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Chapter 1

Historical introduction

“The world is made of atoms”∗

Democritos

Without a doubt the greatest breakthrough in 19th century chemistry
was the construction of the table of elements by Dmitri Mendeleev in 1869.
It is nothing less than perfect of an example of what a scientific theory should
be like. In short, Mendeleev found definite patterns in the characteristics of
different known fundamental elements, classified them into groups accord-
ingly and predicted many new elements to be discovered along with their
properties to astonishing accuracy. This achievement stands as a corner-
stone of all chemistry done to date and it is no exaggeration to say it is one
of the most important pieces of scientific knowledge.

The explanation for this particular structure remained a mystery until
the development of quantum theory in the early 20th century. Finally it was
Pauli who formulated his famous exclusion principle in 1925 [1]

“There can never be two or more equivalent electrons in an atom.
These are defined to be electrons for which - in strong magnetic
fields - the value of all quantum numbers n, l, j,mj is the same.
If, in an atom, one electron occurs which has quantum numbers
(in an external field) with these specific values, then this state is
occupied.”

∗Richard Feynman, when asked to name the most important of all scientific facts.
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2 Historical introduction

It took Pauli another 15 years to make the implications of his principle more
precise. In two fundamental papers [2, 3] he formulated the famous spin-
statistics theorem further to be discussed in chapter 3, accompanied by the
latest developments on the subject in the framework of noncommutative
quantum field theories in chapter 5.

In addition to the present chapter and chapters 3 and 5 already men-
tioned, chapter 2 deals with the general notion of spin and in chapter 4 a
brief introduction to noncommutative quantum field theories is presented.

1.1 Experimental evidence

The Stern-Gerlach experiment

In 1922 Otto Stern and Walther Gerlach performed an experiment in order to
determine whether particles have any so-called intrinsic angular momentum.
As a classical example the earth has both the angular momentum from orbit-
ing the sun and in addition the angular momentum from spinning around its
axis, its spin. Shortly after the idea of the spin of the electron was presented,
Pauli showed that for it to be produced by actual spinning, velocities exceed-
ing the speed of light were needed. Thus spin in the quantum mechanical
regime must be something completely different than its classical analogue.
In the quantum mechanical case the term “intrinsic angular momentum” is
often used instead of spin to avoid confusion with classical examples such as
the earth.

In the Stern-Gerlach experiment a beam of silver atoms is directed
through an inhomogeneous magnetic field and the distribution of final state
particles is detected on a screen. Assuming that the particles have some
intrinsic form of angular momentum they would behave like tiny magnets
and be deflected either up or down depending on the spin orientation. The
classical prediction is that there should be a completely random distribution
of spin directions and thus a continuous pattern would appear on the screen.
The marvelous thing of course is that this does not happen. At the end only
two spots of dots of silver atoms are observed and nothing else.

This simple experiment thus proves that the silver atom carries a mag-
netic moment with only two possible orientations. In other words the spin



Experimental evidence 3

Figure 1.1: Layout of the Stern-Gerlach experiment

of the particle is quantized and has two values. It was known that for an
angular momentum quantum number l there are 2l + 1 states with different
orientations of the angular momentum and that for orbital angular momen-
tum l was restricted to integer values due to the uniqueness of the angular
part of the wave function. This would then only allow a splitting into an odd
number of states in contrast to the two spots observed.

To explain the experimental results it was necessary for the theoreticians
to introduce half-integral angular momentum. This was first done by the
hypothesis of the electron spin by Uhlenbeck and Gouldsmith in 1925. It
stated that each electron carries an intrinsic angular momentum, or spin, of
magnitude 1

2
with the associated magnetic moment

µs =
gse

2mc
s , (1.1)

where gs is the gyromagnetic ratio for the electron. To fit theory with ex-
periment it seemed that a value gs = 2 was needed which was exactly twice
what nonrelativistic theory predicted. It was a great triumph for Dirac two
years later when his equation, to be discussed in the next section, predicted
exactly gs = 2.

In group theoretical language the appearance of half-integral angular
momentum means that spin is to be described by the group SU(2). SU(2)
has the representations corresponding to l = 0, 1

2
, 1, 3

2
, 2, ..., in contrast to

SO(3) where l takes on only integer values. Classifications according to spin
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are studied further in chapter 2.

Statistical significance

If the temperature of an ideal gas is sufficiently low at a given density, quan-
tum effects become important and we have to think of the ensemble of par-
ticles in terms of a wave function.

The multi-particle wave functions correspond to representations of SU(2)
and turn out to be either completely symmetric or antisymmetric with respect
to an interchange of two identical particles. The antisymmetric ones represent
systems of half-integral spin particles that respect the Pauli principle and
obey Fermi-Dirac statistics. The symmetrical wave functions on the other
hand are composed of integral spin particles that do not care about Pauli’s
principle and obey Bose-Einstein statistics. For a thorough treatment of the
Fermi and Bose distributions, see [4].

The fundamental difference between the two different statistics is most
apparent from the energy state occupation number distributions for the dif-
ferent systems which are written as

nBE
i =

gi

e(ǫi−µ)/kbT − 1
(1.2)

nFD
i =

gi

e(ǫi−µ)/kbT + 1
, (1.3)

where gi is the degeneracy of the state, T the temperature, ǫi the state energy
and µ the chemical potential. From these it is clear that at low energies in
the boson case the values are not bounded from above, whereas for fermion
systems one can at most have one particle per (nondegenerate) state.

For bosons this allows interesting properties in the low energy regime,
for example Bose-Einstein condensation that earned a recent Nobel prize in
2001 [5]. For fermions this statistical behaviour is crucial, for it accounts for
the stability of matter [6].

The stability of matter

The stability of matter is obviously an issue of fundamental importance.
In [7, 8] Dyson and Lenard present their stability theorem of the N -electron
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Hamiltonian, essentially setting a lower limit on the binding energy of an
atom HN ≥ CN . Lieb and Thirring further advanced this model in [6, 9] by
using Thomas-Fermi theory to find a realistic value for the constant C.

The important requirement is that an assembly of N electrons has a
binding energy proportional to N . The form E ∝ N is obtained by using
Fermi-Dirac statistics, in contrast to Bose-Einstein statistics, which yields
E ∝ N7/2. It is shown that for E ∝ Nα, α > 1 there exists no minimum
for the energy of a relativistic system and thus the system collapses. This is
then the faith of any system obeying Bose-Einstein statistics whereas fermion
systems, such as neutron stars, can remain stable due to the degeneracy
pressure exerted by the identical fermions obeying the Pauli principle.

Because of its nature, even the smallest violation in the spin-statistics
relation would be an extraordinary finding and there are continuos efforts
to find any such deviations. The most recent test on the limits of any such
violation is presented in [10]. A limit on the probability P of a two-electron
system to have a symmetrical part in its wave function is found to be P <

4.5× 10−28 with a 99.7% confidence level. The precision is hoped to increase
in the ongoing two-year experiment by three orders of magnitude into the
10−30 − 10−31 region.

1.2 Relativistic theory†

The first step in high energy physics was taken in 1905 when Einstein pub-
lished his special relativity theory. Among other things, it relates the total
energy of an object to the relative velocity with respect to the observer‡

E =
m√

1 − v2
. (1.4)

Since now the classical value for the energy E = Ekin + V (x), Ekin = p2

2m

is replaced by its relativistic counterpart (1.4) the implication in quantum

†For an introduction to relativistic quantum theory, see e.g. [11].
‡Throughout the thesis I will be using natural units, where ~ = c = 1.
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theory is to look for a relativistic alternative to the Schrödinger equation

Êψ =

[
p̂2

2m
+ V (x)

]
ψ

i∂tψ =

[
−∇2

2m
+ V (x)

]
ψ . (1.5)

Squaring both sides of (1.4) yields the relativistic dispersion relation
(p = Ev):

E2 = E2v2 +m2 = p2 +m2, (1.6)

It did not take O. Klein too long after Schrödinger’s original paper to publish
the first wave-equation that satisfies (1.6). Later, W. Gordon coupled it with
the electromagnetic field. It is interesting to note that Schrödinger himself
first came up with the Klein-Gordon equation, but since the equation does
not accommodate spin he failed to describe the energy levels of the hydrogen
atom correctly and published his famous nonrelativistic equation instead.
Also V. Fock came up with the equation independently.

The Klein-Gordon equation

Taking the usual Minkowski space representations for the energy and mo-
mentum E = i∂t, p = −i∇ and substituting into (1.6) we get:

−∂2
t φ+ ∇

2φ = m2φ
[
∂µ∂

µ +m2
]
φ = 0 The Klein-Gordon equation. (1.7)

There seems to be a disaster, however, when looking at the energy eigen-
values of free particle solutions. Since E = ±

√
p2 +m2 we have, in addition

to the positive energy eigenvalues, also negative energy solutions. Further,
since the probability density turns out to be proportional to the energy, we
end up with negative probabilities. Something has to be wrong here, either
the original equation or our interpretation of the result. This puzzled many
leading scientists at the time but it was Dirac who found the solution in
1927. It turns out that the negative energy solutions have to be interpreted
as antiparticles and that with this interpretation the Klein-Gordon equation
describes spinless particles correctly.



Relativistic theory 7

The Dirac equation

Dirac’s idea that won him the joint Nobel prize in 1933 with Schrödinger was
to seek a form of the Klein-Gordon equation linear in the time derivative. He
saw that the negative energy problems stem from the second order derivative
with respect to time. After this insight everything else follows naturally. To
have a Lorentz-covariant theory also the space part has to be first order. In
addition, the Hamiltonian has to be hermitian H = H† and of course (1.6)
has to be satisfied. This led Dirac to the ansatz:

H = α · p + βm

∂tψ(x) = −iαk∂kψ(x) + βmψ(x) . (1.8)

From the requirement that (1.6) be satisfied for plane waves it is easy to
deduce the properties (αk)2 = β2 = 1 and {αi, αj} = {αi, β} = 0. These an-
ticommutation relations determine the representations of the operators α, β.
They have to be hermitian, traceless and of even dimensionality N,N ≥4.
The simplest way to satisfy these requirements is for α, β to be 4 × 4 con-
stant matrices. Probably the most used representation for these matrices is
the so-called Dirac representation (This is not a unique choice since any set
of similarly related matrices will do):

α =

(
0 σ

σ 0

)
, β =

(
11 0
0 −11

)
, (1.9)

where σ are the Pauli sigma matrices and 11 is a 2 × 2 unit matrix:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, 11 =

(
1 0
0 1

)
. (1.10)

Further, by defining γ0 = β,γ = βα we arrive at a Lorentz-covariant nota-
tion where now the Dirac γ -matrices in the Dirac-Pauli representation

γ0 =

(
11 0
0 −11

)
,γ =

(
0 σ

−σ 0

)
, (1.11)

satisfy the Dirac algebra {γµ, γµ} = 2ηµν . Here ηµν = diag(1,−1,−1,−1) is
the metric of the space-time. With our new matrices we can turn the original
ansatz (1.8) into the form

[iγµ∂µ −m]ψ(x) = [i∂� −m]ψ(x) = 0 , (1.12)
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which is the Dirac equation for a free particle. Here the Dirac slash notation
γµaµ = a� has been used.

Dirac succeeded in his original goal of overcoming the problem of negative
probability densities§, which however required him to interpret the negative
energy solutions as antiparticles. There was also an unexpected bonus easily
derived from the equation - the fact that it describes spin 1

2
particles.

The spin of the electron Perhaps the most beautiful aspect of Dirac’s
equation (1.12) is that it directly implies a new form of angular momentum
in addition to the quantum counterpart of the classical L = r × p.

Since the Dirac equation is relativistically covariant, the system it de-
scribes has Lorentz symmetry and, in particular, rotational symmetry. For
such a system angular momentum is conserved, i.e. its commutator with
the Hamiltonian vanishes. For L to be a constant of motion we thus require
[H,L] = 0, but as it turns out (using [xi, pj] = iδij)

[L,H] = [r × p,α · p + βm] = [r,α · p] × p

= εijk[xi, αlpl]pj ǫ̂k = εijkαl[xi, pl]pj ǫ̂k

= εijkαliδilpj ǫ̂k = iεijkαipj ǫ̂k = iα × p 6= 0 . (1.13)

It is then obvious that to the orbital angular momentum L one has to add
a second, similar, operator whose commutator with the Hamiltonian exactly
cancels (1.13). Now we can make an educated guess and define an operator
Σ =

(
σ 0
0 σ

)
and calculate [H,S] (using [σi, σj ] = 2iεijkσk). Here S = s · Σ, s

being a constant indicating the spin value.

[S,H] = s[Σ,α · p + βm] = s[Σ,α · p] = s[σi, σjpj ]ǫ̂lδil

= 2siεijkσkpj ǫ̂i = −2siα × p (1.14)

Now in order for the total angular momentum J = S+L to be a constant
of motion we see that the spin value has to be s = 1

2
and hence the Dirac

equation describes spin 1
2

particles, i.e. fermions. The components of S

satisfy [Si, Sj] = iǫijkSk and also S2 = 1
4
(1 + 1 + 1) = 1

2
(1

2
+ 1) = 3

4
, which is

what we require for an angular momentum operator.

§For the actual form and derivation of these probability densities, see e.g. [12].



Chapter 2

The Poincaré group and spin

The most important group in relativistic physics is the Poincaré group P,
the set of Lorentz transformations (Λ) and space-time translations (a) such
that for a four-vector xµ

xµ → x′µ = Λµ
νx

ν + aµ

x′µ → x′′µ = Λ′µρ(Λ
ρ
νx

ν + aµ) + a′µ . (2.1)

Here the second line displays the group multiplication properties, namely
that the Lorentz transformations act on the translations. This implies a
semidirect product between the two groups

P = SO(1,3) ⋉ T4 , (2.2)

where SO(1,3) represents Lorentz transformations and T4 translations. The
generators of translations and Lorentz transformations are Pµ and Mµν(Jl =
1
2
ǫljkMjk) respectively, with the corresponding group elements (unitary trans-

formations)

U(a) = eiaµPµ

U(α) = eiαµνMµν , (2.3)

and the Minkowski space realizations

Pµf(x) = i∂µf(x)

Mµνf(x) = i(xµ∂ν − xν∂µ)f(x) . (2.4)

9



10 The Poincaré group and spin

These generators satisfy the following commutation relations

[Pµ, Pν] = 0

[Mµν , Pα] = −i(ηµαPν − ηναPµ)

[Mµν ,Mαβ] = −i(ηµαMνβ − ηµβMνα − ηναMµβ + ηνβMµα) . (2.5)

Wigner has presented a classification of all the irreducible representation of
the Poincaré group in [13]. These give all the elementary states that obey the
respective symmetry. We will now take a closer look at these representations
and look for the operators whose eigenvalues label them.

2.1 Representations of the Poincaré group

The Casimir operators of a group are polynomials in the generators which
commute with all the generators. The most familiar example is the angular
momentum operator J2 from ordinary quantum mechanics, the only Casimir
operator for the rotation group SU(2). It clearly commutes with all the
rotation generators Ji and the eigenvalues j(j+1) label the states of particles
with angular momentum j. The group SU(2) is characterized by the Lie
algebra of its generators [Ji, Jj] = iǫijkJk and is a fundamental part of the
Poincaré group as is easily seen from the generators of the latter.

Let us relabel the components of Mµν as Mjk = Ji for the rotation
generators and Mi0 = Ki for the boosts. These satisfy the Lie algebra

[Ji, Jj] = iǫijkJk, [Ki, Kj] = −iǫijkJk, [Ki, Jj] = iǫijkKk .

Now by further defining the linear combinations N+
i = 1

2
(Ji + iKj) and

N−i = 1
2
(Ji − iKj) we get

[N+
i , N

+
j ] =

i

4
ǫijk(Jk + i[Ji, Kj] + i[Ki, Jj] + Jk)

=
i

2
ǫijk(Jk + iKk) = iǫijkN

+
k

[N−i , N
−
j ] = iǫijkN

−
k

[N+
i , N

−
j ] = 0 . (2.6)

We see that the SO(1,3) group is broken into two independent SU(2) groups.
More precisely the particular complexification of the Lorentz algebra SO(1, 3)
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is equal to the direct product SU(2) × SU(2) and thus the representation
content of SU(2) is inherited into the Lorentz group and further into the
Poincaré group. For this reason the representations of SU(2) are of great
importance.

There are 1,2,3,4,5,... -dimensional representations of SU(2) correspond-
ing to j = 0, 1

2
, 1, 3

2
, 2.... The 2-dimensional, fundamental, representation

of SU(2) is given just by the σ-matrices that describe spin 1
2

particles, the
constituents of all known matter fields. The only standard model particle
expected to carry zero spin is the Higgs boson, the particle responsible for
giving all other fundamental particles a mass through spontaneous symmetry
breaking. Spin 1 particles are the force mediators, the photon, the gluons and
the Z and W bosons of weak interactions. The higher dimensional represen-
tations correspond to more exotic particles. Spin 3

2
is expected from some of

the superpartners of standard model bosons in theories with supersymmety
and spin 2 seems to be preserved for the graviton, the hypothetical mediator
of gravity.

For the Poincaré group there are two Casimir operators: PµP
µ and

WµW
µ, where the Pauli-Lubanski vector W µ is defined by

W µ =
1

2
ǫµαβνMαβPν . (2.7)

For the eigenvalues it is useful to go to the rest frame∗ where P µ = (m, 0, 0, 0).
The eigenvalue for P 2 is m2, but the eigenvalues of W 2 are less obvious.
W µ = 1

2
mǫµαβ0Mαβ = 1

2
mǫµjk0Mjk, which vanishes for µ = 0 and W l =

−1
2
mǫljkMjk = −mJ l and so W 2 = m2J2. Thus the eigenvalues are m2s(s+

1), where s is the total angular momentum in the rest frame of the particle,
its spin. To summarize

• P 2 has eigenvalue m2.

• W 2 has eigenvalue m2s(s+ 1) .

Thus all massive quantum mechanical states, corresponding to a representa-
tion of the Poincaré group, can be described by their mass and spin†. The
inherited representation content of SU(2) can be seen as the reason why spin
is quantized.

∗This suffices since P
2 and W

2 are Lorentz invariant.
†For an approachable treatment on these classifications, see e.g. [14].



Chapter 3

The spin-statistics theorem

In his original work [3] Pauli proved that the relation between spin and
statistics holds provided that the following three requirements are met:∗

1. The vacuum is the state of lowest energy. So long as no
interaction between particles is considered the energy differ-
ence between this state of lowest energy and the state where
a finite number of particles is present is finite.

2. Physical quantities (observables) commute with each other
in two space-time points with a space-like distance. (Indeed
due to the impossibility of signal velocities greater than that
of light, measurements at two such points cannot disturb
each other.)

3. The metric in the Hilbert-space of the quantum mechanical
states is positive definite. This guarantees the positive sign
of the values of physical probabilities.

Pauli had earlier shown that Bose(Dirac)-statistics used with half-
integer(integer) -spin particles leads to the violation of at least one of these
requirements† and thus did not lead to a valid theory according to present
day consensus. Pauli’s later proof in [3] is rather similar to, if not as clear as,
the reasoning presented in section 3.2 and deals with negative energies and

∗Direct quotation from the work of 1950.
†For half-integer spins the 1st requirement is violated and for integer spins the 2nd one.

12
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probabilities greater than one in the framework of relativistic quantum field
theory.

The theorem is said to be known by many but fully understood by few.
These early proofs on the theorem have been considered unsatisfactory for
two reasons. They require relativistic formalism and leave the theorem diffi-
cult to understand. The more recent proof presented in the next section only
requires rotational invariance, is thus nonrelativistic and so does away with
at least one of the problems.

3.1 Rotational invariance and the spin-

statistics relation

The connection between spin and statistics is used in many many fields that
deal with non-relativistic phenomena, Bose-Einstein condensation, Cooper
pairs and phonons to name a few. There has therefore been quite a bit of
work done to prove the theorem without resorting to relativistic quantum
field theory (section 3.2) in addition to the constant effort of making it easily
understandable.

One of the most prominent treatments on the subject has been the work
of E.C.G. Sudarshan who has clarified his original proof [15] recently in [16–
18]. Sudarshan’s proof is close to an earlier proof by Swinger [19] which
however makes use of CPT invariance and is thus fully relativistic in nature.
Today Schwinger’s proof is best considered a proof of the CPT theorem
starting from the requirement of the proper spin-statistics relation. Let us
now go through Sudarshan’s proof in detail.

There are four conditions for the kinematic part of the Lagrangian:

1. The Lagrangian is invariant under SU(2) and corresponds to a theory
for fields, ξ, which are each a finite dimensional irreducible representa-
tion of SU(2).

2. The Lagrangian is composed of Hermitian fields ξ = ξ†.

3. It is at most linear in the time derivatives of the fields and these are
only present in the kinematic part.

4. The kinematic part is bilinear in the field ξ.
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The Dirac Lagrangian is in this form and as for bosons we can transform the
Klein-Gordon Lagrangian into the Duffin-Kermer form L = ψ̄(iβµ∂

µ −m)ψ,
which satisfies the requirements 1-4. The definitions of ψ and β are presented
in [18]. We concentrate on the kinematic part since we expect the spin-
statistics relation to hold irrespective of the processes present.

The heart of the proof is in the fact that for SU(2) the representations
belonging to integral spin have a bilinear scalar product symmetric in the
indices of its factors. Take the product of two real vectors

(V1, V2) =
∑

j,k=1,2,3

V1jV2kδjk . (3.1)

In contrast, the similar product between half-integral representations is an-
tisymmetric in the indices

(ψ1, ψ2) =

4∑

r,s=1

ψ1rψ2siβrs, (3.2)

where βrs =
(

0 σ2

σ2 0

)
, an imaginary antisymmetric matrix. Now let us have a

look at the kinematic part of the Lagrangian which can generally be written
as

Lkin =
∑

r,s

1

2
K0

rs(ξrξ̇s − ξ̇rξs) =
1

2

∑

r,s

ξrΛrsξs, (3.3)

where Λrs = K0
rs(∂

(r)
t −∂(s)

t ). The requirement that the Lagrangian be SU(2)
symmetric requires that the scalar fields appear as scalar products symmet-
rical in the indices r and s (3.1) and so Λrs too has to be symmetric in
its indices. In contrast, for the spinor fields antisymmetry in r and s is
needed due to the antisymmetric products (3.2). Because of the time deriva-
tive terms in the definition of Λrs we see that K0

rs has to have the opposite
symmetry.

We now want to go on to show independently that K0
rs has to be an-

tisymmetric for commuting fields and symmetric for anticommuting fields.
This will give the proper spin-statistics relation.

Let us follow Schwinger’s approach where it is assumed that the infinites-
imal transformation generators are obtained by the variation of the action

I =

∫ σ1

σ2

d4xL[x], (3.4)
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where the σi denote the three-dimensional constant time slices. We only
consider the variations in the kinematic part (3.3) and vary the field and its
derivative

ξk → ξk + δξk

ξ̇k → ξ̇k +
d(δξk)

dt
. (3.5)

Then the variation will be given by

δI =
1

2

∫
dt d3x

(
∂L
∂ξr

δξr +
∂L
∂ξ̇r

δξ̇r

)

=
1

2

∫
dt d3x

{
∂L
∂ξr

− ∂t

(
∂L
∂ξ̇r

)}
δξr +

1

2

∫
dt d3x∂t

(
∂L
∂ξ̇r

δξr

)

=
1

2

∫
dt d3x

{
∂L
∂ξr

− ∂t

(
∂L
∂ξ̇r

)}
δξr +

1

2

∫

σ

d3x
∂L
∂ξ̇r

δξr, (3.6)

where on the second line we have used the identity

∂L
∂ξ̇r

δξ̇r = ∂t

(
∂L
∂ξ̇r

δξr

)
− ∂t

(
∂L
∂ξ̇r

)
δξr.

Setting the first integral to zero in (3.6) will yield the Euler-Lagrange equa-
tions for the fields ξ. The generators of infinitesimal transformations are
given by the surface integral term which, being integrated over a constant
time slice, is nonrelativistic. Further, since δI is the generator of infinitesimal
transformations of the field quantities ξ attached to the surface σ, we require

[ ξn , δI ] = iδξn . (3.7)

We can now go on to plug the Lagrangian (3.3) into the last term of (3.6)
and the variation still further into (3.7) to get

1

2

∫

σ

d3x

[
ξn,

∑

r,s

K0
rs(ξrδξs − δξrξs)

]
= iδξn. (3.8)

By expanding the commutator we obtain

1

2

∫

σ

d3x
∑

r,s

K0
rs(ξnξrδξs − ξnδξrξs − ξrδξsξn + δξrξsξn) = iδξn. (3.9)

Now we want to investigate what restrictions commuting and anticommuting
fields have on the matrix K0

rs.
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Commuting ξ

Let us first consider bosonic fields where the fields ξ commute and thus the
variation δξ commutes with everything in (3.9). Then the left-hand side can
be written as

1

2

∫

σ

d3x
∑

r,s

K0
rs{(ξnξrδξs − ξrξnδξs) − (ξnξsδξr − ξsξnδξr)}. (3.10)

Inserting explicit space coordinates this can be written as

1

2

∫

σ

d3x
∑

r,s

K0
rs{[ξn(y), ξr(x)]δξs(x) − [ξn(y), ξs(x)]δξr(x)}. (3.11)

By switching the indices r and s in the second term we can write (3.11) as

[ξn, δIδξ] =

∫

σ

d3x
∑

s

δξs(x)

[
ξn(y),

1

2

∑

r

(K0
rs −K0

sr)ξr(x)

]
. (3.12)

Now this is a result as beautiful as they get. We see explicitly that for the
action to be a generator of transformations K0

rs cannot be symmetric and
thus has to be antisymmetric. The possibility of it being anything else is
ruled out by the requirement of SU(2) symmetry. This being consistent with
the earlier derivation using scalar products we can conclude that fields with
integral spin have to be commuting, i.e. bosonic, fields.

Anticommuting ξ

If we now take anticommutation rather than commutation relations for δξ in
(3.9) we get analogously to (3.10)

1

2

∫

σ

d3x
∑

r,s

K0
rs{(ξnξrδξs + ξrξnδξs) + (ξnξsδξr + ξsξnδξr)} , (3.13)

which is then simplified to give

[ξn, δIδξ] =

∫

σ

d3x
∑

s

δξs(x)

{
ξn(y),

1

2

∑

r

(K0
rs +K0

sr)ξr(x)

}
. (3.14)

The result is almost identical. We see that for this to be consistent with (3.7)
K0

rs cannot be antisymmetric and is thus symmetric. From this we conclude
that fields with half-integral spin have to be anticommuting, i.e. fermionic,
fields. This completes the proof of the spin-statistics theorem.
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3.2 Commuting and anticommuting fields

To highlight the importance of the spin-statistics relation it is useful to have
a look at the quantization of scalar and Dirac fields in relativistic quantum
field theory‡. After all, Pauli himself has said that the requirement of positive
energies is the best a priori argument in favor of his exclusion principle and
here the connection to statistics is most obvious.

Quantization of the scalar field

We start from the Lagrangian density for the classical free scalar field

L =
1

2
∂µφ(x)∂µφ(x) − 1

2
m2φ2(x) , (3.15)

with the conjugated momentum field π(t,x) = L
∂(∂tφ)

= ∂tφ(t,x) and the
mode expansion:

φ(x) =

∫
dµ(p)

[
a(p)e−ip·x + a†(p)eip·x

]
. (3.16)

where dµ(p) = dp√
(2π)32Ep

and p0 = Ep =
√

p2 +m2. Inspired by the well

known commutation relations of quantum mechanics

[x̂i, x̂j ] = 0 [p̂i, p̂j] = 0 [x̂i, p̂j] = iδij , (3.17)

we postulate§ the equal-time commutation relations for the conjugate fields

[φ(t,x), π(t,y)] = iδ(x − y) (3.18)

[φ(t,x), φ(t,y)] = [π(t,x), π(t,y)] = 0.

Using the expressions for the φ and π fields and the commutation relations
(3.18) one can derive for the creation and annihilation operators

[a(p), a†(p′)] = δ(p − p′) (3.19)

[a(p), a(p′)] = [a†(p), a†(p′)] = 0 .

‡For an introduction see, for example, the excellent books by Peskin and Schroeder [20]
and Lahiri and Pal [21].

§This is clearly justified by the previous section but let us consider this as an indepen-
dent treatment.
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We then calculate the total normal ordered Hamiltonian

H =

∫
d3x : H :=

∫
d3x : [π∂tφ−L] :

=

∫
d3x :

1

2
[π2 + ∂iφ∂iφ+ φ2] : (3.20)

The Hamiltonian can be further put in the form

H =

∫
d3pEp

1

2
: [a†(p)a(p) + a(p)a†(p)] :

=

∫
d3pEp a

†(p)a(p) =

∫
d3pEp n(p) . (3.21)

On the last line the Hamiltonian is expressed in terms of the number density
operator n(p) with the number operator defined as

N̂ =

∫
d3pn(p) =

∫
d3p a†(p)a(p) (3.22)

The number operator, when acting on the multi-particle states

|n〉 = a†(p1)a
†(p2) · · ·a†(pn)|0〉, (3.23)

has the desired properties

N̂ |0〉 = 0

N̂ |n〉 = n|n〉 (3.24)

and we see clearly that the eigenvalues of N̂ are not restricted.

Quantization of the Dirac field

Starting from the Dirac Lagrangian

L = ψ̄(x)(i∂� −m)ψ(x) , (3.25)

we get the Hamiltonian density

H = ψ̄(x)[−i∇ · γ +m]ψ(x) , (3.26)
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where ψ is the Dirac field with the mode expansion:

ψ(x) =

∫
dµ(p)

∑

s

[
cp,su(p, s)e

−ip·x + d†
p,sv(p, s)e

ip·x
]
. (3.27)

Here the Dirac spinors u and v satisfy the equations

p�u(p, s) = (γ0p0 − γp)u(p, s) = mu(p, s) , (3.28)

p�v(p, s) = (γ0p0 − γp)v(p, s) = −mv(p, s) . (3.29)

i.e. the Dirac equation in momentum space. We first note how [−∇ ·γ +m]
acts on the spinors by using (3.28)

[−i∇ · γ +m]u(p, s)e−ip·x = [γ · p +m]u(p, s)e−iEpt+ip·x

= γ0Epu(p, s)e
−ip·x ,

[−i∇ · γ +m]v(p, s)eip·x = [−γ · p +m]v(p, s)eiEpt−ip·x

= −γ0Epv(p, s)e
ip·x . (3.30)

We then use these results to calculate the normal-ordered total Hamiltonian

H =

∫
: H : d3x (3.31)

Noting that the Dirac spinors are normalized to

u†(p, s)u(p, s′) = v†(p, s)v(p, s′) = 2Epδs,s′

v†(p, s)u(p, s′) = u†(p, s)v(p, s′) = 0,

we get:

H =

∫
d3x

∫
dµ(p)dµ(q)

∑

ss′

:
[
c†
p,scq,s′u

†(p, s)u(q, s′)Eqe
ix(p−q)+

dp,sd
†
q,s′v

†(p, s)v(q, s′)Eqe
ix(q−p)

]
: (3.32)

By remembering the very useful form for the Dirac delta-function: δ(x−y) =∫
d3p

(2π)3
eip(x−y) and integrating over x we get

H =

∫
d3pEp

∑

s

: [c†
p,scp,s − dp,sd

†
p,s] : (3.33)

The next step is to do the normal-ordering and interpret the result. Now
this is where we encounter something interesting and deeply physical. The
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first guess here would be to use commutation relations of the creation and
annihilation operators as with the scalar field to get

H =

∫
d3pEp

∑

s

[c†
p,scp,s − d†

p,sdp,s]. (3.34)

But now with the second term we can create as many particles as we like and
thus lower the energy of the system indefinitely. There is however another
way of quantizing the theory. If at the very beginning, instead of using
commutation relations for the fields, were we to postulate anticommutation
relations

{ψα(x), πβ(y)} = iδαβδ(x − y) , (3.35)

{ψα(x), ψβ(y)} = {πα(x), πβ(y)} = 0,

we would get (analogously to the scalar case)

{cs(t,p), c†s′(t,p
′)} = {ds(t,p), d†s′(t,p

′)} = δss′δ(p− p′) (3.36)

with all other anticommutators zero. Now carrying out the normal-ordering
we get an appealing result

H =

∫
d3pEp

∑

s

[c†
p,scp,s + d†

p,sdp,s]. (3.37)

In terms of the number operators defined analogously to the scalar case
N̂c(s) =

∫
d3pnc,s(p) =

∫
d3p c†

p,scp,s

H =

∫
d3pEp

∑

s

(nc,s(p) + nd,s(p)) . (3.38)

To see that N̂c(s) really is a number operator we note that

[N̂c(s), cp,s] = −cp,s , [N̂ †c (s), cp,s] = c†
p,s ,

which gives directly the desired properties for creation and annihilation re-
spectively:

N̂c(s)c
†
p,s|nk〉 = (nk + 1)c†

p,s|nk〉 ,
N̂c(s)cp,s|nk〉 = (nk − 1)cp,s|nk〉 .
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Our new number operator has very different properties compared to
the scalar equivalent (3.22). Operating on the ground state obviously still
gives zero but from the anticommutation relations (3.36) we see directly that
cs(p)cs(p) = ds(p)ds(p) = 0 and thus

N̂ |p, s;p, s〉 =

∫
d3p′c

†
p′,scp′,s c

†
p,sc

†
p,s︸ ︷︷ ︸

0

|0〉 = 0|p, s;p, s〉 (3.39)

and similarly for any state with a higher number of indistinguishable particles
sharing the same quantum numbers.

Since the corresponding eigenvalues of the number operator are 0 and 1,
we conclude that the states satisfy the Pauli exclusion principle. In other
words, the system obeys Fermi-Dirac statistics (1.3). In the scalar case the
eigenvalues of (3.22) are not restricted. The commutation relations used thus
imply Bose-Einstein statistics (1.2).



Chapter 4

Noncommutative quantum field

theory and twists

Perhaps the most famous appearance of noncommutativity in physical the-
ories is the relation between position and momentum in ordinary quantum
mechanics (3.17). This traditional picture is based on the assumption that
phase space can be represented as a smooth manifold, which is of course true
at relatively large scales or low energies.

On distances of the order of Planck scale (λP ≈ 1.6 × 10−33cm) this
picture is expected to break down due to the very high energy uncertainty
involved [22]. This conclusion is intuitively clear when one considers the
Heisenberg uncertainty relation ∆x∆p ≥ 1

2
together with the general rela-

tivity result of black hole formation. When considering small enough length
scales (corresponding to high energy) the energy uncertainty enables black
hole formation and the smooth manifold structure is lost. As a result the
notion of a point becomes meaningless and the simple commutation rela-
tion between space-time points is no longer expected to hold. This was first
suggested long ago by Snyder (1947) [23] and Heisenberg (1954) [24]. They
hoped that the UV-behaviour of quantum field theories could be improved
by making [xi, xj] 6= 0.

22
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4.1 Noncommutativity of space-time∗

The form of noncommutativity of coordinates studied in this work can be
written in the Heisenberg-like form:

[x̂µ, x̂ν ] = iθµν , (4.1)

where θµν is a constant real antisymmetric matrix. This particular form
is motivated by string theory [27] where it was shown to appear as a low
energy limit in string theories with a constant background B-field. This gives
a justification for this particular type of noncommutativity and has led to
intense study in this field (for reviews, see [28, 29]). From the relation (4.1)
we can already extract two key problems to be faced with noncommuting
coordinates: nonlocality and the violation of Lorentz invariance.

Due to (4.1) the coordinate operators cannot be simultaneously diago-
nalized, i.e. are no longer independent. Because of the induced uncertainty
relation ∆xi∆xj ≥ 1

2
|θij | we are forced to replace our notion of a point with

that of a cell of dimension given by |θij |. This leads to the appearance of a
UV-cutoff and seems to have been Snyder’s [27] original motivation. Non-
locality induces serious practical and conceptual problems that are not very
well understood and will not be further discussed in this work.

The Lorentz noninvariance is obvious since, in a Lorentz transformation,
the left-hand side of (4.1) transforms as a tensor while the right-hand side
stays constant. Among other things this poses a threat to causality. Since the
normal light cone structure is no longer valid, the microcausality condition
(the 2nd condition in Pauli’s theorem) seems to be in doubt. There is a
twist to this story however as it turns out that our noncommutative space-
time follows another, hidden, symmetry. The twisted Poincaré symmetry
introduced in section 4.3 repairs a large part of the damage induced by the
loss of Lorentz invariance. The important topic of microcausality will be
further discussed in chapter 5.

Let us have a closer look at the properties of our new space-time. In four
dimensions there always exists a frame where the θ-matrix can be put in a

∗For an exhaustive treatment of noncommutative spaces, see [25, 26].
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block-diagonal form

θµν =




0 θ 0 0
−θ 0 0 0
0 0 0 θ′

0 0 −θ′ 0


 (4.2)

Here, again, we run into a major difficulty. Since the original Lorentz group
is broken into SO(1, 1) × SO(2), both of which are Abelian groups, we are
left with only one-dimensional irreducible representations. Thus there is a
serious problem in dealing with spinors, vectors and other higher dimensional
representations and this of course contradicts much of what was said in pre-
vious chapters. The solution to this apparent problem is given by the twisted
Poincaré symmetry discussed in section 4.3.

From the form (4.2) it is useful to classify different types of noncommu-
tativity to clarify the causal structure:

• Space-space θ 2 = 0

• Lightlike θµνθµν = θ 2 − θ′ 2 = 0

• Time-space θ′ 2 = 0

4.2 Weyl-Moyal correspondence and the ⋆-

product

The treatment of noncommutative (NC) space-times in quantum field the-
ories (QFTs) is largely based on the method devised by Weyl [30] where
each quantum operator is associated with a classical function of phase space
variables.

To implement Weyl quantization we assume that each function can be
represented by its Fourier transform

f̃(k) =

∫
dDxe−ikµxµ

f(x), (4.3)

where f̃(−k) = f̃(k)∗ when f(x) is real valued. We can now introduce
the noncommutativity of space-time by replacing the coordinates xµ by the
operators x̂µ that satisfy the commutation relation (4.1). Given a function
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f(x) and its Fourier coefficients (4.3) we define its Weyl symbol by

Ŵ [f ] =

∫
dDk

(2π)D
f̃(k)eikµbxµ

, (4.4)

with the symmetric Weyl operator ordering prescription chosen, i.e.
Ŵ [eikµxµ

] = eikµbxµ

. The operator Ŵ [f ] is hermitian when its Weyl symbol
f(x) is real valued. By inserting (4.3) we can rewrite (4.3) as

Ŵ [f ] =

∫
dDxf(x)∆̂(x) , (4.5)

∆̂(x) =

∫
dDk

(2π)D
eikµbxµ

e−ikνxν

. (4.6)

Using the Baker-Campbell-Hausdorff formula

eikµbxµ

eik′

ν bxν

= e−
i
2
θµνkµk′

νei(k+k′)µbxµ

, (4.7)

together with relation (4.5), the products of the operators ∆̂(x) can be cal-
culated as

∆̂(x)∆̂(y) =

∫
dDk

(2π)D

dDk′

(2π)D
ei(k+k′)µbxµ

e−
i
2
θµνkµk′

νe−ikµxµ−ik′

νxν

(4.8)

=

∫
dDk

(2π)D

dDk′

(2π)D

∫
dDzei(k+k′)µbzµ

∆̂(z)e−
i
2
θµνkµk′

νe−ikµxµ−ik′

νxν

,

where Ŵ [ei(k+k′)µzµ

] = ei(k+k′)µbzµ

has been inserted.

If θ is invertible, the integrations in (4.9) over the momenta k and k′ can
be worked out to get

∆̂(x)∆̂(y) =
1

πD| det θ|

∫
dDz∆̂(z)e−2i(θ−1)µν(x−z)µ(y−z)ν

. (4.9)

The ⋆-product

The product of two Weyl symbols is defined as

Ŵ [f ]Ŵ [g] = Ŵ [f ⋆ g], (4.10)
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where we have introduced the ⋆-product

(f ⋆ g)(x) =

∫
dDk

(2π)D

dDk′

(2π)D
f̃(k)g̃(k′ − k)e−

i
2
θµνkµk′

νeik′

σxσ

= f(x)e
i
2

←−
∂ µθµν

−→
∂ νg(x) (4.11)

= f(x)g(x) +

∞∑

n=1

(
i

2

)n
1

n!
θµ1ν1 · · · θµnνn∂µ1

· · ·∂µn
f(x)∂ν1

· · ·∂νn
g(x).

This Moyal-product, or ⋆-product, (4.12) is associative and noncommutative
and is only defined in the exponential form for a constant θ. It clearly reduces
to the ordinary product of functions in the limit θµν → 0, which is what we
expect. The commutator of functions is now naturally defined by the Moyal
bracket

[f(x), g(y)]⋆ = f(x) ⋆ g(y) − g(x) ⋆ f(y) (4.12)

and with this the commutator (4.1) is written as

[xµ, xν ]⋆ = iθµν . (4.13)

4.3 Twisted Poincaré symmetry

The earliest works done on quantum field theories on noncommutative space-
times disregarded the problem of the inadequate representation content ap-
parent from (4.2). Instead all discussion on fundamental issues such as uni-
tarity [31] and causality [32] was done with the usual representation content
of the Poincaré algebra.

The breakthrough on this sector came when Chaichian et al. [33, 34]
used a quantum group theoretical approach to tackle the problem†. They
introduce a twist deformation on the universal enveloping U(P) of the usual
Poincaré algebra P such that the noncommutative theory respects this new
twisted symmetry.

The twist element F ∈ U(P) ⊗ U(P) does not alter the multiplication
properties in U(P) and so preserves the commutation relations among the
generators Pµ and Mµν (2.5). The essential implication of this is that the rep-
resentation content of the new theory is identical to that of the usual Poincaré

†An introduction to the theory of quantum groups is given in [35–37].
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algebra and is thus the justification needed for all the previous work done in
the field. The price we need to pay is a change in the action of the Poincaré
generators in the tensor product of representations, the coproduct, given in
the standard case by

∆0 : U(P) → U(P) ⊗ U(P)

∆0(Y ) = Y ⊗ 1 + 1 ⊗ Y, ∀Y ∈ P . (4.14)

The twist element changes this coproduct into the twisted coproduct

∆0(Y ) 7−→ ∆t(Y ) = F∆0(Y )F−1 , (4.15)

where the twist element F has to satisfy the twist equation

(F ⊗ 1)(∆0 ⊗ id)F = (1 ⊗ F)(id ⊗ ∆0)F . (4.16)

Equation (4.16) is clearly satisfied if we take an abelian twist element written
as

F = e−
i
2
θµνPµ⊗Pν . (4.17)

Let us now consider the commutative algebra A (consistent with the
coproduct ∆0) of functions, f(x), g(x),..., in Minkowski space. The Poincaré
algebra acts on the coordinates xµ with commutative multiplication:

m(f(x) ⊗ g(x)) := f(x)g(x) . (4.18)

In A we have the representations of U(P) generated by the standard repre-
sentations of the Poincaré algebra (2.4), acting on coordinates as follows:

Pµxρ = i∂µxρ = iηµρ

Mµνxρ = i(xµ∂ν − xν∂µ)xρ = i(xµηνρ − xνηµρ) . (4.19)

When twisting U(P), one has to redefine the multiplication while retaining
the action of the generators of the Poincaré algebra on the coordinates as in
(4.19):

mt(f(x) ⊗ g(x)) = f(x) ⋆ g(x) = m ◦
(
e−

i
2
θµνPµ⊗Pνf(x) ⊗ g(x)

)

= m ◦
(
e

i
2
θµν∂µ∂νf(x) ⊗ g(x)

)
. (4.20)
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Specifically for the coordinates we get

mt(xµ ⊗ xν) = xµ ⋆ xν = m ◦ e− i
2
θαβPα⊗Pβ(xµ ⊗ xν)

= m ◦ [xµ ⊗ xν +
i

2
θαβηαµ ⊗ ηβν ]

= xµxν +
i

2
θαβηαµηβν ,

mt(xν ⊗ xµ) = xν ⋆ xµ = xνxµ +
i

2
θαβηανηβµ .

and so

[xµ, xν ]⋆ =
i

2
θαβ(ηαµηβν − ηανηβµ) = iθµν , (4.21)

which is the normal Moyal bracket (4.13).

The equivalence of (4.13) and (4.21) implies directly that deforming the
multiplication of functions (as presented here and in [33]) is equivalent to the
noncommutative field theory constructed by the Weyl-Moyal correspondence
discussed in the previous section. The obvious advantage to us here is the
representation content which is identical to the usual Poincaré algebra by
construction. Thus the standard way of classifying particles according to
their mass and spin familiar from chapter 2 is carried on to noncommutative
theories of the form (4.1).

In addition this approach uncovers a hidden symmetry of the space-time,
a new form of relativistic invariance. In commutative theories relativistic
invariance means symmetry under Poincaré transformations whereas in the
noncommutative case symmetry under the twisted Poincaré transformations
is needed. The discovery of this new symmetry has led to intense study in
the field and many of its properties still remain mysteries.



Chapter 5

Spin-statistics in NC QFT

The latest chapter in the success story of Pauli’s theorem has been written
in the noncommutative regime. With noncommuting coordinates it is not
obvious that the microcausality condition is satisfied, i.e. that at spacelike
separations the commutators of any two observables vanish and so the preser-
vation of the spin-statistics relation is held to question. This problem was
first addressed in the Lagrangian formalism [38] and further studied in [39].

In the Lagrangian approach we need to pay attention to which kind of
noncommutativity we are considering. Since time-space noncommutativity
(θ0i 6= 0) induces violation of unitarity [31] and causality [32] and therefore
leads to ill-behaving theories, they are not considered here. It further turns
out that this approach leaves the question open in the case of lightlike non-
commutativity, θµνθµν = 0. This problem has been a standing one until very
recently [40] and is dealt with in section 5.2.

5.1 Microcausality

The spin-statistics relation in theories with θ0i = 0 was first studied in [38]∗.
Indeed the low-energy limit of string theory can only be found for these the-
ories. In [38] it is shown that expectation values of equal-time commutation

∗For an axiomatic approach, see [41].

29
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relations with respect to two-particle states will vanish:

〈0|[: φ(x) ⋆ φ(x) : , : φ(y) ⋆ φ(y) :]
∣∣∣
x0=y0

|p, p′〉

= − 2i

(2π)2d

1
√
ωpωp′

(e−ip′x−ipy + e−ipx−ip′y)×
∫
d3k

ωk

sin
(
~k(~x− ~y)

)
cos

(
1

2
θµνkµpν

)
cos

(
1

2
θµνkµp

′
ν

)
, (5.1)

where the right-hand side of (5.1) is nonzero only when θ0i 6= 0. The conclu-
sion is that in theories with space-space noncommutativity the spin-statistics
relation is preserved. I only quote their result here since there has been some
more recent work done [42] that seems to challenge the results of this simple
approach.

In effect, the results of [42] reproduce the results of the initial work [38]
but the interpretation differs: if in [38] spacelike separations consistent with
the light wedge (explained below) were considered sufficient to guarantee
microcausality, in [42] it was considered that only by taking all usual (in the
light cone sense) spacelike separations could the violation of microcausality
be avoided. Since the results of both papers correctly indicate a light wedge
microcausality condition, the conclusion of [42] was that microcausality is
violated in NC QFTs. However, this analysis missed the obvious fact of
Lorentz noninvariance and indeed the light wedge microcausality condition
should be regarded as a light wedge locality condition. The causality is not
fundamentally affected by the nonlocality, i.e. the cause does not happen
after the effect, as was shown already long ago in [32]. The question of
microcausality is an important one and at the time of writing remains open
and deserves further study.

The light wedge and twisted Poincaré symmetry

Let us take a closer look at the causal structure of the theory. In theories
with commutative coordinates causality is implemented by demanding that
the commutators of observables vanish outside their light cones, i.e. for
(x0 + y0)2 − (x + y)2 < 0. Due to the breaking of Lorentz invariance, the
light cone structure of the O(1,3) group is replaced by that of the O(1,1)
group, namely a light wedge, i.e. (x0 + y0)2 − (x1 + y1)2 < 0 (where we have
considered θ23 = −θ32 = θ, with all other components being zero). The idea
was presented in [43] and further studied in [44].
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Figure 5.1: The light wedge. Adapted from [43].

This picture clarifies our problem. In the traditional light cone structure
it can be argued that no spacelike vector can be Lorentz transformed into
a timelike one and thus causality is preserved. Now the question is how to
correctly combine twisted Poincaré transformations with the light wedge pic-
ture since in noncommutative theories Lorentz invariance is broken and only
transformations respecting twisted Poincaré symmetry have any meaning of
invariance. It is an interesting question whether it is possible to transform
a vector outside the light wedge inside it in this framework. If this can be
done the microcausality condition would seem to break down and the study
of noncommutative theories would take an unexpected turn.

Once it is settled that NC QFTs with space-space noncommutativity,
although nonlocal, do not violate causality, it still remains to show that the
light wedge locality (microcausality) condition is compatible with the twisted
Poincaré symmetry. It is well-known, as shown in [33], that under the action
of infinitesimal twisted Poincaré transformations it is the usual space-time
interval x2 = xµx

µ which is invariant and not the interval in the commutative
directions, x̃2 = x0x

0 − x1x
1, as the light wedge locality condition would

require. However, the question here is related to finite twisted Poincaré
transformations, which are not related in the usual, trivial way (by simple
addition) to the infinitesimal ones.

The behavior of finite twisted Poincaré transformations has been stud-
ied in [45] and more recently in [46]. The commutation relations for finite
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transformations have interesting properties compared to traditional theo-
ries where the parameters of transformations commute. By requiring that
in a Poincaré transformation xµ → x′µ = Λν

µxν + aµ the commutator
[x′µ, x

′
ν ] = iΛρ

µΛδ
νθρδ + [aµ, aν ] = iθµν remains invariant we get

[aµ, aν ] = iθµν − iΛρ
µΛδ

νθρδ , (5.2)

[Λρ
µ,Λ

δ
ν ] = [Λρ

µ, aρ] = 0 .

Let us now have a look at the transformation properties of an interval with
(x0+y0)2−(x1+y1)2 < 0. It is easy to verify from (5.2) that only for a rotation
in the noncommuting coordinates does the commutator [a2, a3] remain zero
whereas for a boost or a rotation between a noncommutative direction and
the commutative one give [a2, a3] = iθ23 ([a0, ai] = [a1, ai] = 0 always). This
suggests that these Lorentz transformations require translations, a peculiar
fact further to be studied in [47]. Remark that these translations are not im-
posed from the outside, as in the case of usual Poincaré transformations, but
they appear naturally when performing a finite twisted Lorentz transforma-
tion. Thus the actual value of these accompanying translations is arbitrary,
the only thing known about them being their commutation relations. If we
now look e.g. at the a boost Λ in the commutative direction

xµ → x′µ = Λν
µxν + aµ ,

yµ → y′µ = Λν
µyν + bµ , (5.3)

with [a2, a3] = [b2, b3] = iθ23. The noncommutative coordinates are trans-
formed as (x2−y2) → (x′2−y′2) = (x2−y2)+(a2−b2) and with (a2−b2) being
arbitrary we can set it to (a2 − b2) = −(x2 − y2) thus doing away with the
noncommuting coordinates and arriving precisely at the light wedge locality
condition.

We have thus sketched the proof of the fact that it is indeed the light
wedge locality condition which is compatible with finite twisted Poincaré
transformations. The failure to appreciate this aspect has led to many er-
roneous statements such as the spin-statistics relation violation [48], the re-
moval of UV/-IR mixing [49], or even the pure equivalence of commutative
and noncommutative QFTs [50].

Although the requirement of microcausality is an important one it is in
no way vital in the frame of this work. Indeed the nonrelativistic proof in
section 3.1 did not require microcausality and Pauli himself has considered
it as superfluous [51] for his proof in his later years. In the next section an
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example is presented that makes more elegant use of the ⋆-product formalism
and is enough to decide the faith of the spin-statistics relation in NC QFTs.

5.2 Quantum groups and the spin-statistics

relation

It seems the final word in the defence for the spin-statistics relation in NC
QFTs has come in the form of braided groups [40]. In contrast to the La-
grangian formulation we need not specify the form of noncommutativity and
thus there is nothing special with the lightlike case.

The twisted Poincaré algebra is a quantum group. Quantum groups are
not strongly correlated to any kind of statistics, i.e bosonic and fermionic
commutation rules. However, they stem from the Yang-Baxter equation that
also gives rise to the so-called braided groups. This leads to the fact that
every quantum group which has a universal R-matrix, such as the twisted
Poincaré algebra, has a braided group analog. Braided groups in general
have a deformed permutation rule, i.e. deformed statistics. Let us now see
what sort of braiding, if any, the twisted Poincaré algebra possesses.

The R-matrix relates, by a similarity transformation, the coproduct ∆t

to its opposite ∆op
t = σ ◦ ∆t, where σ is the usual permutation operator of

factors in the tensor product:

R∆t = ∆op
t R, R =

∑
R1 ⊗R2 ∈ H⊗H. (5.4)

The Hopf algebra H in which ∆t and ∆op
t are related by such an invertible

R-matrix is called a quasi-triangular Hopf algebra.

The braided permutation, or braiding of V andW , two (co)representation
spaces of the quasi-triangular Hopf algebra H is given by

ΨV,W (v ⊗ w) = P (R ⊲ (v ⊗ w)) , (5.5)

where ⊲ is the action of R ∈ H⊗H, with its first factor acting on V and the
second factor acting onW , followed by the usual vector-space permutation P .
This form of braiding is achieved by requiring that ΨV,W be an intertwiner of
representations. If we consider the action of an element of a quasi-triangular
Hopf algebra h ∈ H

h • Ψ(v ⊗ w) : = ∆(h) ⊲ P (R ⊲ (v ⊗ w)) = P (∆op(h)R ⊲ (v ⊗ w))
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= P (R∆(h) ⊲ (v ⊗ w) = Ψ(h • (v ⊗ w)) . (5.6)

In general for a quasi-triangular Hopf algebra, R21 6= R−1 and consequently
Ψ 6= Ψ−1, i.e. the braiding is asymmetric. By finding the braiding Ψ one can
see how nontrivial statistics emerges.

In the case of the twisted Poincaré algebra the R-matrix can be presented
as (using (4.15) and (5.4)):

R = F21F−1 = e−iθµνPµ⊗Pν , (5.7)

which satisfies R12R21 = 1. The fact that R21 = R−1 directly implies
Ψ = Ψ−1. As a result, the twisted Poincaré algebra is a so-called triangular
Hopf algebra, Ψ is symmetric and not braided. It follows that NC QFTs with
twisted Poincaré symmetry do not experience nontrivial statistics, although
the notion of permutation is deformed using the R-matrix.

This argument, although being beyond doubt, is not easily understood
and can be clarified by a concrete example. Let us consider the free quantum
scalar field with the Lagrangian (3.15). Since it is quadratic in the field and
under the integration over the whole space-time one ⋆-product is known to
vanish in each term we can use the familiar expansion (3.16):

φ(x) =

∫
dµ(p)

[
a(p)e−ip·x + a†(p)eip·x

]
.

The products of such quantum fields have to be deformed by using the inverse
of the abelian twist element (4.17). Here we have to choose a realization for
the momentum operator.

The first option is to choose the ordinary Minkowski space realization
Pµ = −i∂µ in which case we will have a ⋆-product between exponentials

eikµxµ

⋆ eipµxµ

= eikµxµ

eipµxµ

e−
i
2
kµθµνpν

and the usual commutation relations between creation and annihilation op-
erators. Now everything defined with these operators, such as the multi-
particle states (3.23), remain as they were in the commutative space-time.
This directly implies that the spin-statistics relation is preserved.

There is a second option available however†. Since the creation and anni-
hilation operators are themselves representations of the momentum operator,

Pµa(k) = [Pµ, a(k)] = −kµa(k), Pµa
† = [Pµ, a

†(k)] = kµa
†(k) ,

†The third option is a combination of these two and was shown to give the same results
in [39]. This route will not be further discussed here.
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we can take Pµ =
∫
d3k kµa

†(k)a(k) in which case we will have the ⋆-product
between the creation and annihilation operators [52]

a†(k) ⋆ a†(p) = m ◦
(
e−

i
2
θµνPµ⊗Pν

) (
a†(k) ⊗ a†(p)

)
= a†(k)a†(p)e−

i
2
kµθµνpν ,

but now with the usual multiplication between exponentials.

To move on with this latter choice we have to express the commutation
relations of the operators using the ⋆-product as was previously done e.g. in
(4.13)

a†(k) ⋆ a†(p) = a†(p) ⋆ a†(k) e−ikµθµνpν (5.8)

a(k) ⋆ a†(p) − eikµθµνpνa†(p) ⋆ a(k) = δ(k − p) . (5.9)

Now the multi-particle states become nontrivial as they are also naturally
defined using the ⋆-product as

|n〉⋆ = a†(p1) ⋆ a
†(p2) ⋆ · · · ⋆ a†(pn)|0〉. (5.10)

From here we want to show that no deformation of statistics comes about.
To do this it is easiest to consider a two particle state and see whether or
not it remains symmetric under the new concept of permutation given by the
braiding (5.5). A two particle state is symmetric if for the braiding we have

m ◦ F−1
(
a†(k) ⊗ a†(p)

)
= m ◦ F−1Ψ

(
a†(k) ⊗ a†(p)

)
. (5.11)

Using the definitions (5.5) and (5.7) and by noting that, since θµν is anti-
symmetric, we obviously have, for example, F12 = F−1

21 we get

m ◦ F−1Ψ
(
a†(k) ⊗ a†(p)

)
= m ◦ F−1P

(
R ⊲ (a†(k) ⊗ a†(p))

)

= m ◦ F−1P
(
F21F−1(a†(k) ⊗ a†(p)

)
= m ◦ F12

(
a†(p) ⊗ a†(k)

)

= m ◦ F−1
21

(
a†(p) ⊗ a†(k)

)
= m ◦ F−1

(
a†(k) ⊗ a†(p)

)
. (5.12)

By a similar treatment we can go on to show that (5.11) is equivalent to (5.8).
The equivalence of the left-hand sides is obvious and as for the right-hand
sides we have

m ◦ F−1Ψ
(
a†(k) ⊗ a†(p)

)
= m ◦ F−1P

(
R ⊲ (a†(k) ⊗ a†(p))

)

= m ◦ F−1P
(
e−iθµνPµ⊗Pν ⊲ (a†(k) ⊗ a†(p))

)

= m ◦ F−1e−ikµθµνpν
(
a†(p) ⊗ a†(k))

)

= a†(p) ⋆ a†(k) e−ikµθµνpν (5.13)
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This means that the use of ⋆-commutation relations (5.8) with the braided
permutation (5.5) preserves the symmetry of the multi-particle states of the
scalar field. These braided permutations are considered more fully in [53].
The preservation of symmetry is interpreted as a different choice of represen-
tation for the wave functions in the same Hilbert space, i.e. a phase shift.
In other words the ⋆-commutation relations induce a phase shift in the new
multi-particle states |n〉⋆ with respect to the old ones |n〉. Due to this we
end up with the same representation content of the permutation group and
no deformation of statistics‡. In conclusion this second approach as well as
the first lead to the preservation of the spin-statistics relation.

What is interesting when comparing the earlier results of the Lagrangian
formalism to the results of quantum group theory is the unambiguous situ-
ation of lightlike noncommutativity. In the latter treatment no room is left
for the violation of the spin-statistics relation and we can conclude that it
holds in all noncommutative space-times defined by (4.1).

‡For a direct verification, see [54].



Chapter 6

Conclusions

In this work I have reviewed the status of one of the most important con-
nections in physics, the spin-statistics relation. After a thorough historical
introduction, a simple and clear proof on the theorem was presented starting
from the requirement of rotational invariance followed by discussion based on
relativistic quantum field theory. Next the notion of noncommutativity was
introduced and some of its dramatic consequences studied. The controversial
issue of microcausality in noncommutative quantum field theory was settled
by showing for the first time that the light wedge microcausality condition is
compatible with the twisted Poincaré symmetry. Finally it was proven that
Pauli’s age-old theorem stands even this test so dramatic for the whole struc-
ture of space-time. The quantum group theoretical proof presented originally
in [40] and the proofs based on the Lagrangian formalism [38,39] show that
the connection remains valid also in the noncommutative regime. This is in
contrast to some earlier discussion on the subject [48] where the opposite
conclusion was reached.

In the field of noncommutative quantum field theories there still remain
many unaswered questions. There is work to be done in constructing gauge
theories in the noncommutative setting as well as many fundamental theories
requiring verification. The faith of microcausality along with proper under-
standing of other implications of nonlocality and Lorentz-noninvariance will
require more study and a better understanding of the new relativistic sym-
metry present, the twisted Poincaré invariance.
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