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ABSTRACT

Epidemiological studies have associated high soy intake with a lowered risk for certain
hormone-dependent diseases, such as breast and prostate cancers, osteoporosis, and
cardiovascular disease. Soy and soy foods are rich sources of isoflavones, diphenolic plant
compounds that have been shown to possess several biological activities. Soy is not part of
the traditional Western diet, but many dietary supplements are commercially available in
order to provide the proposed beneficial health effects of isoflavones without changing the
origina diet. These supplements are usudly manufactured from extracts of soy or red
clover, which is another important source of isoflavones.

For many years, the interest in isoflavonoids and their possible role in the prevention of
diseases has mainly focused on research on daidzein and genistein, the principa
isoflavones of soy and the main metabolites of formononetin and biochanin A, the
principal isoflavones of red clover. Until recently, detailed studies of the metabolism of
these compounds have been lacking. However, understanding the metabolic fate of dietary
compounds shown to possess biological activities is important since metabolism affects
the ingested compound in many ways, either enhancing or reducing its bioactivity,
absorption, levels of active compounds in plasma or target tissues, and elimination of the
compound from the human body.

The aim of this study was to identify urinary metabolites of isoflavones originating from
soy or red clover using gas chromatography - mass spectrometry (GC-MS). To examine
metabolism, two supplementation studies with human volunteers were carried out. In the
first experiment, six volunteers included three soy bars per day in their normal Western
diet for atwo-week period, after which daily urine samples were collected. In the second
experiment, seven volunteers ingested four dietary supplements manufactured from red
clover extract, and urine, plasma and fecal samples were collected on five consecutive
days after the isoflavone supplementation. In addition to soy and red clover
supplementation studies, the metabolism of isoflavones was investigated in vitro by
identification of metabolites formed during a 24-h fermentation of pure isoflavones with a
human fecal inoculum. Qualitative methods for identification and analysis of isoflavone
metabolites in urine and fecal fermentation samples by GC-MS were developed.
Moreover, a detailed investigation of fragmentation of isoflavonoids in electron ionization
- mass spectrometry (EI-MS) was carried out by means of synthetic reference compounds
and deuterated trimethylsilyl derivatives.

After isoflavone supplementation, 18 new metabolites of isoflavones were identified in
human urine samples. For most of the metabolites, synthetic reference compounds were
available for structure characterization. Of the nine metabolites for which the authentic
reference compounds were unavailable, identification of five was confirmed by
comparison of their chromatographic and mass spectrometric data with those of
metabolites identified in fecal fermentations of pure isoflavones. Four metabolites were



tentatively identified by interpretation of their mass spectrum using deuterated
trimethylsilyl derivatives.

The mogt abundant urinary metabolites of soy isoflavones daidzein, genistein, and
glycitein were found to be the reduced metabolites, i.e. analogous isoflavanones, a-
methyldeoxybenzoins, and isoflavans. Metabolites having additional hydroxyl and/or
methoxy substituents, or their reduced andogs, were also identified. The levels of these
metabolites in urine samples were notably lower than those of the reduced isoflavone
metabolites. The main metabolites of red clover isoflavones formononetin and biochanin
A were identified as daidzein and genistein, which is consistent with the results of earlier
studies. In addition, reduced and hydroxylated metabolites of formononetin and biochanin
A were identified; however, they occurred at much lower levels in urine samples than
daidzein or genistein or their reduced metabolites.

The results of this study show that the metabolisn of isoflavones is diverse; many
isoflavonoid metabolites are found in urine after isoflavone supplementation. Metabolism
may thus play an important role in effects and hitherto unknown mechanisms of action of
isoflavones. Recently, equol, an intestina metabolite of daidzein with an isoflavan
structure, has gained considerable interest. Evidence suggests that the benefits of soy may
be related to the ability of intestinal microflorato convert daidzein to equol, which differs
largely between individuals. More studies are needed to determine whether the new
isoflavan metabolites and the other isoflavonoid metabolites identified here have
biological activities that contribute to the proposed beneficial effects of isoflavones on
human health. Another task isto develop validated quantitative methods to determine the
actual levels of isoflavones and their metabolites in biological matrices in order to assess
therole of isoflavonesin prevention of chronic diseases.
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1. INTRODUCTION

1.1 Structure, nomenclature, and occurrence of isoflavonoids

Isoflavonoids are a subclass of flavonoids, a large group of diphenolic plant compounds
with a phenylchroman skeleton of 15 carbons (Figure 1). The three rings in isoflavonoids
(and flavonoids) are labeled A, B, and C, and the numbering starts from oxygen of the
heterocyclic ring C. Isoflavonoids differ from flavonoids by position of ring B, which is
a C-2 in flavonoids and a C-3 in isoflavonoids. To ad systematic classification,
isoflavonoids have been further divided, according to the oxidation level of the 3-
phenylchroman skeleton (ring C), into subgroups of isoflavones, isoflavanones, isoflavans,
and a-methyldeoxybenzoins. Table 1 ligs the trivial names and structures of the
isoflavonoids discussed in this work.

Isoflavones constitute the largest group of naturd isoflavonoids, with some 360 known
aglycones reported by the year 1994.* The most abundant isoflavones are daidzein 1 and
genistein 2. In plants the isoflavonoids occur mainly conjugated with sugars, most often
with glucose at the 7-O-position. The principal isoflavones of soy are daidzein, genistein,
and glycitein 3 and their glycoside conjugates, including 7-O-glucosides, i.e. daidzin 4,
genistin 5, and glycitin 6, 6"'-O-acetyl-, and 6'’-O-malonyl-7-O-glucosides.** In red
clover, the principa isoflavones are formononetin 7 and biochanin A 8 and their 7-O-
glucosides, ononin 9 and sissotrin 10, respectively.*> Other isoflavones identified in red
clover include daidzein, genistein, caycosin 11, prunetin 12, pratensein 13,
pseudobaptigenin 14, orobol 15, 3'-methylorobol, texasin 16 and afrormosin 17, and their
glycoside conjugates.*®

QG

O

FLAVONE ISOFLAVONE

Figure 1. Basic structures of flavonoids and i soflavonoids.
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Table 1.

Sructures, names, and numbering of the isoflavonoids discussed in this work.

Isoflavone Isoflavanone Isoflavan a-methyldeoxybenzoin
Substitution Trivial name
I soflavone 1 7,4-(0OH), Daidzein
2 574-(0OH); Genistein
3  7,4-(0OH),, 6-OCHs Glycitein
4 4 -OH, 7-0Glc Daidzin
5 54'-(0OH),, 7-0OGIc Genistin
6 4-OH, 7-0OGlc, 6-OCH; Glycitin
7 7-OH, 4 -OCHs, Formononetin
8 5,7-(OH),, 4'-OCHjs Biochanin A
9 7-OGlc, 4-OCHs4 Ononin
10 5OH, 7-OGlIc, 4 -OCH, Sissotrin
11  7,3'-(OH),, 4 -OCH;z Calycasin
12 54'-(0OH),, 7-OCHs Prunetin
13 5,7,3-(OH);3, 4'-(OCH,) Pratensein
14 7-OH, 3'-O-CH,-O-4 Pseudobaptigenin
15 57,3 ,4-(0H), Orobol
16 6,7-(OH),, 4'-OCHs Texasin
17 7-OH, 6,4 -(OCHys), Afrormosin
18 4'-OH, 7-OCH, | sof ormononetin
| soflavanone 19 7,4 -(OH), Dihydrodaidzein
20 5,74 -(OH);3 Dihydrogenistein
21  7,4'-(OH),, 6-OCHj; Dihydroglycitein
22 7-OH, 4-OCHs Dihydroformononetin
23 5,7-(0H),, 4'-OCHj; Dihydrobiochanin A
I soflavan 24 7,4'-(0OH), Equol
25 7-OH, 4'-OCHjs 4'-O-Methylequol
26 4,74 -(OH); 4-OH-equol
27 5,74 -(OH); 5-OH-equoal
a-Methyldeoxybenzoin 28 2.,4,4°-(OH); O-desmethyl angolensin
29 2.,4,6,4'-(OH), 6'-OH-O-desmethylangolensin
30 2,4-(0OH),, 4'-OCH3 Angolensin
31 2,4,6-(0OH)s 4'-OCH; 6'-OH-angolensin
32 2,4.3",4-(0H), 3'’-OH-O-desmethylangalensin
33 2,45,4"-(0H), 5'-OH-O-desmethylangolensin
34 2.,4,4-(0OH)3; 5-0OCH; 5 -OMe-O-desmethyl angolensin
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1.2 Biosynthesis

Isoflavonoids are formed by a branch of the phenylpropanoid pathway of plant secondary
metabolism.® Other branches of this pathway produce flavonoids, lignin, and anthocyanin
pigments (Figure 2). Ring B and part of the heterocyclic ring C are formed from 4-
coumaric acid co-enzyme A (CoA) ester via the shikimate pathway, starting from
carbohydrate. Ring A is formed via the polyketide pathway from three units of malonyl
CoA, derived from acetyl CoA and carbon dioxide. The reaction is catalyzed by acetyl-
CoA carboxylase (ACC, Figure 2) in the presence of ATP and Mg**". Chalcone synthase
(CS) catdyzes the stepwise condensation of these precursors to a Cis intermediate,
4,2’ 4 6 -tetrahydroxychalcone 35 (Figure 2), an intermediate of flavonoids that have
oxygen subgtituents at the 5-position, including the isoflavones genistein 2 and biochanin
A 8. Isoliquiritigenin 36 (Figure 2), an intermediate of daidzein 1, formononetin 7, and
probably also glycitein 3, is formed by CS, but with coaction of NADPH-dependent
reductase. Chalcone is converted to (25)-flavanone by a stereospecific cyclization, which
is catalyzed by chalcone isomerase (C1).°

The isoflavonoid pathway begins by the abstraction of a hydrogen radical at C-3, followed
by ring B migration from C-2 to C-3 and subsequent hydroxylation of the resulting C-2
radical. This reaction is catalyzed by isoflavone synthase (IFS) or 2-hydroxyisoflavanone
synthase® IFS is regiosdlective; (2R)-flavanones are not substrates. The resulting 2-
hydroxyisoflavanone is unstable and undergoes dehydration to form isoflavone. The
dehydration reaction can take place nonenzymatically. Daidzein is formed from
liquiritigenin 37 and genistein from naringenin 38, as shown in Figure 2. The biosynthesis
of glycitein has not been fully established yet, but is likely to be derived from
isoliquiritigenin 36 (Figure 2).’

Recent studies have shown that formononetin and biochanin A, both of which have a 4’ -
methoxy group, are not formed by simple methylation of daidzein and genistein,
respectively. Methyl transfer from S-adenosyl-L-methionine (SAM) to 4'-hydroxyl of
daidzein has not been detected in any plants that produce formononetin 7. The O-
methyltransferase (OMT) towards daidzein thus far has only been found to produce the 7-
O-methylated isoflavone isoformononetin 18.5%° These 7-O-methylated isoflavonoids are
scarce in the plant kingdom. To form formononetin, the substrate is 2,7,4-
trihydroxyisoflavanone rather than daidzein,** and the resulting 4’-O-methylated 2-
hydroxyisoflavanone subsequently undergoes dehydration to form formononetin (Figure
2). The enzyme catalyzing the methylation reaction is 2,7,4’ -trihydroxyisoflavanone 4’ -
oMT.M
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1.3 Sources of isoflavonoids in the human diet

Unlike flavonoids, which are widely spread in the plant kingdom, the distribution of
isoflavonoids is very limited. The occurrence is almost entirely restricted to plants
belonging to the subfamily of Papilionoideae of the Leguminosae." Only these plants and
afew other species have the unique enzymatic activity of isoflavone synthase (1FS), which
carries out a 2,3 migration of the ring C, resultingin the production of isoflavones.

Because of the restricted distribution of isoflavones, the legumes, including beans and
peas, are the most important sources of isoflavones. The concentration of isoflavones in
soybeans is much higher than in other legumes, soy and soy-based foods are thus
considered the main sources of isoflavones in the human diet.*>** In Asian cultures, whole
soybeans or soy flour are widely used in food preparation, whereas in Western cultures the
consumption of soy foods is very low. The intake of isoflavones is limited in Western
diets, typically <1 mg/d, compared with consumption in Asian countries, where the levels
range from 20 to 50 mg/d."® In Finland, the average intake of tota isoflavones was
estimated to be 668 (SD 963) ny/d in women and 902 (SD 368) ngy/d in men.*®

In addition to isoflavone levels in diets, the type of soy food eaten differs in these two
populations. In Eastern countries, soybeans are eaten whole, either cooked or raw, as
sprouted beans. Traditionally prepared foods include tofu or miso, soy sauce or tempeh,
made by fermentation. The isoflavone levels in traditional soy foods reflect the
composition of the raw material beans, which may differ vastly due to differences in
genetics, cultivar, climate, location, and agricultural practices. 231/

In Western countries, especially in Europe, second-generation soy foods are more popular
than traditional soy foods. These products are produced from whole soybeans, flour, or
tofu, but may also contain soy protein concentrates or isolates. The products largely
resemble analogs of Western foods, particularly dairy or meat products, and are commonly
used by consumers who have an intolerance for dairy products or follow a vegetarian diet.
The soy derivatives are also widdly used in foods at varying concentrations for nutritional,
technological, and economic reasons. For example, textured 0y protein is used as a meat
extender in some commercially prepared meat products, and low levels of soy ingredients
are added to bread to improve loaf texture and qudity. In addition, a number of different
kinds of pills and capsules, manufactured from soy or red clover, are commercially
available for health-conscious customers who want to achieve the suggested beneficial
properties of isoflavones without changing the original diet.

The existing information on isoflavone levels in Eastern and Western foods has been
evaluated’® and compiled in databases available online at www.venus-caorg and
www.nal .usda gov/fnic/foodcomp/Datalisoflav/isoflav.html. Table 2, which is based on
these two databases, lists the levels of isoflavones in selected traditional and second-
generation soy foods.
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http://www.venus-ca.org
http://www.nal.usda.gov/fnic/foodcomp/Data/isoflav/isoflav.html.

Table2. Concentrations of isoflavones in seected traditional and second-generation foods.
Values given are from two online databases at www.nal.usda gov/fni c/foodcomp/Data/isoflav/ and
WWW.Venus-ca.org.

Food Tot (mg/100 g)
Bread 0.02-0.83
Infant formulas 2.63-26
Miso* 13-43
Natto 22-59
Soy bacon 12

Soy cheese! 6.4-31
Soy chicken 14

Soy flour 132-265
Soy hot dog 12-15
Soy milk 8-10

Soy sauce* 0.1-1.6
Soybean butter 0.57
Soybeans (cooked) 14-55
Soybeans (raw) 60-145
Soybeans (sprouted) 41
Tempeh' 44-53
Tofu yoghurt 16

Tofu' 11-24

'Fermented during preparation.

1.4 Metabolism and bioavailability of isoflavones in humans

The biological activities observed in laboratory or human studies have been assumed to
originate from the isoflavones investigated, although these may have been biotransformed
into one or more structurally different compounds. Metabolism affects ingested
isoflavones in two ways. 1) absorption of the compound may be enhanced or reduced
relative to that of the ingested isoflavone or 2) catalyzed conversions may lead to
deactivation of bioactive compounds or activation of inactive compounds. Thus, the
metabolism of isoflavones may play an important role in the effect and mechanism of
action of isoflavones. Beside limited knowledge concerning the metabolism of
isoflavones, investigations of bioavailability and disposition are also scarce. These aspects
are of the utmost importance when evaluating the biological and physiological effects of
isoflavones. Isoflavonoid metabolites that have been identified in humans have been
reviewed in Study V and summarized in Table 3. A schematic drawing of the metabolic
fate of isoflavones in humansis shown in Figure 3.
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Table3.

I soflavones and their metabolites identified in human urine.

Compound Year ldentification Reference
Equol 1982  Reference compound Axelson et d. (1982)%°
Adlercreutz et d. (1982)%
Daidzein 1984  Reference compound Bannwart et d. (1984)*
O-dma 1984  Reference compound Bannwart et . (1984)*
Formononetin 1987  Reference compound Bannwart et d. (1987)%
Isoflav-2-ene 1987  Tentative Adlercreutz et d. (1987)%
(Intermediate E)
Dihydrodaidzein 1987  Tentative Bannwart et d. (1987)% ”
(Intermediate O) Adlercreutz et a. (1987)
1993  Reference compound Kelly et a. (1993)*
Joannou et d. (1995)®
4'-O-methylequol 1987  Reference compound Bannwart et d. (1987) %
Joannou et d. (1995)®
3, 7-dihydroxyisoflavan 1988  Reference compound Bannwart et a. (1988)%
Genistein 1991  Reference compound Adlercreutz et d. (1991)*
Glycitein 1993  Reference compound Kelly et a. (1993)%
Joannou et d. (1995)%
2-dehydro-O-dma 1993  Tentative Kelly et a. (1993)*
Joannou et d. (1995)®
4-OH-equol 1993  Tentative Kelly et al. (1993)*
Joannou et d. (1995)®
Dihydrogenistein 1993  Tentative Kelly et a. (1993)*
Joannou et d. (1995)®
6'-OH-O-dma 1993  Tentaive Kelly et a. (1993)%
Joannou et d. (1995)®
Biochanin A 1994 Reference compound Frankeet al. (1994)®
Severa hydroxylated metabolites 2000 Both tentative and with Kulling et a. (2000)%
of daidzein and genistein reference compound
2-(4-hydroxyphenyl)-propionic 2001 Reference compound Coldham et al. (2001)®

acid, HPPA

Boersmaet a. (2001)*

Spectral data not reported

19



Dietary isoflavones
glycosides/aglycones
(1.3
Tissues
Metabolism of
isoflavones at Liver
target tissues Oxidative
(1.4.2) metabolism of
isoflavones (1.4.3) Stomach .
_____ Some absorption
). of isoflavone
ol oM aglycones (1.4.1)
/ N\ Biliary
I/ \\ excretion
Blood ! Enterchepatic \
Transportation recycling
of isoflavone p| Kidneys
conjugates \4 /
(1.45) Small intestine
Deconjugation of
~~~~~~~~~ isoflavone conjugates
to aglycones (1.4.1)
l /" Enteric N T
(\ recycling I,‘
Enterocyte
Colon _ Glucuronidation
Ba_cterlal metabolism of isoflavone
of isoflavones (1.4.4) aglycones (1.4.1)
Fecal Urinary
excretion excretion
(2.4.5) (2.4.5)
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1.4.1 Deglycosylation and absorption

After ingestion of isoflavone-rich foods, the isoflavone glycosides, the predominant form
of isoflavones in nonfermented soy products, undergo deglycosylation. Nonenzymatic
deglycosylation of polyphenols in the human body, such as in the acidic conditions of the
stomach, does not occur.® The absorption of isoflavones would thus seem to be controlled
by enzyme specificity and distribution. Enzymes capable of carrying out the
deglycosylation step are found at the small intestinal brush border (lactase phloridzin
hydrolase)®***" and in enterocytes (cytosolic p-glucosidases).®® In addition, severa major
groups of colonic bacteria possess B-glucosidase activity, including Lactobacillus spp.,
Bacteroides spp., and Bifidobacterium spp.*® Recent studies have demonsrated that
deglycosylation of isoflavones may also occur to some extent already in the mouth.®

Considerable discussion has centered around whether isoflavone conjugates could be
absorbed intact. A study of absorption of pure genistin 5 in an isolated rat intestine
perfusion model showed that small amounts of genistin (1.3% of added amount) pass into
the mucosal cells, where hydrolysis takes place. The totd intestinal absorption of genistin
was found to be 14.9% (x2.3), the majority of which as genistein 2 glucuronide (11.6%)
and a smaller amount (1.9%) as the genistein aglycone. Genistein, but not genistin, can be
readily absorbed through the wall of the stomach.*® This may explain the faster absorption
rates of aglycones compared with glycosides.*" Setchell et al.** were unable to detect any
isoflavone glycosides in plasma samples collected 1, 2, and 8 h after the ingestion of either
pure compounds or a soyfood matrix; thus, current in vivo evidence supports the notion
that isoflavonoid glycosides are not absorbed intact in humans.

Free aglycones are readily reconjugated to glucuronic or sulfonic conjugates by intestinal
cytochrome P450 enzymes.*® The isoflavone aglycones and their conjugates have three
possible fates (Figure 3): 1) they are transported to target tissues in blood and end up in
the liver, where they are subjected to further metabolism, 2) they enter the enterohepatic
circulation, i.e. are first transported through the portal vein to the liver and then excreted
back to the gut through bile, or 3) they are excreted back to the intestinal lumen in a
process called enteric recycling.* The fate of isoflavones is thus very similar to that of
endogenous estrogens.*>*®

1.4.2 Metabolism in extrahepatic tissues

Studies of tissue metabolism of isoflavones are very scarce. Petersen et al.*”*® have
investigated the ability of human mammalian epithelial (HME) cells and four different
breast cancer cell lines (MCF-7, ZR-75-1, BT20, and T47D) to metabolize [4-**C] -
labeled genistein 2 and biochanin A 8. Breast cancer cells metabolized both isoflavones,
while significant metabolism of genistein or biochanin A was not observed in HME cells.
Using radio-HPLC mass spectrometry, two metabolites of genistein, i.e. genistein 7-
aulfate, and a hydroxylated and methylated metabolite of genistein, the structure of which
was not elucidated, and four metabolites of biochanin A, including genistein, genistein 7-
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sulfate, biochanin A 7-sulfate, and a hydroxylated and methylated metabolite of biochanin
A, wereidentified in cell culture media*"* Since the metabolites were found primarily in
cell media, not in cell lysate fractions, it was suggested that once formed these polar
metabolites are excreted from the cells.*®

A marked difference in the ability of different cell lines to metabolize genistein and
biochanin A was observed. In contrast to MCF-7 and T47D cell lines, which have similar
ICso (the concentration at which the growth rate is halved) values around 19 nmmol/L,
hydroxylated and methylated metabolites of genistein and biochanin A were not formed
with less sensitive ZR-75-1 and BT-20 cell lines, which have |Csy values of 46-74
mmol/L.*” The correlation of 1Csy values with the production of the unresolved
hydroxylated and methylated metabolite led the authors to speculate that the hydroxylated
and methylated metabolites could be the active forms of genistein in human breast cancer
cell lines.*’

Boersma et al.****° have examined whether metabolism of genistein and daidzein occurs
by interaction of isoflavones with oxidants produced by inflammatory cells such as
peroxynitrite (ONOQO), hypochlorous (HOCI), or hypobromous (HOBr) acid. Using
freshly isolated human neurophils and differentiated human leukemia cells (HL-60)
stimulated with phorbol ester to elicit a respiratory burst, they showed that
monochlorinated, dichlorinated, and nitrated isoflavones are formed through a
myel operoxidase-dependent mechanism and can be detected in cell media>® However, in
vivo evidence of the presence of these metabolites in human fluids is lacking.

1.4.3 Metabolism in the liver

In the liver, isoflavones are subjected to oxidative reactions catalyzed by liver cytochrome
P450 enzymes. Roberts-Kirchhoff et al.>* conducted a study in which genistein 2 was
incubated with rat and human liver microsomes or recombinant human cytochrome P450
enzymes in the presence of NADPH. They reported the formation of five different
metabolites of genigein; three of these were hydroxylated metabolites, one of which was
identified as orobol 15. Using microsomes from rats treated with P450-inducing agents,
they found out that the formation of metabolites was NADPH- and time-dependent. Three
different human microsomal samples investigated exhibited different product profile
suggesting that the genistein metabolite profile is dependent on the P450 profile of the
microsomes.”

A more detailed study on the identification of oxidized metabolites of isoflavones has
been carried out by Kulling et al.?**%* Using liver microsomes from Aroclor-treated male
Widar rats, daidzein 1 was found to be metabolized to nine metabolites; four
monohydroxylated, four dihydroxylated, and one trihydroxylated metabolite. Genistein 2
was converted to four monohydroxylated and two dihydroxylated products. The identity of
the metabolites was elucidated with GC-MS and HPLC-ESI-MS using reference
compounds to aid the interpretation of chromatographic and mass spectrometric data.®®
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The additional hydroxyl groups were introduced into the ortho positions of existing
phenolic hydroxy groups. One of the monohydroxylated metabolites of both daidzein and
genistein has a hydroxy group at aliphatic position C-2 of ring C.

The oxidative in vitro metabolism of soy isoflavones was investigated further with human
liver microsomes. In this study, daidzein was metabolized to three monohydroxylated
and three dihydroxylated metabolites, whereas genistein was converted to four
monohydroxylated and two dihydroxylated metabolites. Five major human microsomal
metabolites were tentatively identified in human urine after soy intake on the basis of their
retention time and UV and mass spectra. In addition, using a more sensitive selected ion
mode with GC-MS, five oxidized metabolites of daidzein (38-42) and five oxidized
metabolites of genistein (43-47) could be detected in urine samples.

Daidzein 1 38 R’=R%zH, R'=OH
39 R'=R’=H, R*=OH
40 R'=R’=H, R*=OH
41 R*=H,R'=R%*=OH
42 R'=H,R*=R%=OH

Genistein 2 43 R’=R%=H, R'=OH
44 R'=R’=H, R*=OH
45 R'=R’=H, R*=OH
46 R*=H,R'= R’=OH
47 R'=H,R’=R*=OH

In addition to daidzein and genistein, Kulling et a.>® have evaluated the oxidative
metabolism of such isoflavonoids as the clover isoflavones formononetin 7 and biochanin
A 8, soy isoflavone glycitein 3, and equol 24 — an important intestinal metabolite of
daidzein. Formononetin and biochanin A, both of which have methoxy substituents at the
4’-position, are demethylated rather than hydroxylated when incubated with Aroclor-
treated rat liver microsomes. The main metabolites of formononetin were identified as
daidzein 1, 6,74 -trihydroxyisoflavone, and 7,8,4 -trihydroxyisoflavone 39, whereas
hydroxylated formononetin metabolites were formed only in small amounts. Similarly,
genistein and hydroxylated genistein metabolites are the major compounds formed when
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biochanin A is incubated with rat liver microsomes. By contrast, preliminary studies with
glycitein, which has a methoxy substituent at the 6-position, have suggested that aromatic
hydroxylation is preferred over demethylation.>

When equol 24, the intestinal metabolite of daidzein, was incubated with Aroclor-treated
rat liver microsomes, several hydroxylated metabolites were detected by HPLC-DAD and
HPLC-MS analysis. The main metabolite has been tentatively identified as 7,3 ,4'-
trihydroxy-isoflavan 48, and, in addition 6,7,4’ -trihydroxyisoflavan 49, 7,8,4’ -trihydroxy-
isoflavan 50, 2,7,4 -trihydroxyisoflavan 51, 3,7,4 -trihydroxyisoflavan 52, and 4,7,4 -
trihydroxyisoflavan 26 have been detected in smaller amounts.®

R5
HO o
O HO O_ _R!
6
g S e
3R2
OH

R OH

Equol 24 48 R'=R’= R’= R*= R°=H, R°*=OH
49 R'=R’= R’z R°= R%zH, R*=OH
50 R'=R’=R%: R'=R°=H, R°=OH
51 R’=R%z= R*= R°=R°=H, R'=OH
52 R'=R%= R’z R°=R%=H, R*=0OH
26 R'=R’=R*= R°=R°H, R*=0OH

Preliminary studies by Kulling et al.>® suggest that vicinal hydroxyl groups of oxidized
isoflavone metabolites are methylated by the action of catechol O-methyltransferase
(COMT). Incubation of the hydroxylated metabolites with COMT and SAM as a methyl
group donor yielded methylated catechol products that were identified with the aid of GC-
MS. By using the in vitro formed methylated products as reference compounds, Kulling et
al. were able to tentatively identify four methylated metabolites (two monomethylated and
two dimethylated metabolites) in human urine samples collected after soy
supplementation. The methylated catechol metabolites were found in urine in trace
amounts, thus, it was suggested that isoflavones are poor substrates for COMT and the
methylation of hydroxylated metabolites does not play a major role in metabolism of
isoflavonesin vivo.*

1.4.4 Metabolism in the gut

Isoflavonoids that are not absorbed in the ssomach or small intestine will be carried to the
colon (Figure 3), where they are subjected to reactions catalyzed by enzymes of the gut
microflora. In addition, isoflavonoids that are absorbed, metabolized in the liver, and
excreted inthe bile or directly from the enterocyte back to the small intestine may also
reach the colon, but in a different chemical form, e.g. as glucuronide or sulfate conjugates
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(Figure 3).* Bacterial deglycosylation and desulfonation liberates the aglycones, which
can be further metabolized by enzymes of the gut microflora.

Metabolism by gut microflora and mucosal cells plays an important role in isoflavone
metabolism and determines for the most part the levels of circulating isoflavonoids.
Infants with undeveloped gut microflora are unable to metabolize daidzein 1 or genistein
2, resulting in high isoflavone plasma levels if they are fed soy-based infant formulae.>*>°
Studies with germ-free animals have also demonstrated the importance of gut microflora
in metabolism of isoflavones; urinary excretion of daidzein and genistein was found to be
sgnificantly greater in germ-free animals than in animals with human microflora,
suggesting a reduced metabolism of isoflavones from a soy-containing diet.*® The use of
antibiotics greatly affects the microfloral populations, and thus, the metabolism of
isoflavones. Increased urinary excretion of intact ingested isoflavones during antibiotic
treatment in monkeys> and inhibition of bacterial metabolism of daidzein in vitro by
certain antibiotics have been reported.® One study investigated the effect of prebiotics on
the bacterial metabolism of genistein®® The results showed that the addition of
fructooligosaccharides preserved genistein in vitro by reducing the number of
metabolizing bacteria and increased the numbers of such beneficial bacteria as
bifidobacteria and lactobacilli.

Bacterial metabolism of flavonoids and isoflavonoids has been investigated in vitro by
incubating compounds of interest with human fecal inoculum and following their
degradation.®*®* The structure of a flavonoid has a remarkable effect on determining the
extent and rate of metabolism of the compound by intestinal bacteria. For example, the
degradation rates of flavonoids possessing hydroxyl substituents at 5-, 7-, or 4’ -positions
are significantly faster than flavonoids lacking any of these hydroxyls.®®®! Genistein with
the hydroxyl substituents a 5-,7-, and 4’ -positions has been found to have a half-life of 3.3
h, whereas the estimated half-life for daidzein, which has hydroxyl substituents at 7- and
4'-positions, is considerably longer, 7.5 h.%? Presence of the methoxy group at ring A or B
has been observed to render the isoflavonoid resistant to microbia degradation.
Preliminary studies have shown glycitein 3 to degrade at a sower rate than genistein.*®

The metabolites formed in in vitro incubations have been identified by means of GC-MS,
LC-MS, or NMR.%%%8 Kim et al.% have examined the metabolism of daidzin by human
intestinal bacteria and identified daidzein and calycosin 11 in 24-h fermentation extracts.
In a study by Chang et al.®® daidzein was incubated for 72 h with human fecal flora after
which the three metabolites present in fermentation extracts were identified as
dihydrodaidzein 19, 7,4,4-trihydroxyisoflav-3-ene 53, and equol 24. The in vitro
metabolism of genistein was simultaneously examined. Only one metabolite,
dihydrogenistein 20, was identified in the fermentation extract. Because the amount of this
metabolite did not increase as the amount of genistein declined, the authors suggested that
genistein was converted to other metabolites that could not be detected.® The metabolism
of genistein was later investigated by Coldham et al.**® who incubated genistein,
[2,3,5,6'-*H] and [4-'“C]-labeled genistein with both human and rat gut microflora
Using LC-MS/M S and radio-LC-MS" techniques, they identified dihydrogenistein and 6’ -
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OH-0O-dma 29 as intermediate metabolites and 2-(4-hydroxyphenyl)-propionic acid 54 and
1,3,5-trihydroxybenzene 55 as end-products of genistein metabolism.

HO o OH
HOO
=
OH O OH
OH HO OH

7,4,4 -trihydroxy- 2-(4-hydroxyphenyl)- 1,3,5-trihydroxybenzene 55
isoflav-3-ene 53 propionic acid 54

There is a marked interindividual variation in the bacterial metabolism of isoflavones
regarding the capability to metabolize daidzein. Only about one-third of humans are
capable of converting daidzein to equol 24, a metabolite with an isoflavan structure.®"
For genistein, the corresponding isoflavan metabolite, 5-OH-equol 27, has not been
identified, which is probably due to a protective effect of hydrogen bonding between the
C-5 hydroxyl group and the carbonyl oxygen in the genistein structure. Interindividual
differences in the ability to produce equol are most likely due to variations in the
composition of intestinal microflora.

The results from both animal and human studies assessing the role of diet in equol
production are conflicting and have failed to provide an explanation for why different
daidzein-metabolizing phenotypes exist.”*’” In some studies, a diet rich in carbohydrates
has been associated with higher equol production, suggested to be due to improved
gastrointestind (Gl) conditions.”*”” However, other studies have found no correlation
between carbohydrate and dietary fiber intake with equol production.”"" The type of
dietary fiber and the carbohydrate source have been demonstrated to have differening
influences on plasma isoflavone levels and may thus change the physiology or metabolism
and composition of intestinal microflora.”® A recent familial correlation and segregation
study has suggested that genetic factors have some contribution to equol production.®

Very little is known about the bacteria responsible for isoflavone metabolism. The
metabolism likely involves many different bacteria. So far, only a few species of bacteria
have been isolated, characterized, and studied for their ability to metabolize isoflavones.
An interesting finding is that bacteria associated with the metabolism of flavonoids, such
as quercetin 56 and taxifolin 57, are different from isoflavone-metabolizing bacteria.®*

OH

HO o) O
O OH
OH

OH O OH O
Quercetin 56 Taxifolin 57
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One of the most investigated bacterial species is Eubacterium ramulus, a bacterium
accounting approximately for 0.16% of total bacteria cell counts in the human
gastrointestinal tract, which is comparable in number to Escherichia coli #® E. ramulus
has been found to hydrolyze isoflavone 7-O-glycosides daidzin 4 and genistin 5 to their
aglycones, daidzein 1 and genistein 2, respectively.*® In addition, this bacterium
catalyzes the ring C cleavage of daidzein to O-dma 28 and genistein to 2-(4-
hydroxyphenyl)-propionic acid 54, forming 6-OH-O-dma 29 as an intermediate
metabolite.®? Two other strains of bacteria capable of metabolizing glycosides of daidzein
and genistein have been isolated and designated as E. coli HGH21 and Clostrium sp.
HGHG6. Both strains catalyzed conversion of isoflavone glucosides to their aglycones. In
addition, under anoxic conditions, HGH6 reduced the double bond of isoflavone ring C to
yield dihydrodaidzein 19 from daidzein and dihydrogenistein 20 from genistein. This
reductive reaction was specific for isoflavones since with flavonoids a similar reduction
did not occur. No further metabolism of isoflavanones by this bacterial strain was
observed.®® Eubacterium limosum has been shown to be associated with the demethylation
process of isoflavones with methyl groups, including formononetin 7, biochanin A 8, and
glycitein 3.%

Recently, the interest in bacterial in vitro metabolism of isoflavones has concentrated on
the characterization of bacteria involved in equol production. Equol 24 has been found in
soymilk fermented with some strains of bifidobacteria,®”® suggesting that bifidobacteria
may be associated with equol production also in the human gut. However, supplementing
the diet with soy and probiotic capsules containing Lactobacillus acidophilus and
Bifidobacterium longum did not improve equol excretion or change the equol
producer/non-producer status in human subjects.®*® Furthermore, animal feeding studies
with ingestible short-chain fructooligosaccharides that increase the number of
Bifidobacterium and Lactobacillus in the gut™ have provided conflicting data, with both
reductions and enhancements of equol production being observed.??

Decroos et a.* investigated the in vitro metabolism of daidzein by human fecal samples.
In one equol-producing fecal sample, they isolated a mixed microbia culture in which
four bacterial species were detected. The three strains of the mixed culture could be
identified as Lactobacillus mucosae EPI1, Enterococcus faecium EPI2, and Finegoldia
magna EPI3. The fourth species could not be brought into a pure culture; it was tentatively
identified as Veillonella sp strain EP. None of the three isolated and well-characterized
drains were able to produce equol, so it was suggested that the fourth strain,
uncharacterized Veillonella sp is responsible for equol production. Based on the results of
in vitro sudies carried out with the mixed culture, a diet rich in carbohydrates appears to
create beneficial conditions for equol production in the gut by providing H, and short-
chain fatty acids (SCFA), the former probably acting as an electron donor in
biotransformation and the latter preventing the consumption of H, in SCFA production by
afeedback mechanism.*

Wang et al.® recently isolated a rod-shaped, Gram-negative anaerobic bacterium from
human feces that enantioselectively produces (S)-equol 55 from dihydrodaidzein. The 16S
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rRNA gene sequence of the bacterium, designated Julong 732, has a 92.8% similarity with
Eggerthella hongkongenis, suggesting that the strain could be a new species of
Eggerthella. By incubation of the isolated strain with compounds of interest, they made
the following observations: the strain 1) is able to convert racemic dihydrodaidzein or 4-
OH-equol 26 (also known as tetrahydodaidzein) enantiosel ectively to pure (S)-equol, 2) is
not involved in the reduction of daidzein in dihydrodaidzein or in the cleavage of ring C to
yield O-dma, and 3) does not have racemase activity to transform (S)-equol 58 to (R)-
equol 59, or vice versa. No data on the abundance and occurrence of this newly isolated
bacteria strain in the human Gl tract are available. Nor isit known whether there are other
bacteria capable of producing equol. Thus, further studies are needed to fully identify the
bacteria associated with equol production.

(S-equol 58 (R)-equol 59

1.4.5 Conjugation, distribution, and excretion

96,97
44,98

In blood and urine, the isoflavones exist as glucuronide and sulfate conjugates.
Conjugation takes place in enterocytes of the intestinal wall during first-pass uptake.
This is supported by animal studies with rats, which have shown that portal venous blood
contains almost exclusively glucuronide conjugates.® In addition, liver microsomes are
sitesfor conjugate formation, but according to current views intestinal conjugation is more
important in isoflavone metabolism.

The formation of glucuronide and sulfate conjugates of daidzein 1 and genistein 2 has
been examined in vitro using purified bovine UDP glucuronosyl transferase (UGT),
recombinant human UGT, and sulfotransferase (SULT) isoforms or microsomes isolated
from several human tissues.”® With all UGTs studied, the glucuronide group was
preferentially attached to the hydroxyl group at C-7 of ring A, 4’'-O-glucuronides being
formed only to a small extent. By comparing the ability of human tissue microsomes to
catalyze the glucuronidation, Doerge et a.*® suggested that genistein is readily
glucuronidated already in the gut, whereas daidzein glucuronidation predominantly occurs
in liver or kidney microsomes. Sulfation of isoflavones by SULT isoforms in vitro
succeeded for genistein only; no activity was seen with daidzein under the same
conditions. Unfortunately, an insufficient amount of genistein sulfate was formed, so
further structural characterization was not possible.*

The levels of circulating aglycones and glucuronide and sulfate conjugates in blood have
been estimated by using the selective hydrolysis of a sample with pure glucuronide and/or
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sulfatase preparations®™'®%or by fractionating the different types of isoflavonoid

conjugates by ion chromatographic techniques, after which the conjugates are hydrolyzed
and analyzed as aglycones.”” Moderate amounts of isoflavones occurs as free (18-27%) or
aulfated (20-21%) forms in blood, the predominant conjugates being isoflavone
glucuronides (63-62%).'® The distribution of isoflavonoids in tissues has not been fully
established. Isoflavones have been identified and measured in human breast secretions
(nipple aspirate and breast milk)'*'%* and prostatic fluids.'® In rats, concentrations of
isoflavones have been determined in various tissues, including the heat, brain,
epididymis, fat, lung, testis, liver, pituitary gland, prostate gland, mammary glands, uterus,
and kidney.1¢10

The main route of excretion is viathe kidneys. Urinary excretion of daidzein and genistein
has been found to account for approximately 30-61% and 10-30% of administered doses,
respectively.""*** The average urinary recovery of *C-labeled daidzein and genistein was
30% and 9%, respectively; remaining ingested compounds being converted to metabolites
that could not be identified by the methods used in the study.™ In urine, isoflavones exist
mainly (70-90%) as glucuronides, 7-O-monoglucuronides being the most abundant
metabolites.'®**® Free isoflavonoids account for 1-10% and sulfates 10-25% of total
isoflavonoids. M1

Fecal excretion of isoflavones has not been investigated extensively. From data of the few
studies available, the fecal excretion of daidzein and genistein seems to be between 1%
and 4% of the ingested dose,™'** suggesting that excretion in feces occurs only to a
minor degree. In feces, isoflavones occur mainly in a free aglycone form, conjugated
isoflavones accounting for less than 10% of al isoflavones.**®

1.4.6 Pharmacokinetics and bioavailability

Limited studies have investigated the pharmacokinetics and bioavailability of isoflavones
in humans. These studies have been carried out with pure isoflavone preparations
containing only one isoflavone™>*?° or with mixtures of isoflavones obtained from dietary
supplements or soy food, 13 114116117121123 1y ganerg] plasma and urine samples are
collected before and after the isoflavone supplementation at certain time intervals. The
samples are analyzed for their isoflavone levels which are plotted (concentration vs. time)
to yield a pharmacokinetics graph. From this graph, the relative bioavailability of a
compound is calculated by integrating the area under the curve (AUC).

Isoflavones have been shown to be present in blood samples already 15-30 min after
ingestion, reaching their peak concentrations between 2 and 12 h. Intake of approximately
50 mg of isoflavones/d yields plasma concentrations that range from 50 ng/mL to 800
ng/mL (0.2 — 3.2 umol/L) in human adult."®* After a single ora bolus dose of isoflavones,
plasma levels return to basal level within 72 h.*® The magjor portion of the ingested
isoflavones is excreted in urine during the first 24 h.*™®> Limited data on the excretion of
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isoflavonoid metabolites are available. Equol, the metabolite of daidzein, appears in urine
several hours after ingestion and is typically excreted within 12-48 h.'% 1

Bioavailability of a compound refers to the proportion of molecules that enter the blood
circulation intact after ingestion of a compound of interest from a food source. Factors
contributing to the bioavailability include absorption, distribution, metabolism, and
elimination. According to current knowledge, isoflavone glycosides, the predominant form
of isoflavones in foods, are not absorbed intact and are thus not bioavailable.*? The
deglycosylation of isoflavones by gut microflora enables the absorption of isoflavone
aglycones, but the extensive conjugation with glucuronic acid lowers the levels of
circulating free isoflavones. The metabolism of isoflavones in the gut also affects the
levels of circulating isoflavones; if an individual possesses bacteria that effectively
metabolize and degrade the isoflavones, less ingested isoflavones and more metabolites
are absorbed. Given that isoflavones are present in blood mainly as glucuronide
conjugates (>62%)'®'® and 10-60% of ingested isoflavones are recovered in
uring,"+H41231% one may anticipate that, in general, isoflavones are rather poorly
bioavailable.

Many studies have investigated the bioavailability of isoflavones by using methods that
allow determination of isoflavone levels both in ingested food sources and in biological
samples as aglycones. With pure isoflavones, three studies have been carried out. In these
studies, genistein has been shown to be more bioavailable than daidzein, plasma or serum
concentrations of genistein being consistently higher than those of daidzein.****1%" When
comparing the bioavailability of isoflavones as aglycones or from glucoside conjugates,
either no apparent difference in bioavailability or pharmacokinetics of isoflavones** or a

slight increase in bioavailability from isoflavone glycosides has been observed.*?%%2

The effect of food matrix on isoflavone bioavailability has also been evaluated. Regular
soy consumption along with pure isoflavone preparation supplementation does not change
the bioavailability and pharmacokinetics of ingested isoflavones.™ In young females,
regular soy ingestion (as soymilk) has been reported to increase equol 24 production.?® In
males, by contrast, regular soy intake did not affect isoflavone metabolism, but atered the
time-courses of excretion.® No differences in the pharmacokinetics of isoflavones were
observed in a study where isoflavone glycosides of a soy drink were hydrolyzed to
aglycones.*? The urinary recovery of isoflavones during a diet containing fermented soy
(tempeh) was significantly greater than during a diet containing nonfermented soy,
suggesting greater bioavailability of isoflavone aglycones™™® The absorption of
isoflavones from fermented foods has also been shown to be enhanced.**
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1.5 Mass spectrometry in identification and quantification of
isoflavones and their metabolites in biological fluids

1.5.1 Gas chromatography - mass spectrometry (GC-MS)

By definition, gas chromatography — mass spectrometry is suitable for volatile compounds
that are easy to get into gas phase. Polar compounds with a low vapor pressure may be
analyzed after derivatization, for example, the attachment of trimethylsilyl groups to free
hydroxyl groups of isoflavonoids. The sample containing a mixture of compounds to be
analyzed is initially injected into the gas chromatograph, where it is vaporized in a heated
injection port. The vapor mixture then travels with the aid of a carrier gas, normally
helium, through a capillary GC column, in which the compounds are separated as they
interact with the column material. These interactions depend on the structure of the
compound and the stationary phase used in the capillary column, and therefore, some
compounds are retained in the column for a longer time than others. The end of the
capillary column leads to an ionization chamber of a mass spectrometer, held under
vacuum, so as soon as the separated compounds exit the column they enter the mass
spectrometer and are ionized for mass spectrometric analysis.

Electron impact (El) ionization is the most commonly used ionization technique in GC-
MS. Gaseous molecules are bombarded with high-energy electrons that are obtained from
a heated filament and accelerated across the ionization chamber by a voltage, usualy 70
eV. The collison reaction of an electron with the molecule may lead to electronic
excitation in the molecule or, preferably, to gection of an electron from the molecule to
yield aradical cation called a molecular ion. The energy used in the ionization is so high
that, in addition to ionization, fragmentation of the molecule to smaller ionic and/or
neutral species occurs. Normally positive ions are analyzed in EIMS, so any neutral or
negatively charged species are pumped away and will not reach the mass analyzer and the
detector. A mass analyzer separates the ions formed during the ionization process
according to their mass-to-charge (m/2) ratio for detection and recording. There are many
types of different mass analyzers (quadrupole, magnetic sector, time-of-flight, ion trap,
etc.) used in GC-MS, but these will not be discussed here in detail. As in other
gpplications of GC-MS, in flavonoid and isoflavonoid analyses, the quadrupole mass
analyzer isthe one most commonly used.

An advantage of using GC-EIMS is that this technique has been available for many
decades. The ionization process, formation of ions, and mechanisms of reactions occurring
during ionization have been well studied.™®! By using a constant energy of 70 eV in
ionization, the mass spectra of the compounds are reproducible and are not dependent on
the instrument used, thus enabling the creation and use of large mass spectral libraries,
some available on-line (http://www.aist.go.jp/RIODB/SDBS and http://webbook.nist.gov/
chemistry). However, as mentioned earlier, the GC-MS technique is only suitable for
volatile compounds, i.e. it is not applicable for very polar compounds or compounds with
high molecular weights. In addition, thermally unstable compounds may decompose
during evaporation of a sample for GC. Also the high energy used for the ionization may
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cause extensive fragmentation so that the molecular ion cannot be determined or no
structural information for a compound is obtained.

1.5.2 Liquid chromatography - mass spectrometry (LC-MS)

Liquid chromatography — mass spectrometry has become more important in recent years,
since unlike GC-MS it can be used for polar compounds and compounds having high
molecular weights, such as isoflavonoid conjugates. Furthermore, derivatization is not
necessary and laborious sample pretreatment of biological samples needed for GC-MS
analyses can be obviated. In LC-MS, the sample containing the compounds of interest
dissolved in the mobile phase is injected into a high-performance liquid chromatograph
(HPLC). When passing through the column, the compounds become separated owing to
their interactions with the sationary phase. In isoflavonoid analysis, most commonly a
C18 dationary phase is used, while the mobile phase consists of mixtures of
water/methanol or water/acetonitrile containing a small percentage of formic acid or
ammonium acetate as a modifier.

Because of the large volume of solvent emanating from HPLC, the ionization is
commonly carried out under atmospheric pressure. The prevailing amospheric pressure
ionization (API) techniques include electrospray ionization (ESI) and atmospheric
pressure chemical ionization (APCI). In ESI, the solvent passes through a capillary tube to
an ion source, where application of alarge electric field to the end of the tube disrupts the
emerging liquid surface and provides a spray of highly charged droplets. The charge of the
droplets has the same polarity as the applied field, either positive or negative, depending
on the structure of the compound of interest. The formation of charged droplets is
generally aided by adding a small percentage of an organic modifier (formic acid, acetic
acid, ammonium acetate) in mobile phase. There are two theories of how gas phase ions
are formed from charged initial droplets. According the ion evaporation theory, the
evaporation of the solvent shrinks the droplets, increasing the charge density, and at a
certain point, when the repulsive forces between the charges become equa to surface
tension (Raleygh limit), the ions are evaporated.**? The charge residue theory suggests that
ions are formed through consecutive steps of coulombic fission, which eventually lead to
the formation of droplets containing only one ion.**

In the APCI, the solution is sprayed from the capillary tube and converted to afine mist by
heated nebulizing gas. Following desolvation, the gas is carried by a flow of nitrogen past
a corona discharge needle, where the ionization occurs. The vaporized solvent molecules
areionized and act as a secondary reactant gas ions, transferring the charge to the sample
molecules. As the gas flow and the ions are expanded through a sampling orifice into a
region of vacuum, the solvent molecules attached to protonated (M+H)™ or deprotonated
(M-H)" molecules are stripped off and the (M+H)" or (M-H)" ions enter the mass analyzer.

Both ESI and APCI are so-called soft ionization techniques, and very little fragmentation
of molecules occurs during the ionization process. Therefore, the mass spectra of the
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compounds usually contain the (M+H)" or (M-H)  ions only. To increase the specificity
and to obtain structural information on the compounds, tandem mass spectrometry
(MSMYS) is often used in combination with LC techniques. A triple quadrupole is
commonly used as a mass anal yzer, the first and last quadrupoles acting as mass anal yzers,
while the second quadrupole in the middle serves as a collision chamber. The ions filtered
through the first quadrupole are collided with gas (typically nitrogen or argon), resulting in
the fragmentation of an ion to smaller charged or neutra species that are separated by their
Mz in the third quadrupole.

The use of LC-MS or LC-MSMS, as well as other methods applying liquid
chromatography, has many advantages in the analysis of isoflavonoids in biological
samples. Compared with GC-MS, the laborious and time-consuming sample pretreatment
may be avoided and the analysis of intact biomolecules, such as isoflavone glycosides in
food items or glucuronides and sulfates in biological fluids, is possible.** However, for
identification and structure characterization purposes, this technique is not as suitable as
GC-MS, since the fragmentation reactions of compounds in LC-(MS)" systems are not
fully established and understood.™*

1.5.3 Analysis of isoflavonoids in plasma samples

The mass spectrometric methods for anayzing isoflavonoids in plasma samples are
summarized in Table 1 (Appendix 1). In general, internal standards (ISTD) are added to
0.1-40 mL of plasma, and the sample is hydrolyzed with glucuronidase/sulfatase
(commonly from Helix pomatia) at 37°C overnight. Commercially available H. pomatia
preparations may contain small levels of isoflavones, so in some studies the enzyme has
been purified.®*1*1%13* Hydrolysate is extracted, either by solid-phase extraction (SPE)
with Cig cartridges'™®**%7 or py liquid-liquid extraction (LLE) with diethyl
ether 2134138139 gome methods use additional purification of the sample with ion
exchange chromatography™'>2>134138 or remove fat-soluble compounds by extraction with
hexane®®* before analysis. For GC-MS analyses, the samples have been derivatized to
trimethylsilyl (TMS)®'® or t-butyldimethylsilyl (TBDMS)'™™® derivatives. Selected ion
monitoring (SIM) has been used to increase the sensitivity of the method. The ions
selected in GC-M S analyses are commonly the molecular ions, except for genistein and
dihydrogenistein, for which the (M-15)" ion has been used for quantification. In LC-MS
analyses, usually the deprotonated molecules have been monitored.

1.5.4 Analysis of isoflavonoids in tissue samples

Mass spectrometric analyses of tissue samples have thus far been carried out for samples
from laboratory animals only. Using LC-MS or LC-M S/MS techniques, the isoflavonoid
distribution has been examined in mammary gland, uterus, ovary, testes, prostate, thyroid,
liver, and brain of rats.®" 1% % The pretreatment methods of tissue samples are
summarized in Table 2 (Appendix 1). In study by Chang et a.’*’ LC-ESI/MS has been
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used in positive ion mode to monitor protonated molecule ions for genistein and da-
genistein, the internal standard. Samples containing isoflavone levels close to the limit of
detection have been analyzed using LC-ESI/MS/MS to add specificity to the method.*”

A recent study by Gu et d.'® suggested that using enzymatic hydrolysis in sample
pretreatment of tissue samples underestimates the levels of isoflavone conjugates, and the
authors recommend the use of acid hydrolysisin analysis of total isoflavones. The tested
sample pretreatment methods, including enzymatic hydrolysis with H. pomatia, sequential
hydrolysis with b- glucuronidase and sulfatase enzyme preparations, and acid hydrolysis,
are summarized in Table 2 (Appendix 1). In these methods, biochanin A was used as an
internal standard, added at the end of the sample pretrestment methods. LC-APCI/MS
instrumentation was used in negative mode to monitor (M-H)™ for daidzein and genistein.
LC-APCI/MS conditions were the same as those applied for analysis of isoflavone and
their sulfate and glucuronide conjugatesin urine.***

1.5.5 Analysis of isoflavonoids in urine samples

Several methods using GC-MS or LC-MS techniques have been developed for the
guantitative analysis of isoflavonoids in human urine samples. The methods, summarized
in Table 3 (Appendix 1), employ three different approaches to measure isoflavonoids. The
first is the measurement of total isoflavones as aglycones using enzymatic hydrolysis,
typically with b-glucuronidase and arylsulfatase from H. pomatia.***'*? The second
approach is the estimation of isoflavone aglycones and conjugates using selective
hydrolyses with glucuronidase and/or sulfatase enzymes,***** or by separating the
aglycones and different conjugates by ion exchange chromatography followed by the
hydrolysis of the conjugates to aglycone analytes.>"**® The third and most straightforward
approach is the direct measurement of aglycones and conjugates from urine samples.
However, the lack of suitable conjugate standards has limited the direct analysis of these
compounds, and thus far, only semiquantitative methods are available.™®

In adl methods, the selected ion monitoring (SIM) or multiple reactions monitoring
(MRM) has been used to increase sensitivity. In GC-M'S methods, ions selected for SIM
are commonly the molecular ions of derivatized isoflavonoids, except for genistein, for
which the more abundant (M-15)" ion has been used. In LC-MS methods, the negative
ionization mode has been applied, therefore the monitored ions are deprotonated molecule
ions. In one method, equol was measured separately using the positive mode, and thus, the
protonated molecule ion was used for analysis.*'®

The analysis of isoflavonoids has been carried out from either spot urine samples® or
urine samples collected over 24 h.?” The volumes of the samples to be analyzed may vary
greatly, from 200 nL to 20 mL, the biggest sample volumes being from older studies using
either GC-MS?"** or LC-MS.*! The most recent GC-M S method requires only 200 ni. of
urine, and compared with other analytical methods, very little sample pretreastment is



needed for totd isoflavone analysis, making the method an effective tool in the analysis of
large sample batches with a limited volume of urine sample available. *?

The methods determining the levels of isoflavonoid aglycones and conjugates by
sequential hydrolysis seem to provide only estimates of excreted conjugates due to the
presence of mixed sulfate and glucuronide conjugates.*** The method available for direct
measurement of isoflavone aglycones and conjugates is considered semiquantitative
owing to the lack of appropriate reference standards.**® So far, the most reliable method
for conjugate analysis is separation of the aglycones and different conjugates by ion
exchange chromatography, followed by the hydrolysis of the conjugates and analysis as
aglycones.””**® However, due to the laborious sample pretreatment method, including
several extraction and ion exchange chromatographic steps, this method is not suitable for
routine analysis of large sample series. The quantitative sample pretreatment methods
have also been applied in the identification of urinary isoflavonoids,?-?>%14414% byt some
studies have supplemented these by using their own sample pretreatment methods.?*2>™

1.5.6 Analysis of isoflavonoids in fecal samples

To date, only one mass spectrometric method for quantitative analysis of isoflavones in
fecal samples has been reported.”*® The conjugated isoflavonoids occur in very low
amounts in feces (<10%), and thus have not been included in the method. ISTDs
(deuterated analogues of daidzein 1, genistein 2, equol 24, and O-dma 28) are mixed with
0.3-0.6 g of homogenized sample. After addition of acetone and ethanol, the sample is
further homogenized, and the extract is filtered and further purified with ion exchange
chromatography prior to derivatization to TMS ethers. Quantitative analysisis carried out
using GC-MS with selected ion monitoring (SIM) of molecular ions, or in the case of
genistein, the more abundant (M-15)" ion. Quadlitative methods for the identification of
isoflavones and their metabolites in fecal samples or in vitro feca fermentation samples
have also been reported.3%52

1.6 Biological activities of isoflavones and their metabolites

1.6.1 In plants

Isoflavonoids occur mainly in plants belonging to Leguminosae, i.e. plants capable of
fixing amospheric N2 by symbiotic interaction with bacteria (Rhizobia) internalized
within root nodules. The seeds of the legumes are abundant reservoirs of isoflavonoids,
some of which can be released into soil during germination.*****’ The isoflavonoids play
an important role in mediating the multiple plant-microbial interactions, acting as signal
substances to bacteria.’® They serve as chemoattractants for bacteria, influence bacterial
growth, and selectively activate the expression of the nodulation (nod) genes of symbiotic
bacterl 8.149’150
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In addition to acting as signal molecules, isoflavones exhibit antimicrobia or antifungal
activities and are therefore believed to help the plant fight various diseases. Genistein, for
example, is toxic to several classes of fungal and comyetic pathogens,™ while daidzein is
suggested to be aprecursor for the synthesis of glycollin, a phytoalexin.****> The levels of
isoflavones in plants are to a great extent dependent on growing conditions. In general, the
levels of isoflavones increase when the plant grows under conditions that induce a stress
response. For instance, low growing temperatures, waterlogging, and mineral deficiency
have been reported to increase isoflavone levels. ™

1.6.2 In humans

The interest in isoflavones, their biological activities, and possible beneficial effects on
human health started in the 1980s when human urine was found to contain high levels of
isoflavonoids originating from soy, which in animals had been demonstrated to exert some
hormone-like effects.'***>**® Epidemiological and immigrant studies associated a diet rich
in isoflavones with a lowered risk for certain hormone-dependent cancers,®” %%
including breast and prostate cancers, and later studies have shown that isoflavones may
play arolein the prevention of osteoporosis and cardiovascular disease. ™" *°

In general, high levels of biologically active hormones, androgens or estrogens, are
associated with an increased prostate or breast cancer risk. Structuraly, isoflavonoids
share similarities with endogenous estrogens, especially with 17b-estradiol 60, and they
bind to estrogen receptors.*®*** Binding of isoflavonoids to estrogen receptors may exert
both estrogenic and antiestrogenic effects, isoflavonoids acting as weak agonists or
antagonists. As weak agonists, isoflavonoids occupy the estrogen receptor in the presence
of amore potent ligand, such as 17b-estradiol, but the estrogenic response they produce is
low. In the case of an antagonist compound, the binding of the compound to the receptor
produces no response.’®*

oH OH
OH O O
98
HO o HO
Genistein 2 17b-Estradiol 60

Isoflavones interfere with the biosynthesis of endogenous estrogens and androgens by
inhibiting the key enzymes (steroid dehydrogenase, aromatase, or 5a-reductase). They
reduce the concentrations of free estrogens by stimulating the production of sex hormone
binding protein (SHBG)?* or by activating enzymes forming inactive conjugates of the
estrogens163 Besides affecting the production, metabolism, and actions of hormones,
isoflavones, especially genistein, have an effect on tumor cell growth by suppressing
angiogenesis and inhibiting protein tyrosine kinase, topoisomerase |1, and protein histidine
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kinase, which play important roles in cell proliferation, transformation, growth, and
differentiation.*31041%

During and after menopause, endogenous estrogen secretion decreases, which has been
associated with a higher incidence of osteoporotic fractures in postmenopausal women.
Hormone replacement therapy (HRT) has been shown to reduce postmenopausa
osteoporosis.*®® Given the estrogenic nature of isoflavonoids without the harmful effects
of estrogens, there has been a growing interest in studying isoflavones both for the
treatment of osteoporosis and as an aternative to HRT. The results from human clinical
dudies on the relationship between isoflavonoid intake and osteoporosis are
inconsistent.’*”**® Many of the studies have been too small and short to assess possible
benefits of isoflavonoids on bone quality. Longer-term studies suggest that isoflavones
may have an impact on bone health, although the effect observed is only moderate.**"*%°
Most of the data regarding the benefits of isoflavonoids on bone health derives from
studies of ipriflavone 61, (7-O-isopropylisoflavone) a synthetic drug candidate, which has
been reported to reduce bone loss in postmenopausal women by inhibiting osteoclast
activity and stimulating osteoblast activity.’***"® Several mechanisms by which genistein
improves bone health have been suggested, many of which are supported by in vitro
laboratory experiments. These include genistein’s estrogenic and inhibitory effects on
protein tyrosine kinase, '™ inhibitory effect on osteoclast-like cell formation,*” modulation
of production of nitric oxide, and stimulation of protein synthesis in osteoblast cells.*”

YO

Ipriflavone 61

Many studies have investigated the efficacy of isoflavonoids in treatment of menopausal
symptoms. No clear positive effects of soy or isoflavones on menopausal symptoms have
been found. However, some studies indicate that the use of isoflavones to address
vasomotor symptoms may provide small benefits beyond a placebo effect, but no benefit
for genital atrophy.'”® There are also studies showing that soy and soy isoflavones given to
postmenopausal women improve their cognitive functions, memory performance, and
frontal lobe functions of mental flexibility and planning.*’"*"® Furthermore, the use of soy
in alleviating menopausal symptoms may also reduce the risk for coronary heart disease.
A soy diet has been shown to decrease low-density lipoprotein (LDL) and total plasma
cholesterol levels, possibly by upregulation of LDL receptors.*® In addition, genistein has
been found to possess antithrombolic effects and to decrease platelet activation,
deposition, and aggregation, thus decreasing the progression of atherosclerosis,*#-18*

Most of the results obtained from human clinical studies are inconclusive and the
mechanisms by which isoflavones act remain obscure. The most recent studies suggest
that the metabolites of isoflavones may play a role in the prevention of the diseases
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mentioned above.'® For example, in a two-year intervention study using soy milk,
increases in both bone mineral density and bone mineral content were observed in women
who were equol producers.® In laboratory trials, equol has been found to possess
estrogenic activity, having an affinity for both estrogen receptors ER-a and ER-b of a
similar magnitude to genistein.’®” Only a few sporadic studies have examined the
biological activities of other isoflavonoid metabolites, but there are some indications that
they might be involved in the mechanisms of action of isoflavones, %1819
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2. AIMS OF THE STUDY

For several years, the interest in isoflavonoids and their potential role in the prevention of
certain diseases has focused on research on daidzein and genistein, the principal
isoflavones of soy and soy-based foods, and the main metabolites of formononetin and
biochanin A, the principal isoflavones of red clover. Unitil recently, comprehensive studies
on the metabolism of these compounds have been lacking. The aim of this study was to
investigate the metabolism of isoflavones in humans — to identify all metabolites excreted
in urine after soy or red clover supplementation, which have an intact isoflavonoid
sructure, and thus might possess biological activity. To achieve this aim, the following
studies were conducted:

- Investigation of fragmentation of isoflavonoids in electron ionization mass
spectrometry (1-1V).

- Evaluation of in vitro bacterial metabolism of isoflavones (111).

- ldentification of isoflavonoid metabolites in  human wurine after soy
supplementation (I-111, V).

- ldentification of isoflavonoid metabolites in human urine after red clover
supplementation (1V, V).
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3. EXPERIMENTAL

3.1 Materials

3.1.1 Standards, chemicals, and reagents

Daidzein, genistein, glycitein, 7,8,4 -trihydroxyisoflavone,  pseudobaptigenin,
formononetin, biochanin A, dihydrodaidzein, dihydrogenistein, dihydroglycitein,
dihydroformononetin, dihydrobiochanin A, equol, cis and trans 4-hydroxyequol, 7,3’ -
dihydroxyisoflavan, 4’-O-methylequol, 7,3',4 -trihydroxyisoflavan, 7,4 -dihydroxy-6-
methoxyisoflavan, 7,4 -dihydroxy-3’-methoxyisoflavan, O-dma, 6’ -hydroxy-O-dma,
angolensin, and 6'-hydroxyangolensin were synthesized at the Laboratory of Organic
Chemistry, Department of Chemistry, University of Helsinki, Finland.***?® Calycosin,
prunetin, 7,3 ,4'- and 6,7,4’ -trihydroxyisoflavones, and orobol were obtained from Apin
Chemicals Ltd., United Kingdom.

All reagents were pro-analysis (pa) grade or higher. Acetic acid glacial 100%, L(+)-
ascorbic acid and, diethyl ether were obtained from Merck, Germany. Ethyl acetate,
heptane, hexane, and methanol were from Rathburn Chemicals Ltd., Scotland. Helix
pomatia juice was purchased from BioSepra SA, France. Hexamethyldisilazane (HMDS)
and trimethylchlorosilane (TMCS) were obtained from Pierce, USA, and pyridine, Super
Purity Solvent, from Romil Ltd., Great Britain. Lipidex-5000 was purchased from Packard
Bioscience B.V., the Netherlands, and QAE Sephadex ® A-25 and Sephadex ® LH-20 from
Pharmacia Biotech AB, Sweden.

3.1.2 Dietary supplements

Soy bar (Soya confectionery bar, L 1073/01/2) was provided by SHS International Ltd.,
United Kingdom. The red clover dietary supplement (Red Clover™) was obtained from
Novogen, Austrdia

3.1.3 Human urine samples

Urine collection

Daily (24-h) urine samples were collected in plastic containers, and 1% of ascorbic acid
and 0.1% of sodium azide were added as preservatives. After collection, the volumes of
the samples were measured and aiquots of 50-100 mL were stored in a refrigerator (-
20°C).



Soy supplementation study (I-1)

Six volunteers (three men and three women) were recruited for this study among students
of medicine and they included three soy bars per day into their normal Western diet for a
two-week period. The 24-h urine samples were collected one day before and on two
consecutive days after the soy supplementation period.

Red clover supplementation study (1V)

Seven healthy Finnish women, aged 20-60 years, were recruited for this ssudy among the
daff of the Folkhdsan Research Center. Subjects were asked to abstain from foods
containing high levels of isoflavones, e.g. soy or foods derived from soy, for one week
(days 1-7) before and during the study (days 8-12). On the morning of the eighth day,
subjects took four red clover -based dietary supplements with a glass of water. A baseline
24-h urine sample was collected one day (day 7) before isoflavone supplementation. After
the supplementation a 24-h urine sample collection was continued for five consecutive
days (days 8-12). The study protocol was approved by the Ethics Committee for Research
in Epidemiology and Public Hedth, Hospital District of Helsinki and Uusimaa, Finland.

3.1.4 In vitro fecal fermentation samples

The incubation method of Karppinen et al.?** was modified as follows: a carbonate-
phosphate buffer solution with trace elements was held in an anaerobic chamber for two
days prior to the fermentation. Feces were collected from three healthy human volunteers,
who had ingested a Western diet, presented no digestive disease, and had not received
antibiotics for at least three months. Freshly passed feces were immediately taken in an
anaerobic chamber, pooled, and homogenized at the same time with an equal weight of
culture medium using a Waring blender. The slurry was diluted to 16.7% (w/w) with
culture medium, filtered through a 1-mm sieve, and used immediately as inoculum.

A 1- to 2-mg quantity of each subdrate (daidzein 1, genisein 2, 7,3 .4'-
trihydroxyisoflavone, 6,7,4 -trihydroxyisoflavone, 7,8,4 -trihydroxyisoflavone, and orobol
15), corresponding to 2-3.5 nmol, was weighed into 50-mL glass vials and 10 mL of fecal
suspension was added in an anaerobic chamber at 30°C. The vials were sealed with rubber
stoppers and shaken in awater bath at 37°C for 24 h. Duplicate incubations were carried
out for each substrate. Also duplicate blanks, containing only culture medium and
inoculum, were incubated for 0 and 24 h. The fermentation was stopped by plunging the
vialsinto iced water, after which the vial contents were freeze-dried and weighed.
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3.2 Methods

3.2.1 Analysis of soy bar and red clover dietary supplements

The isoflavone content of soy bar and red clover dietary supplements was determined by a
quantitative method for food samples with minor modifications.”®? Because of the high
levels of isoflavones in both samples, purification with ion exchange chromatography was
unnecessary. The combined ether extracts from H. pomatia hydrolysates were evaporated
to dryness, and the sample were dissolved in 5 mL of methanol, from which an
appropriate aliquot (100-500 ni) was pipetted for analysis.

3.2.2 Sample pretreatment method for urine samples

The sample pretreatment method was an application of the method used by Kelly et al.?*
An additional purification step with SPE Sep-Pak C,g cartridges (Waters, USA) was
introduced at the beginning of the method to remove salts and compounds inhibiting
enzymatic hydrolysis and to yield samples of equa sizes before hydrolysis.?®® From daily
urine samples, duplicate samples of a 1/300 fraction were anayzed each time. The pH of
the sample was adjusted to 3.0 by adding 1/10 of sample volume of 1.5 M acetate buffer
pH 3.0. Urine samples were extracted with pre-washed (6 mL of MeOH followed by 10
mL of water) Sep-Pak C,g cartridges. The sample was then washed with 5 mL of 0.15 M
acetate buffer pH 3.0. The analytes were eluted with 3 mL of methanol and evaporated to
dryness, after which the dry samples were hydrolyzed with H. pomatia, extracted twice
with diethyl ether (2 x 6 mL), and chromatographed on a Sephadex L H-20.

Neutral steroids and other urinary compounds interfered with the analysis of isoflavonoids
that had eluted in the first fraction of the Sephadex LH-20 run. This was a problem when
identifying the reduced isoflavonoid metabolites of red clover isoflavones formononetin
and biochanin A, which had eluted in this fraction. Further purification was performed
with chromatography on QAE acetate column, used in the method for quantitative analysis
of isoflavones in human urine. The firg fraction of the Sephadex LH-20 run was
evaporated to dryness under nitrogen flow and the samples were dissolved in 0.5 mL of
methanol and applied to a column (0.5x5.0 cm) of QAE acetate. The first fraction was
eluted with 5 mL of methanol and the second fraction with 7 mL of 0.2 M acetic acid in
methanol. Both fractions were evaporated to dryness. The method and the distribution of
soy and red clover isoflavones and their metabolites in the different chromatographic
fractions are presented in the flow chart in Figure 4.
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Sample
- 1/300 of 24-h urine sample

v

Sep-Pak C18
- Preconditioned with 6 mL of MeOH and 10 mL of H,O
- Urine sample loaded
- Washing with 0.15 M Ac-buffer pH 3.0
- Elution with 3 mL of MeOH

v

Enzymatlc hydrolysiswith H. pomatia
5 mL of hydrolysis reagent containing
5mL of 0.15 M Ac-buffer, pH 4.1, 25 mg of ascorbic
acid and 25 L. H. pomatia extract
- incubation overnight at 37°C

v

Ether extraction
- 2x10mL of diethyl ether
- organic phases combined and evaporated to dryness

v

Sephadex LH-20
0.5x5.0 cm column in Pasteur pipette in
CHCI,/C;H¢/MeOH, 10:10:1 (eluent)
- sample applied on the columnin 2x50 mL of eluent
- Fr1.: eluted with 5 mL of eluent
- Fr 2.: eluted with 3 mL of MeOH

Fr.i Fr.2:
7,8, 12, 14, and 1,2,and 3
their reduced their reduced
metabolites and oxidized
metabolites,
11 and 31
QAE -AC
0.5x5.0 cm columnin
Pasteur pipette in MeOH
- Fr. 1 eluted with6.5 mL
of MeOH
- Fr. 2. eluted with 7.0 mL
of 0.2M HOAc in
MeOH
Fr.la: Fr. 2a:
12 and 25 7 and 8, and
their reduced
metabolites,
14
\ 4
Derivatization with 100 L of QSM
v
GC-MS

Figure 4. Sample pretreatment method.
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Table4. I soflavonoids added to contral urine and fecal fermentation samples, the internal
standards (ISTD), and the ions that were monitored for determination of specificity, recovery, and
precision of the analytical method devel oped for identification of i soflavones and their metabolites
in urine and fecal fermentation samples.

Analyte Added MW Monitored ISTD MW Monitored

(m) ion (M/z) ion (m/z)
Daidzein  2.35 398 398 d;-Daidzein 402 402
Genistein 1.58 486 471 ds-Genistein 500 475
Equol 1.89 386 386 ds-Equol 400 400
O-dma 2.02 474 459 ds-O-dma 479 464
Dihydrodaidzein 1.59 400 400 ds-Dihydrodaidzein 404 404
Dihydrogenistein 142 488 473 ds-Dihydrogenistein 502 477
Formononetin 4.84 340 340 ds-Formononetin 343 343
Biochanin A 4.68 428 413 ds-Biochanin A 432 417
4’ -O-Methylequol 2.03 328 328 ds-Equol 400 400
Angolensin 1.98 504 489 ds-O-dma 479 464
Dihydroformonetin ~ 3.22 342 342 ds-Dihydrodaidzein 404 404
Dihydrobiochanin A 2.39 430 417 ds-Dihydrogenistein 502 a77
7,3’ ,4’ -tri-OH-isoflavone 2.15 486 471 ds,-Daidzein 402 402
6,7,4 -tri-OH-i soflavone 1.98 486 471 d,-Daidzein 402 402
8,7,4 -tri-OH-i soflavone 2.32 486 471 d,-Daidzein 402 402
5,7,3 4 -tetra-OH- 221 574 559 ds-Genistein 500 475

isofl avone

Specificity, recovery, and precison of the sample pretreatment method were evaluated
with six replicate analyses of baseline (low control) and soy- or red clover-supplemented
(high control) urine samples spiked with reference compounds (1.42-4.84 ng/10 mL of
urine) (Table 4). In addition, duplicate samples of both basdline urine and reagent blank
samples were included in the sample batches. For evaluation of specificity, additional
fractions from both chromatographic runs (Sephadex LH-20 and QAE-acetate) were
collected after the elution of the fraction containing the compounds of interest and
analyzed for their isoflavone content. Deuterated internal standards (Table 4), added just
before analysis by GC-MS, were used as internal standards in calculations of
concentrations. Recoveries of the analytes were determined by comparing the peak area
ratios of selected ions of each compound vs. internal standard. The selected ions for each
analyte and internal standard are shown in Table 4.



3.2.3 Sample pretreatment method for fecal fermentation samples

The qudlitative method for identification of isoflavone metabolites in fecal fermentation
samples was based on a previous study in which the in vitro metabolism of plant lignans
was investigated.”® Freeze-dried fecal fermentation sample (20 mg) was weighed and 500
pL of distilled water and 10 uL of 6 M HCI were added. The slurry was extracted twice
with 6 mL of diethyl ether, and the combined organic phases were evaporated to dryness
under nitrogen flow. The sample was applied to a Lipidex 5000 column (0.5 x 5 cm) in 2 X
200 pL of MeOH:CHClI3:H20 (4:1:1). Compounds of interest were eluted and collected
with 4 mL of the same eluent. The collected fraction was eveporated to dryness,
derivatized, and andyzed by GC-MS.

The sample pretreatment was tested for recovery, specificity, and precision by six replicate
analyses of spiked blank fermentation samples. Standards (1.42-2.35 pg, Table 4) were
added to the blank feca fermentation sample (20 mg) at the beginning of the sample
pretreatment. After the sample pretreatment, the deuterated internal standards were added
to the sample, and the samples were derivatized and analyzed by GC-MS. Recoveries,
precison, and specificity of the sample pretreatment method were evaluated as described
above in the sample pretreatment method for urine samples.

3.2.4 Derivatization

The dry samples were silylated with 100 nL of pyridineeHMDS. TMCS (9:3:1), i.e. quick
slylation mixture (QSM), for 30 min at room temperature. The mixture was evaporated to
dryness and the samples were dissolved in 200-400 ni of hexane. Later, the eveporation
of the sample and dissolving in hexane was omitted, and the samples were silylated in an
appropriate amount (200-400 ) of silylation reagent and injected into GC-MS directly
in this solution. Deuterated TMS ethers were used for the structural elucidation of
unknown metabolites for which reference compounds were unavailable. The deuterated
TMS derivatives were obtained by the derivatization procedure described above, except
that do-HMDS and d3-TMCS were used in the silylation mixture.

3.2.5 Instrumentation and analysis

The analysis of urinary samples was carried out using a Fisons GC 8000 gas
chromatograph (Milan, Italy) coupled to a Fisons Instrument MD 1000 quadrupole mass
spectrometer (Cambridge, United Kingdom). The column used in the gas chromatograph
was a BP-1 (12 m x 0.22 mm x 0.25 nm) from SGE (Scientific Glass Engineering,
Austraia). The flow rate of helium carrier gas was 1 mL/min. The oven temperature was
programmed as follows: 150°C for 1 min, then 50°C/min to 250°C, 250°C for 15 min,
50°C/minto 290°C, and 290°C for 5 min. The temperatures of the injection port, interface,
and ion source were 280°C, 250°C and 200°C, respectively. Electron-impact ionization
with 70 eV electron energy was used, and mass range from 100 to 900 mass units was
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scanned. The operation of the GC-MS instrument and data analysis were performed by
XCalibur software (version 1.2, Finnigan, Cambridge, United Kingdom).

Isoflavones and their metabolites in urine or fecal fermentation samples were
distinguished from other compounds present in the sample by comparing the mass
spectrometric chromatograms obtained from blank samples (baseline urine samples or
fecal blank) with chromatograms obtained after isoflavone supplementation. The
isoflavones and their metabolites were identified using synthetic reference compounds by
comparing the retention times and the mass spectra of the metabolite and the authentic
reference compound. The criterion used to positively identify a metabolite in a urine
sample was that the eight most abundant fragment ions of the mass spectrum of the TMS
derivative of the metabolite had the correct relative ion ratios compared with the mass
spectrum of a TMS derivative of the reference compound. Compounds for which no
authentic reference compounds were available were tentatively identified by interpretation
of their mass spectrum. Deuterated TM S derivatives were used to aid the interpretation of
the spectrum and to confirm the proposed structures of fragment ions. A computer library
search using the library created from mass spectra of reference and tentatively identified
compounds was utilized to compare the distribution of the identified compounds in urine
samples of different volunteers. The criterion of >95% match was used to postively
identify a compound in urine samples.
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4. RESULTS AND DISCUSSION

4.1 Electron ionization - mass spectra of trimethylsilyl derivatives
of isoflavonoids (I-1V)

The mass spectra of all TMS derivatives of isoflavonoids discussed in this thesis are
summarized in Appendix 2. Most of the spectra are from authentic reference compounds;
al other cases are clearly indicated. The mass spectra of deuterated TM S derivatives are
also presented. Representative mass spectra of each isoflavonoid group are provided in
Figures 5-8, with TM S derivatives of 7,4’ -dihydroxy-6-methoxy substituted isoflavonoids
serving as model compounds.

4.1.1 Use of deuterated isoflavones in interpretation of mass spectra

The use of deuterated TMS derivatives aids the interpretation of mass spectra, allowing
confirmation of the proposed structures of molecular and, especially, fragment ions. As a
result of the derivatization process, every free hydroxy group in the molecule is converted
to a TMS ether. In deuterated TM S derivatives, every hydrogen atom in the methyl groups
of the silylating reagent is replaced by a deuterium. This means that the mass difference
between deuterated and nondeuterated derivatives is nine mass units for each TMS group
present in a molecule. By comparing the mass spectra of deuterated and nondeuterated
compounds, it is easy to calculate the number of TM S groups present in the molecule, and
thus establish the number of origina hydroxy groups in the compound. For example, the
molecular ion of TMS ether of daidzein 1ais a m/z 398, whereas the molecular ion of its
deuterated TMS derivative 1b is 18 mass units higher, at m/z 416, from which one can
deduce that daidzein has two hydroxyl groups (2x9=18) in the molecular ion.

4o

(CH3)3Si—O o ] (CD3)3Si— O o ]

la 1b
m/z 398 m'z416

The intensive fragment ion at m/z 398 in the mass spectrum of the TM S ether of glycitein
3 (Figure 5) contains five methyl groups originating from TMS groups, which is reflected
in the 15 mass unit difference of thision when comparing the mass spectrum of TM S ether
of glycitein 3 with the mass spectrum of its deuterated TM S derivative (Table 1, Appendix
2) as shown below.
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O—-SiR,

R= CHs: m/z 428 R= CH3: m/z 398
R= CDs: m/z 446 R=CD3 m/z413

4.1.2 Mass spectra of isoflavones

Typical of the mass spectra of TMS derivatives of isoflavones is that they contain
intensive peaks at m/z values close to the molecular ion (Table 1, Appendix 2). The base
peak of the mass spectrum is commonly the molecular ion M™ or a fragment ion (M-
CHs)" formed from cleavage of one methyl radical from the molecular ion. (M-CHs)" is
the base peak of mass spectra of compounds with a hydroxyl substituent at 5-position,
such as genistein 2, biochanin A 8, orobol 15, and prunetin 12. For example, the loss of a
methyl radical from the molecular ion of the TMS ether of genistein 2 yields a more stable
ion at m/z 471, the structure of which is shown in Scheme 1.

m/z 486 (<1) m/z 471 (100)

Schemel.  Lossof amethyl radical fromthe molecular ion of the TMS ether of genistein 2.

In addition to intensive molecular and (M-CHz)" ions, the compounds with a methoxy
group ortho to trimethylsilylated hydroxyl group, such as glycitein 3, calycosin 11, and
7,4 -dihydroxy-3’ -methoxyisoflavone, show intensive pesks formed by subsequent losses
of two methyl radicals from the molecular ion (Table 1, Appendix 2). The peaks of these
radical cations occur at even m/z values. The first methyl radical is cleaved from the TMS
group, which is verified by the presence of the fragment ion at myz (M-CD3)" in the mass
spectrum of a deuterated TMS derivative of the compound (Scheme 2 and Table 1 in
Appendix 2). The second methyl radical islost from the methoxy group, yielding fragment
ions at m/z (M-30)" and (M-33)™ in the mass spectra of TMS and deuterated TMS
derivatives, respectively. From these radical cations, a-cleavage of one additional methyl
radical yields ions of moderate abundance occurring at m'z (M-45)" and (M-48)*. For
example, in the mass spectrum of the TMS derivative of glycitein 3 (Figure 5), the
intensive peaks at m/z 383, 398, 413, and 428 have structures shown in Scheme 2.
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Scheme 2.  Fragmentation of the TMS ether of glycitein 3.

Another possibility is that two methyl radicals are lost from the molecular ion in aform of
an ethane molecule, CH3;CH;. Small stable neutrals can be eliminated from cations or
radical cations, particularly, when the new ion shows a substantial increase in stability
over the precursor ion (ref. 130, pp. 218-219).

Loss of TMS radical from the molecular ion is common for all isoflavones with
trimethylsilylated hydroxyl groups, yielding low or moderate intensity peak at nvz value
(M-73)*. Compounds with vicinal hydroxyl groups attached to either ring A or ring B
have low intensity peaks at m/z values (M-88)" ", (M-89)" and (M-103)", corresponding to
cleavages of neutra Si(CH3)4, OTMS radical, and Si(CH3), followed by loss of a methyl
radical, respectively. For example, in the mass spectrum of the TMS ether of 6,7,4'-
trihydroxyisoflavone 38 (Table 1, Appendix 2), peaks at masses (M-73)", (M-88)", (M-
89)", and (M-103)", i.e. at mVz 413, 398, 397, and 383, respectively, are fragment ions
with the structures shown below.

| |
0 o}
OTMS OTMS

miz 413 (2) m/z 398 (3)

\ 0 e 0
\ —Si \
N\
(@] (@)
OTMS OTMS

miz 397 (2) m/z 383 (8)
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TMS ethers of genistein 2, biochanin A 8, orobol 15, and prunetin 12, al of which have
hydroxyl groups at C-5, show an elimination of (CHs),Si=CH,. This could happen by the
8-centered vinylous McL afferty-type elimination presented in Scheme 3. lons formed by
this kind of loss appear in the mass spectrum as low intensity peaks a m/z values (M-
72)". The a-cleavage of a methyl radical from the (M-72)" ion yields (M-87)" and (M-
98)" ions in the mass spectra of nondeuterated and deuterated TM S ethers, respectively.

TMSO. @)
‘ TMSO.
- (CH3)28| :CH2
r —
5 +6) O
\. H OTMS
e
2
Mz 486 (1) m/z 416 (4)

Scheme3.  8-Centered vinylous McLafferty type elimination of (CH3),S=CH, from molecular
ion of genistein 2.

Fragment ions formed by aretro Diels-Alder (rDA) reaction (Scheme 4) appear at low or
moderate intensity peaks at even m/z values. The reaction favors the delocalized p-
electron system of the ring A rather than the double bond of ring C, and the charge may be
retained at either of the forming radical cation fragments. The most intensive rDA peaks
are in the mass spectra of the TMS derivative of formononetin 7, where the ring A rDA
fragment (A™) occurs at m/z 208 (14%), and the ring B rDA fragment (B*) at vz 132
(57%). In the mass spectrum of its deuterated TMS derivative, the fragments are at nvz
217 and 132, respectively.

OCH;
+e

7 B* A"
m/z 340 (100) miz 132 (57) m/z 208 (14)

Scheme 4. Retro Dids-Alder reaction of the TMS ether of formononetin 7.

An interesting feature in the mass spectrum of TMS derivatives of some isoflavones are
the rather abundant ions that show no isotope peaks (footnote 1 in Table 1, Appendix 2).
When using a quadrupole mass analyzer, these kinds of peaks are common with doubly
charged ions, which, in general, are rare in EI-MS. The isotope pesks of doubly charged
ions occur at distance of half mass units and cannot be separated from each other by the
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unit resolution of the quadrupole mass analyzer. In the mass spectrum of the TMS
derivative of glycitein 3 (Figure 5), three ions at myz values 184, 191, and 199 show no
isotopic peaks and probably originate from the doubly charged molecular ion. Their
structures are shown in Scheme 5. The analysis of the mass spectra of the deuterated TMS
derivative (Table 1, Appendix 2) supports the presence of doubly charged ions; the
fragment at m/z 205 in the mass spectrum of the deuterated TMS derivative of glycitein
can be formed by the loss of two ds-methyl radicals from a doubly charged molecular ion.
The formation of two other ions at m/z 197 and 189 involves the loss of ds-ethane and one
or two ds-methyl radicals, respectively, from a doubly charged molecular ion.

R=CDs: m/z 214 R=CHs: m/z 199

R=CHs: m/z 207
-RCH;
R=CD3: m/z 205

R=CHs;: m/z191 R=CHs;: m/z 184
R=CD3;: m¥z 197 R=CDs;: m/z 189

Schemeb. Formation and proposed structures of ions at m/z 184, 191, and 199 in the mass
spectrum of the TMS ether of glycitein 3.

4.1.3 Mass spectra of isoflavanones

The mass spectrum of the TMS ether of isoflavanone dihydroglycitein 21 is shown in
Figure 6. Due to the absence of a double bond in the ring C, isoflavanones have a less
rigid ring structure than isoflavones, and thus, more fragment ions are seen in the mass
spectra of these compounds (Table 2 in Appendix 2). The molecular ion and the primary
fragments formed by losses of one or two methyl radicals, TMS radicas, or Si(CHs),
molecules are low in intensity. The predominant peaks in the mass spectra originate from
ions formed by the retro Diels-Alder reaction. The rDA fragments occur at even mass-to-
charge values, are easily recognized among other ions of the spectrum, and provide
valuable information on the degree of substitution at each phenolic ring. For example,
both dihydrodaidzein 19 and dihydroglycitein give the same ring B fragment at m/z 192,
but the A™ ion of dihydrodaidzein is 30 mass units lower than the A™ ion of
dihydroglycitein, i.e. at m/z 208 instead of at m/z 238, indicating one additional methoxy
group inring A (Scheme 6).
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Scheme6.  Retro Diels-Alder fragmentation of TMS derivatives of dihydrodaidzein 19 and
dihydroglycitein 21.

The ratios of the rDA peak intensities depend on the structure of isoflavanones. In general,
the B™ rDA fragments are more abundant, but the abundance decreases as more
substituents, hydroxyl or methoxy groups, are attached to ring A. For example, the
abundances of B™ fragments of TMS ethers of dihydrodaidzein, dihydroglycitein, and
6,7,4’ -trihydroxyisoflavanone at m/z 192 are 100%, 95%, and 18% (Table 2, Appendix 2),
respectively, showing that introduction of charge-stabilizing substituents on ring A
decreases the abundance of the ring B rDA fragment. Elimination of Si(CHs), and one or
two methyl radicals from rDA fragments is common in the mass spectra of isoflavanones.
For example, in the mass spectrum of the TM S ether of 7,8,4' -trihydroxyisoflavanone 39,
ions at m/z 281 (base peak of the spectrum) and 208 can be formed by losses of the methyl
radical and Si(CHs)4 from the ring A rDA fragment (A™, m/z 296), respectively (Scheme
7).

OTMS | _l
TMSO 0 oSt Si—o0
T TMSO o N o ot
Sc

O Ce Ce
0 S0
A" (A-CH2)" [A-Si(CHa)d *

Mz 296 (7) miz 281 (100) Mz 208 (3)

Scheme7.  Elimination of the methyl radical and S(CHjs), fromthe ring A fragment of the TMS
ether of 7,8,4’ -trihydroxyisoflavanone.

Peaks formed by the losses of one or two methyl radicals or Si(CHs)4 from rDA fragments
are common in the mass spectra of isoflavanones. For example, the loss of the methyl
radical from the B* fragment of the TMS ether of dihydrodaidzein 19 or dihydroglycitein
21 at m/z 192 yields an ion at m/z 177 (Table 2, Appendix 2). In the mass spectrum of a
deuterated derivative, the ion is six mass units higher, at m/z 183, indicating the presence
of two deuterated methyl groups in the fragment. Peaks due to doubly charged ions are
also present in the mass spectra of some isoflavanones (Table 2, Appendix 2), however, at
considerably lower intensities than in the mass spectra of isoflavones.



One of the rather abundant ions in the mass spectra of TMS ethers of isoflavanones is
formed by the migration of a TMS group from the ring B to the ring A rDA fragment
(Scheme 8). This reaction only occurs with isoflavanones with a TMS group attached to
the ring B. The reaction probably involves a long-lived ion — molecule complex.?*>?® For
example, in the mass spectrum of dihydroglycitein 21 (Figure 6), theion at m/z 311 refers
to the ring A rDA fragment (A", m/z 238) plus one additional TMS group, which is
supported by the presence of an ion at m/z 329 in the mass spectrum of the deuterated
TMS derivative. Two possible structures of the ion, for which reasonable mechanisms of
formation can be written, are presented in Scheme 8.

t
TMSO _0 TMSO
cho: : e
o}

2 l

m/z 430 (16)
TMSO :: OTMS T™SO 0
+

+ OTMS

[A+SI (CH3)3]+
miz 311 (20)

Scheme8.  Retro Dids-Alder fragmentation of the TMS ether of dihydroglycitein 21.

4.1.4 Mass spectra of isoflavans

In the mass spectra of isoflavans (Table 3 in Appendix 2 and Figure 7), the molecular ion
is more abundant than in the analogous isoflavanones. For example, the abundance of the
molecular ion of equol 24 is 16%, whereas the abundance of that of dihydrodaidzein 19 is
3% (Tables 2 and 3, Appendix 2). The absence of the carbonyl group thus seems to
gabilize the ring C of isoflavans. Depending on the structure, similar losses from
molecular ions as those reported for isoflavones, i.e. losses of methyl or TM S radicals and
of Si(CHs)4 or C;Hs (as subsequent losses of two methyl radicals), commonly occur. The
abundances of the ions are, however, much lower. As in the mass spectra of isoflavanones,
the most intensive peaks in the spectrum are rDA-fragments of ring A or ring B,
depending on the substitution of each phenolic ring, and subsequent fragments. Losses of
methyl radical or TM'S groups, or C,Hg or Si(CHs)4 molecules from rDA fragments are
aso common. Moreover, an A™ fragment with an additional TMS group is formed. A
proposed mechanism of formation and the structure of the fragment in the mass spectrum
of the TM S ether of 7,4’ -dihydroxy-6-methoxyisoflavan 62 are shown in Scheme 9.
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Scheme 9. Proposed mechanism for formation of rDA fragments of 7,4’ -dihydroxy-6-methoxy-
isoflavan 62.

4.1.5 Mass spectra of a-methyldeoxybenzoins

The mass spectra of TM S derivatives of a-methyldeoxybenzoins (Table 4 in Appendix 2,
and Figure 8) typically have only one intensive fragment ion, the base peak of the
spectrum, which originates from the a-cleavage of the bond between carbon atoms 1 and 2
yielding the ring A fragment shown in Scheme 10.

TMSO OTMS
H3CO: : /ﬁ ‘
a °
TMSO OTMS / A
O m/z 311 (100)
H,CO O
o)
+e OTMS\A
63 '
m/z 504 (<1)
OTMS
B+
m/z 193 (6)

Scheme 10.  Fragmentation of a-methyl deoxybenzoins.
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The molecular ion peak, as well as other peaks of the mass spectra of TMS ethers of a-
methyldeoxybenzoins, are of very low intensity. Inductive cleavage of the bond between
the carbonyl and the benzylic carbon yields the ring B fragment. The degree of
substitution a both phenolic rings can be el ucidated by examining the vz values of these
fragments. For example, the base peak of the 5-OMe-O-dma 63 (Scheme 10) is at nvz
311, which is 30 mass units higher than the base peak of O-dma 28 (Table 4, Appendix 2),
indicating one additional methoxy group in ring A. The loss of (CHj3),Si=CH, from the
ring A fragment is common for mass spectra of a-methyldeoxybenzoins.?* For example,
in the mass spectrum of TMS ether of O-dma 28, the fragment at my/z 209 is formed from
the ion m/z 281 possibly by a similar mechanism as shown in Scheme 3 for isoflavones.
The rearrangement of a deuterium to an a- methyldeoxybenzoin nucleusis reflected in the
peak at 10 mass units higher, at m/z 219, in the mass spectrum of the TMS ether of a
deuterated derivative (Table 4, Appendix 2). An analogous peak, originating from a
similar fragmentation reaction followed by the loss of C,Hg (as subsequent losses of two
methyl radicals), is found in the mass spectrum of 5 -methoxy-O-dma 28 at m/z 209
(Figure 8).

4.2 In vitro bacterial metabolites of isoflavones (lll)

4.2.1 Sample pretreatment method of freeze-dried fecal fermentation
samples

The sample pretreatment method developed for fecal fermentation samples showed good
recoveries for analytes, 69-93% of the spiked amount (Table 5). Chromatography with
Lipidex-5000 efficiently removed the nonpolar compounds interfering with the analysis of
the samples and with identification of the compounds®* and also improving the
sensitivity and precision of the method. Variation of the retention times was minimal, £ 2
S (CV% < 0.3). Intra-assay variation for analytes, determined by repetitive analysis of six
replicate samples, was <10%.

4.2.2 Identification of isoflavonoids in fecal fermentation samples

Isoflavonoids that were identified in fecal fermentation samples are summarized in Table
6. All were reduced metabolites of investigated isoflavones, mainly the corresponding
isoflavanones and a-methyldeoxybenzoins. In general, the extent of metabolism of
isoflavones by fecal bacteria was low. The main compounds in fermentation extracts were
found to be substrates added for fermentation. Exceptions to this were the isoflavones with
hydroxyl groups at the 5-position, i.e. genistein 2 and orobol 15, which were completely
converted to metabolites that could not be detected by the methods used in the study.
Coldham et al.®®®® have reported that the end-products of metabolism of genistein are 2-
(4-hydroxyphenyl)-propionic acid 54 and 1,3,5-trihydroxybenzene 55; thus, it is
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reasonable to assume that both genistein and orobol were converted to these smaller
molecular weight metabolites during the 24-h fecal fermentation. Since the aim of this
thesis was to identify metabolites with an intact isoflavonoid structure, no attempts were
made to identify these degraded compounds in fermentation extracts.

Table 5.  Limit of detection (LOD), retention time (tg) variation, recovery, and intra-assay
variation determined for the method developed for identification of isoflavones and their
metabolites in fecal fer mentation samples.

LOD? tvariation Recovery |NUraassay
Compound (ng on column) 9 (%) variation
(CV%)
Daidzein 2.35 0.68 81 5.2
Genistein 158 1.18 86 31
Equol 0.38 0.57 69 6.7
O-dma 0.40 1.68 71 6.7
Dihydrodaidzein 0.32 0.82 80 8.6
Dihydrogenistein 142 1.05 93 5.7
6,7,4 -trihydroxyisoflavone 2.15 1.91 82 43
7,8,4 -trihydroxyisoflavone 1.98 1.52 75 6.7
7,34 -trihydroxyi soflavone 2.32 1.48 78 5.8
5,7,3 4 -tetrahydroxyisoflavone 2.21 1.18 86 6.6

'LOD of the method was set at the point at which reliable mass spectrum fullfilling the criteria
presented in section 4.2.5 was obtained from standard solution.

Table 6. Isoflavonoids identified in fecal in vitro fermentation samples (111).

I soflavonoidsidentified in fecal fermentation samples

Substrate ﬂ f a-methyl-
| soflavones | soflavanones deoxybenzoins
Daidzein Dadzein Dihydrodaidzein O-dma
Genistein - - -
7,3 ,4 -trihydroxyi soflavone  7,3’,4' -trihydroxy- 7,34 -t rihydroxy- 3'-OH-O-dma
isofl avone i sofl avanone?
6,7,4 - trihydroxy isoflavone  6,7,4' -trihydroxy- 6,7,4’-trihydroxy- 5'-OH-O-dma"
isofl avone i sofl avanone?

7,8,4' - trihydroxy isoflavone  7,8,4’ -trihydroxy- 7,8,4 -trihydroxy- -
isofl avone i sofl avanone?

5,7,3 4 -tetrahydroxyi soflavone - - -

!Authentic reference compound not available.
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4.2.3 Utilization of GC-MS data obtained from analysis of fecal fermentation
samples

The retention times and mass spectra of metabolites formed during in vitro fecal
fermentation were compared with those of unknown isoflavonoid metabolites, for which
authentic reference compounds were unavailable. These metabolites were the reduced
metabolites of 7,34’ -trihydroxyisoflavone, 6,74’ -trihydroxyisoflavone, and 7,84 -
trihydroxyisoflavone, i.e. 3’'-OH-O-DMA, 7,3 4 -trihydroxyisoflavanone, 6,7,4’-
trihydroxyisoflavanone, and 7,8,4’ -trihydroxyisoflavanone (I11).

4.3 ldentification of isoflavone metabolites in human urine after
soy supplementation (I, I, IV-V)

4.3.1 Isoflavones of the soy bar

The only isoflavones identified in the soy bar were daidzein 1, genistein 2, and glycitein 3
(Figure 9). The isoflavones were determined as aglycones; thus no data on isoflavone
conjugation or conjugate types are available. From the results of quantitative anaysis of
isoflavones, the daily intake was calculated to be 48.4, 40.2, and 4.1 mg of daidzein,
genistein, and glycitein, respectively.
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Figure 9. Isoflavones identified in soy bar extract.
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4.3.2 Sample pretreatment method for urine samples

The qualitative method for identification of isoflavonoid metabolites in human urine
samples was validated for specificity, recovery and precision. Analysis of the spiked urine
samples showed that the compounds of interest (metabolites of daidzein, genistein, and
glycitein) al eluted in the second fraction of Sephadex LH-20 chromatography. No traces
were found either in the first fraction or in an additional 5-mL fraction. The recoveries of
the analytes, listed in Table 7, were 69-90%. Variation in retention times in the analytes
was = 1...2 swith aspiked low control sample, whereas in the high control urine sample
more variation in retention times, = 2...7 s, was observed when total ion chromatograms
of standards and spiked urine samples were compared (Table 7). The retention time was
used as one criterion for identification of an unknown urinary compound with an authentic
reference compound. The problems caused by variation in retention times of urine samples
containing high levels of isoflavonoids were overcome by spiking the urine samples with
reference compounds to confirm that the unknown urinary compound eluted at the same
retention time as the spiked reference compound.

Table 7. Limit of detection (LOD), retention time variation, recovery and intra-assay variation
determined for the method developed for identification of soy (A) and red isoflavones(B) and their
metabolites in human urine samples.

LOD? Retention timevariation (s) Recovery Intra-assay

Compound cgllgn(m) Low control  High control (%) V&r:'\%/':))n
A Daidzein 2.35 0.68 7.15 78 6
Genistein 1.58 1.79 2.76 72 4
Equal 0.38 0.57 167 69 4
O-dma 0.40 2.15 2.30 71 8
Dihydrodaidzein 0.32 0.82 3.40 88 6
Dihydrogenistein 1.42 1.05 2.35 20 4
B Formononetin 4.84 2.32 2.54 83 7
Biochanin A 4.68 2.86 2.98 71 6
4 -O-methylequol 2.03 1.98 2.35 98 17
Angolensin 1.98 2.34 2.56 85 21
Dihydroformononetin 3.22 2.40 2.89 72 14
Dihydrobiochanin A 2.39 2.42 3.20 99 17

'LOD of the method was set at the point at which reliable mass spectrum fullfilling the criteria
presented in section 4.2.5 was obtained from standard solution.
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The detection limits, i.e. the lowest amounts of analytesto yield a reliable mass spectrum,
ranged from 0.32 to 2.35 ng on column (Table 7). If a good mass spectrum was not
obtained from the compound of interest, a bigger injection volume (up to 3 L) or amore
concentrated sample was used. In some cases, unknown urinary compounds co-eluted with
the analytes. These compounds commonly were present in both pre- and post-
supplementation samples, and thus, did not originate from the soy or red clover
supplement. In some samples, the levels of these compounds were higher than the levels
of metabolites, thus hindering the identification of the metabolites. In these cases, the mass
spectra of the analytes were refined by subtracting the background, i.e. the ions of the co-
eluting compounds. The refined mass spectra were then compared with those of reference
compounds, and the criteria of identification for the metabolite described aove were

applied.

A problem with formation of silylation artifacts was encountered with isoflavanones. In
the method from which the sample pretreatment was adopted, BSTFA was used as a
derivatization reagent,?*® resulting in the formation of TMS ethers of enol tautomer and
dehydro-O-dmain addition to the desired TMS ether of the keto tautomer (1). Formation
of slylation artifacts interferes with identifcation of isoflavonoid metabolites and may
lead to misinterpretations of the results.**”*” Using QSM reduced the levels of unwanted
byproducts of silylation; however, the formation of these could not be completely avoided
(I). The sample pretreatment method was aso checked with blank and spiked (with
daidzein, genistein, and glycitein) urine samples to ensure that the metabolites identified
did not originate from reagents or artifacts formed during sample pretreatment.

4.3.3 Isoflavonoid metabolites identified in urine samples

The principal isoflavones of soy, daidzein, genistein, and glycitein were detected in all
urine samples that were collected from the seven participants after the soy
supplementation. In addition to these ingested isoflavones, severa other compounds with
an isoflavonoid structure were identified. All isoflavonoids identified in urine samples are
summarized in Table 8, with rough estimates of their abundances in samples.

Isoflavones. In addition to ingested isoflavones, several isoflavones with three or more
hydroxyl substituents were identified in urine samples. With authentic reference
compounds, the structures of four of the most abundant isoflavones were characterized as
7,3 4 -trinydroxyisoflavone, 6,7,4 -trihydroxyisoflavone,  7,8,4’-trihydroxyisoflavone,
and 5,7,3' 4’ -tetrahydroxyisoflavone (I1). Kulling et al.>* have previously reported the
identification of oxidized metabolites of daidzein and genistein in human urine after soy
supplementation, including the four isoflavones identified here. On the basis of ther
findings, two metabolites eluting a the same retention time as 7,3 ,4-
trihydroxyisoflavone and 7,8,4' -trihydroxyisoflavone (Figure 10) could be identified as
hydroxylated metabolites of genistein, 5,7,3' 4 -tetrahydroxyisoflavone and 5,6,7,4 -
tetrahydroxyisoflavone, respectively. No authentic reference compounds were available
for these tetrahydroxyisoflavones.
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I soflavanones. Analogous isoflavanone metabolites for each isoflavone identified in soy
supplementation samples were detected. Dihydrodaidzein and dihydrogenistein were
characterized with authentic reference compounds (I). The tentative identification of
7,3 4 -trinydroxyisoflavanone, 6,7,4'-trihydroxyisoflavanone, and 7,8,4'-trihydroxy-
isoflavanone was confirmed with chromatographic and mass spectrometric data obtained
from andysis of in vitro fermentation samples (Il1). The tentative identification of
dihydroglycitein 13 has now been confirmed using an authentic reference compound (1V,
unpublished data).

The mass spectrum of one of the metabolites appearing in urine after ingestion of soy
could be assgned as belonging to an analogous isoflavanone metabolite of orobol,
5,7,3 4 -tetrahydroxyisoflavanone (unpublished data). The mass spectrum is reported in
Table 2, in Appendix 2. Flavonoid analogs were excluded by comparison of the retention
time and the mass spectrum with those of analogous flavanone and flavan-3-al, i.e.
5,7,3 4 -tetrahydroxyflavanone and 5,74 -trihydroxyflavan-3-ol. Conclusive
identification of this metabolite requires an authentic reference standard. Identification of
dihydrodaidzein and dihydrogenistein in human urine has been reported earlier,”*?*® but
thus far there are no reports of the presence of other isoflavanone metabolites in human
urine after soy supplementation.

I soflavans. Equol, the further reduced metabolite of daidzein, was found in the urine
samples of three volunteers (I1), supporting earlier findings that only one third of humans
are capable of producing equol.” In addition, several other metabolites with an isoflavan
structure were identified in the urine samples of the three equol producers. These
metabolites were not detected in the urine samples of other participants suggesting, that
equol producing bacteria are involved in the formation of these metabolites. The structures
of 3'-hydroxyequol, 3’-methoxyequol, and 6-methoxyequol were characterized using
authentic reference compounds (I1). 6-Hydroxyequol and 8-hydroxyequol were later
tentatively identified by the interpretation of the mass spectra (Table 3, Appendix 2) of the
compounds and their deuterated analogs (unpublished data). The levels of the newly
identified isoflavan metabolites were low compared with the levels of equol, and thus,
must be considered as minor metabolites.

In addition to equol, identification of 4'-O-methylequol 25 and 7,3 -dihydroxyisoflavan in
human urine has been reported earlier.?>2%5 No traces of 4’- O-methylequol were found
in urine samples of seven participants after soy supplementation. In contrast, 7,3 -
dihydroxyisoflavan was identified as a minor metabolite in the urine samples of equol
producers (unpublished data). The metabolite eluted at the same retention time as O-dma
and could not be detected until additiona chromatography with a QAE-acetate column
was carried out for the second fraction collected in Sephadex LH-20 chromatography.



Table8. Summary of isoflavones and their metabolites identified in human urine after soy
(I-111) or red clover (1V) supplementation. The ‘+’ signs represent rough estimations of the
relative amounts of isoflavonoids in urine samples based on the intensity of the base peaks of the
mass spectrum of each compound; (+) trace amounts, n.d. not detected.

Compound Soy Red clover
| soflavones
Daidzein 4+ HH+++ F++++ e+
Genistein 4+ HH+++ F++++ e+
Glycitein ++++ (+)
Formononetin n.d. ++
Biochanin A n.d. ++
7,3’ 4’ -tri-OH-i soflavone ++ ++
6,7,4 -tri-OH-isof| avone ++ ++
7,8,4 -tri-OH-isof| avone ++ ++
5,7,3 4 -tetra-OH-isoflavone + +
Calycosin n.d. +
Pseudobabtigenin n.d. +
Prunetin n.d. +
3'-OMe-daidzein + +
| soflavanones
Dihydrodaidzein A+ A+
Dihydrogenistein o2 o2
Dihydroglycitein + +
Dihydrof ormononetin + +
Dihydrobiochanin A + +
7,3 4’ -tri-OH-isoflavanone + +
6,7,4 -tri-OH- isoflavanone + +
7,8,4 -tri-OH- isoflavanone + +
5,7,3 4 -tetraaOH- + +
isoflavanone
| soflavanst
Equoal A A
3',7-dihydroxyisoflavan + +
6-OH-equoal + (+)
8-OH-equal + (+)
3'-OMe-equal + +
6-OMe-equal + (+)
Cis-4-OH-equal (+) (+)
a-Methyl deoxybenzoin
O-dma A oA
6'-OH-O-dma ++ +
3’-OH-O-dma + A
5'-OH-O-dma T +
5-OMe-O-dma (+) (+)
Angolensin n.d +. 42
6'-OH-angolensin n.d. ++

TMetabolites with an isoflavan structure were present in urine sample of equol producers only.
2 Differences due to individual variation; range between the lowest and the highest amounts presented.
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Figure10. Identification of hydroxylated metabolites of daidzein and genistein in urine samples collected after soy supplementation. Selected ion
chromatograms of a soy urine sample monitoring ions of hydroxylated metabolites of daidzein at m'z 471 and 486 (A) and genistein at m/z 559 and
574 (B), and total ion chromatogram of sandard mixture (C).



a-Methyldeoxybenzoins. Previously reported metabolites, O-dma and 6’-hydroxy-O-
were identified in all urine samples collected after soy supplementation.
Moreover, additional metabolites with the a-methyldeoxybenzoin structure were
identified for the first time. The mass spectra of these metabolites are listed in Table 4
(Appendix 2). The previoudly reported tentative identification of 6'- hydroxy -O-dma
29%*2% was confirmed using an authentic reference compound (1), and 3"~ hydroxy -O-
dma (2,4 ,3"-trihydroxy-a-methyldeoxybenzoin) was identified by comparing its
retention time and mass spectrum with those of the metabolite formed in vitro by the fecal
fermentation of 7,3 ,4 -trihydroxyisoflavone (l11). Identification of 5 - hydroxy -O-dma
(2 4,5 - trihydoxy-a-methyldeoxybenzoin) and 5'-methoxy-O-dma 62 was carried out
by interpretation of their nondeuterated and deuterated mass spectra (I1).

dma,

21,24,25

4.4 |dentification of isoflavonoid metabolites in human urine after
red clover supplementation (IV)

4.4.1 Isoflavones in red clover dietary supplement

Figure 11 presents the mass spectrometric total ion chromatogram from the extract of ared
clover dietary supplement showing the isoflavones identified using authentic reference
compounds. The main isoflavones in the tablet were formononetin 7 and biochanin A 8.
The tablet also contained small amounts of daidzein 1, genistein 2, calycosin 11, prunetin
12, and pseudobaptigenin 14. From the results of quantitative isoflavone analysis of
dietary supplement, the ingested amounts of isoflavones were calculated to be 51.7 mg of
formononetin, 84.0 mg of biochanin A, 3.2 mg of daidzein, and 5.2 mg of genistein.
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4.4.2 Sample pretreatment method for urine samples

The neutral steroids and other urinary compounds interfered with the identification of the
reduced metabolites of red clover isoflavones formononetin and biochanin A which were
eluted in the first fraction in Sephadex LH-20 chromatography (IV). Additional
purification of the fraction was performed by chromatography with a QAE-acetate
column. In this technique, the nonpolar compounds were eluted in the first fraction, and
the more pola compounds in the second fraction. The additional chromatography
improved the sensitivity of the method by decreasing the background caused by other
urinary compounds. During sample pretreatment, the ingested isoflavones and their
urinary metabolites were distributed in three different chromatographic fractions (Figure
4), which were separately analyzed. The recovery of 4'-O-methylequol 25, the anayte
eluting in the first fraction of QAE-acetate column (Fr. 1a, Figure 4), was 98% (Table 7).
The recoveries of analytes eluting in the second fraction of QAE-acetate column (Fr. 1Db),
i.e. angolensin 30, dihydroformononetin 22, dihydrobiochanin A 23, formononetin 7, and
biochanin A 8, were 71-99%; the lowest recoveries were determined for angolensin,
formononetin, and biochanin A (Table 7). The recoveries of analytes eluting in the second
fraction of Sephadex LH-20 (Fr. 2, Figure 4) were 69-90%, as reported above. The
retention time variation was + 2...3 sand the intra-assay variation 7-21%.

4.4.3 Isoflavonoid metabolites identified in urine samples

The isoflavonoids identified in urine samples of seven participants after red clover
supplementation are summarized in Table 8 and discussed in detail below.

I soflavones. The isoflavones of red clover, formononetin 7, biochanin A 8, daidzein 1,
genistein 2, prunetin 12, calycosin 11, and pseudobabtigenin 14 were identified by
comparison with authentic reference compounds in all urine samples collected after red
clover supplementation (IV). Daidzein and genistein were the magor compounds in urine
samples of all participants, supporting the earlier reports of extensive demethylation of
formononetin and biochanin A to daidzein and genistein, respectively.>**2°%8 The |evels
of ingested formononetin, biochanin A, and newly identified prunetin, calycosin, and
pseudobabtigenin were low in urine. An interesting observation was that the levels of
biochanin A and prunetin in human urine were almost equal, even though the red clover
tablet contained higher biochanin A levels than prunetin levels (V). Thus, demethylation
of the methoxy group seems to occur more easily at ring B than at ring A. Similar reports
have been made for flavonoids, where the demethylation was observed to occur more
easily at C-4' than at C-6.®

Metabolites with methoxy substituents, including glycitein 3, calycosin and 3'-
methoxydaidzein, and four hydroxylated metabolites, 7,3’ ,4’ -trihydroxyisoflavone, 6,7,4’ -
trihydroxyisoflavone, 7,8,4 -trihydroxyisoflavone, and 5,7,3',4’ -tetrahydroxyisoflavone,
were identified as minor metabolites by comparison with authentic reference compounds
(IV) (Figures 12 and 13).
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Figure12.  Selected ion chromatograms of a urine sample after red clover intake monitoring ions of hydroxylated metabolites of formononetin at
m/z 413 and 428 (A) and biochanin A at m/z 501 and 516 (B), and a total ion chromatogram of a standard mixture (C).
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In addition, a number of other TMS ethers of isoflavones with molecular weights of 428,
516, 486, and 574 mass units were detected (Figures 12 and 13) (unpublished data). The
first two are likely isoflavones with one methoxy and two or three hydroxy substituents,
while the latter two are indicative of isoflavones with two or three hydroxy substituents.
Full identification of these other metabolites requires access to suitable reference
compounds.

Isoflavanones. The previoudy reported dihydrodaidzein and dihydrogenistein were the
major isoflavanones identified in urine samples. These two and the new isoflavanones
dihydroformononetin 22 and dihydrobiochanin A 23 were identified using authentic
reference compounds in all urine samples after red clover supplementation (1V). The
tentative identification of 7,34’ -trihydroxyisoflavanone, 6,7,4'-trihydroxyisoflavanone,
and 7,84'- trihydroxyisoflavanone was confirmed by chromatogrgphic and mass
spectrometric data obtained from the analysis of in vitro fermentation samples (111). The
tentatively identified dihydro-orobol was also detected in all urine samples collected after
the red clover supplementation (unpublished data).

Isoflavans. Three of seven participants in the study were so-called equol producers. The
analogous isoflavan metabolite of formononetin, 4'-O-methylequol, was identified using
an authentic reference compound in the urine of these persons only. Identification of the
metabolite has been reported earlier.?#?® Other isoflavan metabolites in urine samples were
7,3’ -dihydroxyisoflavan, (unpublished data) 3'-hydroxyequol, 3'-methoxyequol, and 6-
methoxyequol, identified using authentic reference compounds (1V), and the tentatively
identified 6-hydroxyequol and 8-hydroxyequol (unpublished data).

a-Methyldeoxybenzoins. Metabolites with the a-methyldeoxybenzoin structure were
identified using authentic reference compounds as O-dma and 6’ -hydroxy-O-dma and 6’ -
hydroxyangolensin, the latter being reported for the first time in the literature (IV). The
sructure of 3’ -hydroxy-O-dma was assigned by using the data obtained from an in vitro
fermentation product of 3’ -hydroxydaidzein.

4.5 Comparison of isoflavonoid profiles of urine samples
collected after ingestion of soy or red clover isoflavones (lI-1V)

Figures 14-16 present the tota ion current chromatograms of three fractions collected
from urine samples of an equol producer after soy and red clover supplementation. In
general, the isoflavonoid profiles of urine samples after soy or red clover ingestion were
found to be quite smilar with few exceptions. The most abundant isoflavonoids excreted
were daidzein 1 and genistein 2, the principa isoflavones of soy and the main metabolites
of formononetin 7 and biochanin A 8, the isoflavones of red clover. The levels of
formononetin and biochanin A were very low in urine samples collected after red clover
supplementation and, naturally, were not detectable after soy supplementation.
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Figure 14. Total ion chromatograms of urine sample extracts of an equol producer, after soy and red clover supplementation. First fraction after
QAE-acetate chromatography.
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The most notable difference in urinary isoflavonoid profiles is the presence of moderate
levels of glycitein 3 and its reduced metabolites after soy supplementation, whereas after
red clover supplementation these compounds are detectable but in very low quantities.
More pronounced excretion of glycitein and its metabolites (i.e. 6,7,4-
trihydroxyisoflavone, dihydroglycitein 21, 6,7,4 -trihydroxyisoflavanone, 5 -methoxy-O-
dma, 5'-hydroxy-O-dma , 6-methoxyequol, 6-hydroxyequol) has been noted in urine
samples after ingestion of a dietary supplement containing high levels of glycitein
(unpublished data).

Another difference between urinary profiles after soy and red clover supplementation is
the presence of higher levels of metabolites with a hydroxyl substituent at the 3’ -position
after red clover supplementation. Furthermore, the urinary profile of isoflavonoids was
more diverse after red clover supplementation, the number of different isoflavonoids
excreted being larger than after soy supplementation. The difference can be explained by
the presence of moderate amounts of calycosin 11 and other isoflavones, including
prunetin 12 and pseudobaptigenin 14 (not quantitatively determined), in the red clover
dietary supplement.

An interesting finding was that trace amounts of glycitein, which was not detected in
ingested red clover tablets, appeared in urine samples after red clover supplementation.
Most probably, glycitein is formed by the methylation of 6-hydroxydaidzein, the oxidized
metabolite of daidzein, by COMT, as Kulling et al.>? have demonstrated in vitro. The
identification of 7,4’ -dihydroxy-3 -methoxyisoflavan (3’-methoxyequol) and 3'-
methoxyisoflavone in human urine after soy supplementation supports the view that
vicinal hydroxy groups are methylated by COMT.

Furthermore, in addition to glycitein, calycosin, biochanin A, and prunetin, other isomeric
compounds with the same molecular ion at m/z 428 were detected in the urine samples
after red clover supplementation (Figure 12). There are two alternative origins for these
metabolites. Either they are formed by the methylation of hydroxylated metabolites of
daidzein, in the same way as glycitein was suggested to be formed by the methylation of
6-hydroxydaidzein, or the compounds are hydroxylated metabolites of formononetin.
Recently, the oxidative in vitro metabolism of both formononetin and biochanin A by
human liver microsomes has been investigated.>*?*® The results suggest that the liver
microsomes mainly catalyze the demethylation of the 4"-methoxy group, the formation of
hydroxylated formononetin and biochanin A metabolites being minor metabolic reactions.
Some formation of hydroxylated metabolites does occur, and three hydroxylated
metabolites of both formononetin and biochanin A, with additional hydroxy groups at the
3'-, 6-, and 8-positions, have been identified in liver microsomal extracts. The surprisingly
high levels of calycosn, i.e. 3"-hydroxyformononetin and its reduced metabolites, could
be explained by the formation of hydroxylated metabolites of formononetin. It should be
noted, however, that because no tracer methods (radio, or more usually in humans, stable
isotopes) were used, no conclusions about an association between the parent compounds
and the metabolites can be drawn.
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5. CONCLUSIONS AND FUTURE PERSPECTIVES

A clear understanding of the metabolic fate of dietary compounds shown to possess
biological activities is important since metabolism affects ingested compounds in many
ways. Firstly, metabolic reactions can convert compounds into more bioactive forms. For
ingance, the intestinal microflora convert daidzein to the more active metabolite equol.
Metabolic reactions may also decrease the biologica activity of a compound, an example
being deactivation by glucuronidation. Secondly, metabolism greatly affects the levels of
circulating bioactive compounds; absorption of a compound can be enhanced or reduced
by metabolic reactions, and extensive metabolism or conjugation decreases the levels of
circulating biologically active free aglycones.

The aim of this study was to investigate the metabolism of isoflavones in humans — to
identify all the urinary metabolites of isoflavonoids with an intact isoflavonoid structure.
The metabolism of isoflavones was evaluated in vivo by two supplementation studies with
soy and red clover isoflavones, and in vitro by fecal fermentation studies of pure
isoflavone reference compounds. The qualitative methods, developed for analysis of
isoflavonoid metabolites in human urine and fecal fermentation samples, were tested with
reference compounds and showed good recoveries, specificity, and precison for analysis
of ingested isoflavones and their metabolites. Identification and structural characterization
of the metabolites were carried out using authentic reference compounds or by
interpretation of the mass spectrum using deuterated TMS derivatives to aid and confirm
interpretation. In addition, data obtained from in vitro experiments could be used to
confirm identification of some of the urinary metabolites for which no authentic reference
compounds were available.

Altogether 36 isoflavonoids (13 isoflavones, 9 isoflavanones, 7 isoflavans and 7 a-methyl-
deoxybenzoins) were identified in human urine after soy or red clover supplementation, 18
of which were new metabolites reported for the first time. The possible role of these new
metabolites in mechanisms and actions of isoflavones in human health remains to be
investigated. In general, the levels of the newly identified metabolites were low and do not
explain the overall poor recoveries of isoflavones encountered in some pharmacokinetic
studies.

The methodology used in the analysis of urine samples limited the study to metabolites
that have an intact isoflavonoid structure. Therefore, the analysis of metabolic products,
formed by C-ring fission or conjugated sulfate and glucuronide metabolites, was not
possible. The metabolism of isoflavones to smaller molecular weight metabolites and
hitherto unknown compounds or conjugates thus requires further investigation. Another
important task is to develop methods to analyze and determine the levels of actual forms
of isoflavones and their metabolites, such as glucuronide and sulfate conjugates in
biological fluids and tissues, to fully be able to assess any health benefits offered by
isoflavones.
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APPENDIX 1

Tablel. Analytical methods for isoflavonoids in plasma or serum samples applying mass spectrometry. Abbreviations: LOD, limit of detection;

LOQ, limit of quantitation.

Analyte(s) Sampl e pretreatment I nstrumentation LOD/LOQ CV% Recovery  Ref.
(mass analyzer)
Daidzein, genistein, 4 mL of plasma GC-MS Sensitivity Intra-assay: 85.6- Adlercreutz et
equol, O-dma (and ISTD addition (quadrupole) 0.2-1.0 1.4-30.8% 99.0% a. (1993)*
lignans) Solvalysis nmol/L Adlercreutz et
lon exchange chromatography a. (1994)™
ISTDs deuterated SPE with Sep-Pak Csg cartridges
standards for all andytes  Enzymatic hydrolysis with purified H. pomatia
ISTD addition
Extraction with diethylether
lon exchange chromatography
Derivaization (TMS)
Equol, daidzein 1 mL of plasma GC-MS 0.05ngmL  Intra-assay: Not Morton et a.
ISTD addition (quadrupole) 2.5-10% provided (1994)%
ISTDs ds-equol and dg- Enzymatic hydrolysis with purified H. pomatia
daidzein Extraction with diethylether
lon exchange chromatography
Derivaization (TMS)
Daidzein, [BC]daidzein,  0.25-0.50 mL of serum GC-MS No provided  Intra-assay: Not Setchell et al.
genistein, [*C]genistein  ISTD addition (quadrupole) 0.5-1.0% provided  (2003)"®
Heating with TEAS
ISTD SPE with C15 Bond Elut cartridges Interassay:
dihydroflavone Enzymatic hydrolysi s with purified H. pomatia 1-17%

SPE with Cy5 Bond Elut cartridges
Chromatography on Sephadex LH-20
Derivaization (tBDMS)




Tablel. (Continued)
Analyte(s) Sample pretreatment I nstrumentation LOD/LOQ CV% Recovery  Réf.
(mass analyzer)
Daidzein, 1 mL of plasma LC-APCI/MS Not provided Intra-assay: 87-99% Coward et a.
dihydrodaidzein, O-dma,  ISTD addition Negative mode 5.98-34.6% (1996)°
genigtein Enzymatic hydrolysiswith b- (triple quadrupole)
glucuronidase/sulfatase Interassay:
ISTDs: SPE with Sep-Pak Cyg cartridges 6.12-46.9%
Phenolphthaein Extraction with hexane
glucuronide, 4-
methylumbelliferone-
sulfate, biochanin A
Daidzein, genistein, 0.45 mL of serum or plasma LC-PDA-ESI/MS 2-39 nmol/L  Intra-assay: 79-117%  Frankeet d.
glycitein, O-dma Enzymatic hydrolysis with b- Negative mode 0-14% (2002)139
(flavonoids and lignans)  glucuronidase/sulfatase (quadrupole
ISTD addition iontrap) Interassay:
ISTD: Extraction with diethylether 18-23%
Formononetin
Equol, daidzein, O-dma, 0.2 mL of serum LC-ESI/MS <10 pg/mL Intra-assay: 92.5- Graceet d.
genistein, glycitein ISTD addition Negative mode 2.9-5.7% 100.7% (2004)°
Enzymatic hydrolysiswith H. pomatia (triple quadrupole) <100 pg/mL
ISTDs: Y*C;-labeled SPE with Strata C5 cartridges for equol Inter assay:
standards for all anaytes 3.0-4.4%
except for O-dma
Daidzein, genistein, 0.1 mL of serum LC-DAD-ESI/MS LOD 0.19-13.9% 76-84% Morandi et al.
equal, O-dma, Enzymatic hydrolysiswith H. pomatia Negative mode 0.005 (low) (2005)*"
dihydrodaidzein, Protein precipitation (iontrap) pmol/L Locati et al.
dihydrogenistein Centrifugation 0.6-4.8% (high) (2005)*¢
LOQ
ISTDs: 0.05 pmol/L

ds-daidzein, d-genistein




Table2. Analytical methods for isoflavonoids in tissue samples applying mass spectrometry. Abbreviations. LOD, limit of detection; LOQ, limit of
guantitation.

Sample matrix ~ Analyte  Sample pretreatment Instrumentation LOD/LOQ CV% Recovery  Rdf.
Mammary Genistein  Weighing LC-ESI/MS 0.04-0.09 1-9% 40-78% Chang et d.
gland, uterus, Homogenization LC-ESI/IMSMS pmol/mg (2000)"
ovary, testes, (20-mg portion of homogenate used for Positive mode 0.01-0.03

prostate, analysis) pmol/mg

thyroid, liver, ISTD addition

and brain Sonication

Enzymeatic hydrolysis with H. pomatia
Extraction with hexane®

Centrifugation

SPE (Oasis HLB)
Liver, uterus, Daidzein, Podling of the tissues LC-APCI/MS 0.12 pmol Enzymatic Acid Guetd.
mammary genistein  250-mg sample wei ghed Negati ve mode (oncolumn)  hydrolysis hydrolysis ~ (2005)'%
glands, and (20-mg portion of homogenate used for Intra-assay: Daidzein:
brain analysis) 5.8% 98+2%

Enzymatic hydrolysiswith H. pomatia or Interassay: Genistein:

Sequentid hydrolysisor 10.8% 94+4%

Acid hydrolysis

Addition of 100 i of glacid acetic acid® Acid hydrolysis

Extraction with hexane Intra-assay:

Aqueous phase dried under N, 6.7%

Extraction with ethyl acetate Inter assay:

Evaporation to dryness 12.3%

ISTD added

TFor fatty tissues such as mammary glands, testes, prostate and uterus
Omitted for acid-hydrolyzed tissues.



Table3.

Analytical methods for isoflavonoids in urine samples applying mass spectrometry. Abbreviations: LOD, limit of detection; LOQ, limit of

guantitation.
Analyte(s) Sample pretreatment I nstrumentation LOD/LOQ CV% Recovery  Ref.
(mass analyzer)
O-dma, equoal, daidzein, 1/300 of 24-h urine GC-MS Sengitivity Intra-assay: 100.9- Adlercreutz et
genistein [4C]-estroneglucuroni de added (ISTD) (quadrupole) 3-4 nmol 7.3-12.4% (low) 105.5% a. (1991)¥
ISTDs SPE on Sep-Pak Cyg cartridges /24 h urine 0.8-9.7% (high)
ds-O-dma, ds-equal, dg- lon exchange chromatography
daidzein, di-genistein ISTD addition Interassay:
Enzymatic hydrolysis with H. pomatia 6.9-129%
SPE with Sep-Pak
lon exchange chromatography
Derivatization (TMS)
Daidzein, genistein, Freeisoflavones GC-MS 1.05-2.3 Not provided 61-89% Tekel et a.
biochanin A, 20 mL urine (iontrap) ng/mL (1999)*
formononetin Centrifugation
ISTDs: SPE with Cyg cartridges
6-hydroxyflavone ChemElut 1010 column
robigenin Florsil cartridge
ISTD addition

Dervatization (TMS)

Total isoflavones

20 mL urine

Centrifugation

SPE with C18 cartridges

Enzymatic hydrolysiswith H. pomatia
ChemElut 1010 column

Florsil cartridge

ISTD addition

Derivatization (TMS)




Table3. (Continued)
Analyte(s) Sample pretreatment Instrumentation LOD/LOQ CV% Recovery  Rdf.
(mass analyzer)
Daidzein, genistein, 0.2 mL of urine GC-MS 1.3-5.0 Intra-assay: 94-104 % Graceet d.
Equol, O-dma, glycitein  ISTD addition (quadrupole) ng/mL 1.8-6.5% (low) (2003)*2
Enzymatic hydrolysiswith H. pomatia
ISTDs: SPE with Strata Cyg cartridges Interassay: 89-99%
BCy-daidzein, *Cy- Addition of anthraflavic acid (ISTD) 4.0-26.5% (high)
genistein, *Cs-equal, Derivatization (TMS)
anthraflavic add (for O-
dmaand glycitein)
Daidzein, genistein, O- 1/150 of 24-h volume, minimum 5 mL for a GC-MS Sensitivity Intra-assay: 88.9-101% Adlercreutz et
dma, equol, postmenopausa sample (quadrupole) 0.01-0.27 5.8-18.6% (low) a. (2004)™*
dihydrodaidzein, Ethoximation nmol/ 24 h 1.1-9.0% (high)
dihydrogenistein, SPE with Sep-Pak Cyg cartridges urine
glycitein, (coumestral, lon exchange chromatography Interassay:
estrogens, and lignans) ISTD addition 7.1-12.8%
Enzymatic hydrolysiswith H. pomatia (low)
ISTDs: SPE with Sep-Pak 4.7-9.6%
Deuterated analogues lon exchange chromatography (high)
Chromatography with Lipidex 5000
Derivatization (TMS)
Daidzein, genistein, 0.25 mL of urine LC-PDA-ESI/MS 2-39 nmoal/L  Intra-assay: 93-118% Franke et al.
glycitein, Enzymatic hydrolysis with b- Negati ve mode 1-17% (2002)139
dihydrodaidzein, glucuronidase/sulfatase (quadrupole
dihydrogenistein, O-dma  ISTD addition iontrap) Interassay:
(flavonoids and lignans) ~ Extraction with diethyl ether 1-49%

ISTD: Formononetin




Table3. (Continued)
Analyte(s) Sample pretreatment I nstrumentation LOD/LOQ CV% Recovery  Ref.
(mass analyzer)
Daidzein, genistein, 1 mL of urine LC-APCI/MS 5 ng/mL Intra-assay: 90.8+2.5% Ciminoet al.
glycitein, equol, O- Negative mode <10% (1999)*
dma,dihydrodaidzein, Free aglycones: (quadrupole) 200 ng/mL
dihydrogenistein Extraction with diethyl ether for equol Interassay:
ISTD: Glucuronides + free aglycones: Free aglycones
Biochanin A Hydralysis with b-Glucuronidase 39.3-66.1%
Extraction with diethyl ether Totd aglycones
Sulfates + fr ee aglycones: 9.9-17.3%
Hydrolysis with sulfatase Glucuronide +
Extraction with diethyl ether free aglycones
Total aglycones: 10.8-29.4%
1mL urine+
Hydrol ysis with sulfatase/b-glucuronidase
Extraction with diethyl ether
Daidzein, genistein, 1mL of urine LC-ESI/IMSMS 50 ng/mL Intra-assay: Not Clarke et d.
glycitein, formononetin,  ISTD addition Negative mode, 3-6% provided (2002)18
biochanin A, No sample pre-treatment, except for equol (semi-
dihydrodaidzein, enzymatic hydrolysiswith b-glucuronidase aglycone guantitative

dihydrogenistein O-dma,
equoal, and their
glucuronide and sulfate
conjugates

ISTDs: *C;-daidzein,
BC,-genistein

(E. coli), or
enzymatic hydrolysiswith H. pomatia
Filtration

method 4-10%)

Interassay:
<15%




APPENDIX 2

Tablel. Electron ionization mass spectra of nondeuterated (a) and deuterated (b) TMSderivatives of isoflavones studied. Peaks with intensities
over 1% of the base peak are listed.
t ~ lont
Compound (m?n) M (abundance)
Formoronetin  a 1216 340 117 (10), 132 (32), 133 (5), 141 (11), 147 (11), 149 (4), 152 (5), 162 (32), 192 (4), 193 (5), 207 (10), 208 (12), 325 (36), 326 (8), 339
(39), 340 (100), 341 (25), 342 (6)
b 1168 349 117 (9), 132(31), 133 (4), 144 (9), 150 (5), 165 (15), 166 (5), 198 (3), 207 (12), 217 (8), 331 (23), 332 (4), 348 (33), 349 (100), 350
(24), 351 (6)
Pseudopabtigenin - a 1459 354 116 (3), 119 (3), 121 (3), 129 (2), 133 (2), 135 (1), 137 (3), 139 (4), 140 (2), 145 (16), 146 (38), 147 (6), 149 (3), 150 (3), 151 (3),
162 (3), 165 (4), 166 (1), 169 (24), 170 (11), 171 (1), 179 (3), 193 (5), 195 (1), 207 (4), 208 (5), 209 (8), 210 (1), 223 (2), 251 (3),
253 (3), 281 (3), 282 (1), 309 (2), 311 (1), 339 (25), 353 (24), 354 (100), 255 (25), 356 (8), 357 (1)
Daidzein a 1425 398 115(3), 119 (2), 121 (2), 133 (1), 135 (1), 137 (1), 145 (1), 147 (3), 149 (2), 152 (2), 159 (1), 161 (1), 162 (2), 163 (1), 165 (1), 169
(3), 170 (2), 175 (12), 176 (3), 177 (2), 178 (1), 179 (1), 184 (38), 190 (5), 191 (3), 192 (2), 193 (1), 207 (1), 208 (1), 209 (1), 237
(2), 253 (2), 281 (2), 283 (4), 295 (1), 311 (3), 325 (3), 327 (1), 353 (1), 355 (9), 356 (2), 367 (1), 383 (70), 384 (20), 385 (7), 386
(1), 397 (10), 398 (100), 399 (30), 400 (11), 401 (2)
b 138 416 117 (1), 118(1), 127 (1), 138(1), 143 (1), 150 (3), 151 (1), 152 (1), 155 (1), 162 (1), 163 (1), 172 (3), 176 (1), 181 (14), 182 (3), 187
(3), 188 (1), 190 (34), 199 (8), 200 (1), 290 (3), 299 (2), 306 (1), 318 (3), 334 (3), 335 (1), 342 (1), 370 (8), 371 (2), 389 (5), 390 (1),
395 (1), 398 (57), 399 (16), 400 (6), 401 (1), 407 (8), 408 (2), 413 (2), 414 (1), 415 (10), 416 (100), 417 (28), 418 (11), 419 (2)
BiochaninA a  13.81 428 117 (1), 132(2), 133 (1), 163 (1), 177 (7), 199 (19), 207 (3), 312 (2), 340 (2), 341 (4), 370 (7), 371 (2), 398 (3), 413 (100), 414 (31),
415 (12), 416 (2), 428 (<1)
b 1354 446 117 (1), 132(2), 184 (5), 205 (16), 214 (2), 223 (1), 318 (2), 346 (2), 356 (2), 384 (1), 385 (6), 386 (2), 413 (2), 428 (100), 429 (30),

430 (12), 431 (2), 446 (<1)

!ons that do not have any isotopic peaks are underlined.



Tablel. (Continued)

Compound

(min)

lon®
(abundance)

Pruretin  a

Glycitein  a

Caycosin  a

7,4 -dihydroxy-3'- a

methoxyisoflavone

Genistein  a

b

14.19

13.95

18.29

17.72

17.33

17.68

17.36

15.38

14.99

428

446

428

446

428

428

446

486

513

175 (9), 177 (11), 199 (29), 340 (3), 341 (4), 356 (2), 370 (8), 413 (100), 414 (31), 415 (12), 416 (2), 428 (<1)
181 (4), 184 (9), 205 (26), 346 (3), 356 (1), 365 (2), 385 (6), 428 (100), 429 (31), 430 (10), 431 (1), 446 (<1)

101 (1), 115 (4), 119 (1), 121 (1), 133 (1), 135 (2), 137 (1), 139 (2), 141 (1), 145 (2), 146 (2), 147 (1), 149 (2), 150 (2), 151 (1), 152
(6), 153 (1), 154 (1), 155 (1), 159 (1), 161 (2), 162 (3), 163 (2), 165 (2), 167 (1), 169 (2), 170 (2), 175 (9), 176 (6), 177 (5), 178 (2),
179 (2), 180 (5), 181 (1), 184 (23), 191 (41), 199 (15), 206 (7), 208 (9), 209 (2), 221 (1), 223 (3), 237 (1), 238 (2), 239 (1), 253 (5),
267 (2), 269 (1), 279 (1), 281 (2), 295 (1), 297 (2), 309 (3), 310 (2), 311 (2), 323 (1), 325 (6), 326 (1), 327 (2), 339 (2), 340 (1), 341
(1), 353 (2), 354 (2), 355 (12), 356 (3), 357 (2), 367 (1), 369 (1), 370 (2), 383 (13), 384 (4), 385 (7), 386 (1), 397 (7), 398 (62), 399
(21), 400 (8), 401 (2), 413 (31), 414 (10), 415 (4), 427 (11), 428 (100) 429 (32), 430 (12), 431 (2)

101 (1), 102 (5), 105 (1), 117 (2), 126 (1), 138 (2), 139 (2), 143 (1), 149 (2), 150 (2), 151 (1), 152 (2), 156 (1), 157 (2), 158 (3), 159
(2), 161 (1), 162 (1), 165 (2), 166 (1), 167 (1), 168 (1), 169 (2), 170 (1), 174 (1), 175 (1), 178 (1), 179 (5), 180 (3), 181 (12), 182 (2),
183 (1), 186 (6), 187 (2), 188 (1), 189 (18), 197 (19), 205 (13), 214 (12), 215 (2), 222 (1), 223 (1), 247 (3), 259 (4), 260 (1), 275
(1), 287 (1), 303 (1), 315 (1), 317 (2), 331 (6), 332 (1), 339 (1), 345 (1), 348 (1), 364 (2), 366 (2), 367 (9), 368 (4), 385 (2), 395 (14),
396 (3), 397 (1), 400 (5), 412 (8), 413 (63), 414 (19), 415 (7), 416 (2), 417 (2), 427 (1), 428 (20), 429 (8), 430 (3), 443 (2), 444 (2),
445 (13), 446 (100) 447 (30), 448 (10), 449 (3)

119 (2), 160 (4), 169 (2), 175 (10), 184 (20), 190 (26), 191 (37), 199 (5), 207 (2), 209 (3), 253 (2), 325 (2), 355 (3), 383 (4), 398
(100), 399 (30), 400 (11), 413 (11), 414 (3), 428 (68), 429 (21), 430 (6)

160 (4), 175 (9), 176 (7), 177 (5), 184 (20), 190 (23), 191 (42), 199 (7), 355 (3), 383 (4), 397 (8), 398 (100), 399 (31), 400 (12), 413
(14), 414 (5), 428 (70), 429 (23), 430 (9)

160 (4), 178 (10), 179 (7), 180 (4), 188 (17), 196 (30), 198 (43), 205 (6), 364 (2), 395 (3), 412 (8), 413 (100), 414 (30), 415 (12), 416
(2), 428 (10), 429 (3), 446 (74), 447 (24), 448 (7)

133 (1), 147 (2), 175 (1), 177 (1), 192 (1), 228 (22), 309 (1), 327 (2), 369 (1), 370 (1), 383 (2), 397 (1), 398 (1), 399 (11), 400 (3),
401 (1), 414 (4), 415 (1), 416 (4), 441 (1), 469 (2), 471 (100), 472 (37), 473 (17), 474 (4), 475 (1), 486 (<1)

142 (1),162 (1), 181 (1), 183 (1), 198 (1), 239 (24), 335 (1), 385 (1), 396 (1), 413 (2), 414 (3), 415 (8), 416 (3), 432 (4), 433 (1), 459
(1), 492 (3), 493 (1), 494 (2), 495 (100), 496 (36), 497 (17), 498 (4), 499 (1) , 513 (<1)

lons that do not have any isotopic peaks are underlined.



Tablel. (Continued)

Compound

(min)

lon
(abundance)

6,7,4 -trinydroxy- a
isoflavone

7,84 -trihydroxy- a
isoflavone

7,3 4 -trihydroxy- a
isoflavone

5,7,3 4 -tetrahydroxy- a
isoflavone

19.12

18.53

19.62

19.23

18.45

18.09

20.04

19.45

486

513

486

513

486

513

574

610

105 (2), 115 (2), 133 (4), 135 (1), 147 (3), 175 (4), 179 (1), 191 (1), 193 (1), 207 (2), 208 (3), 209 (2), 223 (2), 253 (3), 281 (9), 282
(2), 283 (1), 325 (2), 355 (6), 356 (2), 383 (8), 384 (2), 385 (1), 397 (2), 398 (3) , 399 (2), 413 (2), 443 (2), 471 (68), 472 (27), 473
(12), 474 (2), 485 (5), 486 (100), 487 (41), 488 (18), 489 (5), 490 (1)

108 (1), 142 (4), 162 (2), 181 (4), 188 (1), 207 (1), 214 (3), 222 (1), 259 (2), 296 (8), 297 (2), 298, 331 (1), 367 (5), 368 (1), 395 (7),
396 (2), 413 (3), 414 (1), 415 (1), 431 (2), 467 (2), 495 (53), 496 (20), 497 (9), 498 (2), 510 (2), 511 (2), 512 (5), 513 (100), 514
(38), 515 (18), 516 (5), 517 (1)

115 (2), 131 (1), 133 (3), 147 (3), 152 (1), 165 (1), 175 (4), 191 (1), 208 (1), 209 (1), 223 (2), 253 (3), 279 (1), 281 (2), 296 (1), 309
(1), 325 (2), 353 (1), 355 (6), 356 (2), 367 (1), 383 (9), 384 (3), 385 (1), 397 (7), 398 (6), 399 (3), 413 (1), 443 (2), 455 (1),458 (1),
471 (63), 472 (25), 473 (11), 474 (3), 485 (11), 486 (100), 487 (40), 488 (18), 189 (5), 490 (1)

142 (2), 158 (1), 162 (3), 181 (4), 207 (2), 214 (1), 223 (1), 259 (2), 314 (1), 331 (1), 367 (5), 368 (2), 395 (7), 396 (3), 412 (2), 413
(4), 414 (2), 415 (7), 416 (2), 431 (1), 467 (2), 492 (1), 495 (48), 496 (19), 497 (8), 498 (2), 510 (2), 511 (3), 512 (10), 513 (100),
514 (39), 515 (18), 516 (5), 517 (1)

115 (2), 133 (3), 147 (6), 149 (1), 160 (2), 161 (1), 165 (1), 175 (6), 176 (2), 177 (1), 190 (8), 193 (2), 207 (2), 209 (1), 253 (3), 309
(1), 327 (2), 353 (1), 367 (1), 383 (7), 384 (2), 385 (1), 395 (1), 396 (1), 397 (5), 398 (5), 399 (3), 400 (1), 411 (1), 413 (3), 414 (1),
455 (1), 469 (2), 471 (85), 472 (34), 473 (15), 474 (4), 485 (7), 486 (100), 487 (39), 488 (18), 489 (5), 490 (1)

118 (1), 142 (3), 160 (3), 162 (3), 178 (5), 179 (2), 196 (7), 197 (2), 207 (2), 223 (1), 259 (3), 339 (2), 395 (7), 396 (3), 397 (1), 412
(2), 413 (4), 414 (2), 415 (3), 416 (1), 431 (3), 432 (1), 476 (1), 492 (2), 494 (2), 495 (74), 496 (30), 497 (13), 498 (3), 510 (2), 511
(2), 513 (100), 514 (41), 515 (18), 516 (5), 517 (1)

133 (1), 147 (3), 175 (1), 207 (1), 268 (1), 369 (1), 399 (5), 400 (1), 471 (12), 472 (5), 473 (2), 487 (5), 488 (2), 502 (2), 557 (1), 559
(100), 560 (48), 561 (25), 562 (8), 563 (2), 573 (1), 574 (5), 575 (2), 576 (1)

142 (1), 162 (1), 178 (1), 207 (1), 412 (5), 413 (2), 492 (11), 493 (12), 494 (2), 495 (1), 512 (4), 513 (2), 514 (1), 528 (2), 589 (3),
590 (1), 591 (3), 592 (100), 593 (47), 594 (24), 595 (8), 596 (2), 610 (5), 611 (2), 612 (1)




Table2. Electron ionization mass spectra of nondeuterated (a) and deuterated (b) TMS derivatives of isoflavanones studied. Peaks with intensities
over 1% of the base peak are listed.

Compound oy ! on*
(min) (abundance)

Dihydroformoronetin a 899 342 119(9), 121 (3), 134 (100), 135 (8), 137 (1), 149 (1), 193 (2), 208 (3), 209 (1), 327 (1), 342 (5), 343 (1)
b 872 351 119(9), 121 (1), 134 (100), 135 (8), 143 (1), 199 (2), 217 (3), 218 (1), 324 (1), 333 (1), 351 (4), 352 (1)

Dihydrodaidzein a 1018 400 103 (1), 115 (1), 117 (2), 119 (2), 121 (2), 135 (2), 137 (1), 147 (1), 149 (4), 151 (5), 152 (1), 161 (3), 163 (1), 177 (27), 178 (4),
179 (2), 185 (7), 192 (100), 193 (16), 194 (4), 208 (1), 209 (1), 235 (1), 281 (26), 282 (6), 327 (1), 385 (4), 386 (1), 400 (3)

b 986 418 119(2), 127 (1), 138 (2), 143 (1), 152 (1), 155 (3), 157 (3), 164 (2), 183 (25), 184 (3), 185 (1), 191 (6), 199 (1), 201 (100), 202 (14),
203 (4), 217 (1), 218 (1), 244 (1), 299 (31), 300 (7), 301 (3), 336 (1), 400 (2), 418 (3)

Dihydroglycitein  a  13.02 430 103 (4), 109 (3), 115 (1), 116 (2), 117 (4), 119 (2), 133 (4), 135 (5), 147 (7), 149 (7), 151 (9), 152 (4), 153 (2), 161 (6), 177 (38),
178 (9), 179 (10), 180 (6), 191 (3), 192 (95), 193 (18), 194 (6), 195 (3), 200 (4), 207 (15), 208 (28), 209 (7), 210 (2), 223 (6), 238
(100), 239 (15), 240 (69, 267 (2), 280 (5), 281 (7), 282 (3), 311 (20), 312 (3), 415 (4), 416 (2), 430 (16), 431 (5), 432 (2)

b 1276 448 103 (2), 105 (2), 106 (1), 112 (4), 119 (3), 131 (3), 133 (3), 138 (7), 147 (3), 152 (3), 155 84), 156 (3), 157 (5), 158 (3), 162 (7),
163 (2), 183 (36), 184 (6), 186 (7), 188 (9), 199 (4), 201 (92), 202 (13), 203 (4), 204 (2), 207 (19), 208 (2), 209 (4), 214 (25), 215 (4),
222 (4), 235 (2), 247 (100), 248 (16), 249 (6), 281 (2), 299 (3), 329 (19), 330 (19), 331 (2), 388 (2), 448 (16), 449 (5), 450 (1)

DihydrobiochaninA a 1078 430 119 (5), 121 (12), 134 (13), 135 (2), 147 (4), 207 (1), 222 (1), 239 (4), 268 (1), 279 (2), 281 (7), 282 (1), 296 (100), 297 (22), 298 (9),
299 (2), 415 (14), 416 (5), 417 (2), 430 (<1)

b 1047 448 119(5), 121 (10), 134 (14), 135 (2), 142 (2), 161 (1), 162 (4), 206 (1), 224 (1), 235 (1), 256 (4), 286 (6), 296 (3), 297 (2), 314 (100),
315 (21), 316 (9), 317 (1), 430 (14), 431 (5), 432 (2), 448 (<1)

Dihydrogenistein  a  11.62 488 103 (1), 115 (1), 133 (4), 135 (2), 147 (5), 148 (2), 147 (5), 148 (2), 149 (1), 151 (5), 161 (3), 163 (1), 166 (1), 177 (14), 178 (1), 179
(8), 180 (1), 192 (20), 193 (5), 194 (2), 207 (2), 225 (1), 229 (5), 235 (1), 239 (4), 251 (1), 267 (1), 268 (5), 269 (1), 279 (2), 281 (6),
282 (1), 296 (100), 297 (22), 298 (9), 299 (2), 325 (1), 340 (3), 369 (9), 370 (3), 371 (2), 415 (1), 473 (12), 474 (5), 475 (2), 488 (<1)

b 1140 515 183(21), 201 (47), 233 (3), 240 (7), 286 (6), 296 (5), 297 (1), 314 (100), 315 (21), 316 (8), 317 (2), 352 (3), 396 (12), 434 (2), 497
(13), 498 (5), 515 (<1)

!ons that do not have any isotopic peaks are underlined.



Table2. (Continued)

tr w» lon
Compound (min) M (abundance)
6,7,4 -trihydroxy- a 1357 488 103 (2), 115(2), 117 (2), 119 (1), 121 (1), 131 (2), 133 (5), 134 (2), 135 (1), 147 (6), 149 (3), 151 (5), 152 (2), 161 (3), 166 (1), 175

isoflavanone

b 1333

7,84 -trihydroxy- a  13.18
isoflavanone

b 1289

7,3 4 -trinydroxy- a  12.88
isoflavanone?

b 1265

5,73 4 -tetrahydroxy- a  15.45
isoflavanonet

b 1518

515

488

515

488

515

576

612

(1), 176 (4), 177 (12), 178 (5), 179 (10), 180 (3), 181 (1), 191 (1), 192 (18), 193 (5), 194 (1), 205 (1), 207 (3), 208 (4), 209 (2), 223
(1), 267 (6), 268 (2), 280 (1), 281 (9), 282 (2), 296 (100), 297 (21), 298 (10), 369 (3), 473 (3), 474 (1), 488 (11), 489 (4), 490 (2)

137 (5), 143 (3), 183 (12), 184 (1), 188 (2), 201 (18), 214 (2), 226 (2), 295 (2), 296 (6), 297 (1), 314 (100), 315 (18), 316 (5), 317 (1),
328 (3), 329 (1), 365 (1), 382 (1), 397 (1), 471 (2), 497 (2), 515 (9), 516 (4), 517 (2), 518 (1)

103 (3), 105 (2), 115 (1), 117 (2), 119 (1), 133 (6), 135 (1), 136 (1), 147 (3), 149 (3), 150 (1), 151 (3), 161 (2), 176 (3), 177 (9), 178
(1), 179 (6), 180 (1), 192 (8), 193 (3), 207 (3), 208 (3), 209 (3), 267 (2), 280 (2), 281 (100), 282 (14), 283 (7), 284 (1), 296 (7), 297
(2), 298 (1), 442 (1), 445 (5), 446 (2), 447 (1), 473 (1), 488 (5), 489 (2)

105 (2), 112 (3), 117 (2), 121 (2), 126 (2), 129 (1), 138 (2), 139 (1), 141 (3), 142 (5), 143 (2), 152 (3), 157 (3), 158 (1), 161 (4), 162
(5), 163 (2), 166 (2), 182 (3), 183 (10), 184 (2), 185 (2), 186 (1), 187 (1), 188 (7), 189 (2), 197 (1), 199 (1), 201 (7), 202 (2), 204 (1),
200 (1), 214 (4), 215 (2), 216 (1), 218 (1), 222 (2), 223 (1), 225 (1), 231 (1), 232 (1), 235 (1), 285 (5), 286 (1), 293 (2), 294 (2), 295
(16), 296 (100), 297 (16), 298 (10), 299 (2), 314 (11), 315 (2), 316 (1), 338 (2), 351 (1), 400 (2), 469 (2), 514 (1), 515 (4), 516 (2),
517 (1)

103 (1), 105 (3), 109 (1), 115 (2), 121 (2), 131 (2), 133 (3), 137 (2), 147 (4), 149 (2), 162 (4), 163 (1), 177 (6), 179 (5), 192 (16), 193
(4), 205 (2), 207 (3), 208 (1), 209 (1), 265 (4), 267 (4), 280 (100), 281 (37), 282 (12), 283 (3), 442 (1), 473 (3), 474 (1), 488 (9), 489
2

105 (4), 112 (1), 119 (1), 120 (1), 127 (1), 138 (1), 142 (3), 143 (2), 162 (9), 163 (1), 166 (1), 180 (5), 181 (1), 185 (3), 188 (1), 189
(2), 198 (14), 199 (4), 200 (1), 216 (2), 217 (1), 218 (1), 280 (4), 282 (4), 285 (1), 295 (1), 298 (100), 299 (38), 300 (12), 301 (3), 497
(2), 515 (10), 516 (4), 517 (2)

103 (3), 133 (6), 143 (1), 147 (11), 179 (10), 192 (7), 205 (1), 207 (13), 267 (5), 280 (100), 281 (30), 282 (11), 283 (3), 294 (6), 295
(1), 296 (14), 297 (19), 369 (25), 370 (8), 371 (4), 473 (1), 561 (7), 562 (2), 576 (5), 577 (2)

105 (3), 112 (2), 123 (3), 142 (3), 147 (3), 149 (8), 161 (4), 162 (9), 163 (3), 188 (7), 207 (12), 208 (2), 209 (2), 281 (2), 298 (100),
299 (25), 301 (2), 314 (3), 315 (1), 365 (3), 378 (4), 379 (7), 396 (23), 397 (7), 398 (5), 399 (1), 416 (4), 592 (4), 594 (6), 595 (3),
596 (1), 612 (5), 613 (2)

TAuthentic reference compound not avail able,



Table3. Electron ionizati on mass spectra of nondeuterated (a) and deuterated (b) TMS derivatives of isoflavans studied. Peaks with intensities over

1% of the base peak are listed.

t «~ lon'
Compound (miRn) M (abundance)
4-O-methylequol a  7.13 328 103(1), 105 (2), 115 (1), 119 (19), 121 (19), 122 (3), 134 (100), 135 (15), 136 (1), 147 (2), 149 (1), 151 (2), 157 (2), 163 (1), 164 (2),
165 (2), 179 (3), 191 (5), 193 (1), 206 (9), 207 (11), 208 (1), 298 (3), 313 (3), 328 (30), 329 (5), 330 (1)
b 705 337 103(1), 105(2), 119 (14), 121 (17), 122 (3), 134 (100), 135 (14), 136 (1), 197 (4), 216 (10), 215 (1), 304 (5), 319 (1), 337 (29), 338
(4), 339 (1)
Equol a 809 386 103(1), 105(2), 115(2), 117 (2), 119 (2), 135 (2), 147 (1), 149 (3), 151 (6), 161 (3), 163 (2), 165 (3), 177 (25), 178 (16), 179 (11),
180 (3), 186 (1), 192 (100), 193 (15), 194 (4), 195 (2), 205 (1), 206 (8), 207 (8), 208 (1), 267 (10), 268 (2), 371 (5), 372 (2), 386 (16),
387(5), 388 (2)
b 774 404 103(1), 105 (2), 119 (2), 138 (2), 152 (1), 155 (2), 157 (3), 164 (2), 166 (1), 169 (1), 171 (2), 183 (23), 184 (23), 185 (4), 188 (6),
189 (3), 193 (1), 197 (2), 201(100), 202 (15), 203 (4), 204 (1), 215 (8), 216 (8), 217 (1), 295 (10), 285 (10), 286 (2), 386 (2), 404
(16), 405 (5), 406 (2)
7,3 -dihydroxyisoflavan a  7.34 386 103 (1), 105 (2), 115 (2), 117 (2), 119 (2), 135 (2), 147 (1), 149 (2), 151 (4), 161 (2), 163 (1), 165 (3), 177 (24), 178 (16), 179 (10),
192 (100), 193 (14), 194 (4), 195 (2), 205 (1), 206 (9), 207 (8), 208 (1), 267 (10), 268 (2), 371 (4), 372 (1), 386 (16), 387 (5), 383 (2)
b 702 404 103(1), 105 (2), 119 (2), 138 (2), 152 (1), 155 (2), 157 (3), 164 (2), 166 (1), 169 (1), 171 (2), 183 (23), 184 (23), 185 (4), 188 (6),
189 (3), 193 (1), 197 (2), 201 (100), 202 (15), 203 (4), 204 (1), 215 (8), 216 (8), 217 (1), 295 (11), 285 (10), 286 (2), 386 (2), 404
(15), 405 (4), 406 (2)
7,4 -dihydroxy-6- a 10.64 416 119 (3), 133 (9), 149 (7), 151 (14), 161 (5), 163 (3), 165 (5), 166 (4), 177 (47), 178 (17), 179 (26), 180 (7), 185 (16), 186 (13), 192
methoxyisoflavan (100), 193 (20), 194 (14), 205 (5), 206 (11), 207 (14), 209 (13), 210 (1), 224 (8), 225 (3), 236 (6), 237 (22), 238 (4), 297 (5), 386
(6-OMe-equol) (10), 387 (5), 401 (4), 416 (74), 417 (23), 418 (9)
b 1032 434 133(6), 183 (44), 184 (13), 185 (2) 188 (30), 192 (28), 201 (100), 202 (21), 203 (13), 246 (22), 247 (3), 315 (4), 401 (7), 402 (2),

416( 3), 418 (2), 434 (77), 435 (25), 436 (6)

!ons that do not have any isotopic peaks are underlined.



Table3. (Continued)

tr w~ lon
Compound (min) M (abundance)

7.4-dihydroxy-3- a 1052 416 103 (2), 105 (3), 135 (2), 147 (4), 149 (3), 151 (3), 162 (4), 163 (2), 166 (2), 177 (10), 178 (4), 179 (12), 180 (7), 181 (2), 185 (11),
methoxyisoflavan 186 (2), 191 (3), 192 (73), 193 (17), 194 (5), 195 (5), 205 (2), 206 (2), 207 (21), 208 (4), 209 (7), 210 (14), 211 (3), 219 (2), 222
(3 -OMe-equol) (100), 223 (16), 224 (5), 267 (3), 401 (4), 416 (21), 417 (7), 418 (3)

b 1024 434 105(2), 112(1), 142 (2), 149 (1), 162 (10), 180 (5), 185 (14), 186 (3), 198 (14), 213(16), 231 (100), 232 (14), 233 (3), 285 (4), 416
(2), 418 (4), 434 (23), 435 86), 436 (3)

Trans4-OH-equol a 948 474 117 (1), 133 (1), 135 (1), 147 (2), 149 (2), 151 (2), 161 (1), 163 (1), 177 (9), 178 (2), 179 (13), 180 (2), 192 (13), 193 (3), 195 (2),
267 (100), 268 (21), 269 (8), 270 (1), 282 (11), 283 (2), 355 (5), 385 (3), 474 (1)

Cis-4-OH-equol a 1007 474 117 (1), 133 (1), 135 (1), 147 (2), 149 (2), 151 (2), 161 (1), 163 (1), 177 (9), 178 (2), 179 (12), 180 (2), 192 (13), 193 (3), 195 (2),
267 (100), 268 (21), 269 (8), 270 (1), 282 (9), 283 (2), 355 (5), 385 (2), 474 (1)

8,7,4-trihydroxy- a 1157 474 103 (5), 117 (3), 129 (5), 133 (9), 147 (13), 149 (5), 151 82), 177 (15), 179 (57), 180 (9), 181 (1), 191 (3), 192 (16), 193 (7), 194 (3),
isof lavan* 204 (1), 205 (2), 207 (15), 209 (1), 265 (19), 267 (100), 268 (22), 269 (7), 280 (1), 281 (15), 282 (3), 294 (13), 295 (16), 296 (3), 474
(8-OH-equol) (32), 475 (13), 476 (4)

b 1119 501 105 (5), 107 (7), 119 (5), 125 (5), 133 (3), 183 (29), 188 (81), 189 (15), 190 (5), 198 (3), 199 (4), 201 (45), 202 (12), 203 (4), 282
(100), 283 (21), 284 (9), 285 (10), 297 (5), 298 (13), 300 (3), 312 (18), 313 (19), 314 (10), 315 (7), 316 (3), 501 (37), 502 (16), 503

(8)
6,74 trihydroxy- a  11.97 474 103 (3), 105 (2), 115 (4), 117 (3), 119 (2), 121 (4), 129 (1), 131 (4), 133 (6), 135 (4), 145 (1), 147 (15), 148 (2), 149 (7), 151 (10),
isoflavan® 152 (1), 161 (6), 163 (4), 165 (3), 177 (39), 178 (4), 179 (66), 180 (11), 181 (3), 189 (2), 190 (2), 192 (71), 193 (17), 194 (6), 195 (3),
(6-OH-equol) 205 (5), 206 (1), 207 (6), 209 (1), 219 (2), 221 (1), 229 (6), 230 (2), 237 (3), 239 (2), 251 (3), 252 (3), 267 (34), 268 (7), 269 (3), 279

(1), 281 (3), 282 (34), 283 (9), 284 (3), 294 (11), 295 (26), 296 (7), 297 (2), 355 (4), 356 (1), 401 (1), 474 (100), 475 (39), 476 (19),
477 (4), 478 (1)

b 1145 501 119 (2), 121 (2), 138 (2), 142 (4), 147 (1), 152 (3), 154 (4), 155 (4), 157 (4), 161 (1), 162 (8), 163 (2), 164 (3), 169 (3), 183 (33), 184
(5), 185 (10), 186 (2), 188 (42), 189 (6), 190 (2), 200 (3), 201 (63), 202 (12), 203 (3), 207 (2), 212 (2), 213 (2), 214 (4), 242 (6), 251
(2), 263 (2), 266 (2), 282 (22), 283 (5), 284 (2), 300 (31), 301 (7), 302 (3), 312 (9), 313 (22), 314 (6), 315 (2), 382 (4), 500 (2), 501
(100), 502 (40), 503 (18), 504 (4), 505 (1)

TAuthentic reference compound not available.



Table3. (Continued)

tr w» lon
Compound (min) (abundance)

7,3 4 -trinydroxy- a  10.85 474 103 (3), 105 (3), 115 (2), 117 (3), 119 (2), 129 (1), 131 (4), 133 (4), 135 (2), 147 (9), 148 (2), 149 (2), 151 (2), 161 (2), 162 (3), 163
isof lavan (2), 165 (1), 177 (8), 179 (30), 180 (5), 181 (2), 189 (1), 191 (3), 192 (24), 193 (8), 194 (2), 195 (3), 203 (1), 204 (3), 205 (4), 206
(3 -OH-equol) (2), 207 (11), 208 (2), 209 (1), 219 (3), 220 (3), 221 (1), 237 (2), 249 (1), 251 (1), 253 (1), 265 (5), 267 (26), 268 (23), 269 (6), 270
(2), 280 (100), 281 (27), 282 (9), 283 (12), 293 (1), 355 (3), 356 (1), 395 (5), 396 (2), 408 (1),444 (1), 445 (1), 474 (22), 475 (9), 476

4
b 1052 501 105(3), 112 (12), 135(3), 138 (6), 141 (3), 162 (19), 163 (3), 166 (2), 178 (8), 180 (6), 185 (21), 186 (4), 198 (21), 199 (3), 201 (3),

204 (4), 207 (4), 208 (1), 209 (5), 210 (2), 211 (2), 216 (4), 217 (1), 222 (3), 223 (2), 228 (1), 229 (3), 232 (2), 235 (23), 236 (4), 237
(2), 247 (2), 248 (2), 249 (1), 251 (2), 261 (4), 262 (1), 263 (1), 280 (3), 281 (1), 282 (1), 285 (19), 286 (23), 287 (6), 288 (2), 289 (7),
290 (2), 295 (2), 297 (1), 298 (100), 299 (24), 300 (9), 301 (1), 346 (3), 358 (2), 388 (48), 389 (14), 390 (7), 391 (2), 473 (8), 474 (3),
475 (2), 487 (2), 501 (25), 502 (9), 503 (4)




Table4. Electron ionization mass spectra of nondeuterated (a) and deuterated (b) TMSderivatives of a-methyldeoxybenzoins studied. Peaks with
intensities over 1% of the base peak are listed.

tr w» lon

Compound (min) M (abundance)

Angolensn a 671 416 105(3), 119 (1), 133 (2), 135 (7),147 (1), 149 (2), 163 (1), 179 (1), 193 (1), 195 (1), 209 (9), 210 (1), 223 (2), 237 (1), 251 (1), 265
(1), 266 (1), 281 (100), 282 (12), 283 (8), 284 (1), 371 (1), 386 (1), 401 (3), 402 (1), 416 (<1)

b 648 434 105 (2), 120 (1), 135 (5), 142 (1), 155 (1), 162 (2), 171 (1), 199 (1), 218 (2), 219 (6), 220 (1), 235 (1), 252 (1), 279 (1), 296 (1), 299
(100), 300 (21), 301 (7), 302 (1), 386 (1), 401 (1), 416 (3), 417 (1), 434 (<1)

O-dma a  7.32 474 133 (1), 147 (1), 149 (1), 163 (1), 177 (1), 193 (4), 209 (6), 223 (1), 237 (1), 281 (100), 282 (20), 283 (8), 284 (1), 459 (3), 460 (1),
474 (<)

b 702 501 183 (1), 202 (4), 219 (5), 220 (1), 235 (1), 296 (1), 299 (100), 300 (20), 301 (8), 302 (1), 483 (2), 501 (<1)

6-OH-angolensin a  7.01 504 103 (1), 105 (2), 133 (2), 135 (12), 147 (9), 148 (1), 193 (1), 207 (1), 251 (1), 265 (1), 281 (4), 297 (3), 298 (1), 337 (1), 339 (1),
353 (2), 354 (1), 369 (100), 370 (30), 371 (14), 372 (3), 373 (1), 416 (1), 459 (1), 474 (1), 489 (5), 490 (2), 504 (<1)

b 672 531 105(2), 135(6), 142 (2), 161 (1), 162 (5), 163 (1), 202 (1), 216 (1), 268 (1), 296 (1), 316 (2), 317 (1), 360 (1), 376 (2), 393 (2), 396
(100), 397 (30), 398 (15), 399 (2), 483 (1), 498 (1), 513 (5), 514 (2), 531 (<1)

5-OMeO-dmas a 820 504 130 (1), 147 (1), 149 (1), 180 (1), 193 (6), 194 (1), 209 (10), 210 (1), 211 (1), 223 (3), 224 (1), 237 (2), 238 (2), 239 (2), 257 (2),
279 (1), 281 (24), 282 (4), 311 (100), 312 (21), 313 (7), 385 (2), 400 (5), 401 (1), 489 (4), 490 (1), 504 (<1)

b 798 531 202(7),216(2), 296 (25), 299 (30), 329 (100), 330 (20), 331 (9), 332 (1), 382 (4), 513 (2), 531 (<1)

5-OH-O-dma® a 918 562 133(2), 147 (4), 163 (1), 177 (2), 179 (2), 191 (1), 193 (8), 194 (1), 281 (8), 282 (2), 369 (100), 370 (29), 371 (14), 372 (3), 457 (1),
547 (2), 562 (1)

b 897 598 142(1), 162 (3), 188 (2), 202 (6), 296 (8), 297 (2), 393 (2), 396 (100), 397 (27), 398 (3), 399 (3), 580 (1), 598 (1)

TAuthentic reference compound not available.



Table4. (Continued)

t + lon
Compound (m?n) M (abundance)
6'-OH-O-dma a 7.59 562 133 (3), 147 (8), 148 (1), 149 (3), 163 (2), 177 (2), 191 (1), 193 (7), 207 (3), 251 (1), 265 (1), 281 (2), 297 (3), 337 (1), 339
(2), 353 (3), 369 (100), 370 (29), 371 (15), 372 (3), 459 (1), 547 (3), 548 (2), 562 (<1)
b 7.33 508 142 (2), 161 (2), 162 (7), 163 (1), 169 (1), 201 (2), 202 (6), 296 (1), 316 (2), 376 (2), 393 (2), 395 (4), 396 (100), 397 (26),
398 (12), 399 (3), 580 (2), 581 (1), 598 (<1)
3'-OH-O-dma a 9.32 562 117 (1), 133 (2), 147 (4), 149 (1), 193 (4), 207 (2), 209 (7), 221 (1), 223 (3), 251 (1), 281 (100), 282 (22), 283 (9), 284 (1),
355 (1), 369 (1), 547 (1), 562 (<1)
b 9.05 508 142 (1), 162 (2), 199 (3), 219 (5), 232 (2), 296 (2), 299 (100), 300 (21), 301 (8), 302 (1), 580 (1), 598 (<1)

TAuthentic reference compound not avail able,



