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ABSTRACT 
 

 
 
 
 
Boron compounds have been known for thousands of years starting with the Babylonians. 
Natural boron exists as 19.9% of 10B isotope and 80.1% of 11B isotope. The 10B is used as a 
control for nuclear reactors, as a shield for neutron radiation, in instruments used for detecting 
neutrons and in 10B containing pharmaceuticals as an emerging binary therapy called boron 
neutron capture therapy (BNCT). 
 
Boron neutron capture therapy is an experimental combination of chemo- and radiotherapy: a 
10B containing pharmaceutical is administered to the patient, in whom it accumulates 
preferentially in to the neoplastic tissue. The tumour is then irradiated with neutrons. In the 
ensuing neutron capture reaction 10B absorbs neutrons and self-destructs releasing powerful 
but very short-range alpha radiation and recoil lithium in the tumour. For the Finnish BNCT 
clinical trials an aromatic amino acid, 4-dihydroxyborylphenylalanine (BPA) was chosen to 
be the first boron containing pharmaceutical. 
 
BPA synthesised via the asymmetric pathway by Malan and Morin was developed to be the 
boron containing pharmaceutical in the first series of Finnish BNCT clinical trials. The 
solubility of BPA was enhanced by complex formation with fructose. After completion of the 
development work BPA was administered to brain tumour patients in conjunction with 
clinical studies for development and testing of BNCT. We conclude that the synthesis 
development, complementary preclinical and clinical observations justify the safe use of BPA 
up to clinical phase III studies. 
 
Radiotracers are radioactive nuclide containing chemical species that are used as markers to 
follow the course of a chemical reaction, physical process or to show the localisation of a 
substance. When used in in vivo studies radiotracers are referred to as radiopharmaceuticals. 
In our studies a direct electrophilic radioiodinating method using Iodogen as an oxidant gave 
reproducible amounts of radioiodinated phenylalanine instead of radioiodinated BPA. 
 
Fluorine-18 is one of the most widely used clinical positron emitter. The radiofluorinated 
analogue of BPA, 4-dihydroxyboryl-2-[18F]fluorophenylalanine ([18F]FBPA), has been 
demonstrated to be a useful radiotracer in life sciences leading to PET patient studies for 
BNCT. In this work we have developed a concise procedure producing relatively high 
specific radioactivity [18F]FBPA for clinical studies. 
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1. INTRODUCTION 
 
 
1.1. Boron 
 
Boron compounds have been known for thousands of years starting with the Babylonians. The 
element was isolated in 1808 by Sir Humphry Davy (1778-1829), Joseph-Louis Gay-Lussac 
(1778-1850) and Louis Jacques Thénard (1777-1857). In 1824 Jöns Jakob Berzelius (1779-
1848) identified boron as an element. Name boron comes from the Arabic word buraq and the 
Persian word burah from borax (Na2B4O7 • 10H2O), the principal ore of boron. 
 
Extensive borax deposits are found in the Andes, in the Mojave Desert of California, USA, in 
Tibet and in Turkey. Pentahydrate species, tincalconite (Na2B4O7 • 5H2O), is used in large 
quantities in the manufacturing of insulation fiberglass. Boric acid (12), [B(OH)3], is an 
important boron compound in textile products. Boron compounds are used in the manufacture 
of borosilicate glasses. Boron is an essential mineral for plants. For humans the World Health 
Organization (WHO) classifies boron as a trace element that is probably essential (WHO 
1996). For example, there is experimental evidence to indicate that boron may be beneficial 
for optimal calcium metabolism (Hunt et al. 1997, Armstrong et al. 2000). 
 
Boron is an electron deficient element, possessing a vacant p-orbital. Compounds of boron 
often behave as Lewis acids, bonding with electron rich species. Boron is similar to carbon 
with its capability to form stable covalently bonded molecular networks. Boron compounds 
are being investigated for a broad range of applications, such as constituents of antibiotics 
(Dunitz et al. 1971, Kohno et al. 1996) and as anticancer bioconjugates (Prusoff et al. 1993, 
Luo & Prestwich 1999, Murmu et al. 2002, Paterson et al. 2003). 
 
Natural boron consists of 19.9% 10B isotope and 80.1% 11B isotope. 11 radioactive boron 
isotopes are known. The longest living radioactive boron isotope is 8B with the half-life of 
0.77 s. The 10B isotope is used as a control for nuclear reactors, as a shield for neutron 
radiation, in instruments used for detecting neutrons and in 10B-containing pharmaceuticals as 
an emerging binary therapy called boron neutron capture therapy (BNCT). 
 
1.2. Boron neutron capture therapy 
 
Boron neutron capture therapy is an experimental combination of chemo- and radiotherapy: a 
10B containing pharmaceutical is administered to the patient, in whom it accumulates 
preferentially in to the neoplastic tissue. The tumour is then irradiated with neutrons. In the 
ensuing neutron capture reaction 10B absorbs neutrons and self-destructs releasing powerful 
but very short-range alpha radiation and recoil lithium in the tumour (Taylor & Goldhaber 
1935, Locher 1936, Perks et al. 1988, Barth et al. 1990, Slatkin 1991, Barth et al. 1992, 
Carlsson et al. 1992, Sauerwein 1993, Savolainen & Kallio 1993, Barth & Soloway 1994, 
Flam 1994, Lundquist et al. 1994, Pignol & Chauvel 1995, Barth et al. 1996, Kallio et al. 
1996, Burian et al. 1997, Sweet 1997, Barth et al. 1999, Diaz et al. 2000, Barth 2003). The 
alpha and 7Li-particles released upon neutron capture by 10B have a very short range (5–10 
µm) and a high linear energy transfer (LET). Consequently, the lethal damage is restricted to 
the 10B containing cell and cells in its immediate vicinity. The most important component is 
the dose resulting from the 10B(n,α)7Li* reaction, Figure 1. All other dose components (e.g. 
gamma contamination of the incident neutron beam, 14N(n,p)14C* and 1H(n,γ)2H reactions or 
fast neutrons) involved with the neutron irradiation are non-selective (Seppälä et al. 1999). 
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10B + 1n [11B]*

4He2+ + 7Li3+ + 2.79 MeV (6%)
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Figure 1. Boron neutron capture nuclear reaction, briefly 10B(n,α)7Li*. 
 

In early BNCT trials in the 1950’s and early 1960’s borax, boric acid, p-
carboxyphenylboronic acid [B(OH)2PhCOOH], sodium pentaborate (NaB5O8) and disodium 
decahydrodecaborate (Na2B10H10) (23), were used as pharmaceuticals (Godwin et al. 1955, 
Asbury et al. 1972, Slatkin 1991). Currently, among various synthetic boron compounds 
(Hawthorne 1993, Morin 1994, Wyzlic et al. 1994, Lesnikowski & Schinazi 1995, Gabel 
1996, Mehta & Lu 1996, Sjöberg et al. 1997, Soloway et al. 1998, Suominen 1998, 
Hawthorne & Lee 2003) only two compounds are used as pharmaceuticals: an aromatic 
amino acid, 4-dihydroxyborylphenylalanine [p-(2-carboxy-2-aminoethyl)-benzeneboronic 
acid, 4-boronophenylalanine, BPA] (1) and an inorganic salt; disodium 
mercaptoundecahydro-closo-dodecaborate (borocaptate sodium, BSH) (2), Figure 2. 
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1 2
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Figure 2. Structures of BPA 1 and BSH 2. 
 

1.3. 4-dihydroxyborylphenylalanine 
 
BPA is a structural analogue of natural aromatic amino acids phenylalanine (Phe) (11) and 
tyrosine (Tyr) (10). The para- or 4-position hydrogen of Phe or the hydroxyl group of Tyr are 
substituted in BPA by the dihydroxyboryl group, –B(OH)2. The first synthetic method for 
BPA affording racemic D, L– BPA was developed in the 1950’s (Snyder et al. 1958). Natural 
amino acids belong to L–series, an in vitro experiment has also demonstrated that there is a 
preferential tissue uptake of L–BPA compared to D–BPA, Figure 3, (Coderre et al. 1987). 
Enantiomerically purified L–BPA can be obtained via enzymatic resolution of the D, L–BPA 
ethyl esters (Tong et al. 1971, Roberts et al. 1980). In the 1990’s synthetic pathways yielding 
enantiomeric excess of L–BPA have been developed (Samsel 1992, Malan & Morin 1996, 
Nakao et al. 1996, Nakamura et al. 1998, Malan & Morin 1998). 
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Figure 3. Enantiomers of BPA: L–BPA 3 and D–BPA 4 
 
At physiological pH value (7.4) BPA exists as zwitterion or inner salt that the net charge is 
zero. At physiological pH the solubility of zwitterionic BPA is only 1.6 g/l, which is too low 
for patient administration as an intravenous (i.v) infusion. Hydrochloric salt of BPA (BPA • 
HCl, pH 1.5 for 0.1 M water solution) has been used for perlesional clinical trials of 
malignant melanoma (Mishima et al. 1989a and 1989b). For a clinical study BPA has been 
administered orally as slurry in water or fruit juice (Coderre 1992). Boric acid forms an 
anionic complex with carbohydrates (Böeseken 1949), phenylboronic acids react with 
fructose to form an anionic complex (Torssell 1957) and in basic solution boric acid moiety of 
BPA takes an anionic sp3 structure. Fructose was found to formulate the strongest and most 
stable complex with BPA of the cis-diol monosaccharides studied, Figure 4. The solubility of 
BPA as an anionic fructose complex (BPA–F) is about 100 g/l (Mori et al. 1989). 
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Figure 4. Formulation of anionic BPA–F for in vivo administration schematically: 5 β-
furanose ring of fructose and 6 the plausible structure of BPA–F (Shull et al. 2000) 

 
Melanoma cells accumulate actively aromatic amino acids for use as precursors in the 
synthesis of the pigment melanin. Melanogenesis starts with the oxidation of Tyr to 3,4-
dihydroxyphenylalanine (DOPA) by tyrosinase, a key enzyme of melanin synthesis. It seems 
the L–BPA mimics L–Tyr in the early stage of melanogenesis and it accumulates in melanoma 
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tissue to a greater extent than in normal tissue providing sufficiently high boron 
concentrations for melanoma BNCT (Ichihashi et al. 1982, Coderre et al. 1987, Coderre et al. 
1988, Belkhou et al. 1992, Packer et al. 1992, Tsuboi et al. 1998). The design of 10B 
compounds for use in treating malignant brain tumours was initially based on the increased 
permeability of the blood-brain barrier (BBB) in the tumour by contrast with normal brain 
(Sweet et al. 1963). Similarly to all natural amino acids L–BPA can diffuse into cells. Active 
uptake of Tyr or Phe and leucine into brain is relatively effective compared to other amino 
acids (Oldendorf 1971). According to animal studies L–BPA seems to be taken into cells most 
similarly to Tyr with the L amino acid transport system (Wittig et al. 2000). Results of the 
evaluation of BPA in brain tumour-bearing animals have appeared to meet the necessary 
criteria for becoming a useful BNCT drug for gliomas (Soloway et al. 1961, Coderre et al. 
1990, Coderre et al. 1992, Coderre et al. 1994, Matalka et al. 1994). Clinical trials in patients 
with melanomas and gliomas were considered to be warranted on the basis of the preclinical 
evaluation of L–BPA. Generally, in order to continue to clinical phases with a potential boron 
compound sufficiently low toxicity, 10B concentration of 10-35 µg/g (parts per million, ppm) 
in tumour, and 10B tumour to surrounding normal tissue ratio greater than 1, preferably more 
than three, should be demonstrated in preclinical phase. 
 
1.4. Boron analysis in biological samples for boron neutron capture therapy 
 
In theory, a single 10B neutron capture reaction is capable to destroy a cancer cell. In practice, 
a concentration of 10-35 ppm 10B, equivalent to 108-109 atoms of 10B per cell, is required to 
destroy the cell (Fairchild and Bond 1985, Hawthorne 1993, Soloway et al. 1998). This 
required concentration range is due to the localization of the boron pharmaceutical at or inside 
the cell. Concentrations of approximately 10 ppm 10B are required in the neighbourhood of the 
DNA and about 30-35 ppm is required for cytoplasmic positions or for extracelluary bound 
boron pharmaceutical (Probst 1999). Modern nuclear reactor based epithermal (0.5 eV-10 
keV) neutron beams fulfil the requirements for effective BNCT with neutron fluxes of about 
109 neutrons/cm2 s (e.g. Perks et al. 1988, Moss 1990, Rogus et al. 1994, Liu et al. 1996, 
Burian et al. 1997, Moss et al. 1997, Auterinen et al. 2001, Kortesniemi 2002, Seppälä 2002). 
 
Assessment of tumour 10B levels is required for dosimetric modelling in BNCT. In treatment 
planning, the distribution of dose components: total absorbed gamma dose (Dg), dose from the 
boron neutron capture reaction (boron dose, DB), absorbed dose from the nitrogen capture 
reaction (DN) and absorbed fast neutron dose predominantly from recoil protons (Dfast_n) are 
computed in a geometric model of a patient's head (or body) (Seppälä 2002). The direct 
pharmacokinetic analysis of 10B in a patient is impossible because the continuous 
measurement of the tissue boron concentrations in vivo is technically difficult. As surrogate 
for determining the in vivo tissue boron content, whole blood concentrations are used instead. 
Currently, it is assumed that each of the various regions of interest has an even average boron 
concentration. However, the observed mean glioma tissue to whole blood boron 
concentrations after L–BPA administration have varied from 1.4 (Elowitz et al. 1998) to 4 
(Coderre et al. 1998). Variable boron concentrations in different tumour types (melanomas, 
brain tumours) and different parts of the same tumour have been reported (Mallesch et al. 
1994, Elowitz et al. 1998, Coderre et al. 1998, Kulvik et al. manuscript in preparation). 
Nevertheless, the irradiation time for BNCT is adjusted on the basis of the preirradiation 
whole blood boron concentration, assuming a mean boron concentration ratio of 1:1 for blood 
to healthy tissue and 1:3.5 for blood to tumour tissue. This data is derived from preclinical 
(e.g. Coderre et al. 1990, Coderre et al. 1992, Coderre et al. 1994, Matalka et al. 1994) and 
clinical (Coderre 1992, Mallesch et al. 1994, Coderre et al. 1997, Elowitz et al. 1998) 
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biodistribution studies in patients with gliomas. Kinetic models for estimating whole blood 
10B time-concentration curves for L–BPA mediated BNCT have been created (Ryynänen et al. 
2000, Kiger et al. 2001, Ryynänen et al. 2002, Kiger et al. 2003). 
 
Numerous methods for preclinical and clinical trials boron analysis in BNCT have been 
investigated (Probst 1999). Boron analytical techniques used in biological samples for BNCT 
are inductively coupled plasma–atomic emission spectrometry (ICP–AES) (Tamat et al. 1987, 
Bauer et al. 1989, Johnson et al. 1992, Bauer et al. 1993, Laakso et al. 2001), direct current 
plasma–atomic emission spectrometry (DCP–AES) (Barth et al. 1991), inductively coupled 
plasma–mass spectrometry (ICP–MS) (Vanhoe et al. 1993, Nyomora et al. 1997) and prompt 
γ-ray activation analysis (Kobayashi & Kanda 1983, Matsumoto & Aizawa 1990, 
Raaijmakers et al. 1995). 
 
When the Finnish BNCT project was approaching preclinical phase the most applicable 
methods for the on-line boron determination at the Finnish BNCT facility had to be chosen. 
Methods based on prompt γ-ray activation analysis, ICP-AES and ICP-MS were evaluated as 
the most suitable ones. The prompt γ-ray activation analysis based method was not technically 
feasible at the Finnish BNCT facility. ICP-AES was decided to be the principal method and 
ICP-MS was chosen to be the secondary method in reserve. A new ICP–AES was developed 
at the Finnish BNCT facility to determine the blood boron concentration during and after 
infusion of BPA (Laakso et al. 2001). The ICP-AES method uses protein removal with 
trichloroacetic acid before analysis was compared with the ICP-MS, which uses wet ashing as 
sample pre-treatment. The chosen ICP-AES method was found to be feasible and accurate for 
boron determination during clinical trials in BNCT (Laakso et al. 2001). The cross calibration 
of the ICP-MS and ICP-AES instruments was validated. Therefore, ICP-MS was found to be 
a secondary boron determination instrument in reserve for clinical trials at the Finnish BNCT 
facility. During the year 2003 a rapid method for the direct analysis of boron in whole blood 
by ICP-AES has been implemented at the Finnish BNCT facility based on the method 
developed originally by Bauer et al. (1993) (Auterinen et al. 2003). 
 
1.5. Boron neutron capture therapy research and development in Finland 
 
A research and development project to carry out clinical applications of BNCT was 
established in the early 1990’s in Finland (Savolainen & Kallio 1993, Auterinen & Kallio 
1994, Savolainen et al. 1997). The Finnish BNCT epithermal neutron beam in Otaniemi, 
Espoo uses the FiR1 reactor, which is a light-water moderated 250 kW Triga Mark II type 
nuclear reactor (Auterinen et al. 2001, URL: http://www.vtt.fi/pro/pro1/bnct/index.htm). 
Malignant gliomas were chosen as the first target of BNCT in Finland (Kallio et al. 1996, 
Joensuu et al. 2003). A multidisciplinary research and development team consisting of experts 
in administration, chemistry, engineering, medicine, pharmacy, physics, and veterinary 
sciences has been pursuing BNCT to bring it into clinical practice. There have been about 70 
scientists developing the therapy. The basic preclinical research programs were successfully 
completed by 1998 (Aschan 1999, Kosunen 1999, Benczik 2000, Färkkilä et al. 2001, Laakso 
et al. 2001, Kortesniemi 2002, Ryynänen 2002, Seppälä 2002, II). In collaboration with 
Katchem Ltd, Czech Republic (URL: http://www.katchem.cz), the Finnish research group has 
improved the manufacturing process of L–BPA (I, II). Based on this work the BPA 
manufactured by Katchem was used in the first clinical phase I/II trials. The licensing 
procedure of the neutron beam and BNCT facility was completed in 1999. The first patient 
was treated in May 1999. At present, all ongoing clinical trials are sponsored by Boneca 
Corporation (URL: http://www.boneca.fi). The patient treatments are carried out in 
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collaboration with Technical Research Centre of Finland VTT, Helsinki University Central 
Hospital and Boneca Corporation. The clinical research is focused on phase I/II studies on 
safety and efficacy of L–BPA mediated BNCT in primary or recurrent gliomas as well as on 
recurrent inoperable head and neck carcinomas after previous conventional radiotherapy. 
 
1.6. Preclincal and clinical trials of a boron pharmaceutical 
 
Developing a pharmaceutical is a demanding, long, risky, and expensive project. Synthetic 
organic chemistry is crucial in the development of novel chemical entities. During early 
research and preclinical testing, molecules undergo laboratory investigation and animal model 
testing for pharmacology, efficacy and toxicity. Detailed regulations for pharmaceutical and 
medical device industry have been published including guidelines to current Good 
Manufacturing Practice (cGMP) (PIC/S 2002), Good Laboratory Practice (GLP) (OECD 
1998) and Good Clinical Practice (GCP) (ICH 1996). 
 
Currently, only three compounds have been evaluated to be used as modern clinical 
pharmaceuticals in BNCT: BPA, BSH and disodium decahydrodecaborate, currently known 
as GB-10 (23) (Hawthorne & Lee 2003). However, numerous potential boron compounds 
have been synthesised and many compounds have been tested preclinically (Hawthorne 1993, 
Morin 1994, Wyzlic et al. 1994, Lesnikowski & Schinazi 1995, Gabel 1996, Mehta & Lu 
1996, Sjöberg et al. 1997, Soloway et al. 1998, Suominen 1998, Hawthorne & Lee 2003). 
 
Generally, the clinical phase I consist of clinical pharmacology: pharmacokinetics 
[LAD(M)E: liberation, absorption, distribution, (metabolism and excretion) that can be 
combined as elimination] and when possible pharmacodynamics. Phase I trials include blood 
tests and biopsies to evaluate how the new compound is working physiologically. Small 
groups of patients are treated with a certain dose of a potential compound. During the trial the 
dose is usually increased by group in order to find the highest dose that does not cause 
unacceptable harmful side effects. Although the primary purpose of phase I trials is to find the 
safest dose of a new pharmaceutical, researchers can also evaluate if the new pharmaceutical 
benefits people. Phase I cancer trials usually have 15 to 30 participants. After a phase I trial is 
completed, researchers decide whether there are enough data to support further study with a 
phase II trial whether further research should be discontinued. 
 
Boron biodistribution studies can be classified as phase I trials of BNCT. Boron 
biodistribution studies are also called ‘preludes’ for clinical BNCT trials: for example in a 
glioma boron biodistribution study a 10B containing pharmaceutical is administrated to a 
patient prior to craniotomy for resection of glioma, blood samples are collected and biopsies 
of tumour and tissues are obtained for boron elemental assay (Sweet & Javid 1952, Sweet et 
al. 1963, Finkel et al. 1989, Coderre 1992, Hariz et al. 1994, Mallesch et al. 1994, Ceberg et 
al. 1995a, Stragliotto & Fankhauser 1995, Gabel et al. 1997, Kageji et al. 1997, Tagaki et al. 
1997, Coderre et al. 1998, Elowitz et al. 1998, Horn et al. 1998). Patients participating in this 
kind of BNCT phase I trials are not irradiated with neutrons. In Finland L–BPA boron 
biodistribution studies of meningioma, Schwannoma and neurofibromatosis 2 (NF2) patients 
have been performed (Kulvik et al. manuscript in preparation, II). Boron biodistribution trials 
are traditionally performed to verify the basic requirements of boron pharmaceuticals prior to 
clinical trials with neutron irradiation.  
 
Generally, phase II trials, also called clinical investigations, continue to test the safety of the 
new pharmaceutical, and begin to evaluate how well it works against a specific type of cancer. 
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Phase II cancer trials usually have less than 100 participants. When a phase II trial begins, it is 
not yet known if the pharmaceutical tested works against the specific cancer being studied. 
Unpredictable side effects can also occur in these trials. 
 
Usually in BNCT phase I and II clinical trials are combined. The tumour is resected surgically 
before neutron irradiation. A L–BPA mediated BNCT glioma phase I/II trial has been 
completed in Brookhaven National Laboratory (BNL), USA. 53 patients participated to the 
phase I/II trial in BNL between September 1994 and May 1999. The safety of L–BPA 
mediated BNCT in patients with malignant gliomas was shown. In the trial the safe upper 
limit of modelled radiation dose that the central nervous system can tolerate was determined 
using the Brookhaven Medical Research Reactor (BMRR) neutron beam (Chanana et al. 
1999, Diaz 2003). The analysis of 24 patients has reported of the L–BPA mediated BNCT 
trial (defined as phase I trial with neutron irradiation, not as combined phase I/II trial) in 
Harvard/Massachusetts Institute of Technology (MIT), USA, for intracranial tumours 
(gliomas and metastatic melanomas). Two melanoma patients have showed a complete 
radiographic response (Busse et al. 2003). In Studsvik, Sweden, a phase II L–BPA mediated 
BNCT trial has been started March 2001. The Swedish trial is based on the results from the 
phase I/II trial completed at BNL. No severe BNCT related acute toxicities were reported with 
the analysis of the first 17 glioma patients (Capala et al. 2003). In Finland, the analysis of the 
first 18 glioma patients revealed also that L–BPA mediated BNCT was generally well 
tolerated (Joensuu et al. 2003). In 2003 new phase I/II protocols for recurrent gliomas and 
recurrent inoperable head and neck carcinomas after previous conventional radiotherapy have 
been opened in Finland. In Japan combined phase I/II types L–BPA mediated BNCT trials 
with patients of gliomas and melanomas are going on (Fukuda et al. 1999, Takahashi et al. 
2003, Imahori personal communication, July 2003). In Italy, the first human study of the L–
BPA mediated BNCT to treat liver metastases has been reported (Pinelli et al. 2002). 
 
Generally, phase III trials, also called formal therapeutic trials, focus on how a new treatment 
compares to standard, or the most widely accepted, treatment. In phase III trial, participants 
have an equal chance to be assigned to one of two or more groups (randomisation): one group 
gets the standard treatment and the other group gets the novel treatment tested. Phase III trials 
usually have hundreds to thousands of participants, in order to find out if there are true 
differences in the effectiveness of the treatment being tested. The researchers will inform the 
medical community and the public of the trial results. In most cases, a trial's results are first 
reported in peer-reviewed scientific journals. Phase IV trials, also called post-licensing 
studies, are used to further evaluate the long-term safety and effectiveness of a treatment.  
 
L–BPA mediated BNCT is currently undergoing clinical phase I, II and combined phase I/II 
trials. As an experimental combination of chemo- and radiotherapy BNCT poses a number of 
unique problems. Therefore the implementation of clinical trials and the interpretation of the 
clinical results are challenging. It has been proposed that the BNCT community needs to 
standardize each aspect of the design, implementation, and reporting of clinical trials before 
proceeding into phase III clinical trials (Gupta et al. 2003).  
 
1.7. Radiotracers 
 
Radiotracers are radioactive nuclide containing chemical species that are used as markers to 
follow the course of a chemical reaction, physical process or to show the localisation of a 
substance. The activity of the radioisotope is monitored to follow the process under 
investigation. Radiotracers are referred to as radiopharmaceuticals when used in in vivo 
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studies. In the life sciences radiotracers have many applications, e.g. in evaluation of a 
radiopharmaceutical by tissue uptake distribution studies or by autoradiography in 
experimental animals, or in imaging techniques like Positron Emission Tomography (PET) 
and Single Photon Emission (Computed) Tomography (SPET or SPECT), Table 1. 
 

Table 1. Some isotopes used in diagnostic radiopharmaceuticals  

Isotope Half-life Radiation Detection 

11C 20.4 min β+ PET 
18F 109.7 min β+ PET 

75Br 1.6 h β+ PET 
99mTc 6.01 h γ SPET 

123I 13.2 h γ SPET 

 
1.8. 4-dihydroxyboryl-2-[18F]fluorophenylalanine 
 
Fluorine-18 is one of the most widely used clinical positron emitters (e.g. Stöcklin & Pike 
1993, Kilbourn 1990, Bergman 2001). Electrophilic fluorinating agents provide a rapid means 
of introducing 18F into organic molecules through aromatic electrophilic substitution. The 
direct electrophilic radiofluorination of BPA was first reported by Ishiwata et al. (1991a). The 
radiochemical yield of 4-dihydroxyboryl-2-[18F]fluoro–D,L–phenylalanine (4-borono-2-
[18F]fluoro–D,L–phenylalanine, D, L–[18F]FBPA) was 25-35% corrected to end of 
bombardment (EOB), which in this case means to the end of the production of 18F with 
cyclotron. The specific activity was 35-60 MBq/µmol at the end of synthesis (EOS). The 
overall synthesis time was about 80 min and the radiochemical purity over 99% determined 
by analytical high performance liquid chromatography (HPLC). Synthesis of [18F]FBPA with 
fructose was reported by Reddy et al. (1995): BPA was radiofluorinated as described by 
Ishiwata et al. (1991a) and then treated with fructose. The fractions containing the fructose 
complex of [18F]FBPA ([18F]FBPA–F) were identified by reverse chiral thin layer 
chromatography and by HPLC. 
 
The tissue distribution study of D, L–[18F]FBPA in normal mice showed that the compound 
has potential as a tracer for pancreas imaging because of its rapid clearance from all other 
tissues (Ishiwata et al. 1991a). Brain uptake was found to be constant for 2 hours. The results 
in normal mice suggested also no incorporation of D, L–[18F]FBPA into protein synthesis or 
very slow incorporation. Defluorination of the compound was anticipated from the constant 
radioactivity levels in bone including bone marrow. The radiation-absorbed dose to the 
bladder wall was found to be higher than any other organ but the dose was lower than for 6-
[18F]fluoro-DOPA (Ishiwata et al. 1991a). The potential of D, L–[18F]FBPA, D–[18F]FBPA 
and L–[18F]FBPA for melanoma imaging by PET was studied using animal models (Ishiwata 
et al. 1992a, Ishiwata et al. 1992b): a high uptake of racemic or L–enantiomer was found in 
subcutaneous murine B16 melanoma or in Greene’s melanoma No. 179 for the first 6 h after 
an injection of [18F]FBPA. For D–enantiomer radioactivity levels in all tissues investigated 
were very low compared with the L–form (Ishiwata et al. 1992b). The tumour uptake and 
metabolism of D, L–[18F]FBPA in mice bearing FM3A mammary carcinoma resulted in high 
FM3A-to tissue uptake ratios. The tracer was found to be stable for metabolic alteration 
(Ishiwata et al. 1991b). The cellular distribution of L–[18F]FBPA and [6-3H]thymidine 
([3H]Thd, a DNA precursor) in two murine B16 melanoma sublines and FM3A mammary 
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carcinoma using double-tracer microautoradiography showed that the L–[18F]FBPA 
accumulation was primarily related to the activity of DNA synthesis and, secondarily, to the 
degree of pigmentation in melanocytes (Kubota et al. 1993). 
 
Dynamic PET data of [18F]FBPA incorporation into 33 cases of primary glioma has been 
represented as Gjedde-Patlak plots as defined by Patlak et al. (1983) (Imahori et al. 1998a). A 
three-compartment model using rate constants [K1(ml/g/min, k2 (min-1) and k3 (min-1)] based 
on the equation proposed by Huang et al. (1980) has been used for the pharmacokinetic 
analysis of [18F]FBPA (Imahori et al. 1998a). Dynamic PET studies have revealed that 
[18F]FBPA is selectively incorporated in the malignant tumour cells showing high 
radioactivity and tumour to normal tissue ratios that were greater than 1 in all patients, 
reaching the maximum value of 6 (Mishima et al. 1997, Imahori et al. 1998a, 1998b and 
1998c). The rate constant K1 value, thought to be a quantitative parameter of the amino acid 
transport process, differed significantly between the malignant tumour group (glioblastoma 
multiforme) and the benign tumour group (astrocytoma grade II) (Imahori et al. 1998a). 
Tumour tissue uptakes L–[18F]FBPA, better than the racemic mixture of the radiofluorinated 
BPA analogue, D, L–[18F]FBPA, (Imahori et al. 1998a). L–[18F]FBPA was accumulated 
gradually after bolus injection reaching a constant level 42 min after injection and this 
constant was defined as the incorporation constant. The constant is thought to reflect the 
appropriate L–[18F]FBPA accumulation in tumour tissue. Based on the incorporation constant, 
the methods for estimating tumour 10B concentrations are devised (Imahori et al. 1988b and 
1988c). The similarity of pharmacokinetics of L–[18F]FBPA and L–BPA given as BPA–F was 
proposed to have been confirmed. PET studies using L–[18F]FBPA are concluded to provide 
images of treatable brain tumours for BNCT and to permit the determination of local 10B 
levels (Imahori et al. 1998b and 1998c). The kinetic constants of [18F]FBPA metabolism as 
determined by PET can be significant in predicting the prognosis and indicating the feasibility 
of BNCT in patients with gliomas (Takahashi et al. 2003). 
 
The distribution of [18F]FBPA–F by PET has been found to be consistent with identified 
tumour by magnetic resonance imaging (MRI) in two patients with malignant gliomas 
(Kabalka et al. 1997). The [18F]FBPA–F tumour to normal brain uptake ratio was 1.9 in the 
first patient and 3.1 in the second patient at 52 min after bolus injection of [18F]FBPA–F 
(Kabalka et al. 1997). The observed difference in uptake kinetics between [18F]FBPA–F and 
[18F]FBPA was proposed to possibly be due to that [18F]FBPA–F has kinetics closer to the 
most common PET tracer in oncology, 2-[18F]fluoro-2-deoxy–D–glucose (2-FDG), than L–
[18F]FBPA as a free amino acid (Kabalka et al. 1997). The knowledge of the distribution of 
[18F]FBPA–F by PET is concluded to be capable of providing in vivo [18F]FBPA–F 
biodistribution data that may prove valuable for patient selection and BNCT treatment 
planning (Kabalka et al. 1997). The isodose contours derived from [18F]FBPA-PET studies 
have been shown to correspond more closely to the observed BNCT clinical results than do 
the isodose contours generated by modelling calculations (Nichols et al. 2002). PET imaging 
with [18F]FBPA can be used to identify potential tumours that may be amenable to BNCT 
(Kabalka et al. 2003) 
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2. AIMS OF THE PRESENT STUDY 
 
The aim of this study was to  
 

• evaluate L–BPA (papers I and II) in order to implement clinical phase I and phase I/II 
trials of BNCT in Finland.  

 
• develop a radiolabelled analogue of L–BPA (papers III and IV) for clinical imaging 

studies in Finland. 
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3. METHODS 
 
 
3.1. Evaluation of 4-dihydroxyboryl–L–phenylalanine (papers I and II) 
 
When the Finnish BNCT project was approaching the first clinical phase I/II trial careful 
chemical analysis was made of the two different synthetic batches available of L–BPA. The 
first batch of L–BPA was purchased from Boron Biologicals (Raleigh, North Carolina, USA, 
URL: www.boronbiologicals.com). It was synthesised by the racemic Snyder pathway 
(Snyder et al. 1958). The another batch was a preliminary product from Katchem Ltd. 
(Prague, Czech Republic) synthesised by a pathway developed by Malan & Morin (1996). 
The latter pathway was evaluated as the most applicable to the first series of the Finnish 
BNCT clinical trials because the final product was enantiospecific affording only desired 
enantiomer of BPA, L–BPA. 
 
Chemical characterisation of L–BPA synthesised by a pathway developed by Malan & Morin 
(1996) was verified by 1H NMR, 13C NMR, 10B NMR, and IR spectrometry in Katchem Ltd. 
Melting points were determined in open capillary tubes and were uncorrected. Chemical 
purity of BPA batches was studied employing a reversed-phase (RP) isocratic HPLC both in 
Prague and in Helsinki. Elemental analyses were carried and specific rotation information was 
collected to investigate the enantiospecifity of the synthesised L–BPA in Katchem Ltd. 
 
In order to verify that also BPA synthesised with the novel method is nontoxic, an animal 
study was carried out. The solubility of L–BPA was enhanced by complex formation with 
fructose (Yoshino et al. 1989). Careful attention was given to the pharmaceutical quality of 
the BPA–F preparations. Solutions for i.v. infusion of BPA–F were prepared at a 
concentration of 30 g/l (0.14 M), combining L–BPA with a 10% molar excess of fructose in 
sterile water. After completion of the development work L–BPA infusion solution was 
administered to brain tumour patients in conjunction with clinical studies for development and 
testing BNCT as a part of clinical phase I trial to develop novel indications for BNCT (Kulvik 
et al. manuscript in preparation, II). Appropriate notification of a clinical trial on medicinal 
products in human subjects (form 723) with appendices were presented to the Finnish 
National Agency for Medicines prior to initiation of the clinical studies with L–BPA. 
 
3.2. Development of radiolabelled analogues of 4-dihydroxyboryl–L–phenylalanine (papers 
III and IV) 
 
In the life sciences radiolabelled analogues of L–BPA have many applications, e.g. in 
exploring novel clinical applications for the 10B(n,α)7Li* reaction in tumour models in vitro 
or by autoradiography in experimental animals, or in cancer patients using imaging 
techniques like PET or SPET. In addition, uptake, metabolism, and pharmacokinetics of L–
BPA prior to clinical BNCT studies can be noninvasibly estimated using PET or SPET 
techniques with radiolabelled analogue of L–BPA. 
 
In order to improve available radiotracers for BNCT we wanted to test possibilities to label 
BPA directly with radioiodine. The dihydroxyboryl group in aromatic molecules is fragile and 
can be substituted by electrophiles (Kabalka et al. 1982, I). Therefore gentle chemical 
oxidants, Iodogen (1,3,4,6-tetrachloro-3α,6α-diphenylglycoluril) (Fraker & Speck 1978), 
Figure 7a, and lactoperoxidase (Karonen 1981), were chosen. A direct Iodogen 
radioiodination technique for Tyr was also tested, Figure 7b. 
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A procedure to produce relatively high specific radioactivity (SA) L–[18F]FBPA was 
developed, Figure 5. Electrophilic radiofluorine was produced using a post-target conversion 
of [18F]F- to [18F]F2. Liquid chromatography with mass spectrometric detection is used to 
estimate the specific radioactivity of L–[18F]FBPA and to verify the quality control for 
chemical identity of the target compound. 
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Figure 5. Flow-chart for the synthesis of electrophilic fluorine starting from nucleophilic 
fluorine (Bergman & Solin 1997, Bergman 2001) and following direct electrophilic 
radiofluorination of L–BPA schematically; the precursor: L–BPA 3, the target compound: L–
[18F]FBPA 7, and the principle by-products: 2,3,4-[18F]fluorophenylalanines 8. 
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4. RESULTS 
 
 
4.1. Evaluation of 4-dihydroxyboryl–L–phenylalanine (papers I and II) 
 
A new impurity during the development of L–BPA synthesis was identified by liquid 
chromatography with mass detection (LC-MS). The palladium catalysis cross-coupling 
reaction of phenylboronic acids with haloarens in the presence of bases yields corresponding 
biaryls (Miyaura et al. 1981). In the Malan & Morin (1996) pathway for synthesis of L–BPA, 
an unprotected 4-iodophenyl boric acid with a protected analogue can lead to a competitive 
cross-coupling reaction, causing the formation of 4'-dihydroxyborylbiphenylalanine (biBPA). 
The impurity biBPA could be avoided in later synthetic batches of L–BPA. In collaboration 
with Katchem Ltd, Czech Republic the Finnish research group improved the manufacturing 
process of L–BPA. Based on this work the BPA manufactured by Katchem was used in first 
clinical phase I/II trials. 
 

Table 2. General requirements of 10B enriched L–BPA for clinical trials 
 

Requirements of final product Methods of verification 

Chemical characterisation 

1H NMR, 13C NMR, 10B NMR, 

IR spectrometry, melting point determination 

Chemical purity (>98%) RP HPLC 

Enantiospecific (chiral) purity (~ 100%) specific rotation determination, 

chiral HPLC 

Enrichment factor of 10B (>99%) mass spectrometry 

Impurities should be identified; 

if a new compound is identified with 
unknown toxicity 

HPLC, LC/MS, NMR; 

synthesis of the detected impurity compound 
and toxicological evaluation 

Residual solvents under limits as specified in 
the European Pharmacopoiea 

gas chromatography 

Pharmaceutical quality:  

no microbial contamination and bacterial 
endotoxins detected under limit as specified 

in the European Pharmacopoiea 

sterility test, 

bacterial endotoxin test 

 
The purity of the L–BPA batches used for clinical administration was verified by NMR and 
RP HPLC. The final product was 98.5–99.9% pure L–BPA with Phe (<1%) and to a lesser 
extent Tyr (<0.5%) as the analysed residual impurities. Potential trace impurities in the final 
product are boric acid and biBPA. 
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Figure 6. Impurities found: Tyr 10, Phe 11, and potential trace impurities anticipated: biBPA 
9, and boric acid 12, in L–BPA batches used for clinical administration. 
 
BPA has been reported to be nontoxic compound (LaHann et al. 1993). In accordance with 
earlier studies no adverse effects were observed in the acute toxicity of L–BPA studied in 
male albino Sprague–Dawley rats. The pH and osmolarity of the BPA–F solution are in the 
physiological range. An endotoxin test was carried out by the turbidimetric kinetic method for 
each synthesised batch of L–BPA to ensure that the batch was pyrogen free, i.e. contained 
bacterial endotoxins under the limit specified in the European Pharmacopoeia (3rd edition 
2.6.14). The sterility tests of the L–BPA batches were carried out in the hospital pharmacy of 
HUCH, Helsinki according to the European Pharmacopoeia (3rd edition 2.6.1). No clinically 
significant adverse effects of L–BPA had been reported and we did not observer such either 
(II). The data were considered sufficient for starting L–BPA mediated clinical BNCT phase I 
trials (boron biodistribution studies) and phase I/II trials. 
 
4.2. Development of radiolabelled analogues of 4-dihydroxyboryl–L–phenylalanine (papers 
III and IV) 
 
A direct electrophilic radioiodinating method using Iodogen as an oxidant gave reproducible 
amounts of 4-[125I]IPhe instead of radioiodinated BPA. A direct electrophilic Iodogen 
technique for radioiodination of Tyr gave an excellent radiochemical yield (>99%) 3-
[125I]ITyr. A formation of a corresponding di-iodo compound, 3,5-[125I]di-iodotyrosine (3,5-
[125I]diTyr) was observed, but it was avoidable using suitable labelling conditions. 
 
An alternative concise procedure to that reported by Ishiwata et al. (1991a), which produces 
relatively high SA L–[18F]FBPA was developed. The amount of precursor could be reduced 
from 100 µmol to 4.8 µmol. On average, the radiochemical yield (as calculated from the 
initial amount of [18F]F-) of L–[18F]FBPA) was 3.4%. The specific activity was 0.85-1.52 
GBq/µmol at EOS. The overall synthesis time was about 50 min and the radiochemical purity 
over 98% determined by analytical HPLC. 
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Figure 7. Radioiodination of L–BPA (a) 3 and Tyr 10 (b) using Iodogen as oxidant. Products 
are 4-IPhe 13, 2,3-IPhes 14, 3-ITyr 15 and 3,5-diITyr 16. 
 
5. DISCUSSION 
 
 
5.1. Boron neutron capture therapy 
 
Despite the success in the synthetic boron chemistry only few boron compounds have 
emerged in clinical BNCT trials. For example many structural BPA modifications have been 
synthesised, including α-methyl BPA (17) and 1-amino-3-(4-dihydroxyborylbenzyl) 
cyclobutanecarboxylic acid (18) (Zaidlewicz et al. 2004). Some BPA modifications have also 
been studied preclincally, e.g. 2- and 3-BPAs (19 and 20) (Hiratsuka et al. 2000) and 4-
dihydroxyborylphenylalaninol (21) (Masunaga et al. 2001, Masunaga et al. 2003), Figure 8. 
The incorporation of 11C-labelled 1-amino-1-[11C]cyclobutanecarboxylic acid (1-[11C]ACBC) 
[a structural analogue of 1-amino-3-(4-dihydroxyborylbenzyl)cyclobutanecarboxylic acid (18) 
but without the –B(OH)2 group] into 20 cases of suspected recurrent brain tumours has been 
represented as Gjedde-Patlak plots showing high average tumour to contralateral gray matter 
ratio of 5.0 (Hübner et al. 1998). Boronated porphyrins are one of the most widely studied 
preclinical boron compounds (e.g. Gabel 1989, Kahl et al. 1990, Miura et al. 1990, Woodburn 
et al. 1993, Miura et al. 1998, Kreimann et al. 2003). One of the most biologically studied 
boronated porphyrin is the tetrakis-carboranecarboxylate ester of 2,4-bis-(α,β-dihydroxy-
ethyl) deuterioporphyrin IX (BOPP) (22), Figure 9 (Fairchild et al. 1990, Hill et al. 1992, 
Huang et al. 1993, Ceberg et al. 1995b, Hill et al. 1995, Callahan et al. 1999, Zhou et al. 
1999). BOPP has also been studied in a phase I clinical trials for photodynamic therapy (PDT) 
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(Rosenthal et al. 2001). Disodium decahydrodecaborate, currently known as GB-10, (23) 
Figure 8, a boron compound used in the early 1960’s, is being re-evaluated for clinical glioma 
BNCT trials (Diaz et al. 2002, Hawthorne & Lee, 2003). 
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Figure 8. Synthesised structural modifications of BPA: α-methyl BPA (17), 1-amino-3-(4-
dihydroxyborylbenzyl)cyclobutanecarboxylic acid (18), 2-BPA(19), 3-BPA (20) and 4-
dihydroxyborylphenylalaninol (21). 
 
By now, in Finland two potential boron containing pharmaceutical have been evaluated for 
BNCT in order to start clinical trials of patients with malignant gliomas. In the beginning of 
the 1990’s boronated low-density lipoproteins (LDLs) were planned to used as 10B containing 
pharmaceutical by the Finnish BNCT research group (Auterinen & Kallio 1994). Clinical 
uptake studies with 99mTc and 111In labelled LDLs in malignant gliomas were performed 
(Kallio et al. 1993, Leppälä et al. 1995). However, in spite of chemical and preclinical studies 
on boronated LDLs, clinical patient studies could not be initiated due to technical difficulties: 
the B-100 protein component of LDLs binds to specific LDL receptor. In vitro processing in 
boronation denatures easily the fragile B-100 protein hampering the uptake of boronated 
LDLs to malignant glioma cells. (Ylä-Herttuala, unpublished results; personal 
communication, September 2003). Currently, in Finland, Karyon Ltd (URL: 
http://www.karyon.fi) is developing novel boron pharmaceuticals under the project entitled 
targeted boron neutron capture therapy (TBNCT). The research and development is focused 
on a potential lead compound K 1020 for malignant gliomas. Currently, K 1020 is in 
preclinical phase and it is planned to enter a clinical phase I trial in 2006 (Grayson 2003, 
Slätis personal communication, January 2004). 
 
In 1996 L–BPA was chosen to be the first boron containing pharmaceutical in Finland 
because it was considered biochemically to be more attractive than the only available boron 
pharmaceutical, BSH, and because by the mid 1990s there were already reports of clinical 
experiences with BPA administered intravenously (Mallesch et al. 1994, Coderre et al. 1997). 
Clinical trials were planned to start with BPA synthesised by the Snyder (1958) pathway 
affording after enzymatic purification the L–enantiomer. In the mid 1990’s there were serious 
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problems worldwide for obtaining L–BPA that fulfilled the chemical and pharmaceutical 
quality and purity requirements for in vivo administration. Fortunately, in 1996 Malan & 
Morin published a novel enantiospecific pathway affording L–BPA and Katchem Ltd. 
(Prague, Czech Republic) started to produce L–BPA synthesised by this pathway. After a 
period of intensive experimentation with synthesis of L–BPA in Katchem Ltd., analytical 
research & development of L–BPA and planning and preparing of clinical trials by the Finnish 
BNCT research group, the first patient boron biodistribution study (a phase I trial) of L–BPA 
was carried out in August 1998. 
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Figure 9. Structure of BOPP 22 and GB-10 23. 

 
In order to model BNCT radiation doses the average estimated boron concentration of tissue 
is mainly derived from the preclinical (e.g. Coderre et al. 1987, Coderre et al. 1988, Coderre 
et al. 1992, Coderre et al. 1994, Matalka et al. 1994) and clinical (Coderre 1992, Mallesch et 
al. 1994, Coderre et al. 1997, Elowitz et al. 1998) glioma biodistribution studies. Metabolism 
of a boron pharmaceutical administered is usually neglected because the most important 
therapeutic factor in BNCT is the 10B(n,α)7Li* reaction, not the molecule containing the 10B 
atom. Only few studies to investigate L–BPA metabolites have been reported (Svantesson et 
al. 2002). In order to develop clinical BNCT metabolites of L–BPA are not necessary to be 
fully elucidated especially if L–BPA is viewed as acting as an inactive prodrug, and 10B as the 
active pharmaceutical affecting the viability of target cells through the (4He2+) particle and 
lithium (7Li3+) (II). However, for phase I trials in addition to boron analyses, HPLC analysis 
of L–BPA, for example according to a method developed by Di Pierro et al. (2000) in plasma, 
urine and tissues may afford additional useful information. Generally, clinical boron 
biodistribution studies can be considered as a solid part of phase I trials in order to study 
average boron concentration of malignant tissues of a novel promising boron containing 
pharmaceutical. 
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L–BPA mediated clinical trials are running at the Finnish BNCT facility (Joensuu et al. 2003). 
In Finland, the basic research & development research programs were successfully completed 
by 1998 in animal models (Benczik 2000), dosimetry (Aschan 1999, Kosunen 1999), dose 
planning (Seppälä 2002), kinetic mathematical modelling of 10B (Ryynänen 2002) and 
technological development (Kortesniemi 2002). The quantification of BPA with phantoms 
has been evaluated using 1H magnetic resonance spectrometry (MRS) and clinical studies are 
in progress (Heikkinen et al. 2003). Boron biodistribution studies of meningioma, 
Schwannoma and NF2 patients have been successfully completed (Kulvik et al. manuscript in 
preparation). [18F]FBPA-PET studies of new tumour types including meningioma, 
Schwannoma and NF2 for BNCT are in progress (Minn et al. manuscript in preparation). 
 
Worldwide BNCT research and development for brain tumours and melanoma are going on 
and some novel clinical applications for the 10B(n,α)7Li* reaction have been proposed, for 
example as treatment of liver (Pinelli et al. 2002), head and neck, prostate cancer and 
superficial sarcomas (Gupta et al. 2003), soft tissue sarcomas (Pignol et al. 1998), 
undifferentiated thyroid carcinoma (Dagrosa et al. 2003) and rheumatoid arthritis (Yanch et 
al. 1999). The methodology of BNCT is complicated because the irradiation conditions of 
both the neutrons and the boron compound must be considered. In BNCT the need for 
international and interdisciplinary co-operation is as pronounced today that it has been before 
(Kortesniemi 2002). A successful BNCT project toward clinical phase III trials requires 
fundamental knowledge of biology, chemistry, engineering, medicine, pharmacy and physics 
including robust administration and economics. Based on the data from Pharma Industry 
Finland (PIF) the estimated cost of developing a new pharmaceutical is 560 million €, and the 
time from concept to sale is on average 12-13 years. The risks in research are high; according 
to international statistics only one or two in 10 000 synthesised substances end up on the 
market. The risks in a prospective clinical BNCT development compared to the 
pharmaceutical development can be even higher because in BNCT both pharmaceutical and 
medical device developing areas must be considered.  
 
Standardization of the design, implementation, and reporting of clinical trials as proposed by 
Gupta et al. (2003) will help to continue with clinical phase III trials in BNCT. However, 
accurately documented patient cases could simplify demonstrating the effectiveness (or 
ineffectiveness) of prospective BNCT protocols without performing ‘traditional’ phase III 
trials (randomisation). For example characterisation of a small but representative group of 
cancer patient cases with metabolic [18F]FBPA PET and anatomical MRI or CT images 
before and after treatment could help to demonstrate the clinical response of the of L–BPA 
mediated BNCT without traditional phase III trial randomised comparison studies to standard 
treatments. 
 
5.2. Radiolabelled analogues of 4-dihydroxyboryl– L–phenylalanine 
 
The dihydroxyboryl group, –B(OH)2, in aromatic molecules is electron withdrawing. 
B(OH)2– deactivates strongly direct electrophilic radiolabelling and acts as a good leaving 
group. No radiolabelled BPA was observed using gentle oxidants and mild electrophilic 
radioiodination techniques, which we investigated. The hydroxyl group, –OH, is very 
different from the dihydroxyboryl group in direct electrophilic aromatic radiohalogenation: 
the OH– group is electron donating and activates the aromatic ring toward direct electrophilic 
labelling, resulting in efficient radioiodination techniques with excellent radiochemical yield, 
Figure 10. However, Weinreich et al. (1997) have reported of direct electrophilic 
radioiodination of BPA using Iodogen with a positron emitter 124I leading to one labelled 
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radioiodinated product. The structure of the product was not identified. In vivo studies with 
123IBPA have been also reported (Lim et al. 1999). We suggest that the radioiodinated product 
on these studies was not radioiodinated BPA, but a radioiodinated phenylalanine. We have 
also reported some preliminary studies of radioiodinated BPA as a poster presentation in a 
nuclear medicine international congress (Vähätalo et al. 1997). After accurate evaluation we 
could not positively identify any amount of 125IBPA either. Appropriate identification of the 
desired target compound is a crucial step before starting any further studies with hypothetic 
radiotracer of *IBPA (Suominen et al. 2001). Globally, radioiodinated BPA, 4-
dihydroxyboryl-2-[*I]iodophenylalanine is a desired radiotracer for in vivo studies but 
unfortunately studies in order to produce *IBPA has so far been unsuccessful.  
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Figure 10. Resonance structures of Tyr (a) and (b) BPA, R = –CH2CH(NH3
+)COO-. 

 
The radiofluorinated analogue of BPA, [18F]FBPA, has been demonstrated to be a useful 
radiotracer in life sciences leading to PET patient studies for L–BPA mediated BNCT in 
Japan, in USA and in Finland. The transport of L–BPA is supposed to be mediated by the L 
amino acid transport system (Wittig et al. 2000). The fluorine atom is usually substituted into 
a pharmaceutical in place of a hydrogen atom or a hydroxyl group; fluorine may affect the 
lipophilicity of the molecule (Bergman 2001). However, clinical experience with L–
[18F]FBPA has demonstrated that accumulation of 18F-labelled BPA and L–BPA administered 
as BPA-F is analogous (Imahori et al. 1998a, 1998b and 1998c, Nichols et al. 2002, 
Takahashi et al. 2003). Therefore, L–[18F]FBPA accumulation is supposed to be mediated by 
the same amino acid transport system than L–BPA, at least the L amino acid transport system 
is clearly shown to be the dominant mechanism affecting the L–[18F]FBPA accumulation in 
malignant gliomas. 
 
There is discrepancy in the use of the radiofluorinated analogue of BPA as free amino acid or 
complexed with fructose. Kabalka et al. (1997) have reported a patient PET study with the 
radiofluorinated analogue of BPA complexed with fructose. There is probably no need to use 
[18F]FBPA complexed with fructose because the actual uptake mechanism to malignant cells 
is supposed to be mediated through the L amino acid transport system (Imahori et al. 1998a, 
1998b and 1998c, II). In addition, the complex formulation of BPA–F is an equilibrium 
reaction, Figure 4. An in vitro study has shown that BPA–F dissociates and reaches 
equilibrium between the free molecules of BPA and the BPA–F complex in the diluted 
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condition present in plasma (Kakihana et al. 1993). The equilibrium kinetics of BPA–F and 
[18F]FBPA–F has not been studied but one can assume that in diluted conditions of the 
radiolabelled compounds the equilibrium status should be toward the reactants, i.e. free 
[18F]FBPA and free fructose, instead of complex [18F]FBPA–F. Kabalka et al. (1997) have 
reported that a quality control of [18F]FBPA–F for radiochemical identity was performed. In 
addition there are some variation is preparative HPLC conditions: Kabalka et al. (1997) have 
eluted [18F]FBPA between 28 and 32 min – Imahori (personal communication, 1998) between 
16 and 20 min corresponding to the original procedure by Ishiwata et al (1991a). Currently 
the radiochemical identity of [18F]FBPA is recommended to be verified with a stable 
reference compound (Kabalka et al. 2000). 
 
Direct electrophilic radiofluorination with [18F]F2 or [18F]AcOF of BPA is an efficient and 
fast way to incorporate 18F into BPA. Nucleophilic pathways to radiofluorinate BPA would be 
too arduous and complicated to realise, if possible at all. Direct electrophilic radiofluorination 
is simple to perform; most effort is applied to the separation and identification of the 
radiofluorinated products. However, selective labelling and better radiochemical yield, 
perhaps even successful radioiodination procedures are anticipated using precursors with 
appropriate leaving groups, such as trialkylstannyl derivatives of BPA, Figure 11. In addition 
to [18F]FBPA studies in BNCT, 11C-labelled BPA (25) studies are in progress (Studenov et al. 
2001).  
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Figure 11. Structure of hypothetic molecule of triethylstannylated BPA (24) (under 
radiochemical labelling conditions dihydroxyboryl-, amino- and/or carboxyl-groups may have 
required to be protected) and 11C labelled BPA (25) currently in preclinical evaluation 
(Studenov et al. 2001) 



 28 

6. CONCLUSIONS 
 
The conclusions of this thesis are: 
 

• LC-MS was shown to be a novel analytical instrument to check the purity of BPA 
prior to clinical studies in BNCT (paper I), 

 
• L–BPA analysis and synthesis development and complementary preclinical and 

clinical observations justify a safe use of BPA–F up to clinical phase III BNCT studies 
(paper II), 

 
• BPA cannot be directly radioiodinated for tracer studies in BNCT (paper III), 

 
• A concise procedure to produce relatively high SA L–[18F]FBPA for clinical positron 

emission tomography studies in BNCT was developed (paper IV). 
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