R1

O
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The excited biradical can also react with water vapour producing organic acids  

(Horie et al., 1994; Neeb et al., 1997). Any alkene with terminal double bonds like 

isoprene, sabinene, limonene and β-pinene are all capable of forming acids in varying 

degrees (Horie et al., 1994). 

 

 

 

 

Organic acids produced in the reactions of ozone with monoterpenes are considered to 

be important elements in gas-to-particle conversion (Hoffmann et al., 1997; 

Christoffersen et al., 1998; Kavouras et al., 1998; Jang & Kamens, 1999). Several 

organic acids have been detected in ambient air samples, e.g. norpinic acid from α-

pinene and pinic acid from β-pinene oxidation reactions were identified in the aerosol 

phase samples taken in Canada and California (Yu et al., 1999).  

 

In addition to ozone and OH radicals, alkenes also react with nitrate radicals. Nitrate 

radicals in the troposphere are formed from NO and NO2 with ozone.  

 

 

 

 

 

 

 

 

.CH2OO .   +   H2O HOCH 2OOH HCOOH   +H 2O (23)

NO3
. + hv 

NO2
. + O (3P)        

NO .    +   O2

NO .    +   O3

NO2
.    +   O3

NO2
.   +   O2

NO3
.    +   O2

(24)

(25)

(26)
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Nitrate radicals decompose rapidly in sunlight (reaction 26), and therefore reactions of 

NO3 and alkenes are efficient only at night (National Research Council, 1991). 

Also nitrate radical reactions are addition reactions and proceed similarly to the 

hydroxyl radical reactions (Wayne et al., 1991; Skov et al., 1992) with the exception 

that the nitrooxyalkyl peroxy radical reacts with NO2 rather than NO. 

 

 

 

 

 

 

 

 

 

 

This is because the NO concentrations are low in the presence of nitrate radicals 

(nitrate radicals react rapidly with NO producing NO2). The formed peroxynitrates are 

thermally unstable and in a cold climate peroxynitrates can serve as a reservoir for 

peroxides and NO2. Depending on their lifetimes, they can transport nitrogen oxides 

for considerable distances.  

The reaction mechanisms of alkenes and nitrate radical are not fully understood and 

not many products arising from these reactions have been identified due to analytical 

difficulties. Wängberg et al. (1997) studied the α-pinene reaction with the nitrate 

radical and found pinonaldehyde to be the main reaction product (62 % yield). Other 

identified products were: pinane epoxide, 3-hydroxypinan-3-nitrate and 3-oxopinan-2-

R
R

ONO2
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O O.
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O ONO2
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ONO2

O O.
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+NO2
.

(28)
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nitrate. The large fraction of pinonaldehyde found in the study indicates that although 

nitrate radical adds to the double bond the nitrate is later released. They propose a 

tentative mechanism leading to pinonaldehyde (reaction 29) from peroxyradical 

formed in reaction 27.  

 

 

 

 

 

 

 

 

 

 

 

Contrary to α-pinene, β-pinene and ∆3-carene were found to produce mainly nitrates 

(60-70 %) with carbonyl yields of about 10 % and 20-30 % for β-pinene and ∆3-

carene, respectively (Hallquist et al., 1999). 

 

For many of the terpenoid compounds the reaction rate coefficients with the OH and 

NO3 radicals and ozone have been determined (Atkinson, 1994); the most common 

compounds are shown in Table 1 together with their estimated atmospheric lifetimes. 

The calculated lifetimes generally vary from a few minutes to hours.  
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Table 1: Rate constants for the gas-phase reactions of OH and NO3 radicals and O3 
with isoprene and some of the terpenes and their calculated tropospheric lifetimes 
with respect to these reactions (mean concentrations assumed [O3]= 7*1011 molecules 
cm-3 (30 ppb), [OH.]=5*105 molecules cm-3 (0.02 ppt) and [NO3]= 1*108 molecules 
cm-3 (4 ppt). 30 ppb is the mean ozone concentration observed in Finland (Air Quality 
measurements 2000), 4 ppt was the upper limit obtained for the mean night-time NO3 
concentration in an eucalyptus forest in rural Portugal (Gölz et al., 2001) and OH. 
midday average peak concentration for sunny conditions is (1-10)*105 molec. cm-3 
(Finalyson-Pitts & Pitts, 1986). The rate constants are from Atkinson (1994) except 
those for β-caryophyllene, which are from Shu & Atkinson (1995). 
 

Rate constants (cm3 molecule-1 s-1) Tropospheric lifetime for reaction with Biogenic VOC 

OH. NO3
. O3 OH. NO3

. O3 

Isoprene 101*10-12 6.78*10-13 12.8*10-18 5.5 h 4.1 h 31 h 

α-pinene 53.7*10-12 6.16*10-12 86.6*10-18 10.3 h 27 min 4.6 h 

β-pinene 78.9*10-12 2.51*10-12 15*10-18 7.0 h 1.1 h 26 h 

∆3-carene 88*10-12 9.1*10-12 37*10-18 6.3 h 18 min 11 h 

Camphene 53*10-12 6.6*10-13 0.90*10-18 10.5 h 4.2 h 18 days 

Limonene 171*10-12 1.22 *10-11 200*10-18 3.2 h 13.7 min 2.0 h 

Sabinene 117*10-12 1.0 *10-11 86*10-18 4.7 h 16.7 min 4.6 h 

β-ocimene 252*10-12 2.2 *10-11 540*10-18 2.2 h 7.6 min 0.7 h 

β-caryophyllene 200*10-12 1.9*10-11 116*10-16 2.8 h 8.8 min 2.1 min 

 

 

 

 

3. FACTORS AFFECTING BIOGENIC VOC EMISSION RATES 

 

VOC emission rates do not remain constant throughout the growing season; they 

show considerable variation for example due to phenology, growth environment, 

environmental changes like temperature and light, nutrient and water availability. The 

factors affecting biogenic VOC emissions have been reviewed by (Guenther et al., 

1995 and Kesselmeier & Staudt, 1999).  
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Temperature and photosynthetically active radiation are the best-known variables 

affecting VOC emission rates in the short-term. Generally, monoterpenes are released 

into the atmosphere from storage pools, such as resin ducts or glands, as a function of 

temperature (Tingey et al., 1980). Some plants have been found to also emit 

monoterpenes that are not stored in the plant. These monoterpenes are emitted into the 

air directly after a light-dependent synthesis e.g. Pinus densiflora (Yokouchi & Ambe, 

1984), Picea abies (Shürmann et al., 1993), Quercus ilex (Loreto et al., 1996, Bertin 

et al., 1997), sunflower and beech (Schuh et al., 1997) and Pinus pinea (Staudt et al., 

1997, 2000).  

 

Isoprene emission begins rapidly in light and is fully induced within 30 minutes 

(Loreto & Sharkey, 1990; Monson et al., 1991). The emissions then increase with 

increasing PPFD (photosynthetic photon flux density), sometimes saturating at a 

certain PPFD level, such as 600-800 µmol m-2 s-1 with velvet beans (Monson et al., 

1991). Harley et al. (1997) measured isoprene emission dependence on PPFD using 

white oaks, and found no saturation at PPFD values approaching that of full sunlight. 

 

Guenther et al., (1991, 1993, 1997) describe the light and temperature dependence of 

VOC emission rates by the algorithm  

 

LTS CCEE **=         (eq. 1) 

 

where E is the measured emission rate and ES is a standard emission potential (usually 

at a standard temperature of 30°C and a standard radiation of 1000 µmol m-2 s-1). CT 
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and CL are the influence of temperature and light, respectively, and they are described 

according to equations 2 and 3  
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where α , CL1, CT1, CT2  and TM  are empirically-determined coefficients, R is a 

constant (=8.314 J K-1 mol-1) and T and L are the temperature and light intensity of 

the isoprene emission measurement. Equation 4 is commonly used when describing 

the temperature dependence of stored monoterpene emission rates (Tingey et al., 

1980, Lamb et al., 1987, Guenther et al., 1993): 

 

))(exp(* SS TTEE −= β  (eq. 4) 

 

where E is the monoterpene emission rate at temperature T (K), ES is the monoterpene 

emission potential at a standard temperature TS (K) and β (K-1) is an empirical 

coefficient. Guenther et al. (1993) have suggested a β coefficient value of 0.09 K-1 for 

all monoterpene and plant species.  

 

Other factors affecting VOC emissions have not been very clearly assessed. Yokouchi 

& Ambe (1984) and Juuti et al. (1990) concluded in their work that relative humidity 
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did not affect monoterpene emission rates, whereas Loreto et al. (1996) found that 

relative humidity can affect the contribution of different monoterpenes to the total 

amount. Physical disturbance (e.g. rough handling of plants) can increase 

monoterpene emission rates, as shown by Juuti et al. (1990) with Monterey pine.  

 

In addition to short-term changes, emission rates have also been found to vary in the 

longer term throughout the year. Emission of isoprene, for example, is highly 

dependent on the temperature the plant has experienced in the past (Monson et al., 

1994; Pétron et al., 2001). Aspen trees growing in the Rocky Mountains in their 

natural environment do not initiate isoprene emission until six weeks after leaf 

emergence (Monson et al., 1994). When non-emitting leaves are suddenly exposed to 

higher temperatures, isoprene emission rates increase. Staudt et al. (2000) studied the 

monoterpene emissions of Pinus pinea and found that the emission pattern as well as 

the emission potential changed during the year. The monoterpenes that were found to 

be dependent on light intensity were emitted only in the summer, whereas 

monoterpenes from resin ducts were released at any time and in any season as a 

function of temperature.  So far there is not much emission rate data covering the 

whole growing season or the whole year.  

 

 

4. MATERIALS AND METHODS 
 

4.1. Measurement sites 

 

The emission rate measurements were carried out at Ruotsinkylä, Vantaa, in southern 

Finland, at the station of the Finnish Forest Research Institute during the growing 
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seasons of 1996, 1997 and 2000. During 1996 and 1997 measurements were carried 

out using a different tree each time. The measured trees were young, about 1-1,5 

metres in height. In 1996 the trees measured were Betula pendula (silver birch), Salix 

phylicifolia (tea-leafed willow) and Populus tremula (European aspen). Because 

Betula pendula showed unexpected seasonal variations, the measurements were 

continued in 1997 in order to find out the time of onset of higher emission rates. The 

emission rates of Betula pubescens (downy birch) were also measured in 1997, and 

due to the irregularities in the emission rates in 1997, measurements on Betula 

pubescens were repeated in 2000 with two clones with different genetic origin. The 

Finnish Forest Research Institute numbers of the clones are E567 (Finnish origin) and 

D2472 (German origin). In order to find out if the variations were tree-to-tree or day-

to-day variations, the trees used in 2000 were the same throughout the season.  The 

clones were also older than trees used earlier, the diameter of the trees at a height of 

1.5-meter being 22 and 24 cm. 

 

The ambient air concentration measurements were carried out at Ilomantsi, in eastern 

Finland. Samples were collected about 1.5 m above the ground from an open field on 

the top of a hill called Pötsönvaara. The distance from the forest was about 100 m. 

The main tree species growing in the area was Pinus sylvestris, but Picea abies, 

Betula pendula and Populus tremula were also common. Close to the measuring site, 

were also Salix species. The landscape is mainly forested, but with some fields and 

cuttings. About 100 metres from the measuring site there was a house and a narrow 

road leading to the house from a larger road (about 500 metres) with a low traffic 

intensity (50-100 cars/day). Samples were collected 3-5 times a week during the 

growing seasons of 1997 and 1998. 
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4.2. The sampling and analysis of Volatile Organic Compounds (VOC) in air 

 

The light hydrocarbons were collected as whole air samples in stainless steel canisters 

whose inner surfaces were passivated by a covering of chrome-nickel oxide. The 

canisters used in this work were evacuated prior to taking to a sampling site. At the 

site the canisters were filled and pressurized with a Teflon membrane pump. Canister 

sampling is only suitable for small compounds. Concentrations of compounds in the 

range of C8-C12 were found to be more stable in Tenax adsorbent than in canisters 

(Zielinska et al., 1996). These compounds are possibly adsorbed onto the canister 

inner surfaces.  

 

Larger gas-phase organic compounds were collected on adsorbents Tenax-TA and 

Carbopack-B using pumped sampling. Tenax-TA and Carbopack-B were chosen 

because they are hydrophobic, thus eliminating the need for sample drying. In the 

measurements made in 1996-1998 and used for the papers I and III, only Tenax-TA 

was used. Tenax-TA is a good adsorbent for monoterpenes and sesquiterpenes, but it 

is not strong enough for isoprene (Cao & Hewitt, 1999). Isoprene was analyzed then 

from canister samples. In the emission rate measurements carried out in 2000, and 

used for paper III, a mixture of Tenax-TA/Carbopack-B was used, because 

Carbopack-B is also strong enough for isoprene. Tenax-TA can also be used for more 

polar compounds (Köning et al., 1995).  

 

The accuracy of the repeated Tenax calibration sample analysis was estimated to be 

about 6 % for each terpene compound except limonene and 5 % for light hydrocarbon 

analysis. Limonene was frequently found in blank tubes and therefore analytical error 
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is bigger. In the measurements carried out in 2000, the limonene blank value had 

decreased to the same level with other monoterpenes. 

 

Constant-flow type pumps were used (Alpha-2, Ametek). Constant-flow pumps can 

compensate for moderate flow resistance variations between the adsorbent tubes used. 

Prior to each growing season, all the tubes were checked for their flow restriction. The 

pumps were calibrated each day before and after the measurements were conducted. 

The flow rates used were about 100 ml/min. The maximum deviation of flow rates 

within one day was 10%.   

 

Canister samples were analyzed using a gas chromatograph equipped with flame 

ionization detector (FID) and Al2O3/KCl PLOT column (50 m, i.d. 0.32 mm). Prior to 

analysis samples were passed through a stainless steel tube (10cm* 1/4’’) filled with 

K2CO3 and NaOH in order to dry them. Water in whole air samples can cause 

problems by blocking capillaries, varying retention times and shifting the baseline; 

and water therefore has to be removed from the sample prior to analysis. Air samples 

were concentrated in two liquid nitrogen traps. The first trap was a stainless steel loop 

(1/8’’*125cm) filled with glass beads while the other one was a capillary trap. 

Calibration was performed using a gas-phase standard from NPL (National Physical 

Laboratory, UK) including 30 hydrocarbons at concentration levels of 1-10 ppb.  

 

Adsorbent tubes were analyzed using a thermodesorption instrument (Perkin-Elmer 

ATD-400) connected to a gas chromatograph (HP 5890) with HP-1 column (60 m, i.d 

0.25 mm) and a mass-selective detector (HP 5972). Samples were concentrated in the 

thermodesorption instrument in a cold trap (-30°C) filled with Tenax-TA (papers I 
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and III) or a carbon trap (paper II). No sample drying was needed due to the 

hydrophobic adsorbents. Samples were analyzed using selected ion mode (SIM). 

Every day one larger volume sample  (3-4 litres) was analyzed using full scan mode in 

order to identify the compounds. The analytical system did not allow the separation of 

myrcene and β-pinene; their amount was therefore expressed as a sum and quantified 

as β-pinene. Five-point calibration was utilized using liquid standards in methanol 

solutions. Standard solutions were injected onto adsorbent tubes that were flushed 

with helium flow (100ml/min) for five minutes in order to remove methanol. 

Standards were available for most of the compounds identified; pure ocimene, cis-

caryophyllene and α-farnesene standards were not accessible and therefore ocimenes 

were quantified as α-pinene and cis-caryophyllene and α-farnesene as trans-

caryophyllene. 

 

4.3. Emission rate measurements 

 

Several techniques have been utilized to measure the emission fluxes from vegetation. 

These comprise enclosure, tracer dilution, and micrometeorological methods. The 

enclosure technique is a plant-specific technique using a plant or a part of it, which is 

enclosed in a cuvette, whereas the other techniques are used to measure VOC fluxes 

from a certain land area. In Finland, the gradient method has been used to measure 

VOC fluxes from pine forests (Rinne et al., 1999, 2000 a, b).  

 

In the present work, the enclosure technique was employed, because plant specific 

emission rates are needed for emission inventories and so far there were no emission 

rates available for boreal deciduous trees. A branch of a tree is enclosed in a cuvette 
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made of transparent, inert Teflon. The cuvette is equipped with inlet and outlet ports, 

a temperature and humidity sensor, a PPFD sensor and a Teflon fan. Air is pumped 

through the cuvette at a known flow rate. The samples are then collected 

simultaneously onto adsorbent tubes from both inlet and outlet ports. The emission 

rate (E) is determined as the mass of compound per leaf or needle dry weight (m) and 

time according to equation (5).  

 

1
12 **)( −−= mFCCE    (eq. 5) 

 

C2 is the concentration in the outgoing air, C1 is the concentration in the air entering, 

and F is the flow rate into the cuvette. The dry weight of the biomass was determined 

by drying the leaves at 75ºC until achievement of weight consistency. 

 

Most of the compounds of interest are very reactive towards ozone, and therefore 

ozone has to be removed from the incoming air. Hoffmann et al. (1995) and 

Calogirou et al. (1996) have measured high losses for some of the reactive terpenes; 

ocimenes and limonene in particular were found to be destroyed almost completely. 

MnO2-coated copper meshes have been found to destroy ozone efficiently and these 

were used in papers II and III, but in paper I (measurements in 1996) no ozone 

scrubbers were employed. In our measurement setup in 1996, samples were taken 

from the outlet port and the ambient air next to the inlet tube situated close to the 

ground. Although no ozone scrubber was used in 1996, the average standard 

monoterpene emission potential (30°, according Guenther et al., 1991) of Betula 

pendula during the high emission season was 6.2±4.6 µg g-1
dw h-1 whereas in 1997, 

when the ozone scrubber was used, the emission potential was 7.7±4.6 µg g-1
dw h-1. 
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Because these emission potentials are so similar, it is likely that most of the ozone 

was already destroyed by the vegetation close to the ground.       

  

4.4. Monoterpene oxidation reactions in chamber experiments 

 

Papers IV and V present laboratory studies conducted in a laboratory of the Statewide 

Air Pollution Research Laboratory in the University of California in order to identify 

the main products formed in atmospheric reactions of monoterpenes with OH. and 

ozone. The reactions were carried out in a 6400-litre Teflon chamber equipped with 

black lamps and a Teflon fan. Most of the anticipated products are not commercially 

available and therefore most of the earlier identifications have been tentative, based 

on mass spectra alone (Arey et al., 1990). The purpose of the study was to produce 

enough oxidation products so as to be able to isolate and purify the main products for 

complete spectroscopic identification. The choice of reaction (OH. radical or O3) was 

made on the basis of earlier quantitative yield data for the reactions. The reaction that 

generated more major products was chosen.  Quantitative reactions were carried out 

using a monoterpene concentration about ten times smaller than that in the reactions 

used for identification.  Reactions were followed with GC/FID and when enough 

products were formed a 4000-litre gas sample was collected onto 6-8 polyurethane 

foam plugs with high volume sampler. The plugs were extracted with 

dichloromethane and concentrated to 2-ml. The oxidation products from these 

solutions were then separated using a liquid chromatoraph with a diode-array detector 

as described in paper IV. The solvents used were water/methanol mixtures. For NMR 

(Nuclear Magnetic Resonance) spectra analysis the solvent needed to be changed to 

CDCl3. This was done using solid-phase extraction (SPE) on octadecyl columns as 
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explained in paper IV. In addition to NMR analysis, infrared (IR) spectra were also 

obtained using an FTIR (Fourier transform infrared) detector interfaced to a gas 

chromatograph.   

 

5. RESULTS 
 

5.1. VOC emission rates    

 

5.1.1. Seasonal variation of VOC emissions 

 

5.1.1.1 Isoprene emitters (Populus tremula and Salix phylicifolia) 

 

Two of the tree species studied, Populus tremula and Salix phylicifolia, were isoprene 

emitters (paper I). The isoprene emissions began about two weeks after the leaves had 

emerged. On the first measurement day, Populus tremula did not emit isoprene, but 

two weeks later, when Populus tremula was measured for the second time, the 

isoprene emission rate was 45 µg g-1
dw h-1. Also Salix phylicifolia did not emit 

isoprene at two first measurement days in May, but the emissions initiated in June. In 

August, when the weather was warm, with the temperature exceeding 20°C on every 

measuring day, the isoprene emission rates of Salix phylicifolia were very high 

(approximately 50 µg g-1 dw h-1). The delayed isoprene emission has been detected 

also earlier. Guenther et al. (1991) noticed that the isoprene emission of eucalyptus 

leaves increased considerably when the leaves had reached the age of two weeks and 

Grinspoon et al. (1991) found that isoprene emission from velvet bean leaves occurs 

several days after the photosynthetic competence develops.  
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Populus tremula and Salix phylicifolia emitted monoterpenes soon after bud break, 

but these emissions declined quite soon, suggesting that the terpenes could be from a 

pool in the buds. Higher terpene emissions from young leaves can be related to 

chemical defence mechanisms. Young leaves are sensitive to attacks by insects and 

herbivores. These emission rates per dry weight (gdw) were, however, significant, the 

averages of the first measurements at the end of May being 7.9 µg gdw
-1 h-1 and 9.5 µg 

gdw
-1 h-1 for Populus tremula and Salix phylicifolia, respectively. Populus tremula 

emitted mainly ∆3-carene and α-pinene and Salix phylicifolia α-pinene, β-pinene, 

limonene and trans-ocimene. 

 

5.1.1.2. Monoterpene emitters (Betula pendula and Betula pubescens) 

 

Betula pendula and Betula pubescens were found to be monoterpene emitters. High 

monoterpene emission rates were detected soon after bud burst similarly to Populus 

tremula and Salix phylicifolia. These early emissions from the Betula species are also 

likely to be residuals from the monoterpene pool in the buds. The buds of birches 

contain 4%-6% of volatile oils, whereas their leaves contain only 0.05-0.1 % 

(Lievonen, 1982). The monoterpene emission rates were low during the period of leaf 

growth. Higher monoterpene emission rates were initiated after the leaves had reached 

their full size and were darker and harder. As discussed in the previous chapter, the 

isoprene emission from Populus tremula and Salix phylicifolia initiated about two 

weeks after budburst, but a longer time was needed for the commencement of 

monoterpene emission from the Betula species. According to the statistics of the 

Finnish Forest Research Institute, the onset of leafing of Betula pubescens took place 

during the period June 1- June 11 in 1997 and from May 10 to May 25 in 2000 at the 
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measurement site at the Ruotsinkylä Research Station. The first high monoterpene 

emission rates were measured in 1997 on June 30 and in 2000 on June 22. The time 

needed for monoterpene emission induction would thus appear to be 3-5 weeks. Such 

statistics were not available for Betula pendula.  

At the time of induction the monoterpene emission pattern also changed (Table 2 and 

3). In early summer the monoterpenes consisted of α-pinene, β-pinene, ∆3-carene and 

sabinene, whereas later in summer the emission consisted mainly of ocimenes and 

sabinene. The ocimene and sabinene emissions declined at the end of September, as 

the growing season was ending.   

 

The VOC emissions of Betula pendula and Betula pubescens showed also differences. 

Betula pubescens emitted sesquiterpenes and linalool in addition to monoterpenes. 

These emissions were strongest early summer and they declined earlier than the 

monoterpene emissions (Fig. 1, paper II). The emissions of Betula pubescens had also 

large tree-to-tree variations; not all trees measured in 1997 initiated higher 

monoterpene emission rates (Table 3). To test if these differences were tree-to-tree or 

day-to-day variations, two different Betula pubescens clones were measured during 

the growing season in 2000. After the leaves were fully-grown and dark green, one 

clone (E567) initiated high monoterpene emission rates, whereas the other (D2472) 

did not. The monoterpene emission rates of D2472 actually decreased a little. The 

emissions of the two clones also differed qualitatively. Both emitted terpinolene in 

early summer, but later clone E567 changed to emit mainly sabinene (Table 4), 

whereas clone D2472 changed to emit mainly trans-ocimene, in addition to 

terpinolene during the late summer (Table 5). Both clones emitted linalool in June, 

whereas later in summer linalool emissions were rare. Sesquiterpene (trans-
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caryophyllene) emission rates were also higher early in the summer, their emissions 

starting earlier and also decreasing earlier than the monoterpene emissions. The young 

trees measured in 1997 emitted less sesquiterpenes than the adult clones, but those 

young trees that emitted monoterpenes emitted more than the clone E567, which had 

higher emission rates. It is possible that the age of the trees explains some of the 

observed variability, but the reason for large tree-to-tree variations in the monoterpene 

emission rates is likely to be due to the different genetic origins.   

 
 
 
 
 
 
Table 2: Relative amount of terpenoids (% of total) in the emissions of Betula 
pendula, during the growing season of 1997. The values are averages of 2-4 daily 
measurements. The two last lines show the total emission rate in µg gdw

-1 h-1 and the 
emission potential standardized to 30°C according to Guenther et al., (1991). 
 
 May 

22 
May 
26 

May 
28 

Jun 
2 

Jun 
3 

Jun 
10 

Jun 
17 

Jun 
25 

Jul 
1 

Aug 
18 

Aug 
21 

Aug 
22 

Sep 
3 

Sep 
8 

Sep 
18 

Sep 
24 

α-pinene 15 22 61 6 54 7 9 15 12 3 1 1 9 13 16 12 

Camphene 6 3 14 0 4 0 1 0 0 0 0 0 1 0 0 0 

Sabinene 55 50 2 38 3 3 2 75 61 2 0 3 59 75 32 7 

β-pinene 15 8 13 51 20 18 5 7 6 2 1 3 18 4 22 35 

∆3-carene 9 3 9 3 10 3 4 0 0 0 0 5 1 0 3 2 

Cis-ocimene  0 0 0 1 0 11 26 0 6 33 34 23 1 0 0 4 

Limonene 0 13 0 1 9 18 0 2 2 1 1 4 10 7 0 40 

Trans-ocimene  0 0 0 0 0 40 52 1 12 59 63 61 1 0 27 1 

Total emission rate 0.83 0.11 0.16 1.03 0.08 0.78 0.53 2.33 12.4 6.18 6.14 1.34 3.67 6.32 0.06 0.53 

Monoterpenes (30°C) 3.5 0.41 0.37 1.6 0.19 0.96 0.90 5.7 9.1  5.8 1.5 8.3 15.9 0.44 3.0 
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Table 3: Relative amount of terpenoids (% of total) in the emissions of Betula 
pubescens, during the growing season of 1997. The values are averages of 2-4 daily 
measurements. The four last lines show the total emission rate in µg gdw

-1 h-1 and the 
total emission potential (standardized to 30°C according to Guenther et al., (1991)) of 
monoterpenes (linalool not included), linalool and sesquiterpenes. The β-coefficients 
used in the standardization were 0.09°C-1, 0.18 °C-1, and  0.19°C-1 for monoterpenes, 
linalool, and sesquiterpenes, respectively. 

 May May Jun Jun Jun Jun Jun Jun Jun Jun July Aug Aug Sep Sep Sep 
 22 28 2 5 10 11 13 18 25 30 1 21 22 8 18 29 

α-Pinene 35 33 19 17 0 5 7 5 7 10 1 27 10 17 20 0 

Camphene 2 20 4 1 0 0 1 1 2 0 0 8 0 7 4 0 

Sabinene 17 3 15 2 0 12 23 1 2 78 0 15 81 8 16 29 

β-Pinene 17 7 10 10 1 9 8 3 7 7 2 11 6 4 16 2 

∆3-Carene 0 5 4 6 0 5 3 4 6 0 1 15 0 0 8 2 

cis-Ocimene 0 0 0 0 0 3 2 0 0 0 0 0 0 15 0 0 

Limonene 17 4 2 1 1 9 0 17 16 1 2 20 1 10 29 44 

1,8-cineol 4 14 3 0 0 4 2 1 3 1 0 1 1 0 4 0 

trans-Ocimene 0 0 0 0 2 6 12 4 5 1 1 4 0 28 2 22 

Linalool 9 13 2 50 93 46 41 42 25 1 48 0 1 0 0 0 

trans-Caryophyllene 0 0 41 13 1 0 0 21 27 0 26 0 0 0 0 0 

cis-Caryophyllene 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 

α-Farnesene 0 0 0 0 0 0 0 0 0 0 6 0 0 11 0 0 

Total emission rate 0.46 0.21 1.19 0.76 11.2 1.17 1.32 0.49 0.73 12.7 8.90 0.13 18.0 0.15 0.27 0.08 

Monoterpenes (30°C) 1.5 0.55 0.92 0.55 0.70 0.93 0.92 0.45 0.87 13.6 0.38 0.23 26.2 0.34 2.0 0.31 

Linalool (30°C) 0.62 0.23 0.05 1.5 12.7 1.1 0.75 1.5 1.0 0.20 1.3 0 0.30 0 0 0 

Sesquiterpenes (30°C) 0 0 0.92 0.42 0.16 0 0 0.76 1.07 0 1.2 0 0.11 0.12 0.09 0 

 
Table 4: Relative amount of terpenoids (% of total) in the emissions of Betula 
pubescens, clone E567, during the growing season of 2000. The values are averages 
of 2-6 daily measurements. The four last lines show the total emission rate in µg gdw

-1 
h-1 and the total emission potential (standardized to 30°C according to Guenther et al., 
(1991)) of monoterpenes (linalool not included), linalool and sesquiterpenes. The β-
coefficients used in the standardization were 0.09°C-1, 0.18 °C-1, and  0.19°C-1 for 
monoterpenes, linalool, and sesquiterpenes, respectively. 

  June June June June June June July July July July July July Aug Aug Aug Aug Aug Aug Aug 

  9 13 15 21 22 29 4 7 11 14 18 27 1 8 11 22 25 28 30 

α-pinene 0 0 1 0 1 1 2 5 4 3 4 5 6 4 8 3 5 0 0 

Camphene 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 

Sabinene 0 1 5 1 6 6 21 64 40 36 35 65 68 54 57 26 37 6 47 

β-pinene 0 0 0 0 0 0 1 3 2 2 2 4 4 3 2 2 4 0 0 

∆3-carene 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 1 0 10 

Ocimene 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

Limonene 0 0 0 0 0 0 1 1 1 0 1 1 1 0 3 1 1 0 5 

1,8-cineol 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

trans-ocimene 0 0 0 0 1 0 1 1 1 2 1 1 1 3 6 13 2 1 6 

Terpinolene 9 5 11 1 11 0 1 1 1 1 1 1 1 1 1 1 0 0 0 

Linalool 16 13 21 2 18 2 8 1 1 2 1 0 0 0 1 0 0 1 0 

Trans-caryophyllene 75 80 62 95 63 90 65 23 51 53 56 23 18 35 16 55 49 91 30 

Total emission rate  2.49 0.92 0.50 12.5 9.78 10.7 2.04 4.45 2.09 0.79 3.74 0.92 0.70 0.44 0.59 2.01 4.60 10.3 0.52 

Monoterpenes (30°C)  0.53 0.14 0.25 0.54 2.4 1.7 1.2 6.6 2.2 1.2 3.1 1.7 1.7 0.82 1.5 1.3 3.0 1.0 0.67 

Linalool (30°C)  2.2 0.55 0.88 0.63 3.1 0.55 0.73 0.16 0.08 0.24 0.13 0 0 0 0.08 0 0 0.12 0 

Sesquiterpenes (30°C)  11.5 3.6 3.0 27.2 10.9 35.1 6.5 4.2 5.7 6.1 8.4 1.4 1.2 1.4 1.0 1.9 3.1 11.1 0.48 
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Table 5: Relative amount of terpenoids (% of total) in the emissions of Betula 
pubescens, clone D2472, during the growing season of 2000. The values are averages 
of 2-4 daily measurements. The four last lines show the total emission rate in µg gdw

-1 
h-1 and the total emission potential (standardized to 30°C according to Guenther et al., 
(1991)) of monoterpenes (linalool not included), linalool and sesquiterpenes. The β-
coefficients used in the standardization were 0.09°C-1, 0.18 °C-1, and  0.19°C-1 for 
monoterpenes, linalool, and sesquiterpenes, respectively. 

  Jun Jun Jun Jun Jun Jun Jun July July July July July July Aug Aug 

  9 13 15 21 22 27 29 4 6 11 14 18 27 1 28 

α-pinene  1 0 1 0 1 6 5 3 0 0 0 0 1 0 0 

Camphene  1 0 0 0 0 1 0 0 0 0 2 0 0 0 0 

Sabinene  0 2 0 0 1 2 2 0 0 0 4 0 1 0 0 

β-pinene  0 0 0 0 1 8 8 1 0 0 12 0 3 0 3 

∆3-carene  0 0 1 0 0 1 0 2 0 0 12 0 0 0 0 

Cis-ocimene  0 0 0 0 0 1 4 0 0 1 0 0 1 1 4 

limonene  1 0 1 0 1 1 0 1 0 0 7 1 0 0 0 

1,8-cineol  0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 

trans-ocimene  0 0 1 1 1 2 2 12 10 12 54 22 27 48 57 

terpinolene  12 27 14 7 15 0 1 1 0 7 9 1 1 1 0 

linalool  29 50 29 14 25 11 9 10 41 0 0 7 23 11 0 

Trans-caryophyllene  55 20 52 76 53 67 70 71 48 80 0 68 44 39 36 

Total emission rate  0.25 1.20 0.38 0.43 3.21 0.44 1.18 0.17 0.91 0.30 0.02 0.12 0.27 0.08 0.13 

Monoterpenes (30°C)  0.09 0.68 0.17 0.05 0.52 0.23 0.50 0.05 0.09 0.09 0.06 0.05 0.16 0.10 0.10 

Linalool (30°C)  0.39 2.1 0.64 0.08 0.44 0.29 0.41 0.05 0.25 0 0 0.02 0.20 0.05 0 

Sesquiterpenes (30°C)  0.80 0.86 1.3 0.47 0.90 1.9 3.6 0.35 0.29 0.59 0 0.22 0.41 0.19 0.11 

 

 

 

5.1.1.3. Use of effective temperature sum (ETS) to describe the seasonality of the 

emission rates 

 

The seasonal variations of the emission rates are described in terms of the effective 

temperature sum. The Effective Temperature Sum (ETS) (calculated as the 

accumulated daily average temperature sum above a threshold temperature, usually 0 

or 5 °C, and expressed in degree days (d.d.)) has been widely used to estimate the 

time of onset of the leafing and flowering of plants (Hari & Häkkinen 1991; 

Lappalainen 1993). Monson et al. (1994) applied ETS to predict the springtime 

induction of isoprene emission from aspen in different environments. According to 

the statistics of the Finnish Forest Research Institute, the use of ETS instead of 

calendar dates reduces variability between different years. The leaves of B. pubescens 
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at the Ruotsinkylä Research Station emerged during the period 20 May-1 June in 1997 

(corresponding to an ETS of 75-126 d.d.) and 7 May-10 May in 2000 (ETS 99-125 

d.d.). The onset of leafing took place between 1 June-11 June in 1997 (ETS 126-239 

d.d.) and 10 May-29 May in 2000 (ETS 125-250 d.d.). Although the leaves were fully 

grown almost two weeks earlier in 1997 than in 2000, the effective temperature sums 

are quite similar. In 1997 and 2000, 400 d.d. were reached on 25 June and 18 June, 

respectively. High monoterpene (especially sabinene) emission rates were also 

measured a week earlier in 2000 than in 1997 (30 June 1997 and 22 June 2000), 

although the poor data coverage and large tree-to-tree variations within Betula 

pubescens trees in 1997 do not allow one to make firm conclusions about the date of 

the initiation of higher monoterpene emission rates.  

In 1997 ambient monoterpene concentrations were measured at Ilomantsi (paper III) 

and the emission rates of Betula species at Ruotsinkylä (paper II), while in 1996 

isoprene concentrations were measured at Ilomantsi and the emission rates of the 

isoprene emitters Populus tremula and Salix phylicifolia at Ruotsinkylä. On the basis 

of this limited data, the use of ETS would also appear to reduce the emission rate 

variability between different locations. The forest surrounding the measuring site at 

Ilomantsi is composed of Pinus sylvestris, Picea abies, Populus tremula and Betula 

pendula with few Betula pubescens trees and Salix species. The Pinus sylvestris of the 

area emit only minor amounts of sabinene (Rinne et al., 1999), and Populus tremula 

does not emit it at all (paper I), so the sabinene concentrations are likely to be from 

the Betula species. Aspens are the most important source for isoprene at this site. To 

test if ETS would be more accurate than calendar dates to be used in emission 

inventories, the emission rates measured in Ruotsinkylä are plotted together with the 

ambient concentrations measured in different location, at Ilomantsi (about 400 km 
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apart) in Fig. 2. Figure 2 shows the dates on which the isoprene/sabinene emission 

rates were high for the first time together with the dates of previous measurements 

and the corresponding degree days. Compared to the calendar dates the degree days fit 

better with the measured ambient concentrations at Ilomantsi. More frequent emission 

rate measurements would be needed to find out the induction of the emissions 

accurately. Linalool and sesquiterpenes also show seasonal variability, with higher 

emission rates measured in June. However, these compounds are too reactive to be 

found in the ambient air samples. Table 6 shows the mean emission potentials for the 

Betula species measured.   

 
 
 
 
Table 6. The emission potentials of B. pendula and B. pubescens  (average and 
standard deviation, µg gdw

-1 h-1) for different seasons. For B. pubescens, the data set 
from 1997 and the two clones measured in 2000 are shown separately due to large 
variations. The β-coefficients used in the standardization were 0.09°C-1, 0.18 °C-1, and  
0.19°C-1 for monoterpenes, linalool, and sesquiterpenes, respectively. The number of 
observations is in the parentheses. 
 
 B. pendula,  

1997 
B. pubescens, 
1997 

B. pubescens, 
2000, E567 

B. pubescens, 
2000, D2472 

monoterpenes     
ETS<80 3.63 ± 0.38 (2) 1.47 ± 0.14 (2) no data no data 
80<ETS<400 0.68 ± 0.57 (14) 0.72 ± 0.24 (18) 0.31 ± 0.21 (6) 0.31 ± 0.43 (6) 
ETS>400 7.71 ± 4.64 (12) 5.49 ± 9.22 (16) 1.71 ± 1.40 (46) 0.17 ± 0.18 (23) 
linalool     
ETS<600 - 1.79 ± 3.27 (26) 1.20 ± 0.99 (15) 0.67 ± 0.89 (15) 
ETS>600 - 0.06 ± 0.13 (10) 0.08 ± 0.17 (37) 0.07 ± 0.10 (14) 
sesquiterpenes     
 - 0.31 ± 0.53 (36) 6.94 ± 10.85 (52) 0.81 ± 0.95 (29) 
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Figure 2: Short, solid vertical lines represent the days on which, at Ruotsinkylä, 
higher monoterpene emission rates were measured for the first time for Betula species 
and higher isoprene emission rates for Salix phylicifolia and Populus tremula. Short 
dotted lines represent the dates when the previous measurements were conducted. 
Below the graphs presenting the observations using calendar dates are shown the 
corresponding ETS values at Ruotsinkylä. The long vertical line shows when sabinene 
(for Betula species) and isoprene (for Salix phylicifolia and Populus tremula) 
concentrations increased at Ilomantsi with the corresponding ETS value there.  
 
 

 

5.1.2. VOC emission rate dependence on physical factors 

 
 
The isoprene emission rates were correlated with both temperature and photosynthetic 

photon flux density (PPFD), although our measurements were conducted on different 

days, around midday, thus not reflecting the diurnal variation. The standard isoprene 

emission potentials (at T=30°C and PPFD=1000 µmol s-1 m-2), 43 µg gdw
-1 h-1 and 39 

µg gdw
-1 h-1 for Populus tremula and Salix phylicifolia, respectively, were determined 
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by applying non-linear regression analysis between emission and temperature and 

light (equations 1, 2 and 3). Figure 3 shows the measurements together with the model 

results. The data prior to isoprene emission induction was excluded. The correlation 

coefficients for model results and measured emission rates are r2=0.84 and r2=0.76 for 

Populus tremula and Salix phylicifolia, respectively.  

 

We did not find any clear dependence on PPFD for emission rates either for the sum 

of terpenes or for any individual terpenoid compound for any of the tree species 

studied. However, when one branch of clone E567 was covered and samples were 

collected from the dark cuvette, emissions of almost all the monoterpenes decreased, 

whereas sesquiterpene emission rates were not much affected (paper II). Linalool 

emission rates also decreased but not as much as those of monoterpenes. After the 

cuvette was exposed to light again, the emission rates started to increase. One reason 

for the poor correlation between PPFD and emission rates may be that trees do not 

respond to changes in light intensity immediately, but that rather there is a delay 

during which trees adjust themselves to the new conditions. In the darkening 

experiment, the emission rates did not recover to their initial values within 30 

minutes, but remained clearly lower at about half of the initial value. The 

monoterpene, linalool and sesquiterpene emission rates from Betula species are 

dependent on temperature (paper II, Table 2), although the correlations are rather 

poor.   

 

Rough handling of Betula pubescens caused high 3-hexenylacetate, 3-hexen-1-ol, 1-

hexanol and 2-hexenal emission rates, but did not affect the monoterpene emissions 
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(paper II, Table 3). The high emission rates did not last long: the samples taken one 

hour later were already close to the normal values.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Isoprene emission rate data (Ruotsinkylä, 1996) fitted to the isoprene 
emission model by Guenther et al. (1991, 1993,1997).  
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5.2. Concentrations of isoprene and monoterpenes in ambient air 

 

The concentrations of α-pinene, β-pinene/myrcene, ∆3-carene, camphene and 1,8-

cineol started to increase at Ilomantsi in late May/early June (Fig. 4). The 

concentrations were highest in June and July, and the correlation between α-pinene, 

β-pinene/myrcene, and ∆3-carene was good. The concentrations decreased in August, 

and in September and in October they were low.  

Sabinene concentrations were low until the end of June, increasing about a month 

later than the concentrations of pinenes, 1,8-cineol and 3-carene. The late sabinene 

increase is probably from the delayed emission from Betula pendula. Ocimenes were 

also detected from the emission of Betula pendula, but these are very reactive towards 

ozone and the OH. radical (Table 1), and were found only occasionally in the ambient 

air samples, and then in very low concentrations. Sabinene concentrations were better 

correlated with isoprene than with other monoterpenes (Fig. 4).  

 

Isoprene concentrations started to increase in the middle of June, 2-3 weeks later than 

most of the monoterpene concentrations and about a week earlier than sabinene, the 

maximum appearing concomitant with the sabinene maximum. During August, the 

concentrations of isoprene and sabinene decreased, earlier than other monoterpenes. 

Figure 5 shows monthly mean concentrations of different compound groups together 

with their reactivity-scaled concentrations. Based on OH-reactivities, concentrations 

were scaled to propylene equivalents according to Chameides et al. (1992) (eq. 6). 

 
                                                          kOH(j) 
 Propy-equiv (j) = conc. (j.)                 (eq. 6) 
                                                          kOH(C3H6) 
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Because the OH-reactivity-based method accounts for a species’ rate of reaction as 

well as its atmospheric concentration, it provides a more accurate picture than does 

concentrations alone. Figure 5 shows that although the concentrations of 

monoterpenes are quite low, much lower than the concentrations of light 

hydrocarbons, they contribute significantly to the local reactivity of the measured 

VOCs.  
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Figure 4: 30-day running median of ambient concentrations at Ilomantsi, Finland. 
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Figure 5: Monthly average concentrations (1997 and 1998) of isoprene, sum of 
monoterpenes, alkanes (C2-C6), alkenes (C2-C6, isoprene excluded) and sum of 
benzene and acetylene together with their OH-reactivity-scaled concentrations 
(propylene equivalents). 
 

 

5.3. Products from the reactions of monoterpenes with O3 and OH. 

 

Samples were collected on PUF plugs from the reaction chamber in order to isolate 

and purify products formed in the reactions and to conduct spectroscopic 

identification using MS, gas-phase FTIR and 1H NMR. Commercial standards were 

available for camphenilone, nopinone and 4-acetyl-1-methylcyclohexene.  In general, 

monoterpenes with double bonds in the ring produced keto-aldehydes and 

monoterpenes with double bonds external to the ring produced ketones. Limonene, β-

phellandrene and terpinolene have two double bonds; one in the ring and the other one 

external to the ring (Figure 1). The external bond of terpinolene and β-phellandrene 

was favoured and an addition reaction to it yielded more products. Both double bonds 
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of limonene reacted with hydroxyl radical, but not with ozone. Camphene reacted 

with the hydroxyl radical only very slowly and the reactions of ∆3-carene and 

limonene also yielded only very small amounts of carbonyl products. The products 

identified and their formation yields are shown in Figure 6. This was the first time 

when products were identified for the oxidation of terpinolene and ∆3-carene, and it 

confirmed other tentative identifications. The OH radical reaction proceeds as 

described in reactions (8)-(12). The reaction mechanism for α-pinene as an example 

is: 

 

 

 

 

 

 

 

The products identified for the ozone reactions are also those expected on the basis of 

the mechanism presented in reaction 19, except for the lactone. An example of 

monoterpene reaction with ozone is the oxidation of α-pinene:   
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As shown in paper V, carbonyls are produced with 20-30 % formation yield in the OH 

radical reaction with α-pinene, β-pinene, limonene, ∆3-carene, β-phellandrene, 

sabinene and terpinolene, but with only less than 2 % yield in the reaction with 

camphene. There are only few quantitative yield data available for the monoterpene 

reactions with the hydroxyl radical. The pinonaldehyde yields for the α-pinene 

reaction have been reported also by Arey et al. (1990) (30 ± 5 %), Hatakeyama et al. 

(1991) (56 ± 4 %), Vinckier et al. (1998) (31 ± 15 %) and Noziere et al. (1999) (87 ± 

29 %). The data by Arey et al. and Vinckier et al. are in good agreement with the data 

presented in paper V (28 ± 5 %). Hatakeyama et al. (1991) and Noziere et al. (1999) 

used in situ long-path Fourier transform infrared spectroscopy (FTIR) for the 

quantification whereas the other results have been obtained using gas-

chromatographic techniques. Different techniques can cause the observed variations 

in product yields.  FTIR can detect also other carbonyls present in the reaction 

chamber. β-Pinene reactions have also been studied by Hatakeyama et al (1991) using 

FTIR and again their production yield is higher (79 ± 8 %) than that observed in paper 

V (27 ± 4 %).  

 

Product yields for the ozone reactions were also less than unity, suggesting that other 

products are formed as well. Alvarado et al. (1998) identified and quantified also 

other products for the reaction of α-pinene with ozone. Pinonaldehyde was the main 

product found also in that study and the yield (14 %) was in a reasonable agreement 

with the yield measured in paper V (19 %).     
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Figure 6a: Carbonyl products, and their formation yields, identified from the reaction 
of monoterpenes with the OH. radical and ozone. 
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Figure 6b: Carbonyl products, and their formation yields, identified from reaction of 
monoterpenes with the OH. radical and ozone. 
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IV and V have also been detected in ambient air samples. Helmig & Arey (1992) 

found nopinone (an oxidation product of β-pinene) in forest air in California. 

Nopinone and pinonaldehyde were also detected above the forest at Hyytiälä in 

Central Finland (Spanke et al., 2001). The maximum concentrations (pinonaldehyde 

140 ppt, nopinone 45 ppt) were observed during the early morning hours.  

 

Carbonyl products are also themselves reactive towards the hydroxyl radical and 

ozone, and they contribute to tropospheric ozone formation. The oxidation processes 

of the carbonyls produce many organic acids and di-acids and these compounds can 

have a very important effect on organic aerosol formation (Jang & Kamens, 1999).  

 

6. CONCLUSIONS 
 

The VOC emission rates of the most common boreal deciduous trees were measured. 

Populus tremula and Salix phylicifolia were high isoprene emitters with standard 

emission potentials of 43 µg gdw
-1 h-1 and 39 µg gdw

-1 h-1 for Populus tremula and 

Salix phylicifolia, respectively. The Betula species emitted monoterpenes and Betula 

pubescens emitted also sesquiterpenes and linalool. These emissions showed seasonal 

variations and they cannot be expressed with just one emission potential, but the 

phenology of the tree has to be taken into account (Table 6). Some of the emission 

potentials have already been used as input data in model estimates of biogenic volatile 

organic compound emissions from the forests in Finland together with meteorological 

data and satellite land cover information (Lindfors & Laurila, 2000; Lindfors et al., 

2000). 
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In addition to phenological changes, the emission rates were also affected by the age 

of the tree, its genetic origin, physical disturbance, temperature and light which can 

cause large uncertainties in the emission calculations.  On the basis of this study it is 

obvious that when determining the emission rates, it is necessary to measure the 

emissions throughout the growing season. Because of the genetic variability, several 

trees of the same species should be investigated. Also comparisons with flux 

measurements would be important in validating the emission rates.  

 

The ambient air concentration measurements can also be used to validate seasonal 

changes in the emission rates. For example, sabinene concentrations were found to 

increase later in summer, in agreement with the emission rate measurements. The 

summer monthly mean concentrations of monoterpenes measured in eastern Finland 

on a field on top of a hill were 0.16-0.32 ppb. Isoprene concentrations were about as 

high 0.07-0.35 ppb. Biogenic hydrocarbons contribute significantly to the total 

reactivity towards the OH radical in rural areas. During the summer months they 

account for almost all of the measured hydroxyl radical reactivity.   

 

In the oxidation reactions by OH radicals and ozone monoterpenes form carbonyl 

products. The products were those expected from the addition reaction to the double 

bond. Camphene also produced a lactone. Product yields were at the most 50%, so 

most of the products were not accounted for. This was the first definitive 

identification of the keto-aldehyde product from ∆3-carene product and the ketone 

product from terpinolene. Unidentified products can be for example organic acids, 

hydroxycarbonyls or other multifunctional compounds. New analytical techniques, 
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such as liquid chromatograph connected to a mass-selective detector will help 

detecting also these compounds. 
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