
Studies of new inorganic species using relativistic quan-
tum chemistry

Dissertation for the degree of Doctor Philosophiae

Michael Patzschke

University of Helsinki
Department of Chemistry

Laboratory for Instruction in Swedish
P.O. Box 55 (A.I. Virtasen Aukio 1)

FIN-00014 University of Helsinki, Finland

To be presented, with permission of the Faculty of Science, University of Helsinki, for public
discussion in Auditorium A129, Department of Chemistry (A.I. Virtasen Aukio 1, Helsinki), June
the 27th, 2006.

Helsinki 2006



Supervised by

Prof. Pekka Pyykkö
Department of Chemistry
University of Helsinki

Reviewed by

Prof. Matti Hotokka
Department of Chemistry
Åbo Akademi

Prof. Trond Saue
Department of Chemistry
University of Strasbourg

ISBN 952-92-0519-8 (paperback)
ISBN 952-10-3229-4 (PDF)
http://ethesis.helsinki.�

Yliopistopaino Helsinki 2006



Parsifal: Ich schreite kaum, doch wähn' ich mich schon weit.
Gurnemanz: Du siehst, mein Sohn, zum Raum wird hier die Zeit.

�Parsifal� 1st act, by Richard Wagner (1877)



Abstract

In the present work the methods of relativistic quantum chemistry have been applied to a number
of small systems containing heavy elements, for which relativistic e�ects are important. First, a thor-
ough introduction of the methods used is presented. This includes some of the general methods of
computational chemistry and a special section dealing with how to include the e�ects of relativity in
quantum chemical calculations.

Second, after this introduction the results obtained are presented. Investigations on high-valent
mercury compounds are presented and new ways to synthesise such compounds are proposed.

The methods described were applied to certain systems containing short Pt-Tl contacts. It was
possible to explain the interesting bonding situation in these compounds.

One of the most common actinide compounds, uranium hexa�uoride was investigated and a new
picture of the bonding was presented. Furthermore the rareness of uranium-cyanide compounds was
discussed.

In a foray into the chemistry of gold, well known for its strong relativistic e�ects, investigations on
di�erent gold systems were performed. Analogies between Au+ and platinum on one hand and oxygen
on the other were found. New systems with multiple bonds to gold were proposed to experimentalists.
One of the proposed systems was spectroscopically observed shortly afterwards. A very interesting
molecule, which was theoretically predicted a few years ago is WAu12. Some of its properties were
calculated and the bonding situation was discussed. In a further study on gold compounds it was
possible to explain the substitution pattern in bis[phosphane-gold(I)] thiocyanate complexes. This is of
some help to experimentalists as the systems could not be crystallised and the structure was therefore
unknown.

Finally, computations on one of the heaviest elements in the periodic table were performed. Cal-
culation on compounds containing element 110, darmstadtium, showed that it behaves similarly as its
lighter homologue platinum. The extreme importance of relativistic e�ects for these systems was also
shown.
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Chapter 1

Introduction

Relativistic quantum chemistry is one of the most interesting areas of chemistry. In it, two of the most
important physical theories of the last century are united. The quantum theory, which revolutionised
our understanding of very small systems (such as atoms and molecules) and the theory of relativity,
which brought new understanding of very large systems (like galaxies). Only the combination of these
two theories makes it possible to understand the properties of certain elements and their compounds.

The importance of relativity in the �eld of chemistry was even disputed by one of the fathers of
relativistic quantum mechanics, P.A.M. Dirac. However, it was soon understood, that a relativistic
treatment was necessary for heavy elements. The inner electrons of heavy elements move very fast,
this leads to a relativistic shrinkage of the 1s orbitals. This e�ect is transferred to the other orbitals
of same angular momentum l. The s orbitals are relativistically contracted. Another relativistic e�ect
is spin-orbit coupling which leads to the splitting of shells with l > 0 into the two l ± 1/2 subshells.
The p1/2 shell is also contracted, the e�ect on the p3/2 shell is rather small. The contracted s and p
orbitals shield the nucleus better and therefore orbitals of higher angular momentum will be radially
enlarged. These three e�ects can be seen in Figure 1.1 for the outermost orbitals of Cm3+.

Figure 1.1: Comparison between the radial density of the outermost orbitals of Cm3+ calculated non-
relativistically (top) and relativistically (bottom).

Relativistic e�ects in�uence the chemical behaviour of heavy elements.1 The number of papers
in the �eld has been growing rapidly. A very good survey of the available literature can be found in
2,3,4 and 5. Some well-known e�ects are the low melting point of mercury and the fact that the lead
accumulator actually works. Probably the most widely known relativistic e�ect is the colour of gold.

1



2 1. Introduction

In fact, the scalar relativistic e�ects show a pronounced maximum for gold.
The main interest in this thesis lay in systems where relativistic e�ects become important. Con-

sequently we investigated a number of chemical compounds containing gold. Also the neighbours of
gold in the periodic table, platinum and mercury, show pronounced relativistic e�ects. Compounds of
these elements were therefore also studied. After the maximum of relativistic e�ects for gold one has
to go the the actinides to get relativistic e�ects of the same magnitude. One of the most common
actinides, for which a lot of experimental data can be found, is uranium. We consequently studied vari-
ous uranium compounds. For the even heavier transactinides relativistic e�ects are of course extremely
important. A study of compounds of the transactinide darmstadtium concludes this thesis.

Although relativistic quantum chemistry is not a very new �eld, there are still many experimental
observations that need to be explained. The cooperation of theoreticians and experimentalists is needed
to fully understand the chemistry of systems containing heavy elements. The thesis was written in the
hope to aid this cooperation.



Chapter 2

Theoretical Foundations

In the following the methods used for the research carried out will be described in some detail. It is
very important to have a solid understanding of the methods one wants to use, in order to be aware
of their shortcomings and advantages. For a more in-depth review of theoretical methods, a number
of textbooks is available.6,7, 8, 9, 10,11,12,13

2.1 The Quantum Chemical Space

The goal of computational chemistry is to solve an eigenvalue equation of the following form

ĤΨ = EΨ (2.1)

This is a formidable equation to solve even if it might not look like it in this simple form. The
operator Ĥ can take di�erent forms and in the simplest non-relativistic approximation the resulting
equation is known as the Schrödinger equation.

As exact solutions for these equations are only possible for one-electron systems we have to use ap-
proximations. Basis sets are used to describe the electrons. Electron-electron interactions are modeled
by di�erent methods. Finally, di�erent Hamiltonians can be used to describe the physics of the system
at hand.

Figure 2.1: The space of accuracy of quantum chemical calculations.

3



4 2.2. Electron Correlation

The Figure 2.1 summarises how the accuracy of quantum chemical calculations can be in�uenced.
Let the level of electron correlation be the x-axis, the size of the used basis set is shown on the y-
axis and the accuracy of the used Hamiltonian is given on the z-axis. The computational cost of a
calculation can then be expressed as:

cost ∼ zyx (2.2)

Normally one would like to go as far as possible on all three axes in order to get the highest accuracy.
This is impossible because the computational cost would be prohibitive. In the next three sections we
will inspect the meaning of x, y and z-axis in more detail. But one thing should be noted at the
beginning. It is not advantageous to go far on one axis and use only low accuracy on the other two.
For example, it is not very wise to do huge 4-component calculations at the Hartree-Fock level with
small basis sets. Unfortunately there is quite a number of such calculations published in the literature.

2.2 Electron Correlation

We shall begin our exploration of Figure 2.1 with the x-axis, with the level of electron correlation. For
that we will �rst review the most basic method of quantum chemical calculations, the Hartree Fock
method. It will become apparent why we then need to proceed to include electron correlation.

2.2.1 The Hartree-Fock Method

The starting point is the Schrödinger equation. For a many-electron system with point-like nuclei and
no external potential this equation reads:

Ĥ = −~2

2

∑
α

1
mα
∇2

α −
~2

2me

∑
i

∇2
i +

∑
α

∑
β>α

ZαZβe
2

rαβ
−
∑
α

∑
i

Zαe
2

riα
+
∑

j

∑
i>j

e2

rij
(2.3)

Here i and j refer to the electrons while α and β refer to the nuclei. This equation depends on
the position of the electrons and the nuclei. As the nuclei are much heavier than the electrons, they
move much slower. It turns out to be an excellent approximation to consider the nuclei �xed. This
is known as the Born-Oppenheimer approximation.14 When this approximation is used, the �rst term
in the equation above (the kinetic energy of the nuclei) disappears. The third term, the attraction
between the nuclei and the electrons transforms into a static external potential created by the nuclei.
With this we can rewrite the equation as:

Ĥ =
∑

i

ĥi +
∑

j

∑
i>j

e2

rij
(2.4)

The Schrödinger equation can be seen as a sum of one-particle Hamiltonians to which is added
the sum of the Coulombic repulsion of the electrons. This last term which mixes electrons makes it
impossible to separate the Schrödinger equation. As a zeroth order approximation, we can still use a
product ansatz for the wavefunction. Omitting the electron spin it can be written as:

Φ0 = f1(r1, θ1, φ1)f2(r2, θ2, φ2) · · · fn(rn, θn, φn) (2.5)

This approximation is also known as the one-particle picture. The errors created by this approxi-
mation can be treated with di�erent methods that describe the electron correlation.

The functions f have to be determined variationally be minimising the energy expression:∫
Φ∗0ĤΦ0dv∫
Φ∗0Φ0dv

(2.6)

Minimising this expression is also known as the Hartree method.15



2.2. Electron Correlation 5

Pauli showed that a proper wavefunction for a system of independent fermion particles, i.e. elec-
trons, should be antisymmetric with respect to the exchange of two electrons.16 In the form presented
above the Hartree method does not include spin. It is possible to add electron spin in this method.
Even then an obvious disadvantage of the Hartree method is, that the wavefunction does not exhibit
the required antisymmetric behaviour.

If one constructs a square-matrix of spin-orbitals which have the same electron along a given row
and the same spin orbital in a given column, the determinant of this matrix has the required property
of antisymmetry. This observation was made in 1929 by Slater and the determinant is also known as
a Slater determinant.17

Using Slater determinants in the Hartree method leads to the Hartree-Fock (HF) method.18,19 It is
normally used self-consistently. That means, that a starting guess is used to describe the electrons. The
initial orbitals can be obtained using a cheap method like an extended Hückel calculation. From this
calculation, the �eld in which the electrons move can be described. Then one can solve the one-particle
equation to get a better description of the electron. This procedure is repeated for all electrons until
the resulting wavefunction and the total energy remain constant. This is known as the self consistent
�eld (SCF) approach.

The one electron equations are of the form:

F̂ (1)φi(1) = εiφi(1) (2.7)

The Fock operator F̂ in atomic units can be written as:

F̂ (1) ≡ ĥ(1) +
n/2∑
j=1

[2Ĵj(1)− K̂j(1)] (2.8)

with:

ĥ(1) ≡ −1
2
∇2

1 −
∑
α

Zα

r1α
(2.9)

Ĵl(1)f(1) ≡
∫
φ∗j (2)φj(2)

r12
dv2f(1) (2.10)

K̂l(1)f(1) ≡
∫
φ∗j (2)f(2)

r12
dv2φj(1) (2.11)

In the equations above Ĵj is the Coulomb operator and K̂j the exchange operator. The integration
is over all space and f is some arbitrary function.

For all the approximations it employs, the Hartree-Fock method is surprisingly accurate. It recovers
about 99% of the total energy of the system. The missing one percent is known as the correlation
energy. As pointed out earlier, the HF method averages the interaction of an electron with the rest of
the electrons. In reality, there should be a sharp decrease in the probability of �nding one electron close
to another one, the so called electron cusp. The change in the energy and the wavefunction associated
with accounting for the correlated movement of the electrons is known as dynamic correlation. There
is another form of correlation energy, the so called static correlation. There are systems, that cannot
be described with a single Slater determinant, e.g. systems with partly �lled subshells. To describe
such multi-reference systems accurately a number of Slater determinants has to be used. Methods for
this will be described later. These methods also recover the static correlation.

2.2.2 Perturbation Methods

As stated above, the Hartree-Fock method recovers most of the energy of a system. The missing
correlation energy is only a small part. Consequently, we can assume, that this correlation can be
treated as a perturbation of the Hartree-Fock system. Given the unperturbed Hamiltonian Ĥ0 we
introduce a perturbation Ĥ ′ that will transform the unperturbed Hamiltonian into the real Hamiltonian



6 2.2. Electron Correlation

Ĥ. We then have to relate the eigenvalues and eigenfunctions of the unperturbed system to those of
the real system.

Introducing a parameter λ that can go from zero (the unperturbed system) to one (the fully
perturbed system) we get:

Ĥ = Ĥ0 + λĤ ′ (2.12)

This leads to the following Schrödinger equation for the real system:

Ĥψn = (Ĥ0 + λĤ ′)ψn = Enψn (2.13)

As the real Hamiltonian depends on λ, both the wavefunction and the energy of the real system
can be expressed as functions of λ. We can now expand both En and ψn as a Taylor series in powers
of λ.

En = E(0)
n + λE(1)

n + λ2E(2)
n + . . . (2.14)

ψn = ψ(0)
n + λψ(1)

n + λ2ψ(2)
n + . . . (2.15)

These expressions for En and ψn can now be used in the Schrödinger equation for the real system.
This leads to a rather lengthy expression in which like powers of λ can be collected. Using this method
we can in principle get any order of correction to E(0)

n and ψ
(0)
n of the unperturbed system. This

general form of perturbation theory is widely used in physics and is known as Rayleigh-Schrödinger
perturbation theory.

In 1934 Møller and Plesset used this technique for atoms and molecules.20 In their approach,
also called, Møller-Plesset perturbation theory (MP) the unperturbed wavefunction is the Hartree-Fock
wavefunction. The perturbation is thus the di�erence between the averaged electron interaction of the
Hartree-Fock method and the true electrostatic repulsion of the electrons. This is also known as the
�uctuation potential. The unperturbed Hamilton operator can be expressed as the sum of one-electron
Fock operators from Equation (2.8). The resulting unperturbed Schrödinger equation is:

Ĥ0Φ0 =

(
n∑

l=1

εl

)
Φ0 (2.16)

Using MP theory, the Hartree-Fock energy can be written as:

EHF = 〈Φ0|Ĥ|Φ0〉 = 〈Φ0|Ĥ0 + Ĥ ′|Φ0〉 = 〈ψ(0)
0 |Ĥ0|ψ(0)

0 〉+ 〈Φ0|Ĥ ′|Φ0〉 = E0
0 + E1

0 (2.17)

This means, that the Hartree-Fock energy already includes �rst order corrections to the unperturbed
system. Hence, in order to get a real improvement of the energy, one has to go at least to second
order. The expression for the second-order energy correction reads:

E
(2)
0 =

∑
s 6=0

|〈ψ(0)
s |Ĥ ′|Φ(0)〉|2

E
(0)
0 − E(0)

s

(2.18)

where the summation runs over all but the ground state. It would be a formidable task to do this
summation. As Ĥ ′ only contains two-electron terms, the only contributing parts of this sum come
from double excitations. This simpli�es the equation above to:

E
(2)
0 =

∞∑
a=n+1

∞∑
b=a+1

n∑
i=j+1

n−1∑
j=1

|〈ab|r−1
12 |ij〉〈ab|r

−1
12 |ji〉|2

εi + εj − εa − εb
(2.19)

The four sums include all possible double excitations from the ground-state Slater determinant.
Calculating the second order energy correction in this way is called an MP2 calculation. It is often
useful to reduce the computational e�ort, by not using all possible excitations, but only those of the
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valence orbitals. The core orbitals will have a major contribution to the MP2 energy, but it will not
change much in a chemical reaction.

Formulas for higher order MPn calculations have been derived and implemented. Olsen et al. have
developed a method to calculate arbitrary order MPn energies from the full CI wavefunction.21 This
is of course not an economic way to do MPn calculations, but it showed two interesting features. The
MPn series exhibits a sawtooth behaviour between even and odd members of the series. The even
member being closer to the full CI energy then the next higher odd term. More importantly, simple
systems, like Ne, HF or H2O, have been found for which the MPn series does actually diverge.22

MP2 calculations have become an extremely useful tool for computational chemists. Due to a
fortuitous error cancellation, it is usually quite close to the full CI energy. MP2 can describe dispersion
interaction between molecular fragments and can therefore be used in systems where van der Waals
interactions are important. From the second-order correction to the wave function, one can get MP2
natural-orbital occupation numbers. These give a good hint, if the system under observation is a multi
con�guration system. If the occupation numbers of virtual orbitals are high, say above 0.1, then a
multi con�guration treatment is called for. The orbitals that should be used in such a treatment are
the occupied ones with a low occupation number (e.g. below 1.9) and the virtual ones with occupation
numbers above 0.1. This is only a rough guideline. Chemical intuition, which is one of the most
important tools of a computational chemist, should be used to check the selection.

2.2.3 Coupled Cluster Methods

A more generalised approach is the coupled cluster (CC) ansatz. It can be written as:

Ψ0 = eT̂ Φ0 (2.20)

Where T̂ = T̂1+ T̂2+ T̂3+ . . . is the cluster operator which operates on the normalised ground-state
Hartree-Fock wavefunction. The cluster operator is a sum of n-particle excitation operators T̂n. These
can be expressed as:

T̂n =
∑

ai≥bj≥ck...

tijk...
abc...τ̂

abc...
ijk... (2.21)

In this equation t are the cluster amplitudes and τ̂ are the excitation operators. In a CC calculation,
the cluster amplitudes have to be determined.

The coupled cluster methods form a hierarchy, whose members are denoted by the n-particle exci-
tation operators used in the calculation. Including only single and double excitations leads to CCSD.
The Taylor-series expansion of the cluster operator for CCSD becomes:

eT̂1+T̂2 = 1 + T̂1 (2.22)

+
1
2!
T̂ 2

1 + T̂2 (2.23)

+
1
3!
T̂ 3

1 + T̂1T̂2 (2.24)

+ · · · (2.25)

The cluster operator contains single and double excitations, as well as higher products of these.
These higher products are also known as connected clusters. In principle CCSD includes all excitations as
connected clusters. The amplitudes for higher excitations (from connected clusters) are not optimised,
therefore CCSD is not exact.

Coupled cluster calculations are size extensive but normally not variational. They can in principle
be made variational, but the results do not justify the enormous e�ort.23 The CC series converges
rather fast. The expressions for CC gradients and response functions are somewhat involved. CC
calculations are also expensive. One way to improve the results is to include higher excitations as
a perturbation leading e.g. to the CCSD(T) method, where the unconnected triple excitations are
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calculated as a perturbation. CCSD(T) with a triple-zeta basis set often gives excellent results, close
to chemical accuracy (a few kJ/mol). However, the method still builds on a single reference (one
Slater determinant) and can therefore not be used to describe bond breaking. Kowalski and co-workers
proposed a renormalised CC method which should be able to describe also bond-breaking.24 In recent
years a lot of e�ort has been put into the development of a multi-reference CC theory.25 Such a
formalism would circumvent the problems inherent to single-reference approaches.

To lower the computational e�ort of coupled cluster calculations, approximative cluster equations
can be used. A hierarchy of coupled-cluster methods developed to facilitate the calculation of molecular
properties uses such approximative cluster equations. These are referred to as CC2, CC3 . . . CCn
methods.26

Both MP2 and CCSD/CC2 often give rather good results. One reason for that is, that double
excitations account for 90% of the correlation contribution. Single excitations as included in CCSD/CC2
account for orbital relaxation. The orbitals used in CCSD/CC2 calculations are the optimised Hartree-
Fock orbitals and not correlated orbitals, therefore the orbitals have to be relaxed to describe the
correlated system.

There are several de�nitions of norms in CC theory that help to establish whether a system is treated
su�ciently well with a single determinant. This is done by calculating the maximum contribution of
single excitations. If they are high, then multi-reference methods should be used (see below). One of
these diagnostics which is often used is the T1 diagnostic of Taylor and coworkers.27

A completely di�erent approach to treat electron correlation was proposed by Schirmer et al. in
1983.28 Their method, the algebraic diagrammatic construction (ADC) uses a diagrammatic perturba-
tion expansion of Green's function. It was recently shown, that the formulas derived by that approach
are very similar to the formulas from the CC method.

2.2.4 Con�guration Interaction

The MPn and CC methods described above have one feature in common. They add excitations to the
ground state wavefunction to account for electron correlation. The simplest way to do that, would be
to add weighted Slater determinants of excited states to the ground state:

ΨCI = a0ΦSCF +
∑
S

aSΦS +
∑
D

aDΦD +
∑
T

aT ΦT + . . . (2.26)

where S,D and T stands for singlet, doublet and triplet excitations respectively. The added excited
states are, in fact, often linear combinations of Slater determinants. This can be necessary to make
them proper spin eigenfunctions. Such a linear combination is called a con�guration state function
(CSF).

An advantage of this treatment is, that the resulting method is variational. As stated earlier,
double excitations account already for most of the correlation energy, therefore CISD was a widely used
method. The method has the problem of not being size consistent. Size consistency means, that the
energy of non interacting systems at a large distance should be the sum of the energy of the seperate
systems. This is an important feature e.g. when calculating dissociation energies.

Full CI calculations include all possible excitations for a given molecule in a given basis. These
calculations are extremely expensive and can be done only for the smallest molecules. Even for small
molecules, such as N2, billions of CSF's are needed.29 FCI calculations are still important as bench-
marks. The full CI wavefunction can be used to get CC and MPn results to arbitrary order. The FCI
method is also size consistent.

It was shown, that CISDTQ recovers almost all of the correlation energy and minimises the size
consistency error dramatically.30 Such calculations are already rather expensive, so Davidson devised
a method to estimate the contributions of quadruple excitations31 in order to reduce the size consis-
tency error of CISD calculations. This Davidson correction is often used when CISD calculations are
performed.

∆EQ ≈ (1− a2
0)(ECISD − ESCF ) (2.27)
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A CI method that is exactly size-consistent is the quadratic CISD (QCISD).32 It can be viewed as
an extension of CI or a simpli�cation of CCSD retaining size consistency. Helgaker et al. found, that
CISD gives rather poor results compared to other correlated methods.33 Because of this and because
of often appearing convergence problems, CI calculations have almost lost their importance, except for
benchmarking calculations.

2.2.5 Multi-Reference Methods

When one wishes to calculate parts of the potential hypersurface away from a minimum accurately,
single-reference methods will often fail, as occupancy of the orbitals might change signi�cantly. Neither
will single-reference methods work for systems with very low-lying excited states. In such cases multi-
reference methods have to be used. The most straightforward way to do so is a multi-con�guration
self-consistent �eld (MCSCF) calculation. In an MCSCF calculation not only the weight factors of
Equation (2.26) are optimised but also the expansion coe�cients of the molecular orbitals, that make
up the CSF's, are optimised. The resulting procedure is similar to an HF-SCF procedure.

A special type of MCSCF calculations is the CASSCF (complete active space SCF) method of Roos
and coworkers.34 Here one de�nes an active space containing occupied and unoccupied orbitals. In
this active space all con�guration state functions are constructed and then an MCSCF calculation with
these CSF's is performed. The computational e�ort for CASSCF calculations increases dramatically
with the number of orbitals in the active space. 15 electrons in 15 orbitals is about the limit at the
moment. The results of CASSCF calculations can still be improved, by adding dynamical correlation
to the CASSCF wavefunction. If in the method of Roos et al. MP perturbation theory is used on the
CASSCF wavefunction, the resulting method is coined CASPTn.35 Mostly corrections to second order
are included (CASPT2). This method gives highly accurate results even for complicated systems as
U2.36

2.2.6 Density Functional Theory

In 1964 Hohenberg and Kohn proved a theorem whose application led to one of the most widely used
computational methods. They showed, that the ground state energy and all ground-state properties
are uniquely determined by the ground state electron density.37,38 As the electron density is a function
of three spatial coordinates, the energy is a functional of the density E[ρ]. This is quite an intriguing
statement. The wave function for an n-electron system depends on 3n spatial coordinates, while
according to Hohenberg and Kohn 3 spatial coordinates are enough.

To make this into a useful computational theory, we need the second Hohenberg and Kohn theorem,
the variational theorem. It states, that the true ground state electron density minimises the energy
functional (similar to the variational method in wave function theory, which states, that the true
wavefunction minimises the energy). Originally these two theorems were only proven for non-degenerate
ground states, but Levy extended them to degenerate ground states.39

Nice as these theorems are, they do not tell us how to get the electron density of a system without
�rst calculating the wave function. Neither do they describe how to get the energy from the density.
The energy functional can be split up in the following way:

E0 = Ev[ρ0] = T [ρ0] + V Ne[ρ0] + V ee[ρ0] (2.28)

The nucleus-electron interaction functional,

V Ne =
∫
ρ0(r)v(r)dr (2.29)

is known, but the other two are not. They have to be approximated. While DFT in principle is an
exact method, it delivers only approximative results, because the kinetic-energy functional and the
electron-interaction functional are not exactly known.

Kohn and Sham developed DFT further to facilitate the approximation of the elusive functionals.40

They considered a system of non-interacting particles in an external potential vs(ri) (where the sub-
script s denotes the non-interacting system). This potential is chosen so, that the ground-state density
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of this system equals the density of the real interacting system. As the electrons do not interact the
Hamiltonian can be written as:

Ĥs =
n∑

i=1

[−1
2
∇2

i + vs(ri)] ≡
n∑

i=1

ĥKS
i (2.30)

With this equation we can construct one particle Kohn-Sham orbitals.

ĥKS
i θKS

i = εKS
i θKS

i (2.31)

Kohn and Sham then went on to rewrite the energy equation as follows. For the kinetic energy
functional one gets:

∆T [ρ] ≡ T [ρ]− T s[ρ] (2.32)

and for the electron interaction:

∆V ee[ρ] ≡ V ee[ρ]−
1
2

∫ ∫
ρ(r1)ρ(r2)

r12
dr1dr2 (2.33)

With these de�nitions the energy functional becomes

Ev[ρ] =
∫
ρ0(r)v(r)dr + T s[ρ] +

1
2

∫ ∫
ρ(r1)ρ(r2)

r12
dr1dr2 + ∆T [ρ] + ∆V ee[ρ] (2.34)

The two last terms in this equation are unknown and are combined to form the exchange-correlation
energy functional:

Exc ≡ ∆T [ρ] + ∆V ee[ρ] (2.35)

With the help of Kohn-Sham orbitals we can evaluate the energy functional expression above if
the exchange-correlation energy functional is known. A lot of e�ort has been put into �nding good
approximations for Exc. An early example is the local density approximation of Hohenberg and Kohn
which holds when the density varies slowly over space.

ELDA
xc [ρ] =

∫
ρ(r)εxc(ρ)dr (2.36)

Here εxc(ρ) is the exchange-correlation energy of an electron in a uniform electron gas of density
ρ. This model is also known as 'jellium'. LDA works quite well in solid state calculations. Even
for molecules, where ρ varies rapidly over space, LDA gives surprisingly good results for molecular
geometries and vibrational frequencies. LDA gives very poor results for properties like atomization
energies. Improvements on LDA are therefore necessary. Spin can be included in LDA, the resulting
method is known as LSDA (a popular LSDA functional is SVWN41).

One way to improve on LSDA is the inclusion of the gradient of the density to allow for fast-varying
electron densities. This is known as the generalised gradient approximation (GGA).42 Splitting the
exchange-correlation energy functional in an exchange and a correlation part, exchange and correlation
functionals have been developed. Hartree-Fock exchange can be added (also known as exact exchange)
this leads to the so called hybrid functionals like the immensely popular B3LYP.43

The number of functionals available is staggering. Some of them are �tted to experimental param-
eters (like B3LYP) and could therefore be called semi-empirical. For a given system the functionals
sometimes perform somewhat randomly. This has led to certain con�icts between groups preferring
certain functionals. Such quarrels have slightly tainted the lustre of DFT.

Present day functionals have certain problems that shall be mentioned brie�y. The double integral
in Equation (2.34) contains a self interaction which would be exactly cancelled by the correct EXC .
Currently available functionals have problems with that. The SIC (self interaction corrected) functionals
have other problems making their usage di�cult. Dispersion-type interactions are di�cult to describe
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with the available functionals. Charge-transfer excitations are sometimes a problem for DFT. Finally,
it is somewhat di�cult to build up a hierarchy like in CC or MP calculations to systematically improve
the results of DFT calculations.

A very interesting proposal by Perdew is the so called Jacob's ladder approach by which one can
systematically improve on functionals, by adding 'new physics' step by step.44 The lowest rung on
this ladder is using the local density (LDA). The next rung adds the gradient of the density (GGA).
The third rung includes the kinetic energy density (meta-GGA). The next step would be to design
functionals which are de�ned in terms of the occupied KS orbitals (nonlocal functionals).

Despite the practical problems of DFT, the method has developed into the most widely used
technique in computational chemistry.

2.2.7 Scaling

To conclude the exploration of the x-axis in Figure 2.1, we shall look at the scaling of the methods
presented above and brie�y mention ways to reduce the scaling. Table 2.1 shows the scaling of some
methods.

Method Scaling
non-hybrid DFT N3

Hartree-Fock N4

MP2 N5

CCSD N6

MP4,CCSD(T) N7

· · ·
FCI N!

Table 2.1: Scaling of some computational methods with basis set size N

Non-hybrid DFT actually scales better than Hartree-Fock, although the DFT method contains
electron correlation. This is of course one of the reasons, why DFT is so immensely popular. Recent
years have seen a lot of development to reduce scaling. The ultimate goal would be to achieve linear
scaling with system size. A widely employed method to reduce the scaling is the use of density �tting.
In this method the electron density is expanded in a set of auxiliary basis-functions. The density is then
used to compute the Coulomb part of non-hybrid functionals. With this method, also known as RIDFT
(RI=resolution of the identity) the computational time can be reduced by an order of magnitude. RI
techniques can be used for correlated methods as well (RIMP2, RICC2).

2.3 The Hamiltonian

In this section we shall look at how the choice of Hamiltonian changes the accuracy of a calculation.
Special emphasis shall be put on the inclusion of relativistic e�ects. One fact should be noted in the
beginning. The choice of Hamiltonian does not change the scaling of the method. It appears as a
factor in front of the scaling. Admittedly, this factor can become rather large.

2.3.1 Relativistic Mechanics

The theory of special relativity was developed by Einstein in the beginning of the last century.45 It
usually adds a small correction to classical physics and becomes important when particles move at
velocities close to the speed of light (relativistic velocities). This is in fact the case for electrons in the
vicinity of heavy nuclei, e.g. the 1s electrons of heavy elements. The average speed of an 1s electron
in the non-relativistic limit is Z in atomic units. The v/c ratio for the gold 1s electrons thus becomes
79/137 = 0.577. This means that this electron moves with 58 % of the speed of light. A relativistic
treatment is therefore necessary in this case.
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Equations in classical mechanics have to be covariant under the Galilei transformation. In relativistic
mechanics, they have to be covariant under a Lorentz transformation. The Lorentz transformations
treat time and space on equal footing, in fact they can be seen as a rotation in four-dimensional space
time. This means, that a relativistic wave equation has to treat space and time on equal footing as well.
The time-dependent Schrödinger equation does not ful�l this requirement and is clearly not Lorentz
covariant.

2.3.2 Relativistic Wave Equations

To derive a relativistic wave equation we can use the relativistic energy expression

E2 − p2c2 =
(m0c

2)2

1− v2

c2

− c2 m
2
0v

2

1− v2

c2

= (m0c
2)2 (2.37)

Replacing classical mechanical quantities by quantum mechanical operators yields

−~2 ∂
2Ψ(x, t)
∂t2

=
[
−~2c2∇2 +m2

0c
4
]
Ψ(x, t) (2.38)

This is the well known Klein-Gordon equation for a free particle in the absence of external �elds.46,47

It treats time and space on equal footing and it can be shown to be Lorentz covariant. The Klein-
Gordon equation is second order in both time and space. This can lead to negative charge densities
at some points in space, a feature that is not very desirable. One would therefore like to �nd a wave
equation that is linear in time and space.

2.3.3 The Dirac Equation

Dirac derived his wave equation by requiring that it should be linear in space and time and that the
solution for the free particle should equal the solutions of the Klein-Gordon equation.48 It became
apparent that the requirements would lead to an equation with more than one component. Starting
from a linear equation of the form:(

−1
c

~
i

∂

∂t
−αp̂− βm0c

)
Ψ = 0 (2.39)

and multiplying this equation with its complex conjugate, one can see that the resulting equation is
equal to the Klein-Gordon equation if the following permutation relations are ful�lled

[αi, αj ]+ = αiαj + αjαi = δij (2.40)

with i and j going from zero to three and α0 = β. Evaluating these relations, one can show that the
smallest possible number of components is four. The well known Pauli spin matrices :

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(2.41)

can be used to construct α and β. This leads to:

β = α0 =
(
I2×2 0

0 −I2×2

)
(2.42)

αi =
(

0 σi

σi 0

)
(i = 1− 3) (2.43)

Here I2×2 is the two by two unity matrix.
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The Dirac equation is a set of coupled di�erential equations which can be written in the free particle
case as 

(p̂0 −m0c) 0 −p̂z −(p̂x − ip̂y)
0 (p̂0 −m0c) −(p̂x + ip̂y) p̂z

−p̂z −(p̂x − ip̂y) (p̂0 +m0c) 0
−(p̂x + ip̂y) p̂z 0 (p̂0 +m0c)




ψ1

ψ2

ψ3

ψ4

 = 0 (2.44)

with p̂0 beeing:

p̂0 = −1
c

~
i

∂

∂t
(2.45)

For nontrivial solutions, the determinant of the matrix in Equation(2.44) has to become zero. This
leads to the following solutions for the energy:

E± = ±c
√
p̂2

x + p̂2
y + p̂2

z + (mc)2 (2.46)

The negative energy solution was somewhat surprising until the discovery of the positron. According
to Dirac's explanation, the electronic states with negative energy are completely �lled (Dirac sea). It
is possible to excite electrons from these negative-energy states, thus creating a hole in the Dirac sea.
This hole can be seen as a particle with positive charge, the positron. The described process is known
as pair creation. This success of his equation lead Dirac to his famous statement: "This equation is
clearly more intelligent than I am." By a simple transformation, the energy scale can be aligned to the
nonrelativistic case

β′ =
(

0 0
0 −2I2×2

)
(2.47)

An interesting property of the Dirac Hamiltonian is, that l̂ and ŝ no longer commute with the
Hamiltonian. They are not good quantum numbers any more. Instead, a new quantum number
j = l + s, which commutes with the Dirac Hamiltonian, is introduced.

The four-component wave function can be split into two two-component wave-functions:

Ψ =
(
φ
χ

)
(2.48)

where φ is called the large component and χ the small component. With these two components, the
Dirac equation can be written as:

V φ+ cσ · p̂χ = Eφ (2.49)

cσ · p̂φ+ (V − 2c2)χ = Eχ (2.50)

2.3.4 The n-Electron Dirac Hamiltonian

So far everything is exact. We have a relativistic wave equation in which we can, by the use of the
gauge invariance, introduce external potentials. But the equation is a one-electron equation. For
chemical systems this is not su�cient. The easiest way to construct an n-electron Hamiltonian would
be to add a Coulomb repulsion term for the electron repulsion. The Coulomb term is unfortunately
not Lorentz covariant. It treats the electron interaction as instantaneous, which is obviously incorrect
in a relativistic picture. To treat the electron interaction correctly, one has to include QED e�ects.
The resulting equation is called the Bethe-Salpeter equation.49 It is an integralo-di�erential equation
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which is very hard to solve. It has only been used for small atomic systems. An approximation exists
in the Breit term50

V Coulomb−Breit
ee (r12) =

1
r12
− 1

2r12

[
α1 ·α2 +

(α1 · r12)(α2 · r12)
r212

]
(2.51)

It consists of the Coulomb-, Gaunt- and retardation term. The Gaunt and retardation terms cancel
each other partly. It is therefore not advisable to include only the Gaunt term (although this is much
easier computationally). It has turned out, that the error one makes in using only the Coulomb term
is not so big. Therefore nowadays the Dirac-Coulomb Hamiltonian is mostly used in four-component
calculations.

2.3.5 The Small Component

The computational e�ort of four-component calculations is quite high. One reason for this is that the
basis set for the small component should be constructed from the basis set for the large component by
kinetic balance, which is:

χ =
1

2c2 + E − V
cσ · p̂φ (2.52)

The momentum operator p̂ creates from an l-function in the basis set for the large component
an l+1 and an l-1 function in the small-component basis set. The basis set for the small component
is therefore much bigger than the basis set for the large component. This is especially unfortunate,
because the small component is an extremely local property as can be seen in Figure 2.2

Figure 2.2: On the left, the large-component density of Bi(CH3)5. On the right, the small-component
density 100 times magni�ed. Result of an all electron Dirac-Coulomb Hartree-Fock calculation, done by
the author.

Clearly we would like to use some approximations to reduce the computational e�ort. The small
component will be involved in LS and SS type integrals. A simple approximation that works quite
well for energy di�erences and geometries is to leave out the SS integrals. A more correct approach is
the one-centre approximation of Visscher51 or the slightly di�erent approach by Pedersen.52 In these
approaches the LS and SS integrals are replaced by an e�ective charge of the atom. A new method
that seems to work very well is the use of density �tting in four-component calculations. This has
recently been implemented in the BERTHA code.53

2.3.6 The Spin-free Dirac Hamiltonian

An interesting simpli�cation of the Dirac equation is the elimination of the spin from it. This may
sound strange, but it is an interesting tool to test if scalar relativistic e�ects or spin-orbit e�ects are
predominant in a certain system.
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Multiplying the Dirac equations with

2mcχ = (σ · p̂)φ (2.53)

gives the following set of equations:

(V − E)χ+ Tφ = 0 (2.54)

Tχ+
[

1
4m2c2

(σ · p̂)(V − E)(σ · p̂)− T
]
φ = 0 (2.55)

Using the well known Dirac relation ((σ · û)(σ · v̂) = û · v̂ + i(σ · û× v̂)) on this set of equations
leads to

h̃D =
(
V T
T 1

4m2c2 (p̂ · V p̂)− T

)
+
(

0 0
0 1

4m2c2 i(σ · (p̂V )× p̂)

)
(2.56)

The �rst term in this equation is the spin-free Hamiltonian.54 Note that this transformation also
leads to a change in the metric. The spin-free Hamiltonian can be used self consistently and is
implemented in the programme package DIRAC.55 As the DIRAC code uses time-reversal symmetry
(Kramers-restricted calculations) this Hamiltonian cannot be used with time-antisymmetric (magnetic)
operators.

2.3.7 Pauli and Breit-Pauli Hamiltonian

The relation between the small and the large component can be used to eliminate the small component
from the wave equation. The resulting ESC (elimination of the small component) equation is no longer
a proper eigenvalue equation since the eigenvalue (the energy) is included in the operator

χ =
1

2c2 + E − V
cσ · p̂φ (2.57)

It is nevertheless useful for perturbative treatment. If the prefactor of the equation above is slightly
rewritten:

1
2c2 + E − V

= (2c2)−1

(
1 +

E − V
2c2

)−1

= (2c2)−1K (2.58)

and the result inserted into the ESC equation, one gets

Ĥesc
D = V +

1
2m

σp̂Kσp̂ (2.59)

Expansion of K (normal expansion) leads to the Pauli equation

K =
(

1 +
E − V

2c2

)−1

≈ 1− E − V
2c2

+ · · · (2.60)

In zeroth order this equation gives the nonrelativistic limit. Going to �rst order leads to the Pauli
Hamiltonian. This is a computationally easy way to treat relativistic e�ects. The biggest problem with
this approach is, that the assumption made in rewriting K (namely that E − V is small compared to
2c2) does not hold everywhere in a central potential. Furthermore it is singular at the nucleus and only
usable as a perturbation.

If electron interactions are treated with the Breit equation, one can transform the resulting Dirac
equation by a Foldy-Wouthuysen transformation to get the Breit-Pauli Hamiltonian. This Hamiltonian
is in principle plagued by the same problems as the Pauli Hamiltonian. It contains a number of terms
which can be attributed to di�erent relativistic e�ects. The Breit-Pauli Hamiltonian can be written as

HBP = H1 +H2 +H3 +H4 +H5 +H6 +H7 (2.61)
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where the di�erent terms for a many-electron atom are given by:

H1 =
∑

i

(
1

2m0
p2

i −
Ze2

ri

)
+
∑

j

∑
i>j

e2

rij
(2.62)

H2 = − 1
8m3

0c
2

∑
i

p4
i (2.63)

H3 = − e2

2m2
0c

2

∑
j

∑
i>j

[
pi · pj

rij
+

(rij · pi)(rij · pj)
r3ij

]
(2.64)

H4 =
µ

m0c

∑
i

si ·

Ei × pi +
∑

j

∑
i>j

2e
r3ij

[rij × pj ]

 (2.65)

H5 =
ie~

4m2
0c

2

∑
i

(pi ·Ei) (2.66)

H6 = 4µ2

∑
j

∑
i>j

[
si · sj

r3ij
− 3

(si · rij)(sj · rij)
r5ij

− 8π
3

(si · sj)δ3(rij)

] (2.67)

H7 = 2µ
∑

i

(Hi · si) +
e

m0c

∑
i

(Ai · pi) (2.68)

The following abbreviations have been used:

Ei = −∇iV

V = −
∑

i

Ze2

ri
+
∑

j

∑
i>j

e2

rij

µ =
e~

2m0c
pi = −i∇i

For transperency, the equations above are given in Gauss-cgs units. The following interactions
can be discerned in the Breit-Pauli Hamiltonian. Equation (2.62) is the nonrelativistic Schrödinger
Hamiltonian for a many-electron system. Equation (2.63) is the so called mass-velocity term. It
is caused by the relativistic mass increase of the electrons. Equation (2.64) describes the retarded
interaction of the di�erent electron-orbits (orbit-orbit coupling). Equation (2.65) is the spin-orbit
coupling term. It contains spin-orbit and spin-other orbit contributions. Equation (2.66) is called
the Darwin term. It accounts for the fact, that the electrons are slightly vibrating around their path
(Zitterbewegung). The penultimate term (2.67) describes the spin-spin coupling of the electrons.
Finally Equation (2.68) accounts for the interaction of the electrons with external electromagnetic
�elds. In this form the Hamiltonian is only valid for many-electron atoms. In order to generalise it to
many-electron molecules, electron-nucleus and nucleus-nucleus interaction have to be added.

The terms present in the Breit-Pauli Hamiltonian can be used in a perturbation treatment to
estimate the size of di�erent relativistic contributions.

2.3.8 Regular expansions

The ESC equation above can be rewritten to

Ĥesc
D = V +

c2

2mc2 − V
σp̂
(

1 +
E

2mc2 − V

)−1

σp̂ (2.69)
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When we now expand in powers of K ′

K ′ =
(

1 +
E

2mc2 − V

)−1

(2.70)

we obtain to the regular expansions. This methods yields relativistic corrections already in zeroth order
(ZORA). ZORA can be used variationally, it is not singular at the nucleus and it is bounded from below
up to Z = 137. Going to �rst order yields FORA (�rst order regular expansion) which cannot be used
variationally. Other methods using the regular expansion have been developed. A good review was
recently given by Sundholm.56

2.3.9 Foldy-Wouthuysen and Douglas-Kroll Transformation

There is a number of schemes to reduce the four-component Dirac equation to a two component
equation. Two of those shall be described here very brie�y, starting with the Foldy-Wouthuysen
transformation.57 The idea is to decouple the Dirac equation with a unitary transformation of the form

U =

 1√
1+X†X

1√
1+X†X

X†

− 1√
1+XX†

X 1√
1+XX†

 (2.71)

The U we are looking for should block diagonalise the Hamiltonian ĤD. The aim is to decouple φ
and χ, i.e. to reduce the size of the o�-diagonal elements in the Hamiltonian. ĤD can be split up in
odd and even parts. An exponential form of an operator is used as the transformation matrix

Û = eiŜ Ŝ = −iβ αp̂
2c

(2.72)

The Baker-Campbell-Hausdor� formula can be used to express the exponential. The terms of similar
powers are collected as nested commutators. They are then split into odd and even terms. The largest
odd term can then be removed. The resulting formulas are quite di�cult. The Hamiltonian derived
with this procedure has some peculiar properties, therefore the Foldy-Wouthuysen transformation is
not used as such.

A similar, but more useful procedure is the Douglas-Kroll transformation.58,59,60 As a start, a �rst
order Foldy-Wouthuysen transformation in momentum space is done. The resulting Hamiltonian is
split again in odd and even terms. Now a di�erent transformation including anti-hermitian operators
Ŵ is done

Û ′ =
√

(1 + Ŵ 2
1 ) +W1 (2.73)

The operator can be chosen so that certain terms cancel. The resulting Hamiltonian is decoupled
to the next order. This procedure can be continued to higher order. The resulting equations are again
not trivial. It was recently shown, that the Douglas-Kroll Hamiltonian is well behaved and bounded
from below.61 It is normally only used as a correction to the one-electron integrals.

2.3.10 Valence-Electron Methods

Although scalar relativistic e�ects are most important for core electrons in absolute terms, chemists
are more interested in the valence electrons. The energy of core orbitals is almost unchanged in a
chemical reaction. For energy di�erences these are therefore not very important. This has led to the
development of methods that deal with valence electrons only.

It turns out, that valence electron methods represent a very e�cient way to introduce scalar rel-
ativistic e�ects. In these methods, the core electrons are either frozen or treated only as a potential.
Figure 2.3 gives an overview of the available methods. In frozen-core calculations, all electron calcu-
lations on the atoms of the molecule are performed. From those atomic fragments, the molecule is
built and in the molecular calculation, the core electrons are frozen. This procedure is used e.g. by the
programme-package ADF.62
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Figure 2.3: An overview of the available valence electron methods.

A di�erent approach was already suggested in the late 1930s by the German quantum chemist
Hellmann.63 In this scheme, the inner electrons are replaced by an e�ective core potential (ECP).

As seen earlier, the Fock operator contains a sum over all electrons of di�erences of Coulomb and
exchange integrals. This sum can be split up in a part for the valence electrons and a part for the core
electrons. The inner electron interaction can be substituted by an e�ective potential. This gives an
equation for the inner electron potentials

V̂ eff
l = εeff +

Zeff

r
− l(l + 1)

2r2
+

1
2∇

2
r − V̂ ′valφ

l
i

φi
l

(2.74)

In this equation φi may never be zero. Therefore the normal valence orbitals have to be replaced
by node-free pseudo orbitals. These can be chosen to be shape consistent, that is they mimic the form
of the real atomic orbitals. The inner part is described by a node free polynomial. The so constructed
pseudo potentials are �tted to accurate atomic calculations using Hartree-Fock- or Dirac-Coulomb
Hartree-Fock calculations.

It was earlier stated, that ECP's are only accurate if the core is small enough. Recent developments
by Dolg et al. have led to large core ECP's for lanthanides64 and actinides,65 where the f-electrons are
in the core. These potentials give rather accurate results while they reduce the computational demand
substantially. Such ECP's have the advantage, that certain multireference problems like the Pu4+ ion
can be treated with one component calculations, as the f electrons are in the core.

2.3.11 The Real Non-Relativistic Limit: The Lévy-Leblond Equation

As a last remark in this section the appearance of the electron spin shall be shortly discussed. The
angular momentum is nonrelativistically given as

l = r× p (2.75)

In a relativistic theory, 4-component space-time vectors have to be used. The resulting product
tensor is of rank 4. This tensor contains the pure spatial components from nonrelativistic theory. There
are also mixed spatial and temporal parts. An analysis of the space-time part of the angular momentum
shows that it is actually independent of the centre of rotation, meaning that it represents an intrinsic
property. This intrinsic property is the spin-angular momentum of the system.

The easiness with which the spin can be derived in a relativistic treatment has often led to the
conclusion, that spin is a relativistic property. This is a statement that shall be discussed brie�y now.

As mentioned earlier, the Schrödinger equation is Galilei covariant. As Dirac did for a relativistic
wave equation, Lévy-Leblond linearised the Schrödinger equation.66 The general ansatz used by him
was

θ = (AE + B · p̂ + C) (2.76)

The idea is then to �nd some θ′ so that θ · θ′ recovers the Schrödinger equation. The algebra
needed is a bit more involved, but rewriting the equation above in 4-dimensional Cli�ord algebra leads
to a 4-component equation containing Pauli matrices:
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Eφ+ (σ · p̂)χ = 0 (2.77)

(σ · p̂)φ+ 2mχ = 0 (2.78)

A detailed analysis shows, that wave equations for spin s particles must have at least (2s+1)
components. The equation above has two identical eigenvalues:

E =
p2

2m
(2.79)

In other words, the linearised equation above describes particles with spin 1/2. It can be shown, that
it is Galilei covariant. When external �elds are included, the Lévy-Leblond equation can be transformed
into the Pauli equation. This completely non-relativistic theory predicts for spin 1/2 particles:

µ =
q

2m
σ → gs = 2 (2.80)

So the gyromagnetic ratio of the electron predicted by the non-relativistic Lévy-Leblond equation
is the same as can be obtained from a relativistic treatment. The equation contains no spin-orbit or
mass velocity terms, these are relativistic phenomena.

This result could also be interpreted as the fact that the Galilei group can accomodate spin. This
means not necessarily, that spin is present in a non-relativistic treatment. It can be added afterwards.
For an interesting discussion of this point see reference 67.

The Lévy-Leblond equation is valuable for comparison with relativistic results. It is implemented in
the software package DIRAC.

2.4 The Basis Set

We shall now brie�y discuss the third axis of the coordinate system in Figure 2.1, the basis set.
The need for basis sets arise, because we have to describe the molecular orbitals in the Fock

equation. For very small, highly symmetric systems like atoms or diatomic molecules this description
can be done by mapping the MO's numerically on a grid.68,69 This sort of calculation is known as a
numerical Hartree-Fock calculation. E�orts have been made to extend such methods to bigger systems,
as e.g. in real-space DFT methods.70

For all other problems we need to express the unknown MO's in terms of known functions. The
use of a linear combination of one-electron basis function to describe the molecular orbitals was �rst
proposed by Roothaan.71 With the use of the expansion

Φi =
n∑

s=1

csiχs (2.81)

the Hartree Fock equation becomes∑
s

csiF̂χs = εi

∑
s

csiχs (2.82)

Multiplication of this equation by χ∗r and subsequent integration gives

n∑
s=1

Frscsi =
n∑

s=1

Srscsiεi (2.83)

With Frs = 〈χr|F̂ |χs〉 and Srs = 〈χr|χs〉. There are n such equations, with r running from 1 to
n. Frs and Srs can be seen as elements of a matrix. Introducing a coe�cient matrix with the elements
csi and a diagonal matrix ε with the orbital energies εi in the diagonal, this equation can be seen as a
matrix equation
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FC = SCε (2.84)

When the basis functions are orthogonalised, the overlap matrix S is transformed into a unit matrix.
The use of matrix algebra simpli�es the implementation of the Hartree-Fock procedure on a computer.

2.4.1 Types of Basis Functions

A logical choice for the basis functions is to use atomic orbitals. This is known as the LCAO-MO
(linear combination of atomic orbitals to form molecular orbitals) method. One type of functions used
are Slater-type orbitals (STO)

χζ,n,l,m(r, θ, ϕ) = NYl,m(θ, ϕ)rn−le−ζr (2.85)

STO's resemble the solution of the Schrödinger equation for hydrogen-like atoms. They have the
right exponential behaviour, but they have no radial nodes. To describe atomic orbitals correctly, linear
combinations of STO's have to be used. The number of STO's needed is rather small. The problem
with STO's is, that the calculations of some molecular two-electron integrals cannot be performed
analytically. There are programme packages like ADF that perform numerical integrations of STO's,
but most other programmes use a di�erent type of basis functions. These are known as Gaussian-type
orbitals (GTO)

χζ,n,l,m(r, θ, ϕ) = NYl,m(θ, ϕ)r2n−2−le−ζr2
(2.86)

GTO's have no cusp at the nucleus and they fall o� too fast. Therefore linear combinations of
a lot more GTO's have to be used to describe the atomic orbitals correctly. The big advantage over
STO's is, that analytical integrations of two electron integrals are easy. A product of gaussians is still
a gaussian.

2.4.2 Classes of Basis Sets

As stated above, a number of STO's or GTO's is necessary to describe an atomic orbital correctly.
Basis sets are classi�ed according to their size. There are also certain hierarchies of basis sets developed
by di�erent groups of researchers.

The simplest form of basis sets employ one basis function per occupied orbital, These are known
as minimal basis sets. They are far too small to deliver reliable results. An example of a minimal basis
are the STO-nG basis sets of Pople and coworkers.72 They use a number of gaussians �tted to one
Slater-type function per occupied orbital. They are abbreviated as STO-nG, where n is the number of
gaussians used to describe the Slater-type function.

To improve the quality, we can double the number of basis functions. The resulting basis sets are
said to be of double-ζ quality (DZ). As chemists are mostly interested in valence properties, it can be
economical to use more functions for the valence electrons than for the core electrons. The resulting
sets are known as split-valence basis sets (SV). The basis-set size can be extended further to TZ, QZ,
5Z and so on. The use of more basis functions increases the �exibility of the basis set.

Another important aspect is the use of higher angular-momentum function in a basis set. This
is important for two reasons. Firstly, these functions can be used as polarisation functions. Without
polarisation functions a hydrogen atom would be described only by spherical s-functions. When the
hydrogen atom is to form a bond in a molecule, the charge distribution will be no longer spherical,
therefore higher angular-momentum functions are necessary to allow for polarisation of the hydrogen
atom. Secondly, these higher angular momentum functions are necessary when electron-correlation
methods are used. Electron correlation describes how electrons 'avoid' each other. They should be
able to do so radially and angularly. For the radial part functions of the same angular momentum are
su�cient, but for the angular part higher angular-momentum function have to be included.

For almost all purposes it is important to construct balanced basis sets. As described above, polari-
sation functions are important, but one should not include too many. If this is done, unphysical results
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may be the consequence. A 5s4p3d2f1g can be said to be balanced, the higher angular momentum
functions can sometimes be left out, although this should be tested from case to case.

One technique often used in constructing basis sets is contraction. A sum of primitive GTO's
can be used to form a contracted GTO. Two di�erent contraction schemes are used. In segmented
contraction, the PGTO's are divided into segments and each segment is used to form a CGTO. This
means each PGTO is used only once. In the other scheme, called general contraction, all PGTO's are
used to form a CGTO, each CGTO is formed with a di�erent set of contraction coe�cients.

Examples of the latter type of contraction are the atomic natural orbital basis sets (ANO) of Almlöf
and coworkers.73 These have recently been integrated for all atoms in the MOLCAS code.74,75 It might
be considered a disadvantage of the PGTO's, that a rather large number of PGTO's is needed to reach
basis-set convergence.

The Dunning type correlation consistent (cc) basis sets76 are somewhat smaller than the ANO's.
They are classi�ed as aug-cc-pCVnZ. Here aug and the C are optional. Aug means that the basis set it
augmented with di�use functions, the p stands for the inclusion of polarisation functions. VnZ means
valence n-ζ. Finally the C means that the basis set is augmented by steep functions. The resulting
basis sets form a hierarchy, one can systematically improve the accuracy by using higher n. This feature
can be used to extrapolate to the basis set limit, or at least to the next order n.

An e�ective class of basis sets that employs the segmented contraction scheme are the ones from
the Ahlrichs group.77 The generic name for these is nZVP. The n again means that the basis set is
o� n-ζ quality. There may be more than one letter P. Each P standing for one set of polarisation
functions. These basis sets are implemented in Turbomole78 and as most other basis sets they are
freely available on the net.79

What are the basis-set needs for di�erent calculations? For DFT calculations the basis-set limit is
reached rather fast. For ground state energies a triple-ζ basis set with polarisation functions is normally
good enough. For correlated methods like MP2 or coupled cluster, the basis-set limit is reached much
later, one has to go to basis sets of quadruple-ζ quality or higher.

For the calculation of certain properties, special basis-set requirements exist. For nuclear shieldings,
electrons close to the nucleus are important, therefore the basis set must contain extra steep functions.
The calculation should be repeated, possibly on a small test system, until basis-set convergence is
reached. To calculate electronic excitations a good description of di�use unoccupied orbitals (into
which the excitation takes place) is needed. Therefore one should add di�use functions to the basis
set until the basis-set limit is reached. There exists a strategy to optimise the basis set especially in
the region of interest for a certain property. There is even a computer programme available for this
task.80 This short discussion shows, that special care is needed when properties are to be calculated.
Property calculations will be discussed in more detail in the next section.

2.5 Molecular Properties

Often one is not only interested in calculating the energy of a system, but in the calculation of molecular
properties like geometries, vibrational frequencies, excitation energies or nuclear shielding parameters
to name a few. The calculation of molecular properties requires special methods, a few shall be shortly
discussed below.

2.5.1 Perturbative Treatment

Most molecular properties can in principle be seen as a perturbation of the energy. The energy of the
system can be expanded in the perturbation strength λ

E(λ) = E(0) +
∂E

∂λ
λ+

1
2
∂2E

∂λ2
λ2 +

1
6
∂3E

∂λ3
λ3 + · · · (2.87)

When λ is e.g. the change of nuclear coordinates then the �rst derivative is the molecular gradient,
the second derivative is the molecular Hessian matrix (the force constants) and the third derivative is
the tensor containing the anharmonic corrections.
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This treatment can be extended, to include di�erent perturbations and then the expansion above
contains mixed derivatives as well. If one is interested in the IR absorption intensities, then one would
have to calculate the derivative with respect to the electric �eld and the nuclear positions. The Raman
intensities involve the second derivative with respect to the electric �eld and the �rst derivative with
respect to the nuclear positions.

There exist several methods to calculate the terms in the expansion series. One method is the use
of perturbation theory. A perturbative treatment yields for �rst and second order properties C1 and C2

C1 = λ〈Ψ0 | P1 | Ψ0〉 (2.88)

C2 = λ2

[
〈Ψ0 | P2 | Ψ0〉+

∑
i 6=0

〈Ψ0 | P1 | Ψi〉〈Ψi | P1 | Ψ0〉
E0 − Ei

]
(2.89)

where the perturbation is described by linear and quadratic operators P1 and P2 respectively. First-
order properties are simply the expectation value of P1 of the unperturbed wavefunction. The second-
order equation contains a sum over all excited states and is di�cult to evaluate for ab initio wavefunc-
tions.

An alternative approach is the use of the coupled perturbed Hartree-Fock (CPHF) method for
obtaining the �rst-order orbital response. Writing the matrix form of the Hartree-Fock equations for
the unperturbed system

F0C0 = S0C0ε0 (2.90)

We can then expand F,C,S and ε in terms of the perturbation and collect terms of expansion of
the same power. This gives for �rst order perturbations

F1C0 + F0C1 = S1C0ε0 + S0C1ε0 + S0C0ε1 (2.91)

(F0 + S0ε0)C1 = (F1 + S1ε0 + S0ε1)C0 (2.92)

These equations are called the coupled perturbed Hartree-Fock equations. For each perturbation
one CPHF equation has to be solved. This is often done simultaneously.

2.5.2 Propagator Methods

Green's functions can be used to express the time dependent evolution of a given property of a system.
The resulting propagator for two time dependent operators Â(t) and V̂ (t) can be written as

〈〈Â(t); V̂ (t′)〉〉 = −iθ(t− t′)〈Ψ0|Â(t)V̂ (t′)|Ψ0〉 ± iθ(t′ − t)〈Ψ0|V̂ (t)Â(t′)|Ψ0〉 (2.93)

To get the frequency representation of this propagator, it has to be Fourier transformed.

〈〈Â; V̂ ω〉〉ω =
∑
n=0

〈Ψ0|Â|Ψn〉〈Ψn|V̂ ω|Ψ0〉
ω − (En − E0)

−
∑
n=0

〈Ψ0|V̂ ω|Ψn〉〈Ψn|Â|Ψ0〉
ω + (En − E0)

(2.94)

This is also known as a linear response function, in this case the polarisation propagator. It
yields excitation energies, transition moments and static polarisabilities (ω → 0). Another interesting
propagator is the electron propagator (addition or removal of an electron). It gives the electron a�nity
and the ionisation potential. Higher order properties can be obtained from higher order response
functions.

With the use of commutators the linear response function can be rewritten as:

〈〈Â(t); V̂ (t′)〉〉 = −iθ(t− t′)〈Ψ0|[Â(t), V̂ (t′)]|Ψ0〉 (2.95)
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Now we use the Heisenberg equation of motion on the propagator and return to the frequency
representation. The propagator can then be written as a series of commutators:

〈〈Â; V̂ 〉〉 = ω−1〈Ψ0|[Â, V̂ ]|Ψ0〉+ ω−2〈Ψ0|[Â, [Ĥ, V̂ ]]|Ψ0〉+ · · · (2.96)

This leads to the super-operator formulation and transforms the equation to

〈〈Â; V̂ 〉〉 = 〈Ψ0|[Â, (ωI−H)−1V̂ ]|Ψ0〉 (2.97)

An inner projection onto a complete set of excitation/deexcitation operators (ĥ) leads to

〈〈Â; V̂ 〉〉 = (Â|ĥ)(ĥ|ωI−H|ĥ)−1(ĥ|V̂ ) (2.98)

For the polarisation propagator ĥ contains terms ĥ2,ĥ4 ĥ6 and so on; ĥ2 e.g. generates single exci-
tations and deexcitations. Taking only ĥ2 into account yields the so called random phase approximation
(RPA) for the calculation of excitation energies.

The linear response equation in the random phase approximation takes the following form:

〈〈Â; V̂ ω〉〉ω = −E[1]†

A

(
E[2] − ωS[2]

)−1

E[1]
V (2.99)

where E[1]†

A and E[1]†

V are the property gradients, E[2] the second derivative matrix and S[2] the
metric. The resolvent in this equation is di�cult to invert. An iterative approach is used instead.(

E[2] − ωS[2]
)
X = −E[1]

V (2.100)

Using a set of trial vectors for X

X =
∑
i=1

biai (2.101)

We then have to solve the n-dimensional reduced equations iteratively.(
Ẽ[2] − ωS̃[2]

)
X = Ẽ[1]

V (2.102)

In a relativistic four-component formulation, these equations are normally complex.81 In static
cases they are reduced to real equations, due to the hermiticity of the involved operators. Relativistic
perturbations are of the following general form

V̂ = −eφI4 + ec(α ·A) (2.103)

2.5.3 Charges and Bonding Analysis

Chemists are often interested in how parts of a molecule are charged. There is unfortunately no unique
way to determine the distribution of the electrons in a molecule. Partial charges are not observable
quantities. But there is a number of schemes for calculating atomic charges and for partitioning of the
electrons.

Probably oldest and most criticised is the Mulliken population analysis. We can write the numbers
of electrons as the trace of the product of the overlap matrix with the density matrix:

N = Tr(DS) (2.104)

where the density matrix is obtained from the occupied molecular orbitals as:

Dαβ =
∑

i

cαicβi (2.105)

A diagonal element of the DS matrix can be interpreted as the number of electrons in a certain
AO. An o�-diagonal element can be seen as half the number of electrons shared between two AO's.
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The electrons shared between two AO's are taken to be shared equally between them. With these
de�nitions, the electron population of atom A can be de�ned as

ρa =
AO∑
αεA

AO∑
β

DαβSαβ (2.106)

The net charge is then the nuclear charge minus the electron population. Problems of the Mulliken
population analysis include non conservation of molecular multipole moments and erratic results for
basis sets with many di�use functions. The number of elements in a certain AO might even be bigger
than two and the o�-diagonal elements can be negative. A slight improvement, especially for the last
two problems is presented by the Löwdin population analysis. Instead of the DS matrix it uses the
S1/2DS1/2 matrix. This matrix is diagonal with only zeros or twos as diagonal elements (or ones in
the case of open-shell systems).

A di�erent approach to arrive at partial charges are the Hirshfeld charges.82 They are de�ned as

qi = Zi −
∫
ρat

i (r)ρmol(r)∑
i ρ

at
i (r)

dv (2.107)

Here Zi is the nuclear charge and ρat
i (r) spherically averaged ground-state atomic density of atom

i in the molecule and ρmol(r) is the molecular electron density. This concept can be extended to
fragments consisting of several atoms. It is quite useful for describing the shift in electron density upon
the formation of the molecule.

A further method used in the work presented is the Voronoi charge analysis.83 In it the space
around the nuclei is divided into polyhedra so that a point in space belongs to the polyhedron of the
nearest atom. The electron density of such a polyhedron plus the nuclear charge is the Voronoi charge.
As the polyhedra have surfaces in the middle of a bond, the electrons are not divided very sensibly and
the Voronoi charges as such are not very useful. The Voronoi deformation density, the di�erence in
Voronoi charges between the fragments of a molecule and the whole molecule, often gives a description
in close agreement with e.g. Hirshfeld charges.

A useful tool for looking at the electron distribution in a molecule is the electron localization
function (ELF) developed by Becke and Edgecombe.84,85 A plot of the ELF reveals regions with highly
localized electrons, as in covalent bonds or lone pairs.

Another point of great interest to the computational chemist, is what holds the fragments of a
molecule together. Several such bond-analysis tools exist. In this work we used the method by Ziegler
and Rauk86 which was later improved by Baerends87 and which is available in the ADF programme
suite.

In the Ziegler-Rauk scheme the bond formation is done in three steps:

1. Bring the fragment from in�nite distance to �nal position, i.e. form a superposition of ρA + ρB

(∆E= ∆Velstat)

2. Combine ρA and ρB to a wave function for the molecule, allowing only for Pauli-relaxation.
(∆E= ∆EPauli=∆VPauli + ∆T 0)

3. Relaxation of the system to its �nal ground state. This step involves mixing of orbitals. (∆E=
∆Eorbital−interaction)

Steps 1 and 2 are sometimes combined to a term called 'steric interaction'. The �rst step, the
overlapping of two charge clouds, is always negative in energy. The second step always positive. There
is some debate as to what the involved steps mean in the formation of a bond.

2.5.4 Molecular Interactions and the Basis-Set Superposition Error

The interaction potential between two molecules can be split into di�erent contributions88

Vint = Velstat + Vind + Vdisp + Vshort (2.108)
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The �rst part, the electrostatic part, stems from the interaction of the permanent charge distribu-
tions of the molecules. It can be written as

Velstat =
1

4πε0

∫
ρa(ra)

1
rab

ρb(rb)dradrb (2.109)

If the distance between the molecules is big enough, a multipole expansion can be used. In the
multipole expansion the electrostatic interaction can be written as:

Velstat = Tq(a)q(b) + Tα(q(a)µ(b)
α + q(b)µ(a)

α ) (2.110)

were the T tensors are successive derivatives of the form:

T = (4πε0)−1r−1 (2.111)

Tα = −(4πε0)−1rαr
−3 (2.112)

Tαβ...ν = (4πε0)−1∇α∇β . . .∇νr
−1 (2.113)

Here the Einstein notation is used, in which Greek indices mean summation over all cartesian
coordinates. The �rst formula given for the electrostatic interaction is independent of the origo. This
is in principle also true for the multipole expansion, but only if it is taken to in�nity. If the expansion
is truncated, origin dependence is introduced.

The induction energy between two molecules is always negative. It comes from the interaction of
the permanent charge distribution of one molecule with the induced change of the charge distribution
of the other molecule. For long enough distances, a multipole expansion can be used again. The
leading terms of the expansion energy are

Vind = −1
2
α

(a)
αβF

(b)
α F

(b)
β − 1

2
α

(b)
αβF

(a)
α F

(a)
β . . . (2.114)

Here F (b)
α is the electric �eld from molecule b at the point of molecule a and α(a)

αβ are the components
of the static-polarisability tensor of molecule a. Induction e�ects are often quite small compared to
electrostatic and dispersion e�ects.

The dispersion interaction is more di�cult to understand. Between two spherical atoms it can be
written as the following sum:

Vdisp =
∞∑

n=6

Cnr
−n (2.115)

This equation can in fact be generalised for arbitrary molecules. Often only the leading order term
is considered. For long range interactions, the coe�cient C6 can be described by the Casimir-Polder
formula.

C6 =
3
π

∫ ∞

0

αA(E)αB(E)dE (2.116)

As noted earlier, dispersion type interactions cannot be described well with DFT methods. For
systems were such interactions are important other methods, e.g. MP2 have to be used.

Finally there are the short-range terms. This is a repulsion of the electron clouds of the two
monomers at close distance. As the orbitals decay exponentially, this interaction is short ranged and
can be described by an exponential function

Vshort = A exp(−bR) (2.117)

These formulas can be used to understand the leading terms in the interaction of two molecules.
First, one calculates the energy of a system containing both molecules (the supermolecule) at di�erent
distances. From this the energy of the monomers is subtracted. The resulting potential curve represents
the interaction potential Vint, from it the leading terms can be subtracted.
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The problem with this so called supermolecular approach is the basis-set superposition error. In the
supermolecule, the basis set of monomer a is partly used to describe monomer b and vice versa. To
avoid this problem, the counterpoise correction can be used.89 At each point of the potential curve,
the energy of the fragments is calculated, with the basis set of the other fragment (ghost orbitals) at
the appropriate position. This procedure reduces the BSSE but at a high computational cost.

2.6 Software Used

The results presented in this thesis were produced using the techniques described above. These methods
are implemented in a number of codes, all with special features, advantages and drawbacks. A short
list of the programmes used follows. The programmes are listed alphabetically.

• Amsterdam Density Functional (ADF): ADF is one of the few codes that uses STO basis sets.
Integration is done numerically. As the name suggests, it performs density functional calculations.
Hybrid functionals present a problem due to the usage of STO's, this has been circumvented
recently and new versions of ADF can do a posteriori energy calculations using hybrid functionals.
One of the advantages of ADF is that it has basis sets of di�erent quality for all elements of the
periodic table, even transactinides. Relativistic e�ects are included via ZORA, spin-orbit ground
state energy calculations can be done. An interesting feature of ADF is the possibility to do
energy decomposition analysis of molecular fragments. ADF was used frequently in this work.

• Dalton:90 Dalton is a free code. It is most useful for the calculation of numerous properties using
response theory up to cubic response.

• DIRAC: DIRAC is Dalton's relativistic brother. It can do four-component Hartree-Fock or DFT
calculations, MP2 and CC modules also exist. A very nice feature of DIRAC is, that the in�uence
of relativity can be examined by using the complete Dirac-Coulomb Hamiltonian, the spin-free
Hamiltonian or the non-relativistic Lévy-Leblond Hamiltonian. It was used for all four-component
calculations presented in this work.

• GAMESS-US:91 This is also a freely available code. A lot of computational methods are available.
It was used to calculate anharmonic corrections to vibrational frequencies.

• Gaussian:92 Probably the most widely used programme in computational chemistry. It can do
almost everything but as always in computational chemistry, it is not a black box. It was used
to calculate CCSD(T) energies and to perform some geometry optimisations and NBO analysis.

• Turbomole: One of the fastest and most e�cient programmes available to do HF, DFT, MP2
and CC2 calculations. Frequencies and electronic excitation energies are also available. Most of
the computations presented here were done with Turbomole.

A lot of people have contributed to the �eld of computational chemistry by providing programmes
that facilitate the analysis and interpretation of the results of a calculation. The programmes used here
are (in alphabetical order): DGrid,93 g-Openmol,94 Ghemical,95 Molden,96 Molekel97 and Xmakemol.98

All these programmes are freely available. I would like to thank the programmers for their e�ort.



Chapter 3

Results

The theoretical methods outlined in the previous chapter have been applied to a variety of systems
containing heavy metals. The results could be used to explain the bonding in some compounds, to
explain interesting properties and in other cases to predict new molecules as viable goals for synthetic
chemists. Those results will be presented in the following. Where possible, the published material has
been supplemented with previously unpublished results.

3.1 High Oxidation States of Mercury

In compounds, the common oxidation states of mercury are +I or +II. In these states mercury employs
its 6s electrons to form bonds. Higher oxidation states would need to employ the 5d electrons as well.
As a �rst evidence of this possibility, Kaupp et al. found that the reaction HgF2 + F2 → HgF4 is
exothermic.99 More than 10 years after this prediction, the tetra�uoride has still not been made.100

As a new target for rare-gas matrix studies we calculated HgH4 and even the hexahydride HgH6. This
may seem energetically a disadvantage. The better hybridization of the smaller hydrogen s- orbital
with the mercury 5d-orbitals might overcompensate this disadvantage.

HgH4 and HgH6 were calculated in the quadratic planar (D4h) and octahedral (Oh) symmetry,
respectively. The optimised bond length decreases slightly when going to higher oxidation states, see
Table 3.1. While all the calculated hydrides are exothermic compared with Hg and H2, they are all
energetically far below the atoms.

The transition states for the H2 loss reaction for the tetra- and hexahydride were found to be
of C2v symmetry. For the tetrahydride the transition state lies 40 kJ/mol above the minimum. For
the hexahydride this value decreases to 30 kJ/mol. A trigonal prismatic structure of HgH6 was also
calculated, it lies energetically above the octahedral one and is a transition state with three short H�H
contacts. The depth of the potential wells and the ease with which hydrogen atoms can be created
in a rare-gas matrix seem to make the hydrides good candidates for synthesizable high-valent mercury
compounds. Tunneling may lead to a fast decay of the hydrides, this could be slowed down by using
deuterium instead of hydrogen.

The bonding in the tetra- and hexahydrides is easy to understand. The HOMO is a bonding

System rHg−H ∆E
HgH2 164.5 115.7
HgH4 163.5 339.7
HgH6 163.5 575.3

Table 3.1: Bond distances (in pm) and formation energies (in kJ/mol) for mercury hydrides at the
CCSD(T) level. The formation energies are zero-point energy corrected for the reaction Hg(g)+ nH2 →
HgH2n.

27
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6p+1s interaction (eu for the tetrahydride and t1u for the hexahydride). This is followed by a weakly
antibonding a1g orbital. Three nonbonding d orbitals follow, they are partly degenerated (eg+b2g) for
the tetrahydride and completely degenerated (t2g) for the hexahydride. The two lowest bonding orbitals
are 5d+1s combinations an a1g and b1g for the tetrahydride and an eg for the octahedral hexahydride.

3.2 On the Short Pt-Tl Bond in [R5Pt-TlRn]
n− (n = 0− 3)

In recent years there has been a growing interest in compounds with bonds between transition metals
(TM) and main group elements. Special attention has been paid to Group 13 elements.101,102 There is
e.g. a rich boron-transition metal chemistry.103,104,105 The higher homologues have come under closer
scrutiny after the synthesis of compounds with iron gallium-bonds.106 The bond order was �ercely
discussed (see e.g. 107,108). This debate also led to a series of theoretical investigations by Frenking
et al.109,110,111,112,113 He considered for example the bonding in carbonyl complexes of chromium,
molybdenum, tungsten and iron with a Group 13 ligand. It was found, that the metal-metal bond is
approximately half ionic and half covalent. The covalent part consisted of a σ donation to the TM
and a much weaker π back-donation from the TM. The importance of back-donation varied with the
substituent on the Group-13 element. Also chromium, molybdenum and tungsten carbonyl complexes
with one phosphine ligand were considered. Here a more ionic bond with only a small π character was
found.

Another type of compounds, with bonds between a TM and a Group-13 element, are homoleptic
compounds with more than one Group-13 ligand. Compounds of the type (TM)(InR)4 are known for
nickel114 and platinum.115 The Pt-In bond length of 244.1 pm is remarkably short. Such homoleptic
compounds are also known for boron, aluminum and gallium, but, to our knowledge, not for thallium.
For compounds of this type, the covalent character of the bond is rather large.

Against this general background, it is not surprising to �nd the series of anions of the general type
[(NC)5Pt-Tl(CN)n]n− (n = 0 − 3), 1 - 4, occurring in compounds recently synthesised by Glaser's
group (with sodium as a counterion), with Pt-Tl bond lengths around 260 pm.116,117,118,119,120 This
series has recently been expanded by the synthesis of Pt-Tl compounds with phenantroline ligands
around thallium121 yielding again M-M' bonds of about 264 pm. Such a bond length is, however,
very short compared to the earlier Pt-Tl bonds in e.g. [Tl2Pt(NC)4], whose experimental x-ray and
calculated free-molecule values are 314 and 287 pm, respectively.122 The di�erence between the free-
molecule and crystal values was attributed to Tl· · · (NC) interactions in the solid. The compounds 1
- 4 were theoretically studied by Autschbach and Ziegler123 and by Russo and Kaltsoyannis124 using
density functional theory.

The article on the Pt-Tl bonding situation in the hydride models [H5Pt-TlHn]n− (n = 0 − 2) is
included as Paper II in this thesis. Evidence for some σ2π4 multiple-bond character was found for these
models. We now present as supplementary information a study of the full cyanide systems 1 - 4 and
their isoelectronic neighbourhood.

3.2.1 Results for the Cyanide Systems

Structures The results from HF, MP2, B3LYP and BPVWN calculations on 2 are rather similar, see
Table 3.2. We carry out the comparison between the various systems at BPVWN level.

Solid 1 exhibits an in�nite chain structure [-NC-Pt-Tl-]∞. It is therefore not surprising, that the
calculated molecular Pt-Tl distance of 317 pm is much above the experimental result 263 pm. Russo
and Kaltsoyannis124 could come down to 260 pm by surrounding the [(NC)5Pt-Tl] molecule with water
molecules. As an alternative we considered a [(NC)5Pt-Tl-(NC)-Pt(NC)4-Tl] dimer model, whose
inner Pt-Tl bond was shortened to 284 pm. Further shortening could be brought about by placing
NC− isocyanides around this central part to simulate crystal e�ects. The compounds 2 - 4 contain
isolated anions. The calculated Pt-Tl distances in Table 3.2 are close to the experimental values, as
found earlier by Russo and Kaltsoyannis using the same method.

The vibrational frequencies for the Pt-Tl stretch are also given in Table 3.2. As found earlier,
these frequencies are in good agreement with experiment for 2 - 4, where the comparison is meaningful.



3.2. On the Short Pt-Tl Bond in [R5Pt-TlRn]n− (n = 0− 3) 29

System Symmetry Method R(Pt-Tl) ν(Pt-Tl) α(Tl-Pt-Ceq)
1 C4v BPVWN 317 51 82.6

exp.a 263 160 -
2 C4v HF 268 140 88.1

MP2 255 173 88.2
B3LYP 268 123 87.6

BPVWN 271 115 87.5
exp.b 260 161 -

3 C2v BPVWN 272 133 88.7
exp.b 262 157 -

4 C1 BPVWN 279 132 91.6
exp.b 264 157 -

a Solid state IR and crystal structure data.117
b EXAFS and aqueous solution IR data.116

Table 3.2: Calculated structures and Pt-Tl stretching frequencies for the systems [(NC)5Pt-Tl(CN)n]
n−,

n=0-3, 1 - 4. Distances in pm, angles in degrees and frequencies in cm−1.

HF MP2 B3LYP BPVWN BPVWNa

1.18 1.72 1.15 1.12 1.16
a Without counterpoise correction.

Table 3.3: Bond dissociation energy De for [(NC)5Pt-Tl(CN)]
− into [(NC)5Pt]

− and TlCN, calculated
with di�erent methods. All values in eV.

All calculated frequencies were real.
The chemical binding energies between the [(NC)5Pt]− and Tl(CN) moieties, to form 2 are

shown in Table 3.3. They are not very large, despite the short Pt-Tl bond length.
Bonding analysis. The various contributions to the Pt-Tl bond between rigid fragments are

shown in Table 3.4. In 1, at R(Pt-Tl)=317 pm, the (CP-uncorrected) bond energy is approximately
two third electrostatic and one third covalent. Of the latter 31% comes from a π type interaction.
The Pauli repulsion in this system is smaller in size than the electrostatic attraction. Passing from 1
to 2 (R(Pt-Tl)=271 pm), the electrostatic attraction is slightly increased and the orbital attraction is
more than doubled in size, but the Pauli repulsion increases by an order of magnitude. Of the total
dissociation energy of 2, 0.245 eV comes from π-type interactions.

In 3 and 4, the Tl side consists of Tl(CN)−2 and Tl(CN)2−3 fragments, and these are bound to
(NC)5Pt−. Nevertheless, this global repulsion is more than compensated for by the electrostatic
interactions between 'sti�' electron distributions of the fragments, to give an attractive electrostatic
interaction of -2.38 and -1.68 eV respectively. We attribute much of this to the interaction between
the thallium lone pair and the positive platinum core. The big increase in the Pauli repulsion leads to
a rather weak total bonding interaction of -0.22 eV for 3 and a positive value of 0.26 for 4. This does
not mean however, that 4 is not stable. In solution or in a crystal, the negative charge of the molecule
would be distributed to surrounding molecules, increasing the stability of 4.

Electron densities and ELF. A density di�erence plot between 2 and its fragments is shown in
Figure 3.1. Note the increase (light color) between the Pt and Tl atoms. Another interesting feature is
the increase of electron density on one side of the equatorial nitrogens. This area of increased electron
density is electrostatically attracted to the positively charged Tl atom of the Tl(CN) group. These
electrostatic and orbital interactions bend the equatorial CN groups towards Tl in 2. For 3 such a
bending can also be observed. For 4 the opposite is true: the equatorial CN groups bend away from
the Tl(CN)2−3 fragment. This is probably so, because the high negative charge of the Tl(CN)2−3 repels
the CN groups.

The ELF plot of TlCN (Figure 3.2 left) shows the lone-pair on thallium that is directed towards
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1 2 3 4
Hirshfeld Charges
q1 -0.8902 -1.2244 -1.4085 -1.5554
q2 0.8903 0.2243 -0.5916 -1.4448

Steric Interaction
Pauli Repulsion 0.6681 4.0902 5.3956 6.5792
Electrostatic Interaction -2.6051 -3.0271 -2.3838 -1.6771

Total Steric Interaction -1.9370 1.0632 3.0118 4.9021

Orbital Interactions
a1 -0.6357 -1.9557 -3.1075a -4.6403b

a2 -0.0048 -0.0016 -0.0033
b1 -0.0066 -0.0186 -0.0665
b2 -0.0409 -0.0030 -0.0509
e1 -0.3066 -0.2450

Total Orbital Interaction -0.9946 -2.2238 -3.2282 -4.6403

Total Bonding Energy -2.9316 -1.1607 -0.2164 0.2619
a For point group C2v.

b For point group C1.

Table 3.4: Results of a fragment analysis and Hirshfeld charges of the fragments [(NC)5Pt]
− and

Tl(CN)1−n
n (q1 and q2, respectively) for the anions [(NC)5Pt-Tl(CN)n]

n− (n=0-3) (1-4). All energies
are in eV. The calculations were done with the BPVWN functional.

Figure 3.1: Density di�erence between [(NC)5Pt-TlCN]
− and the fragments (NC)5Pt

− and TlCN. An
increase in electron density in the molecule is denoted by light colours, a decrease by dark colours. Cal-
culated at the HF (left), B3LYP (middle) and BPVWN (right) level of theory.

(NC)5Pt−. The ELF plot of (NC)5Pt− (Figure 3.2 right) shows an area of low electron density at
platinum directed towards TlCN. As discussed earlier, this makes the two fragments a good �t, and
leads to the rather short bond.

Figure 3.2: Plot of the electron localization function (ELF) of TlCN (left), [(NC)5Pt-TlCN]
− (middle)

and (NC)5Pt
− (right) calculated with ADF and Dgrid.
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Compound R(M-M') R(M'-C) α(C-M-M') α(M-C-N) ν(M-M')
[(NC)5Ir-In(CN)]2− (5) 264 238 88.1 174.7 129.66
[(NC)5Ir-Pb(CN)]− (6) 303 247 75.3 149.1 70.09
[(NC)5Ir-Tl(CN)]2− (7) 270 244 88.1 175.0 106.67
[(NC)5Pd-In(CN)]− (8) 261 227 86.4 173.4 142.88
[(NC)5Pd-Pb(CN)] (9) 297 236 79.8 152.9 79.92
[(NC)5Pd-Tl(CN)]− (10) 272 230 86.6 173.1 122.33
[(NC)5Pt-In(CN)]− (11) 266 225 87.3 173.8 140.37
[(NC)5Pt-Pb(CN)] (12) 305 235 79.9 156.9 61.44
[(NC)5Pt-Tl(CN)]− (13) 271 228 87.5 174.0 115.37

Table 3.5: Calculated structures and M-M' vibrational frequencies for systems isoelectronic to [(NC)5Pt-
Tl(CN)]−. Bond distances in pm, angles in degree and vibrational frequencies in cm−1. All calculations
were done with the BPVWN functional.

Isoelectronic systems. A number of valence isoelectronic systems to 2 are shown in Table 3.5.
We are using a 5th-row�6th-row substitution or a charge disproportionation such as (Pt-Tl→ Ir-Pb) as
a guide. The changes in the metal-metal distance are mostly small, suggesting that these alternatives
could be viable synthetic objects. The shortest M-M' bond was found in the Pd-In system.

The combination Pd-Pb (9) and Pt-Pb (12) give longer M-M' bonds. Looking at the Hirshfeld
charges in Tables 3.6, 3.7, and 3.8 one notes that the Pb(CN)+ moiety in these cases receives electrons
from the M(CN)−5 side (M=Pd,Pt), rather than donates them. The π part of the orbital interaction
is rather large, which is a hint, that a very e�ective π back donation from the transition metal shifts
electrons to lead. The equatorial cyanide groups bend more towards lead, than to the other metals.

Other ligands. We also calculated the systems [L5Pt-TlL]− with L=-F,-Cl,-NC (2a - 2c), as well
as [(NC)-Pt(NNN)4-TlCN]− (2d). Furthermore the case L=H was studied before.125 That case lead
to even stronger π-type M-M' bonding than any of the present choices. Compared with L=-CN (2),
L=-Cl gave a comparable R(Pt-Tl), while L=-F,-NC gave slightly longer ones. In 2d, the azides are
strongly attracted by the Tl side. This hypothetical system has a rather unusual, compact structure,
in which the N3 ligands form a bridge between the metals.

Metallophilic attractions are known to arise through dispersion-type mechanisms.126 A rough
measure for them is the shortening of bonds from HF or DFT to MP2 (or higher explicitly correlated
levels). We here note such a shortening for 2 in Table 3.2. As mentioned earlier, this may be a sign of
some 'metallophilic' character.

3.2.2 Conclusions

1. The short M-M' bonds of system 2 could be reproduced by all methods used,including even HF.
No further ligands, such as water, were needed for systems 2 - 4.

2. The bond energies in a fragment analysis have three comparable components: Attractive elec-
trostatic and orbital interactions and a repulsive Pauli interaction.

3. For 1 - 2 and 5 - 12 well-de�ned π-type orbital interactions could be identi�ed. In these cases
the M-M' interaction could be characterised as a σ2π4 triple bond with further electrostatic
attraction. These π contributions, however, are smaller than the σ contributions in the present
systems.

4. Qualitatively, the σ part consists of a donation from the Tl lone pair to a hole at PtL−5 . The π
part consists of a back donation from the latter to the Tl 6pπ orbitals. This picture is not unlike
that given earlier by Frenking et al.110 or Schwerdtfeger et al.127

5. The picture of the metal-metal bond we develop explains in a natural way the observed oxidation
states between PtIV-TlI and PtII-TlIII.
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[(NC)5Ir-In(CN)]
2− [(NC)5Ir-Pb(CN)]

− [(NC)5Ir-Tl(CN)]
2−

Hirshfeld Charges
q1 -2.0211 -1.7188 -2.0148
q2 0.0210 0.7188 0.0147

Steric Interaction
Pauli Repulsion 4.6044 2.6957 3.4856
Electrostatic Interaction -4.2081 -8.0101 -3.3227

Total Steric Interaction 0.3963 -5.3144 0.1628

Orbital Interactions
a1 -1.3827 -0.9892 -1.1326
a2 -0.0021 -0.0121 -0.0021
b1 -0.0157 -0.0879 -0.0194
b2 -0.0042 -0.0146 -0.0058
e1 -0.4532 -1.3901 -0.3998

Total Orbital Interaction -1.8578 -2.4939 -1.5598

Total Bonding Energy -1.4615 -7.8083 -1.3970

Table 3.6: Results of a fragment analysis and Hirshfeld charges of the fragments for systems, isoelectronic
to [(NC)5Pt-Tl(CN)]

−. The fragments were taken to be [(NC)5M]x− and M'(CN)x+. All energies are in
eV. The calculations were done with the BPVWN functional.

[(NC)5Pd-In(CN)]
− [(NC)5Pd-Pb(CN)] [(NC)5Pd-Tl(CN)]

−

Hirshfeld Charges
q1 -1.2275 -0.8559 -1.2031
q2 0.2274 0.8559 0.2030

Steric Interaction
Pauli Repulsion 4.7132 1.9185 3.3237
Electrostatic Interaction -3.6373 -4.0156 -2.5422

Total Steric Interaction 1.0759 -2.0970 0.7815

Orbital Interactions
a1 -2.0292 -0.7470 -1.5305
a2 -0.0018 -0.0081 -0.0014
b1 -0.0196 -0.0864 -0.0204
b2 -0.0024 -0.0090 -0.0032
e1 -0.3186 -0.9397 -0.2565

Total Orbital Interaction -2.3715 -1.7902 -1.8120

Total Bonding Energy -1.2956 -3.8872 -1.0305

Table 3.7: Results of a fragment analysis and Hirshfeld charges of the fragments for compounds isoelec-
tronic to [(NC)5Pt-Tl(CN)]

−. The fragments were taken to be [(NC)5M]x− and M'(CN)x+. All energies
are in eV. The calculations were done with the BPVWN functional.
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[(NC)5Pt-In(CN)]
− [(NC)5Pt-Pb(CN)] [(NC)5Pt-Tl(CN)]

−

Hirshfeld Charges
q1 -1.2494 -0.8709 -1.2244
q2 0.2493 0.8710 0.2243

Steric Interaction
Pauli Repulsion 5.1783 1.7386 4.0902
Electrostatic Interaction -3.9188 -3.7112 -3.0271

Total Steric Interaction 1.2595 -1.9725 1.0632

Orbital Interactions
a1 -2.3454 -0.7814 -1.9557
a2 -0.0017 -0.0076 -0.0016
b1 -0.0153 -0.0685 -0.0186
b2 -0.0016 -0.0085 -0.0030
e1 -0.2662 -0.7867 -0.2450

Total Orbital Interaction -2.6302 -1.6526 -2.2238

Total Bonding Energy -1.3707 -3.6251 -1.1607

Table 3.8: Results of a fragment analysis and Hirshfeld charges of the fragments for compounds isoelec-
tronic to [(NC)5Pt-Tl(CN)]

−. The fragments were taken to be [(NC)5M]x− and M'(CN)x+. All energies
are in eV. The calculations were done with the BPVWN functional.

6. A number of possible chemical extensions of the systems synthesised by Glaser et al. were
explored.

3.3 Bonding in U(VI) Systems

Actinide chemistry is a very interesting area. For the early actinides many di�erent oxidation states are
possible and in aqueous solution they might even be present at the same time. The redox chemistry
of Pu is one of the most complex in the whole periodic table. Computationally the actinides are very
challenging as relativistic e�ects become very important. In addition systems containing actinides not
in their highest oxidation state, are often multi-con�guration systems and therefore di�cult to treat.
For the heavier, highly radioactive, actinides experimental data is scarce.

For uranium experimental data is abundant, but its chemistry is still full of surprises. It is for
example striking, that while uranium halides are numerous, uranium cyanides are very rare. In the few
examples known, the uranium actually binds to the nitrogen end. Usually pseudohalogens are very
similar to halogens, hence their name.

The bonding situation is already quite interesting in the much studied UF6. It has 36 valence
electrons forming an

e4g + t62g + 1t61u + a2
1g + t62u + t61g + 2t61u (3.1)

orbital structure (in Oh symmetry). With the 2pσ orbitals �uorine can form six single bonds, but
there is also a back donation from the 2pπ orbitals of �uorine to uranium 5f and 6d orbitals. All in all
the orbital structure above can be split into 6 σ bonding, 6 π bonding, three nonbonding and three
antibonding orbitals. This gives a theoretical bond order of 1.5 for the U-F bond. This could not
happen for transition metal �uorides, as the bonding to the f orbital is necessary for the higher bond
order. Both NBO and fragment analysis show the π contribution. A further proof is the bond length
of UH6. The di�erence in bondlengths between UH6 and UF6 is 6 pm, the di�erence in covalent radii
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is 34 pm. The hydride simulates a �uoride without π bonding, the shortening of the U-F bond can
then be explained as a π contribution.

The explanation for the remarkably strong bond is that the uranium atom is a good σ donor, while
the �uorine atom is a good σ acceptor. After formation of the σ bonds, uranium is a good π acceptor
and �uorine a good π donor. The two are a perfect match. The bond is further strengthened by ionic
contributions. The cyanide on the other hand is a good σ donor and π acceptor and hence un�t for
bonding to U(VI). As the nitrogen end of cyanide is a better π donor, in the few uranium cyanide
compounds known, the uranium bonds to the nitrogen.

The same reasoning used for �uorine can be used for oxygen in U(OX)6 compounds. This then
explains the well known oxophilicity of uranium.

We calculated a number of compounds of the type UF4X2, where X is a halogen or pseudohalogen.
Reaction energies, vibrational frequencies and fragment analysis supported our picture. The U-F bond
is strongest, -NC is more strongly bonded than -CN and the triatomic pseudohalogens form stronger
bonds than the two-atomic ones.

The triatomic pseudohalogens are more polarisable, especially the isothiocyanate. They can transfer
electron density to the atom bonded to uranium and hence improve its π donor quality. This explains,
why three-atomic pseudohalogen complexes of U(VI) are more numerous.

As mentioned above, a number of uranium halides is known experimentally. For �uorine and chlorine
U(III) to U(VI) halides exist. For the heavier halogens the number of systems with a high oxidation
state of uranium is much smaller. Especially U(VI) systems with iodine bonds have until recently been
unknown.128 Therefore we extended our analysis of U(VI) systems to include all halides and the mixed
halides UF4X2 up to iodine. These new results are presented here.

The same techniques were used as described in Paper III included in this thesis. The frozen core
approach was used and all electrons up to 3p for bromine and 4p for iodine were considered frozen.

We start with the pure halides. Geometrical data and results for di�erent population analysis
methods are given in Table 3.9.

U in UF6 U in UCl6 U in UBr6 U in UI6
rU−X 202.53 247.16 263.64 286.88
Mulliken 2.5978 1.0706 1.9653 0.3876
Hirshfeld 0.9793 0.4618 0.3734 0.2407
Voronoi 0.4980 0.4500 0.4330 0.3200

Table 3.9: Bond lengths and atomic charges for uranium in UX6 systems. The bond lengths are given
in pm.

Voronoi and Hirshfeld charges agree quite well, the Mulliken charges are somewhat o�. Note, that
the Mulliken charges do not follow the trend of higher charges when going to lighter halogen and that
the Voronoi charge for UF6 is rather low.

The results of a fragment analysis of the UX6 systems are given in Table 3.10. One should be
aware, that if done like this, the analysis also contains X-X interactions. The electrostatic interaction
is bigger for the heavier halogens, as the more di�use charge cloud of the heavier halogens overlap
more than those of �uorine, but the di�erence is rather small.

The biggest di�erence lies in the orbital interactions. Fluorine has almost twice as big orbital
interactions as iodine. The orbital-interactions are a bit di�cult to resolve, as X-X interactions might
appear here as well. Note, that the t2u and t2g interactions decrease sharply for the heavier halogens.
These interactions arise from π backbonding of the ligand. The heavier halogens are increasingly bad
π donors. The sum of the orbital interactions fall o� when going to the heavier halogens. Only the a1g

interaction is slightly increased, this interaction might contain X-X contributions. The total bonding
energy falls o� rapidly from �uorine to chlorine, then the changes become much smaller. The bonding
energy of UF6 is almost twice that for UI6

As it is impossible to �lter out the X-X interactions in the analysis of UX6 systems, we considered
the mixed halides UF4X2. This also makes a direct comparison possible with the results for the other
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UF6 UCl6 UBr6 UI6
rU−X 202.53 247.16 263.64 286.88
Steric Interaction
Pauli Repulsion 95.8102 83.4906 78.1652 72.1221
Electrostatic Interaction -26.2139 -29.4827 -30.7887 -30.6764
Total Steric Interaction 69.5963 54.0079 47.3765 41.4457
Orbital Interactions
a1g (σ) -4.6227 -5.8528 -5.1505 -5.1349
eg (σ) -39.3066 -29.2883 -26.0633 -22.7216
t1g (π) -11.6381 -8.6367 -7.8689 -6.9598
t2g (π) -22.8415 -19.1047 -17.1474 -14.8476
a1u 2.3665 2.2846 2.2766 2.1296
t2u (π) -8.1875 -4.7569 -3.6949 -2.7699
t1u (π + σ) -28.8056 -19.2319 -16.7954 -14.1902
Total Orbital Interactions -113.0372 -84.5596 -74.4164 -64.4647
Total Bonding Energy -43.4410 -30.5517 -27.0400 -23.0190

Table 3.10: Fragment analysis of UX6 systems. The fragments were the spherically averaged atoms. All
energies are given in eV.

ligands given in Paper III. A fragment analysis was performed for trans-UF4X2, with UF2+
4 and X2−

2 as
the fragments. The results of this analysis are given in Table 3.11.

UF6 UF4Cl2 UF4Br2 UF4I2
rU−F 202.5 202.1 201.9 202.0
rU−X 202.5 250.6 265.6 289.1
Steric Interaction
Pauli Repulsion 16.0725 12.0424 10.4593 8.7738
Electrostatic Interaction -33.5916 -26.3547 -25.8242 -22.9085
Total Steric Interaction -17.5192 -14.3122 -15.3649 -14.1348
Orbital Interactions
a1g (σ)c -1.9395 -2.3666 -2.7004 -2.8533
a2g -0.0222 -0.0152 -0.0120 -0.0097
b1g -0.0598 -0.0395 -0.0301 -0.0251
b2g (π) -0.0506 -0.0327 -0.0248 -0.0205
e1g (π) -2.0091 -1.8856 -1.9630 -1.7652
a1u 0.0000 0.0000 0.0000 0.0000
a2u (σ+π) -3.5231 -2.7018 -2.8182 -2.8445
b1u 0.0000 0.0000 -0.0001 -0.0015
b2u (π) -0.1835 -0.1201 -0.0904 -0.0764
e1u (π and σ+π) -3.2359 -3.0682 -3.3045 -3.5380
Total Orbital Interactions -11.0236 -10.2296 -10.9436 -11.1342
Total Bonding Energy -28.5428 -24.5418 -26.3086 -25.2689

Table 3.11: Fragment analysis of UF4X2 systems. The fragments were taken as UF2+
4 and X2−

2 . Bond
distances are given in pm and energies in eV.

The U-X bonds in the mixed halides are very close to the ones in the pure halides. In the fragment
analysis UF4Cl2, UF4Br2 and UF4I2 are remarkably similar. Iodine and bromine make a weaker bond
than �uorine but a bit stronger than chlorine. Pure σ-bonding is stronger and π-bonding is weaker for
Cl, Br and I as compared to F. The rising a1g contributions are partly due to interactions of the X2−

2

with the �uorines of the UF2+
4 , but this contribution will be much smaller than for the UX6 systems.
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Note, that the electrostatic interaction decreases from F to I for UF4X2 systems. It was increasing
for UX6 systems. This is a clear indication of stronger X-X interactions in UX6 when going to heavier
halogens.

The pure halides of iodine and bromine may be di�cult to synthesise, as bonding is much weaker.
But for mixed systems the chances are much better. The �rst system with a U(VI)-I bond to be
synthesised was UO2I

2−
4 .128

3.4 Similarities in the Periodic Table, [Au=C=Au]2+ and Re-
lated Systems

Similarities in the periodic table are often interesting and can lead to new insights into the chemical
properties of the elements involved. The very low melting point of mercury has been attributed to
relativistic e�ects, mainly due to the relativistic contraction of the 6s2 shell.129 This lowers the depth
of the interatomic potential and hence the strength of the metallic bond. Mercury could be seen as a
pseudo rare gas. If that is the case, then gold could be seen as a pseudohalogen, and in fact gold is
known to form aurides like CsAu were gold is in the oxidation state -1. Continuing this series, Au+ or
the isoelectronic platinum could be seen as pseudo oxygens (or pseudo chalcogens). We investigated
a number of systems in which gold and platinum could be seen as heavy analogues of oxygen. In the
systems considered, beautiful multiple bonds to the heavy metals are present.

The chalcogenic behaviour of Au+ and Pt can be explained by the electronic structure, they have
a σ hole (5d106s0), like oxygen (2pσ0). Like oxygen they can act as π donators. The smallest systems
studied are the heavy analogues of C≡O, AuC+ and PtC. Especially AuC+ has been studied before and
a triple bond has been predicted.130 This system was used to calibrate our methods. The calibration
showed, that B3LYP calculations with a TZVPP basis set were the best a�ordable combination.

The next system we investigated was [Au=C=Au]2+, a heavy analogue of CO2. Only a linear
minimum was found. The singlet state was con�rmed to be the lowest. The gold-carbon distance is
slightly longer than in AuC+, con�rming our picture of a lower bond order. In the heavy analogue of
diethyl ether Au(CH3)

+
2 the gold carbon distance is more than 22 pm larger. Although [Au=C=Au]2+

is not thermodynamically stable with respect to decomposition into Au+ and CAu+, the calculated
reaction barrier of 1.61 eV is big enough to make it experimentally observable. This supports Gibson's
claims of a linear structure for CAu2+

2 observed in a mass spectrum.131 For the isoelectronic Pt=C=Pt
we �nd also a stable singlet ground state and even shorter bond lengths, which can be explained by the
missing charge. A rather novel description could be given for platinum carbonyl, it could in principal
be seen as a heavy analogue to an 'unsymmetric' CO2, then it could be written as Pt=C=O.

Figure 3.3: Cut plane through the ELF of BAu3. An isovalue plot of the ELF is superimposed.
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Adding one more heavy atom to the system, we arrive at analogues to the carbonate ion CO2−
3 .

Both CPt2−3 and the isoelectronic CAu+
3 were studied. Both have minima of D3h symmetry with bond

lengths between single and double bonds, matching the bond order of 1.33 found in the carbonate
ion. A rather interesting neutral system is BAu3. Here the MO picture shows four bonding orbitals.
For three bonds, this leads to a theoretical bond-order of 1.33 as expected. The electron localisation
function (ELF) of BAu3 in Figure 3.3 reveals disc shaped areas of electron density, typical for multiple
bonds.

An interesting case is AuCCAu. It can either be seen as a heavier analogue of acetylene H�C≡C�H
or it can, in the spirit of this investigation, be compared to the experimentally known [O=C=C=O]2−.
The Au�C bond is in fact shorter than a normal single bond supporting the latter analogy.

These systems can be extended by lengthening of the carbon chain, the heavy analogues of carbon
suboxide, PtCCCPt and [AuCCCAu]2+, were the biggest system investigated in this study. These
systems show again strong double bonds between the heavy metals and carbon.

An interesting concept in transition-metal chemistry is Ho�mann's isolobality principle. The d
and s orbitals of a transition metal in a complex can be compared to simple �rst row fragments like
methylidene or methylidyne. In the case of methylidyne (≡CH) the following analogies exist:
≡CH ←→ M(d5)L5 ←→ M(d9)L3 ←→ M(d10)[η5(cp)]
It is interesting to note, that the same lobes as in ≡CH exist in our compounds without the need of
ligands at the backside of the transition metal. This behaviour can be called 'autogenic isolobality'.

The presented analogy works very well for the investigated systems. This new idea suggests some
interesting candidates for systems with multiple bonds to gold which otherwise are rare.

3.5 Properties of WAu12

Highly symmetrical systems are pleasing to the eye. WAu12, an especially beautiful molecule with high
symmetry was predicted recently by Pyykkö and Runeberg.132 WAu12 is a golden icosahedron with a
tungsten atom in the middle. With 12 electrons from the gold and the six electrons of tungsten (5d46s2)
it complies with the 18 electron rule. The aurophilic attraction further stabilises the system. Finally
relativistic e�ects are important. This stable molecule was prepared a short time after its prediction
from a mixture of the metal vapours.133 The ease with which it is formed might make it possible to
synthesise larger quantities of WAu12.

Little was known about the molecule. In order to better understand the bonding and to aid
spectroscopists in the detection of WAu12 we conducted a thorough study of its properties.

DFT,MP2 and CC2 geometry optimisations were performed. Due to the importance of the metal-
lophilic attraction, a dispersion interaction badly described by DFT-methods, the MP2 and CC2 bond
lengths are much shorter. MP2 often overestimates these e�ects and the true bond distance probably
lies between the obtained results.

Three highly symmetric structures for WAu12 are possible. These are shown in Figure 3.4. The
icosahedron was found to be lowest in energy. The pentadecahedron is a transition state for the
intramolecular transition from one icosahedral structure to the next (rotating the top half of the
icosahedral form in Figure 3.4 by 30◦ gives the pentadecahedron in the middle). The cubeoctahedron
is a minimum on all DFT levels, but a saddle-point for MP2. It lies at least 20 kJ/mol above the
icosahedron.

A number of calibration calculations were performed with ADF on WAu12 in order to assess the
best combination of basis set and functional to be used in the study. The results are given in Table
3.12 to supplement the information in the article. These results show that it is justi�ed to use large
frozen cores and TZP basis sets for geometry optimisations and frequency calculations.

The vibrational spectra show a remarkable property of WAu12. At room temperature the intramolec-
ular rotation described above occurs 108 times per second. This enormous �exibility might enhance
the catalytic activity of WAu12. This property may be compared with the non-existence of frozen
interstitial atoms in gold down to 0.3K.134

An important part of the examination of WAu12 was to understand the bonding. Apart from
Mulliken population analysis, which fails completely, all other methods used show a slightly positive
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Figure 3.4: The three possible structures of high symmetry of WAu12. The icosahedron (Ih) left is lowest
in energy. The pentadecahedron (D5h) in the middle is a transition state. The cubeoctahedron (Oh) right
is a local minimum at DFT level, but a saddle-point at MP2.

BP86 BLYP PW91 PBE PBE/SmallCore
DZ
r(W-Au) 278.73 278.76 278.71 278.72
E(bond) -38.133 -36.248 -39.729 -39.379
TZP
r(W-Au) 276.15 278.70 275.85 275.57 274.96
E(bond) -36.165 -34.207 -37.492 -37.208 -37.407
TZPP
r(W-Au) 274.22 275.37 274.23 273.84
E(bond) -37.212 -35.209 -38.551 -38.272

Table 3.12: Additional calibration calculations for WAu12, performed with ADF.

tungsten.
An old method to analyse the oxidation state of an atom in a molecule is the use of electron

spectroscopy for chemical analysis (ESCA).135 A plot of the oxidation state of an atom against the
energy of a lower lying orbital of this atom for di�erent compounds should give a straight line. Measuring
the orbital energy of the atom in a new compound, this line can then be used to assign an oxidation
state to the atom in question. We used this method in a computational way. To our knowledge, this
was done for the �rst time. The result was an oxidation state of +1.5 for tungsten and +0.7 for gold,
supporting the picture of a more positive tungsten.

An interesting way to look at the electron distribution of a molecule is the use of the electron
localisation function (ELF). A plot of the ELF is shown in Figure 3.5. This picture was elected as the
title picture for the number of Phys Chem Chem Phys in which the article appeared. The ELF shows
nicely a buildup of electron density between gold an tungsten, a bond is formed. Another feature of
the ELF is a buildup of electron density on the backside of the gold atoms. These electrons could
sustain a ring current in WAu12, that might make the molecule aromatic. The formation of a bond was
also supported by another method. The electron-density di�erence between WAu12 and its constituent
atoms was integrated in spheres of di�erent radii. Here a build-up of electron density between gold
and tungsten was found. Writing the formula of WAu12 as W@Au12 should therefore be avoided.

The electronic excitation spectrum of WAu12 was calculated at the TDDFT, CCS and CC2 level
of theory. While the spectra look quite di�erent they all show absorption in the visible region between
380 and 460 pm. This would give - not surprisingly - bulk WAu12 a pale yellow colour. It should be
noted, that CCS fails dramatically, double excitations are of extreme importance, even CC2 might not
be su�cient to describe the excitation spectrum correctly.

Finally some magnetic properties were calculated. A striking feature is the very strong shielding of
the tungsten nucleus. The spin-orbit coupling contribution is also one of the biggest calculated for a
tungsten nucleus. Due to very fast spin �ips of the gold system, the tungsten NMR should show one
signal. If the spin lattice relaxation is slow but the molecular rotation fast, the signal might split up
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Figure 3.5: A cut through the electron localisation function of WAu12 superimposed on its icosahedral
structure.

into a weighted trisdekaheptuplet.
WAu12 does not only have a beautiful structure but also fascinating properties and one hopes that

larger quantities of this compound will indeed be synthesised in the near future.

3.6 The Structure of Mono- and Bis-Gold(I)-Thiocyanate
Complexes

The coordination chemistry of gold is rich. Au(I) complexes of the heavy halides and the pseudohalides
are known. Recent experiments showed, that such monoaurated halides can be further aurated to give
digold(I)halogenium ions.136 This work was extended to include pseudohalides.137 Diauration of the
thiocyanate ion was achieved in the following reaction

(R3P)AuSCN + [(R3P)Au]+ Y− CH2Cl2−→
−78◦

{[(R3P)Au]2SCN}+ Y−. (3.2)

where R is Ph, (2-Me-C6H4)3, (3-Me-C6H4)3, iPro3 or Me2Ph. No x-ray spectroscopy was possible,
therefore the structure of the compound is still unknown. The µ2-S structure is only one possible isomer.
Some spectroscopical data could be obtained and we turned our attention to these systems to help in
determining the correct structure.

Highly accurate gas phase vibration data exists for the thiocyanate ion.138 We started our investiga-
tion by doing calibration calculations on the thiocyanate ion. These calculations showed that CCSD(T)
calculations and anharmonic corrections must be used to get good agreement with experiment. Such
high-level calculations are not feasible for the somewhat large diaurated systems. We decided to use
MP2 with an admittedly rather small cc-pVDZ basis set augmented by polarisation f-functions139 on
the gold. DFT methods could not be used as they have problems describing the dispersion-type au-
rophilic interactions correctly. Calculation on the [(H3PAu)2Cl]+ ion showed that this basis set with
MP2 gave rather good agreement with experiment.

The bulky phosphine ligands increase the computational cost. Calculations on the model H3PAuSCN
and the known Me3PAuSCN and similar systems showed, that the nature of the group R has no great
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in�uence on the structure and vibrational frequencies. The hydride model was therefore used in this
study.

In the experimentally observed monoaurated compounds the gold was always bound to the sulfur
of the thiocyanate. This is not surprising as gold is known to be thiophilic. We optimised both the
N- and S-bonded structures. While the N-bonded structure has a linear SCN-Au chain, the NCS-Au
isomer has an angle of 94.2◦. The vibrationally corrected isomerisation energy is surprisingly low, only
15.1 kJ/mol, favouring the S-bonded isomer. This value is in good agreement with an experimental
estimate of 18.0 kJ/mol.

Next the diaurated systems were considered. Three di�erent isomers are possible. They are part of
the equilibrium

{[(R3P)Au]2SCN}+ 
 {[(R3P)Au]SCN[Au(PR3)]}+ 
 {[(R3P)Au]2NCS}+, (3.3)

The structures of the three isomers were optimised. Some structural results and relative energies
are summarised in Table 3.13. Gas-phase MP2 data would indicate that the µ2-S structure is highest
in energy. This is rather surprising and it contradicts the experimental estimate which sees the µ2-S
structure below the µ1-S µ1-N structure. The extrapolated C-N stretching frequencies are in good
agreement with experimental data. Only the predicted band at 1952 cm−1 for the µ2-N isomer was
not observed.

R(Au�Au) ∆Eiso

RHF MP2 RHF MP2 MP2a Exp.est.
[(R3PAu)SCN(AuPR3)]+ 612.2 583.9 0 0 0 0
[(R3PAu)2NCS]+ 377.8 341.4 +39.8 +33.1 +30.1 -
[(R3PAu)2SCN]+ 416.5 320.8 +58.6 +44.4 -5.0 ≈ -8.4

a Dielectrical continuum e�ects of CH2Cl2 were considered by using the COSMO model.

Table 3.13: Gold-gold distances [R(Au�Au) in pm] of the three isomeric diaurated thiocyanate cations
(with R = H) calculated at the RHF and MP2 level. The isomerisation energies (∆Eiso in kJ/mol) relative
to [(R3PAu)SCN(AuPR3)]

+ calculated at di�erent levels are also given.

The experiment was carried out in dichloromethane, not in vacuum. We included the e�ects of the
solvent with the COSMO method140 as implemented in Turbomole. This changed the energetic or-
dering completely and yielded more believable isomerisation energies with the µ2-S isomer energetically
lowest. The computational method employed could indeed help to assign a structure of the synthesised
digold(I)thiocyanate cations.

3.7 A Comparison of Small Molecules Containing Darmstadtium
and Platinum

The heaviest element for which calculations are reported here is element 110, darmstadtium. There
are only three research centres in the world where new elements are currently being prepared. Not only
is it di�cult to prepare a few nuclei of the element, one also has to work fast, as all the transactinides
are rather shortlived. There is a change in paradigm in the 'super-heavy element' community.141 It
becomes more important to discover the chemistry of the new elements than to produce new heavier
elements. Computational chemists can be of some assistance here.

The transactinides made so far have rather short lifetimes and make chemical reactions rather
di�cult. Certain neutron rich isotopes of Ds were calculated to have a lifetime of up to 50 years, which
would make chemical experiments much easier.142

The early transactinides resemble their lighter homologues quite closely. For Rg (element 111) and
element 112 some changes in properties were reported. The question arises if there is a certain break in
similarity (transactinide break). If yes, it should occur for element 110, darmstadtium. One di�erence
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between Ds and its lighter homologue Pt is the ground state electron con�guration. It changes from
(d3/2d5/2)9s1 for platinum to d4

3/2d
4
5/2s

2 for Ds.143

We optimised the geometries for the carbides, carbonyls and the tetra- and hexa�uorides of platinum
and darmstadtium. The bond distances were found to be very similiar for Ds and Pt. Also the calculated
vibrational frequencies agree closely. Spin-orbit coupling does not change the geometry. A fragment
analysis of the carbonyls and carbides gives similiar results for Pt and Ds, with slightly larger orbital
interactions and Pauli repulsion, leading to slightly weaker bonds for the transactinide.

Figure 3.6: The potential curve of DsC calculated relativistically and nonrelativistically.

The extreme importance of relativistic e�ects for Ds in shown on Figure 3.6. Not only is there a
15.8 % relativistic contraction of the bond length. The potential curve is changed dramatically, leading
to a relativistic increase in the vibrational frequency from 518 cm−1 to 1134 cm−1, an increase of
119 %.

To test if the calculated Ds compounds have a singlet ground state, we calculated the 30 lowest
singlet and triplet excitation energies for the carbide and the carbonyl. The results for the lowest of
these are given in Tables 3.14 and 3.15. The excitation energies were calculated at the time dependent
DFT level of theory using the LB94 exchange correlation functional with ADF. All electrons were
considered active and a basis set of QZ quality was used. The special GGA functional LB94 was
designed to give the right asymptotic behaviour and therefore normally gives quite good excitation
energies.

Singlet Triplet
Symmetry Degeneracy Energy Intensity Symmetry Degeneracy Energy

Φ 2 2.80634 0 Π 2 2.54254
Π 2 3.04282 0.3889E-02 Φ 2 2.56664
Π 2 4.27789 0.1990E-01 Π 2 3.72332

Table 3.14: The lowest singlet and triplet excitation energies for DsC. The energies are given in eV. Two
component calculation without spin-orbit coupling, therefore the triplet excitations have no intensities.

One di�erence between the late transactinides and their lighter homologues was reported for Rg.
For the halides, the higher oxidation states of Rg were more stable than for Au. The decomposition
reaction MF−6 → MF−4 + F2 was found by Seth et al. to be more endothermic by 0.89 eV for Rg
(B3LYP results).144 For Ds and Pt we �nd the same, although the energy di�erence is smaller, only
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Singlet Triplet
Symmetry Degeneracy Energy Intensity Symmetry Degeneracy Energy

∆ 2 1.79786 0 ∆ 2 1.64066
Φ 2 3.33599 0 Σ+ 1 3.07503
Σ+ 1 3.44322 0.2273E-01 Π 2 3.11461

Table 3.15: The lowest singlet and triplet excitation energies for DsCO. The energies are given in eV. Two
component calculation without spin-orbit coupling, therefore the triplet excitations have no intensities.

0.2 eV (PBE results). Part of the di�erence might originate from the functionals used. Nevertheless,
there seems to be a smooth onset of the increased stability of higher oxidation states.

In conclusion, Ds seems to be a normal member of group 10, no transacinide break was observed.
The work on transactinides has been continued to predict triple-bond radii for these elements.145
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Conclusions

Inorganic chemists get more and more skilful in synthesizing interesting new compounds. New and
improved spectroscopic methods give deeper inside into the studied molecules. Where is the place for
theoretical chemistry? It cannot be the goal of computational chemistry to reproduce experimental
numbers. The aim should be to predict new species or to explain aspects of the bonding or certain
properties of molecules, that experimentalists cannot access. It is of course important to compare
theory and experiment. A good computational work that arrives at di�erent results as compared to
an experimental study should make both the experimentalist and the theoretician think again. The
development of computers over the last decades has led to an interesting situation. Every researcher
nowadays has the computational power at hand to do serious calculations, but is this really necessary?
I am a chemist by training, I have worked many hours in laboratories and I liked it. Still, I would not
start unguided with a di�cult synthesis neither would I try to build spectroscopical equipment. I would
trust experienced experimentalists to do this work. Likewise I hope that experimentalists will learn to
trust theoreticians. It is the combination of theory and experiment that yields new insights.

Theoreticians can do experiments that would be very dangerous or di�cult or even impossible to
perform in a laboratory. We can do studies on poisonous and highly radioactive compounds without
any danger. We can even change the speed of light in silico to get deeper insights into relativistic
e�ects. The research presented here was done with this in mind. In Paper I of this thesis we propose
new species with high-valent mercury. Experimentalists are still trying to synthesise these compounds,
so more computational work might be needed. In the study on Pt�Tl compounds, presented in Paper
II of this thesis, we could explain the experimental observation of the oxidation state for platinum and
thallium. Here our calculations delivered data, that experimentalists could not obtain. We were on the
other hand able to use the experimental data available to calibrate our calculations.

Experimental chemists have developed an amazing set of simple tools and rules to predict the
reactivity of elements and their compounds. Here computational chemistry can contribute by helping to
develop new rules in cases were the experimentalists have not gathered enough data, or the theoretician
can explain why a certain rule might not work properly. In our study of U(VI) compounds, Paper III
of this thesis, we could both give a new picture of the bonding in UF6 and explain why certain
U(VI) compounds are very rare, thus helping to understand this experimental fact. In our research on
similarities in the periodic table, Paper V, we found interesting parallels between oxygen and platinum,
subsequent studies could in fact expand this to an analogy between iridium and nitrogen.146 These
analogies might prove useful to explain the behaviour of certain transition metals.

A fascinating area of research is the transactinide chemistry. It is extremely expensive to create
just a few atoms of those super-heavy elements. Experiments to test the chemical behaviour of
these elements have to be thoroughly planned. The more theoretical data the experimentalists have
available, the better can they decide what to study. In our research on darmstadtium, Paper VII, we
found similarities to platinum. The assumed transactinide break was not observed.

This short summary shows how important and fruitful the collaboration of theory and experiment
can be. I sincerely hope, that the mutual trust and understanding between experimentalists and
theoreticians will grow in the future. If this research helps in accomplishing this, I am satis�ed.

43
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