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Abstract

Chlorophylls are involved in the primary photosynthetic processes in nature.

The utilization of chlorophyll derivatives as models for excitation energy transfer and

electron transfer processes, as well as their medical applications requires a detailed

structural knowledge. In this investigation, the solution structures of natural chlorins

were analyzed utilizing NMR spectroscopy supported by molecular modelling.

In the literature review of the thesis, solution NMR spectroscopy and

computer-aided molecular modelling are briefly reviewed. Their applications to

chlorins are inspected through various examples of conformational analysis of chlorin

compounds. In addition, chemical and structural properties of chlorins are discussed,

as well as the NH tautomerism in porphyrins and chlorins.

The experimental part of the thesis is composed of five publications. They

include conformational investigations of 132-methoxychlorophyll a epimers and

electron-transfer model compounds. The latter are referred to as chlorin–

anthraquinone and chlorin–C60 dyads. In addition, two publications focus on the NH

tautomerism in natural chlorins.

Modern 2D NMR techniques were utilized to determine spectral assignments

and structural parameters for the chlorins. Dynamic NMR spectroscopy was used to

determine energy barriers for the conformational isomerism and NH tautomerism of

the chlorins. The 2D ROESY NMR experiment proved to be a useful tool for

determining the proton spectral assignments for the chlorins, as well as the

stereochemistries of the modified parts of the chlorins. The computer-aided molecular

modelling was based on the structure parameters obtained from the NMR data. Thus,

the calculated 3D structures of the natural chlorin derivatives are related to their

solution structures. The lowest-energy structural models for chlorin–anthraquinone

and chlorin–C60 dyads were facilely deduced by molecular mechanics calculations

with an MM+ force-field. In the cases of Mg-complexed chlorins and NH tautomers,

reliable energy minima were found by the PM3-UHF method.

The results of molecular modelling indicated that the NH tautomers in which

the nitrogen of the reduced chlorin subring is protonated, are energetically

disfavoured due to their lower aromaticity. For the first time, an intermediate trans

NH tautomer of a chlorin was detected by NMR spectroscopy at a low temperature.

An important conclusion was that the total NH exchange of chlorins proceeds by a

stepwise mechanism via aromatic cis-tautomers and the less aromatic trans-tautomer.
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Abbreviations

A acceptor
ARCS aromatic ring current

shielding
AM1 Austin method 1
B0 static magnetic field
BChl bacteriochlorophyll
Chl chlorophyll
CTOCD continuous transformation

of ring current density
COSY correlation spectroscopy
δ chemical shift (ppm)
D donor
DFT density functional theory
DMSO dimethyl sulfoxide
∆G‡ free energy of activation

(Gibbs)
DEPT distortionless enhancement

by polarization transfer
∆H‡ enthalpy of activation
∆Hf heat of formation energy
DNMR dynamic NMR
∆S‡ entropy of activation
gs gradient selected
HF Hartree-Fock
HMQC heteronuclear multiple

quantum coherence
HMBC multiple-bond

heteronuclear multiple-
quantum coherence

HSQC heteronuclear single
quantum coherence

INDOR internuclear double
resonance

IUB International Union of
Biochemistry

IUPAC International Union of Pure
and Applied Chemistry

J scalar coupling
EA activation energy

(Arrhenius)

LSPD long-range selective
proton decoupling

NICS nucleus-independent
chemical shift

NMR nuclear magnetic resonance
NOE nuclear Overhauser effect
NOESY NOE spectroscopy
MM molecular mechanics
MNDO modified neglect of diatomic

overlap
MO molecular orbital
MP2 second-order Møller-Plessed
PSI photosystem I
PSII photosystem II
PM3 parametric method 3
RC reaction centre
RHF restricted HF
ROE NOE in rotating frame
ROESY rotating frame NOE

spectroscopy
SCF self-consistent field
SFORD Single frequency on- and

off- resonance decoupling
S/N signal-to-noise
T1 spin-lattice relaxation time
TC coalescence temperature
τc motional correlation time
τm mixing time
THF tetrahydrofuran
TMS tetramethylsilane
TOCSY total correlation

spectroscopy
T-ROESY transverse ROESY
TS transition state
UFF universal force-field
UHF unrestricted HF
v/v volum/volum
ω Larmor frequency
1D one-dimensional
2D two-dimensional
3D three-dimensional
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1  Introduction

Natural chlorins have been subjected to extensive structural investigations in

the 20th century due to their specific chemical properties and fundamental importance

in nature.1-5 The absolute configurations of chlorophyll (Chl) a were first elucidated

by a combination of synthetic and spectroscopic methods.6 Later, the three-

dimensional (3D) structure was established by the X-ray studies of chemically

modified chlorophyll a.7 The X-ray analysis of the crystallized photosystems I8 and

II9 (PSI and PSII) has revealed how Chl a molecules are organized in the

photosynthetic machinery.

In the photosynthetic systems of green plants, the Chl a and Chl b molecules

participate in light-induced excitation transfer in the light-harvesting complexes.1 In

the PSI and PSII, the Chl a molecules contribute to the charge separation and transfer

processes.10 To date, the detailed structures of the photosystems in green plants, have

been obscure. However, it is known that the reaction centres (RC) of green plants

resemble bacterial RCs.8 The latter have been structurally investigated in detail by

high-resolution X-ray methods.11,12 At present, detailed structural features, such as the

mutual orientations and distances of the Chl molecules in the PS of green plants, are

under investigations, because the exceptionally efficient energy and electron transfer

mechanism of green plants is evidently connected to them.13,14

Studies of various Chl-derivatives and porphyrins have been motivated by

their importance in the primary photosynthetic events. Firstly, a great number of

artificial models for natural photosynthetic processes have been constructed.15-18

However, most of the model tetrapyrroles other than Chl derivatives, poorly mimic

their natural counterparts. Secondly, an important aspect in the synthesis of Chl

derivatives is their potential use as photosensitizers in the photodynamic cancer

therapy.19 Recently, nanodevices, operating as molecular-size electronic components,

have been discussed in the literature.20

Nuclear magnetic resonance (NMR) spectroscopy offers an effective tool for

the structural analysis of Chl derivatives. Modern NMR spectroscopy can provide

information about the absolute configurations and conformations of a Chl derivative.

In addition, molecular dynamics and electronic surroundings of the measured nuclei

can be inspected by high-resolution NMR spectroscopy. In computer-aided molecular
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modelling, structures can be examined based on either empirical or quantum

mechanical methods. The present thesis focuses on the 3D structural analysis of Chl

compounds in solution using NMR spectroscopy, supported by computer-aided

molecular modelling.

The literature review comprises investigation methods of solution NMR

(Chapter 2) and molecular modelling (Chapter 3). The application of these methods to

the structural analysis of chlorin compounds is reviewed in Chapter 4. This chapter

also introduces the chemical properties of Chls, assignment of their NMR spectra and

conformational analysis. Specifically, the structural analysis of dyad or dimer

compounds including a chlorin or porphyrin substructure is inspected. Finally, the NH

tautomerism of porphyrins and chlorins is reviewed briefly.

In the experimental part of the thesis, Chl derivatives originating from Chl a

(1) or b (2) were studied. The Chls were isolated from clover leaves (Chapter 6).

Additionally, the bonellin dimethyl ester (3) was studied. Compound 3 is derived

from bonellin, a green sex-differentiating pigment of the marine echiuroid worm

Bonnelia viridis.21 The primary focus of this study was to analyze the 3D structures of

Chl derivatives, such as the Chl allomers or compounds used for electron transfer

studies. The secondary interest was to investigate the existence and nature of NH

tautomerism in the natural chlorins.
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2  Solution NMR methods

In modern solution NMR spectroscopy, the structural information of the

molecules is basically extracted from chemical shifts (δ), scalar couplings (J) and

various relaxation phenomena. Among the lastmentioned, the most important

regarding this work is the nuclear Overhauser effect (NOE).22,23 Moreover, the

longitudinal, spin-lattice relaxation time (T1) can also provide information about

molecular structure and surroundings. The δ-value of a nucleus provides information

about the electronic surrounding, mediated either via chemical bonding or through

space. Scalar couplings are transmitted through chemically bonded nuclei by bonding

electrons. The strength of these couplings depends on the number of chemical bonds

between the coupled nuclei and molecular conformations. NOE arising from dipolar

couplings between nuclei can be used as a measure of spatial distance.

The direct measurement methods of NMR active nuclei, utilizing Fourier-

transform NMR spectroscopy, have been established as routine techniques two

decades ago. However, the assignment of chemical shifts and couplings for relatively

complicated organic molecules, e.g. chlorophylls has been laborious. Thus, the two-

dimensional (2D) NMR techniques, introduced in the 1980´s, have greatly improved

and facilitated the assignment of various organic compounds.24,25

The sensitivity, i.e. signal-to-noise ratio (S/N), for a one-dimensional (1D)

NMR experiment can be expressed by equation 1.25

S/N ~ NγexcγdetB0
3/2(NS)1/2T2/T  (1)

N is the number of molecules in the active sample volume,
γexc is the gyromagnetic ratio of the excited spin,
γdet is the gyromagnetic ratio of the detected spin,
B0 is the static magnetic field,
NS is the number of scans,
T2

–1 is the homogeneous line width,
T is temperature

In the case of Chl compounds, a sufficient S/N ratio is often difficult to achieve,

especially for the low natural abundance nuclei 13C and 15N. The S/N ratio and signal

resolution can often be improved by using a high magnetic field, B0, and a narrow

line-shape giving sample. The latter is related to sample concentration, i.e. due to

possible aggregation effects, a high concentration may destroy the narrow line-shape
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properties of a corresponding dilute sample, in which Chls are in monomeric form. In

addition, the choice of NMR experiment affects the sensitivity of the measurements,

especially in heteronuclear NMR techniques (2.1).

In the next two sections, 2.1 and 2.2, some basic and advanced 2D techniques,

needed for extraction of the NMR parameters J, δ and NOE, are reviewed.

2.1 Basic 2D techniques for spectral assignment

The homonuclear proton J-couplings can be revealed by correlation

spectroscopy (COSY)26 experiments. Total correlation spectroscopy (TOCSY)27

affords the J-coupled proton pattern, whereas NOE correlations are measured by NOE

spectroscopy (NOESY).28 However, in the case of Chls, the molecular weights are

often in the region of reduced NOE intensity, due to their molecular correlation times

in the applied static magnetic field, B0. Hence, the use of the rotating-frame NOE

spectroscopy (ROESY)29 is often favoured, since it is less dependent of molecular

correlations times (2.3.3).

According to equation 1, the best sensitivity for 1H-13C or 1H-15N

heteronuclear coherence magnetization can be obtained by applying NMR

experiments, in which both the excited and detected nucleus is a proton. Thus, the γ of

the proton is high compared with that of a heteronucleus, 13C or 15N. The

heteronuclear multiple-quantum coherence (HMQC)30 and heteronuclear single-

quantum coherence (HSQC)31 techniques utilize this principle, i.e. correlations peaks

between the heteronuclei directly bonded to protons are detected. In the former

technique, the observed multiple quantum correlations include homonuclear proton

couplings in the heteronuclear dimension also. One advantage of HSQC is the

absence of the aforementioned couplings. This allows better separation for

correlations in the case of spectral crowding in a heteronuclear dimension. On the

other hand, the fine structures of HMQC correlations can provide useful information

for the analysis of 1H spectral multiplets.

The multiple-bond heteronuclear multiple-quantum correlation (HMBC)32

technique is a long-range variant of the HMQC. The longer evolution time for

heteronuclear couplings in the HMBC pulse sequence allows the detection of

couplings over 2-3 bonds, or in some cases even more. Nowadays, this technique is

routinely applied for spectral assignment of organic molecules.
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During the acquisition of the aforementioned experiments, most of the

recorded signal contain other magnetization in addition to the coherence of interest.

This is true especially in the case of heteronuclear experiments with low natural

abundance nuclei such as 13C and 15N. Traditionally, the unwanted, 12C- or 14N-bound

magnetization is cancelled by phase cycling and combining single transients with

different magnetization phases. In the modern instruments, the coherence selection

can be performed by using pulsed field gradients which dephase the undesired

magnetization.33 Thus, spectra with improved S/N ratio can be obtained in a shorter

accumulation time in comparison with phase-cycled experiments, provided that

sample concentrations are high enough. The advantage becomes evident, when a

highly concentrated sample is set up for gradient selected(gs)-experiments, in which

the strength of coherence magnetization is weak compared with that of undesired

magnetization. One drawback of the basic gs-pulse sequences is the fact that only half

coherence can be selected. Hence, the sensitivity suffers particularly in low

concentration samples. There exist, however, some sensitivity-enhanced heteronuclear

techniques, in which both coherence pathways are selected.34

2.2 Some advanced 2D techniques for spectral assignment

Recently, new versions of the aforementioned 2D techniques have been

developed in order to improve sensitivity or provide more information in one spectral

dimension.33 These novel methods are, in fact, combined 2D hetero- and homonuclear

techniques such as HSQCTOCSY or HSQCNOESY. They are based on the

assumption that a better separation of signals prevails in the heteronuclear than in the

homonuclear dimension. Hence, spectral resolution is enhanced, and thus an

unambiguous assignment is achieved even when the corresponding TOCSY or

NOESY experiment fails due to increased signal overlapping. In some cases,

however, the conversion of the two or multiple dimension experiment into the

corresponding 1D version with selective pulses provides shorter acquisition times and

better resolution of the spectra.

Yet another example of the combined techniques is the so-called multiplicity-

edited HSQC-based experiment.34 It includes DEPT (distortionless enhancement by

polarisation-transfer)-type information in the recorded spectra. Hence, the positive
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phasing of the CH2 signals produces CH and CH3 signals with negative phases in the

multiplicity-edited 1H-13C HSQC spectrum.

Various long-range heteronuclear shift correlation techniques have been

introduced recently.35 Zsu et al.36 have published sensitivity-enhanced versions of the

HMBC technique, and have demonstrated its performance even for large

biomolecules. In the constant-time (CT) HMBC experiment,37 the separation of cross

peaks is improved, because the homonuclear proton couplings are removed from the

heteronuclear axis. The evolution time in the HMBC experiment is generally adjusted

according to the long-range couplings, being typically in the range of 6 – 10 Hz.

These are rather arbitrary values, because the actual couplings are seldom known.

Therefore, these set-up couplings can be far from the real values and may lead to

small or even undetectable correlation peaks. This problem can be circumvented by

utilizing the experiment of Wagner and Berger,38 named ACCORD-HMBC which

uses couplings optimized for a specific range. The ACCORD-HMBC experiment has

been reported to be highly beneficial in terms of the increasing number of observed

long-range responses relative to the statically optimized techniques.39 However,

Hadden et al.40,41 have utilized the accordion principle in two new experiments, the

IMPEACH-MBC40 (improved performance accordion heteronuclear multiple-bond

correlation) and CIGAR-HMBC41 (constant time inverse-detected gradient accordion

rescaled long-range heteronuclear multiple-bond correlation) experiments. The

common improvement in both tehniques is the suppression of 1H-1H couplings in the

heteronuclear dimension. In the CIGAR-HMBC method, the couplings can be

suppressed by user-determined frequency modulation.

2.3 Structural analysis on the basis of NMR parameters

The focus in the following three sections is on the analysis of the solution

conformations of organic molecules utilizing NMR parameters, i.e. chemical shift,

scalar coupling and NOE.

2.3.1 Chemical shift

There exists a great amount of tabular data in the NMR literature, according to

which the chemical shift of a nucleus is indicative of a specific chemical structure.

Nowadays, there are some computer programs available which can predict the
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chemical shift of a certain nucleus that is part of a defined structural subunit.

However, chemical shifts provide information not only about the chemical structure

of the studied molecule, but also about its surroundings. Since the chemical shift of a

nucleus depends on the local magnetic field around it, δ is affected by magnetic and

electrostatic effects exerted by the surroundings of the nucleus. One example of this is

the magnetic anisotropic effect of a neighbouring group, which can lead to a shielding

or deshielding of the nucleus. In practice, δ-values of protons are the most sensitive

for detecting anisotropy effects of molecular surroundings in organic compounds.

Typical shielding or deshielding cones for groups of common anisotropy

sources in organic molecules are depicted in Figure 1. The magnetic susceptibilities of

the chemical bond, e.g. a carbonyl group and a carbon-carbon double bond, lead to the

magnetic anisotropy effect in an external B0-field. In aromatic compounds, such as

benzene, the B0-field induces a ring current that generates an additional magnetic

field. The resulting anisotropy effect is stronger than those arising from the double

bonds. The strength of anisotropy is proportional to ~ 1/r3, r being the distance from

the anisotropy source. Thus, the δH-value of a proton-containing group can provide

information about the spatial proximity of an other group having a known anisotropy

effect. The ring-currents of larger π-systems produce such strong anisotropic effects

in their proximity that they cover even more distance in space than NOE (see section

4.5).

        

C O C C

Figure 1.  Schematic representation of the magnetic anisotropic effect of the carbonyl group, carbon-
carbon double bond and benzene ring.22  Shielding effect is denoted with (+)-sign and deshielding
with (–)-sign.

Electric fields influence the electron densities of nuclei, and thus polarized

charges, e.g. in amino, carbonyl and nitro groups affect their surroundings. The proton

chemical shift can be strongly affected by hydrogen bonding. In a hydrogen bonded
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proton, the electron density is formally increased, but the electrostatic dipole field of

the hydrogen bond produces a deshielding effect on the bonded hydrogen.23

2.3.2 Scalar coupling

In modern NMR spectroscopy, spectral assignment is largely based on the

observed scalar couplings between NMR active nuclei in the molecules studied.

Scalar spin couplings are mediated by bonding electrons, and thus the couplings are

not only sensitive to the chemical structure, but also to bond conformations.

The dependence of a vicinal coupling constant (3JH-H) on the dihedral angle φ

between H–C–C–H protons has been first theoretically formulated by Karplus42 with

equation 2:

3JH-H = A + Bcosφ  + Ccos2φ  (2)

A = 4.22, B = –0.5 and  C = 4.5

Experimentally, the Karplus equation (Eq. 2) has been found to predict φ-angles

relatively well when the molecular fragment studied resembles ethane. However, it

has been shown that the vicinal coupling constant (3JH-H) depends on electronegative

substituents, solvent effects, bond-angles and bond-lengths. A number of variations

for equation 2 exist in the literature in which the constants A, B and C are readjusted,

and/or trigonometric functions are added or altered to improve empirical

correlation.43-45

The 2 or 3JC-H values provide information similar to that given by the 3JH-H

values about the dihedral angle, but the former couplings have been more difficult to

obtain until recent developments in the NMR techniques. Matsumori et al.46 have

shown that the determination of the stereochemistry for acyclic natural products is

possible utilizing the 2 or 3JC-H values. Since the vicinal proton-carbon spin coupling

constants (3JC-H) obey a Karplus-type equation, the conformations of C–C–H

fragments can be evaluated. Also geminal 2JC-H values provide conformational

information. Small 2JC-H values have been measured for the β-alkoxy CH2 group when

the proton is in the gauche position with respect to the oxygen functionality of a

neighbouring carbon atom, whereas for the anti conformation, large 2JC-H values have

been measured.46
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2.3.3 Nuclear Overhauser effect (NOE)

In NMR spectroscopy, NOE is a direct way to obtain structural information as

the effect is proportional to ~ 1/r6, r being the distance between the NMR active

nuclei.47 NOE can be quantified when it occurs between two isolated spins.

Quantification can be performed by analyzing the NOE build-up rates, which are, in

turn, obtained from the cross-peak intensities in the 2D-NOESY spectra measured,

with various mixing times (τm). With one known proton-proton distance, obtained e.g.

from a molecular model or an X-ray structure, the other distances can be defined from

the NOE build-up rates. However, some additional consideration should be taken into

account in NOE spectroscopy, especially in the quantitative distance analysis. In the

case of a multiple spin system, the NOE can evolve indirectly via dipolar coupled

neighbouring spins, i.e. via spin-diffusion. In addition, all external dipole-dipole

interaction can quench the NOE of interest. Therefore, the sample solution should be

free of magnetic nuclei other than those of the molecule studied, and the sample

concentration should not be too high. In the multiple spin system, the scalar spin–spin

couplings may also interfere with the accurate measurement of NOE.

Furthermore, the NOE depends on the motional correlation time (τc) and the

Larmor frequency (ω), indicating that the NOE intensity depends on the B0-field

strength and particularly on the molecular weight.43 At the edge, when the condition

ωτc = 1 is fulfilled, the laboratory-frame NOE is near zero. It is positive, when the

product ωτc is below 1 and negative, when ωτc >1.43,23 In a ROESY experiment, the

rotating-frame affects the intensity dependency. In fact, the ROE effect is always

positive, being, however, stronger for large molecules. Under the spin-lock conditions

of the ROESY experiment, scalar couplings may produce TOCSY-type magnetization

transfer.48 However, in the ROESY spectra, TOCSY signals are in the opposite phase

with respect to the ROESY signals. In a modified ROESY experiment, called

transverse ROESY (T-ROESY), the unwanted TOCSY cross-peaks are eliminated.49
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3  Computer-aided molecular modelling methods

In modern chemistry, molecular modelling is an essential tool for

understanding molecular properties. Computer-aided molecular modelling enables the

calculation of molecular geometries, energies and physical properties with varying

accuracy, depending on the calculation method and on the level of the theory. Some

modelling methods are briefly examined in following chapter.

3.1 Molecular mechanics

Molecular mechanics (MM) methods are based on the parameters obtained

from experimental data. Most of the molecular mechanic force-fields are constructed

in a similar way as for the MM2 force-field shown in equation 3, in which the total

energy, Etotal, comprises various interaction terms.50 Allinger’s MM251 (or MM3)

force-field is a standard MM-method nowadays, and it has been applied for a number

of organic structures and energies with good accuracy, as compared with those

measured experimentally.50

Etotal = ER + Eθ + Eφ + Esθ + Eel + EvdW (3)

ER  = bond stretchings
Eθ  = angle bendings
Eφ  = dihedral angle torsional interactions
Esθ = stretching bending interactions
Eel  = electronic interactions
EvdW = van der Waals interactions

In addition, various force-fields exist, in which some energy terms are formed

from factors different from those in MM2. In the MM-methods, atoms are treated

according to different atom types, which take into account different bonding types and

hybridizations of a specific atom. An extreme example of atom typing is a generic

Dreiding force-field developed by Mayo et al.,52 in which the elements of force-field

are purely of atom type, and the atoms of the same type are treated identically in the

force-field. The Universal force-field (UFF) is capable of calculating structures that

can include any of the elements across the periodic table, based on the element, its

hybridization, and its connectivity.53 The MM+ is an all-atom force-field which is

constructed on the basis of the MM2 terms.54 Hence, the MM+ is an extension of

MM2, although some energy terms are calculated with a slightly different approach.

The MM+ force-field utilizes MM2 parameters, when they are available, but uses
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parameters from Dreiding or UFF force-fields to cover all the elements in the periodic

table. The MM-methods function best when they are applied to structures resembling

the ones used in the parameterization set. The greatest advantage in molecular

mechanics is the method’s feasibility to calculate large molecular structures with low

computational capacity. The fact that the MM-methods are parameterized for ground

state systems and for a common bonding type, is the major defect of these methods. In

unusual bonding situations that are fundamentally quantum chemical in nature, e.g.

electronically excited states, relevant calculation methods are required.

3.2 Quantum chemical methods

Quantum chemical methods are principally based on the approximate solution

of the stationary state Schrödinger equation (Eq. 4).55

HΨ = EΨ (4)

H = Hamiltonian (kinetic and potential energy of system)
Ψ = wave function
E = the total energy of system

3.2.1 Ab initio methods

 In the ab initio methods, equation 4 is solved with mathematical

approximations.56 The Hartree-Fock (HF) theory is the most common ab initio

approximation for equation 4. In the HF approximation, the many-electron wave

function Ψ, is split into n single-electron functions φ(r), i.e. molecular orbitals (MO),

each having its own energy εi (Eq. 5).

heff
HFΣφ i(r) =  Σεiφ i(r) (5)

 i = 1,2,...n
 heff

HF = effective one particle HF hamiltonian
 εi  = energy of MO φ i

The MO equation 5 is further reformulated to a matrix equation consisting of

elements that are one- and two-electron integrals, being the linear combinations of

atomic-like orbitals. The resulting matrix is solved computationally with the self-

consistent field (SCF) method. The problem with the HF approximation is that the

instantaneous repulsion between electrons is neglected, which causes some error in

the resulting energy values. The electron correlation of the HF approximation can be

improved by configuration iteration or perturbation techniques, which, however,
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increase the calculation time. Another useful ab initio approximation method, based

on a different solution principle of equation 4, is the density functional theory

(DFT).57,58 In this method, electron density ’orbitals’ are calculated instead of the

wave functions (MO’s). The approximation leads to lower computational effort

compared with the HF methods, and thus enables calculation of larger structures.

The complete calculation of MO’s or electron densities by ab initio methods

provides the possibility for theoretical calculation of essential NMR spectral

parameters, i.e. the nuclear magnetic shielding constants and indirect spin–spin

couplings.59 However, the effects arising from molecular rotations and vibrations in

the δ- and J-values have to be taken into account in the calculation of fixed-geometry

ab initio NMR parameters. In addition, in experimental conditions, the system-

dependent effects, such as intermolecular interactions and solvation, may contribute

significantly to the NMR parameters of a molecule. These effects should be taken into

account, when the NMR parameters are computed for a solution structure.

The recent development of ab initio calculation methods has also enabled

computational quantification of aromaticity. The computational method of continuous

transformation of ring-current density (CTOCD)60 has produced reliable current

density maps for polycyclic aromatic hydrocarbons.61 Von Ragué Schleyer et al.62

have proposed a new method to calculate absolute magnetic shieldings: the nucleus-

independent chemical shift (NICS) method. Jusélius and Sundholm63 have introduced

an ab initio-based aromatic ring-current shielding (ARCS) method to determine the

strength of the ring-current that is related to molecular aromaticity. The ACCS

method also enables the determination of the NMR shielding at any arbitrary point in

space.

3.2.2 Semiempirical methods

In the semiempirical methods, equation 4 is commonly solved by further

approximation of the HF theory.56,64 This approximation is typically performed by

neglecting the most difficult integrals, such as the two-electron integrals of the matrix

elements. The resulting error is compensated with parameters obtained from

experimental data. The benefit of the approximation is that the size of the computed

matrix is reduced in comparison with the ab initio solution. Consequently, while the

required computer time with respect to number of atoms is proportional to N4 in the

HF ab initio methods, it is reduced to N3 in the semiempirical methods.56 Thus, the
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semiempirical methods are capable of calculating larger molecules in a reasonable

computer time. In principle, semiempirical calculations can produce even greater

accuracy for the model structure than a similar ab initio level calculation, when

compared with experimental structure parameters. However, the semiempirical

methods may give poor results, when the calculated molecular structure is different

from the ones used in the parameterization set.

The modified neglect of diatomic overlap (MNDO)65 was the first widely

applied semiempirical method for organic molecules. Nowadays, the derivatives of

MNDO, i.e. Austin model 1 (AM1)66 and parametric method 3 (PM3)67, are the most

commonly applied semiempirical methods for modelling of organic molecules in their

ground state. The methods are free from the main defect of MNDO, which is that the

method gives spurious results for bonding other than chemically covalent. The AM1

method is parameterized using general organic molecules in the parameterization set,

but some of the electron integrals are calculated based on atomic spectra. PM3 is

basically a reparameterized version of the AM1 method. The reparameterization is

performed with a larger number and variety of atoms and molecules. The

parameterization set used also includes most of the main group elements in the

periodic table, in addition to the common elements in organic structures. Moreover,

the PM3 electron integrals are computed purely on a parametrical basis. As a result,

the method is capable of calculating a broader variety of organic structures, also those

containing some heavier elements of the main groups. In PM3, the non-bonded

interactions tend to be more repulsive than in the AM1 method. It has also been found

that both semiempirical methods underestimate frontier interaction with respect to

sterical repulsion in comparison to ab initio methods. When the two semiempirical

methods were tested for various organic structures, PM3 produced structural

parameters that were closer to the corresponding ab initio results than the ones

obtained by the AM1 method.68 However, the AM1 method produced energies that

were closer to experimental values than the ones obtained by PM3.



19

4  Structural analysis of chlorin compounds

The following chapter presents the structural analysis of chlorins, as studied

by NMR or NMR combined with computer-aided molecular modelling. The examples

include mainly chlorophyll (Chl) a and b, and their derivatives. However, some

porphyrin and bacteriochlorophyll (BChl) examples are included, when the research

methods could also be useful for related chlorins.

4.1 Nomenclature

Several kinds of nomenclature have been historically applied in the chemistry

of tetrapyrroles. In this work, compounds are primarily named according to the

IUPAC/IUB69 semisystematic nomenclature, with the exception that the pyro-prefix is

used. Thus, e.g. compound 7 is named pyropheophorbide a methyl ester (Figure 2),

whereas the IUPAC/IUB semisystematic name for 7 is 132-(demethoxycarbonyl)-

pheophorbide a methyl ester.69 The atoms are numbered according to the IUPAC/IUB

semisystematic numbering  as exemplified in Figure 2.69
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Figure 2. a) IUPAC/IUB accepted semisystematic names and numbering69 for Chl a derivatives 4-6, b)
compounds 7-9 named with the trivial pyro-prefix c) the names and structures of cyclic parent
tetrapyrrole macrocycles.
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In the trivial names accepted by IUPAC/IUB,69 the metal-free Chl derivatives

are named pheophytins, whereas the dephytylated Chls are chlorophyllides (Figure 2).

Pheophorbide a is a Chl a derivative that is both demetallated and dephytylated. A

chlorin is a dihydroporphyrin, in which two addional hydrogens are at the peripheral

(β-pyrrolic) positions of subring D (Figure 2). In a bacteriochlorin, subring B is also

saturated, whereas in a porphyrin, the tetrapyrrolic macrocycle is fully conjugated.

4.2 Special structural and chemical features of chlorins

4.2.1 Chemical reactivity of chlorophyll-related chlorins

Chlorins are chemically amphiprotic compounds. A free-base chlorin with two

NH groups can loose both NH protons under basic conditions, whereas in acidic

conditions, the inner nitrogens have been claimed to be capable of taking up four

protons, i.e. each nitrogen then becoming positively charged.70 Further, it is known

that some free-base chlorins exhibit NH tautomerism.71 The NH tautomerism of the

natural chlorin derivatives is discussed in section 7.4.

In the Chl compounds, the Mg(II) is weakly chelated to the inner nitrogens of

the tetrapyrrolic macrocycle. The Mg(II) ion is so weakly bonded that even in a dilute

acid, it is easily replaced by two protons.4 The coordination number of the central

Mg(II) can be either five or six, indicating that one or two ligands can be coordinated

to the metal in solution.72 However, in Chl derivation, the magnesium is often

replaced by other metal atoms. For structural studies, Zn(II) has been a practical

alternative, because it forms more stable complexes than Mg(II). In addition, Zn(II)

can be easily inserted with a good yield and is strictly five-coordinative.

In the case of Chl compounds, the β-ketoester functional group in the isocyclic

ring E is prone to chemical reactions during purification and analytical procedures.

Firstly, the acidic 132-hydrogen can enolize in a polar organic solvent which acts as a

Lewis base.4,73 The enolization equilibrium leads to epimerization of the 132-carbon.

However, Chls are soluble in monomeric form only in polar solvents such as acetone,

alcohols, diethyl ether, pyridine and THF. In all of the aforementioned solvents,

interconversion occurs between the 132-epimers. Secondly, the allomerization

(autoxidation) of the 132-carbon can lead to a number of oxidized derivatives when
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Chl is allowed to stand in an alcohol solution in contact with air.4 In addition, Chls are

easily photo-oxidized when they are exposed to light in the presence of oxygen.4

Consequently, the isolation of Chls from natural sources and their chemical

modification is demanding, as is the preparation of pure Chl samples.

The chemical stability of Chls can be improved by chemical modifications

such as the change or removal of the central metal as previously discussed (vide

supra). Methyl pyropheophorbide a (7) can be obtained via the pyrolysis,74

demetallation and transesterfication of Chl a. Chlorin 7 is a relatively stable Chl

derivative, still having the isocyclic ring E. Therefore, in a number of studies, chlorin

7 has been used instead of authentic Chl, when the properties of a natural chlorin have

been an objective.

In the photosynthetic antenna systems, Chls exist predominantly in oligomeric

form bound to protein structures. In solution, Chls tend to form oligomers by chlorin–

chlorin π–π interaction75 and the coordination of the central metal to the carbonyl

group of a neighbouring Chl molecule.72,76 Thus, especially in concentrated samples,

Chl self-aggregates are easily formed.

4.2.2 Aromaticity

In NMR spectroscopy, the delocalized electrons of an aromatic tetrapyrrole

macrocycle induce a ring-current in an external magnetic field, B0. This effect is

observed as deshielding or shielding for the NMR active nucleus experiencing the

ring-current (see Figure 1, p. 12). The proton chemical shifts are especially sensitive

to the effect, and characteristic chemical shifts (4.3.1) can be observed for the protons

located in different positions of the chlorin. The protons of a coordinated molecule,

which is located above or below the macrocycle (4.5) plane, can also be effected by

the ring-current effect through space.

The chlorin macrocycle is also aromatic, according to the two classical

aromaticity criteria used in organic chemistry.77 Firstly, the macrocycle is planar

allowing maximal p–p-orbital overlap. Secondly, there are enough electrons available

to fulfil Hückel’s (4n + 2)-rule for the π-electrons in a delocalization pathway. There

are several possibilities for the aromatic delocalization pathway in the chlorin

macrocycle, as well as in the porphyrin macrocycle. However, for these molecules,

the delocalization of 18 π-electrons in an 18- or 16-membered ring has been mostly
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proposed (A and B in Figure 3).78,79 In the literature, the 18-atom 18 π-electron

system (Figure 3 A) is regarded as a traditional delocalization pathway of porphyrins.

In the case of free-base porphyrins, this is experimentally supported by NMR

measurements, in which the [18]diazaannulene pathway has been deduced on the

basis of the chemical shifts and couplings of the β-pyrrolic protons.80,81 Additionally,

theoretical evidence has been obtained with semiempirical AM1-UHF calculations,

which have produced structures in agreement with the traditional pathway.82

NH

N

N

HN

NH

N

N

HN

A B
Figure 3.  Kekulé 18 π-electron delocalization structures for the porphyrin macrocycle. Structure A is a
[18]diazaannulene and B is an internal 16 atom pathway.

The [18]diazaannulene delocalization pathway has also been proposed for

chlorins.71 In the chlorin macrocycle, this pathway can only exist in the way that the

β-pyrrolic C7–C8 double bond and the NH-group nitrogens (N21 and N23) do not

participate in the pathway (Figure 4). Supporting evidence for the pathway has been

found from protonation titration experiments combined with 13C NMR83 and

UV/Vis70 spectral measurements upon titration.

NH

N

N

HN

O

CO2Phytyl

10

Figure 4. The dominating delocalization pathway of pyropheophytin a (10) as proposed by Lötjönen
and Hynninen.83

Abraham et al.84,85 have suggested a double dipole ring-current model for

chlorophylls and porphyrins in order to estimate chemical shifts for the protons that

are exposed to the ring-current. According to their model, the ring currents of the
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macrocycles are approximated by dipole vectors which are located in the pentagon

and hexagon centres of the tetrapyrrole (Figure 5). In order to obtain the ring-current

effect at a specific point in space, the equivalent dipoles can be computationally

utilized under the circumstances of a known macrocycle geometry. In the case of

chlorin–chlorin dimers, this method has been applied most successfully for estimating

the dimer geometries, when the dipoles themselves have been obtained on the basis of

the monomer NMR data (4.5.1).

A B

Figure 5. Porphyrin (A) and chlorin (B) nucleus with the dipole vectors drawn in the ring-current
centres.85

The results of recent ab initio molecular modelling studies on porphyrins and

chlorins argue against the traditional [18]diazaannulene pathway. Cyranski et al.86

have supported the 18 π-electron [16]annulene (Figure 3 B) pathway to be

predominant for porphyrins. In addition, the authors concluded that in the case of

free-base porphyrin, the NH pyrrole subrings can be considered as true pyrrole-type

rings on the basis of the computed NICS values.86 This implies that the NH electron

lone-pairs are also included in the aromatic pathway. Thus, in total, 22 π-electrons

contribute to the aromaticity. Similar NICS calculation results were obtained for

bonellin (3) dimethyl ester, but those results were interpreted to confirm the

traditional delocalization pathway.87 However, a very recent study applying ARCS

and NICS methods (3.2.1) for calculations of porphyrins, chlorins and

bacteriochlorins concluded that all the available π-electrons take part in the aromatic

delocalization, and that the total aromatic pathway is in fact a linear combination of

possible (4n + 2) pathways.88 In the case of chlorins, it was suggested that 24 π-

electrons participate in the aromatic pathway by superposition of several 22 π-

electron pathways.88 Overall, it appears that the aromaticity pathways of chlorins and

porphyrins are still a subject of debate.
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The induced ring-currents cause diamagnetic behaviour for aromatic

molecules in a static magnetic field, B0. Consequently, the porphyrin and chlorins

orient slightly in solution by the magnetic interaction.89 In these conditions, the

dipolar splittings evolve in NMR spectra with a quadratic dependency on the strength

of B0. Dipolar splittings strongly contribute to couplings between nuclei, e.g. in one-

bond proton-carbon couplings. Their effect becomes significant, when the spectrum of

a large aromatic system is measured in a high magnetic field. The dipolar splittings

comprise information about orientation of the group from which they are measured.

For instance, in the case of porphyrins, the orientation of the vinyl group with respect

to the porphyrin macrocycle plane has been estimated using the couplings.89 The

anisotropy effect is also present in chlorins, and for chlorin 7, only a slightly lower

anisotropy effect has been measured as compared with that for a corresponding

porphyrin.90

4.3 NMR assignments of chlorophylls

A great number of NMR works has been focused on Chls and their

derivatives. The magnetic properties of Chls are relatively well documented in the

literature.91,92 In the following sections (4.3.1 – 4.3.2), the principles of assignment for

the NMR spectra of Chls are presented.

4.3.1 1H NMR spectra

The assignment of the proton spectrum of a natural chlorin is quite a

straightforward task, when the signals are well resolved. The ring-current distributes

the chlorin proton signals over a wide spectral range, and some signals, arising from a

certain position in the macrocycle, can be found by their characteristic δH-values in

the spectra. The meso-CH signals are typically in the lowest field, covering the

spectral region 11.0 – 8.0 ppm. The CH2 and CH3 substituents attached to subrings A,

B and C normally produce signals appearing at 3.0 – 4.0 ppm. The Chl a derivative,

132(R)-HO-Chl a (11) in Figure 6,93 shows a typical 1H NMR spectrum that can be

almost completely assigned solely on the basis of the δH and JH-H values.
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Figure 6.  500 MHz 1H NMR spectrum of 132(R)-HO-Chl a (11) in acetone-d6 (16mM).93 The signals,
assigned using the δ and JH-H values, are marked in the 1D proton spectrum.

For Chl a derivatives, the meso-proton signals are in the order of 10, 5 and 20,

starting the low field. However, a substituent in the macrocycle, such as the formyl

group in Chl b derivatives, alters the order of the 5-CH and 10-CH signals. The

demetallation of Chl derivatives only slightly effects the proton chemical shifts. Yet,

in a free-base chlorin, the NH protons are commonly strongly shielded, thus appearing

in the spectral region of 1 – -3 ppm. When measuring the 1H NMR spectra of Chls,

one has to take into account the fact that chemical shifts are sensitive to the sample

concentration and the solvent. CDCl3 has been used as a solvent in a number of 1H

NMR measurements of chlorins. In the case of metallated (e.g. Mg or Zn) chlorins, a

small amount of nucleophilic solvent such as CD3OD or pyridine-d5, is frequently

added in order to disaggregate the sample.91 Metalled chlorins are often soluble in a

pure pyridine-d5 solution, but it is noteworthy that the chemical shifts of the chlorin

macrocycle protons are affected by the pyridine ring-currents.

A rather unambiguous assignment of a Chl compound can be facilely obtained

by the concerted use of 2D ROESY, COSY and TOCSY experiments.94 The spin-

systems of the chlorin ring substituents can be identified with TOCSY and COSY

spectra, whereas the spatial ROE correlations reveal the connectivities between these

substituents. In the chlorin proton spectra, the characteristic spin-system of the 3-vinyl

or 8-ethyl group is a practical starting point, when the assignment is performed by
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ROESY. After having assigned the 3-vinyl proton signals, the assignment can proceed

around the macrocycle (section 7.1), since the neighbouring groups in a chlorin ring

usually are within the ROE distance (< 5 Å).

4.3.2 13C NMR spectra

The complexity of the chlorin 11 structure is clearly visible in its 13C NMR

spectrum (Figure 7).93 Only a few signals can be assigned with sufficient reliability by

inspecting the δC-values and signal intensities. The 131-carbonyl carbon is distinctly

separated into the low-field region of the spectrum. This feature is common for all Chl

a derivatives. The intensive NOE enhanced signals in the middle of the spectrum

belong to the CH and CH2 carbons, and thus these signals can be tentatively assigned

on the basis of their chemical shifts. The rest of the signals belong to quaternary

carbons appearing at δ-values > 90 ppm, or to saturated carbons having δ-values < 60

ppm. In general, this kind of appearence is typical for the carbon spectra of Chl a and

b derivatives, with some exceptions. For instance the Chls with a β-ketoester system

in ring E exhibit a recognizable 132-carbon signal at ca. 65 ppm in the spectra, when a

proton is attached to the 132-carbon. However, in order to obtain a more complete

assignment, knowledge of proton–carbon connectivities is required.
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Figure 7.  125 MHz proton decoupled 13C NMR spectrum of 132-(R)-HO-Chl a (11) in acetone-d6

(16mM).93 The signals labelled with numbers have been tentatively assigned on the basis of δC-values
and signal intensities.

The first reliable and complete assignment for the 13C NMR spectrum of Chl a

has been achieved by inspecting the 1H-coupled 13C spectra and the 13C spectra
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measured with selective proton decoupling. The long-range selective proton

decoupling (LSPD) technique was applied to achieve the complete 13C NMR

assignments of Chl a (1), its 132-(S)-epimer Chl a’, pyroChl a, and the corresponding

pheophytins.95,96 The single frequency on- and off- resonance decoupling (SFORD)24

technique was used in the total assignments of Chl b (2) and its derivatives.97 The

aforementioned assignments are still valid to date, but the methods used have some

drawbacks. One disadvantage in the carbon-detected methods is their low sensitivity,

and thus there is a need for concentrated samples and long acquisition times. The

problem often encountered with concentrated Chl samples is the formation of

aggregates. Nevertheless, the 13C nucleus and hence, the recorded carbon spectra are

less sensitive to this behaviour than the proton nucleus.

The indirect 2D proton-detected techniques have notably improved the

spectral sensitivity and resolution, when the heteronuclear connectivities are of

interest. The power of the HMQC and HMBC techniques (2.1) was shown in the

nearly complete assignment of the methanolic Chl a allomer, 132-(R)-methoxyChl a.98

The measurements were performed using 500/125 MHz for the 1H/13C frequencies

and a sample containing 16 mg of the allomer in 0.6 ml acetone-d6 (26 mM). Some

mutually interchangeable assignments could not be avoided in the case of closely

spaced carbon signals with separation less than 0.2 ppm. The combined use of the

HMQC and HMBC techniques also afforded the first unambiguous proton and carbon

assignments for the phytyl side-chain.98 Several other methanolic Chl a allomers,

including the whole macrocycle and the front part of the phytyl chain, have been

successfully assigned using these techniques.91

The DFT calculations (3.2.1) offer the possibility to calculate geometries and

NMR properties of relatively large molecules such as Chls. Facelli99 has geometry-

optimized the structures of bacteriopheophorbide a, and bacteriochlorophyll a and

calculated the chemical shifts of the 13C and 15N nuclei with the DFT method. It was

shown that most of the calculated chemical shifts correlated relatively well with the

experimental data in the literature.100 However, a few calculated chemical shifts of the

quaternary carbons deviated more than 5 ppm from the experimental literature values

assigned without 2D NMR experiments. According to the Facelli’s revised

assignments,99 the standard deviation of the calculated versus computed 13C chemical

shifts decreased from 13 to 4 ppm. Hence, a specific structure obtained in geometry-

optimization can be related to the 13C chemical shifts.
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 4.3.3 15N NMR spectra

In Chl sample solutions, the natural abundance of 15N nuclei is usually too low

to be observed in direct measurements. In the few existing assignments of 15N nuclei

in natural chlorins or their derivatives,101-104 the spectra have mainly been acquired

from 15N enriched samples. The subsequent assignments have been performed by

techniques similar to those described for the carbon spectra (vide supra). The first

chlorin 15N assignments were reported for Chl a (1) and pheophytin a (4) (Table 1)

when internuclear double resonance (INDOR)22 spectroscopy was used to measure the
15N enriched samples.101 However, recently the 1H-15N HMQC and HMBC spectra

have been measured from a 42 mM sample of mono-L-aspartyl chlorin e6 (12) in

DMSO-d6 at the natural abundance of 15N.102 The assignments for BChls a (13) and c

(14) have been obtained by the aforementioned techniques from 15N enriched samples

(Table 1).103,104

The nature of chemical bonding is clearly visible in the 15N chemical shifts, as

can be seen from Table 1. The insertion of Mg reduces the chemical shift differences,

when the shifts of 1 are compared with those of  4. The D2h symmetry element with

respect to the saturated bonding in the macrocycle of 13 also effects the chemical

shifts (Table 1). In the case of BChl a, it was shown that the solvent affects the 15N

chemical shifts.103 Apparently, an increase in solvent polarizability decreases the

chemical shift difference between the nitrogens in the lower field (N22 and N24) and

those in higher field (N21 and N23).
103 Unfortunately, unlike the TMS used for 1H and

13C spectra, there is no general standard reference compound available for the 15N

NMR spectra, even though the δN-value of liquid ammonia at 25 °C has been

proposed as a standard (δN = 0).35,105 Hence, the use of various 15N-standards (Table

1) found in the literature hinders the comparison of the absolute values of the 15N

chemical shifts.
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  Table 1. Chemical shifts (ppm) of inner nitrogens of various chlorins.
♣

1101

in CDCl3

♣
4101

in CDCl3

♦
12102

in DMSO-d6

♥
13103

in acetone-d6

♠
14104

in CDCl3

N21 163.6 102.5 128.3 189.6 199.3
N22 183.5 218.5 239.8 191.5 212.5
N23 166.4 110.9 130.0 258.5 196.6
N24 224.0 272.8 282.0 259.1 250.7

 reference (external): 
♣

5M 15NH4Cl in 2M HCl; 
♦

NH4
15NO3 (375.6 ppm);

      
♥

Me15NO2 (380.2 ppm);  
♠

3M 15NH4Cl in 1M HCl (24.9 ppm)

 

4.4 Solution conformational analysis of monomeric chlorophylls

In several NMR studies of Chls, the conformation of ring D,93 the propionic

ester side-chain and/or the front part of the phytyl group have been deduced from

proton-proton couplings.106-109 The methods are discussed in more detail in section

7.2, and in publications I and II. The conformational changes at the lower periphery of

the Chl compounds have also been estimated by comparison of the ∆δH-values found

between the Chl compounds investigated.93,110

4.5 Solution conformational analysis of chlorin-chlorin dimers

In nature, the Chl antennas absorbs light quanta and conduct the singlet

excitation energy to the photosynthetic RC, in which a Chl special pair transforms the

energy into donation of an electron to the electron acceptor, a pheophytin. The

electron is then transferred further to quinones. These charge separation and electron

transfer steps have been characterized for bacterial RCs.11,12 In the case of green

plants, the detailed picture of charge separation and electron transfer processes are

more obscure. Many biomimetic models have been constructed for investigating the
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primary photosynthetic processes.15-18 Chlorin–chlorin dimer compounds are studied

in order to mimic the antenna function and the special-pair interaction of Chls.

Electron donor–acceptor (D–A) dyad molecules with a chlorin as the donor are

constructed to illuminate the electron transfer processes.

 In order to understand the photophysical behaviour of the models, detailed

information about the model-compound conformations and relative spatial

arrangement of the chlorin and the electron acceptor unit is necessary.18 NMR

spectroscopy offers an excellent tool for the structural analysis of the model

compounds, especially when knowledge of solution conformations is required.

In the Chl solution, there are two dominating interaction mechanisms that

draw molecules together. Firstly, the π-system of a Chl can interact with the π-system

of another Chl or an aromatic molecule by the  π–π interaction mechanism. Secondly,

a nucleophile, which can be the 131-carbonyl group of a neighbouring Chl molecule

or a bifunctional solvent molecule, can coordinate to the Chl’s central Mg and bring

the molecules into close proximity directly or via a solvent bridge. In the next sections

(4.5.1 – 4.5.2), the principles for obtaining the chlorin–chlorin and chlorin–electron

acceptor compound geometries are reviewed by examining the NMR results alone and

the NMR results combined with molecular modelling studies of physically linked and

covalently linked chlorin–chlorin dimers.

4.5.1 Physically linked chlorin–chlorin dimers

A chemically simple approach to studying Chl–Chl interaction, is to dissolve

the Chl molecules in a non-nucleophilic solvent. In the absence of an external ligand,

the central magnesium coordinates to the nucleophilic part of a neighbouring Chl, i.e.

a carbonyl group, directly or via a water molecule with hydrogen bonding. The nature

of this interaction is determined mainly by the solvent, sample concentration and

temperature. In polarizable non-nucleophilic solvents such as CHCl3 (CDCl3) or CCl4,

Chl a exists mainly in the dimeric form, whereas in non-polarizable solvents like

benzene or octane, larger aggregates are formed.

In a Chl solution, there are two competing equilibria, namely the association

and dissociation of ligand L which can be a solvent molecule or another Chl. The Chl

dimer-monomer equilibrium processes are described by equations 6a-c.91
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Chl2   2Chl  (6a)

Chl + L   ChlL  (6b)

Chl2 + 2L  2ChlL  (6c)

In the case of Chl a, NMR studies have led to various proposals for the dimer

structures, of which the most convincing A–D are shown in Figure 8.91 Fong and

Koester111 have proposed the dimer structure A, relying on the chemical shift changes

between an aggregating solvent (benzene-d6) and a disaggregating solvent (acetone-

d6). They have also proposed that a similar “face to face” structure can exist in

anhydrous form with a direct coordination between the Mg and the 134-carbonyl

oxygen of the neighbouring Chl a.112

Abraham et al.113,114 have proposed the piggy-back model, B, on the basis of

quantitative double-dipole ring-current calculations, which the authors had previously

introduced for chlorins. The aggregation-induced chemical shifts (∆δH) were obtained

from measurements, in which methyl chlorophyllide a (0.08 M in CDCl3) was titrated

with methanol ligands and Chl a (0.06M in CCl4) with pyridine-d5 ligands.113,114

When the less symmetric model (B) was used instead of the Fong model (A), the

calculations produced better correlation for the aggregation-induced chemical shifts of

the Chl a protons. The weakness of model B is the direct Mg-carbonyl coordination,

indicating a shorter interplane distance between Chls than that reported in literature

(ca. 6 Å). 113,114

Kooyman and Schaafsma115 have measured the 1H spin-lattice relaxation times

(T1) for Chl a in various aggregation conditions. The authors concluded that the skew

model, C, has good correlation with the obtained rotational diffusion constants.

However, only modest correlation between the experimental ∆δH-values and the

values obtained from double dipole ring-current calculations could be established for

C.

Abraham et al.116 have remeasured Chl a in CDCl3 at low concentrations (2.8

mM), and titrated the sample with methanol-d4 using a high-field spectrometer (500

MHz). The ∆δH-values obtained from the ring-current calculations correlated best

with the back-to-back model, D. It can be applied only for the formation of a dimer

structure, whereas the piggy-back model B is capable of being a substructure in larger

aggregates.
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Figure 8. Four schematic models for Chl a dimers proposed on the basis NMR studies: A, the Fong
model; B, the piggy-back model; C, the skew model and D, the back-to-back model.

The dimer formation of methyl pyrochlorophyllide a (15) at a low

concentration (<0.01 M) has been studied in CDCl3 by titrating the sample with

methanol-d4 or pyridine-d5 using a high magnetic field.117 The ring-current calculation

produced equal correspondence with models B and D, but only modest

correspondence with model A (Figure 8).117 Consequently, it seems that the

quantitative double dipole ring-current calculations are not accurate enough to give an

unambiguous dimer structure. Nevertheless, the existence of several kinds of dimers

or even higher aggregates in CDCl3 can not be excluded. Apparently, the diversity of

the experimental system may cause the observed inaccuracy, when the ring-current

calculations are based on a single dimer model.
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Figure 9. Methyl pyrochlorophyllide a (15) and the proposed hydrogen bonding network in the
dimer.117

An early approach to studying molecular association in the case of Chls was to

build an aggregation map based on the ∆δH-values between a monomer and an

aggregate.118 The aggregation map of 132(S)-pheophytin a, pheophytin a’, (16) in

Figure 10 shows qualitatively that the ring-current induced shielding effect is

strongest around the subring B of the chlorin macrocycle.119 Hence, from the mutual

orientation of two chlorin molecules, a dimer structure can be estimated. Two dimer

geometries A and B have been constructed on the basis of the aggregation map

(Figure 10).119
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Figure 10. The pheophytin a’ (16) aggregation map, and the proposed symmetrical (A) and
unsymmetrical (B) dimer structures.119

In recent NMR studies of BChl c (14), it was shown that the intact Chl forms a

stable dimer in CCl4 at room temperature.104,120 In fact, two sets of resonances could

be observed in the 1H, 13C and 15N NMR spectra, which could also be completely

assigned using modern NMR techniques.104,120 The dimer conformation could be
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evaluated on the basis of the strong intermolecular NOE signals observed between the

protons listed in Table 2.120 The ROESY spectrum was recorded to distinguish the

NOE cross-peaks from those due to the exchange in the NOESY spectrum. A slow

chemical exchange (k = 1.8 – 1.9 s-1) between the two molecular species over a range

of mixing times, τm = 0.075 – 1.0 s, was found. The NOESY spectra measured with τm

= 0.2 – 0.4 s produced the maximum cross-peak intensities. The cross-peak intensities

for distance estimation were measured with τm = 0.15 s. These were used to calculate

quantitative distance information on the basis of a linear rate approximation.121 The

NOE intensities were transformed to distances (Table 2) utilizing the 1/r6 distance

dependency of NOE, and the known distance for an internuclear NOE reference.120

The average distance between intramolecular protons 5 and 71, assumed to be 2.89 Å

in the dimer BChls, was selected as a NOE reference. The distances obtained (Table

2) were subsequently used for building a dimer model. Finally, the dimer structure

was geometry-optimized using MM+ molecular mechanics, and the NOE distances

were used as restraints in the calculation. The optimized dimer structure is illustrated

in Figure 11.

Table 2. The protons showing intermolecular NOE in a BChl c dimer and the estimated distances.120

Protons of the
upper* BChl

Protons of the
Lower* BChl

Distance (Å)

10-CH 201-CH3 2.69
  21-CH3 3.58

  201-CH3   5-CH 3.76
  71-CH3 2.96

  181-CH3   31-CH 3.15
  71-CH3 3.68

    * see Figure 11.

Figure 11. The BChl c (14) dimer structure with an antiparallel piggy-back conformation. The energy
minimized structure has been obtained by MM+ molecular mechanics with six intermolecular distances
from NOESY experiments as constraints (Table 2).120 In the models, the farnesyl side-chains are
replaced by ethyl groups.
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4.5.2 Covalently linked chlorin–chlorin dimers

An alternative for studying chlorin–chlorin interaction is to link two chlorins

with a covalent bond to form a dimer structure. This effectively restricts the molecular

diffusion in solution. The interest in the NMR and molecular modelling studies

principally involves the dimers with a flexible linkage, allowing the theoretical

existence of various conformations. For this kind of covalently-linked molecules, the

existing geometries can be basically divided into two classes: folded and extended

conformers. In the former class of linked chlorins, the π-electron systems are stacked,

whereas in the latter, the π-systems are clearly separated.

A large number of totally synthetic bischlorins has been used for modelling

natural photosynthesis.17 A vast majority of these molecules have been crystallized

and structurally analyzed by X-ray diffraction. However, the model molecules based

on natural chlorins, e.g. Chl derivatives, are seldom crystallizable. In addition, the

solution conformation usually differs from the crystal form, as the crystal packing

forces may affect the geometry of a molecule. This fact should be noted, especially,

when the flexibly linked models are involved.

Several pyroChl- and pyropheophytin-based compounds have been

synthesized to model the Chl special-pair interaction in the photosynthetic RC.15,18

The structural elucidation of the synthesized compounds 17–23 has been performed

relying solely on qualitative analysis of ring-current induced chemical shifts in the

proton NMR spectra.

Boxer and Closs122 have synthesized the first Chl based bischlorin 17 (Figure

12) from two pyrochlorophyllide units. The 1H NMR spectra of 17 were measured in

dry benzene-d6, in benzene-d6 saturated with D2O or in benzene-d6 with 5% pyridine-

d5. Extremely broad resonances were observed in dry benzene, implying

intermolecular aggregation. In contrast, only narrow resonances appeared in the

spectrum measured in the pyridine–benzene solvent mixture. Obviously, pyridine

coordinates strongly with the central Mg, and thus prevents any specific

intramolecular association between the chlorin molecules. The measurement of the 1H

NMR spectrum in water-saturated benzene produced one set of mostly narrow proton

signals. Characteristically, strong upfield shifts were observed for the 121 and 132

protons (∆δ = -1.81 and -0.56 ppm, respectively), whereas the signal of protons 82
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was clearly shifted downfield (∆δ = 0.50 ppm). As a result, the authors concluded that

17 forms a water-linked C2 symmetric structure (Figure 12) in wet benzene.
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Figure 12. The bischlorin 17 and the proposed C2 geometry with linked H2O molecules.122

Boxer and Bucks123 have prepared the chlorin trimer 18. NMR analysis

methods, similar to those applied for 17, were used, except that the specific

conformation of 18 was deduced with a 1.8 mM sample in methanol-d4 (0.6 M) –

benzene-d6. Adjusting the chlorin subunits spatially in such a way that the observed

∆δH-values could be explained by ring-currents, an average 3D-structure shown in

Figure 13 was proposed.123 In fact, the authors also prepared a derivative of 18, in

which Mg atoms were replaced by Zn atoms. For this compound, a similar 3D-

structure was suggested.
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solution.123
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Wasielewski et al.124 have synthesized the bischlorin cyclophane 19 (Figure

14). The 1H NMR spectrum measured in pyridine-d5 – benzene-d6 (1:9 v/v) showed

equivalent chemical shifts for the macrocycle protons. The protons at the periphery of

the macrocycles experienced only small shift changes compared with the reference

compound, methyl chlorophyllide. Consequently, a symmetrically folded 3D-structure

(Figure 14) was proposed for 19. However, the authors concluded from the NMR data

that a small tilt angle is possible between the macrocycles. A similar structure was

suggested for the corresponding Mg-free derivative.
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Figure 14. The cyclophane structure 19 and its suggested 3D-structure.124

Osuka et al.125 have synthesized pyropheophorbide dimers having covalent

linkages of various lengths. The aim of the study was to prepare structurally well-

defined models with closely stacked face-to-face geometries. The dimer geometry

was deduced by analysing the ∆δH-based aggregation maps, which were constructed

using monomer-like structures as a reference for comparison. The ∆δH-values of the

meso-protons demonstrate the degree of macrocycle stacking, since the length of

linkage grows gradually in the dimers 20–23. The ∆δH-values of the meso-protons

varied in the range of -0.02 to +0.30 ppm for 20, -0.01 to -1.62 ppm for 21, -0.83 to

+1.50 ppm for 22 and -0.50 to -0.64 ppm for 23. Thus, the anhydride linkage in 20 is

too short to allow stacking of macrocycles. The increased linkage length of  21 allows

a partial stacking as depicted in model A in Figure 15. Both the dimers 22 and 23

exhibit face-to-face geometry, as shown in models B and C, respectively (Figure 15).
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However, the uniformly larger upfield shifts in the macrocycles of 22 indicate closer

interplanar distances for this dimer.125
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Figure 15. The schematic 3D structures of bispyropheophytins 21, A; 22, B and 23, C, differing
recarding the length of the rigid linkage.125 The models have been constructed on the basis of the ∆δH

aggregation maps obtained from the 1H NMR measurements in CDCl3 or acetone-d6.

In an attempt to prepare a totally synthetic bischlorin separated by a long

unsaturated linker, the chlorin–spirochlorin dimer 24 (Figure 16) was produced

instead.126 Nevertheless, the geometry of 24 and the applied structural analysis

methods proved to be highly interesting. The solution structure of 24 was studied in

0.5 % pyridine-d5/CDCl3, and the 1H NMR spectra were assigned utilizing ROESY

and COSY NMR techniques. One ROE correlation was observed between the proton

groups of different chlorin subunits (Figure 16) in the ROESY spectrum. In addition,

the ring-currents caused notable upfield shifts in the overlaying parts of the chlorin

macrocycles. Computer-aided molecular modelling of 24 was performed with MM in

a Tripos force-field. The geometry-optimization of 24 was begun from partially

refined X-ray coordinates, and performed without constraints. The optimized
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geometry was close to that of the X-ray structure. The 3D-model structure in Figure

16 is well in agreement with the NMR data obtained.126
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Figure 16. The structure of chlorin–spirochlorin dimer 24.126 Significant upfield shifts were observed
for protons inside the circled area. The double headed arrow refers to the protons having an interchlorin
ROE correlation. The 3D model on the right represents the energy-minimized structure for 24. Chlorin
and spirochlorin are marked with white and dark stick colours, respectively.

In addition to 24, a more flexible chlorin–chlorin dimer 25 has been

synthesized and structurally studied.127 In the 1H NMR spectrum of 25 clear

differences in chemical shifts were observed for some chlorin proton groups. Notably,

the protons 10 and 121 were shifted upfield (∆δ = -0.35 and -0.7 ppm, respectively) as

compared with the corresponding protons 10’ and 121’ (Figure 17). The authors did

not report any interchlorin ROE correlations. However, the conformation for the

vinylic part of the linker group was revealed by the ROE correlations depicted in

Figure 17. The dimer 25 can adopt several conformations due to the presence of a

flexible linkage in it. Hence, various conformations for the starting structures in the

geometry-optimization were created by using a simulated annealing protocol (heating

to 700 °C and cooling to 200 °C, with 1000 cycles) in the Tripos force-field.127 From

the resulting 80 structures, 10 were selected for full geometry-optimization on the

basis of the relative orientation of the chlorin rings. The preferred geometry for dimer

25, i.e. the structure providing the best correspondence with the NMR data, is

presented in Figure 17.
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correlations that show the orientation of the vinylic part of the linker. The 3D model on the right is the
energy-optimized structure of  25. The hydrogens and most substituents are omitted for clarity.

4.6 Solution conformational analysis of chlorin-related electron
      donor–acceptor compounds 

Only small number of covalently-linked electron donor (D)–acceptor (A)

dyads, in which the donor is a chlorin, have been synthetized and structurally

analyzed.15,18 In contrast, a variety of compounds exist in which the electron donor is

a porphyrin.15,16,18 As electron acceptor units, quinones have been widely applied and,

more recently, fullerene C60.
15,16,18,128

4.6.1 Chlorin–quinone and porphyrin–quinone molecules

Porphyrin– or chlorin–quinone interactions are weaker than the previously

discussed chlorin–chlorin interactions (vide supra).18 Hence, single-bridged

porphyrin– or chlorin–benzoquinones adopt an open or unfolded solution

conformation. In order to obtain a defined folded geometry, covalently double-

bridged porphyrin–benzoquinones have been prepared.18 Another approach to achieve

a defined geometry is to use a linkage which favours certain conformation(s).

Thus, fixed unfolded geometries have been established for synthetic 1,4-

cyclohexylene-bridged porphyrin–quinones with a cis- or  trans-configuration (26a–b

and 27a–b).129-131
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According to the proton couplings obtained from the COSY spectra, the

cyclohexylene bridge adopts a chair conformation in the case of porphyrin–quinones

26a–b.129,130 The NOE enhancements measured between the cyclohexane and

porphyrin protons proved that the porphyrin and quinone are in an orthogonal

orientation. Semiempirical AM1 molecular modelling calculations were used to

estimate the favourable quinone orientation with respect to the cyclohexane ring. The

resulting potential energies for the 26 isomers showed that the quinones have a deep

potential energy well when being in an orthogonal orientation (Figure 18), for which

the energy barrier is less than 1 kcal/mol at φ = 0 ±50°. Nevertheless, another feasible

local energy minimum (ca. 1 kcal/mol higher ∆Hf) was found for the trans-compound

26a (φ = 180°). The rotation barrier between the minima was 7 kcal/mol. In contrast,

the cis-compound 26b exhibited a local energy minimum when φ = 180°. However,

this rotamer was 5 kcal/mol energetically higher than the rotamer in a global energy

minimum.
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Figure 18. Orthogonal conformations of cyclohexane-quinone trans- (26a) and cis-isomers (26b). The
bonds forming the torsion angle φ are in bold. 129,130

In the case of substituted quinones 27a and 27b, the cyclohexane–quinone

conformations could also be analyzed on the basis of NOE enhancements (Figure

19).131 In fact, the NOE observed proton irradiation experiments clearly indicated that

the quinone of the trans-isomer 27a can adopt two orthogonal conformations with φ =
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0 or 180° (Figure 19). For the cis-isomer 27b, the observed NOE between the protons

1 and 4 in the cyclohexane ring suggested a twisted-boat conformation for the ring. A

chair conformation of the cyclohexane ring could be ruled out, since the protons are

too distant for NOE observation. Supporting evidence for the NMR evaluated

conformation was obtained from semiempirical MNDO molecular modelling

calculations, which produced energy minima for all the deduced conformers.131
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Figure 19. The observed conformations in CDCl3 for the cyclohexane–quinone trans- (27a) and cis-
isomers (27b).131 The bonds forming the torsion angle , φ, are in bold. The numerical values (in %) of
NOE enhancements between different protons are marked with arrows.

The larger π-system of an anthraquinone compared with that of a

benzoquinone also indicates stronger π–π interaction in porphyrin– or chlorin–

antraquinone dyad structures. Consequently, conformational folding has been

observed for flexibly linked porphyrin– or chlorin–anthraquinones.

Sanders et al.132 have synthesized sulphonyloxy-linked porphyrin–

anthraquinones 28 and 29 (Figure 20), and have studied their structures by 1H NMR

spectroscopy in CDCl3. These studies were based on the antraquinonyl proton upfield

shifts, observed when δ-values of the dyad were compared with those of a like

anthraquinonyl monomer. By inspecting molecular models, the authors suggested that

the anthraquinone ring is folded over the porphyrin macrocycle in 28 and 29, as

depicted in models A and B (Figure 20). However, time averaging can occur under

the experimental conditions and, therefore, the measured data suggest the presence of

several conformations in equilibrium besides A and B. It is notable that the Zn(II)

coordination affects the quinone folding mechanism in 29. When a sample of 29 was
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titrated with pyridine-d5 ligands, a gradual change from conformation B to

conformation A was observed.
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Figure 20. The suggested average conformations for 28 (A) and 29 (B) on the basis of the ∆δH-values
observed for the anthraquinonyl group.132

Tauber et al.133,134 have synthesized two pyropheophytin–antraquinone dyads,

the P4-stereoisomers 30a–b, both of which experienced conformational folding in

CDCl3. The preliminary conformational analysis was performed by calculating the

∆δH-values for both the phorbin and the quinone moieties in the dyads, and

constructing molecular models that explain the ∆δH-values. The proposed models for

the P4(S)- and P4(R)-epimers A and B, respectively, are illustrated in Figure 21. It

was concluded that conformational folding contributes significantly in the solution,

and that the constructed models do not represent a single folded conformation, but are

a result of time-averaging processes between several conformations in equilibrium. A

more detailed conformational analysis for 30a–b and their the Zn(II) complexes are

presented in section 7.3 and publication III.
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Figure 21. The pyropheophytin–antraquinone P4-epimers 30a,b and the models proposed as a result of
conformational analysis for A (P4(S)-30a) and B (P4(R)-30b).133

Interestingly, dyads 30 and 31, although consisting of the same donor and

acceptor units, did not show any significant folding, when there was a short four-

atomic ether bridge between the pyropheophorbin and anthraquinone.134,135 This

finding was attributed to the shortness and rigidity of the spacer group.134
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4.6.2 Porphyrin–C60 dyads

Fullerenes have been shown to function well as electron acceptors in artificial

electron D–A systems.128 The fullerene C60 is a fully-conjugated structure exhibiting a

football-like construction in which 20 cyclohexene and 12 cyclopentene-rings are

fused to form a sphere, as depicted in Figure 22. In the external magnetic field, the 6-

membered rings exhibit diamagnetic ring-currents, while the 5-membered rings

induce strong paramagnetic ring-currents.136 The overall ring-current of the C60 is

neutral, but the average effect of the C60 sphere is essentially deshielding on the NMR

chemical shifts of nuclei in it’s proximity.136 In the case of fixed geometries, both
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shielding and deshielding effects can be experienced by the nuclei in the vicinity of

C60.

 
Figure 22. The 2D and 3D view of C60 fullerene.

The curved π-surface of C60 tends to interact with other molecules. NMR, X-

ray and molecular modelling investigations of unlinked tetraphenylporphyrin and C60

have proven that the electron rich C–C of the 6,6-ring juncture interacts closely with

the core of tetraphenylporphyrin (Figure 23).137 In the crystal structure, the shortest

measured distance between the porphyrin plane and a C60 carbon was 2.7 Å, whereas

the distance in a typical porphyrin–arene π–π interaction lies in the range of 3.0 – 3.5

Å.137 The former distance could not be reproduced by the PM3 semiempirical

calculations or ab initio minimal basis set calculations.137 A separation of 3.3 – 3.4 Å

between porphyrin and C60 was found as expected, since the electron correlation was

neglected in these calculations. The close interaction (2.7 Å) may originate primarily

from forces that are van der Waals in nature. In fact, the density functional calculation

with a nonlocal correction for correlations produced a model, in which the porphyrin–

C60 separation was 2.8 Å. The distance, indicative of close interaction (2,85 – 2.90 Å),

was also obtained by using UFF and PCFF138 MM force-fields which adequately take

into account the van der Waals interaction.137 Moreover, the formation of a

porphyrin–C60 complex in toluene-d8 was established by NMR studies, since both the
13C δ-values of fullerene and the 1H δ-values of the NH protons of the porphyrin

showed upfield shifts.137
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PhPh

Ph Ph

Figure 23. The interaction between unlinked tetraphenylporphyrin and C60 as determined by X-ray,
NMR studies and  molecular modelling calculations.137 The electron-rich C-C bond of the 6,6-ring
juncture, lies over the centre of the porphyrin ring.

The porphyrin–C60 dyads 32 and 33 show some conformationally interesting

features.139-142 The flexible bi-linkage of dyad 32 allows the existence of various

conformations. However, the 1H NMR spectrum of 32 in CDCl3 shows that the

porphyrin meso-protons 5 and 15 are clearly shifted upfield with ∆δH-values of 0.5

and 0.3 ppm, respectively.139 Apparently, the dyad exhibits essentially a folded

conformation. Molecular mechanics calculations produced a folded lowest-energy

conformation (Figure 24) in which the C60 is lying in van der Waals contact over the

centre of the porphyrin plane.141

In the case of dyad 33, the short linkage effectively restricts the number of

possible conformations. Thus, the C60 can be located on either side of  the porphyrin

plane. Furthermore, the high symmetry of the tetraphenyl porphyrin signifies that

similar chemical shifts are expected for both conformers. Consequently, the 1H NMR

spectrum measured in CS2 gave only one set of signals for 33.140 The MM

calculations showed that the energy minimum is found with the conformation

depicted in Figure 24.141,142 Interestingly, the porphyrin–C60 centre–centre separations

are ca. 7 Å and 9.9 Å for dyads 32 and 33, respectively.141
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Figure 24. The porphyrin–C60 structures 32 and 33, and their conformations obtained by MM
calculations (Discover/Insight II program, Biosym Technologies).141,142 The pyrrolidine N-methyl
substituent is in trans-orientation with respect to the porphyrin plane in the model of 33.142

Imahori et al.143 have synthesized zinc-tetraphenylporphyrin–C60 dyads 34–37,

in which C60 is covalently linked via an amido group to the ortho (34), meta (35) or

para (36 and 37) position of one phenyl ring of the porphyrin. In addition, the

cyclohexene ring, fused to the 6,6-ring C–C bond of C60, is attached to the 3,4 or 2,3

position of the phenyl spacer group. The 1H NMR spectrum of the ortho dyad 34 in

CDCl3 showed exceptional behaviour.143 The proton resonances of its porphyrin

moiety and cyclohexane ring were expanded over a wider spectral region than in the

case of dyads 35–37. Obviously, the mutual ring-currents of the porphyrin and C60

caused the observed range of chemical shifts in 34 due to conformational folding.
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Molecular mechanics calculations were performed in a CHARMm force-field

to find the lowest-energy conformations for 34–37.143 The conformational search was

performed by individually rotating three single bonds (φ1,φ2 and φ3, Scheme 1) in the

linker group in steps of 30°. Each of the 1728 conformations generated was energy-

minimized by constraining the geometry of the porphyrin macrocycle to be planar. As

a result, a lowest-energy, folded conformation was obtained only for the dyad 34, in

which C60 is located 3.2 Å above the porphyrin plane (Table 3). The molecular

modelling calculations showed that dyad 36 favours a stretched conformation,

whereas the dyads 35 and 37 adopt chair-like conformations.143

OH
NZnP

φ1 φ2 φ3
φ4

Scheme 1

Table 3.  Molecular mechanics calculated conformations for porphyrin–C60 isomers 34–37.143

Compound φ1 φ2 φ3 φ4 Ree
a Rcc

b

34 -78.27 133.02 174.50 -129.15 3.2 7.6
35 95.86 51.17 -175.73 3.10 9.8 14.4
36 86.95 -48.64 179.07 -10.82 11.3 18.6
37 96.68 52.14 -175.81 -131.67 5.9 12.5

aEdge-to-edge distance (Å). bCentre-to-centre distance (Å).
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4.7 NH tautomerism in porphyrins and chlorins

According to literature sources,71,87,144-147 only a few studies exist about the

NH tautomerism in chlorins. In contrast, the elaboration of the mechanism of the NH

tautomerism in porphyrins (Figure 25) has been an important objective in numerous

experimental and theoretical investigations.148-150 In the following, the NH

tautomerism of porphyrins, investigated by solution NMR and molecular modelling,

is briefly discussed.

NHa
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N

HbN

NHb

N

N

HaN

N

NHb

HaN
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HbN

N
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Figure 25. The spectroscopically (NMR) detected porphyrin trans NH tautomers and the NH exchange
reactions between them.

Storm and Teklu71 obtained the first experimental evidence by dynamic NMR

(DNMR) spectroscopy that NH tautomerism occurs in both chlorins and porphyrins.

The tautomerism was investigated by variable-temperature 1H NMR measurements

with or without deuterium labelling. The exchange reaction was detected directly in

the behaviour of the NH proton signals or indirectly in the behaviour of the porphyrin

β-pyrrolic proton signals. Since the pioneering work of  Storm and Teklu, the NH

tautomerism of porphyrins has been widely investigated by 1H, 13C and 15N DNMR

methods.148-150 The activation free-energy (∆G‡) can be calculated in terms of the

coalescence temperature (TC) and exchange rate-constant (kC) using the Eyring

equation (Eq. 7 in section 7.4).22,151 Variable-temperature spectra can also be analyzed

by the line-shape analysis, which can afford the coalescence temperature more

accurately.151 The line-shape analysis can also result in the kinetic exchange rate-

constants between the tautomers.150 The thermodynamic parameters, enthalpy of

activation (∆H‡) and entropy of activation (∆S‡), can be derived from the

aforementioned rate-constants.150,151 Under slow NH-exchange rate conditions (the
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rate still being of the same order of magnitude as the reciprocal of T1), saturation

transfer experiments can be used to define the rate constants.150,151

Only trans NH tautomers (N22-H, N24-H and N21-H, N23-H; Figure 25) of

porphyrins have been detected experimentally by NMR spectroscopy.150 In the case of

unsymmetric, 2-substituted 5,10,15,20-tetraphenylporphyrins, two tautomeric barriers

have been observed between the major trans-tautomers.150 The calculated rate

constants indicated that a directional preference prevails in the NH tautomeric

process, i.e. the exchange proceeds via the k1/-k1 and k3/-k3 rather than the k2/-k2 and

k4/-k4 pathways (Figure 25).

The kinetic evidence obtained from NMR spectroscopy and the quantum

mechanical calculations have led to the generally accepted conclusion that the NH

tautomerism proceeds via cis-tautomer intermediates with a stepwise proton or

hydrogen transfer mechanism.148-150 The semiempirical MNDO, AM1 and PM3

calculations in the RHF mode have produced heat of formation energies (∆Hf) which

were 6 – 10 kcal/mol higher for the porphyrin cis-tautomers than for the trans-

tautomers (Table 3).152-154 By these methods, the saddle-point (∆Hf) energy, i.e.

transition state (TS) energy between the trans- and cis-tautomers has been calculated

to be 28-43 kcal/mol. The calculations by advanced ab initio methods such as the

second order Møller-Plessed (MP2) and the DFT methods, produced energy values

8.1 – 9.1 and 13.1 – 18.6 kcal/mol for the cis and TS structures, respectively.148,155,156

The experimental activation energy obtained for the NH tautomerism of the

unsubstituted porphyrin by the 1H and 3H DNMR line-shape analysis is ca. 9.0

kcal/mol at 300 K.157 However, the proton (and triton) tunnelling effects contribute to

this energy value.157 When the tunnelling was taken into account in the calculation, an

activation energy of 10.8 kcal/mol was produced instead of 18.6 kcal/mol in the DFT

method (DFT(4) in Table 3).148
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Table 3.  The ∆∆Hf energies (∆∆Hf = [∆Hf(cis) or ∆Hf(TS)] - ∆Hf(trans) in kcal/mol) of unsubstituted
porphyrin relative to the lowest-energy trans-tautomer calculated by semiempirical and ab initio
methods.

Semiempirical ab initio

MNDO152

(RHF)
AM1153

(RHF)
PM3154

(RHF)
MP2155

DFT(1)
♣

DFT(2)
♣

DFT(3)
♣

DFT(4) ♣

 cis 10 7 6 10.7 8.2-8.4
♠

8.7-8.9
♠

8.1-8.3
♠   9.1

 TS 43 35 28 16.7 13.7-16.8
♠

13.9-17.0
♠

13.1-16.2
♠ 18.6

♣
DFT(1) = B3-LYP/6-31G(d),156 DFT(2) = MP2/6-31G(d )//B3-LYP/6-31G(d ),155 DFT(3) = B3-

LYP/TZ2P,155 DFT(4) = BH&H-LYP/6-31G(d,p).148

♠
In the ranges, the lower energy-values have been calculated with zero-point vibrational energy

correction, whereas the higher energy-values have been produced without the correction.

The comparison of the energies in Table 3 demonstrates that the semiempirical

methods estimate relatively well the energy values for cis-tautomers, but for the TS-

structures the energies are clearly overestimated. It has been reported that the

semiempirical methods show similar qualitative behaviour as the ab initio methods in

the calculations of the porphyrin structure. However, the former methods clearly tend

to distort the symmetry.155 The calculations with semiempirical methods produced C2v

symmetry-broken structures for the porphyrin macrocycle in the ground state,

whereas the inclusion of electron correlation in the ab initio methods restored the

higher D2h symmetry.155

In a recent ab initio dynamics study of a free-base porphyrin, it was found that

NH tautomerization prefers a stepwise mechanism, in which a hydrogen migration

step consists of two separate stages of motions.148 In the first stage, the porphyrin

macrocycle is deformed so that the donor and acceptor sides are brought into such a

close proximity that a local hydrogen atom transfer can occur in the second stage. The

deformation is reported to account for nearly 50 % of the total activation energy.
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5  Aims of the present study

The principal aim of the present work was to analyze the solution structures of

the natural chlorin derivatives utilizing NMR spectroscopy, supported by computer-

aided molecular modelling. A primary objective in the analysis was to define the

three-dimensional structures of Chl derivatives. The definition of the 3D structures

included the determination of the stereochemistries of the chemically modified parts

in the Chl derivatives, as well as the conformational analysis of the propionic acid

residue, of the front part of the phytyl group and of ring D. In addition, the

intramolecular orientation and distances between the electron donor and acceptor

subunits in the dyad molecules were targeted for analysis. A secondary goal was to

elucidate some fundamental structure-dependent properties of the natural chlorins,

such as their NH tautomerism and aromaticity.

The basic approach in the structural analysis involved utilization of modern

NMR techniques to obtain experimental data. The NMR data, comprising the

measured spin-spin couplings, the NOE (ROE) enhancement correlations and the

chemical-shift values, formed the basis for the structural elucidation. The NMR data

were supported by the computer-aided molecular modelling. The molecules studied

were geometry-optimized by performing the energy-minimization using the MM+

molecular mechanics method or the AM1 and PM3 semiempirical methods.
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6  Experimental

The experimental conditions for NMR measurements are described in

publications I – V. The parameters of the HMBC spectra of 11 are given in Table 4

and Figure 27.

All the NMR measurements were performed using a Varian UNITY 500 MHz

or a Varian INOVA 300 MHz NMR spectrometer. The spectra were measured from

freshly prepared samples to avoid signal line-broadening observed for aged samples.

Chloroform co-distillation was used to remove the water from the Chl derivatives,

prior to vacuum drying and dissolving the sample.

The computer-aided molecular modelling calculations were performed by the

methods included in the HyperChem 4.5 software package. The calculations were run

on various 486 and Pentium PC computers during the course of the studies.

The molecular modelling methods and equipment are described in

publications II –V for the studied compounds, the exception being compounds 38a,b.

The molecular modelling parameters for 38a,b and methyl chlorophyllide a mono-

hydrate are given below. The structures presented in Figure 29 were energy-optimized

by the PM3-UHF method. The optimizations were performed using a Polak-Ribiere

conjugate gradient algorithm by setting the convergence of the gradient to 0.01 kcal x

Å-1 x mol-1. The starting structures for the optimization were constructed on the basis

of the conformational data obtained from NMR. However, a H2O ligand was

arbitrarily inserted above the chlorin plane (on the same side as the C17 substituent).

The calculations were run on an Intel Pentium III PC computer with 128 Mb RAM

and 450 MHz clock frequency. For each system studied, the convergence was reached

in a few hours.

The chlorophyll derivatives studied in this work have been prepared in the

Laboratory of Organic Chemistry at the University of Helsinki. The Chl a and b were

isolated from clover leaves by Hynninen’s method,158 modified for large-scale

preparation. The bonellin dimethyl ester (3) was prepared by Montforts’s group in the

University of Bremen.21
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7  Review of the results

In publications I – III, the solution structures of the chlorophyll a derivatives

38–40 were analyzed based on complete assignments of the 1H NMR spectra and the

utilization of the δH and JH-H values as well as the ROE correlations. In publication I,

the absolute configuration was deduced at C132 and the conformations of ring D, the

propionic acid residue and the front part of the phytyl side-chain were determined for

the methanolic allomers, i.e. the 132-methoxyChl a epimers 38a,b. In publication II,

the conformations of the aforementioned structural subunits were also defined for the

dyad epimers 39a,b. Further, the ∆δH and ∆δC values were used for constructing the

3D structures for the dyads, which were then energy-optimized by molecular

mechanics. In publication III, the atropisomerism and dynamics of chlorin–C60 40

were studied by 1H DNMR and molecular modelling. The principles and results are

examined in sections 7.1 – 7.3.
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In publications IV and V, the nature and existence of NH tautomerism in

natural chlorins were studied using bonellin dimethyl ester 3 and Chl a and b



55

derivatives 41–45. The results obtained by DNMR in combination with semiempirical

molecular modelling for the NH tautomerism are analyzed in section 7.4.

NH

N

N

R1

CO2Me

CO2Me

NH

N

N

CO2Me

O OO

NH

N

N

CO2Me

O
R2

41 R1= Me, R2= H,
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7.1 Assignment of the 1H, 13C, 15N NMR spectra of chlorophyll
derivatives and determination of the absolute configuration
at C132

For the proton spectral assignments of Chl a derivatives 38–40, the signals

arising from the 3-vinyl and/or 8-ethyl spin-systems are easily recognizable due to

their typical δH and JH-H values observed in the spectra. The full 1H assignment was

further performed by deducing the 1H-1H connectivities in the 2D ROESY spectra.

Figure 26 shows that, by starting from any reliably assigned resonance of the chlorin

macrocycle, a nearly complete assignment of the macrocyclic protons can be obtained

using the ROE connectivities.

N N
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CO2phytyl
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H
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17

18181

171D
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Figure 26.  Double-headed arrows drawn between proton groups show the ROE correlations in
derivatives 38a and 38b. The ROE correlation arrows in structure B define the configuration at the 132-
carbon.
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The absolute configuration at the 132-carbon in the methoxyChl a epimers

38a,b could be defined on the basis of the ROE correlations observed between the

methyl protons of the 132-methoxy substituents and the protons 17, 171 or 181, as

depicted in Figure 26. This principle was utilized later to define the stereochemistry at

C132 or C151 in other methanolic allomers of Chl a.93

The performance of 1H spin simulation was a prerequisite for unambiguous

assignments of the propionic side-chain 171-CH2 and 172-CH2 protons, as well as for

achieving accurate δH and JH-H values (publications I and II). A tentative assignment

could be achieved for the aforementioned spin-system by selective proton saturation

experiments. The geminal proton pairs (171-CH2 and 172-CH2) could be also

identified from an HMQC experiment, which reveals the protons attached to the same

carbon. In principle, the mutual assignment of the vicinal proton pairs could be

extracted from an HMBC experiment. However, in the present case, the 171-CH2 and

172-CH2 protons showed correlations only to the same carbon nuclei, which was

insufficient for assignment.

 In general, the HMBC and HMQC (or HSQC) experiments provided a

powerful tool for the assignments of the 13C and 15N NMR nuclei in the chlorins

studied. In publication II, completely assigned 13C spectra could be obtained for dyads

39a,b by using the HMBC and HMQC techniques. A few interchangeable signals

were present due to the lack of resolution in the 13C dimension.

The introduction of gradient selection (gs) has greatly improved the efficiency

of the aforementioned indirect heteronuclear techniques. When a sample of bonellin

dimethyl ester (72 mM in CDCl3) was set up for an acquisition over the weekend in a

conventional 1H-15N HMBC experiment, hardly any signals could be detected from

the spectral base-line. However, the use of the corresponding gsHMBC experiment

afforded clear correlation signals during an overnight acquisition (publication IV,

Figure 2).

In the 1H-13C HMBC experiment, the difference between the phase-cycled and

gradient selection versions is less prominent. Nevertheless, the comparison of the

spectra of each type recorded for chlorin 11 (Figure 27) demonstrates clearly the

advantage of the gs-technique. Despite the fact that gsHMBC was recorded at a lower

magnetic field with less than one-third of the transients as compared with the
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conventional HMBC spectrum (Table 4), the quality of the former spectrum is

superior to the conventional one. The main defect in the conventional spectrum is the

t1-noise, which causes some artefact noise in the spectral region of the intensive

methyl resonances. The fact that the correlation signals are narrow in the F2

dimension of spectrum B (Figure 27) is due to a larger number of increments used in

the acquisition of the spectrum B as compared with spectrum A. The slightly shorter

evolution time, applied for the evolution of long-range couplings in the gsHMBC

experiment, probably prevents some weak couplings from becoming visible in the

spectrum, e.g. the correlations between H18-C16 and H18-C19.

   Table 4.  The distinctive parameters of the recorded HMBC spectra of 11 (Figure 27).
HMBC (A) GsHMBC (B)

Equipment Varian Unity 500 Varian INOVA 300
Acquisition time of a single fid* 0.14 s 0.26 s
Evolving delay for long range couplings 70 ms 63ms
Number of transients 110 32
Number of increments 384 512
1H frequency 499.8 MHz 300.1 MHz
13C frequency 125.7 MHz 75.5 MHz
Spectral width in F1 7000 Hz 4000 Hz
Spectral width in F2 30000 Hz 17000 Hz
Receiver gain 41 dB 60 dB
Total acquisition time 14.5 h 6.0 h
Collected data matrix 2 x 384 x 2K 1 x 512 x 2K
Zero-filled to data matrix 2 x 1K x 4K 1 x 1K x 4K

*fid = free induction decay
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Figure 27. Expansions of the HMBC spectra of 132(R)-HO-Chl a (11) containing many quaternary
carbons. The spectra were recorded at 300 K using a 16mM sample in acetone-d6. Spectrum A is a
conventional HMBC spectrum recorded on a Varian Unity 500 spectrometer.93 Spectrum B is a
gradient selected (gs) HMBC spectrum recorded on a Varian INOVA 300 spectrometer. In both
spectra, the delay between scans was 1 s, the delay for suppression of the 1JCH couplings was 3.6 ms
and the delay for evolving the long-range couplings was 65 ms. The spectra were processed using a π/2
shifted and a non-shifted sine-bell function in the F1and F2 domains, respectively, prior to Fourier
transformations. The distinctive parameters in the spectra are listed in Table 4. The vertical scale is
adjusted in the spectral plots to show clear correlations above the base-line noise level.
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7.2 Solution conformations of ring D, the propionic side-chain
and the front part of the phytyl group in the chlorophyll
derivatives

The conformations of Chl compounds can be studied by measuring the 3JH-H

values of the propionic acid residue and the front part of the phytyl chain, in which

specific conformations dominate on the NMR time-scale. The solution conformation

of ring D can be estimated by inserting the measured vicinal coupling values between

the 17 and 18 protons into the simple Karplus equation (Eq. 6).

3JH-H = 10cos2φ (6)

The application of the original Karplus equation (Eq. 2) or some more advanced

related equations was not justified, since ring D is structurally very different from

those compounds that are used in the parameterization of these equations. However,

the φ-values obtained from equation 6 provide at least qualitative information, when

the φ-values of different Chl derivatives are compared. Thus, the φ-values of 106° and

103° obtained for the methoxyChl a epimers 38a,b are clearly smaller than the 117°,

obtained as the φ-value of Chl a (publication I), thus indicating increased distortion of

ring D in 38a,b. Obviously, this is a consequence of increased steric crowding exerted

by the C132 substituents in 38a,b.

The propionic side-chain was analyzed as an ABCDX (X = H17) spin-system

in publications I and II. The computer simulation with LAOCOON-3 type MDL

analysis using PERCH software159 afforded a relatively good correspondence between

the simulated and measured spectra as depicted in Figure 4 of publication I and in

Figure 4 of publication II. The simulation produced a solid assignment for the side-

chain protons and 3JH-H coupling values, which could be used in the conformational

analysis.

The rotamer populations of the propionic side-chain were calculated from the

simple equations (publication II, Eqs. 2 and 3). The simulated 3JH-H couplings were

inserted into these equations, in which the model-compound couplings (publication II,

Table 3) were used as references for the staggered rotamers. Because the model

compound couplings were obtained from similarly substituted cyclohexanes, the non-

equivalence of the systems is a possible source of error. This was obvious in the case
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of rotamers 1a–1c (Figure 28), for which the model deviates significantly from the

structures studied. The rotamers 2a–2c are more distant from the ring effects, being

more like the model compound, and hence populations should also be more accurate.
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Figure 28. The staggered rotamers of the propionic ester side-chain (1a-2c) and the front part of the
phytyl group (3a-3c). The ap and g denote antiperiplanar and gauche, respectively.

In publications I and II, the rotamer populations of the front part of the phytyl

group (3a–3c, Figure 28) were analyzed using similar methods. The P1-CH2 and P2-

CH protons form an ABK spin-system, couplings of which could be measured for

chlorins 38a–b. However, in the case dyads 39a,b, the line shapes were simulated due

to the overlapping of the signals in the 1H NMR spectra. For 38a,b, the measured 3JH-

H of  7.1 Hz for the fragment implies that only the skewed rotamers are populated

(50/50) when the populations are calculated using the model-compound couplings

(publication II, Table 2). In the simulation of the phytyl front part for 39a,b, two

distinct vicinal couplings were obtained for the spin systems. Consequently, the

population for each rotamer could be calculated (publication II). However, in the

absence of absolute assignment for the P1-CH2 protons, skewed rotamers 3b and 3c

could not be identified without molecular models (publication II and section 7.3).
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Molecular modelling was performed for the structures A–C (Figure 29), which

were analogical structures for 38a,b and Chl a, respectively, in order to illuminate

their 3D structures and to test the molecular modelling methods (Figure 29).160 The

starting structures in the modelling were built on the basis of structural parameters

presented in publication I. However, one water molecule was added as a ligand for

Mg(II) and the phytyl group was replaced by a methyl group to reduce the size of

calculation in the modelling. Subsequently, the structures were energy-optimized

without constraints using the PM3-UHF method.

In the models obtained (Figure 29),160 the Mg atom is located ca. 0.2 Å above

the plane of the nitrogens, whereas the oxygen of the water molecule is situated ca.

1.9 Å above the metal. In the analogical models of 38a,b, the crowding in the lower

chlorin periphery causes deformations in the macrocycle. Figure 29 shows that this

behaviour becomes evident, when the deformed macrocycles of A and B are

compared with the nearly planar macrocycle of C. However, there are some

differences between the experimentally obtained parameters and the calculated ones,

an example being the torsion angle φ of ring D. In the models, the φ-value deviates by

9 – 17° from the experimental values. The observed differences may arise from the

reason that the experimental, the dynamic average solution structure differs from the

modelled, i.e. the lowest-energy monomer structure in vacuum at 0 K. Similar

structural parameters can be found between the structure C and the crystal structure of

ethyl chlorophyllide a dihydrate.7 In the crystal, the Mg is 0.39 Å out of the plane of

the nitrogens, whereas the distance between the oxygen atom of the water molecule

and the metal is 2.04 Å. In addition, the macrocycle is planar in the crystal, except for

ring D, which is at a slightly distorted dihedral angle, the φ-value being 127.5°.
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          A          B

          C
Figure 29. The PM3-UHF energy-optimized geometries for 38a (A), 38b (B) and methyl
chlorophyllide C (on side and on top view). In the molecular models of 38a (A) and 38b (B) the phytyl
was replaced by the methyl group. The torsion angles between the H17 and H18 protons are 115.8°,
120.3° and 126.4° for models A, B and C, respectively.

Of the molecular modelling methods tested, inluding the molecular mechanics

MM+ and the semiempirical AM1 and PM3 methods, the latter produced facilely the

energy-minima for the above chlorins.160 In the MM+ energy-optimizations, the

chlorin macrocycle geometries were approaching planar structures, but failed finally

to converge. Evidently, the poor parameterization of the central Mg is a possible

reason for the oscillation, since the corresponding Mg-free chlorins converged easily.

The AM1 method could not be used because of the absence of Mg-parameterization

for this method.
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7.3 Elucidation of the conformations of the chlorin-based
electron donor–acceptor dyads

7.3.1 Structures of the folded conformers of Zn(II)-pyropheophytin–
anthraquinone dyads

In publication II, the folded geometries of dyads 39a,b were deduced by NMR

spectroscopy and molecular modelling. The structure analysis was based on the

structural parameters obtained from NMR spectroscopy, which were then used in

molecular modelling. For each dyad, the proton spectra showed one set of signals, the

δH-values of which implied that conformational folding dominates on the NMR time-

scale. The most convincing evidence for the mutual geometry of the chlorin and

anthraquinone structural units was provided by ROESY experiments. The ROE

correlations between the 181-CH3 and Q1-CH protons proved that the anthraquinonyl

ring is located below the chlorin macrocycle in both of the epimers. In addition,

several ROE correlations were found in the spectra (publication II, Figure 2),

indicating mutual geometries for the chlorin, linkage and quinone moieties.

Additional information about the geometries was achieved from the aggregation maps

based on the ∆δH-values (publication II, Figure 3). The sensitivity of the protons to

ring-current, influenced the δH-values even at distances so great that ROE signals

were too weak to be observed. Thus, the combined use of these methods afforded

reliable results. The conformation of the spacer group in the dyads was deduced from

the proton couplings according to the methods presented in section 7.2. Furthermore,

conformational information could be extracted from the 13C NMR spectra. The

deshielding of the anthraquinonyl Q9 carbon (∆δ = 0.49 ppm) in 39a implied that the

coordination of the Q9-carbonyl oxygen to the central Zn(II) was a likely reason.

The energy-optimizations were performed by MM+ molecular mechanics. The

structures were freely optimized, except that the torsion angle between H17 and H18

was constrained in the calculations. As a result, conformationally different lowest-

energy structures were produced for dyads 39a,b (Figure 30 and Figure 6 in

publication II). Consequently, the stereochemical assignments for the P4 carbon could

be deduced for dyads 39a,b, being P4(R) and P4(S), respectively.

By inspecting the model A in Figure 30 as well as the side-view of this model

(model ZnPQ1 in Figure 6 of publication II), it can be seen that in this structure the

mutual geometry of the macrocycles is in good agreement with both the ROESY
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spectrum and the aggregation map of 39a. In contrast, the ROE correlation between

181-CH3 and Q3-CH protons as well as the chemical shielding of the 21-CH3 and 31-

CH proton resonances in 39b cannot be explained with model B (Figure 30).

However, the rotamer populations (publication II, Table 2, ZnPQ2) of 39b indicate

that the linkage exhibits several conformations, probably arising from the various

chlorin and quinone macrocycle orientations. Thus, the observed NMR results were

produced by time-averaging on the NMR time-scale. Nevertheless, the ROE

correlation between the 181-CH3 and Q3-CH protons can be due to the spin diffusion

as well.

A B P4(S)
Figure 30. The top views of the folded conformers of the Zn(II)-pyropheophytin–anthraquinone 39a (A)
and 39b (B) dyads obtained by NMR spectroscopy and MM+ molecular mechanics. The models A and B
are P4(R) and P4(S) epimers, respectively.

The structural models of 39a,b are in a good agreement with the results obtained

from the photoinduced electron-transfer studies of these molecules.135 In acetonitrile, the

quenching of fluorescence was more effective for 39a than for 39b, indicating that the

conformational folding is more effective in the former structure.161 In addition, it was

suggested that, in the case of 39b, the folded conformer dominates, being in a fast

exchange with the opened conformer(s).135
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7.3.2 Conformational studies of the chlorin–C60 dyads

The chlorin–C60 dyad 40 was synthesized and its isomer pairs (PF1 and PF2,

publication III) were separated by column chromatography. Both PF1 and PF2

showed two sets of resonances in the 1H NMR spectra (assigned to species A and B).

The two most distinct δH-values were established for the chlorin 21, 5 and 71 proton

signals (publication III, Fig. 2). The ring-currents of C60 caused mainly deshielding

for the δH-values, with the exception that the 71 protons were shielded in PF1B and

PF1A. The isomers PF1B and PF2A produced ROE correlations between the 2’-CH

and 5-CH protons, whereas the PF1A and PF2B isomers showed ROE correlations

between the 2’-CH and 21-CH protons. Inspection of the proton distances in the

molecular models revealed that A and B were different C2’ epimers, whereas PF1 and

PF2 were different atropisomers in respect to the C3–C2’ bond rotation. However, the

definition of the absolute stereochemistry for the epimers could not be deduced on the

basis of the NMR data.

While the samples of the atropisomers, PF1 and PF2, were allowed to stand at

room temperature, a slow conversion to a mixture of four isomeric species occurred.

The conversion rates of separated PF1 and PF2 atropisomers could be investigated by

integrating the signal intensities from the 1H NMR spectra, acquired over certain time

intervals at each temperature measured. The rate-constants at a specific temperature

were obtained by one-exponential fitting of the points representing the relative

integration values of the 1H signals. The well-resolved 10-CH signal was selected for

rate constant determination. Figure 31 illustrates an example of the curve fitting, in

which the integration points were plotted as a function of time at 304 K. The rate-

constant value of 4.23x10-5 s-1
 was obtained from the fitted curve for the conversion of

PF1A to PF2A. Rate-constants were obtained for each isomer at various temperatures.

By taking natural logarithms of the various rate-constants and presenting them as a

function of inverse temperature, the Arrhenius plots were obtained (Fig. 3 in

publication III). In the Arrhenius plot, the gradient of the line is equal to -EA/R, where

EA is the Arrhenius activation energy and R the universal gas constant. Thus, the

activation energy obtained was 23.0 ±0.8 kcal/mol for all the PF1A, PF1B and PF2A

isomers, whereas for the PF2B isomer, an EA of 21.5 ±0.5 kcal/mol was calculated.
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Figure 31. The one-exponential fitting curve and the parameters of the decaying 10-CH signal obtained
for the conversion of PF1A to PF2A as a function of time at 304 K. The rate-constant obtained is
2.54x10-3 min-1 = 4.23x10-5 s-1.

The MM+ molecular modelling was used to analyze the energy barriers

between the atropisomers in order to find an explanation for the experimentally

observed differences. The barrier for the rotation about the C3–C2’ single bond was

calculated by changing the relevant torsion angle φ (C4–C3–C2’–C3’) in 5° steps and

optimizing the rest of the structure. The stepwise optimization was begun from the

calculated α and β conformer minima, and incremented in both rotational directions.

Consequently, the minimum-energy values found for the 2’ R and S epimers were

plotted as a function of φ  (Fig. 4 in publication III). The symmetric curves show that

the lowest rotation barriers are on an equal energy level for the rotamers, i.e. 18 – 19

kcal/mol. The atropisomer minimum-energies were ca. 1.0 kcal/mol lower for the α-

2’R and β-2’S isomers as compared with the β-2’R and α-2’S  isomers. The AM1-

RHF energy optimizations gave similar energy differences for the atropisomers, as

can be seen from the ∆Hf-values in Figure 32.
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β-2’S isomer, ∆Hf = 1004.85 kcal/mol β-2’R isomer, ∆Hf = 1005.85 kcal/mol

α-2’R isomer, ∆Hf = 1005.09 kcal/mol α-2’S isomer, ∆Hf = 1005.96 kcal/mol

Figure 32. The AM1-RHF energy-optimized chlorin–C60 isomers with respective ∆Hf energies. The
chlorins are on the top in the views. In the α-structures, the C60 is on the same side of the chlorin-ring
plane as the C17 propionic acid residue, whereas in the β-structures these substituents are on different
sides of the plane.

In the molecular modelling, the long distance from the C2’ to C17 or C2’ to

C18 chiral centres evidently obscures the diastereomeric differences between the

isomers. This may, however, affect the solvation stabilization energies, especially

when the solvation is estimated in respect to the coordination of the pyrrolidine

nitrogen lone-pair. As shown in Fig. 2 of publication III, there is no space for a ligand

in the α-2’R and β-2’S isomers. In contrast, in the β-2’R and α-2’S isomers,

coordination is spatially possible. In addition, the C17 propionic acid residue is on the

same side of the chlorin ring plane in the β-2’R isomer, allowing the formation of a

solvent bridge via a chain of solvent molecules. By assuming that the stabilization

affects the β-2’R isomer more than the α-2’S  isomer, the latter is energetically the

least favourable of the isomers. Consequently, the α-2’S isomer is the fastest

converting isomer of PF2B. This implies that PF1 and PF2 correspond to the α and β
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atropisomers, respectively, whereas A and B are the C2’ R and S epimers,

respectively.

The photochemical studies in acetonitrile showed an efficient intramolecular

electron transfer for all the isomers of 40.162 The photochemical behaviour of each

atropisomer was the same within experimental error. This observation is in a good

agreement with the symmetrical models obtained (Figure 32).

7.4 NH tautomerism in the natural chlorins

In publications IV and V, the NH tautomerism in natural chlorins 3, and 41–45

was studied utilizing NMR spectroscopy and molecular modelling. The 1H-15N

correlated 2D gsHSQC and gsHMBC experiments were used to deduce the

assignments for the δH- and δN-values of the NH signals produced by the chlorins.

DNMR was applied for the determination of coalescence temperatures (TC) for each

tautomeric exchange reaction. In terms of TC and kC, the free-energies of activation

(∆G‡) could be calculated applying the Eyring equation (Eq. 7).

∆GC
‡ = 4.58TC(10.32 + log TC/kC) cal/mol   (7)

TC = coalescence temperature
kC = exchange rate-constant at TC (Eq. 8).

 

 kC = π∆ν/√2 (8)

∆ν = separation of signals with no chemical exchange

The ∆G2
‡-values, calculated for the total tautomeric exchange process (A 

A’ in Figure 33) were 14.4, 13.6, 17.1, 16.8, 16.8 and > 18.0 kcal/mol for chlorins 3,

and 41–45, respectively. Thus, the lowest energy barriers were found for chlorins 3

and 41, which are both unsubstituted at C15, whereas for chlorin 45, which possesses

the isocyclic ring E in the macrocycle, no NH exchange could be experimentally

observed.

At lower temperatures, an intermediate N22-H, N24-H trans-tautomer (B and

B’ in Figure 33) was found for chlorins 42 and 43. The exchange barriers (∆G1
‡) for

these tautomers were 10.8 and 10.6 kcal/mol, respectively. Intermediate NH

tautomers for chlorins have not been reported before.
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The energy differences of the NH tautomers were estimated by the

semiempirical molecular modelling calculations. In publication IV, the NH tautomers

of bonellin dimethylester 3 were energy-optimized using the AM1 and PM3 methods

with RHF or UHF spin-pairing in the calculations. The PM3-UHF optimization

produced probably the most realistic structures and energies. The chlorin-ring

geometries were planar for all the tautomers of 3 and the energy differences between

the tautomers were similar to those that had been obtained in ab initio calculations at

the MP2 level.87 Hence, the PM3-UHF method was utilized in energy-optimizations

of the tautomers 41–45 in publication V.
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Figure 33. The possible NH-tautomeric pathways for the chlorin NH exchange. The aromatic 18-atom
18 π-electron delocalization pathways are drawn with bold lines in the structures, in which the
protonation of N24 does not interrupt the fully-aromatic delocalization pathway.

Inspection of the relative tautomer energies obtained from the PM3-UHF

calculations (Table 3 in publication V) shows that the C and D cis-tautomers exist on

the energy level closest to the most stable main tautomer A. The energy of trans-

tautomer B is regularly on a higher level than that of the cis-tautomers C and D, but is
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still clearly at a lower energy level than the energies calculated for cis-tautomers E

and F. Obviously, the protonation of N24 significantly raises the tautomerization

energy. Thus, the protonation of N24 interrupts the fully-aromatic 18 π-electron

delocalization pathway in the chlorin macrocycle. The PM3-UHF calculated spin-

density maps of chlorin tautomers (Figure 4 in publication IV and Figure 6 in

publication V) illustrate the electron delocalization pathways in the chlorin

macrocycle. The spin-density maps demonstrate that the protonation of N24 induces a

weak or unobservable spin-polarisation of N24 in tautomers B, E and F. The spin-

density maps of the A, C and D chlorin tautomers show similar delocalization

pathways, as depicted with bold lines in Figure 33. The PM3-UHF energies calculated

for the chlorin 3, and 41-45 tautomers also imply that the chlorin substitution affects

tautomeric energies. The substituents in chlorins 42-45 cause notable geometry

changes in the chlorin macrocycles as compared with chlorins 3 and 41 (Table 5 in

publication V). This is an obvious reason for different tautomeric energies observed

for the chlorins.

Based on these studies, it could be concluded that the chlorin-ring substituent

effects are connected to the NH tautomeric exchange. The NH tautomerization

barriers are higher for chlorins, whose macrocycles exhibit steric strain, arising from

the substituent effects. Obviously, the total NH tautomeric exchange (A  A’ in

Figure 33) occurs by a stepwise mechanism via the aromatic cis-tautomers (C and D)

and the less aromatic trans-tautomer (B), and thus, the rate-limiting energy barrier is

between these cis- and trans-tautomers. We suggest that the single steps in the

pathway proceed by a mechanism, in which ten electrons are reorganized in a six-

membered cycle in the TS structures (Scheme 2 in publication V). The skeletal

motions of the chlorin macrocycle are involved in the formation of these TS

structures. This is in a good agreement with the lower tautomerization energies

observed for the flexible chlorins 3 and 41.
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8  Conclusions

In the present investigation, modern NMR techniques were applied to Chl

derivatives to obtain structural data of their solution conformations. The

conformations of the rotational fragments of the Chl derivatives, i.e. the propionic

side-chain and the front part of the phytyl group, could be evaluated based on the
3JH-H-values. In addition, the subring D conformation of the Chl derivatives could be

estimated from the inherent 3J17-18 proton coupling in ring D. The 1H assignments for

the Chl derivatives could be facilely obtained by using the ROESY technique. In

addition, the ROE correlations gave information about the spatial proximity of the

proton bearing groups. This was successfully utilized in the determination of the

absolute stereochemistry at the C132 of the methanolic allomerization products 38a,b,

and in the definition of the mutual geometry of the chlorin and anthraquinone

moieties in the folded conformers of dyads 39a,b. The energy barriers connected to

the conformational isomerism of fullerene–C60 dyads 40 and the NH tautomeric

exchange of bonellin dimethyl ester 3 and Chl derivatives 41–45 were obtained by

DNMR.

In the case of the studied chlorins, however, all the structural parameters could

not be deduced solely on the basis of the NMR data. Therefore, computer-aided

molecular modelling was used to produce 3D structures of the molecules studied. In

molecular modelling, the NMR deduced structure parameters were used as starting

parameters in the geometry-optimizations. Thus, the structures resulting from the

optimization are related to the solution structures. In addition, structural features, such

as the conformation of the chlorin macrocycle, could be obtained.

In essence, the NMR spectroscopy and computer-aided molecular modelling

gave reliable solution structures for the Chl derivatives studied. Nevertheless,

additional ab initio calculations involving the NH tautomer TS structures would be

highly interesting. However, the simple MM+ molecular mechanics calculations for

chlorin–anthraquinone dyads 39a,b and chlorin–C60 dyad isomers 40 gave results that

explained the experimentally observed behaviour, i.e. the conformational folding of

39a,b and the rotational isomerism of 40. In the case of chlorins 38a,b, 3, and 41–45,

the semiempirical PM3-UHF calculations produced results which were in a good

correlation with the experimental data obtained from the NMR spectroscopy.
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The investigations of the nature and existence of the NH tautomerism in

natural chlorins gave novel information about the fundamental chemical properties of

the chlorins. According to the molecular modelling, the NH tautomers in which the

nitrogen of the reduced ring (N24) is protonated are clearly energetically disfavoured,

because the aromatic delocalization pathway is interrupted in these tautomers. In

addition, an intermediate trans-tautomer was experimentally detected for the first time

by NMR spectroscopy at low temperatures for chlorins 42 and 43. Consequently, the

total NH exchange of chlorins is suggested to proceed by a stepwise mechanism via

the aromatic cis-tautomers and the less aromatic trans-tautomer. Finally, it seems

evident that the energy barriers of the NH tautomerization are connected to substituent

effects. Thus, the chlorin macrocycles that are distorted or strained by the substituents

produce NH tautomeric energy barriers of higher levels.
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