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1. INTRODUCTION 

 

Volatile organic compounds (VOCs) are carbon-based compounds (with 2-10 carbon 

atoms) that have vapour pressures high enough to significantly vaporize and enter the 

atmosphere. Many different kinds of VOCs can be found in the air: alkanes, alkenes, 

alkynes, halogenated hydrocarbons, aromatic hydrocarbons, terpenes, aldehydes, ketones 

and alcohols. Some of these compounds are toxic or carcinogenic, and therefore there are 

limit values for their concentrations in the air (U.S. EPA, 2005a; EU, 2000).  

 

VOCs affect atmospheric chemistry in many ways. In the atmosphere they are oxidized 

by hydroxyl radicals, ozone, nitrate radicals and halogens (Cl, Br, I) and in addition to 

this some of them can be photolysed. In the presence of nitrogen oxides they contribute to 

the ozone formation in the lower troposphere (reaction 1.1) (Atkinson, 2000). Ozone is 

toxic to humans and nature (WHO, 2003).  

 

VOC+NOx+sunlight                    O3 + “other products”    (1.1) 

 

“Other products” refers to gaseous peroxy acetyl nitrate (PAN), nitric acid and 

oxygenated hydrocarbons (e.g. carbonyls and organic acids). In the reactions of VOCs, 

water soluble hydroperoxides, carbonyls and acids are produced; VOCs therefore make a 

contribution to the organic content and acidity of precipitation (Kawamura et al., 2001). 

One important aspect is that the reaction products of VOCs may also take part the in 

formation and growth of new particles, with possible climate and health consequences 

(Griffin et al., 1999; Hoffmann et al., 1997). Knowing the sources and concentrations of 

different VOCs is essential for the development of ozone control strategies and for 

studies of secondary organic aerosols. 

 

Globally, are biogenic ones (e.g., trees and other vegetation) the main source of VOCs in 

the atmosphere (Müller, 1992). Estimated emission strengths for biogenic compounds are 

500 Tg C/yr for isoprene, 128 Tg/yr for monoterpenes and 522 Tg/yr for other natural 

VOCs (Guenther et al., 1995). Global anthropogenic VOC emissions are estimated to be 
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only 142 Tg/yr (Seinfeld and Pandis, 1998). However, at urban locations biogenic 

sources make only a minor contribution, and anthropogenic VOC sources such as 

combustion processes, the use of fossil fuels, solvents and industrial production processes 

play the main role (Friedrich and Obermeier, 1999). Of the anthropogenic sources, traffic 

is the most important. 

 

The objective of this work was to study volatile organic compounds in urban air, develop 

and validate measurement methods for them, characterize their concentrations and 

estimate the contributions of different VOC sources. 

 

The more specific aims of the study were: 

• to validate a diffusive sampling method for aromatic hydrocarbons and MTBE in 

urban air and estimate the diffusive uptake rates for them (paper I) 

• to characterize concentrations of NMHCs (papers I-IV), halogenated HCs (paper 

IV) and carbonyls (papers IV and V) in urban air 

• to compare the benzene results from the measurements and dispersion modelling 

(paper II) 

• to determine profiles of the different VOC sources (papers III and IV) 

• to study the source apportionments of NMHCs and aromatic hydrocarbons using 

receptor models (paper III) 

• to compare the results of a chemical mass balance receptor model and a 

multivariate model UNMIX (paper III) 

• to study source apportionments of individual VOCs using the chemical mass 

balance receptor model (paper IV) 

• to develop a method for the sampling and analysis of C2-C10 carbonyl compounds 

in ambient air (paper V) 

• to study carbonyl compounds in the air of a forested site and compare 

concentrations with those of an urban site (paper V) 
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2. BACKGROUND 

 

2.1. Emissions of VOCs 

 

Globally, biogenic emissions of VOCs exceed those of anthropogenic origin (Müller, 

1992). However, in urban areas the contribution of biogenic VOCs is much lower. 

Anthropogenic VOC sources include combustion processes, the use of fossil fuels, 

solvents, industrial production processes and biological processes (Friedrich and 

Obermeier, 1999). Whereas VOC emissions from combustion sources (e.g. traffic and 

wood combustion) mainly contain pure hydrocarbons, organic solvents and their vapours 

also consist of oxygenated HCs such as alcohols, carbonyls and esters. 

  

Traffic and traffic-related sources are known to be a major source of non-methane 

hydrocarbons (NMHCs i.e., alkanes, alkenes, alkynes and aromatic HCs) in urban areas 

(Friedrich and Obermeier, 1999; Watson et al., 2001), but in residential or industrial 

areas other sources may also be important. In Nordic countries the use of wood as a fuel 

has increased lately (Haaparanta et al., 2003; Hedberg et al., 2002) and wood 

combustion is known to emit several different VOCs (i.e., NMHCs, halogenated 

hydrocarbons and oxygenated hydrocarbons) and other air pollutants (McDonald et al., 

2000). For the lightest alkanes, natural gas emissions may also be important (Fujita, 

2001). Although ethene is a major constituent of the VOC emissions from traffic and 

from wood combustion (Schauer et al., 2002 and McDonald et al., 2000), it is also a plant 

hormone and is emitted by plants, soils and oceans (Fall, 1999). In addition to this, 

terpenes (isoprene and monoterpenes) have mainly biogenic sources. 

 

Methyl tert-butyl ether (MTBE) and tert-amyl methyl ether (TAME) are used as gasoline 

additives in Finland. According to product specification sheet, content of ethers in 

gasoline typically sold in Finland is 11 %. Traffic is the main source of MTBE (Chang et 

al., 2003), but also volatilization at gasoline station can make an important contribution 

to ambient concentrations, at least locally (Vainiotalo et al., 1998).  
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Some halogenated HCs have both anthropogenic and biogenic sources. The main global 

anthropogenic sources of chloroform are pulp and paper manufacturing, other industrial 

sources and water treatment (Aucott et al., 1999), while the main natural sources are the 

oceans, soil, termites and microalgae (Laturnus et al., 2002). For chloromethane, 

industrial sources and biomass burning are the main anthropogenic sources, but large 

quantities are also emitted by the oceans and wetlands (Butler, 2000). Trichloroethene 

and tetrachloroethene are used as degreasing agents and tetrachloroethene is also used in 

dry-cleaning (Rivett et al. 2003). 1,1,1-trichloroethane is a solvent (Rivett et al. 2003) and 

chlorofluorocarbons (CFCs) have been used for example as aerosol propellants and 

refrigerants, but their use has been phased out as a result of the Montreal Protocol. 

Tetrachloromethane has been a chemical intermediate for the production of CFCs. 

 

Carbonyls are also emitted from both anthropogenic and biogenic sources; in addition to 

this, they are formed in the atmosphere in the reactions of other organic compounds. 

Known primary anthropogenic sources are traffic and biomass burning (Schauer et al., 

2002 and McDonald et al., 2000). However, the sources of carbonyls are not well 

characterized.  In the global estimates by Singh et al. (2000), emissions from automobile 

exhausts and biomass burning comprised only 5% of the formaldehyde produced from 

methane oxidation. The main sources of propanal and acetaldehyde were found to be 

oceanic, and for them too the oxidation of hydrocarbons was found to be more significant 

than the primary anthropogenic sources. Vegetation is an important primary source of 

acetone and probably also of certain other carbonyls (Singh et al., 2000; Janson and De 

Serves, 2001; Bowman, 2003).  

 

2.2. Concentrations of VOCs 

 

In some large cities, concentrations of VOCs can be very high compared with those in 

remote areas. In a recent study in Mumbay, India (Srivastava et al., 2006), the annual 

average of benzene concentrations during rush hours in commercial areas and at traffic 

intersections were 127 �g m-3 and 348 �g m-3, respectively, and even in residential areas 

the average concentration was over 40 �g m-3. In some European cities quite high 
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concentrations have also been measured: for example, in a medium-sized Greek city, 

Ioannina, the annual average benzene concentrations measured at different locations in 

2003/2004 were between 10 and 40 �g m-3 (Pilidis et al., 2005). In measurements by 

Hopkins et al. (2002) taken on a ship in the Arctic area during August 1999, much lower 

benzene concentrations were found, averaging about 0.15 �g m-3, while in the studies by 

Kato et al. (2001) in December 1999 of a remote island in the Pacific Ocean, the average 

concentration of benzene there was about 0.38 �g m-3.  

 

High differences in concentrations are also measured for most other VOCs. The lifetime 

of benzene is quite long and therefore it can be transported far from its emission sources. 

This is not the case for the more reactive compounds and, for example, the concentrations 

of most other aromatic hydrocarbons are below detection limits at a rural forested site in 

Central Finland even in winter, when the highest concentrations of NMHCs are measured 

(Hakola et al., 2003). 

 

In rural and remote areas NMHCs show a very clear seasonal cycle; in the Northern 

Hemisphere, the  highest concentrations are measured in winter and the lowest in summer 

(Hakola et al., 2006; Gautrois et al., 2003). Winter maxima and summer minima of 

NMHCs are also observed in urban areas (e.g. Morikawa et al., 1998, Sahu and Lal, 2006 

and paper II). For biogenic hydrocarbons and some carbonyls, the cycle is opposite: 

maximum concentrations are observed in summer, while minima occur in winter (Hakola 

et al., 2003 and Solberg et al, 1996). 

 

In Western Europe, emissions of VOCs have been decreasing since the early 1990’s, and 

a decreasing trend in ambient concentrations has also been observed in Central Europe 

(Solberg et al., 2002). However, in remote areas of Finland, for example, no clear 

decrease in concentrations has been found for most of the compounds; for some long-

living compounds (ethane and propane) increasing trends have even been observed 

(Hakola et al., 2006).  
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2.3. Reactions of VOCs in the troposphere 

 

2.3.1. Reaction mechanisms of VOCs 

 

Each volatile organic compound reacts in the air at a different rate and with different 

reaction mechanisms. These compounds react with OH radicals, ozone, NO3 radicals or 

Cl atoms, or they photolyze. For most of the studied VOCs, the OH reactions are the most 

important in the daytime (Atkinson, 2000). NO3 photolyses rapidly in the troposphere and 

therefore only exists in sufficient concentrations to play a role in night-time chemistry. Cl 

atoms can be important in the marine boundary layer. For some carbonyls, MTBE and 

TAME wet depositions may also be an important sink (Kawamura et al., 2001, Achten et 

al., 2001 and Kolb and Püttmann, 2006).  

 

For the alkanes, the OH radical reactions are the main reaction in the troposphere, but 

reactions with NO3 radicals and Cl atoms are also important (Atkinson, 2000). Alkanes do 

not undergo photolysis or react significantly with ozone. Alkane reactions proceed by 

hydrogen atom abstraction from the C-H bond forming alkyl radicals (reaction 2). These 

alkyl radicals (R�) react rapidly with O2 to form alkyl peroxy radicals (RO2�)  (reaction 3). 

 

RH + OH� � R� + H2O      (2) 

R� + O2 + M � RO2� + M      (3) 

RO2� + NO � RO� + NO2      (4a) 

                  � RONO2       (4b) 

RO� reaction with O2, isomerization or decomposition 

 

The main reaction for the RO2� radicals in polluted urban air is with NO, producing NO2 

and alkoxy radicals (RO�) (reaction 4a) (Derwent, 1999). For larger alkanes, the addition 

of NO to form an alkyl nitrate (RONO2) may also be an important path (reaction 4b) 

(Finlayson-Pitts and Pitts, 2000). At very high NO2 concentrations, reactions with NO2 to 

form peroxynitrate (RO2NO2) may become important. Alkoxy (RO�) radicals have 

several possible atmospheric fates, depending on their structure. These include reactions 
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with O2 forming hydrogen peroxy radicals (HO2�), decomposition and isomerization. If 

isomerization is possible at room temperature, this process is the predominant one; 

otherwise,  reaction with O2 is significant. In those reactions carbonyls are formed, for 

example. 

 

Alkenes are highly reactive towards OH�, O3 and NO3�. Reaction rates with O3 are much 

smaller than with the OH radicals. However, concentrations of O3 are much larger, and 

therefore the O3 reactions are important removal processes, especially for the larger 

alkenes (e.g. biogenic hydrocarbons) (Hakola et al., 2003; Atkinson, 2000). Reaction rates 

for NO3 are also fast, and the NO3 reaction is assumed to be a major fate for at least 

biogenic hydrocarbons during the night (Hakola et al. 2003). In the case of alkenes, OH� 

and NO3 � add to the double bonds and alkyl radicals are formed.  The reactions of these 

alkyl radicals are analogous to the reactions of alkyl radicals formed in the alkane 

reactions. In the O3 reaction, ozone adds to the carbon double bond, forming an 

energetically-excited primary ozonide (Finlayson-Pitts and Pitts, 2000). This will either 

decompose forming an ester (minor) or an unsaturated hydroperoxide (major). The latter 

is assumed to account for the OH� yield measured. In addition to this, the primary 

ozonide can be collisionally stabilized, forming the so-called stabilized Criegee 

intermediate, which further reacts with various different compounds, e.g. water vapour.  

 

The only significant loss process for alkynes is a reaction with OH radicals. (Finlayson-

Pitts and Pitts, 2000). The reaction is an addition to the triple bond forming the alkyl 

radical. The reactions of these alkyl radicals are analogous to the reactions of the alkyl 

radicals formed in the alkane reactions. 

 

Under atmospheric conditions, aromatic hydrocarbons are oxidized by OH and 

NO3�radicals, with the OH radical reactions dominating as the tropospheric removal 

process (Atkinson, 2000). In aromatic reactions, the abstraction of H-atoms or the 

addition of an OH radical to the double bond may occur. The reactions of benzyl and 

alkyl-substituted benzyl radicals formed from the H-atom abstraction are analogous to 

those for the alkyl radicals discussed above. OH-aromatic adducts react with O2 and NO2.  
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The gasoline additives MTBE and TAME react with the OH radical, but also deposition 

with precipitation is significant loss process (Kolb and Püttmann, 2006)  

 

The major tropospheric loss process for the halogenated hydrocarbons is by reaction with 

the OH radical (Atkinson, 2000). Halogenation generally decreases the reactivity towards 

the OH radicals, O3 and NO3 radicals compared to the corresponding alkanes and alkenes 

and therefore the reactions of most halogenated HCs are very slow in the troposphere.  

 

Carbonyls (aldehydes and ketones) undergo photolysis and reactions with OH and NO3 

radicals (paper V). For unsaturated carbonyls O3 reactions are also important. The 

reactions of OH� and NO3� with aldehydes occur by abstraction of the H-atom from the –

CHO group, forming acyl  radicals (RCO�) (Finlayson-Pitts and Pitts, 2000). The RCO 

radical adds O2 to form the acyl peroxy radical (RC(O)OO�). This radical reacts in turn 

with NO and NO2 in an analogous way to alkyl peroxy radicals (Atkinson, 2000). From 

the reaction with NO2, peroxy acyl nitrates are formed; for example, acetaldehyde is a 

classic precursor to peroxyacetyl nitrate (PAN). PAN thermally decomposes back to a 

peroxyacetyl radical and NO2. The reactions of ketones are similar to those of alkanes, 

with abstraction by OH� and NO3� occurring from the alkyl chain (Finlayson-Pitts and 

Pitts, 2000). In addition to the OH� reaction, photolysis is an important loss process for 

carbonyls in the troposphere (Atkinson, 2000 and paper V). In these photo-dissociation 

reactions both free radicals and stable products are formed; for example, in the photolysis 

of acetaldehyde (reaction 5) two sets of products, methyl (CH3�) and acyl (HCO�) radicals 

(reaction 5a) or stable methane (CH4) and carbon monoxide (CO) (reaction 5b), are 

formed (Finlayson-Pitts and Pitts, 2000): 

 

CH3CHO + h� � CH3� + HCO�     (5a) 

                        � CH4 + CO      (5b) 
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2.3.2. Lifetimes of VOCs 

 

The lifetime is the time for the concentration of an organic compound to fall to 1/e of its 

initial value (Finlayson-Pitts and Pitts, 2000). Natural lifetimes (�) are defined as � = 

1/kp[X], where kp is the reaction rate of the compound and [X] is the concentration of the 

oxidant.  

 

Based on the OH radical estimates by Hakola et al. (2003) for Central Finland, average 

daytime lifetimes involving the OH reaction vary for the studied VOCs from a few hours 

for monoterpenes to several hundred years for some halogenated HCs (Table 1).  The 

lifetimes of VOCs for OH reactions are 20 times shorter in summer than in winter in 

Finland; for example, the lifetime of toluene in winter is 59 d, but in summer only 3 d.  

 

Ozone reactions are only important for alkenes, biogenic hydrocarbons and some 

carbonyls with double bonds. Based on the estimates shown in Table 1, the ozone 

reaction is a more important loss process for most of the alkenes and biogenic 

hydrocarbons than hydroxyl radical reaction, at least in winter. The lifetimes of alkenes 

for ozone reactions vary from a few hours to 14 days.  

 

2.3.3. Reaction products of VOCs 

 

The reactions of VOCs can be complex and lots of different products are produced. For 

the studies of reaction products, models and smog chambers have been used. In the 

publication Master Chemical Mechanism, currently-available laboratory data (not field or 

photochemical reactor data) are collected and the reaction schemes of 135 VOCs can be 

followed (Master Chemical Mechanism, 2006). When considering all possible reactions 

of a VOC and its reaction products, schemes expand very rapidly. The full degradation 

scheme of butane, for example, consists of 510 reactions and 186 species, of which 20 are 

themselves primary emitted VOCs for which separate schemes are given.  
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Table 1. Average daytime lifetimes of VOCs in reaction with OH radicals (�OH) and O3 

(�O3). Concentrations for OH radicals are daytime averages for winter (Dec-Feb) of 
3.3*104 molecule cm-3 and for summer (Jun-Aug) of 6.4*105 molecule cm-3; for O3 the 
monthly average concentrations are for winter 5.6*1011 molecule cm-3 and for summer 
8*1011 molecule cm-3 in Central Finland (adapted from Hakola et al. (2003)). Reaction 
rates at 298±2 K are from Atkinson (1994), except for carbonyls, for which the values 
from paper V are used and for the TAME reaction rate, which is from Becker (1996). 

 
�OH 
(win) 

�OH 
(sum) 

�O3 
(win) 

�O3 
(sum) 

 � OH 
(win) 

�OH 
(sum) 

�O3 
(win) 

�O3 
(sum) 

Alkanes     Biogenic HCs     
Ethane 1358 d 70 d - - Isoprene 3,5 d 4,3 h 1.6 d 1.1 d 
Propane 303 d 16 d - - a-pinene 6,5 d 8,1 h 5.8 h 4.1 h 
2-methylpropane 150 d 7,8 d - - Camphene 6,6 d 8,2 h 23 d 16 d 
Butane 138 d 7,2 d - - b-pinene/myrcene 6,5 d 8,1 h 1.4 d 23 h 
2-methylbutane 89 d 4,6 d - - 3-carene 4,0 d 4,9 h 13 h 9.4 h 
Pentane 88 d 4,6 d - - Gasoline additives     
Cyclohexane 47 d 2,4 d - - MTBE* 119 d 6,1 d - - 
2-methylpentane 62 d 3,2 d - - TAME 55 d 2,9 d - - 
3-methylpentane 61 d 3,2 d - - Halogenated HCs     
Hexane* 62 d 3,2 d - - CFC-12 - - - - 
Mecyclohexane 34 d 1,7 d - - Chloromethane* 18 a 341 d - - 
Octane 40 d 2,1 d - - CFC-11 - - - - 
Nonane 34 d 1,8 d - - CFC-113 - - - - 
Decane 30 d 1,6 d - - Chloroform* 9,3 a 175 d - - 
Alkenes     1,2-dichloroethane* 362 a 19 a - - 
Ethene 41 d 2,1 d 14 d 9.7 d 1,1,1-TCE* 88 a 4,5 a - - 
Propene 13 d 16 h 2.2 d 1.5 d CCl4* 9,8 a 185 d - - 
Trans-2-butene 5,5 d 6,8 h 2.6 h 1.9 h Trichloroethene* 54 a 2,8 a - - 
1-butene 11 d 14 h 2.4 d 1.6 d Tetrachloroethene* 5,5 a 104 d - - 
2-methylpropene 6,8 d 8,4 h 1.9 d 1.3 d Carbonyls     
Cis-2-butene 6,2 d 7,7 h 4.1 h 2.9 h Formaldehyde* 37 d 1,9 d 27000 a 19000 a 
1,3-butadiene* 5,2 d 6,5 h 3.3 d 2.3 d Acetaldehyde* 57 d 2,9 d 9.5 a 6.6 a 
Trans-2-pentene 5,2 d 6,5 h - - Acetone 1591 d 82 d - - 
Cis-2-pentene 5,3 d 6,6 h - - Propanal 35 d 1,8 d - - 
Alkynes     Butanal 15 d 18 h - - 
Ethyne 428 d 22 d - - Pentanal 13 d 16 h - - 
Propyne 59 d 3,1 d - - Hexanal 12 d 15 h - - 
Aromatic HCs     Heptanal 12 d 15 h - - 
Benzene* 264 d 14 d 333 a 233 a Octanal 12 d 15 h - - 
Toluene* 59 d 3,0 d 138 a 97 a Nonanal 9,7 d 12 h - - 
Ethylbenzene 49 d 2,5 d - - Decanal 11 d 14 h - - 
p/m-xylene* 18 d 23 h 57 a 40 a Methacrolein 13 d 16 h 16 d 11 d 
Styrene* 6 d 7,5 h - - Benzaldehyde 49 d 2,5 d - - 
o-xylene* 25 d 1,3 d 33 a 23 a m-tolualdehyde - - - - 
Propylbenzene 58 d 3,0d - - Nopinone 24 d 1,3 d - - 
3-ethyltoluene 18 d 23 h - -      
4-ethyltoluene 29 d 1,5 d - -      
1,3,5-TMB 6,1 d 7,6 h - -      
2-ethyltoluene 28 d 1,5 d - -      
1,2,4-TMB 11 d 13 h - -      
1,2,3-TMB 11 d 13 h - -      

Mecyclohexane=methylcyclohexane, TMB=trimethylbenzene, MTBE=methyl-tert-butylether, 
TAME=tert-amylmethylether, 1,1,1-TCE= 1,1,1-trichloroethane, CCl4=tetrachloroethane 
*compounds marked with asterisks (*) are classified as hazardous air pollutant by U.S. EPA 
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Reaction products formed in chamber studies are mainly carbonyls, alcohols, organic 

nitrates and acids, found in both gas and aerosol phases (Hamilton et al., 2005; Forstner 

et al., 1997; Yu et al., 1997). Multifunctional products are common. Concentrations in 

chambers are often 1000 times higher than in the real atmosphere, but some of the 

products identified in modelling or chamber studies have also been detected in the 

ambient atmosphere (Hamilton et al., 2004; Edney et al, 2003).  

 

The reactions of aromatic hydrocarbons are extremely complex; numerous reaction 

pathways have been identified, and a very large variety of different kinds of products has 

been found in chamber studies. Compounds include carbonyls, dicarbonyls, organic 

acids, aromatics, furans, furanones and pyranones (Hamilton et al., 2005; Yu et. al., 1997; 

Forstner et al., 1997). Many of the products are capable of producing secondary organic 

aerosol (Hamiltom et al., 2005; Izumi and Fukuyama, 1990; Takekawa et al., 2003; Odum 

et al., 1997; Grosjean, 1992).   

 

Often some major products are found. For isoprene, methyl vinyl ketone, methacrolein 

and formaldehyde have been found to account for 60 % of the total OH reaction products 

(Pinho et al., 2005). Reactions of alkynes with OH radicals give as major products the 

corresponding dicarbonyls, i.e., ethyne gives glyoxal and propyne gives methylglyoxal 

(Finlayson-Pitts and Pitts, 2000), while the main product of the OH radical reaction of 

MTBE has been found to be tert-butylformate (TBF) (Kolb and Püttmann, 2006). 

 

2.4. The role of VOCs in the troposphere 

 

2.4.1. The role in ozone formation 

 

In the troposphere, ozone is produced by photolysis of NO2 (Sillman, 1999; Atkinson, 

2000). Ozone then rapidly oxidises NO back to NO2, as shown in reactions 6-8. 

 

NO2 + hv � NO + O(3P)     (6) 

O(3P) + O2 + M � O3 + M     (7) 
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O3 + NO � NO2 + O2      (8) 

                                                                

However, in the atmosphere, in addition to ozone, there are other oxidants (hydroperoxy 

and alkylperoxy radicals) to convert NO to NO2. These free radicals are formed in the 

reactions of VOCs (reactions 2-4). The relations between ozone, NOx and VOCs are 

complex. In some conditions, ozone formation is controlled almost entirely by NOx, 

while in other conditions ozone production increases with increasing VOC and does not 

increase with increasing NOx. These relations are often described by ozone isopleths (e.g. 

Figure 1). These plots show ozone concentrations as a function of initial NOx and VOC 

concentrations. Based on ozone isopleth plot in Figure 1 (Seinfeld and Pandis, 1998) 

ozone formation in average situation in Helsinki is controlled by NOx. A more detailed 

description of ozone, NOx and VOC relations can be found in Sillman (1999). For ozone 

control strategies, both emissions of VOCs and NOx have to be considered.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Ozone isopleth plot based on simulations of chemistry along air trajectories in 
Atlanta according to Seinfeld and Pandis (1998). Each isopleth is 10 ppb higher in O3 as 
one moves upward and to the right. Black dot describes the average situation in Helsinki 
in summer. Concentrations of NOx (Aarnio et al., 2005) and VOCs (paper IV) are 
summer averages at the urban background station of Kallio in Helsinki in 2004. 
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The rate of ozone production from a given VOC is a function of the compound’s 

atmospheric concentration, its rate of reaction with OH (and NO3 and O3) and the number 

of ozone molecules produced each time the compound is oxidized (Seinfeld and Pandis, 

1998). The propylene equivalent (PE) determines in an approximate manner the 

compound’s relative role as an ozone precursor. The propylene equivalent is defined as 

(Chameides et al., 1992): 

 

)(
)(

)()(
propenek

jk
jConcjPE

OH

OH=     (1.1) 

 

where Conc(j) is the concentration of a compound j, kOH(j) is the reaction rate of 

compounds j with hydroxyl radicals and kOH(propene) the reaction rate of propene with 

the hydroxyl radical.  

 

Chameides et al. (1992) found that, based on their propylene equivalents, the most 

important groups for the ozone formation in the urban air of Atlanta were aromatic 

hydrocarbons and alkenes. To better describe the ozone-forming capability of individual 

organics, VOC “reactivity scales” have been developed (Carter, 1994). One approach is 

that of the Maximum Incremental Reactivity, which is defined as the amount of O3 

formed per amount of VOC added. Another commonly-used method is the calculation of 

photochemical ozone creation potentials, where the master chemical mechanism and air 

parcel trajectory models are used (Derwent et al., 2001). In those studies, aromatic 

hydrocarbons and alkenes were found to be the main ozone precursors in urban air, but 

aldehydes also had quite high ozone formation potentials. 

  
Peroxy acyl nitrates are formed from the reactions of VOCs; as already mentioned, 

acetaldehyde is a classic precursor to peroxyacetyl nitrate (PAN) (Finlayson-Pitts and 

Pitts, 2000). PANs are able to transport NOx far away from the urban and industrial areas. 

This is important for tropospheric ozone production, as PANs transport NOx to rural and 

remote regions, where ozone formation is NOx-limited (Sillman, 1999) 
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2.4.2 VOCs as a free radical source 

 

Some VOCs can also be a source of free radical. As a result of the photolysis reactions of 

carbonyls, free radicals are formed. Possanzini et al. (2002) showed in their studies, for 

example, that the photolysis of formaldehyde is the most intense source of hydroxyl 

radicals in Rome during all sunlight hours of both summer and winter days. In addition to 

this, in alkene reactions with O3, free radicals are formed from the Criegee intermediates 

(Finlayson-Pitts and Pitts, 2000), and this can be an important source of OH radicals 

during the night. 

 

2.4.3 Secondary organic aerosol formation 

 

In the reactions of VOCs less volatile products are formed that can participate in 

secondary organic aerosol (SOA) formation. It has been estimated that the major SOA 

precursors are biogenic VOCs, but anthropogenic contribution to SOA formation can be 

important in polluted regions (Kanakidou et al., 2005). SOA may account for a 

significant fraction of the total organic carbon in urban particulate matter (Pandis et al., 

1992). These less volatile reaction products, that may form SOA, include aliphatic acids, 

aromatic acids, nitro aromatics, carbonyls, esters, phenols, aliphatic nitrates and amides 

(Grosjean, 1992).  

 

The biogenic hydrocarbons, monoterpenes and sesquiterpenes, are believed to have an 

important role in SOA formation in rural and remote areas (Griffin et al., 1999; Hoffmann 

et al., 1997; Bonn and Moortgat, 2003), but in urban areas aromatic hydrocarbons play a 

significant or even dominant role (Pandis et al., 1992). There are number of studies of the 

formation of aerosols from the photo-oxidation of aromatics (e.g. Izumi and Fukuyama, 

1990; Takekawa et al., 2003; Odum et al., 1997; Grosjean D., 1992 and Pandis et al., 

1992;). Toluene and xylenes are estimated to be the main aromatic SOA precursors 

(Odum et al., 1997; Grosjean D., 1992 and Pandis et al., 1992), but there is some recent 

evidence that even benzene may act as a precursor (Martin-Reviejo and Wirtz, 2005). In 

addition to aromatics, large (>6 carbon atoms) alkanes, cycloalkanes and cycloalkenes are 
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considered to be SOA precursors (Pandis et al., 1992 and Grosjean, 1992). The 

heterogeneous reactions of carbonyls on aerosol surfaces are also estimated to have great 

importance for SOA formation (Jang et al., 2002 and Kalberer et al., 2004). 

 

2.4.4. VOCs and climate change 

 

Non-methane volatile organic compounds influence climate change mainly through their 

production of organic aerosols and their involvement in the production of O3 (IPCC, 

2001). Other VOCs than halogenated hydrocarbons have only a small direct impact on 

radiative forcing. The halogenated HCs with the largest potential to influence climate are 

CFC-11 (CFCl3), CFC-12 (CF2Cl2), and CFC-113 (CF2ClCFCl2). The radiative forcing 

due to these three halocarbons is approximately 13 % of the total radiative forcing due to 

carbon dioxide, methane and nitrous oxide. 

 

2.5. Health effects of VOCs 

 

There are many different compounds present in the air that can be harmful to humans or 

the environment. The European Union (EU) has set limit values for the some of the most 

harmful air pollutants, which can have health effects even at very low concentrations. Of 

the VOCs, there is a limit value of 5 �g m-3 for the annual average benzene concentration 

in the air (EU, 2000). Benzene is a known genotoxic carcinogen.  

 

The U.S. Environmental Protection Agency (U.S. EPA, 2005a) has listed 188 compounds 

as hazardous air pollutants (HAPs), which have to be controlled. They define hazardous 

air pollutants as those pollutants that cause or may cause cancer or other serious impacts 

upon health, such as reproductive effects or birth defects, or adverse environmental and 

ecological effects. In Table 1, compounds listed as HAPs are marked with asterisks (*).  

As can be seen, there are only a few HAPs among the alkanes, alkenes and alkynes, but 

of the aromatic and halogenated hydrocarbons many are harmful. Of the carbonyls only 

formaldehyde and acetaldehyde are listed as HAPs. For many of the HAPs, however, 
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harmful concentrations are much higher than those found generally in urban air; close to 

the source, though, concentrations can be high. 

 

In addition to this, ozone is a toxic to humans and the environment, and VOCs contribute 

to the enhanced production of ozone, as described above. Even though actual emissions 

of ozone precursors have decreased in Europe (Jonson et al., 2006), ozone concentrations 

have increased in Finland in the years 1990-2000 (Laurila et al., 2004). The Ozone 

Directive (EU, 2002) by the EU obligates member states in future to monitor 31 volatile 

organic compounds that are considered as ozone precursors. 

 

It is also possible that the reaction products of some VOCs are more harmful than the 

VOCs themselves (Yu and Jeffries, 1997), and in addition to this, VOCs’ reaction 

products are able to produce SOA and fine particles, which are known to have serious 

health effects (WHO, 2003). 

 

3. EXPERIMENTAL 

 

3.1. Measurement sites 

 

Measurements of VOCs have been conducted in the cities of Helsinki and Järvenpää in 

southern Finland, in a forest research station at Hyytiälä in central Finland, on an island 

(Utö) in the Baltic Sea, at the Global Atmospheric Watch (GAW) station of Pallas in 

Northern Finland and at the end of a cape (Emäsalo) close to Helsinki. The locations of 

the different measurement sites are shown in Figure 2. 

 

The aromatic hydrocarbons and MTBE used in these studies have been measured at 7 

different locations in Helsinki in 2000, 2002 and 2003. The stations used represented 

urban traffic (Töölö), suburban traffic (Leppävaaara, Ruskeasanta and Tikkurila), an 

industrial environment (Herttoniemi) and an urban background (Kallio). Regional 

background concentrations were also monitored in a rural environment at Luukki, located 
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approximately 20 km north-west of the centre of Helsinki. The locations and detailed 

descriptions of these stations are presented in paper II.  

 

The urban background station of Kallio was used as a main station for the measurements 

in receptor modelling studies in 2001 and 2004. In 2004, measurements were also 

conducted at a residential site in the city of Järvenpää. Distant-source profile 

measurements for these studies were conducted at the end of a cape (Emäsalo) located 30 

km to the east of Helsinki in 2001 and on an island (Utö) in the Baltic Sea in 2004. 

Measurements of the ambient concentrations of carbonyl compounds were also 

conducted at the SMEAR II station (Station For Measuring Forest Ecosystem-

Atmosphere Relations, 61o51’N, 24o17’E, 181 m a.s.l.) located at Hyytiälä in Central 

Finland. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Location of the measurement sites of Helsinki, Järvenpää, Utö, Emäsalo, 

Hyytiälä and Pallas. 
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3.2. Sampling and analysis of volatile organic compounds 

 

Because hundreds of different VOCs with different volatility and polarity exist in the air 

at different concentration levels, various different sampling and analysis methods are 

needed. Most of the concentrations are at very low levels (ng/m3 – �g/m3) and pre-

concentration is necessary. Some of the VOCs are very reactive and, for example, ozone 

removal during sampling is crucial. Water and carbon dioxide can also cause problems 

when gas chromatographic methods or cold traps are used, and therefore various removal 

techniques are used. For some of the VOCs, ozone and water removal traps can also 

cause problems (Pollmann et al., 2006 and Zielinska et al., 1996).  Figure 3 shows the 

overall schematics of the sampling and analyzing methods used in this study. 

 

Because the analyzing systems for VOCs are not easily used in field conditions, sampling 

is mostly conducted using offline methods. Sampling times vary from a few seconds in 

canister sampling to several weeks in diffusive adsorbent sampling. The sampling time 

depends on method used, the detection limit, the flow rate and the concentration of the 

compound. Details of the sampling methods used in this study are listed in Table 2.  

 

Table 2. Descriptions of the sampling methods used and references to the papers. 
 
Compounds Method Notes Flow rate Sampling 

time 
Paper 

Aromatic HCs, MTBE Diffusive adsorbents 
sampling 

Carbopack-B 
tubes 
 

0.44-0.64 
cm3min-1 

2 weeks I, II 

Aromatic HCs, C6-C10 

alkanes, MTBE, TAME, 
monoterpenes, halogenated 
HCs  

Pumped adsorbent 
sampling 

Tenax TA – 
Carbopack-B 
tubes 

50-90  
ml min-1 

1-4 hours I,II,II,IV 

Light (C2-C6) HCs, 
halogenated HCs 

Canister sampling 0.85 l and 6 l 
canisters 

 < ½min 
or 24 h 

II,III,IV 

Light (C2-C6) HCs Tedlar bags Emission 
studies 

 <½min III 

C1-C12 carbonyls DNPH-sampling DNPH-
cartridges 

~900ml min-1 24 h V 

Aromatic HCs Online Collection to 
a cold trap 

52 ml min-1 1 hour I 
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Most of the chromatographic methods used in the analysis of volatile organic compounds 

are based on gas chromatography (Hellén, 2001). When analyzing these very volatile 

compounds, long columns with thick films (1-10 �m) are needed. For the most volatile 

compounds (C2-C4), porous-layer open-tubular (PLOT) columns are usually used. For C6-

C10 hydrocarbons, the most common columns are wall-coated open-tubular (WCOT) 

columns with non-polar stationary phases (e.g. dimethylpolysiloxane). For carbonyls, 

liquid chromatography with derivatization is also used. Details of the analysing methods 

used in this study are listed in Table 3. 

 

Table 3. Descriptions of the analysing methods used and references to the papers. 
 

Compounds Method Column Column specifications  Notes Paper 
C6-C10 HCs, 
MTBE, TAME, 
halogenated 
HCs 

GC-MS HP-1/HP-5 
(Agilent 
technologies) 

Length: 60 m  
Inner diameter: 0.25 mm, 
Film thickness: 1�m 

Adsorbent tubes+thermal 
desorption (ATD-400), 
online sampling 

I-IV 

C2-C6 HCs + 
CH3Cl 

GC-FID Al2O3/KCl PLOT 
(Chrompack)  

Length: 50 m  
Inner diameter: 0.32 mm, 
Film thickness: 5 �m 

Canisters, liquid nitrogen 
cold traps 

III,IV 

Halogenated 
HCs 

GC-ECD Al2O3/KCl PLOT 
(Chrompack) 

Length: 50 m  
Inner diameter: 0.32 mm, 
Film thickness: 5 �m 

Canisters , liquid nitrogen 
cold traps 

IV 

Formaldehyde, 
acetaldehyde 

LC-UV XORBAX Eclipse 
XDB-C8 (Agilent 
technologies) 

Length:  150 mm 
Inner diameter: 4.6 mm 
Particle size: 5 �m 

DNPH-cartridges, solvent 
desorption 

IV,V 

C1-C12 carbonyls LC-MS XORBAX Eclipse 
XDB-C8 (Agilent 
technologies) 

Length:  150 mm 
Inner diameter: 4.6 mm 
Particle size: 5 �m 

DNPH-cartridges, solvent 
desorption 

IV,V 

 

 

Recently, fast online methods for VOC determinations have been developed. Proton 

transfer reaction mass spectrometry (PTR-MS) with a high time resolution, for example, 

has been able to provide a lot of new and valuable information for VOC studies (e.g. Karl 

et al., 2002 and 2003, Salisbury et al., 2003 and Lee et al., 2005). In these methods, 

however, separation of different compounds having the same masses is not possible, and 

for the identification of the compounds an additional chromatographic method is usually 

needed. In addition to this, the detection limits for some compounds are higher than in 

chromatographic methods.  
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Figure 3. Analytical procedures used in this study for determination of VOC 
concentrations in ambient air. 
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3.2.1. Sampling and analysis of C2-C7 hydrocarbons 

 

(Method 1) 

Sampling of light (C2-C7) hydrocarbons was conducted using evacuated stainless steel 

canisters (0.85 l and 6 l). The inner surfaces of the canisters were passivated with a layer 

of chrome-nickel oxide. The canisters were either pressurised with sampling air at the site 

using Teflon membrane pumps, or afterwards at the laboratory with helium or nitrogen. 

Pressurising in the laboratory was used for passive canister sampling, in which a flow 

restrictor, that allowed air flow into the canister by flow rate of a few ml min-1, was 

placed at the inlet of the canister and the sampling time was increased from less than a 

minute to 24 hours. Canisters were suitable only for the most volatile hydrocarbons, 

because other compounds are adsorbed onto the canister inner surfaces and are not stable 

(Zielinska et al., 1996).  

 

Samples were analyzed in the laboratory within a few weeks of sampling. Brymer et al. 

(1996) studied 194 volatile organic compounds and found that most of them are stable in 

canisters for at least 30 days. Before the analyses, samples (c.a. 500 ml) were 

concentrated in two liquid nitrogen traps. Drying and the removal of CO2 was achieved 

by passing the air through a stainless-steel tube filled with K2CO3 and NaOH. The 

samples were analysed using a gas chromatograph (HP-6890) with a flame ionization 

detector and an Al2O3/KCl PLOT column. The calibration was performed with a UK 

National Physical Laboratory gaseous standard analyzed along with the regular samples. 

 

Detection limits for the light hydrocarbons varied between 30 and 110 ng m-3 (Table 4). 

Uncertainties (U) derived from the ambient concentrations (c), detection limits (DL) and 

standard deviations (CV) between duplicate samples, determined using the procedure 

described in Fujita et al. (1994) and in papers III and IV, 22 )()2( cCVDLU ×+×= , 

were between 70 and 230 ng m-3 (Table 4). 
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Table 4. Sampling and analysis methods used (M), detection limit (DL) and estimated 
uncertainty (U) for different compounds. The detection limits and uncertainties are 
calculated for the sampling systems used in paper IV. 
 

 
M DL 

(ng m-3) 
U 

(ng m-3) 
 M DL 

(ng m-3) 
U 

(ng m-3) 
Alkanes    Biogenic HCs    
Ethane 1 30 80 Isoprene 1,3 90 190 
Propane 1 40 100 a-pinene 3 30 280 
2-methylpropane 1 50 110 Camphene 3 10 50 
Butane 1 40 120 b-pinene/myrcene 3 20 40 
2-methylbutane 1 40 80 3-carene 3 20 120 
Pentane 1 100 210 Gasoline additives    
Cyclohexane 1 40 80 MTBE 3 50 90 
2-methylpentane 1 70 130 TAME 3 40 70 
3-methylpentane 1 70 140 Halogenated HCs    
Hexane 1 70 140 CFC-12 2 20 70 
Methylcyclohexane 3 40 80 Chloromethane 2 20 90 
Octane 3 50 100 CFC-11 2 10 40 
Nonane 3 60 130 CFC-113 2 30 60 
Decane 3 110 220 Chloroform 2 10 20 
Alkenes    1,2-dichloroethane 3 10 30 
Ethene 1 30 70 1,1,1-TCE 3 10 30 
Propene 1 50 100 CCl4 2,3 40 100 
Trans-2-butene 1 40 80 Trichloroethene 3 20 40 
1-butene 1 50 90 Tetrachloroethene 2,3 20 40 
2-methylpropene 1 50 100 Carbonyls    
Cis-2-butene 1 40 90 Formaldehyde 4,5 10 80 
1,3-butadiene 1 40 100 Acetaldehyde 4,5 40 100 
Trans-2-pentene 1 40 90 Acetone 4 60 120 
Cis-2-pentene 1 50 100 Propanal 4 10 20 
Alkynes    Butanal 4 5 10 
Ethyne 1 50 100 Pentanal 4 20 30 
Propyne 1 120 230 Hexanal 4 5 10 
Aromatic HCs    Heptanal 4 10 30 
Benzene 1,3 220 460 Octanal 4 20 40 
Toluene 3 210 430 Nonanal 4 60 120 
Ethylbenzene 3 40 70 Decanal 4 10 40 
p/m-xylene 3 260 520 Benzaldehyde 4 20 40 
Styrene 3 80 160 m-tolualdehyde 4 5 10 
o-xylene 3 100 190 Nopinone 4 5 10 
Propylbenzene 3 20 40     
3-ethyltoluene 3 70 140     
4-ethyltoluene 3 40 80     
1,3,5-TMB 3 50 90     
2-ethyltoluene 3 40 80     
1,2,4-TMB 3 140 270     
1,2,3-TMB 3 50 90     

1. Canister sampling – liquid nitrogen traps – GC-FID 
2. Canister sampling – liquid nitrogen traps – GC-ECD 
3. Adsorbent sampling – thermal desorption – GC-MS 
4. DNPH-sampling – solvent desorption – LC-MS 
5. DNPH-sampling – solvent desorption – LC-UV 

TMB=trimethylbenzene, MTBE=methyl-tert-butylether, TAME=tert-amylmethylether, 1,1,1-TCE= 
1,1,1-trichloroethane, CCl4=tetrachloroethane 
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3.2.2. Sampling and analysis of C8-C10 alkanes, aromatic hydrocarbons, gasoline 

additives and biogenic hydrocarbons  

 

(Method 3) 

For C8-C10 alkanes, aromatic hydrocarbons, gasoline additives and terpenes, pumped or 

diffusive adsorbent sampling was used. In pumped adsorbent sampling, air was drawn 

through Tenax TA/Carbopack B -adsorbent tubes using Alpha-2 pumps (Ametek) or 

critical orifices with membrane pumps. Two different adsorbents were used to widen the 

selection of the compounds retained in the tubes. The flow rates varied between 50 and 

90 ml min-1 and the sampling time was from 1 to 4 hours for ambient samples. MnO2-

coated copper nets were used for ozone removal at the inlets to the sampling systems. 

This was essential when ozone-reactive biogenic hydrocarbons (terpenes) were measured. 

The adsorbents used are hydrophobic and therefore additional water removal systems 

were not used. 

  

Diffusive sampling was used for 2-week sampling of aromatic HCs and MTBE with 

Carbopack B –tubes (papers I and II). Diffusive sampling tubes are exposed to the 

sampling air and compounds diffuse to the adsorbent. Uptake rates for aromatic 

hydrocarbons in a two-week sampling period with Carbopack-B adsorbent vary between 

0.23 and 0.68 cm3min-1. Sampling methods are described in more detail in paper I. 

 

For sample preparation and analysis of adsorbent samples, an automated thermal 

desorption system (ATD-400) with a gas chromatograph (HP-5890) equipped with an 

HP-1 or HP-5 column and a mass spectrometer (HP-5972) was used. Both the scanning 

mode and the more sensitive selected ion monitoring were used for the mass 

spectrometer. Five-point calibration was conducted using liquid standards in a methanol 

solution. Standard solutions were injected onto adsorbent tubes and flushed with helium 

for five minutes in order to remove methanol. Adsorbent samples were already 

concentrated during sampling and additional concentration was achieved by the ATD-400 

using a cold trap. 
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ATD-400 thermal desorption unit were also used for online sampling of aromatic 

hydrocarbons (paper I). In the online mode, samples were directed through a heated 

sampling line directly into the cold trap of the ATD-400. For water removal, the sample 

was passed through a Nafion dryer. The flow rate used was 52 ml/min and the sampling 

time 48 minutes.  

 

Detection limits for pumped samples varied from 10 ng m-3 for camphene to 260 ng m-3  

for p/m-xylene (Table 4). For diffusive samples, detection limits varied between 20 and 

150 ng m-3 (paper I). For most of the compounds, uncertainties were below 25 % (paper 

I).  

 

3.2.3. Sampling and analysis of halogenated compounds 

 

(Methods 2 and 3) 

Sampling of halogenated hydrocarbons was conducted using either the same canisters as 

for the light hydrocarbons, or adsorbent tubes as for the larger hydrocarbons. The most 

volatile halogenated compounds were not retained on the adsorbent tubes; only canister 

sampling could be used for them. 

 

Halogenated hydrocarbon samples from canisters were concentrated and analysed using 

the same system as for the light HCs. When halogenated compounds were analysed, the 

sample was divided after chromatographic separation into two different detectors: the 

flame ionization detector (FID) and the electron capture detector (ECD). Halogenated 

compounds were detected using the ECD, except for chloromethane, which was detected 

by both the detectors. Calibration was performed with a gaseous standard purchased from 

the National Oceanic and Atmospheric Research Administration.  

 

Adsorbent samples for the halogenated HCs were collected and analysed using the same 

procedure as for the other adsorbent samples. Calibration was performed with liquid 

standards in methanol solution. Detection limits for halogenated hydrocarbons varied 

between 10 and 40 ng m-3; uncertainties were below 100 ng m-3. 
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3.2.4. Sampling and analysis of carbonyl compounds 

 

(Methods 5 and 6) 

Carbonyl samples were collected by drawing air through C18-cartridges (Sep-Pak, 

Waters) coated with DNPH (2,4-dinitrophenyl hydrazine) that acted as a derivatization 

reagent for carbonyls. An ozone scrubber (copper tubing coated with potassium iodide) 

was placed ahead of the sampling cartridges. The flow rate was between 900 and 1000 ml 

min-1; the sampling time was 24 hours for the ambient samples and a few minutes for the 

emission samples. During sampling, the carbonyl compounds were derivatized on 

cartridges to (2,4-dinitrophenyl)hydrazones and subsequently eluted in the laboratory 

with 3 ml of acetonitrile. The eluate was analysed using a liquid chromatograph equipped 

with an XDB C-8 column and a mass spectrometer (Agilent 1100 Series LC/MSD trap) 

with negative atmospheric pressure chemical ionization (APCI). Water and acetonitrile 

were used as eluents.  

 

DNPH-derivates of undecanal, heptanal, nonanal, trans-2-hexenal, laurinaldehyde, 

decanal, 2-methyl-2-hepten-6-one, nopinone, octanal and limona ketone were prepared 

according to the instructions of the EMEP manual for sampling and analysis (EMEP, 

1996). For hexanal, formaldehyde, methyl ethyl ketone, butanal, pentanal, propanal, 

acetaldehyde, acetone, acrolein, benzaldehyde, 2-butenal, m-tolualdehyde and 

methacrolein, a liquid DNPH-carbonyl standard in acetonitrile purchased from Supelco 

was used. Detection limits of the compounds in ambient air samples varied from 5 to 60 

ng m-3 and uncertainties between 10 and 120 ng m-3. 

 

An ultraviolet (UV) detector was used for the formaldehyde and acetaldehyde. Other 

compounds could not be detected by the UV detector, because of co-elution of the peaks. 

In the mass spectrometer, co-elution is not a problem if the masses of the co-eluting 

compounds are different. The sample passed through the UV detector before entering the 

mass spectrometer. Because the UV detector signal is more stable, the stability of the 

calibration in the mass spectrometer could be followed by comparing the results from 

these two detectors. 
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3.3. Source profile measurements 

 

The sources to be measured were chosen based on published emission inventories (Lyly et 

al., 2000; Finnish Environment Institute, 2001) and our own considerations. According to 

the report of the City of Helsinki Environment Centre, the major sources of VOCs in 

Helsinki are vehicle emissions, paints and solvents, household products and industry 

(Lyly et al., 2000). The principal component analysis made by Edwards et al. (2001) 

suggests that emissions from distant sources, traffic, trees and seasonal oxidation 

products are the major sources of C6-C10 VOCs in the air of Helsinki. 

 

Source profile samples were taken and analyzed using the same methods as for the 

ambient air samples, only with shorter sampling times. For some profiles existing 

literature data was used. 

 

3.4. Receptor modelling 

 

Different sources emit VOCs with their own characteristic compositions. This gives one 

the opportunity of using receptor models, which enable backward estimations of how 

much each source contributed to the final, observed concentration in the ambient air. 

Different receptor models are used in the source apportionment studies of VOCs; Positive 

matrix factorization (Kim et al., 2005), UNMIX (Choi and Ehrman, 2004), Principal 

component analysis (Wang et al., 2000) and Chemical mass balance (Watson et al., 

2001). Combinations of these have also been tested (Mukerjee et al., 2004; Jorquera and 

Rappenglück, 2004; Latella et al., 2005). In this study, the Chemical Mass Balance 

Model Version 8 (CMB8) of the US EPA/Desert Research Institute and the factor 

analysis method UNMIX 2.4, developed by Ronald Henry, have been used.  
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These receptor models are based on the following equation: 

 

�
=

=
N

k
kjikij SfC

1

       ,,...,1 mi =  .,...,1 nj =                  (2.1) 

 

Where Cij is the observed concentration of species i  in sample j, Skj is the total mass of 

material from source k in sample j and fik is the mass fraction of species i  in source k 

(k=1…N). N is the number of sources. This assumes that there are no loss processes for 

the elements between source and receptor. 

 

3.4.1. Chemical mass balance 

 

In chemical mass balance (CMB), the source profiles and the ambient concentrations with 

uncertainties serve as input data. The model is based on the effective variance least 

squares solution. A more detailed description of the fundamentals of CMB modelling can 

be found, for example, in ‘Receptor modelling for air quality management’ (Hopke, 

1991). In the application of the model, CMB8 applications and the validation protocol for 

PM2.5 and VOCs was followed (Watson et al., 1998). 

 

Certain assumptions are made in CMB models (Watson et al., 1998): (1) the source 

compositions are assumed to be constant over the ambient air and source sampling 

period, (2) the included species are not reactive, (3) all major sources are identified, (4) 

the source profiles are linearly independent, (5) the number of sources is smaller than the 

number of species, and (6) the measurement errors are random, uncorrelated and 

normally distributed. These assumptions are not totally observed in practice, but the 

model can tolerate some deviation from these restrictions.  

 

The CMB model calculates some statistical parameters, that describe its performance; R-

square (R2), Chi-square (�2), the percent mass (mass%), the ratio C/M and the ratio R/U 

(Watson et al., 1998). R-square measures the variance in the receptor concentrations, that 

can be explained by the calculated species concentrations. Chi-square is used to consider 
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the uncertainty of the calculated species concentration. It is the weighted sum of the 

squares of the differences between the calculated and measured species concentrations. 

The percent mass is the percentage ratio of the sum of the calculated source contributions 

to the total mass, C/M is the ratio of calculated to measured values for individual 

compounds and R/U is the ratio of the signed difference between the calculated and 

measured concentration (i.e. residual (R)) divided by the uncertainty (U) of that residual 

(i.e. the square root of the sum of the squares of the uncertainty in the calculated and 

measured concentrations). The performance goals are R2 
� 0.8, �2 < 4, mass% = 80-120, 

0.5�C/M�2 and -2�R/U�2. If R/U is below the value -2 or C/M below 0.5, the 

concentrations are underestimated by the model, while if either the R/U or C/M value is 

over 2, the concentration is overestimated. The reason for an under- or overestimation can 

be errors in the source profile estimations or in the concentration measurements. A 

missing source can also cause underestimations, while the reactivity of the compounds 

can cause overestimations. 

 

The selection of source profiles and the fitting species for the CMB calculations can be 

done by conducting sensitivity tests. In these tests the model is run with different 

selections, and the statistical parameters given by the model are compared. The selection 

that gives the values closest to the performance goals is chosen. The most reactive species 

were not used as fitting species (lifetime against OH-radical � lifetime of 1,2,3 

trimethylbenzene). An exception was made in the case of the biogenic compounds, which 

are all very reactive; some of them had to be used to describe the biogenic emissions. 

Some compounds with concentrations very close to the detection limit were not used, 

even if their lifetime was longer than that of 1,2,3 trimethylbenzene.  

 

The source profiles have to be linearly independent. Because of the collinearity, different 

exhaust profiles for cold starts or for catalyst-equipped and non-catalyst cars could not be 

used.  
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3.4.2. Multivariate receptor model UNMIX 

 

UNMIX is a multivariate receptor model developed by Ronald Henry from the University 

of Southern California. A description of the fundamentals of UNMIX can be found in 

Henry (1997, 2001, and 2002). The number of sources, the source compositions and the 

contributions are estimated from the variations in the ambient air measurement data, and 

therefore a large data set is needed as input data. In UNMIX, the source compositions and 

the contributions must be non-negative. Furthermore, UNMIX uses data to find data 

points (edges) where one of the sources is missing or small. If there are such points, the 

sources can be identified. Also physical constraints (tracer compound) supplied by the 

user can be used. When interpreting the UNMIX results, identification of the sources can 

be problematic. 

 

UNMIX also calculates some statistical parameters to describe the performance of the 

model. According to the recommendations, R-square (R2), which describes how much of 

the variance of each species can be explained by the sources, should be over 0.80 and the 

signal-to-noise ratio over 2 (Henry, 2001).  

 

In this study, UNMIX 2.4 was applied to the determination of the composition and the 

contribution of different emission sources for compounds collected on adsorbents. The 

results were used to confirm that the major sources were included in the CMB 

calculations. Using the combinations of different methods can be a powerful tool. 

 

4. RESULTS 

 

4.1. The VOC source profiles 

 

Profiles of traffic, gasoline and diesel fuel evaporation, liquid gasoline and diesel fuel, 

wood combustion, biogenic emissions, commercial natural gas, dry cleaning and distant 

sources were determined for the studies in papers III and IV. All the profiles used 
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differed significantly from each other, causing no co-linearity problems in the CMB 

calculations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Source profiles of traffic and wood combustion. 

 

Traffic emissions consist of various VOCs; the main compound group is aromatic 

hydrocarbons followed by alkanes (Figure 4). Direct emissions of carbonyls are also 

noteworthy in the traffic emissions. In the gasoline vapour profile, light alkanes (C4-C5) 

provide the main contribution, especially butane, which comprises 42% of the total 

emission. Compared to the vapour profile, the contributions of less volatile aromatic 

hydrocarbons and gasoline additives are higher in the liquid gasoline profile. Diesel fuel 
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vapour is mainly composed of the larger C7-C10 alkanes and aromatic hydrocarbons. A 

characteristic feature of the liquid diesel fuel is the large contribution of high C8–C10 

alkanes.  

 

In wood combustion emissions, alkenes and carbonyls make the highest contributions, 

but the shares of alkynes, aromatics and alkanes are also significant (Figure 4). In each 

functional group the lightest compounds (ethane, ethene, ethyne, benzene, chloromethane 

and formaldehyde) provide the highest contributions. This was also shown in the wood 

emission studies of Hedberg et al. (2002). As in this study, a halogenated compound, 

chloromethane, is commonly found in the emissions from wood combustion and biomass 

burning (e.g. McDonald et al., 2000; Reinhard and Wang, 1995). Commercial natural gas 

is almost totally composed of light alkanes, the main compound being ethane with a 57% 

contribution. In the distant source profiles, compounds with longer atmospheric lifetimes, 

such as alkanes and halogenated hydrocarbons, dominate.  

 

4.2. Sources and concentrations of different compound classes 

 

4.2.1. The VOC sum  

 

The sources and concentration of the VOC sum have been studied in papers III and IV. 

Based on chemical mass balance calculations for the NMHCs measured in Helsinki in 

2001, the main source groups were gasoline exhausts (33%) and distant sources (37%) 

(paper III). All traffic-related sources (gasoline exhausts, liquid gasoline and gasoline 

vapour) were found to together make a contribution of over 50 %. At weekends, the 

contributions of gasoline exhausts and vapor decreased and the contribution of distant 

sources increased. 

 
In paper IV it was shown that in the two cases of an urban area in Helsinki and in a 

residential area in Järvenpää, the VOCs have quite different local sources. According to 

the CMB analysis, major local source for these VOCs at the urban site was traffic. At the 

residential site, the contribution due to traffic was minor, while liquid gasoline and wood 
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combustion made higher contributions. However, even at the urban site in Helsinki, the 

contribution of distant sources is high compared to that of local sources. 

 

4.2.2. Alkanes 

 

Alkanes are a group with the highest concentration of all the measured VOCs (Table 5, 

Figure 5). They have been studied in papers III and IV. The lifetimes of the lightest 

alkanes are relatively long (Table 1) and therefore they accumulate in the atmosphere, 

especially in winter, and their concentrations at other than urban stations are also quite 

high (Figure 6). Of the alkanes, butane and 2-methylbutane were found to have the 

highest concentrations in Helsinki in winter, but at the residential and rural sites, the 

concentration of ethane, which has the longest lifetime, is highest (Figure 6). 

ng m-3
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Figure 5. Concentrations and OH-reactivity-scaled concentrations (propylene 
equivalents) of different compound groups at the urban background station of Kallio in 
Helsinki in February 2004. 
 

From the diurnal variation (Figure 7) of the higher alkanes (methylcyclohexane, octane, 

nonane and decane) in Helsinki, it is seen that higher concentrations are measured in 

daytime.  Concentrations start rising in the morning during the rush hours, are a little 

lower in the middle of the day, rise again during the rush hours in the evening and are 

lowest in the early morning hours, when all the activity is at its lowest. 
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Table 5. Measured ambient air concentrations (Helsinki) and OH-reactivity-scaled 
concentrations (HelOH) as propylene-equivalents described in section 2.4.1. and in paper 
V at the urban background site in Helsinki in February 2004.  

 
 

 
Helsinki 
(ng m-3) 

HelOH 
(ng m-3) 

 Helsinki 
(ng m-3) 

HelOH 
(ng m-3) 

Alkanes 22630 2500 Biogenic HCs 180 530 
Ethane 3930 40 Isoprene 90 350 
Propane 3130 130 a-pinene 80 160 
2-methylpropane 2170 190 Camphene 10 20 
Butane 4220 400 b-pinene/myrcene <DL - 
2-methylbutane 4460 650 3-carene <DL - 
Pentane 1770 260 Gasoline additives 1460 230 
Cyclohexane 380 100 MTBE 900 100 
2-methylpentane 630 130 TAME 560 130 
3-methylpentane 400 90 Halogenated HCs 7430 6 
Hexane 470 100 CFC-12 2900 - 
Methylcyclohexane 220 80 Chloromethane 1140 2 
Octane 220 70 CFC-11 1610 - 
Nonane 290 110 CFC-113 770 - 
Decane 340 150 Chloroform 70 0 
Alkenes 3490 3260 1,2-dichloroethane 40 0 
Ethene 1890 600 1,1,1-TCE 130 0 
Propene 600 600 CCl4 530 2 
Trans-2-butene 150 360 Trichloroethene 50 0 
1-butene 150 170 Tetrachloroethene 200 1 
2-methylpropene 330 620 Carbonyls 2900 970 
Cis-2-butene 80 180 Formaldehyde 750 260 
1,3-butadiene 150 390 Acetaldehyde 540 120 
Trans-2-pentene 90 230 Acetone 820 10 
Cis-2-pentene 50 120 Propanal 40 20 
Alkynes 1630 50 Butanal 40 30 
Ethyne 1630 50 Pentanal <DL - 
Propyne <DL - Hexanal 30 40 
Aromatic HCs 9310 4270 Heptanal 20 20 
Benzene 1810 90 Octanal 40 50 
Toluene 2810 620 Nonanal 110 150 
Ethylbenzene 560 150 Decanal 140 180 
p/m-xylene 1670 1210 Methacrolein <DL - 
Styrene 100 230 3-buten-2-one 340 - 
o-xylene 660 340 Benzaldehyde <DL - 
Propylbenzene 140 30 m-tolualdehyde 10 - 
3-ethyltoluene 340 250 Nopinone 5 10 
4-ethyltoluene 170 80    
1,3,5-TMB 160 340    
2-ethyltoluene 150 70    
1,2,4-TMB 580 680    
1,2,3-TMB 160 190 VOC sum 49320 23650 

TMB=trimethylbenzene, MTBE=methyl-tert-butylether, TAME=tert-amylmethylether, 1,1,1-TCE= 
1,1,1-trichloroethane, CCl4=tetrachloroethene 
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In source profile studies, alkanes were found to exist in traffic, gasoline and diesel fuel 

evaporation, liquid gasoline and diesel fuel, wood combustion, commercial natural gas 

and distant source emissions (Papers III and IV). Their mass was >50% of the total VOC 

mass in all other than traffic and wood combustion emissions.  
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Figure 6. Concentrations of alkanes at the urban background station in Helsinki in 
February 2004, at the residential site in Järvenpää in December 2004 and January 2005 
and at the background station of Utö at the beginning of March 2004. (Error bars for 
Helsinki and Järvenpää represent the standard deviation of daily averages. For Utö there 
were only two daily average values with a very low deviation, and therefore the 
uncertainty of the determination method was used as error bars for this station).  
 
 

The main local source for alkanes in Helsinki was found to be traffic, but the contribution 

of distant sources was high (58%). For the lightest alkanes (ethane and propane), the 

contribution of distant sources was over 90 %. In a study by Hakola et al. (2006) of 

measurements of light hydrocarbons in background air in Finland, it was shown that the 

main source areas for these compounds in Finland are Southern and Eastern Europe, 

while air masses coming from the North Sea and the Arctic are cleaner. They also found 

that concentrations of ethane and propane have increased during the ten years of 
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measurement starting in 1994. They concluded that this could indicate a growth of VOC 

emissions in areas outside Europe.  
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Figure 7. Diurnal variation of some VOCs at the urban background station of Kallio in 
Helsinki. Data is from the Tenax TA-carbopack B samples from the sampling campaign 
4.2.-23.2.2004 described in paper IV. 
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4.2.3. Alkenes 

 

Alkenes have been studied in papers III and IV. Of the alkenes, ethene has the highest 

concentrations, almost 2000 ng m-3 in Helsinki in the winter of 2004 (Figure 8). Average 

concentrations of the other measured alkenes varied between 50 and 600 ng m-3.  At the 

rural station of Utö, concentrations of alkenes were low and even below the detection 

limits. This is because the lifetimes of alkenes are short (Table 1) and they are not 

transported far from their sources. 
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Figure 8. Concentrations of alkenes at the urban background station in Helsinki in 
February 2004, at the residential site in Järvenpää in December 2004 and January 2005 
and at the background station of Utö at the beginning of March 2004. (Error bars for 
Helsinki and Järvenpää represent the standard deviation of daily averages. For Utö there 
were only two daily average values with a very low deviation, and therefore the 
uncertainty of the determination method was used as error bars for this station).  
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Although concentrations of alkenes are much lower than concentrations of halogenated 

hydrocarbons or alkanes, their contribution to the local chemistry is more important. This 

is shown in Figure 5 and Table 5, where concentrations and OH-reactivity-scaled 

concentrations (propylene-equivalents) are compared. In addition to the hydroxyl radicals 

they also react with ozone. 

 

The chemical mass balance study in paper IV showed that local sources are much more 

important for the alkenes than for example for the alkanes. The main source of the 

alkenes in Helsinki was traffic, while at the residential site in Järvenpää it was wood 

combustion.  

 

According to the U.S. EPA (2002 and 2005b), there is evidence that 1,3-butadiene is a 

human carcinogen. Average measured concentrations of 1,3-butadiene varied from 90 ng 

m3 in June to 180 ng m-3 in March 2001 in Helsinki (paper III). In paper IV the chemical 

mass balance calculations showed that traffic was the main source of 1,3-butadiene in 

Helsinki, but at the residential site in Järvenpää wood combustion was the main 

contributor (91 %).  

 

4.2.4. Alkynes 

 

Of the alkynes, ethyne has the highest concentrations (Figure 9). Concentrations of 

propyne are much lower and often below the detection limits. For ethyne, the propylene-

equivalent concentration is also low compared to many other VOCs, and therefore 

alkynes have little effect on the local chemistry of Helsinki (Table 5). Ethyne has 

sometimes been considered as a tracer for traffic (Curren et al., 2006). However, as 

shown in paper IV wood combustion can also be a significant source of ethyne.  
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Figure 9. Concentrations of alkynes and gasoline additives at the urban background 
station in Helsinki in February 2004, at the residential site in Järvenpää in December 
2004 and January 2005 and at the background station of Utö at the beginning of March 
2004. (Error bars for Helsinki and Järvenpää represent the standard deviations of daily 
averages. For Utö there were only two daily average values with a very low deviation, 
and therefore the uncertainty of the determination method was used as error bars for this 
station).  
 
 
4.2.5. Aromatic hydrocarbons 

 

Aromatic hydrocarbons are of interest since some of them are toxic and carcinogenic. 

They have been studied in papers I-IV. Of the aromatics, toluene, benzene and the  

xylenes have the highest concentrations at urban, residential and background sites in 

Finland (Figure 10). 

 

In paper I, sampling methods for aromatic hydrocarbons were tested; it was shown that 

diffusive sampling with Carbopack B adsorbent is a suitable method for following their 

concentration levels in urban air. Using this sampling method, concentrations of aromatic 

hydrocarbons have been measured in several locations in Helsinki thereafter. In most 

cases, the highest two-weekly mean concentrations have occurred at the urban station of 

Töölö, but annual averages at the suburban station of Tikkurila have been equally high. 

As expected, the lowest concentrations have been observed at the regional background 

station of Luukki. The diurnal variation of aromatic hydrocarbon concentrations can be 
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found in Figure 7. It shows that concentrations follow the intensity of the traffic; the 

highest concentrations are measured during the rush hours and the lowest in the early 

hours of the morning.  
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Figure 10. Concentrations of aromatic hydrocarbons at the urban background station in 
Helsinki in February 2004, at the residential site in Järvenpää in December 2004 and 
January 2005 and at the background station of Utö at the beginning of March 2004. 
(Error bars for Helsinki and Järvenpää represent the standard deviations of daily 
averages. For Utö there were only two daily average values with a very low deviation, 
and therefore the uncertainty of the determination method was used as error bars for this 
station).  
 
 

A more detailed study was conducted for benzene, which is a carcinogenic compound 

and for which the European Union has set limit values: the annual average ambient air 

concentration may not exceed 5 �g m-3 (paper II). Annual average concentrations did not 

exceed the limit value during any of the measurement periods in Helsinki. However, there 

are also upper and lower assessment thresholds; the lower assessment threshold (2 �g m-

3) was exceeded in 2000 at the urban traffic station of Töölö in Helsinki. Dispersion 

modelling was used to get a wider picture of the benzene concentrations in Helsinki. The 
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predicted concentrations were highest in the vicinity of major roads and streets, and at 

their junctions. The annual average concentrations from measurements and modelling 

agreed fairly well. A comparison of the benzene concentrations at the urban background 

station of Kallio and those in rural and remote areas showed that in winter the average 

concentrations at the rural station of Hyytiälä are close to those of Kallio. At the remote 

stations of Utö and Pallas, the concentrations in winter were approximately half of the 

urban background concentrations. In summer, concentrations in Kallio were substantially 

higher.  

 

Both in the UNMIX and CMB studies, the main local source of aromatic hydrocarbons in 

Helsinki was found to be traffic (papers III and IV), but at the residential site in Järvenpää 

wood combustion played an important role, especially for benzene (Figure 11). At both 

sites, the benzene contribution from distant sources was high, but this was not so for the 

other more reactive aromatic hydrocarbons. Both receptor models were in quite good 

agreement, and this gave confirmation of the results. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Source apportionment of benzene in Helsinki (urban) and Järvenpää 

(residential).  
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4.2.6. Gasoline additives 

 

In the winter of 2004, the average concentration of MTBE in Helsinki was almost 1000 

ng m-3 and that of TAME was over 500 ng m-3, but at the rural location of Utö the MTBE 

concentration was only 50 ng m-3 and TAME was below the detection limit (Figure 9). 

MTBE has been studied in papers I, III and IV and TAME in papers III and IV. In paper I 

the diffusive sampling method developed for the aromatic hydrocarbons was also found 

to be suitable for MTBE.  

 

The diurnal variation of MTBE and TAME in Helsinki follows the intensity of the traffic; 

highest concentrations are measured during the rush hours and lowest in the early hours 

of the morning (Figure 7).  CMB studies also showed that the main source is local traffic, 

while the contribution of distant sources is low. The main source of TAME and MTBE in 

Järvenpää was found to be liquid gasoline. 

 

MTBE has been used as a tracer for automobile exhausts (Chang et al., 2003). In this 

study, traffic-related sources were able to explain the measured concentrations, and these 

results support the use of MTBE as a tracer. However, gasoline vehicle exhausts are not 

the only source of gasoline additives: gasoline vapour and liquid gasoline also contribute 

their share. 

 

4.2.7. Biogenic hydrocarbons 

 

Concentrations of biogenic hydrocarbons in Helsinki are lower than those at the forested 

site of Hyytiälä (Hakola et al., 2003). However, even in winter time in Helsinki 

concentrations of isoprene and some monoterpenes are above detection limits (Table 5). 

In addition to vegetation, which is the main source of terpenes in the atmosphere, 

landfills, household products, processing of wood and biowastes, for example, can be 

sources of terpenes as well. Isoprene can also be found in traffic emissions. In the 

chemical mass balance study in Helsinki, the contribution of traffic or traffic-related 

sources to the measured isoprene concentration was 33 % (Figure 12). 
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Figure 12. Source apportionment of isoprene in Helsinki. 

 

4.2.8. Halogenated hydrocarbons 

 

Halogenated hydrocarbons were studied in paper IV. Their concentrations in Helsinki 

were at the same level as in the background air of Utö (Figure 13). This indicated that 

there are no major sources of these compounds in Helsinki. Emission profile 

measurements and CMB calculations confirmed this. The only exception was 

tetrachloroethene, whose concentration was several times higher in Helsinki than in 

Järvenpää or on Utö. As can be seen from Figure 7, the concentration of chloroform is 

very stable over the whole day, as is the case for most of the measured halogenated HCs, 

but the tetrachloroethene concentration has a very pronounced diurnal variation. The 

chemical mass balance study showed that background air explains only 20 % of the 

measured tetrachloroethene concentrations. Dry cleaners were found to be a source of this 

compound in Helsinki. Halogenated hydrocarbons are not expected to have any 

significant effect on local chemistry since their propylene-equivalent concentrations are 

very low (Table 5 and Figure 5). 
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Figure 13. Concentrations of halogenated hydrocarbons at the urban background station 
in Helsinki in February 2004, at the residential site in Järvenpää in December 2004 and 
January 2005 and at the background station of Utö at the beginning of March 2004. 
(Error bars for Helsinki and Järvenpää represent the standard deviations of daily 
averages. For Utö there were only two daily average values with a very low deviation, 
and therefore the uncertainty of the determination method was used as error bars for this 
station).  
 
 

4.2.9. Carbonyls 

 

Carbonyls have been studied in papers IV and V. Winter concentrations of carbonyls at 

the urban site in Helsinki and the residential site in Järvenpää were found to be at the 

same level, but at the rural site of Utö concentrations were much lower (Figure 14). 

Carbonyl concentrations were also measured in Spring 2003 at the rural forested site at 

Hyytiälä and were close to the levels found in Helsinki. The most abundant carbonyls in 

Helsinki, Järvenpää and Hyytiälä were acetone (820 ng m-3 in Helsinki), formaldehyde 

(750 ng m-3 in Helsinki) and acetaldehyde (540 ng m-3 in Helsinki), but also 

concentrations of large alkanes, decanal and nonanal were over 100 ng m-3. 

 



53 

 

0 200 400 600 800 1000 1200 1400 1600 1800

Formaldehyde

Acetaldehyde

Acetone

Propanal

Butanal

Pentanal

Hexanal

Heptanal

Octanal

Nonanal

Decanal

Benzaldehyde

m-tolualdehyde

Concentration (ng m-3)

Hyytiälä
Utö
Järvenpää
Helsinki

 
Figure 14. Ambient air concentrations of carbonyls at the urban background station in 
Helsinki in February 2004, at the residential site in Järvenpää in December 2004 and 
January 2005, at the background station of Utö at the beginning of March 2004 and at the 
forest research station of Hyytiälä in March/April 2003. (Error bars for Helsinki, Hyytiälä 
and Järvenpää represent the standard deviations of daily averages. For Utö there were 
only two daily average values with a very low deviation, and therefore the uncertainty of 
the determination method was used as error bars for this station).  
 
 

The sources of carbonyls are highly uncertain. These compounds have direct primary 

sources and they are produced in the air in the reactions of other VOCs. In paper V the 

concentrations of carbonyls were compared between the urban area of Helsinki and the 

rural area of Hyytiälä. This showed that concentrations are at the same level indicating 

that secondary production or biogenic sources are significant sources for the carbonyls in 

the air of Hyytiälä, since for the other VOCs (e.g. trimethylbenzenes) with direct 

anthropogenic sources, the concentrations in Hyytiälä are much lower or below detection 

limits. 

 

CMB source estimates of the carbonyls in Helsinki and Järvenpää (paper IV) gave 

acceptable results only for formaldehyde and for acetaldehyde in Helsinki. This indicates 

that the contribution of secondary production or unknown sources is significant. For 
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formaldehyde, the main source was traffic in Helsinki and wood combustion in 

Järvenpää. 

 

The impact of carbonyls on OH-radical chemistry can be important. In spring in the rural 

area of Hyytiälä, carbonyls were found in paper V to be higher OH sink than aromatic 

hydrocarbons and monoterpenes. As the hydroxyl-radical-scaled concentrations in Table 

5 show, carbonyls also have quite an important role to play in Helsinki. 

 

5. CONCLUSIONS 

 

The measurement and receptor modelling methods used were found to be suitable for the 

VOCs studied. Different sampling and analysis methods were needed for the various 

different compounds or compound groups. The performance of the receptor models was 

found to vary significantly for different compounds. However, for most of the 

compounds studied the results were acceptable. The results from both receptor models 

used were in quite good agreement. 

 

Alkanes had the highest concentrations in the urban air of Helsinki, but when the 

concentrations were scaled against the reactivity with hydroxyl radicals, aromatic 

hydrocarbons and alkenes were found to have the highest effect on local chemistry.  

Comparisons with the rural sites showed that concentrations at Utö and Hyytiälä were 

generally lower than in Helsinki, especially for the alkenes and aromatic hydrocarbons, 

but concentrations of halogenated hydrocarbons at Utö and carbonyls at Hyytiälä were at 

the same level as in Helsinki. At Hyytiälä, carbonyls had an important effect on the local 

hydroxyl radical chemistry in spring. The contribution of carbonyls as an OH sink was 

higher than the contribution of monoterpenes and aromatic hydrocarbons. 

 

Different compounds were found to have totally different sources, but for most VOCs the 

main sources at the urban site in Helsinki were distant sources and traffic. At the 

residential site in Järvenpää, the contribution due to traffic was minor while distant 

sources, liquid gasoline and wood combustion made higher contributions.  In the Nordic 



55 

 

countries, wood is a domestic and renewable energy source, and the use of wood as a fuel 

source has increased lately (Hedberg et el., 2002; Haaparanta et al., 2003). Many of the 

VOCs emitted during wood combustion are very harmful or toxic; this study showed that 

wood combustion can be an important source of some VOCs usually considered to be 

traffic-related compounds (e.g., benzene). However, by using the right burning 

techniques and proper fireplaces emissions can be minimized. More research on this 

subject is needed. 

 

Recently, fine particles have been of particular interest due to their health and climatic 

implications. Information on the VOCs presented here may be useful for secondary 

organic aerosol studies; some results have already been used in particle formation studies 

by Boy et al. (2005).  

 

Even though emissions of ozone precursors have decreased in Europe (Jonson et al., 

2006), ozone concentrations have increased in Finland (Laurila et al., 2004; Aarnio et al., 

2005). More research on this topic is therefore needed, and the data presented in this 

study will be used in the future in ozone modelling studies. 

 

6. REFERENCES 

 

Aarnio P. Myllynen M. and Koskentalo T., 2005. Air Quality in Helsinki Metropolitan 
Area year 2004. Pääkaupunkiseudun julkaisusarja PJS B, 2005:8, Helsinki 
Metropolitan Area Council, 100 p. 

 
Achten C., Kolb A. and Püttmann, 2001. Methyl tert-butyl ether (MTBE) in urban and 

rural precipitation in Germany. Atmospheric Environment, 35, 6337-6345. 
 
Atkinson R., 1994. Gas-phase tropospheric chemistry of organic compounds. Journal of 

Physical and Chemical Reference Data. Monograph 2, 216 p. 
 
Atkinson R., 2000. Atmospheric chemistry of VOCs and NOx. Atmospheric Environment, 

34, 2063-2101. 
 
Aucott M.L., McCulloch A., Graedel T.E., Kleiman G., Midgley P. and Li Y-F., 1999. 

Anthropogenic emissions of trichloromethane (chloroform, CHCl3) and 



56 

 

chlorodifluoromethane (HCFC-22): Reactive Chlorine Emissions Inventory. 
Journal of Geophysical Research , 104, 8405-8415.  

 
Becker K. H. (ed.) , 1996. The European Photoreactor EUPHORE; Design and Technical 

Development of the European Photoreactor and first Experimental Results. Final 
Report of the EC-Project Contract EV5V-CT92-0059. http://www.physchem.uni-
wuppertal.de/PC-WWW_Site/pub/Projektberichte/EUPHORE-Report.pdf (accessed 
5.1.2006). 

 
Bonn B. and Moortgat G. K., 2003. Sesquiterpene ozonolysis: origin of atmospheric new 

particle formation from biogenic hydrocarbons. Geophysical Research Letter, 30, 
1585-1588. 

Boy M., Kulmala M., Ruuskanen T. M., Pihlatie M., Reissell A., Aalto P. P., Keronen P., 
Dal Maso M., Hellen H., Hakola H., Jansson R., Hanke H., Arnold F., 2005.  
Sulphuric acid closure and contribution to nucleation mode particle growth.  
Atmospheric Chemistry and Physics, 5, 863-878. 

Bowman J.H., Barket jr. D.J and Shepson P.B, 2003. Atmospheric chemistry of nonanal. 
Environmental Science and Technology, 37, 2218-2225. 

 
Brymer D. A., Ogle L. D., Jones C. J. and Lewis D.L., 1996. Viability of using SUMMA 

polished canisters for the collection and storage of parts per billion by volume level 
volatile organics.  Environmental Science and Technology, 30, 188-195. 

 
Butler J. H., 2000. Better budgets for methyl halides. Nature, 403, 260-261. 
 
Chameides W.L., Fehsenfeld F., Rodgers M.O., Cardelino C., Matinez J., Parrish D., 

Lonnemans W., Lawson D.R., Rasmussen R.A., Zimmerman P., Greenberg J., 
Middleton P. andWang T., 1992. Ozone precursor relationships in the ambient 
atmosphere. Journal of Geophysical Research, 97, 6037-6055. 

 
Carter W.P.L., 1994. Development of ozone reactivity scales for volatile organic 

compounds. Journal of Air and Waste Management Association, 44, 881-899. 
 
Chang C-C., Shun-Jin L., Lo J-G and Wang J-L., 2003. Analysis of methyl tert-butyl 

ether in the atmosphere and implications as an exclusive indicator of automobile 
exhaust. Atmospheric Environment, 37, 4747-4755. 

Choi Y-J. and Ehrman S.H., 2004. Investigation of sources of volatile organic carbon in 
the Baltimore area using highly time-resolved measurements. Atmospheric 
Environment, 38, 775-791. 

 
Curren K. C., Dann T. F. and Wang D. K., 2006. Ambient air 1,3-butadiene 

concentrations in Canada (1995-2003): seasonal, day of week variations, trends and 
source influences. Atmospheric Environment, 40, 170-181. 

 



57 

 

Derwent R.G., 1999. Reactive hydrocarbons and photochemical air pollution. In Hewitt 
C.N. (ed.):  Reactive hydrocarbons in the atmosphere, Academic Press, London, p. 
267-291. 

 
Derwent R.G., Jenkin M.E., Saunders S.M. and Pilling M.J., 2001. Characterization of 

the reactivities of volatile organic compounds using a master chemical mechanism. 
Journal of the Air & Waste Management Association, 51, 699-707.   

 
Edney E.O., Kleindienst T.E., Conver T.S., McIver C.D., Corse E.W. and Weathers E.W., 

2003. Polar organic oxygenates in PM2.5 at a southeastern site in the United States- 
Atmospheric Environment, 37, 3947-3965.  

 
Edwards, R.D., Jurvelin, J., Koistinen, K., Saarela, K., Jantunen, M., 2001. VOC source 

identification from personal and residential indoor, outdoor and workplace 
microenvironment samples in EXPOLIS-Helsinki, Finland. Atmospheric 
Environment 35, 4829-4841. 

 
EMEP, 1996. Manual for sampling and chemical analysis, Norwegian Institute for Air 

Research, EMEP/CCC-Report 1/95, O-7726. 
 
EU, 2000. Directive (2000/69/EC) of the European Parliament and of the Council of 16 

November 2000 relating to limit values of benzene and carbon monoxide in ambient 
air, Official Journal of the European Communities No L 313/12, 13.12.2000. 

 
EU, 2002. Directive 2002/3/EC of the European Parliament and of the Council of 12 

February 2002 relating to ozone in ambient air. Official Journal of European 
Communities L 67: 14-30. 

 
Fall R., 1999. Biogenic emissions of volatile organic compounds from higher plants. In 

Hewitt C.N. (ed.):  Reactive hydrocarbons in the atmosphere, Academic Press, 
London, 1-39. 

 
Finlayson-Pitts, B.J. and Pitts, J.N., 2000. Chemistry of the upper and lower atmosphere. 

Academic Press, San Diego, CA.   
 
Finnish Environment Institute, 2001. Revised Finnish Non Methane Volatile Organic 

Compound Emissions. Time Series for the Years 1988-1999 with information on 
the emission sources and calculation methods, Helsinki, Finland, 32 p. 

 
Forstner H.J.L., Flagan R.C. and Seinfeld J.H., 1997. Secondary organic aerosol from 

the photooxidation of aromatic hydrocarbons: Molecular composition. 
Environmental Science and Technology, 31, 1345-1358. 

 
Friedrich R. and Obermeier A., 1999. Anthropogenic emissions of volatile organic 

compounds. In Hewitt C.N. (ed.):  Reactive hydrocarbons in the atmosphere, 
Academic Press, London, 1-39. 



58 

 

Fujita, E.M., Watson, J.G., Chow, J.C. and Lu, Z., 1994. Validation of the chemical mass 
balance receptor model applied to hydrocarbon source apportionment in southern 
California air quality. Environmental Science and Technology, 28, 1633-1649 

 
Fujita E., 2001. Hydrocarbon source apportionment for the 1996 Paso del Norte Ozone 

Study. The Science of the Total Environment, 276, 171-184. 
 
Gautrois M., Brauers T., Koppmann R., Rohrer F., Stein O. and Rudolph J., 2003. 

Seasonal variability and trends of volatile organic compounds in the lower polar 
troposphere. Journal of  Geophysical Research, 108, 4393-4408. 

 
Griffin R. J., Cocker III D. R., Seinfeld J. H. and Dabdub D., 1999. Estimate of global 

atmospheric organic aerosol from oxidation of biogenic hydrocarbons. Geophysical 
Research Letters, 26, 2721-2724. 

 
Grosjean D., 1992. In situ organic aerosol formation during a smog episode: estimated 

production and chemical functionality. Atmospheric Environment, 26A, 953-963. 
 
Guenther A., Hewitt C.N., Erickson D., Fall R., Geron C., Graedel T., Harley P., Klinger 

L., Lerdau M., McKay W.A., Pierce T., Scholes B., Steinbrecher R., Tallamraju R., 
Taylor J. and Zimmerman P., 1995. A Global model of natural organic compounds 
emissions. Journal of  Geophysical Research, 100, 8873-8892. 

 
Haaparanta S., Myllynen M. and Koskentalo T., 2003. Small-scale wood combustion in 

the Helsinki Metropolitan Area. Pääkaupunkiseuden julkaisusarja PJSB, 2003:18, 
pp. 1-44. Helsinki Metropolitan Area Council. 

 
Hakola H., Tarvainen V., Laurila T., Hiltunen V., Hellén H. and Keronen P., 2003. 

Seasonal variation of VOC concentrations above a boreal coniferous forest. 
Atmospheric Environment, 37, 1623-1634. 

 
Hakola H., Hellén H. and Laurila T., 2006. Ten years of light hydrocarbon (C2-C6) 

concentration measurements in background air in Finland. Accepted to Atmospheric 
Environment 

 
Hamilton J.F., Webb P.J., Lewis A.C, Hopkins J.R., Smith S. and Davy P., 2004. Partially 

oxidized organic components in urban aerosol using GCxGC-TOF/MS. 
Atmospheric Chemistry and Physics, 4, 1279-1290.  

 
Hamilton J. F., Webb P. J., Lewis A. C. and Reviejo M.M., 2005. Quantifying small 

molecules in secondary organic aerosol formed during the photo-oxidation of 
toluene with hydroxyl radicals. Atmospheric Environment, 39, 7263-7275.  

 
Hedberg E., Kristensson A., Ohlsson M., Johansson C., Johansson P-Å., Swietlicki E., 

Veseley V., Wideqvist U. and Westerholm R., 2002. Chemical and physical 



59 

 

characterization of emissions from birch wood combustion in a wood stove. 
Atmospheric Environment, 36, 4823-4837. 

 
Hellén H., 2001. Kaupunki-ilman haihtuvien hiilivetyjen analyysimenetelmät. Pro Gradu, 

Analytical Chemistry Laboratory, Department of Chemistry, University of Helsinki, 
Helsinki, Finland, 69 p. 

 
Henry, R.C., 1997. History and fundamentals of multivariate air quality receptor models. 

Chemometrics and Intelligent Laboratory Systems, 37, 37-42. 
 
Henry, R.C., 2001. Unmix Version 2.4 Manual. 24017 Ingomar Street, West Hills, CA 

91304. 25 p. 
 
Henry, R.C., 2002. Multivariate receptor models – current practice and future trends. 

Chemometrics and Intelligent Laboratory Systems, 60, 43-48. 
 
 
Hoffman T., Odum J.R., Bowman F., Collins D., Klockow D., Flagan R. C. and Seinfeld 

J. H., 1997. Formation of organic aerosols from the oxidation of biogenic 
hydrocarbons. Journal of Atmospheric Chemistry, 26, 189-222. 

 
Hopke, P.H., 1991. Data Handling in Science and Technology – Volume 7: Receptor 
modeling for air quality management. Elsevier Science Publishers B.V., Netherlands, 329 
p. 
 
Hopkins J.R., Jones I..D., Lewis A.C., McQuaid J.B. and Seakins P.W., 2002. Non-

methane hydrocarbons in the Arctic boundary layer. Atmospheric Environment, 36, 
3217-3229. 

 
IPCC, 2001. The Scientific basis. Contribution of working group I to the third assessment 

report of the Intergovernmental Panel on Climate Change. In: Houghton J. T., Ding 
Y., Griggs D.J., Noguer M., van der Linden P. J., Dai X., Maskell K., Johnson C.A. 
(Eds.), Climate change 2001. Cambridge University Press, Cambridge, United 
Kingdom and New York, NY, USA.  

 
Izumi K. and Fukuyama T., 1990. Photochemical aerosol formation from aromatic 

hydrocarbons in the presence of NOx. Atmospheric Environment, 24A, 1433-1441. 
 
Jang M., Czoschke N. M., Lee S. and Kamens R. M., 2002. Heterogenous atmospheric 

aerosol production by acid catalyzed particle-phase reactions. Science, 298, 814-
817.  

 
Janson R. and De Serves C., 2001. Acetone and monoterpene emissions from the boreal 

forest in northern Europe. Atmospheric Environment, 35, 4629-4637. 
 



60 

 

Jonson J. E., Simpson D., Fagerli H. and Solberg S., 2006. Can we explain the trends in 
European ozone levels? Atmospheric Chemistry and Physics, 6, 51-66. 

 
Jorquera H. and Rappenglück B., 2004. Receptor modeling of ambient VOC at Santiago, 

Chile. Atmospheric Environment, 38, 4243-4263. 
 
Kalberer M., Paulsen D., Sax M., Steinbacher M., Dommen J., Prevot A.S.H., Fisseha R., 

Weingartner E., Frankevich V., Zenobi R. and Baltensperger U., 2004. 
Identification of polymers as major components of atmospheric organic aerosols, 
Science, 303, 1659-1662. 

 
Kanakidou M., Seinfeld J.H., Pandis S. N., Barnes I., Dentener F. J., Facchini M.C., Van 

Dingenen R., Ervens B., Nenes A., Nielsen C. J., Swietlicki E., Putaud J.P., 
Balkanski Y., Fuzzi S., Horth J., Mootgat G.K., Winterhalter R., Myhre C. E. L., 
Tsigaridis K., Vignati E., Stephanou E. G. and Wilson J., 2005. Organic aerosol and 
global climate modelling: a review. Atmospheric Chemistry and Physics, 5, 1053-
1123. 

 
Karl T., Spirig C., Rinne J., Stroud C., Prevost P., Greenberg J. And Guenther A., 2002. 

Virtual disjunct eddy covariance measurements of organic compound fluxes from a 
subalpine forest using proton transfer reaction mass spectrometry.  Atmospheric 
Chemistry and Physics, 2, 279-291. 

 
Karl T., Guenther A., Spirig C., Hansel A. and Fall R., 2003. Seasonal variation of 

biogenic VOC emissions above a mixed hardwood forest in northern Michigan. 
Goephysical Research Letter, 30, 2186-2190.  

 
Kato S., Pochanart P. and Kajii Y., 2001. Measurements of ozone and nonmethane 

hydrocarbons at Chichi-jima island, a remote island in the western Pacific: long-
range transport of polluted air from the Pacific rim region. Atmospheric 
Environment, 35, 6021-6029. 

 
Kawamura K., Steinberg S., Ng L. and Kaplan I.R., 2001. Wet deposition of low 

molecular weight mono- and di-carboxylic acids, aldehydes and inorganic species 
in Los Angeles. Atmospheric Environment, 35, 3917-3926. 

 
Kim E., Brown S.G., Hafner H.R. and Hopke P.K., 2005. Characterization of non-

methane volatile organic compounds sources in Houston during 2001 using positive 
matrix factorization. Atmospheric Environment, 39, 5934-5946.  

 
Kolb A. and Püttmann W., 2006. Methyl tert-butyl ether (MTBE) in snow samples in 

Germany. Atmospheric Environment, 40, 76-86. 
 
Laurila T., Tuovinen J.-P., Tarvainen V., Simpson D., 2004. Trends and scenarios of 

ground-level ozone concentrations in Finland. Boreal Environment Research, 9, 
167-184. 



61 

 

Latella A., Stani G., Cobelli L., Duane M., Junninen H., Astorga C. and Larsen B. R., 
2005. Semicontinuous GC analysis and receptor modelling for source 
apportionment of ozone precursor hydrocarbons in Bresso, Milan, 2003. Journal of 
Chromatography A, 1071, 29-39. 

 
Laturnus F., Haselmann K.F., Borch T. and Gron C., 2002. Terrestial natural sources of 

trichloromethane (chloroform, CHCl3) – An overview. Biogeochemistry, 60, 121-
139. 

Lee A., Schade G.W., Holzinger R. And Goldstein A.H., 2005. A comparison of new 
measurements of total monoterpene flux with improved measurements of speciated 
monoterpene flux. Atmospheric Chemistry and Physics, 6-5, 505-513. 

 
Lyly, O., Riki, V., Syrjälä, V., 2000. Annual emissions of volatile organic compounds 

(VOC) in Helsinki area 1998-1999. City of Helsinki Environment Centre, 
Publications by City of Helsinki Environment Centre 9/2000. Helsinki, 34 p. 

 
Martin-Reviejo M. and Wirtz K., 2005. Is benzene a precursor for Secondary Organic 

Aerosol. Environmental Science and Technology, 39, 1045-1054. 
 
Master Chemical Mechanism (MCM) v.3.1, Leeds University, 2006. 

http://mcm.leeds.ac.uk/MCM (access date 13.2.2006). 
 
McDonald J.D., Zielinska B., Fujita E. M., Sagebiel J. C., Chow J. C. and Watson J. G., 

2000. Fine particle and gaseous emission rates from residential wood combustion.  
Environmental Science and Technology, 34, 2080-2091. 

 
Morikawa T., Wakamatsu S., Tanaka M., Uno I, Kamiura T.,a nd Maeda T., 1998 C2-C5 

hydrocarbon concentrations in Central Osaka. Atmospheric Environment, 32, 2007-
2016. 

 
Mukerjee S., Norris G.A., Smith L.A., Noble C.A., Neas L.M., Özkaynak A.H. and 

Gonzales M., 2004. Receptor model comparisons and wind direction analyses of 
volatile organic compounds and submicrometer particles in an arid, binational, 
urban air shed. Environmental Science and Technology, 38, 2317-2327. 

 
Müller J-F., 1992. Geographical distribution and seasonal variation of surface emissions 

and deposition velocities of atmospheric trace gases. Journal of Geophysical 
Research, 97, 3787-3804. 

 
Odum J. R., Jungkamp T. P. W., Griffin R. J., Flagan R. C. And Seinfeld J. H., 1997. The 

atmospheric aerosol-forming potential of whole gasoline vapor. Science, 276, 96-
98.  

 
Pandis S., Harley R. A., Cass G. R. and Seinfeld J. H., 1992. Secondary organic aerosol 

formation and transport. Atmospheric Environment, 26A, 2269-2282. 
 



62 

 

Pilidis G.A., Karakitsios S.P. and Kassomenos P.A., 2005. BTX measurements in a 
medium-sized European city. Atmospheric Environment, 39, 6051-6065. 

 
Pinho P.G., Pio C.A. amd Jenkin M.E., 2005. Evaluation of isoprene degradation in the 

detailed tropospheric chemical mechanism, MCM v3, using environmental chamber 
data. Atmospheric Environment, 39, 1303-1322. 

 
Pollmann J., Ortega J and Helmig D., 2005. Analysis of atmospheric sesquiterpenes: 

sampling losses and mitigation of ozone interferences. Environmental Science and 
Technology, 39, 9620-9629. 

 
Possanzini M., Di Palo V. and Cecinato A, 2002. Sources and photodecomposition of 

formaldehyde and acetaldehyde in Rome ambient air. Atmospheric Environement, 
36, 3195-3201. 

  
Reinhard T. E. and Ward D. E., 1995. Factors affecting methyl chloride emissions from 

forest biomass combustion. Environmental Science and  Technology., 29, 825-832 
 
Rivett A. C., Martin D., Nicless G., Simmonds P.G., O’Doherty S.J., Gray D.J. and 

Shallcross D.E., 2003. In situ gas chromatographic measurements of halocarbons in 
an urban environment. Atmospheric Environment, 37, 2221-2235. 

 
Sahu L.K. and Lal S., 2006. Distribution of C2-C5 NMHCs and related trace gases at a 

tropical urban site in India. Atmospheric Environment, 40, 880-891.  
 
Salisbury G., Williams J., Holzinger R., Gros V., Mihalopoulos N., Vrekoussis M., Sarda-

Esteve R., Berresheim H., von  Kuhlmann R., Lawrence M. and Lelieveld J., 2003. 
Ground-based PTR-MS measurements of reactive organic compounds during 
campaign in Crete, July-August 2001. Atmospheric Chemistry and Physics, 3, 925-
940. 
 

Schauer J.J., Kleeman M.J., Cass G., R. and Simoneit B.R.T., 2002. Measurement of 
emissions from air pollution sources. 5. C1-C32 organic compounds from gasoline-
powered motor vehicles. Environmental Science and Technology, 36, 1169-1180. 

 
Seinfeld J.H. and Pandis S. N., 1998. Atmospheric Chemistry and Physics, From Air 

Pollution to Climate Change. John Wiley & Sons, Inc., New York. 
 
Singh H., Chen Y., Tabazadeh A., Fukui Y., Bey I., Yantosca R., jakob D., Arnold F., 

Wohlfrom K., Atlas E., Flocke F., Blake D., Heikes B., Snow J., Talbot R., Gregory 
G., Sachse G., Vay S. and Kondo Y., 2000. Distribution and fate of selected 
oxygenated organic species in the troposphere and lower stratosphere over Atlantic. 
Journal of Geophysical Research, 105, 3795-3805. 

 
Sillman S., 1999. The relation between ozone, NOx and hydrocarbons in urban and 

polluted rural environments. Atmospheric Environment, 33, 1821-1845. 



63 

 

Solberg S., Dye C. and Schmidbauer N., 1996. Carbonyls and non-methane 
hydrocarbonsa at rural European sites from Mediterranean to the Arctic. Journal of 
Atmospheric Chemistry, 25, 33-66. 

 
Solberg S., Dye C., Schmidbauer N., Wallasch N. and Junek R., 2002. VOC 

measurements 2000. EMEP/CCC-Report 8/2002. http://www.nilu.no/projects/ccc/ 
reports/cccr8-2002.pdf (accessed 27.2.2006) 

 
Srivastava A., Joseph A.E. and Devotta S., 2006. Volatile organic compounds in ambient 

air of Mumbai - India. Atmospheric Environment, 40, 892-903.  
 
Takekawa H., Minoura H. and Yamazaki S., 2003. Temperature dependence of secondary 

organic aerosol formation by photo-oxidation of hydrocarbons. Atmospheric 
Environment, 37, 3413-3424. 

 
U.S. EPA, 2002. EPA: Health assessment of 1,3-Butadiene. Office of Research and 

Development, Washington, DC. EPA/600/P-98/001. 
 
U.S. EPA, 2005a. The original list of hazardous air pollutants. http://www.epa.gov/ttn/ 

atw/pollsour.html (accessed 30.12.2005) 
 
U.S. EPA, 2005b Health Effects Notebook for Hazardous Air Pollutants. http://www.epa. 

gov/ttn/atw/hlthef/hapindex.html. (accessed 30.12.2005) 
 
Vainiotalo S., Peltonen Y. and Pfäffli P., 1998. MTBE concentrations in ambient air in 

the vicinity of service stations. Atmospheric Environment, 32, 3503-3509. 
 
Wang J-L., Ding W-H. and Chen T-U., 2000. Source determination of light hydrocarbons 

by simultaneous multi-site sampling in a metropolitan area. Chemosphere: Global 
Change Science, 2, 11-22. 

 
Watson, J.G., Robinson, N.F., Fujita, E.M., Chow, J.C., Pace, T.G., Lewis, C., Coulter, 

T., 1998. CMB8 applications and validation protocol for PM2.5 and VOCs. Desert 
Research Institute, Document No 1808.2D1. 

 
Watson, J.G., Chow, J.C., Fujita, E.M., 2001. Review of volatile organic compound 

source apportionment by chemical mass balance. Atmospheric Environment, 35, 
1567-1584. 

 
WHO (World Health Organization), 2003. Health Aspects of Air Pollution with 

Particulate Matter, Ozone and Nitrogen Dioxide. Report on a WHO Working 
Group. Bonn, Germany, 13-15 January 2003. http://www.euro.who.int/document/ 
e79097.pdf (accessed 21.2.2006). 

 
Yu J. and Jeffries H. E., 1997. Atmospheric photooxidation of alkylbenzenes-II. Evidence 

of formation of epoxide intermediates. Atmospheric Environment, 31, 2281-2287. 



64 

 

 
Yu J., Jeffries H.E. and Sexton K.G., 1997. Atmospheric photo-oxidation of 

alkylbenzenes-I. Carbonyl product analyses. Atmospheric Environment, 31, 2261-
2280. 

 
Zielinska B., Sagebiel J. C., Harshfield G., Gertler A.W. and Pierson W.R., 1996. Volatile 

organic compounds up to C20 emitted from motor vehicles; measurement methods. 
Atmospheric Environment, 30, 2269-2286. 

 
 

 


