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1
Introduction

During the last few decades cosmology has evolved from its relatively spec-

ulative origins to an exact science. This has been made possible by new ob-
servational data: observations on the large scale structure, supernovae, cos-

mological microwave background radiation etc. A cosmological “standard
model” has been established, which fits observations with great accuracy.

Some of these observations are explained in depth with microphysical un-
derstanding, eg., the big bang nucleosynthesis predicts the observed abun-

dances of the light elements with very few free parameters. Other aspects

of the model are more general ideas and will require new physics beyond
the standard model, before we have a robust quantitative understanding of

the observations. These more general ideas would include inflation and dark
energy, both which are phenomena whose existence are well established, but

whose exact microphysical mechanisms are unknown.

One of these open questions is the birth of the cosmological baryon asym-

metry — the problem of baryogenesis. Our universe appears to be filled with

baryons and no antibaryons. This is in clear contradiction with our current
fundamental microphysical theory, the standard model of particle physics.

The relatively trivial observation that we and everything surrounding us
are made of matter and not antimatter has deep implications: It tells us of

baryon number violation and broken CP-symmetry, and other physics, be-
yond the standard model. Hence, the theory of baryogenesis plays a role of a

profound interconnection between particle physics and cosmology.

Leptogenesis is a candidate for a theory of baryogenesis. In this scenario

heavy Majorana neutrinos decay producing net lepton number. The sphaleron
processes, predicted by the standard model, convert some of this net lepton

number to baryon number producing a universe with an excess of baryons.

This model was originally suggested already in the 1980’s, and it has gained
momentum in the 1990’s when it became clear that the standard electroweak

theory was unable to explain the observed baryon asymmetry. Further moti-

vation for leptogenesis has come from the discovery of the neutrino massess
when neutrino oscillation was observed.

This basic theory of leptogenesis called thermal leptogenesis is the main topic

of this work. Several modifications to the theory have been suggested during

the last ten years, including Dirac leptogenesis, resonant leptogenesis and
Affleck-Dine leptogenesis. Alhough they have many attractive properties, we
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Introduction

do not treat these modifications in this work, not in the least because they ruin
the somewhat simplistic beauty of the basic thermal theory.

This work does not attempt to duplicate the ever-advancing exact numer-
ical predictions of leptogenesis, requiring advanced finite temperature field

theory, quantum statistical theory and numerical methods. Instead, the aim

of this work is to introduce the reader to the theory of thermal leptogenesis
and to demonstrate, hopefully in an understandable way, the feasibility of

leptogenesis to explain the comsological baryon asymmetry.
The contents of tgus wirj fall naturally into three parts: First we review

the current observational status on the amount of baryons in our universe

and problematize these findings. After that we discuss the data on neutrino
masses from oscillation experiments and explore different ways to extend the

standard model to include this new discovery. Finally in the latter half of

this work we introduce the mechanism of leptogenesis, derive an expression
for the prediction of the baryon asymmetry and demonstrate the capability

of leptogenesis to quantitatively explain the observed asymmetry. In addition
we introduce in the appendix a consistent formulation of Feynman rules for

Majorana particles necessary for calculating the parameters of leptogenesis.

On notation and details

In this work it is assumed that the reader is somewhat familiar with standard
cosmology, at least with the Friedmann-Robetson-Walker (FRW) model. Also

some familiarity with relativistic quantum field theory and statistical mechan-

ics is assumed. The calculations specific to leptogenesis, such as the derivation
of the relevant Boltzmann equations, are in more detail.

By the standard model we mean the standard model of particle physics,

not that of cosmology, including the theory of QCD and EW-theory, but with
massless neutrinos.

Natural units are used throughout the work to ease calculations. Temper-
atures and masses are consequently given in the units of energy, usually in

electronvolts.
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2
Cosmological

baryon asymmetry

The standard cosmological model has several outstanding questions, the most

important ones being the nature of dark matter and dark energy, mechanism

of inflation and baryogenesis.

The existence of dark matter was originally suggested to explain the galac-
tic rotation curves; it has also become necessary to explain structure forma-

tion. The existence of dark matter is generally accepted, but there are many

candidates for the dark matter particle waiting for experimental confirmation.

Dark energy is postulated in order to explain the supernovae observations
which suggest that the expansion of the universe has started to accelerate dur-

ing late times. Dark energy is becoming more and more accepted as an idea,

though there are very few credible candidates for the source of this mysterious
energy. There are doubts if the supernovae observations could be explained

better without dark energy with a more accurate treatment of the non-linear
equations of general relativity in our inhomogenous universe [1] and an accu-

rate theory of the propagation of observed light in an inhomogenous medium

[2].

The generic idea of inflation, ie., superluminal expansion of the universe
in its early days, has been invoked to explain the horizon and the flatness

problem. It can also explain the origin of primordial perturbations resulting

into the large scale structure we observe. During inflation the energy content
of the universe was dominated by the potential of the inflaton field, making

the universe expand exponentially. Inflation end as the inflaton decays to
other particles heating the universe to the temperature of reheating Treh. After

that the universe continues to expand according to a power law. The generic

idea of inflation is widely accepted and several specific models have been
suggested [3]. However, no consensus exists on the specific mechanism of

inflation.

2.1 Baryons and the standard model

In the standard model of particle physics (SM), and relativistic quantum field
theory in general, each particle has a counterpart, an antiparticle. Anti-
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Cosmological baryon asymmetry

particles are otherwise similar to particles, except that they have opposite
quantum numbers — electric, colour, and weak charges. The theory itself is

highly symmetrical in respect to the switch between matter and antimatter:
particles and antiparticles are featured symmetrically in the standard model

Lagrangian.

Baryons are those hadrons (particles made of quarks, bound by the strong

interaction described by quantum chromodynamics, QCD), which are made of

three quarks. The only baryons relevant to cosmology are obviously the stable
ones: protons and neutrons1. Along with a sufficient amount of electrons to

make the universe electrically neutral, these are the constituents of the familiar
everyday matter.

As baryons, neutrons and electrons are described by relativistic quantum
field theory, they have their antiparticles: antiproton, antineutron and the

positron. Since matter and antimatter have the same mass and similar fea-
tures, differentiating between them is not altogether facile in experimental

context. They have the same mass and other features, eg., spectral lines. To

differentiate between matter and antimatter one has to observe the electric
charge of the matter or observe annihilation or the lack of it.

From the symmetry of the underlying theory one would then a priori ex-

pect the universe to have 50% matter and 50% antimatter.

2.2 Baryons in our universe

Earth and everything on it consists completely of matter and no antimatter.
From manned missions and interplanetary probes we know that the moon

and all the planets in our solar system are made up of only protons, neutrons

and electrons. From solar wind we know that also the sun is made of matter.
Of objects beyond our solar system we have no physical samples. However,we

know cosmic rays originating from our galaxy and well beyond it consist of

approximately 90% protons, 9% helium nucleai and 1% electrons, and of very
little antimatter.2 Furthermore, if antimatter would exist in a significant quan-

tity in the universe it would produce a huge amount of γ-radiation when
annihilating with normal matter. But no large scale annihilation events have

been observed anywhere in our universe.

The most compelling argument for the lack of the existence of antimatter

is somewhat more theoretical: It is very difficult to conceive any mechanism,
which would separate matter and antimatter in the early universe so com-

pletely that they would not annihilate each other and hence produce a uni-

verse filled only with radiation. Therefor we must conclude that the visible
matter in the universe consists only of matter and that there exists no signifi-

cant amount of antimatter. That is, to contrast the near perfect symmetry be-
tween matter and antimatter in the microphysical theory, the standard model,

cosmology has a near-perfect asymmetry between matter and antimatter.

1Neutrons are of course not stable when free, but have an half-life of about 886 s, however they
are stable when bound to nucleai.

2Significant amount of antiparticles are however produced as the secondaries of cosmic rays as
the energetic cosmic rays interact with material in the atmosphere of earth.
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2.2 Baryons in our universe

To quantify the aforementioned asymmetry, we need to introduce some
quantum number which describes the amount of matter. Baryons are counted

by introducing the baryon number B, which is defined so that each quark has
Bq = 1/3 and each antiquark has Bq̄ = −1/3 so that a proton or a neutron

has Bp,n = 1. Similarly we define the lepton number L, which is defined so

that each lepton has Ll = 1 and each antilepton Ll̄ = −1. Both the baryon and
lepton number are experimentally conserved to extremely great precision.

The naive measure of the amount of matter in the universe would be B+ L,

corresponding to protons, neutrons and electrons. However the light, very

weakly interacting neutrinos have as well lepton number. Since neutrinos
interact so weakly, measuring their number density and the lepton number

conserved in them is very difficult — in general we have no obervational data
on the lepton number conserved in the cosmic neutrino background. Hence

instead of considering B+ L, we consider only baryons.

The conclusion of the lack of antimatter in the universe can then be formu-

lated as

B = Np + Nn ,

where Np and Nn are the number of protons and neutrons in the universe. In-

stead of measuring the total baryon number in the visible universe, we usually
measure the amount of baryons per photons

η ≡ nB
nγ

.

This has the advantage that if the universe expands adiabatically, with no

photon production, this number stays fixed even if the physical density may
change. The primary motivation of this work is to explain the measured value

of η in a dynamical way.

To know the value of η in the universe, we need to know the abundance

of photons and baryons in the contemporary universe. Photon density is
easy to estimate: The number density of photons is dominated by the cosmic

microwave background (CMB). It is nearly perfect black-body radiation at the

temperature T = 2.725K. The number density then can be calculated from
the distribution function, to be [4]

nγ(T) = 2
ζ(3)

π2
T3 .

To estimate the number density of baryons we have to somehow measure
the total amount of protons and neutrons in some (large) volume. In practice

there are three different ways to measure this: direct observation, big-bang

nucleosynthesis (BBN) and the CMB.

Direct observation means evaluating the number of baryons by counting
the objects on the sky consisting of baryons: First to estimate the amount of

baryons in a star and then the amount of stars in the visible universe. Since

a large amount of matter is in dark clouds or other objects which are hard to
observe, this method is inherently unprecise and unpractical.
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Cosmological baryon asymmetry

Cosmic Microwave Background

Cosmic microwave background radiation was created when the temperature

of the universe dropped to the range of binding energies of atoms, and free
nucleai and electrons started forming electrically neutral atoms. The universe

transformed from opaque to practically transparent and the electromagnetic

radiation decoupled forming the CMB. The small perturbations in the other-
wise nearly perfect black-body spectrum tells us of the perturbations in the

energy density in the early universe.

The power spectrum of the perturbations is well understood in modern

cosmology. Since the perturbation spectrum has many features ie. peaks, sev-
eral independent cosmological parameters can be derived from it. The Wilkin-

son Microwave Anistropy Probe (WMAP) first year data can be fitted with the

standard ΛCDM-model very well, giving as the amount of baryons [5]

ηCMB = (6.14± 0.25)× 10−10 . (2.1)

Big-bang nucleosynthesis

In the cosmological standard model the early universe was very hot and dense

and strongly interacting particles formed quark-gluon-plasma. As the uni-
verse expanded and cooled down, a QCD phase transition occured in which

all quarks and gluons were bound to hadrons, most importantly to protons
and neutrons. Once the universe cooled further, the protons and those neu-

trons which had not yet decayed, started to form nucleai; mostly deuterium,

tritium and helium. This production of the lightest elements is called the the-
ory of Big-Bang nucleosynthesis which is a well-established part of the stan-

dard cosmological model. Within the theory of the standard model of particle
physics, BBN can explain and predict with great accuracy the observed abun-

dances of light elements in the universe [5]. Assuming near perfect thermal

equilibrium, BBN has two free parameters: the net amount of baryons and
leptons. Since the net lepton abundancy can be expected to be of the same

magnitude as the et baryon abundancy, and the BBN prediction is not very
sensitive to the amount of leptons in the early universe [6], BBN gives a pre-

diction for η. BBN fits observed abundances of the lightest elements with 95%

confidence level [7] for

ηBBN = (4.7− 6.5)× 10−10 .

As can be seen from figure 2.1, the BBN and CMB measurement of η agree

quite well with each other. For this work, however, the actual decimals are not
important, but rather merely the non-zeroness and magnitude of η intrest us.

For the rest of this work a crude value

η = 6× 10−10

will suffice.
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Figure 2.1: The abundances of 4He, D, 3He and 7Li as predicted by the stan-

dard model of big-bang nucleosynthesis — the bands the 95% range. Boxes

indicate the observed light element abundances (smaller boxes: ±2σ statis-
tical errors; larger boxes: ±2σ statistical and systematic errors). The narrow

vertical band indicates the CMB measure of the cosmic baryon density, while
the wider band indicates the BBN concordance range (both at 95% CL). Image

courtesy of Particle Data Group.
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Cosmological baryon asymmetry

2.3 Baryogenesis and Sakharov’s conditions

If the microphysics of our universe would be completely baryon number con-

serving then we would have no alternative but to deduce that the excess
amount of baryons in our universe is an initial condition. The standard model

of particle physics nevertheless has baryon number violating processes (see
section 4) and most theories beyond the standard model feature also baryon

number violation. Hence we do not attribute the value of η to intial con-

ditions, but rather hope to explain its value dynamically. Moreover, in the
context of inflationary models it is natural to assume the baryon number to be

zero during inflation, and that the baryonic excess is created during or after
reheating.

In 1967 Andrei Sakharov published an article [8], in which he problema-
tized the issue of matter-antimatter asymmetry in our universe. He was the

first to consider in detail what criteria a theory should fulfill in order to be

able to explain the global baryon asymmetry. These criteria were to be neces-
sary but not sufficient to create baryon asymmetry, and are nowadays called

Sakharov’s conditions. These are B-number violation, C and CP violation and
departure from thermal equilibrium.

B-number violation

The requirement to violate baryon number is the most obvious of the three
Sakharov’s conditions: If baryon number should be violated macrophysically,

then there must exist a microphysical process which violates it. It is also the
condition most easily fulfilled in most candidate theories: Already the stan-

dard model has a process which violates B, the sphaleron process (see section

4). Also in grand unified and other theories beyond the standard model there
usually exists operators which violate baryon number.

C and CP violation

Here C-symmetry refers to charge conjugation, ie., replacing the charges of par-

ticles with their opposites. CP-symmetry is the combination of C-symmetry

and parity transformation, ie., charge conjugation combined with a flip of the
sign of all spatial coordinates.

Consider a generic process creating baryon number: X → Y + B where

X and Y are non-baryonic particles. If the theory is C-invariant, the rate of

this process must be equal to its C-conjugated processes X → Y + B. If C is
not violated, the abundance of X and X must be equal, so the total change in

baryon number goes

dB

dt
∝ Γ(X → Y + B)− Γ(X → Y + B) = 0

and no excess of baryons can be produced. Though a single microphysical

process may violate baryon number, statistically no net baryon number is
produced. Hence we conclude that C-symmetry must be violated. This is not
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2.4 Candidates for baryogenesis

difficult, since already the electroweak sector of the standard model breaks C
maximally.

However, breaking C is not enough. If CP is conserved, then

Γ(X → YL + BL) = Γ(X → YR + BR)

and similarly

Γ(X → YR + BR) = Γ(X → YL + BL) ,

where we use the notation YR to be the right-handed projection of the particle
Y. From this we get the equality

Γ(X → YL + BL) + Γ(X → YR + BR) = Γ(X → YR + BR) + Γ(X → YL + BL)

and no net baryon number is produced. At best, an inequality between left-

handed and right-handed particles is created.

Departure from thermal equilibrium

In CPT-conserving theory in thermal equilibrium 〈B〉 = 0. This can be shown
easily by using the fact that under CPT-transformation the Hamiltonian is

invariant and the baryon number operator is odd.

〈B〉 = Tr e−βĤ B̂

= Tr (CPT)(CPT)−1e−βĤ B̂

= Tr e−βĤ(CPT)−1B̂(CPT)

= −Tr e−βĤ B̂

= −〈B〉

Since CPT-invariance appears to be a necessity for formulating consistent

quantum field theory, thermal equilibrium must be broken somehow to pro-
duce baryon asymmetry.

2.4 Candidates for baryogenesis

To explain the cosmic baryon asymmetry, several theories and models have
been suggested. The most pleasing alternative has been the electroweak ba-

ryogenesis, since it requires no physics beyond the standard model, whereas

other scenarios require at least some extension to it.

EW-baryogenesis

The standardmodel of particle physics, perhaps surprisingly, fulfills all Sakha-

rov’s conditions. The electroweak sector of the standard model naturally vi-
olates C-symmetry maximally, but it also violates CP-symmetry through the

complex phase in the Cabibbo-Kobayashi-Maskawa matrix. Furthermore the

standardmodel also has non-perturbative baryon number violation, explained
in section 4. The departure from thermal equilibrium can be facilitated either

13



Cosmological baryon asymmetry

by a first order electroweak phase transition or an out-of-equilibrium decay of
some sufficiently weakly interacting heavy particle.

As the temperature lowers in the expanding universe to the electroweak
temperature the Higgs field transitions from the symmetric phase 〈H〉 = 0

to the broken phase 〈H〉 = v. The broken phase will start forming bubbles

which will then expand. Near the bubble walls non-equilibrium processes can
then produce net baryon and lepton number.

The actual production of net baryon number is however very difficult, at
least to facilitate the fairly large observed asymmetry [9]. The standard model

CP violation must involve all three generations of particles, making it small at

low energies. Furthermore it has been shown that the order of the electroweak
phase transition depends on the Higgs mass [10] and current lower limits

for its mass rule out a first order electroweak phase transition. Hence EW-

baryogenesis is in practice ruled out. Since baryogenesis cannot be explained
within the standard model, the existence of baryons in our universe can be

considered as evidence for physics beyond the standard model.

GUT-baryogenesis

The standard model describes the interactions of particles by two symme-

try groups, SU(3)QCD and SU(2) ⊗U(1)Y. The motivation for grand unified
theories (GUT) is to explain all these interactions by a single large symmetry

group, which includes all these groups as its subgroups. Though no definitive

GUT theory has been found, there are many different models tossed around
with many common properties.

Sakharov’s conditions are easily fulfilled in GUTs. They naturally pro-
duce baryon and lepton number violation, departure from thermal equilib-

rium from, eg., heavy particles decaying out of equilibrium, and complex

couplings give CP violation in those decays [11].
Any GUT can hence facilitate baryogenesis. The problem is in formulat-

ing a GUT, which is consistent with the standard model and the obervational
upper limit on proton lifetime. Futhermore in the context of inflation baryo-

genesis should occur after or during reheating, and hence if TGUT ∼ 1016GeV,

this poses strict limits on the reheating temperature.
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3
Neutrinos

The main topic of this thesis is leptogenesis. To motivate and explain this

model we first need to depart on an excursion to the world of neutrinos.

The existence of neutrinos was originally suggested by Wolfgang Pauli in
1930 to uphold the conservation of energy by explaining the unseen energy in

beta decay with a new particle that was very difficult to observe. Pauli orig-

inally called his new particle the neutron, since the particle nowadays called
neutron had not yet been found. In fact the name neutrino is a pun by Enrico

Fermi on neutron: the Italian word for neutron, neutrone, can be interpreted

as the augmentative of a word which has also a diminutive: neutrino, a tiny
neutron.

Neutrinos are the lightest fermions in the standard model and they interact

only through the electroweak sector in the standard model. They also come

in all three flavours. In the standard model the neutrinos are Weyl-fermions:
massless spin-1/2-fermions which have only the left-handed chirality.

3.1 Neutrino oscillation and neutrino masses

The standard model assumption of massless neutrinos is in agreement with

all kinematical, ie. direct measurements of neutrino mass.1

The existence of non-zero mass for neutrinos, no matter how small, a

new fascinating phenomena, neutrino oscillation, possible. Neutrinos interact
through the electroweak interaction. Hence they are created and destroyed in

interaction eigenstates, but they propagate in mass eigenstates. If these two
sets of eigenstates are not the same then neutrinos will oscillate as they propa-

gate, changing from one interaction eigenstate to another. This was originally

suggested by Pontecorvo in 1957 [12].

For most practical applications it is sufficient to consider only two flavours

of neutrinos [13] νe and νµ. These flavour states are defined as the interaction
eigenstates: νe is a neutrino which interacts with electrons through charged

1The Karlsruhe tritium neutrino experiment, KATRIN, is expected to start data collection in
2009. KATRIN attempts to measure the electron neutrino mass by measuring the electron spec-
trum from the β-decay of tritium, and is expected to have sub-eV accuracy. Neutrino oscillation
data inidicate that electron’s neutrino mass might be of order 10−2eV, which means that even a
negative result from KATRIN would not be in disagreement with the oscillation data.
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Neutrinos

current, νµ a neutrino which interacts with muons. These states can be ex-
pressed as a linear combination of the mass eigenstates ν1 and ν2,

(

νe
νµ

)

=

(

cos θ sin θ

− sin θ cos θ

)(

ν1
ν2

)

. (3.1)

A neutrino is created through an electroweak interaction into either of these
flavour states, say νe. As the neutrino propagates, it evolves in its mass eigen-

states,

νe(t) = e−iĤtνe = e−iE1t cos θ ν1 + e−iE2t sin θ ν2 .

Assuming p ≫ m1,2, we can approximate the energy of the mass eigenstates

to be

E1,2 ≃ p+
m2

1,2

2p
,

and also vν ≃ 1 in natural units, giving t ≃ l, where l is the propagated

distance. Using these we get

νe(t) = e−ipt

(

cos θ e
−il

m2
1

2p ν1 + sin θ e
−il

m2
2

2p ν2

)

.

Solving ν1 and ν2 from eq. (3.1) and inputting them to the previous expression

we get

νe(t) = νee
−ipt

(

cos2 θ e
−i

m2
1

2p l + sin2 θ e
−i

m2
2

2p l

)

+ νµe
−ipt cos θ sin θ

(

−e
−i

m2
1

2p l + e
−i

m2
2

2p l

)

.

The absolute squared of the coefficients then gives the propability to find a

flavour eigenstate, eg.

P(νe → νµ) = sin2 2θ sin2
(

l

4p
|m2

1 −m2
2|
)

.

In general the oscillation is always sensitive to both the mixing angle θ, and

the squared mass difference δm2
12 ≡ |m2

1 −m2
2|.

Different oscillation experiments are sensitive to different oscillations, de-

pending on the energies of the neutrinos oscillating and their propagation

distance. Furthermore, since neutrinos interact very weakly a significant flux
of neutrinos is required to get any reasonable amount of data.

In solar neutrino oscillation expriments neutrinos which are created in the
sun in nuclear processes propagate to earth, where they interact with electrons

and these interaction are then measured. Solar neutrino experiments are sen-

sitive to energies of the order ∼ MeV, distances 1011m and mass differences
of the order δm2 & 10−11eV2 [13].

Atmospheric neutrinos are created when pions are created from cosmic
rays in the atmosphere, which then decay to muons and three neutrinos. The
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atmospheric neutrino oscillation experiments are sensitive to energies of the
order ∼ GeV, distances of the order ∼ 104km and mass differences of the

order δm2 & 10−4eV2.

Since the solar and atmospheric oscillation experiments probe completely

different scales, they measure in fact two different mass differences, matm and

m⊙. Atmospheric neutrino oscillation experiments have shown that at 90%
confidence level [7]

1.9× 10−3eV2
< δm2

atm < 3.0× 10−3eV2 .

Solar neutrino oscillation data is less consistent, but favours strongly oscilla-

tion, with the best fit for the mass difference being

δm2
⊙ ≃ 6.5× 10−5eV2 .

Consequently oscillation experiments indicate two mass differences. This is

unsurprising since the standard model has three flavours of neutrinos. Al-

though the exact mass differences, hierarchy of the masses, and the size of
the mixing angles is still an open question, the oscillation experiments have

shown the existence of non-zero neutrino masses.

From cosmological data we have a upper limit to the sum of the masses of

all neutrino flavours [14]

∑
i

mνi < (0.4− 1.0)eV .

This however is not inconsistent with the oscillation results, since oscillation
indicate mass scales of ∼ 10−1eV and ∼ 10−2eV.

The interesting aspect of this data is the approximate mass scale: it is sev-
eral magnitudes smaller than the mass scales of other massive particles of the

standard model. Furthermore, the non-zero mass of the neutrinos requires the

existence of otherwise undetected right-handed neutrinos. In additioson the
different magnitude of the mass scale hints at a different mechanism to gen-

erate the masses than the familiar Higgs mechanism of the standard model.

3.2 Mass terms for neutrinos

All charged fermions, that is all fermions except neutrinos, are described in

the standard model as Dirac particles. The theory of a Dirac fermion is de-
scribed by its Lagrangian density

L = ψi�∂ψ −mψψ +LI (3.2)

where the LI is the interaction part Lagrangian. In the usual notation

�∂ ≡ ∂µγµ ,

where the γµ is the set of four, four by four, anticommuting Dirac matrices.
In the case of free theory LI = 0, the classical equations of motion for the
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spinor field can be found through the usual use of Euler-Lagrange-equations
resulting in

(i�∂ −m)ψ = 0 .

A massive Dirac fermion has four degrees of freedomwhich correspond to

the left-handed fermion, right-handed fermion, left-handed antifermion and
right-handed antifermion. The left- and right-handed particles are separated

with the projection operators

PL =
1

2
(1− γ5)

PR =
1

2
(1+ γ5)

so that ψL ≡ PLψ and ψR ≡ PRψ. Since (γ5)2 = 1 PLPR = 0, and the free
Lagrangian can be rewritten as

L = ψLi�∂ψL + ψRi�∂ψR −mψLψR −mψRψL (3.3)

where ψL = ψPR and similarly L ↔ R.

For a massive particle, its handedness corresponds to the sign of its spin

projected onto its momentum. The spin does not change sign under a boost.
However, for any given momentum a frame can always be found where the

momentum is pointing to the opposite direction. This means that the handed-
ness of a massive particle is not a Lorentz invariant quantity. For a massless

particle one cannot boost to a frame where the momentum is in the opposite

direction — there is no rest frame for a massless particle. This can be seen
from eq. (3.3) by taking the massless limit m → 0 decoupling the particles’

right- and left-handed components.
Next we define the charge conjugation or the C-operation by

ψC ≡ Cγ0ψ∗ .

Here the matrix C depends on the representation of the Dirac gamma matri-
ces.2 This translates for the barred charge conjugated field

ψC = ψTC .

In some sense the C-operation exchanges particles with antiparticles and vice
versa. It also changes the handedness of a particle, as can be seen from

Cγ0(PLψ)∗ = CPRγ0ψ∗ = PRCγ0ψ∗ = PRψ∗ .

In 1937 Ettore Majorana published a paper (see discussion and review of

the original article in Italian in [15]) where he suggested another form of a

mass term for the Lagrangian:

LM = ψi�∂ψ − 1

2
ψCMMψ

= ψLi�∂ψL + ψRi�∂ψR − 1

2
ψC
LM

MψL −
1

2
ψC
RM

MψR (3.4)

2In Dirac representation C = iγ2γ0, in Majorana representation C = γ0. In this work where
explicit form of the gamma matrices is required we comply with the Dirac representation.

18



3.3 Standard model EW-sector

νL oo CPT //
OO

Lorentz

��

ν̄ROO

Lorentz

��
νR oo

CPT
// ν̄L

(a) A Dirac particle

νL oo
CPT

Lorentz // νR

(b) A Majorana particle

Figure 3.1: The difference between Dirac and Majorana fermions in a nutshell.

The solutions now fulfill an additional condition — the Majorana condition:

ψC = ψ .

Thus the solutions have now only two degrees of freedom: left-handed parti-

cles and right-handed particles.

Next consider the U(1)-transformation

ψ → eiαψ, ψ → e−iαψ . (3.5)

Clearly the Dirac Lagrangian of eq. (3.2) is invariant under this transforma-
tion. This symmetry has an associated conserved quantum number. For lep-

tons, this can be interpreted as the lepton number. The Majorana Lagrangian

eq. (3.4) however is not invariant under (3.5). This means that the Majorana
mass term does not conserve the lepton number.

Why does a different sort of mass term in the Lagrangian ruin the symme-
try? Dirac fermions come in four sorts: particles and antiparticles, and both

of these as left- and right-handed. Although a Lorentz boost can change the

handedness of a particle, a particle stays a particle and an antiparticle stays
an antiparticle in all frames; the number of particles and antiparticles conse-

quently stay fixed. Majorana fermions however come only in two sorts: left-
handed and right-handed which can be Lorentz boosted to each other. If one

chooses for instance the left-handed particle as the particle of the theory, then

its antiparticle should be its CPT-conjugate, which is the right-handed particle.
Hence particles and antiparticles are differentiated only by their handedness

which is a Lorentz non-invariant quantity, and the amount of particles vs.
antiparticles depends on the chosen frame.

As the Majorana particles have no conserved quantum number, the assign-

ment which particle is matter and which antimatter is arbitrary and irrelevant.
In general it is better to say that a Majorana particle is its own antiparticle.

3.3 Standard model EW-sector

The standard model electroweak sector is generated from the EW SU(2) ⊗
U(1) gauge symmetry group. This group has two charges associated with it:

the weak isospin T3, which is the charge of the SU(2)-group, and the weak
hypercharge Y, which is the charge of the U(1)-group.
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νL lL νR lR φ+ φ0

T3 1
2 − 1

2 0 0 1
2 − 1

2

Y − 1
2 − 1

2 0 −1 1
2

1
2

Q = T3 + Y 0 −1 0 −1 1 0

Table 3.1: The SU(2)xU(1) charges of the leptons.

We define the left-handed SU(2) lepton doublets as

l ≡
(

νe νµ ντ

e− µ− τ−

)

L

(3.6)

with their right-handed singlet counterparts as

r ≡ (e− µ− τ−)R . (3.7)

Also, to generate masses, the standard model includes a complex scalar field,

the Higgs field

φ ≡
(

φ+

φ0

)

,

which is a SU(2)-doublet. The T3 and Y -charges of the SM leptons (with the

addition of right-handed neutrinos) and the Higgs are described in table 3.1.

The Higgs couples through Yukawa-couplings to the leptons, L and R:

LY = fijr̄iφ
†lj + f ∗ij l̄iφrj .

Note that each term respects the gauge group symmetry: A doublet is associ-
ated with a hermitian conjugate of another doublet, and the total sum of T3

and Y charges of each term is zero.

In the electroweak symmetry breaking the Higgs field’s potential has a

minimum at φ 6= 0 so that the field gets a vacuum expectation value (VEV)
〈φ〉 = v 6= 0. The Yukawa terms then transform into mass terms for the

fermions and their couplings to the physical Z0 and W± bosonic gauge fields.

As there are no right-handed neutrinos in the SM, there are no mass terms for
the neutrinos.

3.4 Addition of the neutrino masses to the SM

Neutrino oscillation experiments have shown that the neutrinos have a mass
difference between generations. This then implies that they must have masses.

To generate a mass for the neutrinos without requiring the existence of

new (right-handed) fields would come about by putting in a Majorana mass

term for the usual left-handed neutrinos:

+νcLM
MνL (3.8)
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3.4 Addition of the neutrino masses to the SM

This term however breaks the SU(2) ⊗U(1) invariance. Therefor if neutrinos
are massive, the principle of gauge invariance requires the existence of right-

handed neutrinos.

The next-to-minimal way to generate the neutrino masses would be then
to include a set of right-handed neutrinos and give them Yukawa couplings

to L. Thus we define the right-handed SU(2)-singlet

N ≡ (ν)R = (νe νµ ντ)R

and we write the usual Higgs doublet in another form,

φ̃ ≡ iσ2φ∗ =

(

φ̄0

−φ−

)

,

which is still a SU(2)-doublet. Using these we can add an additional term to
the SM Lagrangian:

LN = hijφ̃
†Nilj + h∗ijliNjφ̃ (3.9)

As before, the Higgs acquires a VEV breaking the EW-gauge symmetry

spontaneously and mass terms and couplings to the gauge fields emerge from
the Yukawa couplings. If we denote the VEV of the Higgs by v, the total EW-

sector of the Lagrangian reads as

LY +LN = hijvNRiνLj + hijνLiNRjH

+ (mass terms for charged leptons)

+ (couplings to Z0 and W±) ,

where H is the physical Higgs boson. If the h-matrix is diagonal, then we can
simply read the Dirac masses of the i:th neutrino to be mDi = hiiv.

The gauge invariance prohibited us from adding a Majorana mass term

for the left-handed neutrinos, however, nothing stops us from adding such a
term for the right-handed (singlet) neutrinos, since they are invariant under

the EW SU(2)⊗U(1):

LM = −1

2
NCMMN

The Majorana mass MN is in general a Ng×Ng -matrix in flavour space where

Ng is the number of generations.3

Using a slightly different notation we can rewrite the Dirac and Majorana

mass terms together as a single term:

LM+D =
(

νCL , N
)

(

MM
L mD

mD MM
R

)(

νL
NC

)

+ h.c. (3.10)

Here the ν should still be a Ng-vector in the flavour space and mD, MM
L and

MM
R Ng × Ng matrices, however, we have suppressed this index and/or con-

sider only a single flavour. As mentioned before, the EW gauge invariance

3Here we have assumed that there are as many flavours of right-handed neutrinos as there are
left-handed neutrinos. Nothing a priori requires us to assume that, though for the purposes of
this work at least two flavours are required.
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requires the MM
L to be zero, so what remains to characterize the neutrino

masses are two (Ng × Ng matrix) parameters.

Since the Majorana mass term is not invariant under the U(1) transfor-
mation of eq. (3.5), the new mass term does not conserve the related current.

For charged particles this would result into the non-conservation of electric

charge, but for neutrinos this is not a problem since they are electrically neu-
tral. On the other hand, this does violate lepton number — in fact the addition

of a Majorana mass term is the minimal way to add (classical) lepton number
violation to the standard model.

3.5 See-saw mechanism

The Lagrangian of eq. (3.10) has two free parameters: the Dirac mass and

the Majorana mass. The Dirac mass is the product of the Higgs’ VEV v and
the associated Yukawa couplings hij. Since it has exactly the same form as

other Dirac masses of the SM, we would expect it to be at least of the same
order of magnitude as the masses of other fermions. However, oscillation

and cosmological data indicate smaller mass scale for the neutrinos by several

orders of magnitudes.
To solve this hierarchy problem we suppose that both the mD and MM

R 6= 0

and the mass matrix of 3.10 is thus non-diagonal. (Since we have put MM
L = 0,

we can omit the redundant indices and denote the Dirac mass by m and the
Majorana mass of the right-handed fields by M.) We however observe mass

eigenstates so we diagonalize the mass matrix
∣

∣

∣

∣

−λ m
m M− λ

∣

∣

∣

∣

= λ2 − Mλ −m2 = 0

λ =
M±

√
M2 + 4m2

2
=

M

2

(

1±
(

1+
4m2

M2
+ O(

m3

M3
)

))

where we have assumed that m
M ≪ 1 and expanded in this small parameter.

This results in two mass eigenstates with the eigenvalues

mν ≃ −m2

M
and mN ≃ M .

If one assumes that the Dirac mass term is, in accordance with other

mass terms in the SM, ∼ O(1MeV), and that the Majorana mass term is

∼ O(1016GeV), a scale for GUT physics, then one gets as the scale of the
lighter neutrinos

Mν = O(0.1eV) ,

which fits the experimental upper limit of the neutrino mass quite nicely.

This so called see-saw mechanism hence explains naturally away the hierarchy
problem related to the smallness of the observed neutrino mass.

It should be pointed out, however, that the see-saw mechanism doesn’t
explain the size of the neutrino masses — it merely transfers the problem

to the larger GUT scale, hoping that possible GUT-scale physics is able to

predict the heaviness of the Majorana mass term, and the values of the Dirac
mass terms.
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Figure 3.2: Neutrinoless double β-decay made possible by a Majorana mass

term.

3.6 Consequences of the Majorana mass terms

The standard model Lagrangian is of course gauge invariant. It can be con-

structed by specifying the fermion content and then including all the terms
allowed by gauge-invariance. The neutrino oscillation experiments require

us to add right-handed neutrinos, and when adding them we must add all

gauge-invariant terms involving them. Hence the addition of the Majorana
mass term can be required merely by consistency.

Set aside the explicit gauge symmetry, the SM Lagrangian possesses addi-
tional symmetries. For example the transformation of eq. (3.5) applied only

on the leptons or the quarks leaves the Lagrangian invariant. The associated

Noether current then says that the lepton and baryon number are conserved.4

Our SM extended with the Majorana neutrinos is no longer invariant under

the transformation of eq. (3.5). Therefore the Majorana term for the right-
handed fields violates the conservation of the associated quantum number,

the lepton number.

This violation of lepton number has observational consequences. The most
easily observable effect might be neutrinoless beta-decay, which is illustrated

in figure 3.2. In the figure the dot in the neutrino line represents the Majorana

mass-term responsible for the change of a neutrino to its antineutrino. The
process is suppressed by the mass-scale of the heavy neutrino, so the rate for

this process is small, but still observable.

4This is a global symmetry of the SM Lagrangian, and indeed B and L are both conserved at
the tree level. However, next-to-tree level the EW anomaly breaks the B and L, resulting only in
B− L left conserved.
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4
An interlude: B-number

violating sphaleron processes

The standard model is a gauge field theory with a gauge symmetry group

SU(3) × SU(2) × SU(1). This symmetry is required from the theory and no
observable can depend on the choice of gauge. However, the standard model

Lagrangian has other, “accidental” symmetries as well — some of them exact

and some of them only approximate.

Two exact symmetries of the Lagrangian are the U(1)L and U(1)B sym-
metries coming from the freedom of rotating the phase of all lepton or quark

fields. Hence they have associated conserved currents, the leptonic and bary-

onic currents JBµ and JLµ . If we define the quark doublets and singlets in ana-
logue with eq. (3.6) and (3.7) as

q ≡
(

u s t

d c b

)

L

u ≡ ( u s t )L
d ≡ ( d c b )L ,

then the baryonic and leptonic currents are given by

JBµ =
1

3

(

q̄iγµqi − ūiγµui − d̄iγµdi
)

JLµ = l̄iγµli − r̄iγµri .

These correspond to the baryon and lepton number mentioned in previous

chapters. This classical symmetry is responsible for the observational fact
that baryon and lepton number are conserved to extremely high precision —

in fact no laboratory experiment has recorded violation of baryon or lepton

number.

In 1969 it was realised [16] [17] that through the Adler-Bell-Jackiw-triangle-
anomaly these symmetries are nevertheless broken, and as a result the bary-

onic and leptonic currents are anomalous. Their divergences are then given

by

∂µ J
µ
B = ∂µ J

µ
L =

Ng

32π2

(

g2 TrWµνW̃
µν − g′2 Tr BµνB̃

µν
)

, (4.1)
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where Ng is the number of fermion generations, Wµν and Bµν are the field
tensors of the SU(2) and U(1) fields, g and g′ are their associated coupling

constants and trace is taken over the group index. We have also defined the
dual of a field tensor by

W̃µν ≡ 1

2
ǫµναβWαβ .

The traces of the field tensors on the RHS of the equation (4.1) can be

written as a divergences of two quantities,

Kµ ≡ ǫµναβ

(

Wa
ναA

a
β −

1

3
gǫabcA

a
νA

b
αA

c
β

)

kµ ≡ XναA
′
β ,

where the one-index tensors Aµ and A′
µ refer to the vector potentials of the

SU(2) and U(1) fields. Then we could define a new current which would have

a vanishing divegence,

∂µ

(

J
µ
L − Ngg

2

32π2
Kµ +

Ngg
′2

32π2
kµ

)

= 0 .

It would be tempting to define this current as the new baryonic and leptonic
number, understanding the addition as baryon and lepton number carried by

the gauge fields. This is however not possible, since kµ and Kµ are not gauge
invariant.

As we are interested in the time-evolution of the baryon and lepton num-

bers, we consider their evolution from an inital time t = 0 to some point of
time by defining the change in the baryon number [18]

∆B(t) ≡ Ng [NCS(t) − NCS(0)] ,

where we use the Chern-Simons numbers of the SU(2) gauge field

NCS =
g2

32π2

∫

dx3ǫµνσ
(

Wa
µνA

a
σ −

g

3
ǫabcA

a
µA

b
νA

c
σ

)

.

Even though the definition of Kµ was not gauge invariant, the change of the

divergence of Kµ is gauge invariant. The different values of the Chern-Simons
number correspond to different vacuum configurations of the gauge field.

The value of the Chern-Simons number in pure gauge configurations, corre-
sponding to vacuum, is an integer, and thus the change in the baryon (and

lepton) number corresponding to the change of the vacuum of the gauge field

is Ng × integer: both the baryon and lepton numbers change in multiples of
three. This anomaly induces a 12-fermion operator of the form

3

∑
i=1

(qiqiqili) ,

coupling to all left-handed fermions. Since the divergences of JBµ and JLµ are
the same, B− L is conserved.
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In 1976 ’t Hooft published an article [19] in which he estimated the rate
of these baryon number violating processes. He considered the instanton so-

lution between two separate vacua and calculated the action associated witht
the saddle-point configuration between them. This field configuration is called

the sphaleron, from the Greek word meaning ready to fall, as the saddle-point

configuration is inherently unstable. The propability of tunneling between the
different vacua is approximately

Γ ∼ e−Sinst = e−
4π
α = O(10−170) .

This rate is so infintely small that the sphaleron process is in no contradiction
with the practical observation of the lack of violation of B or L.

In 1985 Kuzmin, Rubakov and Shaposhnikov [20] pointed out that in ther-
mal bath the transition can happen instead of quantum mechanical tunneling

by classical thermal fluctuations over the potential barrier. If the tempera-

ture is above the saddle-point energy between the different vacua then the
exponential Boltzmann suppression disappears completely.

The energy of the saddle-point configuration can be estimated by the
sphaleron configurations. Below the electroweak phase transition tempera-

ture (T < TEW) the transition rate per unit volume was found to be

Γsph

V
∼ e−

MW
αT ,

which is still very much suppressed. In the symmetric phase T > TEW, how-

ever, the transition rate is no longer suppressed, but rather [21]

Γsph

V
∼ α5 ln α−1T4 .

Sphaleron processes can be in equilibrium when the sphaleron rate Γsph

exceeds the expansion rate of the universe H. Comparison of the estimate for
Γsph to H in radiation dominated universe gives as the temperature interval

when sphalerons were in equilibrium as [22]

100GeV < T < 1013GeV .

Following the terminology of literature, we call the entire B + L-violating

process the sphaleron process, even though the sphaleron specifically refers
only to the unstable saddle-point configuration.
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5
Leptogenesis

Long before the impossibility of electroweak baryogenesis became apparent,
Fukugita and Yanagida in 1986 proposed an alternative [23] for GUT-baryo-

genesis. Since lower limits on the lifetime of the proton from proton decay
experiments limit the GUT-produced B-number violation to be too small for

the cosmic baryon asymmetry, they proposed to produce the B-number using

the sphaleron process, which is exponentially suppressed at low energies, and
therefor does not suffer from the limits of the proton lifetime experiments. To

produce the sufficient L for the sphaleron process to be convert into B, they
suggested decays of particles with Majorana mass. This is the basic idea for

thermal leptogenesis.

5.1 The simple model

To produce successful leptogenesis, we introduce to the standard model three

heavy right-handed neutrinos with Majorana mass terms, N1, N2 and N3:

L = LSM + N̄i�∂N + MiNC
iNi + hijN̄iφ̃

†lj + h∗ji l̄iφ̃Nj . (5.1)

The Yukawa couplings hij can in general be complex and of the same order

than other Yukawa couplings in the SM. We assume that in our simple model

the Majorana masses are hierarchical, ie. M1 < M2 < M3, and that they are
of the GUT scale. This guarantees successfull see-saw mechanism producing

left-handed neutrinos with the correct mass scale.

5.2 Sakharov’s conditions in Leptogenesis

Like all theories attempting to offer an explanation for baryogenesis, lepto-

genesis has to fulfill all Sakharov’s conditions. In fact the minimal extension
of the standard model in eq. (5.1) is sufficient to fulfill Sakharov’s condition

much more drastically than the bare SM.

B-number violation

Baryon number violation is satisfied in leptogenesis by the same mechanism
as in EW baryogenesis, by the B + L violating sphalerons. The sphalerons
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are in equilibrium in the temperature range 100GeV < T < 1013GeV, so the
excess lepton number to be converted to baryon number has to be produced

at sufficiently high temperatures.

C and CP violation

C violation is satisfied already maximally in the standard model through the

electroweak sector, since the EW gauge fields couple only to left-handed fields.

CP violation is featured in the standard model in the complex Yukawa
couplings of the fermions.1 Similarly we assume that the Yukawa couplings

of the heavy neutrinos we have introduced to the SM are also complex. These
complex phases cannot be absorbed to the redefinition of the lepton fields

unlike in plain SM, and they produce CP violation in the decay amplitudes of

the heavy neutrinos. This CP violation in the decay amplitude comes from the
interference of the one-loop diagrams of the decays and requires the existence

of Majorana neutrinos with different masses, as is explained in appendix A.4.

Departure from thermal equilibrium

In leptogenesis the departure from thermal equilibrium is provided, as in

many forms of GUT-baryogenesis, by the decays of heavy but relatively weakly
interacting particles — in our case the heavy neutrinos. The equilibrium den-

sity of the heavy neutrinos drops abruptly as the temperature drops below

their mass. If the neutrinos interact weakly enough, they decay so slowly that
for some time their number density is significantly larger than the equilib-

rium density, assuming of course they are in equilibrium at sufficiently high

temperatures.

Here the criteria of the interaction to be weak enough is related to the

expansion rate of the universe. In practice this requirement is given by

ΓD|T=M < H|T=M ,

where ΓD is the thermally averaged decay rate of the heavy neutrino.

5.3 Thermal history of Leptogenesis

The story of leptogenesis begins right after inflation ends, at the reheating

temperature which we assume to be larger than the mass of N1, or Treh > M1.

At T . Treh inflation ends and the energy from inflaton decays to other

fields. Inverse decays produce large amount of N1 and their abundance ap-
proaches their equilibrium value. The possible lepton asymmetry produced

from these inverse decays is quickly washed out by ∆L = 1 and ∆L = 2

scatterings producing a universe near thermal equilibrium with B = L = 0.

1The complex quark couplings are usually absorbed to the redefinition of the quark fields to
produce the CKM-matrix describing the mixing between different flavours of quarks with one
complex phase to describe CP-violation.

30



5.3 Thermal history of Leptogenesis

At T ∼ M1 the equilibrium density of the heavy neutrinos drop suddenly
but the neutrinos do not decay fast enough to maintain their equilibrium den-

sity.
As T < M1 the heavy neutrinos decay out-of-equilibrium. Their decays

violate CP, and hence produce more antileptons than leptons. As soon as any

net lepton number is produced, ∆L = 1 and ∆L = 2 scatterings start pushing
the lepton number back to zero competing with the rate of the decays.

When T < M1 and T < 1013 GeV the sphalerons start to convert the lepton
number to baryon number. As temperature lowers sufficiently, decays and

washout processes freeze out and the sphalerons are fast enough to keep the

baryon number at its equilibrium value compared to the lepton number.
At the EW scale T ∼ TEW the electroweak symmetry breaks spontaneously

and all Dirac fermions acquire mass. At the same scale the sphalerons freeze

out due to the Boltzmann suppression, and all baryon number violating pro-
cesses are suppressed from this point on. The baryon number per comoving

volume hence freezes out to its current value.
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6
Boltzmann equations

for leptogenesis

Next we proceed to treat the theory of leptogenesis quantitatively. In principle
we should take into account all B- and L-violating processes. In this treatise,

however, we consider only decays, inverse decays, ∆L = 2 scatterings and the
sphalerons. All rates are treated at the tree level only, except the CP-violating

amplitude of the decays ǫD.

Furthermore we assume M1 ≪ M2,3, so that we can safely ignore the
decays of the two heaviest Majorana neutrino flavours. Their only contribution

to this treatment is their off-shell contributions to the one loop corrections of
the decay amplitude, producing the CP-violation in N1 decay. Thus from here

on we refer to the lightest heavy Majorana neutrino as merely N, omitting the

subscript.

6.1 Boltzmann equations and formalism

Leptogenesis is inherently an out-of-equilibrium process. For this reason we
describe it by Boltzmann equations. In general, the differential equation de-

scribing the evolution of the abundance of particle species X is given by

˙nX + 3
Ṙ

R
= −∑[Xa . . . ↔ ij . . .] , (6.1)

where

[Xa . . . ↔ ij . . .] ≡ nXna . . .

n
eq
X n

eq
a . . .

γeq(Xa . . . → ij . . .)

−
ninj . . .

n
eq
i n

eq
j . . .

γeq(ij . . . → Xa . . .) .

Here γeq is the space time density of scatterings in thermal equilibrium, which

can be understood as a generalization of the decay rate Γ. For a process

Xa → ij, the density of scatterings is given by

γeq(na → ij) ≡
∫

d~pXd~pa fX fa

∫

d~pid~pj(2π)4δ4(PX + Pa − Pi − Pj)|M|2 ,
(6.2)
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where the integral measure is defined as

d~pX ≡ d3pX
2EX(2π)3

, (6.3)

|M|2 is the transition amplitude squared summed over spin states and fX
is the distribution function. This is generalized to processes involving more

particles in the obvious way, by adding more phase-space integrals to eq. (6.2).
The Boltzmann equation of eq. (6.1) is entirely classical. Quantum cor-

rections become relevant only when the mean distance between collisions is

shorter than the wavelengths of the particles [11]. The second term of the LHS
of equation (6.1) describes the dilution of the number density due to expan-

sion of the universe. The equation can be simplified if, instead of the physical
number density, we choose as our variable the number density in a comoving

volume. We choose the comoving volume so that it contains one photon at

time t⋆, where t⋆ is an epoch before the onset of leptogenesis, following the
notation of [24]:

NX(t) ≡ nX(t)R⋆(T)3 (6.4)

R⋆(t⋆) = (n
eq
γ (t⋆))

− 1
3

Since
dNX

dt
= ṅXR

3 + 3nXR
2Ṙ ,

we can rewrite eq. (6.1) as

dNX

dt
= −R⋆(t)

3 ∑[Xa . . . ↔ ij . . .] (6.5)

It is often easier to solve the equations as a function of temperature then

time. For that end, we define the inverse of temperature in terms of the mass

of the heavy neutrino

z ≡ mN

T
,

which should not be confused with the cosmologial redshift which is often

denoted by the same symbol.
For radiation, entropy and energy density behave as

sγ =
4ργ

3T

ργ =
π2T4

15
.

Here γ refers to radiation in general, not specifically to photons. In adiabatic
expansion of the universe the comoving entropy density stays constant,

d(sR3)

dt
= 0 .

In the radiation dominated and adiabatically expanding universe we then get
from the conservation of entropy

0 =
d(sγR

3)

dt
=

d

dt

4ργR
3

3T
=

d

dt

4π2T3R3

45
⇒ T ∝

1

R
.
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6.2 Boltzmann equation for NN

Then

dN

dt
=

dz

dt

dN

dz
= z

d ln z

dt

dN

dz
= z

d ln R

dt

dN

dz
=

z

R

dR

dt

dN

dz
= zH

dN

dz

and we can rewrite eq. (6.5) as

zH
dNX

dz
= −R⋆(t)

3 ∑[Xa . . . ↔ ij . . .] . (6.6)

6.2 Boltzmann equation for NN

For the number density of N’s, we need to consider only decays, N → lφ̃ and
N → l̄φ̃†, and inverse decays, lφ̃ → N and l̄φ̃† → N. Thus eq. (6.6) for NN

becomes

zH
dNN

dz
= −R⋆(t)

3
{

[N ↔ lφ̃†] + [N ↔ l̄φ̃]
}

.

In a decay processes, N → ij, the expression 6.2 is simplified considerably

[32],

γeq(N → ij . . .) = γeq(ij . . . → N) = n
eq
N

K1(z)

K2(z)
ΓN , (6.7)

where ΓN is the decay width of N in its rest frame, Kn is the n’th modified

Bessel function and z ≡ mN/T. Here the factor K1/K2 is a time dilatation
factor, resulting from the fact that not all particles are at rest, but are rather

distributed according to their distribution function fN . In deriving eq. (6.7),
we have approximated fN by Maxwell-Boltzmann distribution, ie., assumed

that the density of particles is small enough to make the quantum corrections

(stimulated emission, Fermi blocking) insignificant.

Substituting this into eq. (6.5), we get

zH
dNN

dz
= −R3

⋆(t)
K1(z)

K2(z)
ΓN

(

nN − n
eq
N

ninj . . .

n
eq
i n

eq
j . . .

)

. (6.8)

The system is out of equilibrium because of the decays of the heavy neutrinos,
nevertheless it can be assumed that other lepton number consreving scatter-

ings are fast enough to keep the rest of the system in equilbrium — otherwise

we wouldn’t need the heavy neutrinos to satisfy Sakharov’s conditions! Con-
sequently the distributions of other particle species is their equilibrium value,

and eq. (6.8) reduces to

zH
dNN

dz
= −K1(z)

K2(z)
ΓN

(

NN − N
eq
N

)

.000

6.3 Boltzmann equation for NB−L

To derive the Boltzmann equation governing the time-evolution of NB−L we

would need take into account all processes violating B − L. The only B-
violating process is the sphaleron process which does not violate B− L. For
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N

l̄

φ̃

N

l

φ̃†

Figure 6.1: The two possible decay channels of the heavy right handed neu-

trino N.

the lepton number all processes involving the heavy neutrino can violate lep-
ton number, and since they conserve the baryon number, they violate B− L.

In literature usually only decays, inverse decays, and ∆L = 1 and ∆L = 2

scatterings at the tree level are taken into account. Even then the derivation
of the terms means a lot of effort, aside from solving the equation. Here we

neglect the effect of ∆L = 1 scatterings, involving the top quark, and consider

only the effect of the lepton sector.

Since we assign no conserved quantum number to the right-handed neutri-
nos, decays and inverse decays affect the B− L by creating (destroying) a lep-

ton or an antilepton. These are pictured in figure 6.1. ∆L = 2-scatterings are
scatterings of leptons and Higgses which are mediated by the right-handed

neutrinos. They are all shown at the tree level in figure 6.2.

We start from the general expression for the classical Boltzmann equation
eq. (6.6), where we have already transformed into the new variable the amount

of B− L per comoving volume NB−L, and expressed this as a function of the

variable z ≡ MN
T :

zH
dNB−L

dz
= −R⋆(t)

3
{

[N ↔ lφ̃†]− [N ↔ l̄φ̃] (6.9)

−2[ll ↔ φ̃φ̃]− 2[lφ̃† ↔ l̄φ̃] + 2[l̄ l̄ ↔ φ̃†φ̃†]
}

Here decays and inverse decays are taken into account by the terms in the
RHS in the first line, and ∆L = 2 scatterings are taken into account by the

second line. The factor of 2 in the scattering terms comes from the fact that

L and also B − L change by a factor of 2 in each scattering with respect to
decays.

Using the definition of the [ ]-expression, we can write

[N ↔ lφ̃†] =
nN

n
eq
N

γeq(N → lφ̃†) −
nlnφ̃†

n
eq
l n

eq

φ̃†

γeq(lφ̃† → N) (6.10)

[N ↔ l̄φ̃] =
nN

n
eq
N

γeq(N → l̄φ̃) −
nl̄nφ̃

n
eq

l̄
n
eq

φ̃

γeq(l̄φ̃ → N) . (6.11)

We know that CP is violated, ie., all the gammas in the RHS of the equa-
tions 6.10 and 6.11 are not equal. However, from CPT invariance, we know
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l
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l̄

l̄

φ̃†
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φ̃
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φ̃†
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φ̃†
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l

Figure 6.2: The ∆L = 2 processes contributing to washout considered for the

equation of B− L.

that

γeq(N → lφ̃†) = γeq(l̄φ̃ → N) ≡ (1+ ǫD)
γD

2
(6.12)

γeq(N → l̄φ̃) = γeq(lφ̃† → N) ≡ (1− ǫD)
γD

2
, (6.13)

where we have reparametrized the γ’s by introducing the total decay rate γD,

and ǫD which measures the amount of CP-violation in the decays.

When deriving the Boltzmann equation for NN we approximated all other

abundances of particles to be their equilibrium value, except the right-handed
neutrino. Now since we are producing an excess amount of L, we take also

the abundance of lepton doublets to be out-of-equilibrium. Hence we param-

eterize

nl

n
eq
l

= 1+ Xl (6.14)

nl̄
n
eq

l̄

= 1+ Xl̄ , (6.15)

where Xl and Xl̄ are now first-order small in ǫD.
1

Using equations (6.12) - (6.15) we can rewrite equations (6.10) and (6.11)

[N ↔ lφ̃†]− [N ↔ l̄φ̃] = ǫDγD(
nN

n
eq
N

+ 1)− γD

2
(Xl − Xl̄) , (6.16)

where we have already neglected second order terms in ǫD.

1This is not necessarily clear at this stage. However, it is evident that the departure of the
number of (anti-)leptons from its equilibrium value is minute compared to the equilibrium value.
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Boltzmann equations for leptogenesis

Next we consider the ∆L = 2 -terms in eq. (6.9). We again approximate the
nφ̃ to be its equilibrium value, and write

[ll ↔ φ̃φ̃] = (1+ Xl)
2γeq(ll → φ̃φ̃) − γeq(φ̃φ̃ → ll) (6.17)

[lφ̃† ↔ l̄φ̃] = (1+ Xl)γeq(lφ̃† → l̄φ̃) − (1+ Xl̄)γeq(l̄φ̃ → lφ̃†) (6.18)

[l̄ l̄ ↔ φ̃†φ̃†] = (1+ Xl̄)
2γeq(l̄ l̄ → φ̃†φ̃†) − γeq(φ̃†φ̃† → l̄ l̄) , (6.19)

When we calculate the ∆L = 2 processes at tree level, we get CP-conserving

amplitudes, and we can write

γeq(ll → φ̃†φ̃†) = γeq(φ̃†φ̃† → ll) = γeq(l̄ l̄ → φ̃φ̃) = γeq(φ̃φ̃ → l̄ l̄) ≡ γt

γeq(lφ̃† → l̄φ̃) = γeq(l̄φ̃ → lφ̃†) ≡ γs

where t and s refer to t- and s-channels in Mandelstam variables.2

By comparing figures 6.1 and 6.2 we notice that the last two Feynman

diagrams of the ∆L = 2-scatterings look like a decay followed by an inverse
decay. Indeed, lφ̃† ↔ l̄φ̃ can be mediated by an on-shell N. However, since

we have included decays and inverse decays already from γs, we must now
subtract these on-shell contributions, to avoid over-counting.

The contributions to γs due to a (real) on-shell N as the mediating particle

are

γ
eq
on−shell(lφ̃

† → l̄φ̃) = γeq(lφ̃† → N)BR(N → l̄φ̃)

γ
eq
on−shell(l̄φ̃ → lφ̃†) = γeq(l̄φ̃ → N)BR(N → lφ̃†) ,

where BR refers to the branching ratio:

BR(N → l̄φ̃) =
1− ǫD

2

BR(N → lφ̃†) =
1+ ǫD

2
.

From this we get the subtracted amplitude

[lφ̃† ↔ l̄φ̃]sub = (1+ Xl)
(

γs − (1− ǫD)2
γD

4

)

−(1+ Xl̄)
(

γs − (1+ ǫD)2
γD

4

)

(6.20)

=
(

γs +
γD

4

)

(Xl − Xl̄) + γDǫD (6.21)

−γDǫD
2

(Xl + Xl̄) , (6.22)

where the last term is already second order small so we can ignore it.
Combining equations (6.16), (6.17), (6.19) and (6.20) into eq. (6.9) we get

zH
dNB−L

dz
= −R3

⋆(t)

{

ǫDγD

(

nN

n
eq
N

− 1

)

− (Xl − Xl̄) (γD + 2γs + 4γt)

}

,

2The γs actually includes both t- and s-channel processes. However, γt includes only t-channel
effects and hence the danger of confusion is avoided.
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6.4 Simplifying notation

where we have again neglected terms which are second order in ǫD.
3

The term Xl − Xl̄ corresponds to the total lepton number:

Xl − Xl̄ = 1+ Xl − (1+ Xl̄) = nl − nl̄ = NLR⋆(t)
3 .

Using this, we can rewrite the Boltzmann equation for NB−L to give

zH
dNB−L

dz
= − ǫDγD

n
eq
N

(

NN − N
eq
N

)

+ NL (γD + 2γs + 4γt) .

Using eq. (6.7) we can rewrite the total decay rate γD in terms of the decay

width ΓN to get

zH
dNB−L

dz
= −ǫDΓN

K1(z)

K2(z)

(

NN − N
eq
N

)

+ NL (γD + 2γs + 4γt) (6.23)

To solve the eq. (6.23), we need to relate L to B− L, in principle by writing
the Boltzmann equation for L separately. In practice, we can consider tem-

peratures where sphaleron processes are suppressed and thus B− L = −L, or

temperatures where the sphalerons are in equilibrium and we can relate B− L
and L by a constant factor.

6.4 Simplifying notation

NL and NB−L can be related to each other depending on the temperature. At
a high enough temperature sphaleron processes are suppressed and no lep-

ton number is converted to baryon number, so we can write NB−L = −NL.

At temperatures where sphalerons are in equilibrium, some of the lepton
number leaks to the baryon number through sphalerons and we can write

NL = −asphNB−L, where 0 < asph < 1, measuring the effectiveness of the

sphalerons. This relation will be calculated when in equilibrium in more de-
tail in section 7.4.

To keep our notation consistent with the literature [25] [26], we rewrite the
Boltzmann equations now as

dNN

dz
= −D

(

NN − N
eq
N

)

(6.24)

dNB−L

dz
= −ǫDD

(

NN − N
eq
N

)

−WNB−L , (6.25)

where we have multiplied both sides with zH and defined new constants

D =
ΓN

zH

K1(z)

K2(z)

W = asph
γD + 2γs + 4γt

zH
.

Here asph is conversion factor between L and B− L, which at T ≫ 1013Gev is

−1 and at T ≪ 1013Gev its value will be calculated at section 7.4.

3This is different from [24], where the factor of the lepton number is 1/2γD + 2γs + 2γt
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Inputting the energy density for radiation

ρrad =
π2

30
g∗T4

into the Friedmann equation we get an expression for the Hubble parameter
in the early, radiation dominated era

H =

√

8π3g∗
90

T2

MPl
=

√

8π3g∗
90

m2
N

MPl

1

z2
.

We then define

K =
ΓN

H(z = 1)
,

and rewrite the expression for D as

D =
ΓN

zH(z = 1)

H(z = 1)

H(z)

K1(z)

K2(z)
= zK

K1(z)

K2(z)
.

After a short calculation (see appendic A.3) we see that ΓN is proportional

to the effective neutrino mass

m̃1 ≡
(hh†)11v

2

M

and since K is dimensionless, we define the equilibrium neutrino mass

m∗ ≡
K

m̃1
.

Using the explicit form for H and ΓN from the appendix, we get

m∗ ≃ 10−2eV .
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7
Solving the baryon asymmetry

In the previous chapter we have derived the Boltzmann equations relevant for
leptogenesis. These describe the evolution of the number density of the heavy

neutrinos and B− L-number. Next we need to solve these equations and then
relate that solution to the observable, η.

7.1 Analytical solution for the Boltzmann equation

for NN

Equation 6.24 is a first order linear inhomogeneous equation. The homoge-

neous equation
dNN

dz
= −DNN

has the solution

NN = N0
Ne

−
∫ z
zi
dz′ D

.

To solve the inhomogenous equation, we let the initial N0 depend on time,

dNN

dz
= −DN0

Ne
−
∫ z
zi
dz′ D

+
dN0

N

dz
e
−
∫ z
zi
dz′ D

= −D(NN − N
eq
N ) ,

which then gives the solution for N0
N

N0
N =

∫ z

zi
dz′ DN

eq
N e

∫ z′
zi

dz′′ D
.

The final solution for NN is then

NN =
∫ z

zi
dz′ DN

eq
N e−

∫ z
z′ dz

′′ D + Ni
Ne

−
∫ z
zi
dz′ D

,

where Ni
N is the initial value of the abundance of the Majorana neutrinos.

7.2 Analytical solution for the Boltzmann equation

for NB−L

The Boltzmann equation for NB−L, eq. 6.25, is, like the Boltzmann equation
for NN , a first order linear inhomogenous differential equation. Again, the
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Solving the baryon asymmetry

homogenous equation
dNB−L

dz
= −WNB−L

has the solution
NB−L = N0

B−Le
−
∫ z
zi
dz′ W .

To solve the inhomogenous equation we write N0
B−L(z) and get

dNB−L

dz
= −WN0

B−Le
−
∫ z
zi
dz′ W +

dN0
B−L

dz
e−
∫ z
zi
dz′ W

= −ǫDD(NN − NB−L
N ) −WNB−L

= ǫD
dNN

dz
−WNB−L

N0
B−L = ǫD

∫ z

zi
dz′

dNN

dz
e
∫ z′
zi

dz′′ W ,

and from this we finally get

NB−L = ǫD

∫ z

zi
dz′

dNN

dz
e−
∫ z
z′ dz

′′ W + Ni
B−Le

−
∫ z
zi
dz′ W ,

where Ni
B−L is the initial value of B− L.

Following the notation of [26] and others, we define the efficieny factor κ so

that

NB−L = −3

4
ǫDκ + Ni

B−Le
−
∫ z
zi
dz′ W .

The efficiency factor measures the amount of produced lepton asymmetry
surviving until recombination, 1 being the maximal case and 0 the minimal.

The factor 3/4 is chosen for the normalization of κ so that κ = 1 in the case
when the intial abundance of the neutrinos is the thermal abundance and no

washout is present.

7.3 The equilibrium number density of N

We calculate N
eq
N as a function of z. The physical number density n

eq
N we get

by integrating the distribution function over the momentum space. We make
here again the Maxwell-Boltzmann approximation, so we calculate

n
eq
N = g

∫

d3k

(2π)3
e−β

√
k2+m2

=
g

2π2

∫ ∞

0
dk k2e−β

√
k2+m2

=
g

2π2

∫ ∞

m
dz z

√

z2 −m2e−βz .

Partially integrating this we get

n
eq
N =

g

2π2

{
∣

∣

∣

∣

∣

∞

m

1

3
(x2 −m2)

3
2 e−βx + β

∫ ∞

m

1

3
(x2 −m2)

3
2 e−βxdx

}

=
g

2π2

βm4

3

∫ ∞

1
(x2 − 1)

3
2 e−(βm)x dx .
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7.4 Relating the B− L-asymmetry to B-number

Using the integral expression for the modified Bessel functions of the second
kind

Kn(z) =

√
π

Γ(n + 1
2 )

( z

2

)n
∫ ∞

1
e−zx(x2 − 1)n−

1
2dx ,

we get

n
eq
N =

g

2π2

βm4

3

(

2

βm

)2 Γ( 52 )√
π

K2(βm)

=
g

2π2
T3z2K2(z) .

To derive N
eq
N from n

eq
N we recall the definition of N from eq. 6.4

NX(t) = nX(t)R⋆(T)3 ,

where R⋆(T)3 is a volume with a single photon before the onset of leptogene-
sis. The equilibrium density of photons (massless bosons with no chemical

potential) is given by

n
eq
γ = 2

T3

π2
ζ(3) .

For the Majorana neutrinos (massive fermions with no chemical potential) the

equilibrium density is

n
eq
N = 2

T3

π2

[

3

4
ζ(3) + O(

mN

T
)

]

.

Therefore at temperatures high enough mN ≪ T the ratio of the equilibrium

densities is
n
eq
N

n
eq
γ

≃ 3

4
.

Requiring that N
eq
N ∝ n

eq
N and that N

eq
N ≃ 3/4 at high T (small z), we arrive1

at

N
eq
N =

3

8
z2K2(z) .

7.4 Taking sphalerons into account: Relating the

B− L-asymmetry to B-number

To relate the B − L-number to the B-number, we need to investigate which

processes were in equilibrium during leptogenesis, and then relate these pro-
cesses to the chemical potentials of the relevant particle species and finally to

their number densities.
1Here we need the behaviour of K2(z) as z → ∞. In general the modified Bessel functions of

the second kind can be written as a power series, using

Kn(z) =
1

2

( z

2

)−n n−1

∑
k=0

(n− k− 1)!

k!

(

z2

4

)k

+ (−1)n+1 ln
( z

2

)

.

Putting n = 2 we then get
lim
z→0

z2K2(z) = lim
z→0

(2+O(z)) = 2 .
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Solving the baryon asymmetry

At high enough temperatures T > 1013GeV the sphalerons were not fast
enough to be in equilibrium. As the universe cools down the sphalerons then

start to convert the excess lepton number to excess baryon number. Here we
consider the temperatures in the range of TEW < T < 1013GeV.

The Yukawa interactions achieve thermal equilibrium if T > m where m

is the mass of the heaviest particle in the Yukawa interaction. Before the EW-
symmetry is broken at T ∼ TEW , all fermions are massless, so the Yukawa

interactions are suppressed only by the Higgs mass. Reading off from the
Yukawa sector of the SM, we get the reactions

qφ̃u + h.c. : qi ↔ φ̃uj

qφd + h.c. : qi ↔ φdj

lφe + h.c. : li ↔ φej ,

These produce the equivalent relations for the chemical potentials of the dif-

ferent particle species

µqi + µφ − µuj = 0

µqi − µφ − µd j
= 0

µli − µφ − µe j = 0 ,

where we have already replaced µφ̃ with −µφ, following from the definition

φ̃ ≡ iσ2φ∗.
QCD is a non-abelian gauge theory and has instanton solutions. These

correspond to the sphaleron processes, coupling to all SU(3)QCD-charged par-

ticles. When in equilibrium, these QCD-instantons give rise to another relation

between the chemical potentials:

∑
i

(

2µqi − µui − µdi

)

= 0

EW-sphalerons are also instanton-solutions, coupling to all SU(2)-charged
particles. When in equilibrium, sphalerons produce the additional constraint

∑
i

(

3µqi + µli

)

= 0 .

Since the observed universe is electrically neutral to great precision, and

electrical charge is conserved, we require also the primordial plasma to be

electrically neutral:
ρcharge = ∑

i

qini = 0

To relate this expression with physical number densities to chemical poten-
tials, we use the small-βµ-expansion of the number density,

n− n =
1

6
gT3

{

βµ + O((βµ)3) for fermions

2βµ +O((βµ)3) for bosons
,

where β is the inverse temperature and g the number of degrees of freedom.
We then get as the total electric charge of the plasma, assuming gauge boson
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7.4 Relating the B− L-asymmetry to B-number

contribution to be zero, to be

ρcharge = Ng ∑
i

(

2

3
nqi −

1

3
nqi +

2

3
nui −

1

3
ndi − nli − nei

)

+ nφ

≃ 1

6
gT2Ng ∑

i

(

3
1

3
µqi + 3

2

3
µui − 3

1

3
µdi

− µli
− µei +

2

Ng
µφ

)

= 0 ,

where the quark chemical potentials are multiplied by the colour factor of 3
to take into account the three different possible colours of the quarks, and the

factor of 2 for the Higgs contribution comes from the fact that it is a boson.

The Yukawa-interactions couple different flavours of leptons and quarks

to leptons and quarks, ie., producing effectively processes like

qi ↔ φ̃uj ↔ qk

li ↔ φej ↔ lk .

These processes ensure that the chemical potentials of different generations of

leptons and quarks have the same chemical potential, ie., that

∀i, j : µqi = µqj ≡ µq

µui = µuj ≡ µu

µdi = µd j ≡ µd

µli
= µl j

≡ µl

µei = µe j ≡ µe .

Using these relations, we arrive to six equations with six variables:

µq + µφ − µu = 0

µq − µφ − µd = 0

µl − µφ − µe = 0

2µq − µu − µd = 0

3µq + µl = 0

µq + 2µu − µd − µl − µe +
2

Ng
µφ = 0 .

Only five of these equations are linearly independent: the SU(3)-instanton
equation can be derived by summing the first and second equations. We ig-

nore that equation and are left with five equations and six variables. From
these we can solve five chemical potentials in terms of a single chemical po-
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tential — we choose this to be µl . After some algebra, we get

µφ =
4Ng

6Ng + 3
µl

µq = −1

3
µl

µu =
2Ng − 1

6Ng + 3
µl

µd = −6Ng + 1

6Ng + 3
µl

µe =
2Ng + 3

6Ng + 3
µl .

Calculating then the baryonic and leptonic chemical potentials

µB =
Ng

2

(

2µq + µu + µd

)

= −Ng
2

3
µl

µL =
Ng

2
(2µl + µe) = Ng

14Ng + 9

12Ng + 6
µl ,

and using these we can finally relate B, L and B− L to be

B =
8Ng + 4

22Ng + 13
(B− L)

L = − 14Ng + 9

22Ng + 13
(B− L) .

For the standard model the number of generations is Ng = 3, so we get

B =
28

79
(B− L)

L = −51

79
(B− L) ,

from which we can finally read off

asph =
51

79
.

7.5 Relating NB−L to observed baryon asymmetry

We normalized NB−L to be the number density of baryons minus leptons in
a comoving volume with a single photon before the onset of leptogenesis.

Observational data, however, gives a value only for η, which is the amount
of baryons divided by the amount of photons today. To relate η to NB−L,

we need to take into account the amount of baryon asymmetry NB produced

from given NB−L and the dilution of the normalization by an increase in the
number of photons in the universe.
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From section 7.4 we know that if sphalerons are in equilibrium, B =
28
79 (B − L). When temperature decreases sufficiently, all lepton number vi-

olating processes are suppressed, and as temperature continues to fall, the
sphalerons are also suppressed, resulting in the freeze-out of the given num-

ber density of baryon and lepton number, so we can use the above relation in

all temperatures after leptogenesis.

η =
Nf

B

Nf
γ

=
28

79

Nf
B−L

Nf
γ

= −21

79

ǫDκ

Nf
γ

In an adiabatically expanding universe the number density of photons in a
comoving volume stays constant. When massive particles annihilate, they

produce more photons. As a result the amount of photons grows as the de-

grees of freedom get suppressed, giving the final number density for photons
to be [24]

Nf
γ =

g⋆

g0
Ni

γ ,

where g⋆ and g0 are the effective number of degrees of freedom at the ref-

erence time t⋆ before the onset of leptogenesis and after recombination. The

effective number of degrees of freedom is defined as

geff ≡ ∑
bos

g +
7

8 ∑
fer

g .

To the normal value of g⋆ for the standard model we have to add the new
degrees of freedom coming from the additional Majorana neutrinos. This

gives

g⋆ = gSM + gMaj = 106.75+
7

8
× 3× 2 = 112 ,

and for the relation this gives [24] g⋆/g0 = 2387/86. For η we get then the

expression

η = −22

79

ǫDκ
2387
86 Ni

γ

= − 172

17143
ǫDκ ≃ −10−2ǫDκ . (7.1)
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We arrived at the analytical expressions for η arising from thermal leptogene-
sis. The expression was dependent on the Yukawa couplings and Majorana

masses of the heavy neutrinos via several parameters. The experimental data

is far too inconclusive to give good limits on the parameters of the theory and
hence for η. Instead, in this chapter we discuss approximations which enable

us to arrive to some estimate for η. Finally also numerical solutions for the
Boltzmann equations are presented.

8.1 Ignoring washout

If K ≪ 1 then ΓN ≪ H(z = 1) and the decays of the heavy neutrinos occur

very late, at z ≫ 1. At these low temperatures the washout effects become less
and less significant. Therefore, if we take the limit K ≪ 1, we might ignore

washout completely and set W = 0. Then we can solve the efficiency factor

analytically:

κ = −4

3

∫ z

zi
dz′

dNN

dz′
= −4

3

(

NN(z) − Ni
N

)

Assuming all the neutrinos decay we get for the final value (corresponding to
very large values of z) for κ to be

κ =
4

3
Ni

N .

Hence at this limit the final value of the baryon asymmetry is highly depen-
dent on the initial conditions and the theory loses its predictability completely.

By setting W = 0, we have not only ignored ∆L = 2-scatterings but also

inverse decays. To improve the result, we need to consider the dynamic gener-
ation of the neutrinos through inverse decays, ie., we need to solve the Boltz-

mann equations with the initial condition Ni
N = 0 taking into account also

inverse decays.

8.2 Ignoring ∆L = 2-scatterings

To ignore the ∆L = 2-scatterings we need to replace the washout termW with
a washout term with contribution only from the inverse decays. This can be
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written as [25]

WID =
1

2

ΓID

Hz

K1(z)

K2(z)
.

The inverse decay width, ΓID, is related to the decay width by the equilibrium

number densities of the heavy neutrinos and lepton doublets,

ΓID = ΓN
N

eq
N (z)

N
eq
l

.

For leptons N
eq
l = 3/4 at the high temperatures we are considering, while for

heavy neutrinos the number density, calculated in section 7.3, is

N
eq
N =

3

8
z2K2(z) .

Combining these resuls with the definition of D, we get

WID =
1

4

zK1(z)ΓN

H
=

1

4
z2DK2(z) =

1

2
D
N

eq
N

N
eq
l

.

Replacing the general washout term W with WID, we arrive at the Boltzmann
equations and their solutions with only decays and inverse decays:

dNN

dz
= −D

(

NN − N
eq
N

)

dNB−L

dz
= −ǫDD

(

NN − N
eq
N

)

−WIDNB−L

κ = −4

3

∫ z

zi
dz′

dNN

dz′
e−
∫ z
z′ dz

′′WID

Using this simplified set of equations the final amount of baryon asymmetry

can be solved in terms of only two parameters: ǫD, signifying the amount
of CP-violation, and K, signifying the strength of the decay compared to the

mass of the heavy neutrino.

8.3 Numerical solutions for κ

The form of the solution for the efficiency factor depends greatly on the pa-

rameter K, dividing the phase space into two distinct regions where good
analytical approximations can be derived: the so called strong washout regime

and the weak washout regime, corresponding to K ≫ 1 and K ≪ 1. In the

intermediate regimes numerical methods have to be used.
In figure 8.1 the numerical results from [25] are plotted for the approxima-

tion where ∆L = 2-scatterings are ignored, ie., only inverse decays contribute
to washout. In the weak washout regime the result is highly dependent on

the intial value of NN , as expected, but at the medium-to-strong washout the

theory becomes very predictive. The current neutrino oscillation data would
seem to favour this regime: if the mass differences measured in the oscillation
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K

κf

Figure 8.1: The numerical solutions for κ when only decays and inverse decays

are included. The thick solid lines correspond to the numerical solutions with
different initial abundance. Image taken from [25].
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Figure 8.2: The numerical solutions for κ where scatterings have been in-
cluded. Different lines illustrate different values of the effective Higgs mass

in the range 10−10 . . . 1. The dashed box indicates the range (msol,matm). That
part of the parameter space would seem to favour κ ∼ 10−2. Here the hori-
zontal axis is the effective neutrino mass m̃1 which is m̃1 ≃ 10−3eV×K. Image

taken from [25].
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experiments are assumed to reflect the scale of the light neutrino masses, then
K ∼ 10 . . . 102. This would give κ ∼ 10−1 . . . 10−3.

If scatterings are also taken into account, the value for κ doesn’t change
drastically. In the figure 8.2 the numerical solutions for κ from [25] are plotted

with scatterings. In the weak washout regime the theory is again unpredictive,

but in the regime favoured by the current oscillation data κ ∼ 10−2.

8.4 Numerical estimates for η

The final value of η depends on two factors, κ and ǫD. The value of κ can
be given within a magnitude, if current neutrino oscillation data is taken seri-

ously. The story with ǫD is however more involved.
The exact expression for ǫD at one loop can be calculated (see appendix

A.4) in terms of the Yukawa couplings and Majorana masses of the heavy

neutrinos. To arrive at a numerical value for ǫD, however, crude approxima-
tions must be used. Assuming that the ratio of the heavy neutrino masses

have similar value as other SM particles, eg., M1/M3 ∼ mu/mt ∼ 10−5, the
expression for the ǫD can be approximated as [27]

|ǫD| ∼ 10−6 . (8.1)

On the other hand assuming hierarchical left-handed neutrino masses an
upper limit can be derived for ǫD [24]:

|ǫD| ≤
3

16π

M1

√
δmatm

v2

The upper bound of this relation is often saturated in models with hierarchical

neutrino masses.
Assuming the rough estimate in eq. (8.1) gives at least the right magnitude

one can estimate the value for η from eq. (7.1) to be

|η| ∼ 10−2 × 10−2 × 10−6 ∼ 10−10 .

Although there are uncertainties of a magnitude or two in both the estimate

for κ and for ǫD, this estimate for η gives a prediction with exactly the ob-
served magnitude. Even if the theory is far from giving exact numerical

predictions, this crude estimate demonstrates the potential of the theory to

explain the cosmological baryon asymmetry.
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In chapter 2 we reviewed the current best estimates for the ratio of baryons

and photons in the universe from the observations from CMB and BBN giv-
ing a concordant value of η ≃ 6 × 10−10, with no measurable amount of

antibaryons. Instead of attributing this asymmetry to initial conditions we
attempted to explain this through a dynamical mechanism producing the ob-

served value. The standard model of particle physics is unable to explain the

observed asymmetry and as a consequence we need to extend the standard
model in some way to arrive at a successful theory of leptogenesis.

In chapter 3 the current data on neutrino masses from neutrino oscilla-
tion experiments was introduced. These masses were naturally introduced to

the SM via the see-saw mechanism. An integral part of this mechanism is
the Majorana masses for the right-handed neutrinos, which introduce lepton

number violation to the SM. Combined with baryon number violation already

present in the bare SM — the sphalerons of the EW-theory — we have suffi-
cient ingredients for a successful theory of baryogenesis through leptogenesis:

the production of net lepton number via the decay of the heavy right-handed
neutrinos and the conversion of this net lepton number to baryon number

through the sphalerons.

In chapters 5-7 we introduced the theory of leptogenesis in more detail

and derived the relevant Boltzmann equation necessary for the quantitative

treatment of the theory.

The final amount of baryons was shown to be related to the produced

lepton asymmetry, which depends on the properties of the heavy neutrino.
This final baryon asymmetry produced by leptogenesis was derived in terms

of two factors: the amount of CP-violation in the decay of the heavy neutrinos
and efficiency factor measuring the amount of washout of the produced lepton

number.

The efficiency factor could be solved numerically from the relevant Boltz-

mann equations with an accuracy of one order of magnitude, given the neu-

trino mass scales indicated by the oscillation experiments.

The amount of CP-violation in the decays is hard to estimate since it de-
pends on the complex phases of the Yukawa couplings of the heavy neutrinos.

Crude estimates can be however performed, and these combined with the best

fits for the efficiency factor give the observed magnitude for η. This shows that
leptogenesis is indeed a viable scenario for the production of the cosmological
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baryon asymmtery. Future experiments on neutrinos will hopefully give more
exact estimates for the parameters of leptogenesis, resulting in a more precise

prediction.
In summa, we have presented a feasible theory of baryogenesis. The theory

is in many ways attractive. It is a minimal extension of the SM requiring

only the addition of right-handed neutrinos, which is necessary to explain
the oscillation data, and Majorana masses for them. Unlike many models of

baryogenesis, the parameters of leptogenesis can relatively readily be related
to observable quantitites. This gives leptogenesis falsifiability necessary for a

scientific hypothesis.

Thermal leptogenesis is beginning to reach maturity. Its predictions match
observation well, although there is far too much phase space to draw any

definite conclusions. Future experiments will hopefully draw light on the

parameters of leptogenesis. If experiments rule out thermal leptogenesis, then
many modifications of the basic scenario can still offer reasonable explanation

of the cosmic baryon asymmetry.
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with Majorana particles

The process of producing excess baryons into the universe through the ma-

chinery of leptogenesis was parameterised using the CP violating measuring

ǫD, the heavy neutrino’s total decay width γD, the effective mass of the lightest
neutrino m̃1, and the mass of the heavy neutrino M. Here we relate these pa-

rameters to the fundamental parameters of the theory — the Yukawa coupling
constants and the Majorana masses.

We first introduce the necessary machinery sans renormalization. After

that we calculate explicitly the simplest parameter γD and present results for

ǫD.

A.1 The Lagrangian with three heavy neutrinos

To produce successful leptogenesis, we introduced to the standard model
three heavy, right-handed Majorana neutrinos. This resulted to the Lagrangia-

narag

L = LSM + N̄i�∂N + MiNC
iNi + hijN̄iφ̃

†lj + h∗ji l̄iφ̃Nj . (A.1)

Here i and j refer to flavour index. We have also chosen the Majorana masses
Mi to be real and diagonal. This can be done without limitation, since if M

is complex and non-diagonal, we can always find the diagonalizing matrix

of M and use that to redfine new wavefunctions, Ns, so that M′ is real and
diagonal.

To calculate observables from this Lagrangian, one uses perturbation the-

ory. The Feynman rules derived from this Lagrangian are of course the famil-
iar standard model ones, plus additional terms corresponding to the Majorana

neutrinos.

A.2 Feynman rules for Majorana particles

To calculate the relevant parameters for the Boltzmann equations, one needs

to calculate the matrix elements of given processes. This is accomplished
usually using perturbation theory: the amplitudes of the processes are found
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to certain accuracy as a series in the interaction parameters — in our case
the Yukawa couplings and Majorana masses. For a specific process, 〈 f |i〉, we

can draw several (usually infinite) number of Feynman diagrams, and using
Feynman rules we evaluate the graphs giving the largest contributions.

The Feynman rules for scalar theory and for Dirac fermions is standard

content in any book on quantum field theory or particle physics. Feynman
rules for Majorana fermions are however more involved, and are usually given

only for theories involving exclusively Majorana fermions and scalars (see eg.
[28]). This is unfortunate, since the physically well-motivated theories have

usually both Majorana and Dirac fermions with interactions mixing these two.

The heart of the problem is the self-charge-conjugacy of Majorana parti-

cles, ψc = ψ. For Dirac fermions charge conjugation transforms left-handed

particles to right-handed antiparticles, and therefore reverses the direction of
the arrow indicating the flow of fermion number. For Majorana fermions

charge conjugation merely changes the handedness of the particle, and thus
no proper flow of fermion number can be assigned to Majorana fermions.1

This means that we can draw more graphs than with mere Dirac fermions.

Feynman rules for theories involving both Dirac and Majorana fermions
have been derived, among others, in [29] and [30], but in these formulations

one gets Feynman rules with many different vertices and also several different
propagators for the Majorana particles. Also these formulations can have am-

biguity in the relative sign between two different graphs. Instead, we follow

the formulation of [31], where we have only one propagator and two separate
expressions for a given Majorana-Dirac-scalar vertex.

We begin with the Lagrangian describing a single Majorana-particle:

L = ψRi�∂ψR +
m

2

(

ψR(ψR)c + (ψR(ψR)c)†
)

(A.2)

Next we define a new field,

χ ≡ ψR + (ψR)c = ψR + (ψc)L ,

which then satisfies the Majorana condition,

χC = χ.

We can then rewrite the Lagrangian of eq. (A.2)

L =
1

2
χ(i�∂ −m)χ ,

which is of the form familiar from the Dirac Lagrangian. For interaction terms
one rewrites

ψR = PRχ

ψR = PRχ = χPL ,

1This of course corresponds to the lack of U(1)-symmetry of the Majorana fermions. For this
reason they cannot carry any conserved quantum number.

58



A.2 Feynman rules for Majorana particles

so a Yukawa-interaction with a Dirac fermion (here denoted by Ψ) merely gets
a projection operator

Lint = ψRΓΨ + ΨΓ∗ψR = χPLΓΨ + ΨΓ∗PRχ

Using the self-conjugacy of χ, we can rewrite these vertex terms also in the

form

Lint = ΨcΓPLχ + χΓ∗PRΨc .

As we can see each Majorana-Dirac-Yukawa-term in the Lagrangian can be
written in two different forms: one including the Majorana field and the Dirac

field and one including the Majorana field and the charge conjugate of the Dirac
field.

Next we apply this to a theory of a right-handed neutrino with Yukawa
interactions of eq. (3.9). We identify χ with N, and then first rewrite the

interaction term in two different forms:

lahabφ̃PRNb + Nbh
∗
abφ̃†PLla

Nb

la

φ̃

ihabPR

la

Nb

φ̃

ih∗abPR

= Nbhabφ̃PRl
c
a + lcah

∗
abφ̃†PLNb

la

Nb

φ̃

ihabPR

Nb

la

φ̃

ih∗abPR

Here the arrow on the leg of the lepton denotes as usual the fermion num-
ber flow, and the small arrow above the line the flow of momentum. From

these vertices we can always form a graph where the direction of arrows of

the fermion flow in the Dirac propagators and legs and the momentum flow
in the Majorana propagators and legs is uninterrupted. Thus we need only

one kind of propagator for the Majorana fermion. The propagators for Dirac
and Majorana fermions are then the same:

iS(p) iS(−p) iS(p)

Finally, to complete our Feynman rules, we need to list the factors arising from
external legs in the graphs. As shown in [31] these give terms
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u(p, s)

v(p, s)

u(p, s)

v(p, s)

A.3 The decay amplitude ΓN

To calculate the thermal rate of decays of the heavy neutrino γD, we can use

the result of eq. (6.7) to reduce the problem to the calculation of the non-

thermal decay width in the rest frame of the neutrino. Hence we need to
calculate ΓN , as used already in section 6.2.

ΓN is the total decay width of the heavy neutrino. It has two decay chan-
nels, to a lepton and an anti-Higgs doublet and to an antilepton and a Higgs

doublet. For decay process, A → B + C, the differential decay width, ie. the

decay width of to a specific point in final phase space, is defined as

dΓ =
1

2M
|M|2 d~pB d~pC (2π)4δ4(pA − pB − pC) (A.3)

where, again, the integral measure is defined as in eq. 6.3. To get the total

decay width of A, we need to integrate over the final phase space (including

summing over possible final spin and color states). We start by calculating the
amplitude M at the tree level — one-loop corrections are relevant only for ǫD.

Since the final state in the two different decay channels of N are different, the
two amplitudes do not interfere and we can simply calculate them separatly

and add only their squares.

The amplitude of a first right-handed neutrino at rest with spin s to decay
to the α-component of an anti-Higgs and a j-flavour lepton doublet with spin

s′ and momentum p is given by

iM1 = lαa (pl, s
′)iha1PRN1(pN, s) .

Here lαa (pl, s
′) refers to a lepton of flavour a, doublet index α, spin s′ and

momentum pl.

Taking the absolute squared of this we get

|M1|2 = lαa (pl, s
′) ha1 PR N1(pN, s) N1(pN, s) PL ha1 l

α
a (pl, a)

Since we are calculating the decay of the right-handed neutrino to any final

state, we need to take the sum over the final spin, flavour and doublet indices,

s′, a and α. In addition, since we are calculating the decay width for unpolar-
ized neutrinos, we need to take the average over the initial spin. We then take
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the trace of this (scalar), and get

|M1|2 =
1

2 ∑
j,α,s,s′

ha1h
∗
a1PR N1(pn, s) N1(pN, s)PL l

α
a (pl, s

′) lαa (pl, s
′)

=
1

2
2(h†h)11 Tr PR(�pN + M)PL�pl

= (h†h)11 Tr PL(�pN + M)�pl

= (h†h)11
1

2
Tr �pN�pl

= 2(h†h)11(pNpl)

Since we are in the rest frame of the right-handed neutrino the spacial part of
its four-momentum is zero, pN = (M,~0). The lepton is massless, so the length

of its four-momentum is zero, pl = (pl,~pl). Using these we get

|M1|2 = 2(hh†)11 M pl .

Since we are computing the total decay width, we need to take into account
also the possibility of the right-handed neutrino decaying into an antilepton

and a Higgs. This gives otherwise similar calculation, but now the other

interaction term contributes, that is, iM ∝ h, not h∗.

iM2 = N1(pN, s)ih1iPLl
α
a (pl, s

′)

Again we need to average over the initial spin s and sum over s′, α and i:

|M2|2 =
1

2 ∑
s,s′,α,a

h1ah
∗
1aN1(pN, s)PLl

α
a (pl, s

′)lαa (pl, s
′)PRN1(pN, s)

= (hh†)11 Tr (�pN − M)PL(�pl)PR

= (hh†)11 Tr PR�pN�pl

= 2(hh†)11 M pl

At tree level, the amplitudes of N → φ̃†l and N → φ̃l̄ are hence equal and the

CP-violating inequality is found only at the one-loop level.

Next we put the total decay amplitude into the definition of the decay

width in eq. (A.3). We have already summed over all possible final spins and
flavours — only the momentum integrals are then left:

Γ =
∫

dΓ =
∫

d3pl
(2π)32El

d3pφ

(2π)32Eφ

(2π)4

2M
4(hh†)11 M pl δ(M− pl− pφ)δ(~pl +~pφ)

We first integrate the pφ-integral using the 3-momentum delta-function, and
replace the El and Eφ with their respective momentum,

=
(hh†)11
2(2π)2

∫

d3pl
pl

δ(M− 2pl)
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l

φ̃

N2,3

N1

l

φ̃†
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φ̃

N1

l

φ̃†

Figure A.1: The one loop corrections to the decay of the first heavy neutrino

producing the CP-violating ǫD.

and then integrate the final integral using the last delta-function:

ΓN =
(hh†)11
2π

∫ ∞

0
dpl pl δ(M− 2pl)

=
(hh†)11
2π

∫ ∞

0

dx x

4
δ(M− x)

=
(hh†)11
8π

M

A.4 The measure of CP-violation: ǫD

When calculating the decay amplitude ΓN we calculated only at tree level and

summed over the both decay channels, N → lφ̃† and N → l̄φ̃. As ǫD measures
the difference of the decay propability to different channels, we would have to

reproduce the calculation of ΓN without the summation. However, already in

that calculation it turned out that at the tree level both channels are equivally
propable.

The highest order contribution to difference in the branching ratios comes
from the one-loop vertex and self-energy corrections to the decay graph. These

corrections are displayed for the process N → lφ̃† are displayed in figure A.1.

Similar graphs can be drawn for the other decay channel by merely inverting
the flow of the lepton and the Higgs.

It is interesting to note that the non-zero corrections come from the graphs
where the additional virtual particle in the vertex and self-energy correction

is a Majorana neutrino, but not the lightest one. To produce CP-violation in the

decay of N the existence of a heavier Majorana neutrino is required.
The values of ǫD calculated in the literature (see eg. [32], [33], [34], [35]

and many others) differ from wach other in details, but seem to converge

towards a unifying expression for ǫD. Assuming hierarchical neutrino masses
(M ≪ M2,3) it can be given as [26]

ǫD ≃ 3

16π

1

(hh†)11
∑
i=2,3

Im

[

(

hh†
)2

i1

]

M1

Mi
.
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